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A modified version of the shifted 1/N expansion method is formulated for con-
strained quantum mechanical system. This method is applied to boxed-in hydro-
gen atom and spherical harmonic oscillator. Results from the shifted 1/N expansion
method are compared with the exact numerical results in case of hydrogen atom,
and with approximate analytical results in case of the spherical harmonic oscillator.
Agreement between the results is found to be good in both the cases.

1. Introduction

The shifted 1/N expansion, proposed by Sukhatme and Imbo [1,2], is a pow-
erful tool for finding the energy eigenvalues and eigenfunctions of the Schrödinger
equation for spherically symmetric potentials [3-7]. In this novel approach, the cal-
culations are carried out for states with arbitrary quantum numbers n and l, using
fourth-order perturbation theory in the shifted expansion parameter 1/k, where
k = N + 2l− a. Here N is number of spatial dimensions, l(l+N − 2)h̄2 the eigen-
value of the square of the N -dimensional orbital angular momentum, and a is a
suitable shift which will be discussed later. The shift a dramatically improves the
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simplicity of the analytic expressions and the convergence of the perturbation se-
ries for the energy eigenvalues. This technique is applicable to a much wider class
of problem than are most other approximation methods, and has been extended
successfully to relativistic potential as well [8-11].

Altough variational and other methods have been applied to constrained har-
monic oscillator and hydrogen atom problems [12-17], to the best of the authors
knowledge, there is no 1/N formalism to deal with constrained quantum mechanical
systems.

The study of confined quantum mechanical systems has received increased at-
tention recently [18] and is of importance in the investigation of anharmonic effect
in solids, in atoms and in molecules under high pressure [12], and also in impurity
binding energies in quantum wells [19].

In the present paper, we develop a formalism for the shifted 1/N expansion
procedure suitable for enclosed quantum mehanical systems with radial potentials.
It will be shown that the problem of constrained systems can be reduced to that
of energy-dependent potentials. The shifted 1/N expansion method can then be
applied in a suitable manner [20]. Explicit calculations have been done for spherical
harmonic oscillator and boxed-in hydrogen atom only.

The organisation of the paper is as follows. To make the paper self-contained,
we discuss the shifted 1/N formalism for an arbitrary spherically symmetric po-
tential in Section 2. In Section 3 the shifted 1/N formalism for constrained system
is developed. We apply this method to the boxed-in hydrogen atom in Section 4,
and compare our results with existing exact numerical ones. It may be noted that
though the wave function for a radially symmetric three dimensional oscillator can
be obtained in a analytic form, the eigenvalues for a constrained system can be
obtained by finding the roots of F (a, b, z) = 0, where F (a, b, z) is the confluent hy-
pergeometric function. In general the roots can be found out by numerical analysis.
In Section 5 we discuss some analytical results, both exact and approximate, for
3-D spherical harmonic oscillator and compare them with the values obtained by
the shifted 1/N expansion method. Section 6 is kept for conclusion and remarks.

2. Shifted 1/N formalism for an arbitrary potential

In this Section we shall formulate the shifted 1/N expansion for an arbitrary
spherically symmetric potential V (r). The radial Schrödinger equation in N spatial
dimension is (in the following we follow the notations of Ref. 2)

[

−
h̄2

2m

d2

dr2
+

(k − 1)(k − 3)h̄2

8mr2
+ V (r)

]

ψ(r) = Eψ(r) (2.1)

where

k = N + 2l. (2.2)

In terms of the shifted variable k = k − a, one has
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−
h̄2

2m

d2ψ

dr2
+ k

2
[

h̄2{1− (1− a)/k}{1− (3− a)/k}

8mr2
+
V (r)

Q

]

ψ(r) = Eψ(r) (2.3)

where Q is a constant which rescales the potential (in large k limit) and will be
determined below.

The leading contribution to E comes from the effective potential

Veff(r) =
h̄2

8mr2
+
V (r)

Q
(2.4)

(V (r) is assumed to be well behaved so that Veff(r) has a min. at r0).

Q is then determined from the following equation

4mr30V
′

(r0) = h̄2Q. (2.5)

Now the origin is shifted to r0 by means of the definition

x ≡
(k)1/2

r0
(r − r0). (2.6)

Performing a series expansion in powers of x about x = 0, we obtain

{−
h̄2

2m

d2

dx2
+
kh̄2

8m

[

1 +
3x2

k
−

4x3

k
3/2

+
5x4

k
2 − . . .

