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A sparse approach for high-dimensional data with
heavy-tailed noise

Yafen Yea, Yuanhai Shaob and Chunna Lib

aSchool of Economics, Zhejiang University of Technology, Hangzhou, P.R. China; bManagement
School, Hainan University, Haikou, P.R. China

ABSTRACT
High-dimensional data have commonly emerged in diverse fields,
such as economics, finance, genetics, medicine, machine learning,
and so on. In this paper, we consider the sparse quantile regression
problem of high-dimensional data with heavy-tailed noise, especially
when the number of regressors is much larger than the sample size.
We bring the spirit of Lp-norm support vector regression into quan-
tile regression and propose a robust Lp-norm support vector quan-
tile regression for high-dimensional data with heavy-tailed noise. The
proposed method achieves robustness against heavy-tailed noise
due to its use of the pinball loss function. Furthermore, Lp-norm
support vector quantile regression ensures that the most representa-
tive variables are selected automatically by using a sparse parameter.
We use a simulation study to test the variable selection performance
of Lp-norm support vector quantile regression, where the number of
explanatory variables greatly exceeds the sample size. The simulation
study confirms that Lp-norm support vector quantile regression is
not only robust against heavy-tailed noise but also selects represen-
tative variables. We further apply the proposed method to solve the
variable selection problem of index construction, which also confirms
the robustness and sparseness of Lp-norm support vector quan-
tile regression.
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1. Introduction

The development of regression technology presents several challenges to modern
data. The first challenge comes from the dimensionality of data. High-dimensional
data, where the number of explanatory variables (K) greatly exceeds the sample size
(N), vary greatly across different fields. For example, large panels of home-price data
are high dimensionality (Huang et al., 2020). To consider the cross-sectional effects,
the house price in one city depends on several other cities, most likely its geographic
neighbors (Fan et al., 2011). Another example of high-dimensional data is in the
finance field (Wang et al., 2020; Zhou et al., 2020). Portfolio allocation with a few
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thousand stocks involves over one million explanatory variables (Fan & Lv, 2010).
High-dimensional data have commonly emerged in other fields, such as genetics
(Algamal & Lee, 2019), medicine (Dondelinger et al., 2020), and machine learning
(Ye et al., 2017a, 2017b). In gene expression studies, for instance, one is able to col-
lect far fewer observations than the total number of genes assayed (Clarke et al.,
2008). A high-dimensional data set needs a sparse technique that can select the repre-
sentative variables and discard the redundant variables. The second challenge comes
from heavy-tailed noise, which exists in practice (Chen et al., 2020; Fan et al., 2017;
Hsu & Sabato, 2016; Zhou et al., 2018). Modern data with heavy-tailed noise require
robust techniques. The main purpose of this paper is to propose a new sparse regres-
sion method for modern high-dimensional data with heavy-tailed noise.

Although ordinary least squares (OLS) regression (Dempster et al., 1977; Greene,
1981; Hutcheson, 2011; Rzhetsky & Nei, 1992) is one of the commonly used methods
for estimating conditional mean functions because its estimators have the smallest
variance among the class of linear unbiased estimators (Berk & Hwang, 1989), OLS
estimation exhibits some drawbacks when used for modern high-dimensional data
with heavy-tailed noise. High-dimensional data require a sparse technique for select-
ing the representative variables and discarding the redundant variables. OLS estima-
tion may suffer from the presence of redundant variables since the process utilizes all
variables without discrimination. Heavy-tailed noise requires a robust regression tech-
nique. The use of sum of squared residuals makes OLS regression sensitive to noise
in heavy-tailed situations (Koenker & Bassett, 1978).

In the field of statistics, the least absolute shrinkage and selection operator (Lasso)
(Bertsimas et al., 2016; Kim et al., 2019; Liang & Jacobucci, 2020; Tibshirani, 1996;
Wang et al., 2007; Zou, 2006) is a very popular sparse method for high-dimensional
data since it shrinks some coefficients of the regression estimators toward 0.
According to the regression estimators, the contribution of each explanatory variable
to the final decision function can be judged, and then the representative explanatory
variables are selected, while the redundant variables are discarded. However, Lasso
lacks robustness against heavy-tailed noise. Koenker and Bassett (1978) proposed
quantile regression (QR) and effectively dealt with a regression problem involving
heavy-tailed noise. QR is robust against noise in heavy-tailed situations since the
quantile estimators as a class of empirical ‘location’ measures for the dependent vari-
able, are based on pinball loss rather than least squares loss (Newey & Powell, 1987).
Although QR is robust against heavy-tailed noise (He et al., 2020), it does not focus
on the variable selection problem of high-dimensional data.

