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ABSTRACT
Credit risk assessment represents a key instrument in the deci-
sion-making of the banking and financial institutions. In this art-
icle, we present a framework for credit risk strategies to improve
portfolio efficiency under a change of macroeconomic regime.
The aim is to compare the accuracy of several ensemble methods
(AdaBoost, Logit Boost, Gentle Boost and Random Forest) on a
default retail Romanian loan portfolio under different risk adver-
sity scenarios, a priori and posteriori the financial distress. Using
cost-sensitive ensemble learning models, we concluded that
regime-based credit strategy can offer a better alternative in both
terms of loss allocated to the strategy as well as defaulters’ classi-
fication accuracy.
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1. Introduction

Credit risk assessment represents a key instrument in the decision-making of the
banking and financial institutions. As Chen et al. (2020) pointed out credit risk has
long been a pivotal problem of risk management in financial industry. This is why
not only that it measures credit risk, but because any small improvement would pro-
duce great profits (Hand & Henley, 1997). In other words, the advantages of building
a credible risk assessment are reducing the cost of credit analysis, ensuring fast deci-
sion-making, guaranteeing credit collection and reducing possible risks (Huang
et al., 2018).

The analysis of credit risk has become more essential since the subprime mortgage
crisis that began in 2007. A key feature of this financial distress is that in many coun-
tries worldwide the recovery in aggregate output has not been accompanied by a con-
temporary pick-up in bank lending flows, rendering the recovery credit-less.
Behavioural factors of credit risk holders and financial market regulators have
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important effects on credit risk contagion (Chen et al., 2016). The disruption of bank
lending following that financial distress resulted in sharp output contractions in both
emerging and advanced economies (Corrado & Rossi, 2019). Indeed, people realised
that one of the main causes of that crisis was that loans were granted to people whose
risk profile was in reality too risky. That is why, in order to restore trust in the
finance system and to prevent this from happening again, banks and other credit
companies have tried to develop new models to assess the credit risk of individuals
more accurately (Charpignon et al., 2014). Therefore, a range of different statistical
and artificial intelligence methods have been developed to support credit decisions.

When considering credit risk assessment, we define a default profile to be considered
as benchmark for the detection of the future profiles. As a perfect model would mean
to detect both defaulters and non-defaulters and the objective is only one, the prob-
lem remains on what misclassification to penalise more. The cost of accepting a
defaulter is far greater than the cost of rejecting a good applicant. One has to choose
to maximise the overall accuracy and accept many defaults by setting a high cut-off
or to minimise the average misclassification cost and reduce the acceptance rate. The
first solution involves capital losses while the second one is related to market share
therefore the challenge is to establish the precise costs in order to balance it. A cut-
off point tuning process allows the credit policy makers to take cost-sensitive decision
under different scenarios of uncertainty. The challenge is to train the data on a sample
and obtain fairly good results on the test data having in mind a high accuracy through
a low misclassification cost.

Regarding the credit risk assessment, recent studies have shown that machine
learning techniques such as decision trees shows a better performance than a logistic
model (Huang et al., 2018). According to the same authors, machine learning techni-
ques do not require the assumption of variable distribution and can acquire know-
ledge directly from training data sets. Furthermore, artificial intelligence models
perform better than the statistical ones especially when the credit risk assessment is a
nonlinear model classification (Huang et al., 2018). The novelty of these methodolo-
gies relies on the power of the models to train the data. A simple decision tree will
give the same result on a specific training data set as the learning is happening once.
Building an ensemble of trees means to train different classifiers and use the most
voted case, reaching better results as it is unlikely that all classifiers will make the
same error. Among the ensemble models, gradient boosting decision tree and its vari-
ant algorithms have been applied as a homogeneous model itself or as a critical com-
ponent of heterogeneous ensemble structure (Ma et al., 2018; Xia et al., 2018a, 2018b,
2020a, 2020b). Traditional credit risk models focus only on classification error rates
and the different classification errors are assumed to attract the same costs. However,
this is unrealistic, there is an inherent cost-sensitive problem in the credit risk assess-
ment (Shen et al., 2019). Specifying a misclassification cost implies that the prior
probabilities are adjusted for the weak learners.

In this paper, we will study the importance of cost-sensitive ensemble methods
(AdaBoost, Logit Boost, Gentle Boost and Random Forest) in credit risk strategy selec-
tion when a shift in the default profile occurs. The change in the regime is captured by
training cost-sensitive ensemble models on two different retail loan datasets. The
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Regime I data sample contains socio-demographic and financial data on defaulters
prior the financial distress from 2008 and the second Regime is represented by the
defaults that occurred after the structural break. The aim is to use the cost-sensitive
ensemble methods (AdaBoost, Logit Boost, Gentle Boost and Random Forest) on train-
ing retail loan default data when changes have occurred. As misclassification costs
behave as prior probabilities, the role of applying on the two regimes data is to
underline the importance of training data set in establishing the risk strategies.

