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ABSTRACT
Air transportation has a deep impact on environmental degrad-
ation due to the higher fossil fuel consumption. On the other
hand, this industry also embraces the highest innovation that
may alter its environmental consequences. However, there is a
dearth of empirical evidence that explores the impact of air trans-
portation and eco-innovation on environmental quality. Therefore,
this study is a pioneering attempt to examine the role of air-trans-
portation and eco-innovation in reducing environmental degrad-
ation in G7 countries using annual data from 1990 to 2019. In
doing so, we employed various advance econometric approaches
to handle issues arises from panel data such as Pesaran (2007)
and Bai and Carrion-I-Silvestre (2009) used to examine the pres-
ence of unit root, cross-sectional dependency checked through
Pesaran (2015) test, and for parameters heterogeneity through
Pesaran and Yamagata (2008). Moreover, the Westerlund and
Edgerton (2008) test and Cross Sectional Augmented ARDL were
employed to analyse the long run and short run association
among variables. The overall results show that air transportation
and eco-innovation play an important role in abating environ-
mental deterioration. Air transportation is negatively correlated
with carbon emission and PM2.5 exposure (air quality) due to the
improved technical structure of aircraft engines and the use of
mixed ration or alternative aviation fuels. These results provide
valuable suggestions for all stakeholders.
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1. Introduction

Air transportation is an important mode of transportation that provides various eco-
nomic benefits such as boost the businesses and improves the quality of life. Air
transportation has a long-term association with the development & growth of the
economy with the highly influential pull effects of services (Nasreen et al., 2018;
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Ozturk & Acaravci, 2013; Sharif et al., 2020). Moreover, by facilitating tourism as one
of the essential drivers of economic growth, air transportation indirectly plays a vital
role in revenue generation and poverty alleviation (Adedoyin et al., 2020; Balsalobre-
Lorente et al., 2021). According to the statistics of Air Transport Action Group
(ATAG, 2020), in 2019, the total number of air travel passengers from all over the
world has crossed 4.5 billion with a total contribution of more than 691 billion US
Dollars in the global GDP. However, in 2020 due to the COVID-19 pandemic, this
economic contribution, and the number of passengers has declined by 60%.

For the past few decades, environmental sustainability is a preeminent global issue.
A decline in greenhouse gasses emission or decarburisation is a major goal to deal
with the economic and environmental issues due to the constant climate emergency
crises (Li et al., 2020; Lingyan et al., 2021; Razzaq, Sharif, Ahmad et al., 2021;
Suwarni, 2020). However, air transportation has a deep impact on environmental deg-
radation due to the high fossil fuel consumption and high altitude and near-surface
environment greenhouse gas emission (Erdogan et al., 2020; Lu et al., 2020; Sun
et al., 2021). Global air transportation is the second-largest contributor to concen-
trated greenhouse gasses emission on the surface as well as in the atmosphere
(Kommenda, 2019). This adds 2% of human-induced carbon emission whereas from
all sources of air transportation the overall contribution of aviation is 12% of total
carbon dioxide emission. Moreover, long-distance flights such as flights over 1500
kilometers are causing 80% of the carbon emission (ATAG, 2020).

This study considers G7 countries as a sample due to the following reasons. The
group is consisting of the seven most developed countries of the world; these coun-
tries are Canada, France, Germany, Italy, Japan, the UK and the USA. The seven
great powers retaining almost 58% of the global GDP and consume 42% of global
energy. However, G7 countries have been facing a huge issue of environmental deg-
radation. According to World Bank (2020) G7 economies contribute a 27.3% share of
overall world carbon dioxide emission in 2018 which is approximately 95 billion tons.
The increasing concern of climate change and energy security has motivated these
most developed countries in the world, with the highest human capital index,
research, and development capacity, and eco-innovations to use renewable energy
sources (€Ozt€urk et al., 2020; Sharif et al., 2019, 2020). From the top five GHGs emit-
ter from aviation bunkers four are main countries of G-7 such as USA, United
Kingdom, Japan and Germany (Rutherford et al., 2020; Zheng et al., 2019).

Moreover, Figure 1 explains the details about the G7 countries carbon dioxide
emission due to the annual domestic and international air transportation of each year
from 2013 to 2020. According to Figure 1, among all G-7 countries the USA is the
highest emitter of carbon through its domestic and international air transportation
since 2013. However, there is a sharp decline of carbon emission by USA aviation in
2020 due to the COVID-19 traveling restrictions.

In the present situation, to control the environmental degradation, the air trans-
portation contribution toward carbon emission has attained special attention from
the researchers. Most of the researchers now having an aim to find ways to effectively
control the GHG emission of the aviation industry by considering the expected high
air traveling demand in the future (Naghawi, 2019; Razzaq, Sharif, Najmi et al., 2021;
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Zhang et al., 2019). Moreover, it is essential to measure the air transportation per-
formance indicators with low carbon emission for policy-making as a valuable tool. It
provides important information to monitor and compare different procedural and
mechanical modifications (Ali et al., 2020; Malhotra & Schmidt, 2020).

