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Abstract. In this paper, we shall prove an analogous version of Wolstenholme’s theorem,
namely, given a prime number p > 2 and positive integers a, b,m such that p - m, we shall
determine the maximal prime power pe, which divides the numerator of the fraction
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,

when written in reduced form, with the exception of one case, where p = 2, b = 1, m > 1
and 2a∥m− 1. In this exceptional case, a lower bound for e is given.
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1. Introduction

The classical Wolstenholme’s theorem states that if p > 3 is a prime number, then
the numerator of the fraction
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is divisible by p2. The proof can be found in [3, pp. 112–114]. Let us illustrate this
result. For p = 13, we have
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and here indeed 132 | 86021. We remark that for some primes, the numerator in
Wolstenholme’s theorem can be divisible by p3, even if the fraction is written in
reduced form. These prime numbers, which satisfy a stronger version of Wolsten-
holme’s theorem, are called Wolstenholme primes. The only Wolstenholme primes
known so far are 16843 and 2124679, though it is conjectured that their number is
infinite. Wolstenholme’s theorem has many generalizations and extensions. One of
them is due to L. Carlitz [1] and it asserts as follows: if m is an arbitrary integer,
then for each prime p > 3, the numerator of the fraction
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is divisible by p2. Further generalization can be found in [5].
In this paper, we shall prove the following analog of Wolstenholme’s theorem: if

p is an odd prime number and a, b,m are positive integers such that p - m, then the
numerator of the fraction

1

m
+

1

m+ pb
+

1

m+ 2pb
+ . . .+

1

m+ (pa − 1)pb
,

when written in reduced form, is divisible by pa but not by pa+1. For example, for
p = 3, a = 2, b = 1 and m = 2, we obtain that
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3131128
,

and here indeed 32∥3688785.
In the case of the prime p = 2 one needs to distinguish cases according to whether

b > 2 or b = 1: Suppose that a, b,m are positive integers such that 2 - m. If b > 2,
then the numerator of the fraction
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1
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,

when written in reduced form, is divisible by 2a but not by 2a+1. For example, for
a = 4, b = 2 and m = 1, we obtain that
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,

and here indeed 24∥42155877944972752.
When b = 1, the results depend upon the value of m. If m = 1, then the

numerator of the fraction
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when written in reduced form, is divisible by 22a but not by 22a+1. For example, for
a = 4, we obtain that
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and here indeed 28∥10686452707072.
If m > 1 and c is the positive integer such that 2c∥m − 1, then the maximal

prime power 2e which divides the numerator of the fraction
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,

when written in reduced form, is either 2a+min{a,c} if a ̸= c, or at least 22a+1 if a = c.
As an example, for a = 4 and m = 9, we obtain that
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.

In this case, 23∥m− 1, so c = 3, and indeed 27∥134154786738304.
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2. Preliminaries

We begin with a brief overview of several concepts concerning elementary symmetric
polynomials. Recall that the kth elementary symmetric function in n variables is
defined by

ek(x1, x2, . . . , xn) =
∑

16i1<i2<···<ik6n

xi1xi2 · · ·xik .

For example, the elementary symmetric functions in 4 variables are:

e1(x1, x2, x3, x4) = x1 + x2 + x3 + x4

e2(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

e3(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

e4(x1, x2, x3, x4) = x1x2x3x4.

It is convenient to define e0(x1, x2, . . . , xn) = 1. Note that the kth elementary
symmetric function is homogenous of degree k, that is,

ek(λx1, λx2, . . . , λxn) = λkek(x1, x2, . . . , xn)

for every λ.
If we expand the product (z − x1)(z − x2) · · · (z − xn) into a polynomial in the

variable z, we get the following relation:

(z − x1)(z − x2) · · · (z − xn) =

n∑
k=0

(−1)kek(x1, x2, . . . , xn)z
n−k.

We continue with the following result, which will helpful in the sequel.

Proposition 1. Suppose that p is a prime number and let t be a positive integer
such that p - t. If a, b are integers such that 0 6 b 6 a and t 6 pa−b, then

pa−b∥
(
pa

pbt

)
.

Proof. If a = b, then t = 1 and the result certainly holds. So assume that a > b.
For a positive number n define νp(n) to be the multiplicity of p in n, namely νp(n)
is the non-negative integer such that pνp(n)∥n. By [4, pp. 90–91], we know that

νp(n!) =

⌊
n

p

⌋
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⌊
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⌋
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⌊
n
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⌋
+ . . .