The remainder of the paper is extended as follows. Section 2 provides a brief
review of the related literature. Section 3 describes the methodology. Section 4
describes the data used in the research and presents the empirical results and discus-
sions. Section 5 concludes the study.

2. Literature review

Given the importance of the credit risk assessment in the decision-making of the
banking and financial institutions, this subject is highly discussed within the literature
and a large number of papers regarding all kinds of topics related to credit risk have
been published.

Some papers focus more on the relation between macroeconomic conditions and
credit quality. For example, Barra and Ruggiero (2021) investigated the effect of
macroeconomic factors on bank credit risk and assessed how the 2008 financial dis-
tress affected the contribution of these factors to bank credit risk. The authors
obtained that the financial distress determined an increase in banks’ credit rationing
and the fact that macroeconomic factors have a significant effect. Colak and Senol
(2021) examined the lending dynamics of banks in Turkey during various phases of
the business cycle. According to the authors, public banks play a stabilising role when
financial conditions tighten or the economy overheats, while domestic private and
foreign banks’ lending behaviour is procyclical with the economic activity. Chortareas
et al. (2020) focussed on the link between macroeconomic environment and credit
risk, highlighting the idea that data characteristics, model specification, geographical
distribution and time span of the sample are significant determinants in explaining
the observed heterogeneity of the reported estimates in the literature. Kjosevski et al.
(2019) explored and confirmed that macroeconomic determinants have an impact on
the amount of non-performing loans to enterprises and households in the Republic
of Macedonia. Allen et al. (2017) examined the relationship between bank lending,
crises and changing ownership structure in Central and Eastern European countries
and found that the influence of ownership structures on lending behaviours depends
on the type of crisis that bank experience.

Other papers focus more on the methodology used to assess the credit risk. For
example, Trivedi (2020) analysed credit scoring modelling on German credit data
using machine learning approaches and found that Random Forest is the best among
Bayesian, Naïve Bayes, Random Forest, Decision Tree and Support Vector Machine.

Zelenkov (2019) presented an example-dependent cost-sensitive generalisation of
AdaBoost, testing the model on three synthetic data sets, as well as on two real prob-
lems of bank marketing and auto insurance. The results of the experiment proved that
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the proposed generalisation of AdaBoost outperformed other algorithms. In the
author’s opinion, AdaBoost outperforms other algorithms because it trains an ensemble
of weak classifiers moving in the direction of the negative gradient to the loss function.
Saidi et al. (2018) compared the performance of different cost-sensitive and cost-
insensitive ensemble algorithms in determining the creditworthiness of private individ-
uals. They found that the ensemble learning methods obtain better results than individ-
ual classifier, the insensitive approaches reached the best classification accuracy but to a
trade-off. The models were not able to detect insolvent cases as the portfolio is highly
imbalanced hence the cost-sensitive bagging algorithm got the best trade-off between
accuracy and misclassification cost. Addo et al. (2018) built binary classifiers based on
machine and deep learning models on real data in predicting loan default probability.
Their results indicate the fact that tree-based models are more stable than the models
based on multilayer artificial networks. According to the authors, Random Forest and
Gradient Boosting Model perform the best in terms of accuracy both on the validation
and test set. Random Forest is capable of distinguishing the information provided by
the data and only retains the information that improves the fit of the model.

Liu and Priestley (2018) compared different machine learning algorithms (Logistic
Regression, C4.5 & C5 Decision Trees and Neural Network) using real world data for
commercial credit risk assessment. The results indicate that new machine learning
algorithms have better performance compare with the Logistic Regression. According
to the authors, even if neural networks returned the best accuracy, it is harder to
explain due to calculations hidden layers and variety nodes, so the best model chosen
is the Decision Tree since it has superior performance and easy interpretation.
Abell�an and Castellano (2017) have presented an experimental study where several
base classifiers (Logistic Regression, Multilayer Perceptron, Support Vector Machine,
C4.5 Decision Tree and Credal Decision Tree) are used in different ensemble schemes
(AdaBoost, Bagging, Random Subspace) for credit scoring decisions. Their results
show that a simple classifier based on imprecise probabilities, namely Credal Decision
Tree, improves to other more complex ones when it is used as base classifier, in an
ensemble scheme, for credit risk assessment.

Akindaini (2017) examined the performance of several machine learning methods
(Logistic Regression, Multinomial-Multiclass Regression, Naïve Bayes classifier,
Random Forest and KNN classifier) in order to estimate the mortgage default.
Random Forest model outperformed the others candidate models. Charpignon et al.
(2014) assess the consumer credit risk using Logistic Regression, Classification and
Regression Trees, Random Forests, Gradient Boosting Trees. In their view, Gradient
Boosting Tree performs the best, even if both Random Forest and Gradient Boosting
Tree are successful in predicting if a consumer will experience a serious delinquency
in the next two years. Kruppa et al. (2013) used Random Forest, k-nearest neigh-
bours, bagged k-nearest neighbours and logistic regression to estimate the consumer
credit risk. Using test data on instalment credits, they have demonstrated that
Random Forest outperformed the logistic regression.