Similarly, air pollution is also a very pressing environmental and health issue
worldwide. According to the United States, Environmental Protection Agency (EPA)
(2019) the air quality can be measure through fine particulate matter (PM2.5) refer to
the air pollution consist of solid particles and liquid droplets of chemicals which can
cause serious health problems. These particles are fine enough to inhale and have a
diameter of 2.5 or less (Mukherjee & Agrawal, 2017). The health effects of air trans-
portation are strongly correlated with the size and composition of the particulate
matter (Habre et al., 2018; Razzaq et al., 2020). The engine of aircraft produces CO2,
water vapor and exhaust components such as Nitrogen oxide, Sulfur oxide and other
volatile organic compounds which are responsible for degrading the air quality and
form fine particulate matter PM2.5 (Arter & Arunachalam, 2021). The rapid growth
of the aviation industry has a potential influence on environmental sustainability and
public health. Figure 2 show the G-7 countries annual mean population exposure to
PM2.5 According to Figure 2 Italy has the highest exposure of PM2.5 concentration
among all G-7 countries.

Many studies analyse the impact of air transportation on environmental degrad-
ation as a sector or as the operations of individual airlines (Balkanski et al., 2010;
Baumeister, 2017; Lee et al., 2017; Naghawi, 2019; Zhang et al., 2019), similarly vari-
ous studies characterise the aviation industry emission and their impact on air quality
specifically on PM2.5 (Arter & Arunachalam, 2021; Habre et al., 2018; Moniruzzaman
et al., 2020; Mukherjee & Agrawal, 2017; Penn et al., 2017; Woody et al., 2016; Zhang
et al., 2020).

Figure 1. G-7 countries annual air transportation CO2 emission. Source: OECD. Stat Data set of Air
transportation carbon emission.
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Moreover, some studies have linked eco-innovation with air transportation to con-
trol air pollution (Chien et al., 2021; Mavi et al., 2019; Orji et al., 2019; Razzaq,
Wang et al., 2021; Razzaq, Ajaz et al., 2021; Van Song et al., 2021). Eco-innovation is
the adaptation of green technologies for the development of products and procedures
to achieve environmental sustainability goals by using green energy or renewable
energy resources (Sharif et al., 2019; Tao et al., 2021; Yurdakul & Kazan, 2020).
According to Yu et al. (2017) eco-innovation or green innovation, refer as innovation,
contributes to reducing the environmental impact. Such as pollution prevention,
energy savings and waste management, etc. Similarly, eco-innovation also plays a
major role to control the air pollution emitted by air transportation (Chien et al.,
2021). The environmental damages caused by air transportation is continually grow-
ing therefore eco-innovations are crucial to switch the air transportation industries to
consume fossil fuel to biofuel (Sharif et al., 2020a).

However, in the existing literature, no study has examined both the air transporta-
tion and eco-innovation role to reduce environmental degradation. This study will be
the first with the aim to examine the role of air transportation and eco-innovation to
improve environmental sustainability in G-7 countries. The G7 countries with steady
economic growth are supposed to carry out the policies and procedures for the com-
mercial aircraft’s fuel efficiency which ensures energy security for the future and
fewer greenhouse gasses emission (Staples et al., 2018).

The significance and reliability of the study results primarily depend upon the
selection of the econometric approaches used for analysis. To avoid the misleading
results and different econometric issues of panel data study such as cross-section
dependency, structural break, heterogeneity, etc, this study employs the advanced
panel data estimations of CS-ARDL along with various other second and third-gener-
ation advance approaches. For instance Llu�ıs Carrion-i-Silvestre et al. (2005), Bai and
Carrion-I-Silvestre (2009), Westerlund and Edgerton (2008) and Banerjee and
Carrion-i-Silvestre (2017). This study provides interesting results for the analysis
from 1990 to 2019 and supports that air transportation and eco-innovation in G-7
countries play an important role to abate environmental deterioration. They are

Figure 2. Annual exposure of fine particulate matter (PM2.5) of G-7 countries. Source: OECD. Stat
Data set of exposure to Fine particulate matter (PM2.5) data aggregated from over 80,000
data points.
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negatively correlated with carbon emission and PM2.5 exposure (air quality) due to
the advancement of technology for aircraft engines and use of alternative avi-
ation fuels

The rest of the study structured as Section 2 discusses the literature review,
Section 3 covers methodology and model specification. Whereas Section 4 provides
the findings of the study and Section 5 provides the conclusion and policy
recommendation.

2. Literature review

The rapid expansion of the air transport sector and increase in the number of flights
also enhance the impact of aircraft emissions on air quality and environmental sus-
tainability. Therefore, the air transportation sector is observed as the second-largest
contributor to the greenhouse gases in the world. Existing literature provides various
studies investigating the impact of air transportation on greenhouse gases (Balkanski
et al., 2010; Baumeister, 2017; Lee et al., 2017; Naghawi, 2019; Zhang et al., 2019),
and on-air quality (Arter & Arunachalam, 2021; Habre et al., 2018; Moniruzzaman
et al., 2020; Mukherjee & Agrawal, 2017; Penn et al., 2017; Sharif et al., 2020a;
Woody et al., 2016; Zhang et al., 2020).

Most of the above studies claim that air transportation increases environmental
degradation due to the high consumption of fossil fuels which release more green-
house gases especially carbon dioxide. Similarly, air transportation is a major cause of
air pollution by exposing high concentrations of fine particulate matter PM2.5 in the
atmosphere, which is highly risky for health and the environment. However, very few
studies revealed that air transportation with the new technologies has controlled the
exposure of PM2.5 and reduced carbon emission (An, Razzaq, Nawaz et al., 2021;
Staples et al., 2018; Wise et al., 2017; Zeng et al., 2019). The details of theoretical and
empirical studies related to the impact of air transportation on environmental degrad-
ation are as under:

Balkanski et al. (2010) warn that global air transportation is more precarious and
causes environmental gradation on land as well as at the high altitude. The aircraft’s
engine produces half of the carbon emission above an altitude of 6000 meters.
However, according to Corporan et al. (2002) the particulate matter PM2.5 emission
(poor air quality) can be reduced by using fuel additives recommended by National
Air Ambient Quality Standards (NAAQS) to implement health base regulations.
Woody et al. (2016) characterised aircraft emission and study the nonlinear relation-
ship of formation of particulate matters PM2.5 from the emission of air transportation
by providing the quantitative measures and found that the high emission of air trans-
portation of USA lowers down the regional air quality.

