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Abstract. In this paper, we shall prove an analogous version of Wolstenholme’s theorem,
namely, given a prime number p > 2 and positive integers a, b, m such that p t m, we shall
determine the maximal prime power p®, which divides the numerator of the fraction

1 1 1 1

m map T mtep T m - D

when written in reduced form, with the exception of one case, where p =2, b=1,m > 1
and 2°%|lm — 1. In this exceptional case, a lower bound for e is given.
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1. Introduction

The classical Wolstenholme’s theorem states that if p > 3 is a prime number, then
the numerator of the fraction
1+ ! + L +.+ !
2 3 7 p-1

is divisible by p?. The proof can be found in [3, pp. 112-114]. Let us illustrate this
result. For p = 13, we have

1+1+1+1+1+1+1+1+1+ 1 n 1 n 1 86021

2 3 4 5 6 7 8 9 10 11 12 27720’

and here indeed 132 | 86021. We remark that for some primes, the numerator in
Wolstenholme’s theorem can be divisible by p3, even if the fraction is written in
reduced form. These prime numbers, which satisfy a stronger version of Wolsten-
holme’s theorem, are called Wolstenholme primes. The only Wolstenholme primes
known so far are 16843 and 2124679, though it is conjectured that their number is
infinite. Wolstenholme’s theorem has many generalizations and extensions. One of
them is due to L. Carlitz [1] and it asserts as follows: if m is an arbitrary integer,
then for each prime p > 3, the numerator of the fraction

1 1 1
+ o ———
mp+1  mp+2 mp+ (p—1)
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is divisible by p?. Further generalization can be found in [5].

In this paper, we shall prove the following analog of Wolstenholme’s theorem: if
p is an odd prime number and a, b, m are positive integers such that p { m, then the
numerator of the fraction

1 1 1 1
%—’—TrH—pb+m—|—2pb—i_”'+m+(pa—1)pb7

when written in reduced form, is divisible by p® but not by p®*!. For example, for
p=3,a=2,b=1and m = 2, we obtain that
1+1+1+1+1+1+1+1+1 3688785
2 5 8 11 14 17 20 23 26 3131128’
and here indeed 32||3688785.
In the case of the prime p = 2 one needs to distinguish cases according to whether
b > 2 or b =1: Suppose that a,b,m are positive integers such that 2 {m. If b > 2,
then the numerator of the fraction

1 1 1 1 1

m+m+2b+m+2~2b+m+3-2b+”'+m+(2“—1)2b’

when written in reduced form, is divisible by 2% but not by 2*!. For example, for
a=4,b=2and m = 1, we obtain that
. 1 L 1 n 1 n 1 Ly 1 42155877944972752
59 13 17 777 61 24142663793423175’
and here indeed 24||42155877944972752.
When b = 1, the results depend upon the value of m. If m = 1, then the
numerator of the fraction

L4 i it .
3 5 7 T 142(2¢-1)
when written in reduced form, is divisible by 22¢ but not by 22¢*!. For example, for
a = 4, we obtain that
14 1 n 1 n 1 n 1 T 1 10686452707072
35 7 9 7731 4512611027925’
and here indeed 28|10686452707072.
If m > 1 and c is the positive integer such that 2°||m — 1, then the maximal
prime power 2¢ which divides the numerator of the fraction

1 1 1 1 1

m+m+2+m+4+m+6+'“+m+2(2“71)’

when written in reduced form, is either 2¢T™ir{a.c} if ¢ £ ¢ or at least 224t if ¢ = c.

As an example, for a = 4 and m = 9, we obtain that
1 n 1 n 1 n 1 P 1 134154786738304
9 11 13 15 77 39  166966608033225

In this case, 23||m — 1, so ¢ = 3, and indeed 27||134154786738304.
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2. Preliminaries

We begin with a brief overview of several concepts concerning elementary symmetric
polynomials. Recall that the kth elementary symmetric function in n variables is
defined by

ek($1ax27~-~a$n): E xilxi2""r’ik'
1< <ia < <ip <N

For example, the elementary symmetric functions in 4 variables are:

ez, 22,23, 04) = 1 + T2 + 23 + 24

e2(x1, 2, T3,T4) = T1T2 + T1X3 + T1X4 + ToZg + Taly + T334

1 )
e3(x1, T, T3, T4) = T122T3 + T1T2Tg + T1T3T4 + T2X3T4
64(3?1, To,x3, .’1?4) = T1X2X3T4.