]

−
(2− a)h̄2

4m

[

1−
2x

k
1/2

+
3x2

k
− . . .

]

+
(1− a)(3− a)h̄2

k8m

[

1−
2x

k
1/2

+
3x2

k
− . . .

]

+
r20k

Q

[

V (r0) +
V (2)(r0)r

2
0x

2

2k
+
V (3)(r0)r

3
0x

3

k
3/2

+ . . .

]

}ψ =
Er20
k
ψ. (2.7)

Now the Schrödinger equation for a l-dimensional anharmonic oscillator is

[

−
h̄2

2m

d2

dr2
+

1

2
m2ω2x2 + ε0 + P (x)

]

φ(x) = λφ(x) (2.8)

where P (x) is the perturbation term given by
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P (x) = g1/2(ε1x+ ε3x
3) + g(ε2x

2 + ε4x
4)

+g3/2(δ1x+ δ3x
3 + δ5x

5) + g2(δ2x
2 + δ4x

4 + δ6x
6). . . . (2.9)

We compare Eqs. (2.7) and (2.8), term by term to define all the anharmonic pa-
rameters in terms of k, Q, r0 and the potential derivatives.

Proceeding in a straightforward way we obtain the following identifications:

ω =

[

3h̄2

4m2
+
r40V

(2)(r0)

mQ

]1/2

=
h̄

2m

[

3 +
r0V

(2)(r0)

V ′(r0)

]1/2

(2.10)

g =
1

k
(2.11)

λ =
Er20
k

(2.12)

ε0 =
h̄2k

2m
− (2− a)

h̄2

4m
+ (1− a)(3− a)

h̄2

8mk
+
r20k

Q
V (r0) (2.13)

ε1 =
h̄2

2m
(2− a) (2.14)

ε2 = −
3h̄2

4m
(2− a) (2.15)

ε3 = −
h̄2

2m
+ r0

V (3)(r0)

6Q
(2.16)

ε4 =
5h̄2

8m
+ r60

V (4)(r0)

24Q
(2.17)

δ1 = −
(1− a)(3− a)h̄2

4m
(2.18)

δ2 =
3(1− a)(3− a)h̄2

8m
(2.19)
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δ3 =
(2− a)h̄2

m
(2.20)

δ4 = −
5(2− a)h̄2

4m
(2.21)

δ5 = −
3h̄2

4m
+ r70

V (5)(r0)

120Q
(2.22)

δ6 =
7h̄2

8m
+ r80

V (6)(r0)

720Q
. (2.23)

For any value of the radial quantum number n and for any value of l, the energy
En,l is given by an expansion in powers of 1/k

En,l = E0 + E1 + E2 + E3 + . . .

where

E0 = k
2
[

h̄2

8mr20
+
V (r0)

Q

]

(2.24)

E1 =
k

r20

[

(n+
1

2
)h̄ω − (2− a)

h̄2

4m

]

(2.25)

E2 =
1

r20

[

h̄2

8m
(1− a)(3− a) + {(1 + 2n)ε̃2 + 3ε̃4(1 + 2n+ 2n2)}

−
1

h̄ω
{ε̃21 + 6(1 + 2n)ε̃1ε̃3 + (11 + 30n+ 30n2)ε̃23}

]

(2.26)

E3 =
1

kr20

[

{(1 + 2n)δ̃2 + 3(1 + 2n+ 2n2)δ̃4 + 5(3 + 8n+ 6n2 + 4n3)δ̃6}

−
1

h̄ω
{(1 + 2n)ε̃22 + 12(1 + 2n+ 2n2)ε̃2ε̃4

+2(21 + 59n+ 51n2 + 34n3)ε̃24 + 2ε̃1δ̃1 + 6(1 + 2n)ε̃1δ̃3
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+30(1 + 2n+ 2n2)ε̃1δ̃5 + 6(1 + 2n)ε̃3δ̃1

+2(11 + 30n+ 30n2)ε̃3δ̃3 + 10(13 + 40n+ 42n2 + 28n3)ε̃3δ̃5}

+
1

h̄2ω2
{4ε̃21ε̃2 + 36(1 + 2n)ε̃1ε̃2ε̃3 + 8(11 + 30n+ 30n2)ε̃2ε̃

2
3

+24(1 + 2n)ε̃21ε̃4 + 8(31 + 78n+ 78n2)ε̃1ε̃3ε̃4

12(57 + 183n+ 225n2 + 150n3)ε̃23ε̃4}

−
1

h̄3ω3
{8ε̃21ε̃3 + 108(1 + 2n)ε̃21ε̃

2
3 + 48(11 + 30n+ 30n2)ε̃1ε̃

3
3

+30(31 + 109n+ 141n2 + 94n3)ε̃43}
]