Li and Zhu (2008) brought the spirit of the Lasso approach into quantile regres-
sion, and proposed L1-norm regularized quantile regression. Thereafter, L1-penalized
quantile regression (Belloni & Chernozhukov, 2011; Peng & Wang, 2015; Yu et al.,
2017) and generalized L1-penalized quantile regression (Liu et al., 2020) were pro-
posed. In addition, Li et al. (2010) studied regularization in quantile regression from
a Bayesian perspective. The L1-norm regularization term in the quantile regression
methods has variable selection ability since some coefficients of the estimator are
driven towards zero. Therefore, these L1-norm regularized quantile regression meth-
ods conduct estimation and variable selection simultaneously.
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In the field of machine learning, support vector regression (SVR) (Drucker et al.,
1996; Smola & Sch€olkopf, 2004) in the framework of statistical learning theory, or
Vapnik-Chervonenkis theory, is an effective method for addressing the K � N
regression problem. Sparse SVR, such as L1-norm support vector regression
(L1�SVR) (Peng & Xu, 2013; Ye et al., 2017a, 2017b) and Lp-norm support vector
regression (Lp�SVR) (0<p<1) (Ye et al., 2015, 2017a, 2017b; Zhang et al., 2013), has
been proven to be an effective variable selection tool for high-dimensional data.
Lp�SVR is much sparser than L1�SVR since the Lp-norm regularization term in sup-
port vector regression shrinks some coefficients of an estimator towards 0, and some
coefficients are shrunk to exactly 0, leading to some redundant variables being dis-
carded and some representative variables remaining. Moreover, Lp-norm support vec-
tor regression can realize estimation and variable selection simultaneously.

Takeuchi et al. (2006) introduced the spirit of QR to support vector regression and
proposed nonparametric quantile regression, which minimizes the pinball loss and
the regularization term. Thereafter, support vector censored quantile regression (Shim
& Hwang, 2009), semiparametric support vector quantile regression (Shim et al.,
2012), and support vector quantile regression (Anand et al., 2020) were proposed. By
using the quantile parameter, support vector quantile regression is robust against
heavy-tailed noise. In addition, the L2-norm regularization term in the support vector
quantile regression effectively solves the K � N estimation problem. However, sup-
port vector quantile regression may suffer from the presence of redundant variables
in high-dimensional data since the estimator of the L2-norm regularization term lacks
sparseness. Thus, support vector quantile regression methods maintain the advantages
of quantile regression and support vector regression but they may use all variables
without discrimination in the estimation process for high-dimensional data.

To solve the sparse regression problem of high-dimensional data with heavy-tailed
noise, we propose Lp-norm support vector quantile regression (Lp�SVQR). Because
we use the quantile parameter in the pinball loss function, Lp�SVQR is robust to
heavy-tailed noise. The Lp-norm regularization term in Lp�SVQR solves the K � N
estimation problem. Moreover, by using the sparse parameter p, Lp�SVQR automat-
ically conducts variable selection and effectively improves the regression results simul-
taneously. We adopt a convergent successive linear algorithm (SLA) to obtain an
approximate local solution of Lp�SVQR: Compared with L1-norm regularized quan-
tile regression (L1�QR) (Li & Zhu, 2008) and e-support vector quantile regression
(e�SVQR) (Anand et al., 2020), the simulation results show that Lp�SVQR selects
sparser variables but with smaller estimation errors than those of e�SVQR and
L1�QR, and this means that Lp�SVQR not only selects fewer representative variables
but also has good regression effectiveness. To further test the sparseness of
Lp�SVQR, we discuss the variable selection problem with regard to index construc-
tion. The real-world variable selection analysis of an innovation and entrepreneurship
index also shows the sparseness of Lp�SVQR: The contributions of this paper are
summarized as follows:

1. During the high-dimensional regression process of Lp�SVQR, useful variables
are retained, and irrelevant variables are discarded.
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2. By using the quantile parameter in the pinball loss function, Lp�SVQR is robust
against heavy-tailed noise.