The literature related to the topic on Romanian data is very scarce. For example,
Ruxanda et al. (2018) tried to build models for classifying Romanian companies
(listed on the Bucharest Stock Exchange) into low and high risk classes of financial

3574 A.-M. SANDICA AND A. FRATILA



distress. The authors used Support Vector Machines, Decision Trees, Bayesian logistic
regression and Fisher linear classifier, out of which the first two proved to be the
best. Dima and Vasilache (2016) assessed the business default risk on a cross-national
sample of 3000 companies applying for credit to an international bank operating in
Romania. The authors used logit regression and artificial neural networks and
obtained better results with neural networks. Stoenescu Cimpoeru (2011) used
Romanian Small and Medium Enterprises for credit risk assessment. The author com-
pared logistic regression with neural networks and obtained the same results as Dima
and Vasilache (2016).

3. Methodology

As mentioned before, in this paper, we compare the accuracy of four ensemble meth-
ods (AdaBoost, Logit Boost, Gentle Boost and Random Forest) on a default retail
Romanian loan portfolio under different risk adversity scenarios, a priori and posteri-
ori the financial distress. In terms of advantages among Boosting or Random forest,
the prediction on speed is fast for boosting methods comparing with medium for the
random forest. The latter one also needs more memory usage and all ensemble meth-
ods are sensitive to the number of learners and the adaptive boosting methods are
also sensitive to the number of maximum splits. As we want to select the champion
model for both portfolios, we used a Bayesian optimiser to select the method (bag-
ging or boosting) and the hyperparameters.

3.1. Adaboost, Logit Boost and Gentle Boost

As boosting is an algorithm for fitting adaptive basis models (ABM), we have to
describe a little bit decision trees in order to write a general adaptive function model.
Decision Trees, or classification trees, are simple structures that can be used as classi-
fiers (Abell�an & Castellano, 2017). According to the authors, decision trees can be
used to predict the class value of an element by considering its attribute values when
the elements are described by one or more attribute variables and by a single
class variable.

Considering Rm the mth region, xm the mean response in this region and vm the
choice of variable to split on and the threshold value on the path from root to the
mth leaf, we obtain the following model:

f xð Þ ¼ E yjx� �� � ¼ XM
m¼1

xmIðx 2 RmÞ¼
XM
m¼1

xmh x, vmð Þ (1)

In order to create a nonlinear model for classification one can use kernel methods
and the prediction functions takes the form f xð Þ ¼ xThðxÞ, where we define the fea-
tures based on input data x and prototypes lj, h xð Þ ¼ j x, l1ð Þ, :::, j x, lNð Þ� �

: By
using features directly from input data, we can write a general adaptive function
model (ABM) as the form:
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f xð Þ ¼ x0 þ
XM
m¼1

xmhm xð Þ (2)

where hm xð Þ is the mth basis function learned from the data, hm xð Þ ¼ h x; vmð Þ, where
vm are the parameters of the basis function itself.

As we mentioned before, Boosting is an algorithm for fitting ABM where these fea-
tures, hm, are generated by an algorithm called weak learner. The workflow assumes
to generate one training set by random sampling with replacement initialised with
uniform weights. Using this data training set we fit one estimator which is kept if its
accuracy is greater than the acceptance threshold. The next step is to give more
weight to misclassified observations and less to correctly classified. The previous steps
are repeated until N estimators are produced. The ensemble forecast is the weighted
average of the individual forecasts from N models where the weights are calculated
by the accuracy of the individual estimators. According to Schapire and Freund
(2012), boosting is a technique for sequentially combining multiple base classifiers
whose combined performance is significantly better than that of any of the base clas-
sifiers. Each base classifier is trained on data that is weighted based on the perform-
ance of the previous classifier and each classifier votes to obtain a final decision.

The goal of boosting is to solve the optimisation problem:

min
f

XN
n¼1

L yif xið Þ� �
(3)

where f is an ABM model as in Equation (1) and L y, ŷð Þ is a loss function. The opti-
mal estimate is f � xð Þ ¼ argminf xð Þ ¼ Eyjx Y�f xð Þ2

� �� �
¼ E Y½ jx�: Depending on the

loss function, we obtain different f �:
Gradient Boosting (Friedman, 2001; Mason et al., 2000) classification adds sequen-

tially predictors to an ensemble each one correcting the previous one. The algorithm is
a forward stage wise additive model that minimises different loss functions. If the func-
tion is exponential the algorithm is called AdaBoost with the loss: exp �~yif xið Þ� �

and
the log loss function, log 1þ e�~yifið Þ is the basis for LogitBoost algorithm.

