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We present an approximate solution around a global monopole resulting from a
breaking of a global SO(3) symmetry in a five-dimensional space-time based on
Lyra’s geometry in normal gauge, i.e., displacement vector φi = (0, 0, 0, 0, β0),
where β0 is a constant. Acceleration due to the monopole has been evaluated by
studying the geodesic equation. A comparison is made with the classical results.
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1. Introduction

Recent attempts to unify gravity with other fundamental forces in nature re-
veal that it is very interesting to study models where the space-time dimension is
different from four. Also latest developments in super-string and Yang-Mills super-
gravity theory demand more than usual 4-dimensions of space-time. Solutions of
Einstein’s field equations are believed to be of physical relevance possibly at the ex-
tremely early times before the Universe underwent the compactification transitions
[1].

Phase transitions in the early Universe can give rise to topological defects of
various kinds. Recently, Pando, Valls-Gaboud and Fang [2] have proposed that
the topological defects are responsible for the structure formation of our Universe.
Monopoles are localized defects, and will arise if the manifold M contains surfaces
which can not be continuously shrunk to a point, i.e., when π2(M) /=1.

Global monopoles, predicted to exist in the grand unified theory, are impor-
tant objects for particle physicists and cosmologists. Their energy (mass) is almost
entirely concentrated in a small region near the monopole core [3]. In 1989, Bar-
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riola and Vilenkin (BV) [4] have shown an approximate solution of the Einstein’s
equations for the metric outside a global monopole, resulting from a global SO(3)
symmetry breaking. Banerji et al. [5] have extended the work of BV to higher
dimension.

In 1951, Lyra [6] proposed a modification Riemannian geometry by introducing
a gauge function into the structureless manifold that bears a close resemblance to
Weyl’s geometry. Sen [7] and Sen and Dunn [7] proposed a new scalar tensor theory
of gravitation and constructed an analog of the Einstein’s field equation based on
Lyra’s geometry which in normal gauge may be written as

Rik − 1
2
gikR +

3
2
φiφk − 3

4
gikφmφm = −8πTik , (1)

where φi is the displacement vector and other symbols have their usual meaning as
in Riemannian geometry.

Halford [9] pointed out that the constant displacement field φi in Lyra’s geom-
etry plays the role of the cosmological constant Λ in the normal general relativistic
treatment. According to Halford, the present theory predicts the same effects within
observational limits, as far as the classical solar system tests are concerned, as well
as tests based on the linearised form of field equations. Soleng [8] has pointed out
that the constant displacement field in Lyra’s geometry will either include a cre-
ation field and be equal to Hoyle’s creation-field cosmology or contain a special
vacuum field which together with the gauge vector term may be considered as a
cosmological term.

Subsequent investigations were done by several authors in scalar-tensor theory
and cosmology within the frame work of Lyra’s geometry [9].

Recently, I have obtained the weak-field approximate solution of the global
monopole in Lyra’s geometry and have shown that the nature of the monopole so-
lution has changed due to the consideration based on Lyra’s geometry [10]. In this
work, we shall deal with the higher-dimensional global monopole with a constant
displacement vector based on Lyra’s geometry in normal gauge, i.e., the displace-
ment vector φi = (β0, 0, 0, 0, 0), and look forward whether the monopole shows any
significant properties due to the introduction of the gauge field in the Riemannnian
geometry.

2. The basic equations

The metric ansatz describing a monopole in a five-dimensional space-time can
be written as

ds2 = eγdt2 − eβdr2 − r2dΩ2
2 − eµdΨ2 . (2)

Here γ, β and µ are functions of r alone and Ψ is the fifth coordinate.
We closely follow the formalism of Banerji et al. [5] and take the Lagrangian as

L =
1
2
∂µΦa∂γΦa − 1

4
λ(ΦaΦa − η2)2 , (3)
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where Φa is the triplet scalar field, a = 1, 2, 3 and η is the energy scale of symmetry
breaking.