On the other hand, Liu et al. (2017) evaluate the link the technological innov-
ation and the performance of the airline by applying the Data Envelopment
Analysis (DEA) approach to measure the environmental and economic perform-
ance of 12 airlines of China from 2007 to 2013. The result of the study found that
technological innovation such as improvement of aircraft engine structure for effi-
cient fuel consumption has dropped a significant amount of CO2 emission. Bo
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et al. (2019) estimated the various emissions emitted from aircraft engine of all
civil airports aviation in China contributes to ambient air quality from the year
2000 to 2016 through the comprehensive Air Quality Model. The outcome of the
study revealed that the greenhouse gasses, chemicals, and particulate matter pro-
duced during the operational activates of the aircraft significantly affect the air
quality. These effects are more intense at the airports which have more air traffic
and considered tourism spots.

Zeng et al. (2019) evaluate the benefits of mixed fuel ratio and improved engine
structure. The study found that the use of alternative fuel such as liquefied natural
gas (LNG) is more appropriate for the environmental safety less emission of green-
house gasses compared to the use of usual aviation fuel kerosene. The mixture of
liquid and gas fuel provides better thermal stability, higher energy density, and cost-
effectiveness. Similarly, Staples et al. (2018) also specified the significant overall
decline in greenhouse gas emission use to the use of sustainable alternative fuel in
the air transportation industry. Moreover, Lo et al. (2020) concentrated on the deter-
minants of carbon emission in air transportation available seat Kilometers (ASK) by
designing an econometric model for penal data of flights in Italy from 1997 to 2011.
The determinant such as size, route, policies, and decision-making enhanced the total
carbon emission but reduces the per-passenger carbon emission. However, the tech-
nical progress and low-cost carrier development decreased per available Seat
Kilometers (ASK).

Yu et al. (2020) examined the influential factor and growth of civil aviation of
China relationship with CO2 emission from 1979 to 2016. The outcomes of the
study revealed that the transportation factor is the main contributor to increase
CO2 emission whereas; the structural factor has the second-largest influential
effect on carbon emission. However, Kito et al. (2020) estimated the greenhouse
gasses emission from Japan’s two major airlines from 2005 to 2015, and use the
index composition analysis to identify the drivers of these gasses’ emission. The
findings of the study described that the investment of fuel-efficient aircraft has no
significant influence on the reduction of greenhouse gasses emission. Zhang et al.
(2020) estimate the insight details of the total emission from aviation at Zurich
Airport. The finding of the study described the effect of annual mean practical
concentration on the households and communities lived near the airport.
According to the results, the total aviation emission has a very minor contribution
to the particulate matter concentration.

Moreover, Chien et al. (2021) has examined the impact of eco-innovation and
environmental taxes on environmental pollution, such as PM2.5 for the top Asian
economies from 1990 to 2017. The study employed the advanced panel estimations
and found that eco-innovation and environmental taxes reduced air contamination.
Similarly, Tao et al. (2021) has also examined the role of eco-innovation to obtain the
carbon neutrality target of emerging seven (E7) economies. Lin et al. (2021) study the
convergent trend of PM2.5 (air pollution) in china from 2013 to 2019 and found that
in winter the concertation of PM2.5 is severe due to the high consumption of the fos-
sil fuel in all industries including aviation industry (An, Razzaq, Haseeb et al., 2021;
Ling et al., 2021).
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3. Methodology

3.1. Data description

The study investigates the linkages of the carbon emission (CE) and particulate mat-
ter (PM2.5) with their determinants such as air transportation (TRA), eco-innovation
(ECO), economic growth (GDP), the square of GDP (GDP2). The research area for
study is covering G7 economies such as Canada, France, Germany, Italy, Japan,
United Kingdom, and the United States from 1990 to 2019. Moreover, the data of
economic growth (GDP) sourced from World development Indicators (WDI), and
eco-innovation (ECO), environmental degradation measures in terms of carbon emis-
sions (CE), and PM2.5 are taken from OECD database. Table 1 illustrates the descrip-
tion of the variables used in the study. All the data series have converted into a
logarithm form to obtain comparable results.

3.2. Theoretical rationale and model specification

The aviation sector is an important mode of transportation for goods and services in
the current era. The aviation industry is playing a key role in the economic growth
along with the new technological innovation which seeks ways to improve environmen-
tal sustainability. However, the high consumption of fossil fuels by this industry enhan-
ces the greenhouse gasses emanation. This study empirically calculates the impact of
the air transportation, eco-innovation, and economic growth of the G7 countries on
the overall carbon emission. The empirical model of the discussed variables is as under:

CEi, t ¼ f TRAi, t , ECOi, t, GDPi, t, GDP2
i, t

� �
(1)

Similarly, this study collects empirical evidence of the relationship of air quality
with the determinants such as air transportation, eco-innovation, and economic
growth. The second empirical model of the study develops as under:

Table 1. Data description.
Variables Symbols Definition & measures Data source

Environmental degradation CE Carbon emission measured in
metric tons

OECD statistics

Eco-innovation ECO Environmental related technologies %
of total technologies measured in
terms of patents.

