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The exciton binding energies in finite-potential quantum dot discs of GaAs are ob-
tained and the eigenstates and the eigenvalues of the exciton are calculated. We
present the exciton binding energy for different values of the disc radius (R) and
the disc half-width (L/2). The exciton-state stability for large and small sizes of the
dot is discussed. We compare our results with the existing theoretical and experi-
mental results. Our results give good estimates for the optimal quantum dot disc
geometry, and represent useful data in studies of the optical properties of quantum
dots in nano-scale devices.
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1. Introduction

The appearance of a peak in the absorption curve of direct-gap materials, such
as GaAs, is due to the formation of a complex known as the “exciton”. Excitons are
elementary excitations in solids and arise due to the Coulomb interaction between
electrons and holes. When an excitation energy is transferred to a semiconductor by
absorption of a photon, an electron-hole pair is created. At low temperatures, their
bound states are formed because the Coulomb interaction between the electron and
the hole is prominent. In systems of small dimensions, especially in quantum dots
(three-dimensional confinement), the picture is different [1]. Because of nanometer
widths and nanometer thickness, and of various shapes, the quantum confinement
increases considerably. Whereas the micro-crystallites are approximately spheri-
cal, thin discs or cylinders describe better the quantum dots. In quantum dots,
the “exciton” (i.e., the confined electron-hole state) remains present even at room
temperature in both absorption and emission spectra. Therefore, many devices
using exciton transitions have been proposed. These effects are expected to be
particularly important when the dimensions of the boxes become comparable to
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the excition effective Bohr radius. Although many theoretical studies [10 – 12] have
been devoted to the excitonic states in spherical micro-crystals, very few studies
consider excitons in cylindrical quantum dots. Up to now, various shapes have been
considered, like square flat plates [13 – 14] and cylindrical [15] boxes. In the latter
cases, infinite barriers have been used to confine the electron and the hole.

In the present work, we study excitons in quantum discs using a variational
approach and the effective-mass approximation with a finite confinement potential.
There have been concerns as to whether the effective-mass approximation could
still be valid in the quantum dot limit when the size of the exciton could be of the
order of the average lattice constant of the bulk semiconductor. Recently, Marin et
al. [16] performed variational calculations of the exciton energies for spherical dots
of radius in the range of 1.5 − 4 nm to compare both with experimental and their
theoretical data for CdS, CdSe, PbS and CdTe crystallites. They found that the
effective-mass approximation is still appropriate for these geometries. Moreover, in
the limit of a very small spatial confinement, when the exciton extends substan-
tially into the barrier material, the effective-mass approximation could again be an
appropriate approximation with the exciton described by the effective mass of the
embedded barrier material (GaAlAs). The paper is organized as follows. In Sec. 2,
we present the theoretical model used to describe the exciton in a cylindrical quan-
tum disc. Section 3 presents the results obtained for the exciton binding energy in
the quantum dot with a finite barrier, and in Sec. 4 we give the conclusion.

2. Theory

The Hamiltonian [16] of an exciton confined in a QD disc, using the relative
coordinates r = |r̄e − r̄h|, can be written as
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where μ is the reduced exciton mass μ = m∗
em

∗
h/(m∗

e + m∗
h) and ε is the dielectric

constant. Assuming a finite potential well, the total confinement potential V for
electron or hole is written as

V (ri) =
{ 0, ri < R, |zi| < L/2 ,

V0, otherwise ,
(2)

where i stands for e or h. The full three-dimensional Schrödinger equation for an
exciton in a quantum dot is

HΨ(re, rh, r, ze, zh) = EΨ(re, rh, r, ze, zh) . (3)
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The Ritz variation principle is used to solve this equation numerically. We are able
to determine the ground state by choosing the following trial wave function which
takes into account the electron-hole correlation

Ψ(re, rh, r, ze, zh) = f(re)f(rh)g(ze)g(zh) exp{−α
√

r2 + (ze − zh)2} . (4)

The variational parameter α is determined by minimizing the value of the exciton
energy, and at the corresponding value of α, the exciton energy is

Eex(α) =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 ,

where f(ri) and g(zi) are the ground wave functions of both the electron and the
hole (see our previous paper in Ref. [17]). Thus we have
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Substituting the Hamiltonian (1) and the envelope wave function Ψ (4) into the
integral (5), and after some tedious algebra, we obtained the following five integrals
for the kinetic-energy terms of the Hamiltonian [we used the transformation of
variables (re, rh, r, ze, zh) to (xe, xh, x, ye, yh)]
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The potential terms take the form
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where a = L/2, xe = re/R, xh = rh/R, x = |xe − xh|, ye = 2z/L and yh = 2z/L.

The numerical evaluation of the above integrals gives the expectation value of
the Hamiltonian, 〈H〉, for a certain value of the variation parameter α, from which
we obtain Eb = Ee + Eh − Eex.
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3. Results and discussion

For the GaAs material, we used the electron effective mass m∗
e = 0.0667me,

the hole effective mass m∗
h = 0.34me, the dielectric constant ε equal to 13.18, the

band-gap energy Eg = 1.247 xAl (xAl is the aluminum concentration) and the ratio
between the conduction and the valence band offsets of 65−35%. The 3D Rydberg
energy is equal to Ry = 0.0044 eV and the 3D Bohr radius is aB = 12.5 nm.

