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We investigate the effect of meson exchange current (MEC) contribution to the
charge form–factor (CFF) of 3He and 3H by hyper–spherical harmonics expansion
method with the inclusion of three–body force (3BF). Results indicate that the
combined effects of 3BF and MEC are substantial and modify the CFF of trinucleon
in the right direction at high momentum transfer.

1. Introduction

Several theoretical attempts have been made using standard two–body forces
(2BF) to study the bound state properties of trinucleon system, namely, binding en-
ergy (BE), charge form–factor (CFF), charge density etc., by the Faddeev method
[1–6] or by the hyper–spherical harmonics expansion (HHE) method [7–9]. But in
all the cases, it was observed that two–body force can not reproduce the experi-
mental data for 3H and 3He. Theoretically calculated BE were generally less than
experimental value by about 1.5 − 2.0 MeV. Moreover one long standing problem
is the disagreement between theory and experiment for the CFF (or equivalently
the charge density) of 3H and 3He. The form–factor has a typical diffraction shape,
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as a function of q, the momentum transfer, falling rapidly through zero, becomes
negative passing through a minimum and then gradually rising to be positive again.
Experimentally [10–12] the first diffraction minimum (q2min) for the CFF of 3He and
3H occurs at q2 = 11.0±0.7 fm−2 and 12.6±0.5 fm−2, respectively. The secondary
maximum (Fmax), in the magnitude of CFF, has a value of about 6.0 × 10−3 and
4.0×10−3 for 3He and 3H, respectively. The difficulty has been that the theoretical
calculations have predicted too large a value of q2min (position of the dip) and too
small a magnitude of the secondary maximum with the 2BF alone, even for the
Reid soft core (RSC) [13] potential, which has a strong repulsive core. Some work-
ers suggested that the discrepancy would be removed if three–body forces (3BF),
which depends on the simultaneous coordinates of all three nucleons in an insep-
arable manner, were included in addition to the 2BF [14]. This follows from the
argument that 3BF is attractive for an equilateral triangle configuration (ETC)
of the trinucleon, whereas it is repulsive for the collinear configuration (CC). Thus
inclusion of 3BF would prefer ETC over CC for which there will be a central depres-
sion in the charge density due to nucleon–nucleon repulsion at short separations,
resulting in increased Fmax. Actual calculations showed an additional binding of
about 1 MeV with the inclusion of 3BF. But in most of the calculations including
3BF [15–19], the position of the dip moves to somewhat larger value of q2. Also,
all the two–body potentials fail, by at least a factor of 3, to predict the size of the
secondary maximum observed between 14 − 20 fm−2. Previously, several authors
have indicated that exchange contributions are important in calculations of 3H and
3He magnetic moments [20,21], magnetic form–factors [22] and CFF of 3He [23]
with a realistic 2BF.

In 1974, Kloet and Tjon [23] suggested that the discrepancy that exists be-
tween experimental data and theoretical calculations for the CFF of trinucleon
arose partly due to the neglect of the exchange effects in which the photon inter-
acts with a pion, which is exchanged between two nucleons. They included meson
exchange current (MEC) contribution to the CFF of 3He in a model calculation
using standard 2BF and found that the inclusion of MEC moves q2min closer to the
experimental value and improves the height of the secondary maximum to a value
of about 2.5 × 10−3. This demonstrated that MEC effect plays an important role
at high momentum transfer. The pion-exchange contribution to the charge oper-
ator calculated by them was also applied later by Hadjimichael et al. [24] and an
improved result was found. The current state of affairs is summarized by Gibson
[25]. Although the details of the results depend on the choice of the potential, the
general observation is that the BE increases due to the inclusion of the 3BF, but
little improvement is seen in CFF [16].

In this work we examine the role of exchange current on the CFF of 3H and
3He by the HHE approach. In the earlier work [23] the trinucleon wave function
was obtained by the momentum space Faddeev calculation. However, such a calcu-
lation is not convenient for handling long–range interaction like the Coulomb force.
Since a large number of partial waves contribute, the numerical calculations become
extremely difficult. But in the HHE method, since the calculations are done in co-
ordinate space, handling of long–range interactions is straightforward. Most of the
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previous calculations have used Faddeev method. To the best of our knowledge, no
calculations with MEC to the CFF of trinucleon were done by HHE method. This
provides our motivation for the present work. We also include various three–body
forces (3BF) to the CFF of trinucleon and try to investigate the combined effect of
3BF and MEC on the CFF.