The field configuration is taken to be Φa = ηf(r)xa/r, where xaxa = r2.
The energy momentum tensors can be written [5] as

Tab = 2 ∂L/∂gab − Lgab

T t
t = η2 f ′2

2eβ
+ η2 f2

r2
+

1
4
λ(η2f2 − η2)2 , (4)

T r
r = −η2 f ′2

2eβ
+ η2 f2

r2
+

1
4
λ(η2f2 − η2)2 , (5)

T θ
θ = Tφ

φ = η2 f ′2

2eβ
+

1
4
λ(η2f2 − η2)2 , (6)

TΨ
Ψ == η2 f ′2

2eβ
+ η2 f2

r2
+

1
4
λ(η2f2 − η2)2 . (7)

(Prime denotes the differentiation with respect to r.)
It can be shown that in a flat space, the monopole core has the size δ ∼ √

λη−1

and the mass Mcore ∼ λ−1/2η. Thus, if η ¿ mP, where mP is the Planck mass,
it is evident that we can still apply the flat-space approximation for δ and Mcore.
This follows from the fact that in this case the gravity would not much influence
the monopole structure.

Banerji et al. assumed that f = 1 outside the monopole core [5].
With this result, the energy stress tensors assume the following form

T t
t = T r

r = TΨ
Ψ = η2/r2 and T θ

θ = Tφ
φ = 0 . (8)

The field equations in the normal gauge for Lyra’s geometry for the metric (2)
reduce to

−e−β

(
µ′′

2
+

µ′2

4
− µ′β′

4
− β′

r
+

µ′

r
+

1
r2

)
+

1
r2

− 3
4
β2

0e−γ =
8πη2

r2
, (9)

−e−β

(
µ′

r
+

µ′γ′

4
+

γ′

r
+

1
r2

)
+

1
r2

+
3
4
β2

0e−γ =
8πη2

r2
, (10)

−e−β

(
γ′′

2
+

γ′2

4
+

µ′

2r
− β′

2r
+

γ′

2r
+

µ′′

2
+

µ′2

4
−µ′β′

4
+

µ′γ′

4
− γ′β′

4

)
+

3
4
β2

0e−γ =0 , (11)

−e−β

(
γ′′

2
+

γ′2

4
− β′

r
+

γ′

r
− γ′β′

4
+

1
r2

)
+

1
r2

+
3
4
β2

0e−γ =
8πη2

r2
, (12)
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3. Solutions in the weak field approximations

At this stage, let us consider the weak-field approximation assuming that

eγ = 1 + f(r), eβ = 1 + g(r), eµ = 1 + h(r) . (13)

Here the functions f , g and h should be computed to first order in η2 and β2
0 . In

this approximation, Eqs. (9) to (12) take the following forms

−h′′

2
+

g′

r
− h′

r
+

g

r2
− 3

4
β2

0 =
8πη2

r2
, (14)

−f ′

r
− h′

r
+

g

r2
+

3
4
β2

0 =
8πη2

r2
, (15)

−f ′′

2
− 1

2
f ′

r
+

1
2

g′

r
− 1

2
h′

r
− h′′

2
+

3
4
β2

0 = 0 , (16)

−f ′′

2
− f ′

r
+

g′

r
+

g

r2
+

3
4
β2

0 =
8πη2

r2
, (17)

From Eqs. (14) and (21), we get

r2(f ′ − h′) = β2
0r2 + a , (18)

where a is an integration constant.
However, for the economy of space, we will skip all mathematical details and

give the final results as

f = β2
0r2/2 − a/(3r) , (19)

h = 2a/(3r) , (20)

g = β2
0r2/4 + 8πη2 − a/(3r) . (21)

Thus, in the weak-field approximation, the higher-dimensional monopole metric
in Lyra’s geometry takes the following form

ds2 = (1+
β2

0r2

2
− a

3r
)dt2−(1+

β2
0r2

4
+8πη2− a

3r
)dr2−r3Ω2

2−(1+
2a

3r
)dΨ2 . (22)
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4. Motion of a test particle

Let us consider a relativistic particle of mass m moving in the gravitational field
of the monopole described by Eq. (26). The Hamilton-Jacobi (H-J) equation is [11]

1
A

(
∂S

∂t

)2

− 1
B

(
∂S

∂r

)2

− 1
r2

[(
∂S

∂x1

)2

+
(

∂S

∂x2

)2
]
− 1

C

(
∂S

∂Ψ

)2

+m2 = 0 , (23)

where
A = 1 + β2

0r2/2 − a/(3r) ,

B = 1 + β2
0r2/4 + 8πη2 − a/(3r) ,

C = 1 + a/(3r) .

x1 and x2 are the coordinates on the surface of the 2-sphere.
Take the ansatz

S(t, r, x1, x2,Ψ) = −Et + S1(r) + p1x1 + p2x2 + JΨ (24)

as the solution to the H-J Eq. (23). Here the constants E and J are identified as the
energy and five-dimensional velocity and p1, p2 are momentum of the particle along
different axes on the 2-sphere, with p = (p2

1 + p2
2)

1/2 as the resulting momentum of
the particle.