OECD statistics

Air quality PM2.5 Annual Fine Particulate Matter (PM2.5)
concentration of G7 countries.
measure in microgram per cubic
meter (mg/m3)

OECD statistics

Economic growth GDP Real Gross Domestic Product per capita
measured in constant US Dollar
(Base year 2010¼ 100)

WDI

EKC hypothesis GDP2 Quadric term of GDP per capita
measured in constant US Dollar
(Base year 2010¼ 100)

WDI

WDI: World development indicator.
OECD: Organization of economic co-operation and development.
Source: generated by authors.
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PM2:5i, t ¼ f TRAi, t , ECOi, t, GDPi, t, GDP2
i, t

� �
(2)

According to the Equations (1) and (2) the cross-section denoted as “i,” used for
the G7 economies including Canada, France, Italy, Japan, Germany, the United
Kingdom, and the United States of America. However, “t” represents the time period
of the study from 1990 to 2019.

CEi, t ¼ kit þ k1itTRAit þ k2itECOit þ k3it GDPit þ k4itGDP
2
i, t þ @i þ xit (3)

PM2:5i, t ¼ ait þ a1itTRAit þ a2itECOit þ a3it GDPit þ a4itGDP
2
i, t þ ui þ Eit (4)

Equations (3) and (4) show the regression form of the Equations (1) and (2).
Where k and a are present as constant, and k1, k2, k3, k4 and a1, a2, a3, a4 are
displayed as the parameters. Whereas, @i and ui are special terms of cross-section
and the error terms represent as xit and Eit , respectively.

Airplanes propulsion requires the high combustion of fossil fuels which leads to
the increase in the greenhouse gasses emission in the atmosphere. Hence the increase
in air transportation (TRA) is expected to have a positive impact on environmental
degradation (Saether et al., 2021; Yu et al., 2020; Zhang et al., 2017). Similarly, the
increase in air transportation releases more aerosol dispensers and leads to a raise in
the concentration of particulate matter. This pollutant has a negative impact on
health and ultimately deprived the air quality (Harrison et al., 2015). Hence the
k1it ¼ @CEit

@TRAit
> 0 and a1it ¼ @PM2:5it

@TRAit
> 0.

On the other hand, eco-innovations reduced carbon emission and air pollution.
Therefore, it has expected that the eco-innovation has a negative influence on carbon
emission and poor air quality. k2it ¼ @CEit

@ECOit
< 0 and a2it ¼ @PM2:5it

@ECOit
< 0 (Afrifa et al.,

2020; Pope et al., 2020). However, the economic growth is expected to be positively
correlated to the environmental degradation and air pollution because the rapid
expansion of the economy increases the energy consumption which leads to the
increase in carbon emission (CE) and concentration of fine particulate matter (PM2.5)
(Destek & Sarkodie, 2019; Khan, Ali, Umar et al., 2020). Hence k3it ¼ @CEit

@GDPit
> 0

and a3it ¼ @PM2:5it
@GDPit

> 0. Moreover, the expected relation of GDP2 with CE and PM2.5

is negative k4it ¼ @CEit
@GDP2it

< 0 and a4it ¼ @PM2:5it
@GDP2it

< 0 (Khan, Ali, Umar et al., 2020).

3.3. Advanced panel data estimation

3.3.1. Unit root test
The analysis of the study begins with the tests of cross-section dependency which is a
very common issue in panel data analysis. The spillover effect or the influence of unob-
served common factors in all sections creates the problem of cross-section dependency.
These unobserved common factors are referred to as economic uncertainty, commodity
price fluctuations, stock market volatilities, residual interdependency and globalisation,
etc. According to Westerlund (2007) and Salim et al. (2017), the analysis without consider-
ing the cross-section dependency problem gives biased results. However, this issue can be
tackled with the appropriate unit root test hence the study uses the cross-section
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dependency test introduce by Pesaran (2015) with the null hypothesis of no dependency
and alternative hypothesis support the presence of correlation among the cross sec-
tion units.

The number of unit root test was used in the existing studies to determine the
presence of unit root and its effects on the results of panel data such as Choi (2001),
Harris and Tzavalis (1999), Im et al. (2003), Llu�ıs Carrion-i-Silvestre et al. (2005),
Levin et al. (2002) and Pesaran (2007). All these tests are different and follow several
assumptions in terms of their relevancy. The first-generation tests such as Levin et al.
(2002) and Choi (2001) handle the panel nonstationary with the common parameter
panel autoregressive effects and cannot resolve the issue of parameter heterogeneity
and cross-section dependency. However, Im et al. (2003) consider the heterogeneous
issue but ignore the issue of cross-section dependency. In the same way, Llu�ıs
Carrion-i-Silvestre et al. (2005) introduce the unit root test with structural breaks but
unable to solve the cross-section dependency issue.

The second-generation unit root test of Pesaran (2007) and Moon and Perron
(2012) handle all the issues of panel data such as cross-section dependency, parameter
heterogeneity but failed to accommodate the presence of structural break (global
events) and provide imprecise results However, the third-generation tests of unit root
take into account all the panel data issues including all the global events as structural
breaks (Bai & Carrion-I-Silvestre, 2009). This study employ Bai and Carrion-I-
Silvestre (2009), Pesaran (2007) and Llu�ıs Carrion-i-Silvestre et al. (2005) evaluate the
data stationarity along with all other dynamic interactions in the panel data. The null
hypothesis of all unit root tests supports the existence of unit root in data series.