Here we adopt the HHE method to solve the trinucleon and, for simplicity, we
consider the bound state to be a pure S-state. For this restriction we choose only
S-projected central potentials for 2BF. Malfliet and Tjon MTV potential [26] and
Afnan and Tang S3 potential [27], which are resonably realistic, although quite
simple in structure, have been chosen to represent the 2BF. Among various 3BF’s
we choose (i) Fujita and Miyazawa (FM) [28] (ii) the Tucson-Melbourne (TM)
[29] and (iii) the Brazilian (BR) [30] two pion-exchange three-nucleon force. The
forces derived by Tucson and Melbourne (TM) and Brazilian (BR) groups are more
realistic than the FM-3BF.

For the trinucleon form–factor, we take analytic form given by Das et al. [15]
and then simply add the MEC contribution to the CFF. For MEC correction, we
follow the Feynmann diagrams given by Kloet and Tjon [23].

The paper is organized as follows. We discuss the theory in Section 2 and results
and conclusions are presented in Section 3.

2. Theory

Since the details of the HHE method is available in the literature [7], we present
here only the rudiments of the method. In this method, the wave function is ex-
panded in the complete basis of hyper–spherical harmonics (HH) spanning the
hyper space

ψ(~x, ~y) = r−5/2
∑

ΦKα(r) PKα(Ω). (1)

Here r is the hyper–radial variable which is the invariant global length in a six–
dimensional space and Ω represents a set of five hyper–angles. These are defined in
terms of the particle coordinates ri (i = 1, 2, 3) through

~x = ~r2 − ~r1, ~y =

√

2

3
(~r3 −

1

2
(~r1 + ~r2)),

and

r = (x2 + y2)
1

2 , Ω = {x̂, ŷ, φ}, (2)

where

φ = tan−1(
x

y
).
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The label Kα stands for the five quantum numbers related to the five degrees
of freedom in Ω. The complete orthonormal HH (PKα(Ω)) is the angular part of
the homogeneous harmonic polynomial of degree K (K = 0, 1, ...,∞) in the six–
dimensional space and is given by,

PKα(Ω) =
∑

mx,my

〈lxlymxmy | LM〉 Y mx

lx
(x) Y

my

ly
(y) (2)P

lylx
2K (φ), (3)

where
(2)P

lylx
2K (φ) = N

lylx
2K (sinφ)lx (cosφ)ly Pα,β

n (cos 2φ). (4)

Pα,β
n (x) is Jacobi polynomial, α = lx + 1

2 and β = ly + 1
2 and n =

(2K − lx − ly)/2 is a non–negative integer.

Full advantage of this method is taken by expanding the interaction potential
also in a suitable HH basis,

V (r,Ω) =
∑

K′′,α′′

VK′′α′′(r) PK′′α′′(Ω), (5)

where {PK′′α′′} is the set consistent with the nature of the interaction.

Substitution of (1) into the three–body Schrödinger equation, and projection
onto a particular HH, lead to a system of coupled differential equations [7]. Using
uncoupled adiabatic approximation [31], the set of differential equation is approxi-
mately decoupled and solved numerically to obtain the BE and wave function. The
CFF of the trinucleon is then calculated using the wave function thus obtained [15].

The exchange contribution for the CFF is given by [23]

F ex
ch (q

2) =
−g2

2(4π
√
M)3

[

FV (q
2) +GV (q

2) + 3FS(q
2) + 3GS(q

2)
]

Q(q2), (6)

where the function Q(q2) is defined as

Q(q2) =

∫

d~p1 d~p
′
1 d~q1 φ0(p1, q1) φ0(p

′
1, q

′
1)×

q2 − 2(~p1 − ~p′1).~q
√
M

[

(~p1 − ~p′1)
√
M − ~q/2

]2

+ µ2

, (7)

where ~q′1 = ~q1 − ~q/(2
√
3M) and φ0(p, q) is the momentum space wave function

for the S-state of trinucleon and ~p1, ~q1 are relative momenta expressed in terms of
particle momenta ki (i = 1, 2, 3) by

~p1 =
1

2
√
M

(~k2 − ~k1),

~q1 =
1

2
√
3M

(~k2 + ~k3 − 2~k1).
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M and µ are the nucleon (939 MeV) and pion (139.6 MeV) masses, respectively.
FV and FS are, respectively, the isovector and isoscalar charge form–factor of the
nucleons, while GV and GS are its isovector and isoscalar magnetic form–factors
and are given in Ref. 32.