It is convenient to define eg(x1,x2,...,2,) = 1. Note that the kth elementary
symmetric function is homogenous of degree k, that is,

ex(\zy, Azg, .. Az, = Nep(xy, 20, . .., )

for every A.
If we expand the product (z — z1)(z — z2) -+ - (# — @) into a polynomial in the
variable z, we get the following relation:

n

(z—x1)(z—x2) - (2 —xp) = Z(—l)kek(xl,:@, N P

k=0
We continue with the following result, which will helpful in the sequel.

Proposition 1. Suppose that p is a prime number and let t be a positive integer
such that p{t. If a,b are integers such that 0 < b < a and t < p*~°, then

a—b pa
| (pbt).

Proof. If a = b, then ¢t = 1 and the result certainly holds. So assume that a > b.
For a positive number n define v,(n) to be the multiplicity of p in n, namely v,(n)
is the non-negative integer such that p*»(™||n. By [4, pp. 90-91], we know that

vy(nl) = m ; L;”;J i L:;J o

Here the lower square-bracket notation |z ] denotes the largest integer not exceeding
the real number z. Hence

b b b b b
ban _ | P p’t p’t p’t p’t
vp((p°t)!) {pJ+{p2 +... 4 o + = + s +...
t t
:(pb1+pb2+...+p+1)t+{J+{2J+...
P p
b
-1

T + ,(t)).
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Now, for a real number z and an integer n, we have |[n+ x| =n+ |z and |—z| =
—1 — |z] if = is not an integer (see [4, p. 90]). Therefore, as a > b, we get

o = [P [Pt [

p p

=@t 4p+ 1)+ {—;J + {—tJ +... {— ! J

p2

- -y (g [+ |55 )

a—>b times

pa—b -1
= ﬁ — (a — b) — l/p<t')
Observe that the third equality follows from the fact that p { ¢t. From the first
formula we deduce that

(")) =1-E= + 1) = B

and the first and the second formula yield:
vp((p" = p"1)1) = v (" (0" ™" — 1))
b
a— P — 1 a—
=(p ”—t)p_l + (" = 1))

b—l pafb_l

= (pa—b_t)p_l + P —(a—b) — vp(t)).
Hence .
Vp (<1]))bt>> =1, ((p)!) — Vp((pbt)!) —v((p* — pbt)!) —a—b,
and the proof is complete. -

3. The value of ¢,(0,1,2,...,p* — 1) modulo p*

Let p be a prime number and a a positive integer. Our aim in this section is to
compute the values of the expressions ex(0,1,2,...,p% — 1) modulo p®, where e,
denotes the kth elementary symmetric function. As we shall see, the values of these
expressions will play an important role in our analysis. To do so, we shall use a
specific generalization of Lagrange’s Indeterminate Congruence Theorem. Recall
that Lagrange’s Indeterminate Congruence Theorem claims that

@ —1(z—-2)-(r—p+1)=2"—z (modp),

where the congruence indicates that the corresponding coefficients of the polynomials
are congruent modulo p. A generalization of Lagrange’s Indeterminate Congruence
Theorem was given by Bauer (see theorems 126 and 127 of [3]) and later by Vandiver.
Equations (8) and (9’) of [6], listed below, are the ones we need for our analysis:
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Theorem 1 (Vandiver [6]). Let p be a prime number and let a be a positive integer.

(a) If p> 2, then
s - )@ -2) (@ — ("~ 1) = (@ — 2" (mod p?).

(b) Ifp=2anda > 2, then
a—2

pe—(@—=2) (-2 =1) = ((*—2)®> =2 —2))>  (mod 2%).

