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Abstract – The development of wireless technology in recent years has increased the demand for channel resources within a limited 
spectrum. The system's performance can be improved through bandwidth optimization, as the spectrum is a scarce resource. To 
reconstruct the signal, given incomplete knowledge about the original signal, signal reconstruction algorithms are needed. In this 
paper, we propose a new scheme for reducing the effect of adding additive white Gaussian noise (AWGN) using a noise reject filter 
(NRF) on a previously discussed algorithm for baseband signal transmission and reconstruction that can reconstruct most of the 
signal’s energy without any need to send most of the signal’s concentrated power like the conventional methods, thus achieving 
bandwidth optimization. The proposed scheme for noise reduction was tested for a pulse signal and stream of pulses with different 
rates (2, 4, 6, and 8 Mbps) and showed good reconstruction performance in terms of the normalized mean squared error (NMSE) 
and achieved an average enhancement of around 48%. The proposed schemes for signal reconstruction and noise reduction can 
be applied to different applications, such as ultra-wideband (UWB) communications, radio frequency identification (RFID) systems, 
mobile communication networks, and radar systems.

Keywords: signal reconstruction, bandwidth optimization, AWGN, noise reduction, baseband signal, NMSE, noise reject filter

1.  INTRODUCTION

Every day, current analog signals like our voices are 
used in the real world. These signals need to be sam-
pled, quantized, and encoded before being processed 
in a digital format [1]. "Reconstruction" or "interpola-
tion" of the signal refers to the process of returning the 
sampled signal to its original analog form. Every one 
of our everyday devices undergoes the reconstruction 
process, which is crucial for restoring the signal to its 

original form [2]. Multiple schemes have been pro-
posed for reconstructing a bandlimited signal from ir-
regularly spaced sampling data [3-5]. The phase of the 
signal can be used for reconstructing the signal [6], and 
other schemes can be used without using it [7]. 

There are multiple research studies that have devel-
oped various strategies for reconstructing pulse and 
stream of pulse signals and used them in various systems. 
A proposed effective doppler-based signal reconstruc-
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tion technique is used to restore the doppler spectrum in 
synthetic aperture radar (SAR) [8]. Other schemes based 
on compressed sensing (CS) are used for reconstructing 
the electrocardiogram (ECG) pulse signals [9-11], while 
[12] suggested a deep learning (DL)-based CS technique 
to reconstruct the ultrawideband (UWB) signal. Another 
approach is presented to the fast and accurate nonlinear 
pulse signal reconstruction for electromagnetic (EM) sen-
sors and its applications [13]. Other algorithms are used 
for reconstructing variable-width pulses [14] and ultra-
short pulses using DL [15]. The reconstruction of a stream 
of pulses for ultrasonic imaging was proposed using a 
noiseless finite rate innovation (FRI) method [16,17]. Many 
low-pass reconstruction problems have been successfully 
resolved via extrapolation [18-20].

In such real-world scenarios, it is necessary to estab-
lish appropriately accurate estimates of the inverse 
Fourier transform (IFT) based on this imperfect knowl-
edge. The primary objective of the prior proposed work 
in [21] is to present a new method for extrapolating a 
finite-frequency segment of a time-limited baseband 
pulse signal. The approach relies on choosing a starting 
and ending frequency (fs and fe) to send through the 
bandlimited channel while utilizing a selective band-
pass filter (BPF). A suggested algorithm is provided and 
put into practice on the receiver side in order to recon-
struct the signal once more and recover the majority 
of the signal's energy. By adjusting the adaptive band-
reject filter (BRF) in the receiver to only select the same 
transmitted band limits from fs to fe to reconstruct the 
signal, we can optimize the use of the channel band-
width instead of selecting the entire signal spectrum 
or the main lobe band that contains the majority of the 
signal's power, as required by conventional methods. 
The results of the proposed algorithm showed that the 
algorithm converges when the number of iterations of 
the reconstruction algorithm is increased, as in the case 
of working with a noiseless channel.