3.3.2. Cointegration test
Before checking the variables for the order of integration, the study tests the heterogen-
eity of parameters by employing the test of Pesaran and Yamagata (2008) the null
hypothesis of the test supports the slope parameter homogeneity whereas the alternative
hypothesis assumes the heterogeneity of the slope parameters. Next after considering all
the econometric problems related to panel data, the study applied the panel cointegration
tests of Westerlund and Edgerton (2008) and Banerjee and Carrion-i-Silvestre (2017).

The purpose of employing these tests is to identify the presence of a long-term
relationship among the variables over all the G7 economies. The Westerlund and
Edgerton (2008) is more applicable and superior as it is free from the common factor
restrictions. Whereas Banerjee and Carrion-i-Silvestre (2017) provide in-depth know-
ledge about the strong and weak of cross-section dependency. These tests are also
known as the Common Correlated Effects Mean Group (CCEMG). The null hypoth-
esis of these tests is that there is no cointegration while the alternative hypothesis
states that there is a long-term relationship between the variables.

3.3.3. Long-run and short run estimations
According to Yao et al. (2019) to estimate the long run correlation among the panel
data the most appropriate estimator is a cross-section augmented autoregressive dis-
tribution lag (CS-ARDL). This estimator takes into account the parameters
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heterogeneity, error cross-country dependency, structural breaks, and dynamic com-
mon correlation effects (Çoban & Topcu, 2013).

Equation (5) illustrates the autoregressive distributed lag (ARDL) model as under:

Xi, t ¼
Xpx

i¼0

ai, tXi, t�1 þ
Xpy

i¼0

di, tYi, t�1 þ ei, t (5)

Furthermore, the Equation (5) extended into the Equation (6) by using each
repressors’ cross-section average. The CS-ARDL estimator presented by Chudik and
Pesaran (2015) implementation in empirical form overcome the cross-section depend-
ence effects or the common correlated effects (CCE) with a cross-section average and
provide the unbiased results of panel data.

Xit ¼
Xpx

i¼0

ai, tXi, t�1 þ
Xpy

i¼0

di, tYi, t�1 þ
Xpz

i¼0

YiZt�1 þ ei, t (6)

where

Zt�1 ¼ ðXi, t�1,Yi, t�1Þ

Xit is used for dependent variable for both the models according to Equations (3) and
(4) carbon emission and PM2.5, respectively. Whereas Vi, t�1 indicates the all independent
variables such as air transportation, eco-technology, and GDP etc. However, to overcome
the cross-section dependency problem the average of both dependent and independent
variables is denoted as Zt�1: While the Px, Py, and Pz represents as the variable’s lags.

The value of the long run coefficients is estimated from the coefficients of short
run in the cross-section augmented autoregressive distributed lag (CS-ARDL) test.
The mean group estimator and the long run coefficient are as under:

#̂CD�ARDL, i ¼
Ppx

I¼0
d̂Ii

1 ¼ RI¼0
âI, t (7)

The mean group is as follows:

CIPS ¼ #̂MG ¼ 1
N

XN
i¼1

#̂i (8)

The estimated short run coefficients are as under:

DXit ¼ ui Xi, t�1 � #iYi, t�1½ ��
Xpx�1

i¼0

ai, tDiXi, t�1 þ
Xpy

i¼0

di, tDiYi, t�1 þ
Xpz

i¼0

YiZt þ ei, t

(9)

where
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Di ¼ t � ðt � 1Þ

ŝi ¼ � ð1�
Xpx

i¼0

âi, t (10)

#̂i ¼
Ppy

i¼0
d̂i, t

ŝi
(11)

#̂MG ¼ 1
N

XN
i¼1

#̂i

The error correlation term (ECM) value is expected to be negative and significant.
The ECM also illiterates the time taken by the economy to adjust toward long-run
equilibrium.

3.3.4. Robustness tests
The robustness of the CS-ARDL results is tested through the Augmented Mean
Group (AGM) estimator and Common Correlated Effect Mean Group (CCEMG)
introduced by Eberhardt and Teal (2011) and Pesaran (2006), respectively. Both the
tests are important estimators for a number of reasons. These estimators are deemed
to be an appropriate measure to bring more accurate outcomes in the case of data
endogeneity, non-stationarity and slope heterogeneity. Moreover, these methods con-
sider the cross-section correlation and cross-section average of coefficients.

4. Results and discussions

The analysis of the panel data starts with the test of cross-section dependency.
According to Khan, Ali, Jinyu et al. (2020), Churchill et al. (2019) and Westerlund
(2007) to avoid the biased cointegration and unit root results it is very important to
address the possible contemporary correlation across the countries. Table 2 explains
the results of the Pesaran (2015) test for cross-section dependency. From the table, it
has observed that all the variables result statistically reject the null hypothesis of no
cross-section dependency at all significance level such as 1%, 5% and 10%,

Table 2. Results of cross-sectional dependence analysis.
Variable Test statistics (p-values)

CE 16.212��� (0.000)
PM2.5 19.121��� (0.000)
GDP 15.231��� (0.000)
GDP2 18.301��� (0.000)
TRA 22.231��� (0.000)
ECO 17.123��� (0.000)

Note: ���, �� & � explain the level of significance at 1%, 5% and 10%, respectively, whereas the val-
ues are in parentheses contains p-values.
Source: generated by authors.
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respectively. Therefore all variables CE, AIR, ECO, GDP and GDP2 comprise cross-
section dependence which illustrates that the tremors from one of the G7 countries
creates ripple effects and spread across other countries.