(2.27)

where

ε̃j =
εj

(2mω/h̄)j/2
(2.28)

δ̃j =
δj

(2mω/h̄)j/2
, j = 1, 2, 3, . . . . (2.29)

Now the shift parameter is fixed from the requirement that the term E1 vanishes.
Therefore,

a = 2− 2(2n+ 1)
mω

h̄
. (2.30)

For any specific choise of n, l, N , the constant Q should be such as to make Eqs.
(2.1) and (2.3) identical. Hence,

k =
√

Q. (2.31)

Using this in Eqs. (2.5), (2.10) and (2.30), we obtain an explicit equation for
determining r0, viz.

N + 2l − 2 + (2n+ 1)

[

3 +
r0V

(2)(r0)

V (1)(r0)

]1/2

=

(

4mr30V
(1)(r0)

h̄2

)1/2

. (2.32)

Having determined r0, all the energy eigenvalues and eigenfunctions can be
computed in a straightforward way. Excellent results have been obtained by this
method (for large values of n) for a wide class of spherically symmetric potentials
[3-11]. The shift improves the convergence of the perturbation series for the energy
eigenvalues.
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3. Shifted 1/N formalism for constrained quantum

mechanical system

In this Section we develop a formalism for the shifted 1/N expansion procedure
for enclosed quantum mechanical system with spherically symmetric potential. The
method can be applied to any quantum mechanical system confined within a hard
spherical box.

We start with the 3-dimensional radial Schrödinger equation for a spherically
symmetric potential V (r) (units are h̄ = m = 1)

−
1

2

d2ψr

dr2
+

[

V (r) +
l(l + 1)

2r2
− E

]

ψr = 0. (3.1)

Confinement can be imposed on this system by demanding ψr(b) = 0, where b is
the radius of the confining spherical box. We make the coordinate transformation

r = f(ζ, b) (3.2)

which maps the domain of definition of ψr from (0, b) in r space to (0,∞) in ζ
space.

Redefining the wave function as

ψζ ≡
√

f ′(ζ, b)φ(ζ) (3.3)

where the prime denotes differentiation with respect to the variable ζ, Eq. (3.1) is
transformed into

[

−
1

2

d2

dζ2
+ {f

′

(ζ, b)}2{V (ζ)− E +
l(l + 1)

2{f(ζ, b)}2
}

+
3

8
{
f

′′

(ζ, b)

f ′(ζ, b)
}2 −

1

4

f
′′

(ζ, b)

f ′(ζ, b)

]

φ = 0, (3.4)

ζ being a dimensionless variable, we can make the following scaling transformation

y = bζ. (3.5)

Eq. (3.4) can then be cast formally into an eigenvalue equation

−
1

2

d2φ

dy2
+

[

VS(y) +
l(l + 1)

2y2
− ES

]

φ = 0. (3.6)
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where

VS(y) =
1

b2
{[V (ζ)− E][f

′

(ζ, b)]2 +
l(l + 1)

2

[

f
′

(ζ, b)

f(ζ, b)

]2

+
3

8

[

f
′′

(ζ, b)

f ′(ζ, b)

]2

−
1

4

f
′′′

(ζ, b)

f ′(ζ, b)
} −

l(l + 1)

2y2
. (3.7)

Equation (3.6) is the Schrödinger equation with an energy-dependent potential
VS(y), and the energy value E can be obtained following Papp [20]. This equation
resembles equation (2.1) if we impose the condition ES → 0. The usual shifted 1/N
expansion method, as discussed in Section 2 earlier, can then be applied to Eq.
(3.6). The lowest order approximation to energy is given by

E0
S = k

2
Veff(y0) = k

2
[

1

8y20
+
VS(y0)

Q

]

(3.8)

with

dVeff(y)

dy
|
y=y0

= 0. (3.9)

y0 is obtained by the standard technique of shifted 1/N expansion, and is the
solution of the equation

N + 2l − 2 + (2n+ 1)

[

3 +
y0V

(2)
S (y0)

V
(1)
S (y0)

]1/2

=
[

4y30V
(1)
S (y0)

]1/2

. (3.10)

Energy, up to the third order, is obtained from

ES = E0
S + E2

S + E3
S (3.11)

where E2
S and E3

S can be calculated using Eqs. (2.26) and (2.27), respectively.