Figure 1 shows the calculated exciton ground-state binding energy as a function
of the radius of the quantum disc for three different values of the half-width L/2 = 4,
7 and 10 nm. The calculated values show the presence of the well known peaks of
the binding energy curves in nano-structures, which depend strongly on the QD
disc radius (R values), but its dependence on the QD disc width is not strong.
These results are in a good agreement with the previous data obtained by Le Goff
and Stebe [18].

Fig. 1. The binding energy of the exciton as a function of R. The three curves are
at different values of QD disc half-width L/2 (as indicated). (xAl = 0.4).

Here, we would like to add that the peak positions of the binding energy as a
function of L/2 occur nearly at the same value of R = 3 nm. We notice the sudden
decrease of the exciton binding energy when decreasing the value of radius. When
R increases from 7 to 10 nm, the binding energy changes almost by 10 meV, and
changes by about half of this value if the disc half-width L/2 increases from 7 to
10 nm.
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Figure 2 displays the variation of the exciton binding energy as a function of
R for two different values of Al content (xAl = 0.15, 0.4). Here a right shift of
the peak position by almost 1 nm, and by 20 meV in the height, is observed when
the quantity of Al increases by the factor of about 0.25. The height of the peak is
higher due to the increase of the barrier height (larger x) because of the stronger
confinement of particles.

Fig. 2. The variation of the exciton binding energy with R at two different values
of Al concentration, xAl = 0.15 and 0.4.

The position of the exciton binding energy peaks can be estimated to occur
around L/2 ∼= 4 nm and R ∼= 3 nm or for diameter ∼= 6 nm for the quantum dot
disc. It has been shown in Ref. [16] that there is a scaling rule for circular and square
quantum wires of the form L/(2R) = 0.9136, such that a square wire of width L
is equivalent to a circular wire of diameter 2R, if the ratio of 0.9136 is achieved.
Using this scaling rule, the critical confinement width for quantum square wire of
width L = 5.4 nm is equivalent to the present quantum disc with radius R ∼= 3 nm.

From the behavior of the binding energy positions discussed above, we may
conclude that the bulk effect sets in along one spatial axis around L/2 ∼= 4.5 to 6
nm, fairly independently of the confinement conditions. The present results should
be useful for designers of nano-scale devices.

Figure 3 represents the exciton energy Eex as a function of R for L/2 = 4, 7 and
10 nm. Again, as we see the exciton energy does not depend strongly on L/2, as
we mentioned before about the dependence of the binding energy on L/2 (Fig. 1).
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Fig. 3. The exciton energy Eex as s function of R, at the shown values of L/2.

Fig. 4. The exciton energy Eex and the exciton binding energy Eb versus the radius
R. a) L/2 = 4 nm, b) L/2 = 7 nm and L/2 = 10 nm.
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In Fig. 4 we present the exciton binding energy (Eb) and the corresponding
exciton energy Eex as a function of the disc radius R for three different values of
L/2 = 4, 7 and 10 nm. In Fig. 4a there is no intersection between the exciton energy
and exciton binding energy, Eex > Eb, so a small amount of energy is sufficient to
break the combination of the electron-hole pair.

At the intersection points (Figs. 4b and 4c), the binding energy is equal to
the expectation value of the Hamiltonian, and is equal to half of the free particle
energy (Ee + Eh). At energies below the intersection point, where Eex > Eb, the
exciton state annihilates faster than above the intersection point where Eex < Eb.
The crossover of the binding energy curve with the Hamiltonian curve confirms
our above discussion. In order to obtain a large exciton binding energy, we should
choose quantum dots with a larger radius (between 3 nm and 10 nm). However, if
the radii of quantum dots are beyond the scale of nano-structure, the principle of
quantum theory is no longer valid and optical properties of the dots belong to the
region of bulk materials.

4. Conclusion

We developed the computer programs to calculate the binding energy of an
exciton which is confined in a quantum dot disc of GaAs material. We found that
the binding energy depends strongly on the size of the disc. Any change of the Al
content of the barrier material affects the exciton confinement in the nano-material.
We present theoretical values for several quantum disc dimensions, and we suggest
that R should be greater than 3 nm and less than 10 nm. The obtained results
are very important in studies of optical properties of the quantum dots and in the
nano-scale devices [19,20].
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EKSITONSKA STANJA U KVANTNOJ TOČKI

Izračunali smo energiju vezanja, svojstvena stanja i svojstvene vrijednosti eksitona
u kvantnoj točki s konačnim potencijalom. Opisujemo energiju vezanja eksitona
za vǐse vrijednosti polumjera (R) i poluširine (L/2) diska. Raspravljamo stabilnost
eksitona za male i veće dimenzije diska. Uspored–ujemo naše rezultate s poznatim
drugim teorijskim i eksperimentalnim rezultatima. Naši rezultati daju dobre oc-
jene za povoljnu veličinu diska kvantne točke, i predstavljaju korisne podatke za
proučavanje optičkih svojstava kvantnih točaka u napravama nano veličine.
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