After an initial test of cross-section dependency in the panel data, the next step is
to check the stationarity, which will prevent the spurious regression estimates. The
study uses the Pesaran (2007) and Bai and Carrion-I-Silvestre (2009) test for unit
root determination. These tests are reliable in the presence of cross-section depend-
ency and heterogeneous parameters. Table 3 illustrates the results of these tests, show
stationarity at the level and at the first difference at all levels of significance. The
Pesaran (2007) results show that all the variables are stationary at level, whereas
according to Bai and Carrion-I-Silvestre (2009) all the variables of the panel data ana-
lysis such as CE, AIR, ECO, GDP and GDP2 are integrated into the first order. The
mixed result of integration supports the use of the Westerlund and Edgerton (2008)
test of cointegration.

Table 4 shows the results of slope heterogeneity of the Pesaran and Yamagata
(2008) test. The null hypothesis of the test supports the existence of homogenous
parameters. According to the result the null hypothesis has rejected at a significance

Table 3. Results of unit root test with & without structural break Pesaran (2007).
Level I(0) First difference I(1)

Variables CIPS M-CIPS CIPS M-CIPS

CE �3.025��� �7.018�� – –
PM2.5 �5.002��� �6.001�� – –
GDP �4.012��� �8.101�� – –
GDP2 �5.001��� �6.021�� – –
TRA �3.011��� �7.102�� – –
ECO �4.102��� �7.121�� – –

Bai and Carrion-I-Silvestre (2009)

Z Pm P Z Pm P

CE 0.447 0.835 21.149 �5.036��� 6.215��� 66.154���
PM2.5 0.529 0.733 17.148 �4.006��� 5.556��� 73.058���
GDP 0.449 0.531 24.365 �5.657��� 6.059��� 96.187���
GDP2 0.564 0.672 16.176 �5.067��� 6.389��� 67.089���
TRA 0.538 0.856 19.765 �4.561��� 5.005��� 83.058���
ECO 0.429 0.732 17.048 �5.005��� 6.556��� 74.058���
Note: The level of significance is determined by 1%, 5%, and 10% indicated through ���, �� and �, respectively. For
Bai and Carrion-I-Silvestre (2009) test, 1%, 5% and 10% critical values (CV) for Z and Pm statistics are 2.326, 1.645
and 1.282 while the critical values (CV) for P are 56.06, 48.60 and 44.90, separately.
Source: generated by authors.

Table 4. Results of slope heterogeneity analysis.
Statistics Test value (p-value)

Dependent variable: CE
Delta tilde 57.289��� (0.000)
Delta tilde Adjusted 63.357��� (0.000)
Dependent variable: PM2.5

Delta tilde 38.299��� (0.000)
Delta tilde Adjusted 41.267��� (0.000)

Note: ���, �� & � explain the level of significance at 1%, 5% and 10%, respectively, whereas the values are in
parentheses contains p-values.
Source: generated by authors.
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level of 1%, 5% and 10%, respectively which endorse that the coefficient of the mod-
els are heterogeneous and the slope varies across countries. For the non-ambiguous
results, the presence of heterogeneity, in the panel data requires the second gener-
ation cointegration test such as CS-ARDL.

Next, the study employs the cointegration tests of Westerlund and Edgerton
(2008) and Banerjee and Carrion-i-Silvestre (2017) the null hypothesis of each test
assumed that there is no cointegration among the dependent and independent vari-
able in the presence of cross-section dependency, slope heterogeneity, structural
break. Table 5 summarise the results of Westerlund and Edgerton (2008) and show
the rejection of the null hypothesis at the significance level of 1%, 5% and 10%,
respectively across all the three stages of both the dependent variables such as CE
and PM2.5 thus the results endorsed the existence of cointegration among CE and
AIR, ECO, GDP, GDP2, and PM2.5 and AIR, ECO, GDP, GDP2.

Moreover, Table 6 demonstrates the results of Banerjee and Carrion-i-Silvestre
(2017) which endorse the presence of cointegration among all the variables of both

Table 5. Results of Westerlund and Edgerton (2008) panel cointegration analysis.
Test No break Mean shift Regime shift

Dependent variable: CE
Zu(N) �4.234��� �3.901��� �5.021���
Pvalue 0.000 0.000 0.000
Zs(N) �3.123��� �2.910��� �4.001���
Pvalue 0.000 0.000 0.000
Dependent variable: PM2.5

Zu(N) �3.357��� �2.951��� �4.101���
Pvalue 0.000 0.000 0.000
Zs(N) �4.789��� �3.347��� �5.100���
Pvalue 0.000 0.000 0.000

Note: ���, �� & � explain the level of significance at 1%, 5% and 10%, respectively, whereas the values are in
parentheses contains p-values.
Source: generated by authors.