Proposition 2. Suppose that p is an odd prime number, a is a positive integer and
0 < k < p® is an integer. Then

a—1
ek(oa 17 27 LR 7pa - 1) = (_l)k(_l)k/(P—l) (p k ) (mOd pa)

p—1
ifp—1|kand0 <k <p*—p* 1, and e;(0,1,2,...,p*—1) =0 (mod p*) otherwise.
Proof. On the one hand, by Theorem 1(a)

a(z—1)(x—2)-(z— (p*—1)) = (2P — )"

p! pa_l e
=3 (U)o (mod ),

- (2
=0

—1

so the powers of z in the sum are of the form zP*~*, where p — 1 | kand 0 < k <
(p—1)p®~t = p® — p2~L. On the other hand,

a

P
zz—1D(x—=2)-(x—(p*-1)) Z Fer(0,1,2,...,p% — )Pk,
k=0
Now, comparing the corresponding exponents yields
a—1

%mmznwwn<1ﬁ<nmp”6k (mod )

\_/

I
ifp—1|kand 0 <k <p®—p2 1 and ey(0,1,2,...,p*—1) =0 (mod p®) otherwise,
as required. O

Proposition 3. Suppose that a > 3 and 0 < k < 2% are integers. Then

1, ifk=0
201 ifk=1
2072 ifk=2
ex(0,1,2,...,29 - 1) =<0, if2<k <21 and k is odd  (mod 2%).
(2:1) if 2 < k<2 and k is even
201 gf2el <297l 42
0, if20 7l 2 < k<2
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Proof. Set f(z) =xz(x —1)(x —2)--- (x — (2% — 1)). Note that by Theorem 1(b)

@)= (@ = =20 =) = 3 ()M -0 moa 2,
k=0

2a72
20 | 2F
(%)

for every 3 < k < 2% Let t be the non-negative integer such that 2¢||k. By
Proposition 1,
9a— 2
9a— 2— t”( ).

Hence, in order to prove our claim, it suffices to prove that a < k+a — 2 —t, that is,
t+2<k. Indeed,if 0 <t <1, thent+2<3<k,and ift > 2, then t +2 < 2! <k,
as required. Since a > 3, it follows that

f(@) = @ —2)* " - 2(2“1_ ) (22 —a)? 1 4 4(2“2‘2> (22 — )22

_ (x2 . x)2“—1 - 2(171( 2 m)za—lfl 2a71(2a72 . 1)(m2 . x)za—lﬂ
z)

We claim that

— (x2 . x)za— ga— 1(x2 20-1_q 2a71(x2 . x)za—lfz
= (2% — 1) 2“_ +2071((2® — 2) 2(‘_1*1 + (2 — 1)20'_1*2) (mod 2%).
g(x)

We shall prove that
2(172

glz)=22""%+ Z g2 @i+ 4 207 -2 (mod 2)

j=1

for every a > 3. Set A =2°~!. Note that A > 4 and

9(z) = g(l)i (A . 1> PAT g(l)f (A; 2) p2A1

= A-1
 p2A=2 (4 )p2A3 it 24-2—i

=2

43 (A -2 X

+ § (—1)]( , )xQA_4_J + 2472
; J
Jj=0

_ At (4 qypan ;‘Zﬁ (( 1> N (A 2)) A A
J+2 J
A-3
_ 242 4 424-3 Z ((;1;21) N (A - 2)) PA 4 A2 (mod 2).
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We shall prove now that

_ {O, if j is even (mod 2),

(A—1)+(A—2> B
Jj+2 J |1, ifjisodd

for every 0 < j < A — 3. To do so, we shall use Lucas’s theorem [2], which claims,
in particular for the prime p = 2, that if m, n are non-negative integers and if

m:mk2k+...+m222+m12+mo

n:nk2k+...—|—n222+n12+n0

are the base-2 expansions of m and n, respectively, then the following congruence

relation holds:
n n U] nq no

where we use the convention that (7::) = 0 whenever m < n. In our case, the base-2
expansions of A — 1 and of A — 2 are

A—1=21_1=9"24  +922492+1

and
A—92=200"1_9=90"24 419249
If
GH2=ma 222+ .. 4+ ma22 +mi2+my
and

j = na,22a_2 + ...+ n222 + n12 + ng

are the base-2 expansions of j and j + 2, then

(0 (L) s
() () () e

Since each of mg,m1,...,mqe_2 and ng,n1,...,ng_o is either 0 or 1, it follows that
(’;‘;21) =1 (mod 2). If j is odd, then ny = 1, so (A;Z) =0 (mod 2), and if j is even,

then ny =0, so (A;2) =1 (mod 2). Therefore,

and

(mod 2),

(A—1)+(A—2> _]0, ifjiseven
Jjt2 j ) |1, ifjisodd
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as required. Hence