AdaBoost: Consider a binary classification problem with xn a vector of explana-
tory variables (predictors) for observation n and yn 2 �1, þ 1f g the true ‘default’
class label, xn the observation weights normalised to add up to 1 and f xnð Þ 2
�1, þ1ð Þ the predicted classification score. The exponential loss can be viewed as
stage wise minimisation of:

XN
n¼1

xn exp �ynf xnð Þ� �
(4)

The weighted classification error at step t is:

et ¼
XN
n¼1

d tð Þ
n I yn 6¼ ht xnð Þ� �

(5)
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where ht is the prediction of learner with index t, d tð Þ
n represents the weight of obser-

vation n at step t and I is the indicator function. The algorithm increases the weights
for observations misclassified by learner t. The following one is trained on the data
including the updated weights d tþ1ð Þ

n : The function to compute prediction is:

f xð Þ ¼
XT
t¼1

atht xð Þ, where at ¼ 1
2
log

1�et
et

are the weak hypotheses (6)

This method is sensitive to outliers as it puts higher weight on misclassified cases.
Logit Boost (Adaptive Logistic Regression) has a similar setup as AdaBoost except it

minimises the binomial deviance instead of Eqation (1)

XN
n¼1

xn log 1þ expð�2ynf xnð Þ� �
(7)

Observations with large negative values of ynf xnð Þ, the misclassified, are less
weighted by the binomial deviance. Learner t fits a regression model ~yn ¼

y�n�pt xnð Þ
pt xnð Þð1�pt xnð ÞÞ where y�n 2 0, þ 1f g and pt xnð Þ is the estimated probability for observed
xn to be class 1. Given the predictions of the regression model ht , the mean squared
error is:

XN
n¼1

d tð Þ
n ~yn � ht xnð Þ� �2 (8)

Gentle Boost (Gentle Adaptive Boosting) is a combination of the above algorithms
as similar to AdaBoost minimises the exponential loss and like Logit Boost every
weak learning fits a regression model to response values yn 2 �1, þ 1f g: The mean
squared error,

PN
n¼1 d

tð Þ
n ~yn � ht xnð Þ� �2, reaches 1 as the strength of individual learn-

ers decreases.

3.2. Random Forest

Bagging (bootstrap aggregation) was proposed by Breiman in 1996 as a method to
reduce model variance by splitting the training data into multiple samples. The size
of the sample is constant equally to original sample size having original data (3/4)
and replacement data, bootstrap samples.

Considering M different trees chosen randomly with replacement and fm the mth
tree, then the ensemble is:

f xð Þ ¼
XM
m¼1

1
M

fm xð Þ (9)

The prediction response is obtained by taking an averaged over predictions from
individual decision trees. Running the same learning method on different subsets of
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data would lead to highly correlated predictors that prevents bagging from optimally
reducing variance of predicted values. Adding randomness to the tree construction,
Breiman (2001) built a unified algorithm called random forests.

3.3. Performance of algorithms

In order to compare the algorithms, the performance is measured through the classi-
fication error. These two types are represented using the confusion matrix, where
false negative means the algorithm incorrectly classified the observation as non-
default for a default case and false positive is the predicted default for a non-default
case (Siddiqi, 2017) (see Table 1).

In credit risk modelling, incorrectly classifying a bad applicant as a good applicant
is more costly than erroneously predicting a good applicant to be a defaulter. In other
words, the cost of a false negative is significantly higher than the cost of a false posi-
tive. In the first case, a loss will be incurred from giving a loan to a customer who
will not be able to repay some fraction of the loan, whereas in the second case, the
cost involves the opportunity, cost of missed revenues and profit. In the first case,
such an opportunity cost may also have to be added because when granting a loan to
a defaulter, the financial institution missed revenues and profits from not granting a
loan to a good customer. In the second case, and when a fixed number or total
amount of loans is given, one may argue that the real cost of a false positive addition-
ally depends on the alternative decision, meaning that it depends on whether the
applicant is receiving a loan instead of the incorrectly classified applicant eventually
defaulted or not. If not, then the cost is zero, whereas in the event of default, the cost
is much higher.

Based on the information captured in the confusion matrix one could calculate dif-
ferent sensitivities to determine the accuracy, misclassification rate and the precision
of a classification model. The error of type I or a is also named the credit risk rate
because is the rate of defaulters that are categorised as non-defaulters from the model,
this is usually when the accepting rate is very high, and the proportion of clients
accepted for receiving a loan is higher. Bank institutions should manage this accept-
ing rate in order to reduce this misclassification rate. Also, the error of type II is a
ratio of mismatch the category between the clients. Also known as commercial risk
or b this error is happening when a non-defaulter is rejected because the model is
considering as being defaulter. This leads to a loss in the bank’s profit because the cli-
ent rejected is seen as a potential cash flow asset. Also, when a bank has an error of
type II constantly higher during time, then its share of market is decreasing.