Here the lower square-bracket notation ⌊x⌋ denotes the largest integer not exceeding
the real number x. Hence
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⌊
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⌋
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⌊
t

p

⌋
+

⌊
t

p2

⌋
+ . . .

= t
pb − 1

p− 1
+ νp(t!).



72 B.Cohen

Now, for a real number x and an integer n, we have ⌊n+ x⌋ = n+ ⌊x⌋ and ⌊−x⌋ =
−1− ⌊x⌋ if x is not an integer (see [4, p. 90]). Therefore, as a > b, we get

νp((p
a−b − t)!) =

⌊
pa−b − t

p

⌋
+

⌊
pa−b − t

p2

⌋
+ . . .+

⌊
pa−b − t

pa−b

⌋
= (pa−b−1 + . . .+ p+ 1) +

⌊
− t

p

⌋
+

⌊
− t

p2

⌋
+ . . .+

⌊
− t

pa−b

⌋
=

pa−b − 1

p− 1
− (1 + 1 + . . .+ 1)︸ ︷︷ ︸

a−b times

−
(⌊

t

p

⌋
+

⌊
t

p2

⌋
+ . . .+

⌊
t

pa−b

⌋)

=
pa−b − 1

p− 1
− (a− b)− νp(t!).

Observe that the third equality follows from the fact that p - t. From the first
formula we deduce that

νp((p
a)!) = 1 · p

a − 1

p− 1
+ νp(1) =

pa − 1

p− 1
,

and the first and the second formula yield:

νp((p
a − pbt)!) = νp((p

b(pa−b − t))!)

= (pa−b − t)
pb − 1

p− 1
+ νp((p

a−b − t)!)

= (pa−b − t)
pb − 1

p− 1
+

pa−b − 1

p− 1
− (a− b)− νp(t!).

Hence

νp

((
pa

pbt

))
= νp((p

a)!)− νp((p
bt)!)− νp((p

a − pbt)!) = a− b,

and the proof is complete.

3. The value of ek(0, 1, 2, . . . , p
a − 1) modulo pa

Let p be a prime number and a a positive integer. Our aim in this section is to
compute the values of the expressions ek(0, 1, 2, . . . , p

a − 1) modulo pa, where ek
denotes the kth elementary symmetric function. As we shall see, the values of these
expressions will play an important role in our analysis. To do so, we shall use a
specific generalization of Lagrange’s Indeterminate Congruence Theorem. Recall
that Lagrange’s Indeterminate Congruence Theorem claims that

x(x− 1)(x− 2) · · · (x− p+ 1) ≡ xp − x (mod p),

where the congruence indicates that the corresponding coefficients of the polynomials
are congruent modulo p. A generalization of Lagrange’s Indeterminate Congruence
Theorem was given by Bauer (see theorems 126 and 127 of [3]) and later by Vandiver.
Equations (8’) and (9’) of [6], listed below, are the ones we need for our analysis:
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Theorem 1 (Vandiver [6]). Let p be a prime number and let a be a positive integer.

(a) If p > 2, then

x(x− 1)(x− 2) · · · (x− (pa − 1)) ≡ (xp − x)
pa−1

(mod pa).

(b) If p = 2 and a > 2 , then

x(x− 1)(x− 2) · · · (x− (2a − 1)) ≡
(
(x2 − x)2 − 2(x2 − x)

)2a−2

(mod 2a).

Proposition 2. Suppose that p is an odd prime number, a is a positive integer and
0 6 k 6 pa is an integer. Then

ek(0, 1, 2, . . . , p
a − 1) ≡ (−1)k(−1)k/(p−1)

(
pa−1

k
p−1

)
(mod pa)

if p−1 | k and 0 6 k 6 pa−pa−1, and ek(0, 1, 2, . . . , p
a−1) ≡ 0 (mod pa) otherwise.