g(x) 2A 2 2A 3+ Z 2A—4—j+xA—2

0<ji<A—3
j is odd

p2A=2 | 243 | 02A-5 L 2A-T 4L 2A-(A4]) | pA-2

A2
= p2A-2 4 ZzzAf(sz) 4 opA-2
j=1
2(1—2
=224 Z 22" (@041 4 4207 2 (mod 2),
j=1
as claimed. Therefore,
20,—2
flz) = (x2 . x)za* 4001 [ 4272 4 Z 22720+ 4 m2a*1—2
j=1
2&—1 a—1
=X (7 )
i=0
ga—2
ool [ 272 4 Z 222541 4 2202971 42) (mod 2%).
j=1

Now, given 0 < k < 2%, let ¢ be the coefficient of the term 22" ~* in f(z). By the
above expression we deduce that
1, i k=0
2(1,—1 .
_1(1711 ), ifk=1
(*, ) +207t ifk=2

=427 - (2:1)7 if2<k<2'and kisodd (mod2%).
(2:1)7 if 2 < k<2% ! and k is even
2071, if20 1l <« 2071 49
0, if2e "l 42 < k<2
Note that
2a_1 a—1 a—1 a
1) =277 =2 (mod 2%)

and

2a 1
< 2 ) + 2(1—1 — 2(1—2(2(1—1 _ 1) _|_ 2(1—1 — 220.—3 + 2(1—2 = 2(1—2 (mod 20.).

In addition, if k£ is odd, then by Proposition 1 it follows that (2:1) = 2971}, where
24b. Thus

a—1 —
ga-1 _ <2k ) =i 1-h) =20 1 =0 (mod 2°)
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Therefore,
1, ifk=0
201 if k=1
202 if fp =9
=10, if2<k<2%!and kisodd (mod 2%).
(zak_l), if 2 < k< 2% ! and k is even
20=lif 20l < k<2971 42
0, if 2071 2 < k<20
Since
ga
Fl@) = (1)Fex(0,1,2,...,2% = 1)a>" 7,
k=0

it follows that (—1)%e;(0,1,2,...,2¢ — 1) = ¢, (mod 2%), that is, e1(0,1,2,...,2% —
1) = (=1)*¢;, (mod 2%). By noting that —22~1 = 297! (mod 2%), we deduce that

1, ifk=0
201 ifk=1
2072 ifk=2
er(0,1,2,...,2* —1) =< 0, if2<k<2!and kisodd (mod 2%),

(2(1,;1), if2 < k<2 ! and k is even
20—l if 20l < k207 42
0, if 2071 2 < k<29

as required. O

4. Our main results

In this section, we shall prove the four main theorems of this paper. All four proofs
are based on the following observation: The fraction s = a% +...4+ i can be written
as N/D, where N = e;_1(a1,...,ar), D =ay---a, and e;_1 denotes the (k — 1)th
elementary symmetric function. Now, if p t D and p®|| N, then p° is also the maximal
prime power which divides the numerator of the fraction s, when written in reduced
form. Therefore, it suffices to determine the maximal power e for which p¢||N.
This goal will be accomplished by using the results proven in Section 3 according to
different cases. We begin with the case where p is an odd prime number.

Theorem 2. If p is an odd prime number and a,b, m are positive integers such that
p 1t m, then the mazimal prime power p® which divides the numerator of the fraction

1 1 1 1
E+m+pb+m+2pb+“'+m+(p“—1)pb’

when written in reduced form, is p*.
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Proof. Suppose that

1 1 1 1
E+m+pb+m+2pb+”'+—m+(pa—1)pb =

)

al 3

where ged(n, d) = 1. We claim that p®||n. Set

N = ep"'—l(mam +pb7m + 2pb7 e, M + (pa - 1)pb)
D =m(m+p")(m+2p") - (m+ (p* — 1)p"),

where epa_7 denotes the (p® —1)th elementary symmetric function. Note that n/d =
N/D, but the fraction N/D is not necessary in its reduced form. Nevertheless, since
ged(m,p) =1 and b > 1, it follows that p{ D, so p®||n if and only if p*||N. Hence,
it suffices to prove that p®||N. To do so, consider the polynomial

f@) = (@ =m)(@ — (m+p")) (@~ (m+2p") - (x = (m+ (p" = 1)p"))