The cost matrix defines de cost of misclassification for each category given
Defaulter is considered as 1 and Non-Defaulter as 0:

Table 1. Confusion matrix (Source: Siddiqi, 2017).
Actual

Default Non-default

Predicted Default True positive (TP) False positive (FP)
Non-default False negative (FN) True negative (TN)
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cost 1j1ð Þ cost 1j0ð Þ
cost 1j0ð Þ cost 1j0ð Þ

� �
(10)

As we mentioned, the two type of errors might have a different cost for the model
user, therefore the sensitivity of the weights to penalise these errors has been per-
formed. In this respect, we define the default cost function:

f0 ¼ cost 1j1ð Þ�wcost 1j1ð Þ þ cost 1j0ð Þ�wcost 1j0ð Þ þ cost 0j1ð Þ�wcost 0j1ð Þ þ cost 0j0ð Þ�wcost 0j0ð Þ

with no penalisation for correct classifications, wcost 1j1ð Þ ¼ wcost 0j0ð Þ ¼ 0, and equal
cost for misclassification, wcost 1j0ð Þ ¼ wcost 0j1ð Þ ¼ 1:

To determine the sensitivity of the default function costs, we derived four custom
functions penalising in both ways the error type I (a), respectively, type II (bÞ and
this is represented as the ratio between the weights, also named as trade-off ratio.
The values related to a and b reflect the risk aversion and we used the following cost
functions. By risk aversion, the cost functions are ordered by scenarios as mild risk
averse, delay risk averse, baseline, risk averse and severe risk averse (see Table 2).

4. Data, empirical results and discussion

The global financial and economic turmoil left its mark on Romania, a country from
Central and Eastern Europe, by (a) the worsening of risk perception of the country,
including the contagion effects from regional evolutions; (b) the contraction of for-
eign markets (it had a bearing on the Romanian exporting companies, which hold a
significant share in banks’ portfolios); (c) external financing difficulties (illustrating
foreign creditors’ enhanced risk aversion) and (d) at microeconomic level, the cou-
pling of solvency risk with the liquidity risk (National Bank of Romania, 2009).

The transmission of external conditions into the domestic economy via such chan-
nels represented an increasing challenge for the Romanian financial system, where

Table 2. Cost functions used in the assessment (Source: authors’ computation).
a b Scenario

f0 1 1 Baseline
f1 1 0.5 Risk averse The cost of misclassifying a default as a

non-default becomes twice severe than
cost of misclassifying a non-default
as default

f2 0.5 1 Risk tolerant The cost of misclassifying a default as a
non-default becomes twice smaller than
cost of misclassifying a non-default
as default

f3 0.25 1 Risk taker The cost of misclassifying a default as a
non-default is equal to a 25% cost of
misclassifying a non-default as default

f4 1 0.25 Severe risk averse The cost of misclassifying a default as a
non-default becomes four times higher
than cost of misclassifying a non-
default as default
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banks hold a key position, adversely impacting the loan portfolio quality. The credit
risk was the banking sector’s major vulnerability (National Bank of Romania, 2009).

The analysis of the evolution of the interest rate in the Romanian banking system
shows that the development of EUR interest rate for mortgage loans lies around the
8% until end of 2008 after that is gradually decreasing. For national loan currency,
the interest rate initially decreases then increases with almost 1%. As the mortgage
loan data includes both national and foreign loans, we define the observed breakeven
points as the threshold for being in one credit risk policy regime (see Figure 1).

Therefore, for our data sample, we match the data sample as considered in time
regimes (before and after the financial distress) with the regimes out of the credit pol-
icy. In this way, we confirm the idea highlighted in the literature: that macroeco-
nomic conditions have significant effect on the credit risk assessment. If the interest
rate at granting date is below 14% for a RON loan, or above the 8% for EUR then
the Credit Policy I is mapped. Given the fact that these interest rate levels represent
the level for the entire banking system we expect to correctly map a proportion of
our sample. As it is presented in Table 3, the regime allocation according to the
credit policy correctly maps the data split on time.

The sample used contains 17,520 private individuals who were active in 2006 and
defaulted in 2007Q3-2008Q2 (Regime I), respectively, 2008Q3-2009Q2 (Regime II).
The source of data is a private commercial bank from Romania. The data is divided
equally in these two samples with 50% default rate per portfolio. The predictors are
socio-demographic variables used in the application scorecard at the granting date of
the loan and the financial creditworthy the debtor has, as the net income and histor-
ical delinquency behaviour as the credit bureau information.

The default profile before for Regime I is a profile of a debtor with 29 average age,
with high school education, having a seniority at the last job less than 2 years, living
with parents, single and earning less than 400 Eur. The data on Regime II show simi-
lar core structure but with significant changes such as: only 55.14% have high school
comparing with 82.24% during Regime I, only 14.63% are single while the remaining
proportion of individuals are married, the seniority has increased in the second

Figure 1. Evolution of interest rate for mortgage loans in RON and EUR (Source: National Bank
of Romania).
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regime, the average income is 550 Eur, the average age is 35 and 23.77% have their
own apartment comparing with 10.68% on Regime I (see Figure 2).