Proof. On the one hand, by Theorem 1(a)

x(x− 1)(x− 2) · · · (x− (pa − 1)) ≡ (xp − x)p
a−1

=

pa−1∑
i=0

(
pa−1

i

)
(xp)

pa−1−i
(−x)i

=

pa−1∑
i=0

(
pa−1

i

)
(−1)ixpa−i(p−1) (mod pa),

so the powers of x in the sum are of the form xpa−k, where p − 1 | k and 0 6 k 6
(p− 1)pa−1 = pa − pa−1. On the other hand,

x(x− 1)(x− 2) · · · (x− (pa − 1)) =

pa∑
k=0

(−1)kek(0, 1, 2, . . . , p
a − 1)xpa−k.

Now, comparing the corresponding exponents yields

ek(0, 1, 2, . . . , p
a − 1) ≡ (−1)k(−1)k/(p−1)

(
pa−1

k
p−1

)
(mod pa)

if p−1 | k and 0 6 k 6 pa−pa−1, and ek(0, 1, 2, . . . , p
a−1) ≡ 0 (mod pa) otherwise,

as required.

Proposition 3. Suppose that a > 3 and 0 6 k 6 2a are integers. Then

ek(0, 1, 2, . . . , 2
a − 1) ≡



1, if k = 0

2a−1, if k = 1

2a−2, if k = 2

0, if 2 < k 6 2a−1 and k is odd(
2a−1

k

)
if 2 < k 6 2a−1 and k is even

2a−1, if 2a−1 < k 6 2a−1 + 2

0, if 2a−1 + 2 < k 6 2a

(mod 2a).
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Proof. Set f(x) = x(x− 1)(x− 2) · · · (x− (2a − 1)). Note that by Theorem 1(b)

f(x) ≡
(
(x2 − x)2 − 2(x2 − x)

)2a−2

=

2a−2∑
k=0

(
2a−2

k

)
(−2)k(x2 − x)2

a−1−k (mod 2a).

We claim that

2a | 2k
(
2a−2

k

)
for every 3 6 k 6 2a. Let t be the non-negative integer such that 2t∥k. By
Proposition 1,

2a−2−t∥
(
2a−2

k

)
.

Hence, in order to prove our claim, it suffices to prove that a 6 k+a−2− t, that is,
t+2 6 k. Indeed, if 0 6 t 6 1, then t+2 6 3 6 k, and if t > 2, then t+2 6 2t 6 k,
as required. Since a > 3, it follows that

f(x) ≡ (x2 − x)2
a−1

− 2

(
2a−2

1

)
(x2 − x)2

a−1−1 + 4

(
2a−2

2

)
(x2 − x)2

a−1−2

= (x2 − x)2
a−1

− 2a−1(x2 − x)2
a−1−1 + 2a−1(2a−2 − 1)(x2 − x)2

a−1−2

≡ (x2 − x)2
a−1

+ 2a−1(x2 − x)2
a−1−1 + 2a−1(x2 − x)2

a−1−2

= (x2 − x)2
a−1

+ 2a−1
(
(x2 − x)2

a−1−1 + (x2 − x)2
a−1−2︸ ︷︷ ︸

g(x)

)
(mod 2a).

We shall prove that

g(x) ≡ x2a−2 +

2a−2∑
j=1

x2a−(2j+1) + x2a−1−2 (mod 2)

for every a > 3. Set A = 2a−1. Note that A > 4 and

g(x) =

A−1∑
i=0

(−1)i
(
A− 1

i

)
x2A−2−i +

A−2∑
j=0

(−1)j
(
A− 2

j

)
x2A−4−j

= x2A−2 − (A− 1)x2A−3 +

A−1∑
i=2

(−1)i
(
A− 1

i

)
x2A−2−i

+

A−3∑
j=0

(−1)j
(
A− 2

j

)
x2A−4−j + xA−2

= x2A−2 − (A− 1)x2A−3 +

A−3∑
j=0

(−1)j
((

A− 1

j + 2

)
+

(
A− 2

j

))
x2A−4−j + xA−2

≡ x2A−2 + x2A−3 +

A−3∑
j=0

((
A− 1

j + 2

)
+

(
A− 2

j

))
x2A−4−j + xA−2 (mod 2).
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We shall prove now that(
A− 1

j + 2

)
+

(
A− 2

j

)
≡

{
0, if j is even

1, if j is odd
(mod 2),

for every 0 6 j 6 A − 3. To do so, we shall use Lucas’s theorem [2], which claims,
in particular for the prime p = 2, that if m,n are non-negative integers and if