4. Boxed-in hydrogen atom

In this Section we apply our formalism to the constrained Coulomb problem
and compare our results with those of existing exact numerical ones.

The potential for this problem is

V (r) = −
1

r
. (4.1)
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We make the coordinate transformation

r = f(ζ, b) =
b

ζ + 1
(4.2)

so that

ζ =
b− r

r
. (4.3)

Thus ψr(b) = 0 in r space goes over to ψ(ζ = 0) in ζ space. VS(y) then takes the
form

VS(y) = −
1

b(1 + y/b)3
−

E

(1 + y/b)4
+

l(l + 1)

2b2(1 + y/b)2
−
l(l + 1)

2y2
. (4.4)

Energy up to the third order is then given by Eq. (3.11) where E0
S , E

2
S and E3

S
are calculated using Eqs. (3.8), (2.6) and (2.7), respectively.

In Tables 1, 2 and 3, we compare the exact results of Marin and Cruz [18] with
those obtained by our method (i.e. shifted 1/N expansion method for constrained
quantum mechanical system). Table 1 is for the ground state (1s) whereas Tables
2 and 3 are for the 2p and 3d exited states, respectively.

TABLE 1.
Comparison of energy eigenvalues for the boxed-in hydrogen atom obtained from

shifted 1/N method with the exact results for l = 0.

b E(shifted 1/N) E(exact)

0.5 15.2941 14.748
0.81 4.5359 4.39165
1.15 1.5170 1.48625
1.5 0.4365 0.4370
1.711 0.1230 0.12625
2.0 -0.1270 -0.125
2.2005 -0.2335 -0.2322
2.807 -0.4000 -0.3978
3.192 -0.450 -0.4432
3.5 -0.467 -0. 46435
5.0 -0.50 -0.4964
6.0 -0.50 -0.49925
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TABLE 2.
Comparison of energy eigenvalues for the boxed-in hydrogen atom obtained from

shifted 1/N method with the exact results for l = 1.

b E(shifted 1/N) E(exact)

1.41 3.9104 3.74345
1.68 2.5612 2.45315
2.0 1.6447 1.5760
2.698 0.7075 0.6777
3.0 0.5030 0.48125
3.5 0.2847 0.2712
4.11 0.1307 0.12245
4.77 0.0345 0.02995
5.528 -0.0273 -0.03125
6.0 -0.0520 -0.05555
6.497 -0.0708 -0.07395
7.0 -0.0845 -0.08745
8.54 -0.1080 -0.11015
10.235 -0.1195 -0.1197
12.0 -0.1250 -0.1241

TABLE 3.
Comparison of the exact energy eigenvalues for the constrained Coulomb problem

with those obtained from shifted 1/N method for l = 2.

b E(shifted 1/N) E(exact)

7.0 0.0941 0.0966
7.5 0.0661 0.0683
8.0 0.04405 0.0461
10.0 -0.0083 -0.0071
12.0 -0.032 -0.0312
14.0 -0.0436 -0.0432
16.0 -0.0497 -0.0492
18.0 -0.0534 -0.0533

In all three cases, energies are in Rydbergs (1 Ry = 13.6 eV) and radii (of the
confining spherical box), in Bohr units (1 B.u. = 0.0529 nm).

5. Constrained spherical harmonic oscillator

The potential for the spherical harmonic oscillator is

V (r) =
r2

2
. (5.1)
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If we take the coordinate to transform as

r = f(ζ, b) =
bζ

ζ + 1
(5.2)

so that

ζ =
r

b− r
(5.3)

and ψr(b) = 0 goes over to ψ(ζ = ∞) = 0, then VS(y) turns out to be

VS(y) =
y2

2(1 + y/b)6
−

E

(1 + y/b)4
+

l(l + 1)

2y2(1 + y/b)2
−
l(l + 1)

2y2
. (5.4)

With this value of VS(y), energy is calculated using Eqs. (3.11), (3.8), (2.6) and
(2.7) as described earlier.

To compare our results numerically we find an approximate analytical formula
to find the energy values of the constrained harmonic oscillator. This is done as
no numerical results exist for values of orbital angular momentum l greater than
1, whereas shifted 1/N expansion procedure is expected to give good results for
relatively large values of l.