This paper extends the work in [22] by studying the 
effect of additive white Gaussian noise (AWGN) on our 
previously proposed baseband signal transmission and 
reconstruction scheme and proposing a new technique 
to minimize the effect of noise using an adaptive noise 
reject filter (NRF), which consists of a bandpass filter 
(BPF) with the same starting and ending frequency pa-
rameters as the whole system. The proposed technique 
has been tested on a pulse and a stream of pulses and 
showed good reconstruction performance in terms of 
the normalized mean square error (NMSE) when com-
pared to a noise-free channel. A list of used abbrevia-
tions is shown in Table 1.

The paper is organized as follows: Section 2 introduces 
the signal transmission and reconstruction scheme pro-
posed previously and applied to a pulse and stream of 
pulses. Section 3 discusses the traditional and proposed 
solutions for reducing the noise added to the channel, 
their limitations, and the proposed applications of the 
scheme. Finally, Section 4 presents the conclusion.

Table 1. List of abbreviations

Abbreviation Meaning

6G sixth generation

AWGN additive white Gaussian noise

BPF bandpass filter

BPF band-pass filter

BRF band-reject filter

CS compressed sensing

DFT discrete fourier transform

DL deep learning

dMRI diffusion magnetic resonance imaging

DSIC digital self-interference cancellation

DWT discrete wavelet transform

ECG electrocardiogram

EM electromagnetic

EVVM error vector magnitude

FFT fast Fourier transform

FRI finite rate innovation

FT Fourier transform

IFT inverse Fourier transform

IoT internet of things

KPCA kernel principal component analysis

LPF low-pass filter

LPR lost pulse ratio

LS least squares

MSE mean squared error

NMSE normalized mean square error

NRF noise reject filter

OFDM orthogonal frequency division multiplexing

PSNR peak signal-to-noise ratio

RFID radio frequency identification

SAR synthetic aperture radar

SI self-interference

SPR spurious pulse ratio

SVD singular value decomposition

UHF ultra-high frequency

UWB ultrawideband

UWOC underwater optical wireless communication

V2V vehicle-to-vehicle communications

WSN wireless sensor network

2. BASEBAND SIGNAL TRANSMISSION AND 
RECONSTRUCTION SCHEME

2.1 INTRODUCTION

The two main signal transmission mechanisms in any 
communication system are baseband and bandpass 
transmission. The baseband signal is distinguished 
by its low-frequency components, which include the 
DC component, such as the signal of the information 
source, such as human speech. Modulating the base-
band signal to higher frequencies results in a bandpass 
signal. The resultant bandpass signal is concentrated 
around the carrier frequency, ±fc. Figs. 1(a) and (b) 
show examples of baseband signals such as a pulse sig-
nal xp(t) with a duration of 2 ms and a stream of pulses 
xS8(t) with a data rate of 8 Mbps. 



509Volume 14, Number 5, 2023

(a) (b)

(c) (d)

Fig. 1. Baseband signals (a) A pulse signal xp(t) with 
T=2 ms (b) A pulse stream xS8(t) with Rb= 8 Mbps  
(c) The spectrum of xp(t) (d) The spectrum of xS8(t)

The Fourier transform (FT) can be used to obtain 
the amplitude spectra of xp(t) and xS8(t), as shown in 
Figs. 1(c) and (d), respectively. The figures show that 
the maximum power of these signals is concentrated 
around the zero frequencies in the main lobe (more 
than 90%), and the remaining power of the signals is 
distributed along the side lobes. Theoretically, these 
signals have infinite bandwidth and cannot be trans-
mitted over band-limited channels. So, in order to send 
these signals over band limited channels, a low-pass 
filter (LPF) is applied to limit the signals’ bandwidth and 
then transmitted over those channels as in convention-
al systems.

2.2. THE TRANSMISSION TECHNIqUE

Fig. 2 depicts the block diagram of the proposed 
technique for transmitting and reconstructing base-
band signals. The transmitter consists of a generator 
to generate the baseband information x(t), which is a 
pulse or stream of pulses in our study. The transmission 
technique depends on selecting any window (W) of 
the baseband signal using an adaptive BPF instead of 
sending the whole signal’s spectrum or the main lobe 
only. The boundaries of the BPF are defined by a start-
ing frequency fs and an ending frequency fe. The filter 
will produce a signal g(t), which is distorted due to los-
ing some of the signal’s spectral information. 