m = mk2
k + . . .+m22

2 +m12 +m0

n = nk2
k + . . .+ n22

2 + n12 + n0

are the base-2 expansions of m and n, respectively, then the following congruence
relation holds: (

m

n

)
≡

(
mk

nk

)
· · ·

(
m2

n2

)(
m1

n1

)(
m0

n0

)
(mod 2),

where we use the convention that
(
m
n

)
= 0 whenever m < n. In our case, the base-2

expansions of A− 1 and of A− 2 are

A− 1 = 2a−1 − 1 = 2a−2 + . . .+ 22 + 2 + 1

and

A− 2 = 2a−1 − 2 = 2a−2 + . . .+ 22 + 2.

If

j + 2 = ma−22
a−2 + . . .+m22

2 +m12 +m0

and

j = na−22
a−2 + . . .+ n22

2 + n12 + n0

are the base-2 expansions of j and j + 2, then(
A− 1

j + 2

)
≡

(
1

ma−2

)
· · ·

(
1

m2

)(
1

m1

)(
1

m0

)
(mod 2)

and (
A− 2

j

)
≡

(
1

na−2

)
· · ·

(
1

n2

)(
1

n1

)(
0

n0

)
(mod 2).

Since each of m0,m1, . . . ,ma−2 and n0, n1, . . . , na−2 is either 0 or 1, it follows that(
A−1
j+2

)
≡ 1 (mod 2). If j is odd, then n0 = 1, so

(
A−2
j

)
≡ 0 (mod 2), and if j is even,

then n0 = 0, so
(
A−2
j

)
≡ 1 (mod 2). Therefore,

(
A− 1

j + 2

)
+

(
A− 2

j

)
≡

{
0, if j is even

1, if j is odd
(mod 2),
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as required. Hence

g(x) ≡ x2A−2 + x2A−3 +
∑

06j6A−3
j is odd

x2A−4−j + xA−2

= x2A−2 + x2A−3 + x2A−5 + x2A−7 + · · ·+ x2A−(A+1) + xA−2

= x2A−2 +

A/2∑
j=1

x2A−(1+2j) + xA−2

= x2a−2 +

2a−2∑
j=1

x2a−(2j+1) + x2a−1−2 (mod 2),

as claimed. Therefore,

f(x) ≡ (x2 − x)2
a−1

+ 2a−1

x2a−2 +

2a−2∑
j=1

x2a−(2j+1) + x2a−1−2


≡

2a−1∑
i=0

(−1)i
(
2a−1

i

)
x2a−i

+ 2a−1

x2a−2 +

2a−2∑
j=1

x2a−(2j+1) + x2a−(2a−1+2)

 (mod 2a).

Now, given 0 6 k 6 2a, let ck be the coefficient of the term x2a−k in f(x). By the
above expression we deduce that

ck ≡



1, if k = 0

−
(
2a−1

1

)
, if k = 1(

2a−1

2

)
+ 2a−1, if k = 2

2a−1 −
(
2a−1

k

)
, if 2 < k 6 2a−1 and k is odd(

2a−1

k

)
, if 2 < k 6 2a−1 and k is even

2a−1, if 2a−1 < k 6 2a−1 + 2

0, if 2a−1 + 2 < k 6 2a

(mod 2a).

Note that

−
(
2a−1

1

)
= −2a−1 ≡ 2a−1 (mod 2a)

and(
2a−1

2

)
+ 2a−1 = 2a−2(2a−1 − 1) + 2a−1 = 22a−3 + 2a−2 ≡ 2a−2 (mod 2a).

In addition, if k is odd, then by Proposition 1 it follows that
(
2a−1

k

)
= 2a−1b, where

2 - b. Thus

2a−1 −
(
2a−1

k

)
= 2a−1(1− b) ≡ 2a · 1− b

2
≡ 0 (mod 2a).
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Therefore,

ck ≡



1, if k = 0

2a−1, if k = 1

2a−2, if k = 2

0, if 2 < k 6 2a−1 and k is odd(
2a−1

k

)
, if 2 < k 6 2a−1 and k is even

2a−1, if 2a−1 < k 6 2a−1 + 2

0, if 2a−1 + 2 < k 6 2a

(mod 2a).