The reduced radial Schrödinger equation for the 3-dimensional harmonic oscil-
lator is given by

d2ψ

dr2
+

[

l(l + 1)

r2
+ 2E − r2

]

ψ = 0, (5.5)

whose solution is

ψ(r) = Arl+1e−r
2/2

lFl

(

l

2
+

3

4
−
E

2
, l +

3

2
, r2

)

. (5.6)

Here A is a normalisation constant and lFl(α, β, z) is the confluent hypergeometric
function written in a power series in z as [21]

lFl(α, β, z) = 1 +
αz

β
+
α(α+ 1)

β(β + 1)

z2

2!
+
α(α+ 1)(α+ 2)

β(β + 1)(β + 2)

z3

3!
+ . . . (5.7)

Imposing the boundary condition

ψ(r = b) = 0

energy E is obtained by solving the equation
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lFl

(

l

2
+

3

4
−
E

2
, l +

3

2
, b2

)

= 0. (5.8)

Thus β = l + 3
2 , α = l

2 + 3
4 − E

2 and hence β/2 − α = E/2. Some exact results
for l = 0 and l = 1 can be obtained by using the numerical values of zeroes of

lFl(α, β, z) compiled by Slater [22]. However, when β/2− α is large, but β not too
large, a good approximation for lFl(α, β, z) has been found by Tricomi [23], viz.

lFl(α, β, z) ≈ Γ(β)
exp (2k cos2 Θ)

(πk sin 2Θ)1/2
(2k cosΘ)1−β

[

sin(Θ + απ)−A1(Θ)
cos(Θ + απ)

k sin 2Θ
+O(k−2)

]

(5.9)

where

Θ = cos−1 z

4k
(5.10)

Θ = k(2Θ− sin 2Θ) +
π

4
(5.11)

A1(Θ) =
1

12

[

5

4 sin2 Θ
+ (3β2 − 6β + 2) sin2 Θ− 1

]

(5.12)

and

k =
β

2
− α =

E

2
. (5.13)

The roots of lFl(α, β, z) are given by (up to O(1/k2))

sin(Θ + απ)−
A1(Θ) cos(Θ + απ)

k sin 2Θ
= 0. (5.14)

We have obtained the energy eigenvalue E by this method (the confinement
parameter b is given). It is seen that this approximate analytical formula reproduces
the exact results for l = 0, 1 when b ≤ 2.5.

In Table 4 numerical results by the shifted 1/N method are given for l = 0
and 1. Values marked ∗ are obtained by utilizing the numerical results for zeros of

lFl(α, β, z) as given by Slater. Other symbols are expressed in the table itself. In
Table 5, 1/N results have been compared with those obtained from Eq. (5.14) for
l = 2 and 3.
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TABLE 4.∗∗∗

Energy levels of the enclosed harmonic oscillator as a function of the radius of the
box b. E is in units of h̄ω and b in units of h̄/(mω)1/2.

n = 0

l = 0 l = 1
b E(1/N) E(exact) E(1/N) E(exact)

0.5 20.4806 19.77453+ 42.327 40.42578∗∗

0.77504 8.597 8.30∗

0.9892 10.988 10.5∗

1.0 5.2585 5.0755 10.7605 10.2822
1.1187 8.675 8.30∗

1.1215 4.2486 4.10∗

1.5 2.6068 2.5050 5.128 4.9036
1.5811 4.705 4.5∗

1.7018 2.1968 2.10∗

2.0 1.8658 1.7648 3.4005 3.2469
3.0 1.536 1.5061 2.63 2.5313
5.0 1.5 1.5000 2.5 2.4999

∗ Results obtained from the roots of lFl(α, β, z) = 0 given in Ref. 22.
∗∗ Results obtained from Eq. (5.14).
+ Result taken from Ref. 13.
∗∗∗ The unmarked exact results are taken from Ref. 18.