As we identify a shift in the profile of the defaulter prior and after the financial
distress, we will apply the classification ensemble trees on each sample and compare
the prediction accuracy by counting the misclassified cases. The shifts in the default
profile shows that for a behavioural model developed on sample before the financial
distress the accuracy might decrease when the profile changes. What we observed is
that error Types I and II had different costs before the financial distress while after,
the cost included also the opportunity costs, given the financial uncertainty. In this
respect we applied different algorithms with different cost function and compare the
accuracy and the total costs for each portfolio. We used the Bayesian Optimiser to
search among ensemble algorithms both boosting and bagging and search among
hyperparameters by giving these ranges:

� Ensemble methods: Boosting: AdaBoost, Logit Boost, Gentle Boost and Bag:
Random Forest

� Maximum number of splits: [1, max (2, 8760–1)] per regime sample
� Number of learners: [10,500].
� Learning rate: [0.001,1].

Table 3. Portfolio allocation based on interest rate regime (Source: authors’ computation).
Regime I Regime II Total

Credit Policy I 4999 3424 8423
Credit Policy II 3761 5336 9097
Total 8760 8760 17,520

Figure 2. The default profile in Regime I and Regime II (Source: authors’ computation).
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For Regime I data sample, the first step is to search among ensemble methods for
the first cost function (f0) without any penalty costs as the assumption is that there is
no trade-off between market share and capital. We plot the minimum classification
error for 100 iterations and observe that best point hyperparameters and minimum
error point is for ensemble method Logit Boost with 481 number of learnings. The
learning rate is 0.017377 using 30 maximum number of splits and got reached at the
90th iteration (see Figure 3).

The next step is to train the data on each cost functions and in order to observe
the sensitivity on different cost functions we calculated the total cost per model. For
every cost function we detailed below the results for the champion model, the best
ensemble method based on Bayesian Optimiser. The minimum cost is reached by the
random forest model with a cost function f4, where the cost of capital is four times
higher than the cost of market share. For Regime I, we observe that the number of
false negatives is smaller than for false positives for f0 the baseline function with no
penalty costs. The same trend is kept for f1 and f4, the risk averse strategies while the
trend is inversed for the mild risk averse functions, f2 and f3 (see Table 4).

A model’s performance is measured by quantifying the misclassified cases and
average against all cases per class aiming to reach high sensitivity (defaulters’ classifi-
cation) and high specificity (non-defaulters’ classification). Given the fact that the

Figure 3. Minimum classification error in Regime I (Source: authors’ computation).

Table 4. Champion model results in Regime I (Source: authors’ computation).

Cost functions
Ensemble
method

Nr of
learners

Max number
of splits

Learning
rate TP FN FP TN

Lost
function

f0 Logit Boost 481 30 0.01737 4330 50 93 4287 143.00
f1 Random Forest 10 65 4331 49 106 4274 102.00
f2 Random Forest 364 502 4285 95 65 4315 112.50
f3 Gentle Boost 10 21 0.001516 4200 180 52 4328 97.00
f4 Random Forest 58 110 4338 42 123 4257 72.75
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defaulters in Regime I are prior the financial distress we observed that comparing
with Baseline, risk averse scenarios have a higher sensitivity and lower specificity
while the other two scenarios recorded the inverse relationship.

For Regime I, we plotted the false positive and false negative rates and for baseline
scenario the sensitivity is higher than the specificity meaning that the champion
ensemble classifies more correctly the defaulters than the non-defaulters (see
Figure 4).

For risk averse scenarios, we observe that true positive rate is slightly increasing
while the true negative rate decreases to the lowest value across all scenarios. For the
more risk tolerant scenarios, the sensitivity decreases with almost 3% and specificity
increases with almost 1%. The shift occurs in the risk tolerant scenario, as the more
relaxed credit policy would decrease the power to detect the defaulters.

In order to keep the same level for detection power of bad customers, the scen-
arios considered are risk averse. Both Random Forest algorithms registered a lower
number of false negatives than the baseline scenario. Given the fact that the cost sav-
ings had the best improvement on the Random Forest, the optimal choice during
Regime I is this algorithm under severe risk averse scenario if we include the losses in
decision. Therefore, during Regime I, a risk aversion scenario would lead to a decrease
in non-defaulters’ detection, while a risk taker strategy would mean a significantly
decrease in the true positive rate. The gap between sensitivity and specificity is at min-
imum on a risk tolerant scenario.

During Regime II, the champion ensemble model per each cost function reveal the
fact that only gentle boost and random forest were selected among the other meth-
ods. When comparing the total cost, f3 seems to be by far the champion model.
During Regime II with default observations after the financial distress, the false nega-
tive cases outperform the false positive cases. The same trend is kept for all the
results we obtained across all the cost functions (see Table 5).

For the baseline scenario, the champion model is Gentle Boost and the improve-
ment in cost savings is null given there are no penalty costs. The minimum loss is

Figure 4. Sensitivity and specificity in Regime I (Source: authors’ computation).
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recorded for the cost function f 3, the Risk Taker strategy using Random Forest. The
improvement in costs is given by the very low number of false positive cases the
ensemble classified.