Table 6. Results of Banerjee and Carrion-i-Silvestre (2017) cointegration analysis.
Countries No deterministic specification With constant With trend

Dependent variable: CE emission
Full sample �5.245��� �4.658��� �6.983���
France �6.504��� �5.325��� �7.396���
Germany �4.871��� �3.889��� �5.256���
Italy �7.695��� �6.658��� �8.358���
Japan �5.204��� �4.474��� �6.387���
United States �4.007��� �3.555��� �5.287���
United Kingdom �6.774��� �5.822��� �7.389���
Canada �7.336��� �6.451��� �8.001���
Dependent variable: PM2.5 emission
Full sample �4.872��� �3.761��� �5.123���
France �3.285��� �3.174��� �4.321���
Germany �5.145��� �4.034��� �6.124���
Italy �6.247��� �5.136��� �7.204���
Japan �4.276��� �3.165��� �5.301���
United States �3.176��� �3.065��� �4.105���
United Kingdom �4.134��� �3.303��� �5.010���
Canada �5.278��� �4.167��� �6.202���
Note: Critical Value (CV) at 5%�� and 10%� with constant is �2.32, �2.18 and with trend is �2.92 and �2.82.
Source: generated by authors.
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models such as dependent variables CE emission and PM2.5 emission and dependent
variables AIR, ECO, GDP, GDP2 for the all sections such as Canada, Italy, France,
Germany, Japan, The United States and the United State of America.

After confirming the existence of cointegration through Westerlund and Edgerton
(2008), and Banerjee and Carrion-i-Silvestre (2017) test. The study continues to esti-
mate the long-run and the short-run association between the dependent and inde-
pendent variables. The prime empirical strategy of the study is to investigate the
cointegration vectors, therefore the study employs the CS-ARDL estimator. Table 7
demonstrates the long-run correlation of CE and PM2.5 with their predictors. For the
CE model, the outcome of the test reveals that the coefficient of GDP comes out to
be significant and positive which means that with the increase of 1% of GDP the car-
bon emission increased by 0.311, however, the quadric term of GDP has a negative
but significant effect on the carbon emission. The increase of 1% in GDP2 reduced
the carbon emission by 0.284% at the level of 10% significance. This shows the pres-
ence of an inverted U shape environmental Kuznets Curve (EKC).

Similarly, the air transportation (AIR) and eco-innovation (ECO) decreases carbon
emission. The coefficient of AIR is �0.253 which is significant at all levels of signifi-
cance. This can be due to the improvement of airplane engine efficiency and the change
in the mix ratio of fuel. The results of air transportation are result is consistent with the
outcomes of the study of Kito et al. (2020), Bo et al. (2019) and Zeng et al. (2019).
Whereas the ECO shows a �0.264 value of coefficient which imply that the increase of
ECO decreases the carbon emission at 5% and 10% significance level, respectively in G7
countries. Eco-innovation results support the outcomes of Afrifa et al. (2020).

On the other hand, for the second model of PM2.5, the empirical results revealed
that GDP has a positive impact on air quality degradation. One percent increase in
economic growth leads to an increase the air pollution by 0.269% at all levels of sig-
nificance. Whereas GDP2 shows the reverse results. The coefficient of GDP2 has a
negative but significant value of 0.350 which also confirms the existence of invert U
shape environmental Kuznets Curve (EKC). In the same way, the AIR and ECO both
have negative and significant values of coefficient such as 0.173 and 0.312, respect-
ively. However, the air transportation AIR has a negative impact on the increase of
air pollution at a 10% significance level.

Table 7. Results of CS-ARDL analysis (Long run CS-ARDL results).
Variables Coefficients t-statistics p-values

Dependent variable: CE
GDP 0.311��� 4.011 0.000
GDP2 �0.284� �1.707 0.088
TRA �0.253��� �3.171 0.000
ECO �0.264�� �2.012 0.045
CSD-Statistics – 0.044 0.601
Dependent variable: PM2.5

GDP 0.269��� 5.011 0.000
GDP2 �0.350��� �3.006 0.000
TRA �0.173� �1.896 0.056
ECO �0.312��� �3.426 0.000
CSD-statistics – 0.013 0.820

Note: ���, �� & � explain the level of significance at 1%, 5% and 10%, respectively.
Source: generated by authors.
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Continuing on with the short-term correlation among the variables Table 8 CS-
ARDL short-run estimates indicates that for the first model of CE the GDP signifi-
cantly upsurges the carbon emission whereas the GDP2 mitigates the effect of carbon
emission by 0.039 at all significance level. Similarly, air transportation and eco-innov-
ation also reduce carbon emissions. Moreover, the error correlation term ECM shows
the negative coefficient with a significant value of �0.212 illustrates the reasonable con-
vergence of the economies toward the long-run equilibrium. On the other hand, for
the second model of PM2.5 the Air transportation, eco-innovation, and GDP2 decreases
the concentration of particulate matter significantly except the GDP which shows the
negative but insignificant short-run relationship with PM2.5. While the increase in eco-
nomic growth (GDP) significantly increases the air quality poor standard. Finally, the
ECM term for the short-run CS-ARDL results shows a negative and significant coeffi-
cient which means that system has reasonable convergence to its equilibrium.

Moreover, this study used the AMG and CCEMG methods in order to test the robust-
ness of both models. Table 9 demonstrates the results of long-run elasticities from both
tests are strongly align with CS-ARDL estimations. According to the results, economic
growth GDP has a positive and significant value of the coefficient is 0.156 with AMG
method and 0.238 with CCEMG method for the first model of carbon emission. However,
for the remaining variables such as GDP2, AIR and ECO both the AMG and CCEMG
methods show the negative and significant impact on environmental degradation with a
coefficient of �0.058, �0.237, �0.402 and �0.158, �0.364 and �0.341, respectively.

Similarly, for the second model, according to AMG and CCEMG methods GDP
found to have a positive and significant relationship with poor air quality with a coef-
ficient value of 0.251 and 0.103, respectively. Whereas the GDP2, AIR and ECO have
a negative but significant impact on the poor air quality by having coefficients of
�0.168, �0.247, �0.302 under AMG method and �0.062, �0.208 and �0.342 as per
the CCEMG method.