At the transmitter, assume that the selective BPF is 
adjusted to send a window (0.3-3) kHz from the origi-
nal pulse’s spectrum xp(f), which represents 17.2% of 
its total average power. Also, assume that the transmit-
ted window of the pulse stream xS8(f) is (0.3-8.3) MHz, 
which represents 47.1% of its total average power.

Then, the transmitted signals gp(t) and gS8(t) will seem 
to be distorted due to losing some energy from their 
spectra, as shown in Fig. 3.

Fig. 2. Proposed technique’s block diagram

(a) (b)

Fig. 3. Transmitted distorted signals of (a) xp(t) with 
W= (0.3-3) kHz (b) xS8(t) with W= (0.3-8.3) MHz

2.3.  THE RECONSTRUCTION ALGORITHM

The block diagram of the baseband signal recon-
struction algorithm at the receiver is shown in Fig. 4. 
The aim of this algorithm is to reconstruct the signal 
xr(t) with the knowledge of a segment G(f) of the main 
signal’s spectrum X(f), then extrapolate the original sig-
nal’s spectrum by making use of the received segment 
Ĝ(f), and a prior knowledge about the time extent of 
the transmitted signal. 

The steps for reconstructing the baseband signal, as 
explained in Fig. 4, are as follows:

Step (1): IFT of the received signal’s spectrum. The 
output is a non-time-limited signal.

Step (2): Multiplying by a gate (rect) function p(t) with 
the same time extent as the original signal results in s(t).

Step (3): Applying the FT to s(t) to obtain S(f), a non-
bandlimited signal.

Step (4): Applying S(f) to a BRF with the same starting 
and ending frequencies of the transmitter (fs and fe) to 
obtain C(f).

Step (5): Adding the spectrum C(f) with the known 
received signal’s spectrum to be inserted into its dead 
space to be raised gives the first estimate of the recon-
structed signal’s spectrum X1(f).

Step (6): Calculating the IFT of X1(f) and repeating 
the loop again until reaching the required shape of the 
spectrum after N iterations.

Step (7): Calculating the IFT of XN(f) to get xn(t), which 
is the reconstructed signal after a certain number of it-
erations. The reconstructed baseband pulse stream sig-
nal of xS8(t) and its spectrum after 1 and 300 iterations 
are shown in Fig. 5.
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Fig. 4. The block diagram of baseband signal 
reconstruction algorithm

Fig. 5. The reconstructed pulse stream signal (8 
Mbps) and its spectrum after 1 and 3000 iterations

3. RESULTS AND DISCUSSIONS

3.1. THE EFFECT OF AWGN 
 ON THE ALGORITHM 

In this section, the effect of adding the AWGN to the 
received signal will be determined, and the algorithm's 
behavior on the reconstructed signal will be checked. It is 
assumed that the transmitted pulse g(t) with a transmit-
ted window band (0.3-3) kHz is passed through an AWGN 
with a SNR of 10 dB. The signal with noise ĝn(t) in Fig. 6 (a) 
is received and applied to the proposed algorithm in Fig. 
4 to reconstruct the baseband pulse signal again. As seen 
in Figs. 6 (b), (c), and (d), increasing N results in increasing 
the noise in the reconstructed signal. This is due to the ac-
cumulated addition of the received signal spectrum with 
noise Ĝn (f) in step 5 of the proposed algorithm shown in 
Fig. 4. So, the noise effect is increased by increasing the 
number of iterations; thus, the algorithm diverges. 

Table 2 presents the impact of changing three key pa-
rameters – transmitted window bandwidth (W), number 
of iterations (N), and signal-to-noise ratio (SNR) – on the 
reconstruction status in the presence of AWGN. 