Since

f(x) =

2a∑
k=0

(−1)kek(0, 1, 2, . . . , 2
a − 1)x2a−k,

it follows that (−1)kek(0, 1, 2, . . . , 2
a− 1) ≡ ck (mod 2a), that is, ek(0, 1, 2, . . . , 2

a−
1) ≡ (−1)kck (mod 2a). By noting that −2a−1 ≡ 2a−1 (mod 2a), we deduce that

ek(0, 1, 2, . . . , 2
a − 1) ≡



1, if k = 0

2a−1, if k = 1

2a−2, if k = 2

0, if 2 < k 6 2a−1 and k is odd(
2a−1

k

)
, if 2 < k 6 2a−1 and k is even

2a−1, if 2a−1 < k 6 2a−1 + 2

0, if 2a−1 + 2 < k 6 2a

(mod 2a),

as required.

4. Our main results

In this section, we shall prove the four main theorems of this paper. All four proofs
are based on the following observation: The fraction s = 1

a1
+ . . .+ 1

ak
can be written

as N/D, where N = ek−1(a1, . . . , ak), D = a1 · · · ak, and ek−1 denotes the (k− 1)th
elementary symmetric function. Now, if p - D and pe∥N , then pe is also the maximal
prime power which divides the numerator of the fraction s, when written in reduced
form. Therefore, it suffices to determine the maximal power e for which pe∥N .
This goal will be accomplished by using the results proven in Section 3 according to
different cases. We begin with the case where p is an odd prime number.

Theorem 2. If p is an odd prime number and a, b,m are positive integers such that
p - m, then the maximal prime power pe which divides the numerator of the fraction

1

m
+

1

m+ pb
+

1

m+ 2pb
+ . . .+

1

m+ (pa − 1)pb
,

when written in reduced form, is pa.
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Proof. Suppose that

1

m
+

1

m+ pb
+

1

m+ 2pb
+ . . .+

1

m+ (pa − 1)pb
=

n

d
,

where gcd(n, d) = 1. We claim that pa∥n. Set

N = epa−1(m,m+ pb,m+ 2pb, · · · ,m+ (pa − 1)pb)

D = m(m+ pb)(m+ 2pb) · · · (m+ (pa − 1)pb),

where epa−1 denotes the (pa−1)th elementary symmetric function. Note that n/d =
N/D, but the fraction N/D is not necessary in its reduced form. Nevertheless, since
gcd(m, p) = 1 and b > 1, it follows that p - D, so pa∥n if and only if pa∥N . Hence,
it suffices to prove that pa∥N . To do so, consider the polynomial

f(x) = (x−m)(x− (m+ pb))(x− (m+ 2pb)) · · · (x− (m+ (pa − 1)pb))

= (x−m)(x−m− pb)(x−m− 2pb) · · · (x−m− (pa − 1)pb)

=

pa∑
k=0

(−1)kek(0, p
b, 2pb, . . . , (pa − 1)pb)(x−m)p

a−k

=

pa∑
k=0

(−1)kpbkek(0, 1, 2, . . . , p
a − 1)(x−m)p

a−k.

We claim that pbkek(0, 1, 2, . . . , p
a − 1) ≡ 0 (mod pa+1) for every 1 6 k 6 pa.

If k = 1, then indeed

pbe1(0, 1, 2, . . . , p
a − 1) = pb · (p

a − 1)pa

2
=

pa − 1

2
· pa+b ≡ 0 (mod pa+1),

as required.
Next, suppose that k > 2. If either pa − pa−1 < k 6 pa or p − 1 - k, then by

Proposition 2 ek(0, 1, 2, . . . , p
a − 1) ≡ 0 (mod pa), so pbkek(0, 1, 2, . . . , p

a − 1) ≡ 0
(mod pa+1), as required.

It remains only to deal with k such that 2 6 k 6 pa − pa−1 and p− 1 | k. Let t
be the non-negative integer such that pt∥k. Then pt∥ k

p−1 and by Proposition 1,

pa−1−t |
(
pa−1

k
p−1

)
.

Since by Proposition 2

ek(0, 1, 2, . . . , p
a − 1) ≡ (−1)k(−1)k/(p−1)

(
pa−1

k
p−1

)
(mod pa),

it follows that

pbkek(0, 1, 2, . . . , p
a − 1) ≡ 0 (mod pbk+a−1−t).
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Thus, in order to prove our claim it suffices to prove that bk + a − 1 − t > a + 1,
that is, bk > t + 2. Indeed, if t = 0, then bk > 2 = t + 2 since k > 2, and if t > 1,
then bk > bpt > 3t > t+ 2, so our claim is proved.