5. Conclusion and policy recommendations

For a sustainable environment, many economic and environmental factors play a key
role. The study aimed to empirically examine the influence of air transportation, eco-

Table 8. Results of CS-ARDL analysis (short run CS-ARDL results).
Variables Coefficients t-statistics p-values

Dependent variable: CE
GDP 0.097��� 3.087 0.000
GDP2 �0.039��� �4.101 0.000
TRA �0.171��� �3.843 0.000
ECO �0.073��� �5.441 0.000
ECT(-1) �0.212��� �4.003 0.000
Dependent variable: PM2.5

GDP 0.129��� 6.062 0.000
GDP2 �0.019 �1.541 0.189
TRA �0.023��� �3.033 0.000
ECO �0.086��� �3.577 0.000
ECT(-1) �0.254��� �5.381 0.000

Note: ���, �� & � explain the level of significance at 1%, 5% and 10%, respectively.
Source: generated by authors.
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innovation, and economic growth on the environmental degradation and air quality
of the G7 economies for the period from 1990 to 2019. To accommodate the general
issues of panel data analysis such as the cross-section dependency, structural break,
slope heterogeneity, and presence of unit root the study uses traditional and advanced
methods of estimations. The study began with the cross-section dependency test of
Pesaran (2015) which shows the presence of cross-section dependency among all vari-
ables. Secondly to determine the unit root existence in a panel data series the study
applied Pesaran (2007) and Bai and Carrion-I-Silvestre (2009) tests and found that
the results of Pesaran (2007) show all the variable stationary at a level whereas the
outcomes of Bai and Carrion-I-Silvestre (2009) declares that all series are stationarity
at first difference. Moreover, the Pesaran and Yamagata (2008) test determines the
presence of heterogeneity in slope parameters of all variables.

Furthermore, the Westerlund and Edgerton (2008) and Banerjee and Carrion-i-
Silvestre (2017) implication in a study discovered the existence of cointegration
among both model’s dependent and independent variables. However, the investiga-
tion of the cointegration vectors through CS-ARDL revealed that air transportation
(AIR) and eco-innovation (ECO) have long term negative impact on environmental
degradation (CE) and the concentration of particulate matter PM2.5 (air pollution).
However, generally, air transportation is considered as the main cause of carbon
emission and air pollution but this study discovers the inverse relationship due to the
improvement in the mechanism of the fuel consumption by air transportation during
the study period. Whereas the increase in economic growth upsurge both the depend-
ent variables CE and PM2.5. The short-run CS ARDL results are similar to the long-
run CS ARDL except for the GDP2 which found to have an insignificant relationship
with CE at PM2.5. Finally, the outcomes of CS-ARDL are reaffirmed by employing
the Augmented Mean Group (AMG) and Common Correlate Effect Mean Group
(CCEMG) methods on the panel data.

Environmental degradation is a global phenomenon and there is a need to con-
sider various factors to mitigate the deteriorating effects of greenhouse gases emis-
sion. Air transportation generally considered as the main contributor to poor air
quality. However, the result of this study support the role of air transportation to

Table 9. Results of AMG & CCEMG for robustness check.
Augmented Mean Group (AMG) Common Correlated Effect Mean Group (CCEMC)

Dependent
variables CE Coefficients t-statistics p-values Coefficients t-statistics p-values

GDP 0.156��� 5.010 0.000 0.238��� 5.201 0.000
GDP2 �0.058��� �3.105 0.000 �0.158��� �6.548 0.000
TRA �0.237��� �4.658 0.000 �0.364��� �3.884 0.000
ECO �0.402��� �5.985 0.000 �0.341��� �5.569 0.000
Wald test – 23.310 0.000 � 14.075 0.000
Dependent variable PM2.5

GDP 0.251��� �7.010 0.000 0.103��� 5.651 0.000
GDP2 �0.168��� �3.955 0.000 �0.062��� �4.025 0.000
TRA �0.247��� �5.121 0.000 �0.208��� �6.211 0.000
ECO �0.302��� �5.573 0.000 �0.342��� �4.846 0.000
Wald test � 36.874 0.000 � 15.050 0.000

Note: ���, �� & � explain the level of significance at 1%, 5% and 10%, respectively.
Source: generated by authors.
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reduce greenhouse gases emission and fine particulate matter emission in G-7 coun-
tries due to the adaptation of the advanced technology improves in aircraft and the
use of alternative fuel or mix ratio fuels. However, there is still a need for more
improvement to reduce the carbon emission by the air transportation in the USA,
The United Kingdom, and Germany for a sustainable environment. Following are the
few recommendations to further control the carbon and fine particulate matter emis-
sion in G-7 countries.

The governments should support more research and development to produce
improved fuel-efficient aircraft engines. As the size of the aircraft reduces the per-pas-
senger carbon emission therefore for the high demanded domestic routes the use of
wide-body or Boeing aircraft should be encouraged. Moreover, the domestic and
international flight routes should be optimised and proper air transport structures
should implemented for the route and network management. Such as the formation
of hub-and spoke networks that manage large passenger flow with minimum trans-
portation links and wide body aircrafts will reduce environmental damages per pas-
senger. The aviation authorities should provide improved communication, technical,
and monitoring facilities to minimise the ground-waiting period of aircraft. For the
reduced exposure of the particulate matter, it has suggested that aircraft should use
less aromatic sulfur and hydrocarbon fuels with improving combustion designs.
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