Substituting (24) in (23), we get

S1(r) = ε

∫ √
B(E2/A − p2/r2 − J2/C + m2) dr where ε = ±1 . (25)

In the H-J formalism, the path of the particle is characterized by [11]

∂S/∂E = constant, ∂S/∂pi = constant (i = 1, 2), ∂S/∂E = constant . (26)

Thus we get (taking the constants to be zero without any loss of generality),

t = ε

∫ √
B E/A√

E2/A − p2/r2 − J2/C + m2
dr , (27)

xi = ε

∫ √
B pi/r2√

E2/A − p2/r2 − J2/C + m2
dr , (28)

Ψ = ε

∫ √
B J/C√

E2/A − p2/r2 − J2/C + m2
dr , (29)
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From (27), we get the radial velocity as

dr/dt = (A/(
√

BE))
√

E2/A − p2/r2 − J2/C + m2 . (30)

The turning points of the trajectory are given by dr/dt = 0, and, as a conse-
quence, the potential curves are

E/m =
√

A (p2/(mr2) + J2/(Cm2) − 1) . (31)

Thus, the extrema of the potential curves are the solutions of the equation

54(J2 −m2)β2
0r7 − [36a(2m2 − J2) + 6aJ2m2)]β2

0r6 − [24a2m2 − 54p2 + 18p2]β2
0r5

+[36ap2β2
0 + 18a(J2 − m2) + 12ap2β2

0 + 36aJ2m2]r4 − [12a2J2 + 12a2m2

−16a2p2β2
0 +108p2]r3 +[18ap2 −8a3m2 −108ap2]r2 +24p2a2r +24p2a3 = 0 . (32)

This is an algebraic equation of odd degree (degree 7), whose last term is neg-
ative provided the integration constant a is negative. This equation has at least
one real positive solution. So, it is possible to have bound orbit for the test parti-
cle, i.e., the particle can be trapped by the global monopole. In other words, our
higher-dimensional monopole always exerts gravitational force which is attractive
in nature.

5. Concluding remarks

In this paper, we have obtained an approximate solution around a global
monopole resulting from the breaking of a global SO(3) symmetry in a five-
dimensional space-time based on Lyra’s geometry. We see that our higher-
dimensional monopole metric is unique, whereas in Einstein’s theory, the Banerji
et al. monopole is not unique [5]. We have shown that the higher-dimensional
monopole in Lyra’s geometry always exerts a gravitational force which is attractive
in nature, whereas the classical higher-dimensional monopole exerts gravitational
force provided some restrictions are imposed [5].

I have shown previously that in case of four dimensions, the gravitational field
of the monopole is changed due to the consideration of Lyra’s geometry [10].

In the classical higher-dimensional monopole, g55 looses its dynamical role via a
specific choice of an arbitrary constant [5]. Also in the higher-dimensional monopole
based on Lyra’s geometry, g55 looses its dynamical role for a particular choice of
the arbitrary integration constant, say a = 0 (see Eq. (22)).

Here we also see that in Ψ = const hyper-surfaces, our solution does reduces to
that obtained by Farook Rahaman [10]. And at the same time, we note that in the
absence of the displacement vector, our solution does not change to the Banerji et
al. solution.

To conclude, in this work, we have extended the higher-dimensional monopole
solution in Einstein’s theory to the scalar-tensor theory based on Lyra’s geometry.
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VIŠEDIMENZIJSKI GLOBALNI MONOPOL U LYRINOJ GEOMETRIJI

Dajemo približno rješenje oko globalnog monopola koje slijedi kršenje globalne
SO(3) simetrije u peto-dimenzijskom prostoru-vremenu, zasnovano na Lyrinoj ge-
ometriji u normalnoj baždarnosti, tj., pomačni je vektor φi = (0, 0, 0, 0, β0), uz
β0 = const. Ubrzanje zbog monopola odred–uje se promatranjem geodetske jed-
nadžbe. Načinili smo usporedbu s klasičnim rezultatima.
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