It follows by the above discussion that

f(x) ≡ (x−m)p
a

(mod pa+1).

On the one hand, the coefficient of x in f(x) is

N = epa−1(m,m+ pb,m+ 2pb, · · ·m+ (pa − 1)pb).

Now, the coefficient of x in (x−m)p
a

is pa(−1)p
a−1mpa−1. Therefore, N≡pa(−1)p

a−1

·mpa−1 (mod pa+1). Since p - m, it follows that pa∥N , as required.

The next three theorems handle the case where p = 2. The first theorem deals
with the case when b > 2, while the second and the third theorem treat the case
when b = 1.

Theorem 3. If a, b,m are positive integers such that 2 - m and b > 2, then the
maximal prime power 2e which divides the numerator of the fraction

1

m
+

1

m+ 2b
+

1

m+ 2 · 2b
+

1

m+ 3 · 2b
+ . . .+

1

m+ (2a − 1)2b
,

when written in reduced form, is 2a.

Proof. Set

N = e2a−1(m,m+ 2b,m+ 2 · 2b, · · · ,m+ (2a − 1)2b),

where e2a−1 denotes the (2a − 1)th elementary symmetric function. As in the proof
of Theorem 2, it suffices to prove that 2a∥N . To do so, consider the polynomial

f(x) = (x−m)(x− (m+ 2b))(x− (m+ 2 · 2b)) · · · (x− (m+ (2a − 1)2b))

= (x−m)(x−m− 2b)(x−m− 2 · 2b) · · · (x−m− (2a − 1)2b)

=

2a∑
k=0

(−1)kek(0, 2
b, 2 · 2b, . . . , (2a − 1)2b)(x−m)2

a−k

=

2a∑
k=0

(−1)k2bkek(0, 1, 2, . . . , 2
a − 1)(x−m)2

a−k.

We claim that if b > 2, then 2bkek(0, 1, 2, . . . , 2
a − 1) ≡ 0 (mod 2a+1) for every

1 6 k 6 2a. For simplicity, let us denote ek(0, 1, 2, . . . , 2
a − 1) by ek. If k = 1,

then 2be1 ≡ 0 (mod 2b+a−1) by Proposition 3, and since b > 2, it follows that
a + 1 6 b + a − 1, so 2be1 ≡ 0 (mod 2a+1), as claimed. If k = 2, then 22be2 ≡ 0
(mod 22b+a−2) by Proposition 3, and since b > 2, it follows that a+1 6 2b+a−2, so
22be2 ≡ 0 (mod 2a+1), as claimed. Next, suppose that 2 < k 6 2a−1. If 2 - k, then
2bkek ≡ 0 (mod 2bk+a) by Proposition 3, and since a + 1 < bk + a, it follows that
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2kbek ≡ 0 (mod 2a+1), as claimed. If 2 | k, let t be the positive integer such that
2t∥k. By propositions 1 and 3, we deduce that 2kbek ≡ 0 (mod 2bk+a−1−t). Since
t > 1 and b > 2, it follows that 2 + t < 2 · 2t 6 bk, that is, a + 1 < bk + a − 1 − t,
so 2bkek ≡ 0 (mod 2a+1), as claimed. If 2a−1 < k 6 2a−1 + 2, then 2bkek ≡ 0
(mod 2bk+a−1) by Proposition 3, and since a + 1 6 bk + a − 1, it follows that
2bkek ≡ 0 (mod 2a+1), as claimed. Finally, if 2a−1 + 2 < k 6 2a, then 2bkek ≡ 0
(mod 2bk+a) by Proposition 3, so 2bkek ≡ 0 (mod 2a+1), as claimed.

To conclude, we proved that if b > 2, then 2bkek ≡ 0 (mod 2a+1) for every
1 6 k 6 2a. Consequently, f(x) ≡ (x − m)2

a

(mod 2a+1). As in the proof of
Theorem 2, it follows that N ≡ 2a(−1)2

a−1m2a−1 ≡ 2am2a−1 (mod 2a+1), and
since 2 - m, we deduce that 2a∥N , as required.