Each column represents the variation of a single pa-
rameter, while the other parameters are held constant. 
The first column demonstrates the effect of altering the 
transmitted window bandwidth while keeping N and 
SNR fixed. Increasing W leads to a decrease in NMSE, 
indicating an improvement in the reconstruction's per-
formance. The second column illustrates the effect of 

adjusting N while keeping W and NMSE constant. Here, 
we observe that increasing the number of iterations can 
result in a higher NMSE value, which suggests a nega-
tive impact on the reconstruction accuracy. The last col-
umn shows the effect of modifying SNR while keeping 
NMSE and N constant. It is evident that raising the SNR 
can lower the NMSE value, thereby improving the recon-
struction performance. Therefore, an optimal balance 
between these parameters can be struck to meet the 
desired NMSE as per the system specifications.

Table 2. Effect of Transmitted Window Bandwidth, 
Number of Iterations, and SNR on Reconstruction 

Performance in the Presence of AWGN

Window BW (W) 
(N= 5, SNR=25 dB)

Variable (N) 
(W= 0-4 MHz, SNR= 25 dB)

Variable (SNR) 
(W= 0-4 MHz, N= 5)

P % NMSE N NMSE SNR NMSE

W= (0-2) MHz
5 0.0868 15 dB 0.3518

86.94 0.1389

W= (0-4) MHz
10 0.1701 20 dB 0.1516

93.09 0.0903

W= (0-6) MHz
15 0.3180 25 dB 0.0863

95.46 0.0665

W= (0-8) MHz
20 0.4714 30 dB 0.0689

96.48 0.0576

So, the traditional solutions to overcome the effect of 
noise in traditional systems are to increase the SNR at 
the receiver to overcome the noise signal’s power, or to 
increase the transmitted window band. Although these 
solutions may work, we will propose another effective 
solution to reduce the effect of noise without any need 
to increase the SNR at the receiver or increase the trans-
mitted window band.

3.2.  THE PROPOSED NOISE REDUCTION 
 SCHEME

As seen in the previous sub-section, adding the 
AWGN to the signal causes the algorithm to act very 
badly, and the signal cannot be reconstructed because 
the noise increases with every iteration, as shown in 
Fig. 6, causing the reconstructed signal to be loaded 
with more and more noise. The block diagram of the 
proposed technique to reduce the noise effect on our 
algorithm is shown in Fig. 7. The signals that explain the 
proposed scheme are shown in Fig. 8. 

The steps of the proposed technique are as follows:

Step 1: Calculating the FT of the received signal with 
noise ĝn (t) to get Ĝn (f) as shown in Fig. 8 (a) and (b). 

Step 2: Applying Ĝn (f) to a NRF, which consists of a 
BPF with the same fs and fe as the transmitter and the 
receiver, in order to reject all the noise that exists along 
the signal’s spectrum and keep the remaining spectrum 
as it is to result in a less noisy signal spectrum Ĝ(f) with 
zero noise in the shown regions (A, B, and C) in Fig. 8(c).

Steps (3-8): Applying the resultant spectrum of step 
2 [Ĝ(f)] to our proposed algorithm for N iterations, such 
as steps (1-6) in Fig. 4, to get XN(f).
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Step 9: Calculating the IFT of XN(f) to get the reconstruct-
ed signal xr (t) after noise reduction, as shown in Fig. 8(d).

(a) (b)

(c) (d)

Fig. 6. Effect of increasing N in the presence of 
AWGN with SNR= 10 dB on the reconstructed pulse 

after (1, 5, and 10) iterations with a transmitted 
window band (0.3-3) kHz

Fig. 7. Proposed noise reduction scheme block 
diagram

The proposed noise reduction technique is applied 
to different streams of pulses with different data rates, 
but we will focus on the results at 8 Mbps to be brief. 
Fig. 9 shows the reconstruction signals and their spec-
tra in a noise-free channel and an AWGN for an 8 Mbps 
data rate with a transmitted window band (0.3-8.3) 
MHz, which contains ≈47% of the total signal’s average 
power at SNR = 10 dB.

The Fig. 8 shows the reconstructed signal with ac-
cumulated noise after 5 iterations. The middle figure 
shows the reconstructed stream in a noiseless channel 
after applying the proposed noise reduction technique. 
It shows a good reconstruction status of the noisy signal 
after applying the scheme, which is very similar to the 
signal that is constructed without the existence of noise. 
A comparison of the spectra of all these signals is shown 
in the figure below. Also, the spectra of the reconstruct-
ed signals with and without noise are almost identical.