3. Simulation results indicate that Lp�SVQR outperforms the other two methods
with better sparseness and robustness.

The remainder of this paper is organized as follows. In Sec. 2, we propose
Lp�SVQR and present the properties of the solution path. The simulation study is
shown in Sec. 3. Section 4 provides a real-world variable selection analysis. Section 5
concludes this paper.

2. A high-dimensional sparse regression model

In this section, we introduce the spirit of Lp-norm support vector regression into
quantile regression, propose Lp-norm support vector quantile regression (Lp�SVQR),
and then derive an efficient algorithm that computes the exact solution path for the
parameter b:

Suppose that Y ¼ ðy1, . . . , yNÞ0 is the response variable, X is a known N � K
design matrix of covariates, and xi ¼ ðxi1, . . . , xiKÞ0 is the K-dimensional explanatory
variable. b0 and b ¼ ðb1, . . . , bKÞ0 are the unknown parameters that need to be esti-
mated. Consider the following linear regression model:

Y ¼ b0 þ Xbþ e (1)

where e is the random error.

2.1. Lp-norm support vector quantile regression

The estimator of the linear regression (1) can be defined as the solution to the pro-
posed Lp�SVQR optimization problem:

min
b0, b, n, n�

k|b|pp þ seTnþ ð1�sÞeTn�
� �

s:t: Y�b0�Xb � n, n � 0,
b0 þ Xb�Y � n�, n� � 0:

(2)

where sð0<s<1Þ is the quantile level, kðk � 0Þ is a tuning parameter balancing the
quantile loss, n and n� are slack variables, and e is a vector of ones with appropriate
dimensions. We penalize the model’s complexity by using the Lp-norm regularization
term, |b|pp: Generally, |b|

p
p results in a much sparser estimator than that obtained with

the L1-norm regularization term. Furthermore, Lp�SVQR has an adaptive property
since the optimal value of p is automatically chosen by the data set. Therefore, by
using the parameters k and p, Lp�SVQR can achieve a sparser estimator for selecting
the representative variables and discarding the redundant variables.

Regression problem (2) is not differentiable because of the Lp-norm regularization
term. To make it smooth, we introduce the upper bound variable t ¼
ð½t�1, . . . , ½t�KÞT , and thus problem (2) can be written as:
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min
b0, b, t, n, n�

k
XK

i¼1

½t�pi þ seTnþ ð1�sÞeTn�

s:t: Y�b0�Xb � n, n � 0,
b0 þ Xb�Y � n�, n� � 0,

|b| � t, t � 0:

(3)

It should be noted that problem (3) is differentiable and can be solved using a suc-
cessive linear algorithm (SLA) (Mangasarian, 2007). An SLA starts with a random ini-
tial point b̂0

0, b̂
0
, t̂0, n̂

0
, n̂

�0, and the k�th iteration,k ¼ 1, 2, . . . , obtains
b̂0

k, b̂
k
, t̂k, n̂

k
, n̂

�k
by solving the following problem:

min
b0, b, t, n, n�

k
XK

i¼1

½tk�1�p�1
i t½ �i þ s

XN

i¼1

n½ �i þ ð1�sÞ
XN

i¼1

n�½ �i
s:t: Y�b0�Xb � n, n � 0,

b0 þ Xb�Y � n�, n� � 0,
|b| � t, t � 0:

(4)

where t̂k�1 ¼ ð½t̂k�1�1, . . . , ½t̂k�1�KÞT : The proof of convergence of the SLA is omitted
here since it can be easily obtained from adaptations of the proof in Ye et al. (2015).