TABLE 5.
Energy eigenvalues for large l values. E+ are the results obtained from solving

Eq. (5.14).

l = 2 l = 3
b E(1/N) E+ E(1/N) E+

0.5 69.705 67.47284 102.405 102.4668
1.0 17.634 17.06677 25.824 25.8133
1.5 8.238 7.9643 11.930 11.86031

6. Conclusion and remarks

We have developed a formalism for shifted 1/N expansion method for confined or
constrained quantummechanical system with radial potentials. We have applied our
method to find the energy values of the boxed-in hydrogen atom and the constrained
harmonic oscillator. For the latter problem, one can obtain approximate analytical
results. However, for the constrained hydrogen atom even this is not possible to
obtain. Hence the shifted 1/N expansion technique can be useful in calculating
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the eigenvalues of such system. As is well known, the degree of accuracy of the
shifted 1/N method increases with increasing l. However, even for low values of
l, the shifted 1/N results agree fairly well with those of the exact numerical ones.
However, for E numerically very small in the Coulomb case (near the transition
zone from positive to negative values), the shifted 1/N expansion method is not
very accurate. As b→ ∞, the exact Coulomb results E = −1/2n2 is reproduced by
the shifted 1/N method, providing a check on our formalism. As for the constrained
harmonic oscillator, the agreement between our result and Tricomi’s approximate
formula is excellent for l = 3, when b is relatively small (b ≤ 2).

References

1) U. Sukhatme and T. Imbo, Phys. Rev. D28 (1983) 418;

2) T. Imbo, A. Pagnamenta and U. Sukhatme, Phys. Rev. D29 (1984) 1669;

3) R. Dutta, U. Mukherjee and Y. P. Varshni, Phys. Rev. D34 (1986) 777;

4) B. Roy and R. K. Roychoudhury, J. Phys. A, Math. Gen. 20 (1987) 3051;

5) R. K. Roychoudhury and Y. P. Varshni, Phys. Rev. A37 (1988) 2309;

6) A. Chatterjee, Phys. Rep. 186 (1990) 249 and references therein;

7) E. Papp, Phys. Rev. A38 (1988) 2158; see also E. Papp, Phys. Rep. 4 (1988) 171;

8) R. K. Roychoudhury and Y. P. Varshni, a) J. Phys. A, Math. Gen. 20 (1987) L 1083;
b) Phys. Rev. A39 (1989) 5523;

9) O. Mustafa and R. Sever, Phys. Rev. A44 (1991) 4142;

10) B. Roy and R. K. Roychoudhury, J. Phys. A, Math. Gen. 23 (1990) 3555;

11) M. M. Panja and R. Dutta, Phys. Rev. A38 (1988) 3937;

12) A. Michels, J. De Boer and A. Bijl, Physica 4 (1937) 981; P. Dean, Proc. Camb. Phil.
Soc. 62 (1966) 277;

13) V. C. Aguilera-Navarro, E. Ley Koo and A. H. Zimerman, J. Phys. A, Math. Gen. 13
(1980) 3585;
U. Larsen, J. Phys. A, Math. Gen. 16 (1983) 2137;
A. Consortini and B. R. Frieden, Il Nuovo Cim. 35 (1976) 153;

14) J. L. Marin and S. A. Cruz, J. Phys. B, At. Mol. Opt. Phys. 24 (1991) 2899;

15) G. Barton, A. J. Bray and A. J. McKane, Am. J. Phys. 58 (1990) 751;

16) F. M. Martinez, J. Phys. A, Math. Gen. 24 (1991) 1351;

17) J. Groecki and W. Byers Brown, J. Phys. B, Al. Mol. Opt. Phys. 22 (1989) 2659;

18) J. L. Marin and S. A. Cruz, Am. J. Phys. 59 (1991) 931;

19) G. Bastard, Phys. Rev. B24 (1981) 4714;
A. D’ Andrea and R. Del Sole, Phys. Rev. B32 (1985) 2337; see also Ref. 14 for earlier
works;

20) E. Papp, J. Math. Phys. 32 (1991) 967;

21) M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, N. Y.
(1970);

80 FIZIKA B 3 (1994) 2, 67–81



sinha and roychoudhury: shifted 1/N expansion . . .

22) L. J. Slater, Hypergeometric Functions, Cambridge Univ. Press, (1960);

23) F. G. Tricomi, Ann. Mat. (4) 28 (1949) 263.

POMAKNUTI 1/N RAZVOJ I OGRANIČENI KVANTNI SISTEMI
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Za ograničene kvantno mehaničke sisteme formulirana je modificirana verzija po-
maknutog 1/N razvoja. Metoda je primjenjena na vodikov atom i sferni harmonički
oscilator koji se nalazi u kutiji. Rezultati pomaknutog 1/N razvoja usporedeni su
s egzaktnim numeričkim rezultatima za vodikov atom, te približnim analitičkim
rezultatima za sferni harmonički oscilator. Slaganje rezultata je dobro u oba slučaja.
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