Introducing angle θ between the vector ~∆ and ~q, where ~∆ = (~p1 − ~p′1)
√
M , we

may write

Q(q2) =

∫

d~p1 d~p
′
1 d~q1 φ0(p1, q1)φ0(p

′
1, q

′
1)×

q2(1− 2∆/q cos θ)

(∆2 + 1/4q2 + µ2)−∆q cos θ
. (8)

In the HHE method, the trinucleon wave function (in coordinate space) is given
by [7]

ψ(~x, ~y) =
∑

K

∑

lxly

∑

mxmy

〈lxlymxmy | LM〉Y mx

lx
(θx, φx)Y

my

ly
(θy, φy)

NK uK(r) r−5/2 (2)P
lylx
2K (φ), (9)

where NK = 0N2K
0F

lylx
2K (φ) is taken from Ref. 7.

The function Q(q2) in (8) involves a nine–dimensional integral in momentum
space. We have reduced it to a two–dimensional integral in coordinate space by
taking appropriate Fourier transforms in the following way,

φ0(p1, q1) = (

√
M

2π
)3

∫

ψ(~x, ~y) eı~x·~p1

√
M eı~y·~q1

√
Md~x d~y, (10)

(1− 2∆/q cos θ)

(∆2 + 1/4q2 + µ2)−∆q cos θ
= (

1

2π
)3

∫

Y (x, q)e−ı~∆·~xdx. (11)

Using (10) and (11), Q(q2) takes the form

Q(q2) = (
√
M)−3

∫

ψ(~x, ~y)ψ∗(~x, ~y) eı~y·~q/2
√
3 Y (~x, ~q) d~x d~y. (12)

For simplicity, in actual calculation, we have considered that the bound state is
a pure S-state, for which L = M = 0 and ψ(~x, ~y) is given by

ψ(~x, ~y) =
1

4π

∑

K

0N2K
0F 00

2K(
π

2
) r−5/2 uK(r)(2)P 00

2K(φ). (13)

FIZIKA B 5 (1996) 4, 217–228 221



kanta and das: trinucleon charge form-factor . . .

Substituting (13) in (12), and doing the angular integration, one has

Q(q2) =
4π2q

M3/2

∫

∑

KK′

NKNK′ uK(r)uK′(r) r−5/2 (2)P 00
2K(φ) (2)P 00

2K′(φ)×

×j0(
qy

2
√
3
) j1(

xq

2
)
e−µx

x
x2y2dx dy (14)

where jn(x) is the spherical Bessel function of order n. The function Q(q2) in (14)
is now reduced analytically to a two–dimensional integral in coordinate space. It is
then evaluated numerically using the hyper–radial wave functions uK(r), obtained
by the HHE method.

3. Results and discussions

For the nucleon-nucleon 2BF, we have chosen two commonly used S-projected
potentials, namely Afnan-Tang S3 potential and the Malfleit-Tjon MTV potential.
Both these underbind the trinucleon in common with more realistic potentials like
RSC potential. Most other calculated observables with S3 and MTV are also com-
parable with those with RSC potential. We performed the calculation for both 3H
and 3He; for the latter, Coulomb repulsion between the two protons is included
with the sum of the three two–body nuclear interactions, thus without resorting to
perturbation approximation. The trinucleon wave function, including the effects of
both 2BF and 3BF, can be obtained by introducing properly the three–body mul-
tipole in addition to the two–body multipoles, and solving the resulting coupled
differential equation for the hyper–radial wave function. In the actual calculation,
we have taken 12 hyper partial-waves including all the necessary multipoles of 2BF
but two multipoles of 3BF. The 3BF being of much shorter range than the 2BF, only
two multipoles of 3BF were found sufficient for the degree of precession achieved
with 12 partial waves. Since the FM-3BF has a strong singularity (going as r−6 for
r → 0) and is attractive for the ETC of the trinucleon, a phenomenological cut–off
parameter (x0) is used [15] to regularize the very short–range behaviour of 3BF.
For S3 potential, x0 is chosen to be 0.34 fm as in Ref. 15. For MTV potential,
we calculate the value of x0 (x0 = 0.293 fm) by a technique similar to that given
by Das et al. [15], namely, x0 is chosen such that no unphysical nodes appear in
the hyper–radial wave function, but Fmax has the largest value. The value of the
parameter λ2 (in the case of TM-3BF and BR-3BF ) is taken as 17 and 25, as in
Ref. 33.