2.2. Properties of solution path

Similar to Li and Zhu (2008), we shed light on the properties of the whole solution
path b̂: Problem (4) can be rewritten as an equivalent optimization problem:

min
b0, b, t, n, n�

s
XN

i¼1

n½ �i þ ð1�sÞ
XN

i¼1

n�½ �i
s:t: Y�b0�Xb � n, n � 0,

b0 þ Xb�Y � n�, n� � 0,
jbj � t, t � 0,

XK

i¼1

tk�1½ �p�1
i t½ �i � s,

(5)

where s is the regularization parameter, which plays the same role as that of k: From
the KKT conditions in (5), we can obtain 0 � ai � s and 0 � a�i � 1�s, where ai
and a�i are Lagrangian multipliers. Furthermore, we are able to obtain the following
relationships:

1. If yi�b0�bTxi>0, then ni>0: This implies ai ¼ s, a�i ¼ 0, and n�
i
¼ 0:

2. If yi�b0�bTxi<0, then n�
i
>0: This implies a�

i
¼ 1�s, ai ¼ 0, and ni ¼ 0:

3. If yi�b0�bTxi ¼ 0, then ni ¼ 0 and n�
i
¼ 0: This implies ai 2 ½0, s�

and a�
i
2 ½0, 1�s�:

Like in the condition stated by Li and Zhu (2008), the samples in the training set
can be classified into the following three subsets:
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e ¼ fi : yi�b0�bTxi ¼ 0, �ð1�sÞ � ai�a�i � sg(Elbow)
L ¼ fi : yi�b0�bTxi<0, ai�a�i ¼ �ð1�sÞg(Left of the elbow)
R ¼ fi : yi�b0�bTxi>0, ai�a�i ¼ sg(Right of the elbow)
m ¼ fj : bj 6¼ 0g(Active set)
We further discuss the solution path b̂ as a function of s: We define the following

events as s increases:

	 Either a data point hits the elbow, that is, a residual yi�b̂0�b̂
T
xi changes from

nonzero to zero, or a coefficientb̂j changes from nonzero to zero.
	 Either a data point hits left of the elbow or right of the elbow, that is, a residual

yi�b̂0�b̂
T
xi changes from zero to nonzero, or a coefficient b̂j changes from zero

to nonzero.

If an event occurs, we need to update e, L, R, and m accordingly, as these are the
index sets associated with b̂j: Moreover, nonzero b̂j satisfies:

yi�b̂0�
X

j2m
b̂jxij ¼ 0, for i 2 e (6)

since the number of observations in the elbow is equal to the number of variables in
the active set, that is, jej ¼ jmj:

2.3. Degrees of freedom

Degrees of freedom (df), measuring the effective dimensionality of the fitted model,
play an important role in model assessment and variable selection. Suppose that y fol-
lows a distribution y
ðlðxÞ,r2Þ, where l is the true mean and r2 is the variance.
The ‘degrees of freedom’ is defined as:

df ðf̂ Þ ¼ 1
r2

XN

i¼1

covðf̂ ðxiÞ, yiÞ (7)

wheref̂ ðxÞ is a fitted model. Stein (1981) showed that the number of degrees freedom
for a fitted model f̂ ðxÞ can be calculated as:

df ðf̂ Þ ¼
XN

i¼1

Eðof̂ ðxiÞ
oyi

Þ (8)

There exists a set of regularization parameters 0 ¼ s0<s1<s2 � � �<sL ¼ 1, such
that in the interior of any interval ðsl, slþ1Þ, the sets e, L,R and m are constant with
respect to s: These sets only change during each event. Similar to Li and Zhu (2008),
we first list the useful lemmas below, and then we apply Stein’s theory (Stein, 1981)
to derive an expression for the number of degrees of freedom.

Lemma 1. For any fixed s>0, there exists a set y ¼ ðy1, . . . , yNÞT such that s is a
finite collection of hyperplanes in R

N and this set is denote as Ns:
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Lemma 2. For any fixed s>0, b̂0ðyÞ and b̂ðyÞ are continuous function of y, where
b̂0ðyÞ and b̂ðyÞ are the fitted intercept and coefficient vectors, respectively, when the
response vector is y:

Lemma 3. For any fixed s>0 and any y 2 R
NnNs, the sets e, L andR are locally con-

stant with respect to y:

Theorem 1. For any fixed s>0 and any y 2 R
NnNs, we have the following divergence

formula:

XN

i¼1

of̂ ðxiÞ
oyi

¼ jej (9)

The proofs of these results are omitted here since they can be easily obtained from
the proofs by Li and Zhu (2008).

