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We present two alternative approaches to constructing 3 × 3 entangled quantum
games, based on different formulations of mixed strategies in a quantum game. Al-
though these formulations are quite similar in 2× 2 games (2 players × 2 choices),
their differences become pronounced in the 3× 3 case. A 3× 3 classical game is the
simplest platform which allows for non-transitive strategies A, B, C, where A beats
B, B beats C, and C beats A (A > B > C > A). We consider non-transitive strate-
gies in both formulations of 3 × 3 quantum games, and show that non-transitivity
survives in the quantum versions of the corresponding classical games. Some phys-
ical implications of these results are also considered.
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Recent years have witnessed a rapid growth of interest in quantum game the-
ory, motivated in part by potential applications to quantum computing. Quantum
games are generally derived from the corresponding classical games by introducing
some inherently quantum mechanical feature (such as superposition of states [1] or
entanglement [2]), which can be incorporated in more than one way. In a 2-player,
symmetric game, where each player has two pure strategies available, a widely
discussed scheme for entanglement is that due to Eisert, Wilkins and Lewenstein
(EWL) [3]. Although the EWL analysis restricted players to a subset of physically
possible actions, such restrictions exist in any physical game, and their methodol-
ogy is trivially generalizable. The object of the present paper is to discuss 2-player
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games with three pure strategies (A, B, C) using the EWL formalism for entangle-
ment. The novel feature of such classical games is that they allow for the possibility
of non-transitive strategies (A > B > C > A) where A > B means “A beats B”. It
is well known that non-transitivity arises in classical games [4,5] and in real-world
applications, and can lead to surprising – and seemingly paradoxical – outcomes.
This naturally leads to the question of whether similar non-transitive effects arise
in quantum versions of classical games and, if so, whether similarly unexpected
effects can be present at the quantum level.

A simple 2-player, 3-strategy game is the children’s choosing game “rock (R),
scissors (S), paper (P )” – denoted by RSP – in which rock beats scissors, scissors
beats paper, and paper beats rock (R > S > P > R). A payoff matrix for the 3
strategies of this zero-sum game is shown in Table I (quantum games with 3 × 3
payoff matrices and larger have have been discussed by Wang et al. [6]). We note
that since RSP is a zero-sum game, it has no pure strategy Nash equilibrium. The
mixed strategy Nash equilibrium (where both players use each of R, S and P with
probability 1/3) produces zero expected payoffs for both players in the classical
game. Since EWL showed that quantum versions of classical games can affect Nash
equilibria (when players are allowed particular parameters), the question naturally
arises as to whether this can happen in non-transitive quantum games. In what fol-
lows, we analyze two formulations of incorporating mixed strategies into a quantum
version of RSP and show that both retain the essential non-transitive character of
the classical game.

TABLE 1. In the zero-sum game of “rock, scissors, paper”, a player can win regard-
less of the strategy chosen by an opponent. The first number in each entry of the
Table is Alice’s payoff and the second is Bob’s. Winning strategies are non-transitive
in that R > S > P > R.

Bob

R S P

R (0, 0) (1,−1) (−1, 1)

Alice S (−1, 1) (0, 0) (1,−1)

P (1,−1) (−1, 1) (0, 0)

We can formulate a quantum analog of this game by using the EWL entangle-
ment formalism. In the quantum version of this game, the strategies R, S, and P
are represented by three matrices (given by U1, U2 and U3 in Eq. (9) below) which
act on 3-component qutrits from which payoffs are determined. The quantum game
can be played as follows: In the absence of entanglement, each player (Alice and
Bob) is given a qutrit, and the initial state of the pair of qutrits is symmetric under
the interchange of the qutrits, which are orthogonal and denoted by |1〉, |0〉 or |−1〉.
The initial state (defined as |11〉 = (100)a ⊗ (100)b) is assumed to be symmetric
to ensure that the game itself is symmetric under the interchange of the players.
We note that the choice of another initial state such as | −1 −1〉 merely serves to
redefine R, S and P , and hence the essential non-transitivity in this game is unaf-
fected. Without loss of generality, we can thus assume that the same initial qutrit
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state is used in every game. This qutrit can then be manipulated by any of three
matrices denoted by R, S and P , each of which rotates the initial state into one of
the three orthogonal states. Once both players have implemented their strategies
(R, S or P ), the final qutrits for both players are compared using the payoff matrix
in Table I. An examination of this Table shows that R > S > P > R. In the EWL
formalism, the qutrits are entangled by an operator, J , before the players act on
them with R, S or P , and then disentangled by J† afterwards. The output state
which determines the payoffs is then given by

|ψout〉 = J†(Ua ⊗ Ub)J |ψin〉, (1)

where Ua and Ub are the actions of Alice and Bob, and can denote any of R, S or P
in our 3×3 game. Since the EWL entanglement operator commutes with any direct-
product combination of R, S and P , the net effect of introducing entanglement in
this manner is to produce a quantum game whose outcomes are identical to those
of the corresponding classical game.