—~

= (z—m)(x—m—p°)(&—m—=2p")--- (¢ —m — (p” — 1)p")
pa/
= (—1)Fer(0,p", 20", ..., (p* — Dp’)(z — m)P" *
k=0
p* .
= (_l)kpbkek(051727"'7pa - 1)(z_m)p 71@'
k=0

We claim that p®*e(0,1,2,...,p* —1) =0 (mod p**!) for every 1 < k < p®.
If £ =1, then indeed

pe —1)p® pe—1 "
( 2) = p* =0 (mod p

pbel(07172a"'7pa_1):pb' a+1)7
as required.

Next, suppose that k > 2. If either p® — p®~! < k < p® or p — 1 { k, then by
Proposition 2 ex(0,1,2,...,p* — 1) = 0 (mod p?), so p**ex(0,1,2,...,p* —1) =0
(mod p?*1), as required.

It remains only to deal with k such that 2 <k <p*—p*ltand p—1|k. Lett
be the non-negative integer such that p’||k. Then pt||p%1 and by Proposition 1,

L pafl
pa 1-t | (k)
p—1

a—1
er(0,1,2,...,p" = 1) = (=1)F(=1)F/ @1 (pk> (mod p?),

Since by Proposition 2

it follows that

p*%er(0,1,2,...,p* —=1) =0 (mod p*Fre=1-1),
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Thus, in order to prove our claim it suffices to prove that bk +a —1—¢t > a + 1,
that is, bk > t + 2. Indeed, if t = 0, then bk > 2 =t + 2 since kK > 2, and if t > 1,
then bk > bp! > 3 >t + 2, so our claim is proved.

It follows by the above discussion that

f(@) = (@=m)”"  (mod p*).
On the one hand, the coefficient of = in f(x) is
N = epafl(mam +pb7m + 2pb7 cem o+ (pa - 1>pb)

Now, the coefficient of z in (z—m)P" is p*(—1)P" ~1mP"~1. Therefore, N =p®(—1)P" 1
-mP" =1 (mod p®*1). Since ptm, it follows that p®|| N, as required. O

The next three theorems handle the case where p = 2. The first theorem deals
with the case when b > 2, while the second and the third theorem treat the case
when b= 1.

Theorem 3. If a,b,m are positive integers such that 2 f m and b > 2, then the
mazximal prime power 2° which divides the numerator of the fraction

L1 1 L 1
m+ (2¢ —1)20°

m  m+2b +m+2-2b +m+3-2b
when written in reduced form, is 2%.

Proof. Set
N =ega_1(m,m+2°m+2-2° ... m+(2°-1)2%),

where eza_1 denotes the (2% — 1)th elementary symmetric function. As in the proof
of Theorem 2, it suffices to prove that 2¢||N. To do so, consider the polynomial

fla) = (@ —m)(z — (m+2")(z = (m+2-2°) - (z — (m + (2* = 1)2"))
z—m)(x—m—2")(x-—m—-2-2°") - (z—m—(2°—1)2%
= i(—l)kek(O,Qb,Q 220 (27— )20 (= m) P E

k=0

a

= (_1)k2bk€k(071723"'72a - 1)($_m>2a_k'
k=0

—~

[ V)

We claim that if b > 2, then 2°%¢,(0,1,2,...,2% — 1) = 0 (mod 2°*!) for every
1 < k < 2% For simplicity, let us denote ex(0,1,2,...,2% — 1) by e;. If k = 1,
then 2%¢; = 0 (mod 2°+%71) by Proposition 3, and since b > 2, it follows that
a+1<b+a—1,s02%; =0 (mod 2%t1), as claimed. If k = 2, then 2%%¢; = 0
(mod 220*2=2) by Proposition 3, and since b > 2, it follows that a+1 < 2b+a—2, so
22y = 0 (mod 29*1), as claimed. Next, suppose that 2 < k < 2971, If 2 { k, then
2%%¢;, = 0 (mod 2°%12) by Proposition 3, and since a + 1 < bk + a, it follows that
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2Fbe; = 0 (mod 2911), as claimed. If 2 | k, let ¢ be the positive integer such that
2t||k. By propositions 1 and 3, we deduce that 2*%¢; = 0 (mod 2°%+2=1-%) Since
t>1and b > 2, it follows that 2 +¢ < 2-2! < bk, thatis,a+1 < bk +a—1—t,
so 2%, = 0 (mod 2°F1), as claimed. If 297! < k < 2971 4 2, then 2%¢, = 0
(mod 2#+2=1) by Proposition 3, and since a + 1 < bk + a — 1, it follows that
2%%e;, = 0 (mod 29%1), as claimed. Finally, if 297! +2 < k < 29, then 2%¢, = 0
(mod 2%%+4) by Proposition 3, so 2%%¢;, = 0 (mod 2911); as claimed.