(a) (b)

(c) (d)

Fig. 8. Proposed noise reduction scheme signals: (a) 
Received signal with noise (b) FT of the received signal 

with noise (c) Received signal spectrum after noise 
reduction (d) Reconstructed signal after 5 iterations.

(a)

(b)

(c)

Fig. 9. Effect of noise reduction scheme on a 
transmitted window (0.3-8.3) MHz of an 8 Mbps 
stream with SNR = 10 dB, N =5 (a) Reconstructed 
signal without noise reduction (b) Reconstructed 
signal with noise reduction (c) A comparison of 

reconstructed signals’ spectra
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A comparison between the NMSE of the recon-
structed stream of pulses in a noise-free channel and 
the AWGN channel after noise reduction with the same 
parameters as in the previous section for different 
SNRs is shown in Fig. 10. For example, let us compare 
the reconstructed signal without noise and with 10 dB 
AWGN. Their NMSEs at different iterations are recorded 
in Table 3 for comparison. The figure also shows that 
when N<200 for any SNR value, the reconstructed sig-
nal after reducing the noise has a better reconstruction 
status than the reconstructed signal when the channel 
is noiseless, as it has a better NMSE value of 0.0719 than 
the other one (0.1256). This is approved in Fig. 11(a), as 
the mid-level amplitude of xr(t) with noise reduction 
has the same mid-level amplitude of the original signal 
x(t), but xr(t) without noise has a shifted value (0.24) by 
≈50% from x(t). 

At N= 184, there is an intersection between the two 
NMSE curves at 0.0723, in which the mid-level ampli-
tudes of the reconstructed signals in both cases have 
an amplitude offset of 20% away from x(t), as shown 
in Fig. 11(b). At N = 300, xr(t) without noise has a better 
performance than the other one (with noise), as it has a 
lower NMSE value (0.0556) and has the same mid-level 
amplitude value of x(t) as seen in Fig. 11(c). So, it is rec-
ommended to use the proposed technique for noise 
reduction to reconstruct an 8 Mbps stream signal in a 
noisy channel at N = 100 or 150.

The effect of changing both N and SNR on the recon-
structed signal after applying the noise reduction tech-
nique in the presence of the AWGN channel is shown in 
Fig. 12. It depicts that increasing N results in enhancing 
the NMSE value for any SNR. But fixing N while increas-
ing the SNR value does not enhance the NMSE very 
well except at low SNR values (≤5 dB). So if the designer 
needs to improve the reconstruction performance us-
ing the proposed noise reduction scheme, he/she does 
not need to increase the signal’s power, but he/she 
should increase the number of iterations to achieve a 
good reconstruction status.

Fig. 10. A Comparison between the NMSE of the 
reconstructed 8 Mbps stream of pulses with a 

transmitted window (0.3-8.3) MHz without and with 
the addition of AWGN in different SNRs

Table 3. NMSE of the reconstructed 8 Mbps stream 
in noise-free and AWGN channels at different 

iterations

Reconstructed 
signal xr(t)

NMSE at SNR= 10 dB

N = 100 N = 184 N = 300

Without noise 0.1256 0.0723 0.0556

With noise 
reduction 0.0719 0.0723 0.0902

(a)

(b)

(c)

Fig. 11. A comparison between the generated 8 
Mbps stream with the reconstructed streams in 

noise-free channel and AWGN channel at SNR= 10 
dB when (a) N= 100, (b) N= 184, and (c) N= 300.

Fig. 12. Effect of changing the SNR on the 
reconstruction algorithm in the presence of AWGN 

for the same data in Fig. 9 for different iterations
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Fig. 13. Reconstructed 2, 4, and 6 Mbps data streams with noise at SNR= 10 dB,  
W= 0.3-8.3 MHz and different iterations

Fig. 14. The proposed reconstruction algorithm in the RFID reader

Table 4. Comparison of Signal Reconstruction and Noise Reduction Techniques 
for Various Noisy Systems and Applications

Ref. 
(Year)

Signal 
Type

System/ 
Application Reconstruction Algorithm Noise 

Type
Noise Reduction 

Technique Performance Metrics & Result

[23] 
(2020)