If a game is repeated many times, a competitor may elect to play any of R,
S or P in each game with probabilities pR, pS and pP respectively, in which case
he/she is said to be playing a mixed strategy. In such a circumstance quantum
games can be formulated in which payoff functions unique to quantum mechanics
may result. Two ways of incorporating mixed strategies in quantum games can
be considered, and these lead in general to different outcomes. In one approach,
pR, pS and pP are simply the classical probabilities of using each of the quantum
operators R, S or P . By contrast, the second approach combines the operators R, S
or P and the respective probability amplitudes into a single matrix. The difference
in the two constructions can be illustrated in the 2 × 2 case (Alice’s 2 choices ×
Bob’s 2 choices): In the former approach, each player would have only two options
(N = no-flip and F = flip) for each game,

N =

(

1 0
0 1

)

, F =

(

0 1
1 0

)

, (2)

which act on the initial game state, either (10) or (01). Assigning a classical proba-
bility p to using N and (1− p) to using F would then define a mixed strategy, and
this entanglement technique requires that a player make a choice in each game.
It should be noted that other choices for N and F are interesting to study [7],
but we shall restrict our discussion to those given in Eq. (2). A maximized en-
tanglement operation, J , can be introduced into such a game that commutes with
any direct-product combination of N and F but does not commute with a general
matrix,

J = ei(π/4)F⊗F =
1√
2

(

N ⊗N
)

+
i√
2

(

F ⊗ F
)

, (3)

where N ⊗N = N(Alice)⊗N(Bob), etc.. Payoff functions for both players unique
to quantum mechanics are possible if either player uses matrices other than N or
F .
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In the second approach, the actions available to each player, along with the
probability amplitudes for selecting them, are built into the single unitary matrix
U ,

U =

( √
p −√

1 − p√
1 − p

√
p

)

=

(

cos θ − sin θ
sin θ cos θ

)

. (4)

Once p = p(θ) has been chosen, a game can be played many times without the
player making any future decisions. An entanglement matrix for such a game was
provided by EWL,

J = ei(π/4)F ′⊗F ′

=
1√
2

(

N ⊗N
)

+
i√
2

(

F ′ ⊗ F ′
)

, (5)

where

F ′ =

(

0 −1
1 0

)

. (6)

In the 2× 2 case, the entanglement matrices in Eqs. (3) and (5), which correspond
to different formulations of mixed strategies, are structurally similar. However, in
a 3 × 3 game, the equivalent entanglement operations clearly reflect their different
implementations of a mixed strategy.

Before turning to the 3 × 3 case, we note that although some properties of
quantum games are identical to those of classical games [8], the EWL entanglement
technique can lead to payoff functions that cannot be reproduced in a classical game.
Consider a situation where each player introduces an additional phase, φ, to his/her
play,

U(θ, φ) =

(

eiφ cos θ − sin θ
sin θ e−iφ cos θ

)

. (7)

It follows from Eqs. (1) and (7) that the final expected payoff function, $a, for Alice
is

$a = a11c
2
ac

2
b cos2(φa + φb) + a10

(

casb cosφa − sacb sinφb

)2

+a01

(

sacb cosφb − casb sinφa

)2
+ a00

[

sasb + cacb sin(φa + φb)
]2
, (8)

where φa (φb) is the additional phase for Alice (Bob), ca = cos θa, sa = sin θa

and the a’s are Alice’s payoff coeffcients. For non-zero but fixed values of φa and
φb, Alice’s payoff is non-linear in pa = c2a, whereas a classical 2 × 2 game always
produces only payoff functions that are linear in pa.