In Tables 1 and 2, we present the values of q2min and Fmax for both 2BF and
various combinations of 2BF, 3BF and MEC. From the fifth column, we see that
q2min moves further out for both 2BF with the inclusion of 3BF alone, in agreement
with calculation by other authors [15–19]. Effects of MEC on q2min is presented in the
sixth column, which shows that q2min shifted towards the experimental value with
the inclusion of MEC. The amount of shift for both 2BF and various combination
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of 3BF varies from 2.5 to 5.9 fm−2 for 3He and from 0.3 to 0.46 fm−2 for 3H. Last
two columns show calculated values of Fmax for the cases when no exchange effects
are taken and when exchange current contributions are included. Inclusion of 3BF

TABLE 1.
CFF for 3He calculated up to q2 = 25 fm−2.

2BF 3BF λ2/x0 BE q2min q2∗min Fmax F ∗
max

MeV fm−2 fm−2 ×103 ×103

- 5.7887 15.92 13.40 1.06 2.24

FM 0.340 6.9218 16.40 13.61 1.39 2.99

17 6.4171 16.41 13.84 1.13 2.51

TM
S3 25 6.7123 16.68 14.28 1.15 2.78

17 6.4270 16.47 13.63 1.13 2.50

BR
25 6.7296 16.72 13.82 1.14 2.55

- 7.3688 18.43 14.38 0.62 1.85

FM 0.293 8.3605 19.50 14.77 0.70 2.37

17 8.1650 19.89 15.02 1.98

TM
MTV 25 8.6268 20.27 15.48 2.13

17 8.3249 20.55 15.24 2.11

BR
25 8.8227 21.65 15.71 2.20

Exp 7.718 11.0± 0.7 5.9± 0.3

∗ indicates the corresponding values with MEC.

increases Fmax slightly for both 3H and 3He and also for both 2BF. These incre-
ments are more or less equal for TM and BR 3BF’s. From the fifth column, one
notices that the amount of shift in q2min with the inclusion of 3BF changes only by
small amounts for the FM, TM and BR three–body forces. Thus the choice of x0,
needed in the case of FM-3BF only, will not have too much effect on the present
investigation. Although the value of secondary maximum (Fmax) does not change
appreciably with the inclusion of various 3BF only, the inclusion of MEC contri-
bution with 2BF alone increases Fmax by an appreciable amount. In the case of
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2BF plus 3BF including MEC contribution, Fmax also increases to a value of about
(2 to 3) × 10−3 in the case of 3He and (1.8 to 2.2) × 10−3 in the case of 3H. From
Table 2, it is clear that the effect of MEC on q2min and Fmax for 3H is very small in
comparison with that of 3He. The CFF for 3He, calculated with 2BF alone, 2BF
plus MEC contribution, 2BF plus 3BF and 2BF plus 3BF plus MEC contribution
is plotted against q2 in Fig. 1 (for S3 potential) and Fig. 2 (for MTV potential).
Some of the experimental values together with their error bars is shown in Fig. 1.
For comparison, we also include the CFF calculated by Hadjimichael et al. [24],
including all the effects (the data were estimated from Fig. 10 of Ref. 24 and hence
are not very accurate). One can notice that q2min moves appreciably to a smaller
value and the amount of shift depends on the 2BF. However, inclusion of 3BF has
a negligible effect on both q2min and Fmax. Although Fmax increases with the in-
clusion of MEC contribution ( the increment again depends on the choice of 2BF),
the value of Fmax, including both 3BF and MEC, is still short of the experimental
value.