For Regime II, the baseline scenario indicates that the sensitivity is lower than spe-
cificity therefore Gentle Boost, the champion ensemble, correctly classifies more non-
defaulters than defaulters therefore an increase in the sensitivity would balance the
gap between the true rates. A decrease in true negative rate is observed for the risk
averse scenarios, with a trade-off to a maximum specificity risk level. At the same
time, the highest cost saving is brought by the riskier strategy as the number of false
positives is the minimum leading to a high ratio of specificity. A shift in the strategy
would occur in the severe risk scenario using Random Forest algorithm, that classifies
correctly more default cases than non-default cases.

Therefore, during Regime II, a risk aversion scenario would lead to a decrease in
non-defaulters’ detection, while a risk taker strategy would mean a significantly
decrease in the true positive rate. The gap between sensitivity and specificity is at
minimum on a severe risk averse scenario (see Figure 5).

When plotting the sensitivity and specificity across regimes, we observe that for
the baseline scenario, the true positive rate is above the true negative rate during the
first regime and reverses on the second regime. The risk aversion leads to an
improvement in default detection during both regimes and a shift in the true rates
occurs during the severe risk averse scenario. The risk tolerance triggers a switch in
Type I and II errors, leading to a decrease in the true positive rate. As the graph
shows a risk averse scenario would bring a stable sensitivity and specificity, while a
severe risk averse scenario would focus on default detection improvement. A risk tol-
erant policy would destabilise both default and non-default detection (see Figure 6).

In this paper, we aim to identify the shifts in the default profile captured by a
change in the regimes by using cost-sensitive ensemble methods. As Random Forest
was selected for both regimes, we employed on a combined data sample the algo-
rithm across all scenarios. We aim to observe also how maximum number of splits
affect the accuracy of a classifier. The results on the aggregated portfolio (sample
sized equally from the two regimes analyzed) indicate that for baseline scenario the
true positive rate is lower than the true negative rate. The number of learners lies
around the same value, while the maximum number of splits varies across scenarios.
The minimum loss is recorded on the risk tolerant scenario as the number of false
positives decreases more than the baseline scenario (see Table 6).

The number of false negatives is smaller than false positives for the baseline scen-
ario during Regime I, this means that without using any misclassification cost, the

Table 5. Champion model results in Regime II (Source: authors’ computation).

Cost functions
Ensemble
method

Nr of
learners

Max number
of splits

Learning
rate TP FN FP TN

Lost
function

f0 Gentle Boost 456 379 0.73486 4058 322 96 4284 418
f1 Gentle Boost 78 884 0.15407 4066 314 109 4271 368.5
f2 Random Forest 497 219 4005 375 63 4317 250.5
f3 Random Forest 11 19 3868 512 18 4362 146
f4 Random Forest 10 3741 4128 252 331 4049 334.75
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Figure 5. Sensitivity and specificity in Regime II (Source: authors’ computation).

Figure 6. True positive and true negative rate across scenarios for both regimes (Source: authors’
computation).

Table 6. Random Forest across scenarios for both regimes (Source: authors’ computation).

Cost functions Ensemble method
Nr of

learners
Max number
of splits TP FN FP TN

Lost
function

f0 Random Forest 495 1843 3836 544 180 4200 724
f1 Random Forest 486 817 3986 394 287 4093 537.5
f2 Random Forest 492 2759 3753 627 103 4227 416.6
f3 Random Forest 497 109 2155 2225 29 4351 585.2
f4 Random Forest 476 403 4067 313 461 3919 428.25
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model predicts better the defaulters than non-defaulters. Given the fact that sensitivity
is higher than specificity a market share strategy would mean to take more risk, as
the model predicts correctly the bad customers.

During Regime I, we observed that the accuracy of the classification models
increases with the risk adversity, reaching the peak on the baseline scenario. The
overall accuracy for this ensemble method is 98.37% with a loss representing 1.6%
from the potential total loss (is the loss that occurs when no classification model is
used and is calculated assuming all cases are positive) the model could have. Ordered
by accuracy the next two scenarios considered for the first regime are coming from
two different strategies, capital cost and market share. Given the fact that on baseline
scenario the false negative cases are smaller than false positives, the credit risk is
smaller than the commercial risk. The ensemble classifies more correctly the defaulters
than non-defaulters.

When we include the costs to penalise the false negative and false positive mis-
classification, the loss function results indicate that under risk aversion scenarios the
costs are smaller comparing with the risk tolerant scenarios. During Regime I, a cap-
ital cost strategy would imply a minimum loss while a market share strategy (Risk
Tolerant) would trigger a switch between the business and credit risk.

During Regime II, sensitivity is lower than specificity indicating a conservative
loan policy in place as the false positive cases are lower than false negatives. The
same peak in accuracy is obtained on the baseline scenario, while the minimum loss
was obtained for the riskier strategies. Interesting here is to observe that during this
second regime, the risk aversion increases the losses from misclassification.