The 2 × 2 EWL entanglement formalism can be shown to work equally well
with either formulation of a mixed strategy. However, in the 3 × 3 case (2 players
with 3 choices each), these approaches require different entanglement matrices as
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we now discuss. We begin by exhibiting the 3× 3 analog of the operators N and F
in Eq. (2) which we take to be

U1 =





1 0 0
0 1 0
0 0 1



 , U2 =





0 0 1
1 0 0
0 1 0



 , U3 =





0 1 0
0 0 1
1 0 0



 , (9)

where [U2, U3] = 0. The players use these matrices in different spaces to act on initial
wave functions such as |11〉 = (100)a ⊗ (100)b. The analog of the first approach for
constructing a mixed strategy is for each player to assign classical probabilities pi to
each of the Ui, where

∑

pi = 1. (Other choices for these matrices lead to identical
results.) The commutativity of U1, U2 and U3 can be exploited to create a mixing
matrix similar to that of EWL [3]. The matrix

J =
3

∑

i=1

3
∑

j=1

αijUi ⊗ Uj (10)

can be used if the αij are restricted such that J is unitary. Since the set of Ui ⊗Uj

form a group, real solutions for the coefficients are easy to find if the following
simplifying assumptions are made. First, we assume all of the αij are equal to a
constant b, except for one which is equal to another constant a. In addition, we
can choose to have the direct product matrices with non-zero αij form a closed
subgroup. If J is then taken to have the form

J = b
∑

i

∑

j

(

Ui ⊗ Uj

)

+ (a− b)
(

Uk ⊗ Um

)

, (11)

where the sums are over members of the subgroup, and (k,m) denote the direct
product matrix chosen to have the coefficient a, then its inverse is

J† = b
∑

i

∑

j

(

U†
i ⊗ U†

j

)

+ (a− b)
(

U†
k ⊗ U†

m

)

. (12)

This is equivalent to

J† = b
∑

i

∑

j

(

Ui ⊗ Uj

)

+ (a− b)
(

U†
k ⊗ U†

m

)

. (13)

The constraints on the αij implied by unitarity can be analyzed by calculating J†J ,

J†J = b2
∑

i

∑

j

(

Ui ⊗ Uj

)

G+ b(a− b)
∑

i

∑

j

(

Ui ⊗ Uj

)(

Uk ⊗ Um

)

+b(a− b)
∑

i

∑

j

(

Ui ⊗ Uj

)(

U†
k ⊗ U†

m

)

+ (a− b)21 ⊗ 1, (14)
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where 1 is the unit matrix and G is the number of subgroup members. For example,
if k = m = 1 then

J†J =
∑

i

∑

j

(

Ui ⊗ Uj

)[

b2G+ 2b(a− b)
]

+ (a− b)21 ⊗ 1, (15)

and unitarity demands

1 = (a− b)2, (16)

0 = b2G+ 2b(a− b). (17)

The solution to these equations is (a = −1 + 2/G, b = 2/G). Note that although
several subgroups may be used (e.g. U1 ⊗ U1, U2 ⊗ U3, U3 ⊗ U2) to construct an
entanglement matrix, only the set (U1 ⊗U1, U2 ⊗U2, U3 ⊗U3) is the direct analog
of Eq. (3),

J = −1

3
U1 ⊗ U1 +

2

3
U2 ⊗ U2 +

2

3
U3 ⊗ U3 (18)

=



























−1/3 0 0 0 2/3 0 0 0 2/3
0 −1/3 0 0 0 2/3 2/3 0 0
0 0 −1/3 2/3 0 0 0 2/3 0
0 0 2/3 −1/3 0 0 0 2/3 0

2/3 0 0 0 −1/3 0 0 0 2/3
0 2/3 0 0 0 −1/3 2/3 0 0
0 2/3 0 0 0 2/3 −1/3 0 0
0 0 2/3 2/3 0 0 0 −1/3 0

2/3 0 0 0 2/3 0 0 0 −1/3



























,

where U1 ⊗ U1 ≡ U1(Alice) ⊗ U1(Bob), etc. The entanglement matrix in Eq. (18)
is constructed to be used in a game where players randomly select an action for
each game based on classical probabilities associated with a defined mixed strategy.
This matrix entangles the qutrits while still obeying the appropriate commutation
relations,

0 = [J, Ui ⊗ Uj ] ∀ i, j . (19)

Unlike the 2× 2 case, an initial eigenstate does not become fully entangled by this
matrix: the initial state |11〉, for example, is transformed into

J |11〉 = −1

3
|11〉 +

2

3
|00〉 +

2

3
| −1 −1〉. (20)

If each amplitude is denoted as ci, then the degree of entanglement (as measured
by the von Neumann entropy [9,10]), E, is

E = −
∑

i

|ci|2 log3 |ci|2 = 0.88 , (21)
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where log base 3 is used to ensure that maximum entanglement corresponds to
E = 1.