For the prime p = 2, we are left with the case b = 1. This case will be handled
according to two sub-cases: m = 1 and m > 1.

Theorem 4. If a is a positive integer, then the maximal prime power 2e which
divides the numerator of the fraction

1 +
1

3
+

1

5
+

1

7
+ . . .+

1

1 + 2(2a − 1)
,

when written in reduced form, is 22a.

Proof. Note that

1+
1

3
+

1

5
+ . . .+

1

1 + 2(2a − 1)

=
∑

16s<2a+1

s is odd

1

s
=

∑
16s<2a

s is odd

(
1

s
+

1

2a+1 − s

)
= 2a+1

∑
16s<2a

s is odd

1

s(2a+1 − s)
.

Hence, in order to prove the claim it suffices to prove that the numerator of the
fraction ∑

16s<2a

s is odd

1

s(2a+1 − s)
,

when written in reduced form, is divisible by 2a−1 but not by 2a. For simplicity,
for every 0 6 k 6 2a−1, let us denote the following kth elementary symmetric
expression:

ek(1(2
a+1 − 1), 3(2a+1 − 3), . . . , (2a − 1)(2a + 1)),

by ek. As in the proof of Theorem 2, it suffices to prove that 2a−1∥e2a−1−1. To do
so, consider the polynomial

f(x) =
∏

16s<2a+1

s is odd

(x− s).

On the one hand, by Bauer’s Theorem [3, p. 127],

f(x) ≡ (x2 − 1)2
a−1

=

2a−1∑
k=0

(
2a−1

k

)
(−1)kx2a−2k (mod 2a+1).



An analog of Wolstenholme’s theorem 81

On the other hand,

f(x) =
∏

16s<2a+1

s is odd

(x− s) =
∏

16s<2a

s is odd

(x− s)(x− (2a+1 − s))

≡
∏

16s<2a

s is odd

(x2 + s(2a+1 − s)) =

2a−1∑
k=0

ekx
2a−2k (mod 2a+1).

By comparing the coefficient of x2a−2k we obtain that

ek ≡
(
2a−1

k

)
(−1)k (mod 2a+1),

for every 0 6 k 6 2a−1. In particular, 2a−1∥e2a−1−1, as required.

Theorem 5. Suppose that a is a positive integer and m > 1 is an odd integer. In
addition, let c be the positive integer such that 2c∥m − 1. Then the maximal prime
power 2e which divides the numerator of the fraction

1

m
+

1

m+ 2
+

1

m+ 4
+

1

m+ 6
+ . . .+

1

m+ 2(2a − 1)
,

when written in reduced form, is either 2a+min{a,c} if a ̸= c, or at least 22a+1 if
a = c.

Proof. Consider the polynomial

f(x) = (x−m)(x− (m+ 2))(x− (m+ 4)) · · · (x− (m+ 2(2a − 1))),

and let u be the odd positive integer such that m = 1 + 2cu. As in the proof of
Theorem 2,

f(x) =

2a∑
k=0

(−1)k2kek(x−m)2
a−k,

where we denote ek = ek(0, 1, 2, . . . , 2
a−1) for simplicity. Note that in order to prove

our claim, it suffices to find the maximal power of 2 which divides the coefficient of
x in f(x). Since

f(x) =

2a∑
k=0

(−1)k2kek

2a−k∑
j=0

(
2a − k

j

)
xj(−m)2

a−k−j


=

2a∑
k=0

2a−k∑
j=0

(−1)2
a−jm2a−k−j2kek

(
2a − k

j

)
xj ,
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it follows that the coefficient A of x in f(x) is

A =

2a∑
k=0

(−1)2
a−1m2a−k−12kek

(
2a − k

1

)
= −

2a∑
k=0

(1 + 2cu)2
a−k−12kek(2

a − k)

= −
2a∑
k=0

2a−k−1∑
i=0

(
2a − k − 1

i

)
(2cu)i2kek(2

a − k)

= −
2a∑
k=0

2kek(2
a − k)︸ ︷︷ ︸

B

−
2a∑
k=0

2a−k−1∑
i=1

(
2a − k − 1

i

)
2ci+kuiek(2

a − k)︸ ︷︷ ︸
Cki

.