To conclude, we proved that if b > 2, then 2°%¢; = 0 (mod 29*!) for every
1 < k < 2% Consequently, f(z) = (z —m)?" (mod 2°t!'). As in the proof of
Theorem 2, it follows that N = 2%(—1)2""1m?"~1 = 2¢m2"~1 (mod 2°*'), and
since 2 1 m, we deduce that 2%|| N, as required. O

For the prime p = 2, we are left with the case b = 1. This case will be handled

according to two sub-cases: m =1 and m > 1.

Theorem 4. If a is a positive integer, then the mazximal prime power 2¢ which
divides the numerator of the fraction
1 1 1 1

44—+ —
T3ty trt et ety

when written in reduced form, is 22°.

Proof. Note that

NI S L
3 5 77 142(20-1)
1 1 1 1
= —_ = —_ —_— :2a+1 —_—
Y 1= Y (rems) ot Lo
1<s<2a+1 1<s<29 1<s<29
s is odd s is odd s is odd

Hence, in order to prove the claim it suffices to prove that the numerator of the

fraction
g -
S(2a 1 S),

1<s<22
s is odd

when written in reduced form, is divisible by 2%~! but not by 2%. For simplicity,
for every 0 < k < 2°7!, let us denote the following kth elementary symmetric
expression:

er(1(2°T1 —1),3(29T —3),..., (2% — 1)(2% + 1)),
by ey. As in the proof of Theorem 2, it suffices to prove that 247 !||ega—1_;. To do
so, consider the polynomial

@)= ] @-».
1<s<2a+1
s is odd
On the one hand, by Bauer’s Theorem [3, p. 127],

2(171

fa)=@ -1 =) <2ak1> (=1)*z2" =2k (mod 201,
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On the other hand,

f@= ] @=s= [[@=s@-0"" -s)
1<s<2atl 1<s <2
s is odd s is odd
Qa—l
= J] @+s@" —5) = ea®™ * (mod2°™).
1§s<d2: k=0

—2k

By comparing the coefficient of 2 we obtain that

2a71
er = ( k: >(1)k (mod 2°71),
for every 0 < k < 2¢~ L. In particular, 27 1||ega—1_, as required. O

Theorem 5. Suppose that a is a positive integer and m > 1 is an odd integer. In
addition, let ¢ be the positive integer such that 2¢||m — 1. Then the mazimal prime
power 2° which divides the numerator of the fraction

1 1 1 1 1

m+m—|—2+m+4+m+6+“'+m+2(2“—1)’

when written in reduced form, is either 20T™{act if o o ¢ or at least 22011 if
a=c.

Proof. Consider the polynomial
f@)=(@—m)(x—(m+2)(z—(m+4) - (z - (m+2(2" - 1)),

and let u be the odd positive integer such that m = 14 2°u. As in the proof of
Theorem 2,

2(L
fla) =) (=1)F2Fey(@—m)* F,
k=0
where we denote e, = ex(0,1,2,...,2%—1) for simplicity. Note that in order to prove

our claim, it suffices to find the maximal power of 2 which divides the coefficient of
x in f(z). Since

2¢ 2%—k

T) = —1)k2ke 20—k 2 (—m)?> kI
f) Z(quzo(j)( )

2% 29—k
a_: oa . 2¢ _ k .
= (—1)2" ~Im? _k_J2k€k< ) )acj,
J

k=0 j=0
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it follows that the coefficient A of x in f(z) is

2¢ 2@
a a 2(1 - k a
A=) "(-1)*"'m? ’szek< ) > == (1+2°u)* TF12ke, (2 — k)

k=0 k=0
2% 29—k—1 ~1 )
=— Z Z ( )(2Cu)12kek(2a —k)
2% 29—k—1
= — Zlek(Qa - Z Z ( )2”"'ku ek(Z - ]{)) .
k=0
B Chri

First, we shall prove that Cy; = 0 (mod 2¢F¢*1) for all 0 < k < 2% and 1 < i <
2% — k — 1, except when (k,i) = (0,1). Let ¢ be the non-negative integer such that
2t k.