A generic entanglement matrix can be constructed for an N ⊗ N game. Let

U1, U2, . . . , UN (UiUj = Ui+j , U
†
i = U−i and UN+1 = U1) be commuting and

orthogonal matrices, each capable of directly transforming an initial state into an
eigenstate of some specified Hamiltonian. The elements of each matrix are taken
to be either 0 or 1. If J is assumed to have the form

J =
N

∑

i=1

αiUi ⊗ Ui, (22)

then

JJ† =

N
∑

i=1

αiUi ⊗ Ui

N
∑

j=1

α∗
jU

†
j ⊗ U†

j , (23)

= 1 ⊗ 1

N
∑

k=1

|αk|2 +

N
∑

i=1

N
∑

j=1(j /=i)

αiα
∗
jUiU

†
j ⊗ UiU

†
j . (24)

Unitarity requires that

1 =

N
∑

k=1

|αk|2, (25)

and also that

0 =

N
∑

i=1

N−1
∑

j=0

αiα
∗
jUiU

†
j ⊗ UiU

†
j . (26)

If s ≡ i− j, then the second unitarity condition becomes

0 =
N

∑

j=1

αs+jα
∗
jUs ⊗ Us ∀ s[1, N − 1], (27)

= Us ⊗ Us

N
∑

j=1

αs+jα
∗
j ∀ s[1, N − 1], (28)

or

0 =

N
∑

j=1

αs+jα
∗
j ∀ s[1, N − 1]. (29)

For the N = 3 case, α1 = −1/3, α2 = α3 = 2/3 is one solution to the unitarity
requirements. For the general N ×N case, the combination of Eqs. (25) and (29)
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thus leads to an expression for the αi in Eq. (22), and hence to an appropriate
expression for J .

We turn next to a quantum formulation of 3 × 3 games analogous to that fol-
lowing from Eq. (4). This method uses quantum amplitudes as a means of defining
a mixed strategy. A matrix that can be used to transform an initial eigenstate into
any other eigenstate is generated by the following matrices, which are Hermitian
and unitary,

H1 =





1 0 0
0 0 1
0 1 0



 , H2 =





0 1 0
1 0 0
0 0 1



 . (30)

Each player can use the matrix U(x, y),

U(x, y) = eixH1eiyH2 (31)

=





eix cos y ieix sin y 0
i sin y cosx cosx cos y ieiy sinx
− sin y sinx i sinx cos y eiy cosx



 (32)

to transform an initial state, |1〉 = (100), into any other state to simulate a pure
strategy. For this choice of U(x, y), the additional phases that have been introduced
have no net effect on probabilities or payoff functions. The choices of x and y define
a player’s mixed strategy in a 3 × 3 game, just as the choice of θ (Eq. (4)) does in
the 2× 2 game. U(x, y) satisfies the commutation relation 0 = [U(x, y), F ′′], where

F ′′ =
1

3





−1 2 2
2 −1 2
2 2 −1



 . (33)

Because F ′′ and U(x, y) commute, so do F ′′ ⊗F ′′ and U(xa, ya)⊗U(xb, yb), where
xa and ya (xb and yb) define Alice’s (Bob’s) mixed strategy. This suggests the
introduction of the following (maximally entangled) mixing matrix,

J̄ = e−i(π/4)F ′′⊗F ′′

=
1√
2

(

1 ⊗ 1 − iF ′′ ⊗ F ′′
)

, (34)

which commutes with any U(xa, ya) ⊗ U(xb, yb). The matrix J̄ in Eq. (34) is the
exact 3 × 3 analog of the entanglement matrix used by EWL in their discussion
of the “prisoner’s dilemma” [3]. There is considerable freedom on the part of each
player in how he/she chooses to deviate from U(x, y), since a variable equivalent
to φ can be introduced into a player’s transformation matrix in numerous ways.

To explore the concept of non-transitivity in either formulation, we consider the
3×3 game “rock, scissors, paper” (R, S, P ) shown in Table I (R > S > P > R). As
shown in the Table, a payoff of +1 has been assigned to winning, −1 to losing, and 0
for both in case of a tie. It is well known that in a 2×2 game such as the “prisoner’s
dilemma”, a player using a quantum strategy can improve his/her expected payoff
provided that his/her opponent continues to use a classical strategy. The question
then arises whether this can also happen in a 3× 3 game which is non-transitive at
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the classical level. In what follows, we show that games which are non-transitive at
the classical level retain their non-transitive character at the quantum level in the
EWL formalism. The result of this is that a player cannot guarantee a higher payoff
than his/her opponent by playing a quantum version of a classical non-transitive
game (even if the opponent is allowed to play classical strategies).