During Regime II, as the false negative cases outperforms the false positive cases
therefore the credit risk is higher than business risk. The baseline ensemble classifies
more correctly non-defaulters than defaulters and in order to reverse it, a severe risk
averse strategy should be applied.

The results on both samples combined in a portfolio presents the lower accuracy
74.27% for the most severe riskier strategy. The trend in accuracy increases with the
risk aversity reaching the maximum point on the risk averse scenario. The champion
model for the ensemble model under baseline scenario has the maximum misclassifi-
cation cost recorded on both regimes as the average loss is lower for risk aversion
scenarios than risk tolerant ones. As pointed in Figure 7 the area where both default
and non-default detection would stabilise is the risk averse scenario. As we can see in
Table 7, the highest accuracy for the combined regimes data was obtained on the
Risk Averse scenario with 92.23% of correct classification cases where the sensitivity
and specificity are high, pointed in Figure 7.

5. Conclusions

In this paper, we aimed to identify the shifts in the default profile captured by a
change in the regimes by using cost-sensitive ensemble methods. We have used four
misclassification cost functions to capture the risk adversity on both samples.

The results on the Regime I show that a risk aversion scenario would lead to a
decrease in non-defaulters’ detection, while a risk taker strategy would mean a
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significantly decrease in the true positive rate. The gap between sensitivity and speci-
ficity is at minimum on a risk tolerant scenario.

During Regime II, a risk aversion scenario would lead to a decrease in non-
defaulters’ detection, while a risk taker strategy would mean a significantly decrease
in the true positive rate. The gap between sensitivity and specificity is at minimum
on a severe risk averse scenario. As Random Forest was selected for both regimes, we
employed on a combined data sample the algorithm across all scenarios and obtained
that the highest accuracy is reached when using a Random Forest Model under severe
risk averse scenario.

Credit decision makers set their portfolio’s strategic benchmarks based on an
objective function to meet either capital cost reduction or market share increase.

We believe the strategic decisions would benefit from being anchored to a credit pol-
icy regime and adjust it in response to shifts in economic regimes. Using cost-sensitive
ensemble learning models we concluded that regime-based credit strategy can offer a
better alternative in both terms of loss allocated to the strategy as well as detection
power of defaulters. In this way, credit strategies are based also on the macroeconomic
conditions, as highlighted in the literature (Barra & Ruggiero, 2021; Chortareas et al.,

Figure 7. Sensitivity and specificity in Portfolio (Source: authors’ computation).

Table 7. Accuracy and loss function (Source: authors’ computation).
Regime I Regime II Portfolio Regime I Regime II Portfolio

Accuracy
1. Risk taker 97.35% 93.95% 74.27% 3. Baseline 3. Baseline 4. Risk averse
2. Risk tolerant 98.17% 95.00% 91.62% 4. Risk averse 4. Risk averse 3. Baseline
3. Baseline 98.37% 95.23% 91.74% 2. Risk tolerant 2. Risk tolerant 2. Risk tolerant
4. Risk averse 98.23% 95.17% 92.23% 5. Severe risk averse 1. Risk taker 5. Severe risk averse
5. Severe risk averse 98.12% 93.34% 91.16% 1. Risk taker 5. Severe risk averse 1. Risk taker

Loss function
1. Risk taker 97.0 146.0 585.2 5. Severe risk averse 1. Risk taker 2. Risk tolerant
2. Risk tolerant 112.5 250.5 416.6 1. Risk taker 2. Risk Tolerant 5. Severe risk averse
3. Baseline 143.0 418.0 724.0 4. Risk averse 5. Severe Risk Averse 4. Risk averse
4. Risk averse 102.0 368.5 537.5 2. Risk tolerant 4. Risk Averse 1. Risk taker
5. Severe risk averse 72.8 334.8 428.3 3. Baseline 3. Baseline 3. Baseline
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2020). Random Forest was selected for both regimes to be the best as obtained in a
great number of research papers from the literature (Abell�an & Castellano, 2017; Addo
et al., 2018; Akindaini, 2017; Liu and Priestley 2018; Trivedi, 2020).

This paper, according to our knowledge, is the first study to explore regime-based
credit strategies on a default retail loan portfolio in Romania. We consider that
exploring credit strategies a priori and posteriori the financial distress (even if it is the
one from 2008) is a plus for our study due to the fact that in this way our results are
robust not only in good times, but also in bad times. In our opinion, this research
provides an opportunity for financial institutions to build an automated model for
credit risk assessment.

Some limitations of our research could be the fact that we used only one country
data-Romania, so in the future we could also use data from other countries. Plus, we
select four ensemble methods, and, in the future, we could expand the number of
methods. A future research could imply, also, exploring the framework for credit risk
strategies using data from the pandemic times. In this way, we could compare our
results obtained from two crisis, with different causes.
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