If either 3 < k < 297! is odd or 2%~ ! < k < 2%, then by Proposition 3, e;, = 0
(mod 297 1), so 2¢*Fe; =0 (mod 2¢tF+2=1) "and since ci + k+a—1>a+c+1,
it follows that Cx; = 0 (mod 2%7¢t1) as claimed. If 3 < k < 297! is even, then by
Proposition 3, e, = (2(1,;1) (mod 2%), so e = 0 (mod 2%~ 1) by Proposition 1. In
addition, since 2% — k = 0 (mod 2¢), it follows that e (2% — k) = 0 (mod 2°7 1), so
2¢itke; (20 — k) = 0 (mod 2¢HF+a=1) Since ¢i + k +a — 1 > a+ ¢+ 1, it follows
that Ci; =0 (mod 297¢+1) | as claimed.

Next, if £ = 0, then Cp; = (2a;1)2“ui2a. Now, for i > 2, we get that ic 4+ a >
c+a+1,s0 Cy; =0 (mod 20+ If k = 1, then C; = (Qai_Q)Zc”lelui(Q“ —1).
Suppose that i > 2. Since e; = 0 (mod 2%~1) by Proposition 3, and since (ci +
1)+ (a—1) = c+a+ 1, it follows that Cy; = 0 (mod 29FH1). If 4 = 1, then
Ci1 = (2% — 2)2¢Flegu(2% — 1), so C13 =0 (mod 247+ since 2 | 2¢ — 2.

If £k = 2, then Oy = (2 )2”"’262u (2* — 2). By Proposition 3, es = 0
(mod 2%~ 2) In addition, since p) |2 —2and (ci+2)+(a—2)+1>2c+a+1,it
follows that Cy; = 0 (mod 227¢+1)  as required. To conclude, it follows that

=-B—Cop =—B—(2°—1)2°y (mod 2°T¢T1).

Next, note that once we prove that 22¢||B, then in the case a > ¢, we obtain that
2a > a+c+1,80 A=—(2%—1)29y (mod 29T+, which implies that 297¢| 4,
as required. In the case a < ¢, we obtain that 2a +1 < a+c+1,s0 A = —B
(mod 22¢+1) which implies that 22¢||A, as required. Finally, in the case a = ¢, we
obtain
A= _22a E 2a+1
= (22a + (2% - 1)u) (mod 2 ),

and since 2% + (2% — 1)u is a sum of two odd numbers, it follows that 22¢+! | A  as
required.
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So, it suffices to prove that 22¢||B. To do so, consider the polynomial

271 2¢—-1
fa)y=J[@—-a+2k) =[] (=—1)+2k)

k=0 k=0

.

(=1)*ex(0,2,4,6,...,2(2° = 1))(z — 1)

k=
20/

[}

2% —k ‘ - |
Z (*1)k+22kek(0’1,2,3"”,20, o 1)< , >$2"'kz

(3
0 ¢=0

k=

On the one hand, by recalling that ey = ex(0,1,2,3,...,2% — 1), we deduce that the
coefficient of z in f(z) is

D)2 <2a . 1> == Ya@ -k =-B
k=0

k=0
On the other hand, by Theorem 4, it follows that 22¢|| B, as required. O

We stress that if a = ¢ in Theorem 5, then the numerator of the corresponding
fraction may be divisible by larger power of 2 than 22¢*1, As an illustrative example,
for a = 2 and m = 1021, we obtain that

1 + 1 n 1 n 1 4294946816
1021 1023 1025 = 1027 1099501142025 °

Since here 22||m — 1, it follows that a = ¢, so by Theorem 5, we deduce that the
numerator 4294946816 is divisible by 2°, although it is actually divisible by 2'2.
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