Since the survival of non-transitivity in the quantum domain is a fundamental
feature in 3× 3 games, we present a proof of this result which clarifies some of the
underlying assumptions. We assume that Alice uses a strategy (which is separable
into a product of ‘classical’ and ‘quantum’ operators), Q′ = UiQ, for every game
and that Bob uses some ‘classical‘ strategy Uj . In this case, the final game state
starting from |11〉 is

|ψf 〉 = J†
b [UiQ⊗ Uj ]Jb|11〉 = J†

b [Ui ⊗ Uj ]JbJ
†
b [Q⊗ 1]Jb|11〉

= [Ui ⊗ Uj ]J
†
b [Q⊗ 1]Jb|11〉. (35)

If |ψjq〉 ≡ J†
b [Q⊗ 1]Jb|11〉, then the final state becomes

|ψf 〉 = Ui ⊗ Uj |ψjq〉. (36)

Non-transitivity survives because Bob is still able to win regardless of what Alice
does: he can turn any advantage that Alice creates with Q into an advantage to
himself simply by appropriately choosing another Uj . This can easily be seen by
noting that the only state |ψjq〉 that can be created by Alice’s action Q in which
Bob cannot better his position by changing strategy is

|ψjq〉 = α(|10〉 + |1 −1〉 + |11〉) + β(|01〉 + |0 −1〉 + |00〉)
+γ(| −11〉 + | −10〉 + | −1 −1〉). (37)

This follows by noting that if the initial state is |11〉, then the winning final states for
Alice are R⊗S |11〉 = Ra⊗Sa |11〉 = |10〉, P⊗R |11〉 = |−11〉 and S⊗P |11〉 = |0−1〉.
Similarly, her losing final states are S ⊗ R |11〉 = |01〉, R ⊗ P |11〉 = |1 −1〉 and
P ⊗ S |11〉 = | −10〉. The expected payoffs for both players given the previous
equation are zero, and hence the introduction of a quantum strategy by Alice does
not produce a superior Nash equilibrium, compared to the classical game.

In summary, we have developed a formalism for dealing with entanglement in
3 × 3 quantum games, when each player adopts a mixed strategy. Although this
formalism can be applied to any N × N game, our focus in this paper has been
on the simplest non-transitive 3× 3 game. As noted above, classical non-transitive
games are of great interest, since they can lead to seemingly paradoxical results
in real-world examples [4,5]. One of the central results of the present paper is
that non-transitivity survives in the quantum versions of the corresponding games.
This naturally raises the question of whether similar apparent paradoxes can arise
in physically realizable quantum systems. Although this question cannot be an-
swered definitively at the present time, physical systems exist which exhibit the
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non-transitive features of both the “voter’s paradox” and the “Penney paradox”
[4,5]. As we discuss elsewhere [11], tables of Clebsch–Gordan coeffcients have prop-
erties similar to those of the magic square, whose non-transitive properties underlie
the “voter’s paradox”. It is thus possible that interesting non-transitive effects may
arise in ensembles of particles with non-zero angular momenta whose behavior can
be modeled by the 3×3 non-transitive games that we have presented here. Such ef-
fects could conceivably give rise to apparent anomalies in high-energy or many-body
physics, although the form of any anomalies remain an open question at present.
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NEPRIJENOSNE KVANTNE IGRE

Predstavljamo dvije inačice pristupa za sastavljanje upletenih kvantnih igara, koji
se zasnivaju na različitim obrascima miješanih strategija kvantne igre. Iako su ti
obrasci u igrama 2 × 2 vrlo slični (2 igrača × 2 odabira), njihove razlike postaju
istaknutije u slučaju 3×3. Klasična igra 3×3 je najjednostavnija osnova koja dozvo-
ljava neprijenosne strategije A, B, C, gdje A nadjača B, B nadjača C, i C nadjača
A (A > B > C > A). Razmatramo neprijenosne strategije za oba obrasca kvantnih
igara 3 × 3, i pokazujemo kako se u kvantnim inačicama zadržava neprijenosnost
odgovarajućih klasičnih igara. Razmatraju se fizičke posljedice tih ishoda.
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