An important application of degrees of freedom is the selection of the regulariza-
tion parameter s: Two commonly used criteria in the quantile regression literature
are the Schwarz information criterion (SIC) (Schwarz 1978) and generalized approxi-
mate cross-validation criterion (GACV) (Yuan, 2006). Here, we chose to minimize
the following normalized mean squared error (NMSE) and sum absolute estimation
error (SAEE) to select the optimal s: They are defined as follows:

NMSEðsÞ ¼
XN

i¼1

ðyi�ŷiÞ2=
XN

i¼1

ðyi��yÞ2 (10)

SAEEðsÞ ¼
XK

i¼1

b̂i � bi

���
��� (11)

where �y is the average value of y1, . . . , yN .

3. Simulation study

In this section, we conduct a simulation study to evaluate the variable selection per-
formance of Lp�SVQR by comparing the obtained results with those of L1-norm
regularized quantile regression (L1�QR) (Li & Zhu, 2008) and e-support vector quan-
tile regression (e�SVQR) (Anand et al., 2020).

3.1. Simulation setup

In our simulation study, the parameter s is searched from the set
2ð�10Þ, 2ð�9Þ, . . . , 29, 210

� �
, and the parameter p is chosen from 0 to 1 with a fixed

step size of 0.1. The optimal values of the parameters in the simulation study are
obtained by utilizing the grid-search method.
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Let n be the number of samples, ŷi be the prediction value of yi, and �y ¼ 1
n

Pn
i¼1 yi

be the average value of y1, . . . , yn: We use the following evaluation criteria to evaluate
the variable selection ability of each model. Similar to the model setup in Peng and
Wang (2015), we generate ð~x1, ~x2, . . . , ~xKÞT from Nð0,RÞ, where R is the covariance
matrix with elements rij ¼ 0:5 i�jj j, 1 � i, j � K: Then, we set x1 ¼ Fð~x1Þ and xk ¼ ~xk
for k ¼ 2, 3, . . . ,K, where Fð�Þ is the cumulate distribution function of the standard
normal distribution. Next we set b̂ ¼ ðb̂1, b̂2, . . . , b̂KÞT as the estimate of b: We use
the following criteria to evaluate the variable selection ability of linear Lp�SVQR :

P1: The proportion of simulation runs nonzero coefficients are selected.

P2: The proportion of simulation runs is x1 selected.

AEE: The absolute estimation error defined as b̂i � bi

���
���, i ¼ 1, 2, . . . ,K:

NMSE: The normalized mean squared error (NMSE) defined as:

Xn

i¼1

ðyi�ŷiÞ2=
Xn

i¼1

ðyi��yÞ2: (12)

R2: The coefficient of determination R2 defined as:

R2 ¼
Xn

i¼1

ðŷi��yÞ2=
Xn

i¼1

ðyi��yÞ2: (13)

We consider two simulation cases with five different values of s : 0.1, 0.3, 0.5, 0.7, and
0.9. We set K ¼ 500 and N ¼ 100, and generate the first regression model as follows:

Type A :y ¼ x50 þ x100 þ x150 þ x200 þ x250 þ x300 þ x350 þ x400 þ x450 þ x500 þ x1e (14)

where the random error e
Nð0, 1Þ is independent of the covariates.
The second regression function is as follows:
Type B : y ¼ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ x9 þ x10 þ x11 þ x1e (15)where the

random error e that is independent of the covariates follows a Cauchy distribution.
Specifically, we set K ¼ 2000,N ¼ 500, and b ¼ ð1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, . . . , 0Þ,
where most elements are zeros and only the first ten components contain non-
zero values.

Therefore, these two cases compose the K � N estimation problem. The optimal
parameter selection is based on 10-fold cross validation. For each case, a total of 100
simulation iterations are conducted to evaluate the parameter b: We chose minimized
NMSE and SAEE to select the optimal parameters.

3.2. Sparseness and robustness analysis

Tables 1 and 2 list the variable selection results of Lp�SVQR, e�SVQR, and L1�QR:
It is observed that Lp�SVQR selects fewer features than e�SVQR and L1�QR: The
main reason is that the Lp� norm can find sparser estimations than those of the L1�
norm and L2� norm. Lp�SVQR selects sparser variables than those of e�SVQR and
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L1�QR but with a smaller estimation error. Moreover, Lp�SVQR drives a larger R2 and
smaller NMSE than those of e�SVQR and L1�QR: It is clear that Lp�SVQR is more
robust to heavy-tailed noise than e�SVQR and L1�QR: The main reason is that
Lp�SVQR adopts quantile loss and the sparse parameter p: In terms of the running times,
the training speed of e�SVQR is significantly faster than those of L1�QR and Lp�SVQR:

Figures 1–3 show the absolute estimation error for each case when the values of s are
0.3, 0.5, and 0.7, respectively. We can see that the regression estimates b̂ obtained from
Lp�SVQR are close to the real values of the regression coefficients b: From Figures 1–3,
we can see that the red lines, representing the absolute estimation error of Lp�SVQR in
different cases, fluctuate slightly around 0, which indicates that Lp�SVQR selects very
few useful variables and captures the statistical information in the test data sets. It can be
seen that Lp�SVQR realizes variable selection and regression simultaneously due to its
inherent variable selection property. The blue lines, representing the absolute estimation
error of L1�QR in different cases, fluctuate a lot, especially when bi ¼ 1 ði 2 mÞ, which
shows that L1�QR lacks the ability to select useful variables. The absolute estimation

Table 1. Type A simulation results of Lp�SVQR, e�SVQR and L1�QR:
s Regressor df P1(%) P2(%) NMSE R2

0.1 Lp�SVQR 53.6 10.72 0 0.10(0.01) 0.80(0.03)
e�SVQR 500 100 100 0.73(0.03) 0.24(0.01)
L1�QR 500 100 100 0.72(0.04) 0.26(0.01)

00.3 Lp�SVQR 12.7 2.54 0 0.07(0.02) 0.92(0.03)
e�SVQR 500 100 100 0.73(0.03) 0.24(0.01)
L1�QR 500 100 100 0.72(0.04) 0.26(0.01)

0.5 Lp�SVQR 12.2 2.44 0 0.05(0.01) 0.94(0.02)
e�SVQR 500 100 100 0.74(0.03) 0.25(0.01)
L1�QR 500 100 100 0.72(0.04) 0.26(0.02)

0.7 Lp�SVQR 11 2.2 0 0.01(0.01) 0.97(0.01)
e�SVQR 500 100 100 0.73(0.04) 0.25(0.02)
L1�QR 500 100 100 0.72(0.04) 0.26(0.02)

0.9 Lp�SVQR 42.8 8.56 0 0.09(0.01) 0.83(0.02)
e�SVQR 500 100 100 0.74(0.04) 0.25(0.02)
L1�QR 500 100 100 0.72(0.04) 0.26(0.02)

Source: Authors’ calculations.

Table 2. Type B simulation results of Lp�SVQR, e�SVQR and L1�QR:
s Regressor df P1(%) P2(%) NMSE R2

0.1 Lp�SVQR 360.1 18 10 0.02(0.01) 0.96(0.01)
e�SVQR 2000 100 100 0.42(0.01) 0.34(0.01)
L1�QR 2000 100 100 0.44(0.01) 0.36(0.01)

00.3 Lp�SVQR 480 24 10 0.03(0.01) 0.94(0.01)
e�SVQR 2000 100 100 0.43(0.01) 0.34(0.01)
L1�QR 2000 100 100 0.44(0.01) 0.36(0.01)

0.5 Lp�SVQR 491.6 24.6 10 0.03(0.01) 0.93(0.01)
e�SVQR 2000 100 100 0.43(0.01) 0.34(0.01)
L1�QR 2000 100 100 0.44(0.01) 0.36(0.01)

0.7 Lp�SVQR 487.75 24.4 10 0.03(0.01) 0.93(0.01)
e�SVQR 2000 100 100 0.43(0.01) 0.34(0.01)
L1�QR 2000 100 100 0.44(0.01) 0.36(0.01)

0.9 Lp�SVQR 399.7 19.98 10 0.03(0.01) 0.95(0.01)
e�SVQR 2000 100 100 0.43(0.01) 0.34(0.01)
L1�QR 2000 100 100 0.44(0.01) 0.36(0.01)

Source: Authors’ calculations.
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errors of e�SVQR have a similar trend to those of L1�QR, thereby indicating that
e�SVQR lacks sparseness. Therefore, the variable selection results of Lp�SVQR perform
significantly better than those of e�SVQR and L1�QR:

Figure 1. Absolute estimation error simulation with s ¼ 0:3:
Source: Authors’ calculations.

Figure 2. Absolute estimation error for simulation with s ¼ 0:5:
Source: Authors’ calculations.