Stream 
of 

pulses

IoT and mobile 
WSN

Sparse pulse representation 
for signal reconstruction AWGN Using denoising 

autoencoders

- Proposed method:  
LPR = 0.01, SPR = 0.02 

- Conventional method:  
LPR = 0.05, SPR = 0.1

[24] 
(2021) OFDM

IBFD 
communication 
in OFDM-based 
wireless systems

DSIC techniques, for 
estimating the SI channel and 
reconstruction of the SI signal

CP noise CPNR - Improved total suppression by 6 db. 
- Improved EVM by 5%

[25] 
(2022)

ECG 
pulses

Portable 
heartbeat 

detection system
DWT AWGN A combination of 

DWT and SVD
Proposed method average: 

MSE = 0.002, PSNR = 60.5 dB

[26] 
(2022)

Stream 
of 

pulses

X-ray single-
particle imaging

 A neural network pipeline 
for restoring diffraction 

intensities.

Poisson 
noise

Poisson noise 
reduction

An improvement in the MSE of 
roughly two orders of magnitude.

[27] 
(2021)

dMRI 
signal

MRI based 
systems KPCA AWGN KPCA denoising Better SNR improvements up to 2.7x

[28] 
(2022) OFDM UWOC systems CS- based channel estimation AWGN

Setting a noise 
threshold to 

remove useless 
channel taps.

Increased NMSE by 67% and 97% 
than and 97% than DFT and LS 

algorithms respectively

Proposed 
Method 
(2023)

Stream 
of 

pulses

Baseband and 
speech signals

Proposed Baseband signal 
reconstruction algorithm AWGN NRF An improved average NMSE by 47.7% 

after 100 iterations 
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Figure 13 depicts the implementation of the pro-
posed noise reduction scheme for reconstructing 
baseband signals from random streams of pulses with 
different data rates (2, 4, and 6 Mbps), transmitted win-
dow bandwidth of 0.3–8.3 MHz, and varying numbers 
of iterations, at an SNR of 10 dB. The received stream 
signals with noise for the different data rates are denot-
ed by gn-sx(t), while xr-sx(t) and xsx(t) represent the recon-
structed and original generated signals, respectively, 
which are compared to each other in each subfigure. 
The figure clearly illustrates the successful application 
of our proposed noise rejection scheme to reconstruct-
ing different data streams. The NMSE initially decreases 
as the number of iterations (N) increases but reaches a 
certain value beyond which it diverges and results in a 
worse NMSE value. For example, signal reconstruction 
for the 2 Mbps stream is perfect when the algorithm is 
run for up to 45 iterations, but beyond this point, the 
NMSE increases, leading to bad signal reconstruction 
status. Similarly, the optimal number of iterations for 
the 4 Mbps and 6 Mbps streams are 50 and 103, re-
spectively. It is worth noting that our noise reduction 
scheme using the NRF has limitations in that it cannot 
be applied for any number of iterations, as it converges 
to a certain number of iterations and then diverges.

Table 4 shows a comparison between different signal 
reconstruction and noise reduction schemes and their 
state-of-the-art applications. Their evaluation metrics 
are also compared in terms of lost pulse ratio (LPR), 
spurious pulse ratio (SPR), mean squared error (MSE), 
NMSE, and peak signal-to-noise ratio (PSNR). In [23], 
the authors propose a denoising autoencoder-based 
sparse pulse representation method for internet of 
things (IoT) and mobile wireless sensor network (WSN) 
systems where the proposed method achieved lower 
values of LPR and SPR compared to the conventional 
method. In [24], the authors use different digital self-
interference cancellation (DSIC) techniques for self-in-
terference (SI) channel estimation and reconstruction 
in orthogonal frequency division multiplexing (OFDM)-
based wireless systems. The proposed DSIC technique 
resulted in a 6 dB improvement in total suppression and 
a 5% improvement in error vector magnitude (EVM). In 
[25], the authors combine discrete wavelet transform 
(DWT) and singular value decomposition (SVD) for ECG 
pulse denoising in a portable heartbeat detection sys-
tem. The proposed method achieved an improved MSE 
of 0.002 and a PSNR of 60.5 dB.