TABLE 2.
CFF for 3H calculated up to q2 = 25 fm−2.

2BF 3BF λ2/x0 BE q2min q2∗min Fmax F ∗
max

MeV fm−2 fm−2 ×103 ×103

- 6.4915 15.96 15.48 1.49 1.72

FM 0.340 7.6262 16.45 16.03 1.85 2.16

17 7.1308 16.31 16.06 1.59 1.83

S3 TM 25 7.4382 16.75 16.33 1.62 1.87

17 7.1485 16.53 16.18 1.58 1.89

BR 25 7.4603 16.78 16.35 1.61 1.92
- 8.0990 18.52 17.84 0.89 1.10

FM 0.293 8.9231 19.53 15.47

17 8.9642 19.91 19.02
MTV TM 25 9.3987 20.84 19.76

17 9.0678 20.58 19.42
BR 25 9.6225 21.52 20.24

Exp 8.482 12.6± 0.5 3.95± 0.4

∗ indicates the corresponding values with MEC.

In Figs. 3 and 4, we plot the same quantities of 3H, for the two 2BF potentials
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(S3 and MTV, respectively). Once again, we show some of the experimental points
with their error bars. In this case the shift in q2min is smaller.

Fig. 1. Plot of Fch(q
2) as a function of q2 for 3He for 2BF alone (continuous),

2BF plus MEC (dashed), 2BF plus 3BF (dash–dot) and 2BF plus 3BF plus MEC
(dotted). Experimental points are from Ref. 16. The dash-dot-dot-dot curve is
drawn from the data of Ref. 24 and includes all the effects. The 2BF is chosen as
S3 potential.

Fig. 2. Same as Fig.1 for MTV potential. Experimental points and comparison with
Ref. 24 are omitted (right).

Both q2min and Fmax are worse compared to experimental values for MTV po-
tential than for S3 potentials. But there is a substantial enhancement in Fmax due
to the exchange effect for 3He nucleus. Shifts in the position of the first diffraction
minimum are greater for MTV than for S3, when effects of exchange currents are
included. The CFF with 2BF alone is far worse for MTV (although BE is closer
to the experimental value); hence CFF including exchange currents are better for
the S3 potential. Since the MTV potential is more strongly repulsive at very short
separations (< 0.6) compared to S3 potential, these observations indicate that the
effects of the exchange currents are more pronounced for potential with very strong
repulsive core. But the CFF without exchange current effects is closer to observed
values for potentials which are less attractive at intermediate separations, like the
S3, which, by virtue of the fact that at very short separations it is less repulsive
than MTV, is less attractive at intermediate separations compared to MTV, in
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order that the BE of the deuteron has the correct value. Hence, our simple model
calculation indicates that the inclusion of exchange current effects with a realistic
potential like RSC is likely to produce a CFF close to the experimental one. For
the RSC, the effective potential for the S-state has a very strong short separation
repulsion and a rather shallow attraction at intermediate separations — a large
part of the BE coming from the S-D states coupling, mediated through the tensor
interaction.

In conclusion we state that the inclusion of 3BF moves q2min in general out-
wards and increases Fmax slightly, thus making the overall agreement of CFF with
experiment worse. The inclusion of MEC moves q2min inwards substantially and
enhances Fmax by an appreciable amount. The combined effects of 3BF and MEC
are substantial and modify the CFF of trinucleon in the correct direction, however
these do not fully reproduce experimental results.

Fig. 3. Same as Fig.1 for 3H with S3 as the 2BF. No comparison is included.

Fig. 4. Same as Fig. 2 for 3H with MTV potential (right).
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TRONUKLEONSKI NABOJSKI FAKTOR OBLIKA S UKLJUČENJEM
MEZONSKE SILE IZMJENE I SILE TRI TIJELA

Istražili smo učinak doprinosa stanja izmjene mezona nabojskom faktoru oblika
(formfaktoru) 3He i 3H, primjenom metode razvoja po hipersferičnim harmonicima,
uz uključenje tročestične sile. Dobiveni rezultati ukazuju da je zajednički učinak
tročestične sile i mezonskih izmjena važan i da bitno mijenja nabojski faktor oblika
prema rezultatima mjerenja.
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