Figure 3. Absolute estimation error for simulation with s ¼ 0:7:
Source: Authors’ calculations.
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3.3. Solution path

The solution path of simulation treats b̂ as a function of s and characterizes how b̂
changes when s changes. We first fix the parameters s and p as their optimal values
from the experiments. Then, we investigate the influence of the regularization param-
eter s on the absolute estimation error. Figure 4 shows the sum of absolute estimation
error (SAEE) as a function of s: In Figure 4 of the type A, we find that when s
changes from 2�10 to 2�1, SAEE remains unchanged. When s changes from 2�1 to
22, the SAEE sharply decreases. When the corresponding value of s is 22, the SAEE
reaches a minimum value of 0:01: As the regularization parameter s increases from
22 to 24, the SAEE becomes larger. When s is larger than 24, the SAEE reaches a
maximum value of 10:

In the type A case, we fix the parameters s, p, and s to 0.5, 0.3, and 22, respect-
ively, and the fitted coefficients are shown in Figure 5 and the corresponding values
of bi � b̂i

���
��� are shown in Figure 6. From Figure 5 of the type A, we find that most

fitted coefficients are zero and only 11 fitted coefficients are nonzero, and these

Figure 4. The sum of the absolute estimation error as a function of s:
Source: Authors’ calculations.

Figure 5. Estimation results (b̂) with parameters s, p, and s fixed as the optimal values.
Source: Authors’ calculations.
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fluctuate slightly around the real value of bi: From Figure 6 of the type A, we see
that most absolute estimation errors are zero and only 10 absolute estimation errors
are nonzero. The absolute estimation error reaches a maximum value of 0.07.

The type B solution path treats b̂ as a function of s: In Figure 4 of the type B, we
observe that the SAEE has a similar trend as that of the type A. The SAEE reaches a
minimum value of 0.18, where the corresponding value of s is 23: Figure 5 of the
type B shows the estimation results b̂ for the type B simulation with the parameters
s, p, and s fixed to 0.5, 0.5, and 23, respectively. We observe that most fitted coeffi-
cients are zeros and only the first 10 fitted coefficients are nonzero, and these fluctu-
ate slightly around the real value of 1. In Figure 6 of the type B, we see that only
bi � b̂i

���
���ði 2 f2, 3, . . . , 11gÞ are nonzeros and the others are zero. Moreover, the

absolute estimation error reaches a maximum value of 0.06.

4. Real data analysis

To further test the sparseness of Lp�SVQR, we discuss the variable selection problem
with regard to index construction. Selecting the representative variables from the vast
number of potential candidates in a system is a crucial process for index construction
since representative variables are usually capable of providing the most important
information for management to make decisions. Lasso (Tibshirani, 1996) is a very
popular method for the variable selection problem since it shrinks some coefficients
of the estimators toward 0. However, Lasso has some drawbacks in terms of the vari-
able selection problem. Fan and Li (2001) found that Lasso uses the same tuning
parameters for the regression coefficients, resulting in Lasso suffering an appreciable
bias. In addition, Lasso may suffer from the influence of heavy-tailed noise since its
least squares loss function is sensitive to noise.

Lp�SVQR can overcome these drawbacks of Lasso. In addition, by using the
sparse parameter p, Lp�SVQR is much sparser than the L1-norm regularization term
in Lasso. Thus, Lp�SVQR is an effective method for solving the variable selection
problem of index construction. Here, we discuss the variable selection problem of an

Figure 6. Absolute estimation error with the parameters s, p, and s fixed as the optimal values.
Source: Authors’ calculations.
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innovation and entrepreneurship index. The innovation and entrepreneurship index
summarizes information about the state level of innovation and entrepreneurship.