In [26], a neural network pipeline for restoring diffrac-
tion intensities in X-ray single-particle imaging systems 
affected by Poisson noise is proposed, and this method 
resulted in an improvement in the MSE of roughly two 
orders of magnitude. The authors in [27] apply kernel 
principal component analysis (KPCA) denoising to dif-
fusion magnetic resonance imaging (dMRI) signals 
in MRI-based systems. The proposed KPCA approach 
led to better SNR improvements of up to 2.7x. In [28], 
the authors employ a compressed sensing (CS)-based 

channel estimation technique and set a noise threshold 
to remove useless channel taps in underwater optical 
wireless communication (UWOC) systems affected by 
AWGN. The proposed approach outperformed discrete 
fourier transform (DFT) and least squares (LS) algo-
rithms in terms of NMSE by 67% and 97%, respectively. 
Finally, the proposed approach applies a baseband 
signal reconstruction algorithm to AWGN in stream of 
pulses, baseband, and speech signals, achieving an im-
proved average NMSE by 47.7% after 100 iterations.

3.3. PROPOSED APPLICATIONS

In [22], the proposed baseband signal reconstruction 
algorithm was applied to different signal types such as 
pulse, triangular, composite, analog, stream of pulses, 
and speech signals, and the algorithm showed its suc-
cess in reconstructing most of their signals’ energy and 
thus reconstructing them. The proposed scheme for 
baseband signal reconstruction can be used in vari-
ous applications to reconstruct signals. For example, in 
UWB communications, it can reconstruct short-width 
pulses, while in radio frequency identification (RFID) 
systems, it can extract data transmitted by tags. Addi-
tionally, it can optimize bandwidth in mobile commu-
nication systems and recover pulses in radar systems. 
It can also optimize bandwidth in speech and audio 
processing applications.

In [29], a proposed real-world application in ultra-high 
frequency (UHF) RFID systems in which the proposed al-
gorithm is used to reconstruct the bit stream of regular 
data in malware-free and malware-injected scenarios, as 
shown in Fig. 14. In a malware-free scenario, the received 
signal g(t) is fed to a fast Fourier transform (FFT) block 
and then identified as malware-free or malware-injected 
data by the malware detector block. If it is malware-free, 
the data is passed directly to the reconstruction algo-
rithm to recover the original regular data, but if it is ma-
licious, it extracts the missing spectrum of the original 
regular data from the malicious data spectrum and then 
adds it to the received regular data spectrum, and then 
the proposed reconstruction algorithm is applied to re-
cover the regular data more quickly.

4. CONCLUSION AND FUTURE WORK

This paper proposes a noise reduction scheme to 
minimize the effect of noise on a proposed algorithm 
used to reconstruct the baseband signals. The algo-
rithm is based on sending small-transmitted window 
that carries a portion of the original signal's energy, 
and then reconstructing the signal again, thus opti-
mizing the used channel bandwidth. Although the al-
gorithm converges in noise-free channels, it diverges 
when noise is present, leading to bad reconstruction 
status in each iteration of the algorithm. At the receiv-
er, the noise can be minimized by using a traditional 
way by compromising between three parameters, the 
transmitted window bandwidth, the number of itera-
tions and SNR, but this is not an effective solution. So, 
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a noise reduction scheme based on adaptive NRF is 
proposed which is a function of the system's starting 
and ending frequencies. When tested on a baseband 
pulse and a stream of pulses in the presence of AWGN, 
the suggested scheme showed good reconstruction 
performance in reducing the noise effect. The perfor-
mance was evaluated in terms of NMSE compared to 
free noise channels. It was applied to different streams 
of pulses with various data rates (2, 4, 6, and 8 Mbps) 
and demonstrated good reconstruction performance 
in terms of NMSE, but only up to a certain number of 
iterations, after which the proposed scheme diverged. 
This algorithm may find applications in future sixth 
generation (6G) wireless networks, UWB communica-
tions, radar systems, RFID-based systems, and vehicle-
to-vehicle communications (V2V). Future research can 
further study this algorithm in these cases.
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