First, we shall prove that Cki ≡ 0 (mod 2a+c+1) for all 0 6 k 6 2a and 1 6 i 6
2a − k − 1, except when (k, i) = (0, 1). Let t be the non-negative integer such that
2t∥k.

If either 3 6 k 6 2a−1 is odd or 2a−1 < k 6 2a, then by Proposition 3, ek ≡ 0
(mod 2a−1), so 2ci+kek ≡ 0 (mod 2ci+k+a−1), and since ci+ k + a− 1 > a+ c+ 1,
it follows that Cki ≡ 0 (mod 2a+c+1), as claimed. If 3 6 k 6 2a−1 is even, then by

Proposition 3, ek ≡
(
2a−1

k

)
(mod 2a), so ek ≡ 0 (mod 2a−1−t) by Proposition 1. In

addition, since 2a − k ≡ 0 (mod 2t), it follows that ek(2
a − k) ≡ 0 (mod 2a−1), so

2ci+kek(2
a − k) ≡ 0 (mod 2ci+k+a−1). Since ci + k + a − 1 > a + c + 1, it follows

that Cki ≡ 0 (mod 2a+c+1), as claimed.

Next, if k = 0, then C0i =
(
2a−1

i

)
2ciui2a. Now, for i > 2, we get that ic + a >

c + a + 1, so C0i ≡ 0 (mod 2a+c+1). If k = 1, then C1i =
(
2a−2

i

)
2ci+1e1u

i(2a − 1).
Suppose that i > 2. Since e1 ≡ 0 (mod 2a−1) by Proposition 3, and since (ci +
1) + (a − 1) > c + a + 1, it follows that C1i ≡ 0 (mod 2a+c+1). If i = 1, then
C11 = (2a − 2)2c+1e1u(2

a − 1), so C11 ≡ 0 (mod 2a+c+1) since 2 | 2a − 2.

If k = 2, then C2i =
(
2a−3

i

)
2ci+2e2u

i(2a − 2). By Proposition 3, e2 ≡ 0
(mod 2a−2). In addition, since 2 | 2a − 2 and (ci + 2) + (a − 2) + 1 > c + a + 1, it
follows that C2i ≡ 0 (mod 2a+c+1), as required. To conclude, it follows that

A ≡ −B − C01 = −B − (2a − 1)2a+cu (mod 2a+c+1).

Next, note that once we prove that 22a∥B, then in the case a > c, we obtain that
2a > a + c + 1, so A ≡ −(2a − 1)2a+cu (mod 2a+c+1), which implies that 2a+c∥A,
as required. In the case a < c, we obtain that 2a + 1 < a + c + 1, so A ≡ −B
(mod 22a+1), which implies that 22a∥A, as required. Finally, in the case a = c, we
obtain

A ≡ −22a
(

B

22a
+ (2a − 1)u

)
(mod 22a+1),

and since B
22a + (2a − 1)u is a sum of two odd numbers, it follows that 22a+1 | A, as

required.
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So, it suffices to prove that 22a∥B. To do so, consider the polynomial

f(x) =

2a−1∏
k=0

(x− (1 + 2k)) =

2a−1∏
k=0

((x− 1) + 2k)

=

2a∑
k=0

(−1)kek(0, 2, 4, 6, . . . , 2(2
a − 1))(x− 1)2

a−k

=

2a∑
k=0

2a−k∑
i=0

(−1)k+i2kek(0, 1, 2, 3, . . . , 2
a − 1)

(
2a − k

i

)
x2a−k−i

On the one hand, by recalling that ek = ek(0, 1, 2, 3, . . . , 2
a − 1), we deduce that the

coefficient of x in f(x) is

2a∑
k=0

(−1)2
a−12kek

(
2a − k

2a − k − 1

)
= −

2a∑
k=0

2kek(2
a − k) = −B

On the other hand, by Theorem 4, it follows that 22a∥B, as required.

We stress that if a = c in Theorem 5, then the numerator of the corresponding
fraction may be divisible by larger power of 2 than 22a+1. As an illustrative example,
for a = 2 and m = 1021, we obtain that

1

1021
+

1

1023
+

1

1025
+

1

1027
=

4294946816

1099501142025
.

Since here 22∥m − 1, it follows that a = c, so by Theorem 5, we deduce that the
numerator 4294946816 is divisible by 25, although it is actually divisible by 212.
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