We collected 25 variables with data ranging from the first quarter of 2014 to the
second quarter of 2017, all of which were obtained from the Hangzhou Bureau of
Statistics (http://tjj.zj.gov.cn/col/col1525563/index.html). The sample size is 14, which
is smaller than the number of explanatory variables. Gross domestic product (GDP)
is used as a monitor for supervising the selection process. The experimental results
indicate that e�SVQR and L1�QR select 25 variables, and Lp�SVQR only selects 13
variables when s ¼ 0:1, 0:3, 0:5, 0:7 and 0.9. Table 3 shows the regression results in
terms of the NMSE for Lp�SVQR, e�SVQR, and L1�QR: Although Lp�SVQR
selects fewer variables than e�SVQR and L1�QR, Lp�SVQR obtains regression
results that are comparable to those of the other methods. These results prove that
Lp�SVQR is a much sparser method than e�SVQR and L1�QR:

The variable selection results of Lp�SVQR are shown in Table 4. We find that the
loan balance of nonfinancial institutions, loans of small enterprises, number of tal-
ents, and number of new employments, as important input factors of innovation and

Table 4. Variable selection results.
Group Variables Selected(�) or not(�)

Input factors of innovation and
entrepreneurship

Fiscal expenditure of science and technology �
Funding of science and technology �
Loan balance of non-financial institutions �
Loan of small enterprise �
Loan of science and technology �
Investment of technology �
Number of talent �
Number of new employment �
Willingness index of innovation and

entrepreneurship
�

Tax revenue �
Output factors of innovation and
entrepreneurship

Output rate of new industrial products �
Ratio of high technology output �
Profit ratio of business �
Number of new invention patents �

Vitality of innovation and
entrepreneurship

Number of new enterprise �
Number of college student employment and

entrepreneurship
�

New registered capital �
Number of new registration of trademark �
Number of national high-technology enterprises �
Number of provincial high-technological enterprises �
Market value of listed companies �

Environment of innovation and
entrepreneurship

Amount of innovative vocabulary search �
Amount of entrepreneurship vocabulary search �
News of future science and technology town �
Satisfaction of innovation and

entrepreneurship policy
�

Source: Authors’ calculations.

Table 3. The regression results in terms of the NMSE for Lp�SVQR, e�SVQR, and L1�QR:
Regressor s ¼ 0:1 s ¼ 0:3 s ¼ 0:5 s ¼ 0:7 s ¼ 0:9

Lp�SVQR 1.82(0.12) 1.87(0.21) 1.73(0.19) 1.83(0.17) 1.75(0.19)
e�SVQR 1.04(0.05) 1.03(0.03) 1.04(0.04) 1.03(0.03) 1.04(0.03)
L1�QR 1.20(0.05) 1.06(0.07) 1.02(0.08) 0.82(0.05) 0.96(0.03)

Source: Authors’ calculations.
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entrepreneurship, are selected. The output rates of the number of new industrial
products, profit ratio of business, number of new invention patents, and number of
new invention patents, as output factors of innovation and entrepreneurship, are
selected. The number of new enterprises, number of college student employments
and entrepreneurships, and number of new trademark registrations, representing the
vitality of innovation and entrepreneurship, are selected. The amount of innovative
vocabulary searches, amount of entrepreneurship vocabulary searches, and satisfaction
of innovation and entrepreneurship policies, representing the environment of innov-
ation and entrepreneurship, are selected.

5. Conclusion

Our work focused on the sparse regression problem of high-dimensional data with
heavy-tailed noise, especially when the dimensionality of the regressors is larger than
the sample size. We proposed Lp-norm support vector quantile regression, which can
be considered an extension of the L1-norm regularized quantile regression method
discussed by Li and Zhu (2008), to solve this problem. Lp-norm support vector quan-
tile regression was robust against heavy-tailed noise due to its use of the pinball loss
function. The Lp-norm regularization term and the supervised selection process of
Lp�SVQR ensured that the representative variables were selected and the redundant
variables were discarded automatically. The variable selection performance of
Lp�SVQR in the simulation analysis and real data analysis in the K � N setting con-
firmed its robustness and sparseness.

One of the important remaining problems is the application of the proposed high-
dimensional sparse method in the real world where high-dimensional data sets are
available, such as in economics (Queir�os et al., 2019), finance (Bhat et al., 2020) and
other fields (Medase & Abdul-Basit, 2020). By adjusting the sparse parameter p, the
proposed high-dimensional sparse method ensures that the representative variables
are selected. Moreover, using the quantile parameter, the proposed high-dimensional
sparse method is robust against heavy-tailed noise. Therefore, how to apply the pro-
posed high-dimensional sparse method to high- dimensional variable selection prob-
lem in the real world is our future work. For example, multi-factor quantitative stock
selection is a typical high-dimensional research problem, and it is interesting to apply
the proposed method to select the principal factors of stock return.
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