
ISSN1330–0008

CODENFIZAE4

MEDIUM-ASSISTED VACUUM FORCE

M. S. TOMAŠ
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We discuss some implications of a very recently obtained result for the force on
a slab in a planar cavity based on the calculation of the vacuum Lorentz force
[C. Raabe and D.-G. Welsch, Phys. Rev. A 71 (2005) 013814]. We demonstrate
that, according to this formula, the total force on the slab consists of a medium-
screened Casimir force and, in addition to it, a medium-assisted force. The sign of
of the medium-assisted force is determined solely by the properties of the cavity
mirrors. In the Lifshitz configuration, this force is proportional to 1/d at small
distances and is very small compared with the corresponding van der Waals force.
At large distances, however, it is proportional to 1/d4 and comparable with the
Casimir force, especially for denser media. The exponents in these power laws de-
crease by 1 in the case of a thin slab. The formula for the medium-assisted force
also describes the force on a layer of the cavity medium, which has similar proper-
ties. For dilute media, it implies an atom-mirror interaction of the Coulomb type
at small and of the Casimir–Polder type at large atom-mirror distances. For a per-
fectly reflecting mirror, the latter force is effectively only three-times smaller than
the Casimir–Polder force.

PACS numbers: 12.20.Ds, 42.50.Nn, 42.60.Da UDC 535.14, 535.417.2

Keywords: Casimir effect, Lorentz-force approach, medium-assisted force

1. Introduction

A number of approaches to the Casimir effect [1] in material systems lead to
the conclusion that the Casimir force on the medium between two bodies (mirrors)
vanishes and that the only existing force is that between the mirrors [2 – 4] (see also
text books [5, 6] and references therein). It is well known, however, that an atom
(or a molecule) in the vicinity of a mirror experiences the Casimir–Polder force [7]
and, at smaller distances, its nonretarded counterpart, the van der Waals force.
Consequently, being a collection of atoms, every piece of a medium in front of a
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mirror should experience the corresponding force. To resolve this puzzling situation
and overcome the above “unphysical” result, usually derived by calculating the
Minkowski stress tensor [2,4] but also obtained using other methods [2,3,5,6], Raabe
and Welsch [8] very recently suggested an approach based on the calculation of the
vacuum Lorentz force (see also Ref. [9]). In this approach, the force on a body
is simply the sum of the Lorentz forces acting on its constituents. Evidently, this
should lead to a nonzero force on the medium between the mirrors.

As an application of their approach, Raabe and Welsch calculated the force on a
magnetodielectric slab in a magnetodielectric planar cavity. The aim of this work is
to demonstrate several straightforward implications of their formula. The paper is
organized as follows. For completeness, in Sec. 2 we (re)derive the Raabe and Welsch
formula and demonstrate that, according to it, the force on the slab naturally splits
into two rather different components: a medium-screened and a medium-assisted
force. The latter force, being genuinely related to the Lorentz-force approach, is
discussed in more detail in Sec. 3. Our conclusions are summarized in Sec. 4. The
necessary mathematical background is given in the Appendices.

2. Preliminaries

Consider a multilayered system described by permittivity ε(r, ω) = ε′(r, ω) +
iε′′(r, ω) and permeability µ(r, ω) = µ′(r, ω)+ iµ′′(r, ω) defined in a stepwise fash-
ion, as depicted in Fig. 1. The force per unit area acting on a stack of layers between
a plane z in a jth layer and a plane z′ in an l > j layer is then given by

fjl(z, z′) = T̃l,zz(z
′) − T̃j,zz(z), (1)

where
↔̃

T j ≡
↔

T j −
↔

T 0
j , with

↔

T j being the corresponding stress tensor and
↔

T 0
j its

infinite-medium counterpart.

ε , µ0 0 ε , µl l
ε , µj j ε , µn n

. . .z’

d l

z

d j

. . . . . . .

Fig. 1. System considered
schematically. The dashed
lines represent the planes
where the stress tensor is cal-
culated.

2.1. Stress tensor

The Lorentz-force approach to the Casimir effect eventually leads to the calcu-
lation of the stress tensor (component) [8,9]

Tj,zz(z) =
1

8π

〈
EzEz − E‖ · E‖ + BzBz − B‖ · B‖

〉
r∈(j)

, (2)

where the brackets denote the average over the vacuum state of the field. The
correlation functions that appear here can be straightforwardly calculated using
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the fluctuation-dissipation theorem [10,11]. Decomposing the field operators into
the positive-frequency and negative-frequency parts according to

E(r, t) =

∞∫

0

dω E(r, ω)e−iωt +

∞∫

0

dω E†(r, ω)eiωt, (3)

we have (in the dyadic form) [10]

〈
E(r, ω)E†(r′, ω′)

〉
=

h̄

π

ω2

c2
Im

↔

G(r, r′;ω)δ(ω − ω′), (4)

and the magnetic-field correlation function is obtained from this expression using

B(r, ω) = (−ic/ω)∇ × E(r, ω). Here
↔

G(r, r′;ω) is the classical Green function
satisfying

[
∇× 1

µ(r, ω)
∇×−ε(r, ω)

ω2

c2

↔

I·
]

↔

G(r, r′;ω) = 4π
↔

Iδ(r − r′), (5)

with the outgoing wave condition at the infinity. Applying these results to the jth
layer, for the relevant correlation functions we find

〈E(r, t)E(r, t)〉r∈(j) =
h̄

π
Im

∞∫

0

dω
ω2

c2

↔

Gj(r, r;ω), (6a)

〈B(r, t)B(r, t)〉r∈(j) =
h̄

π
Im

∞∫

0

dω
↔

GB
j (r, r;ω), (6b)

where
↔

Gj(r, r′;ω) is the Green function element for r and r′ both in the layer j,
and

↔

GB
j (r, r′;ω) = ∇×

↔

Gj(r, r′;ω)×
←

∇′ (7)

is the corresponding Green function element for the magnetic field.

With the above equations inserted in Eq. (2), the stress tensor T̃j,zz is formally
obtained by replacing the Green function with its scattering part

↔

Gsc
j (r, r′;ω) =

↔

Gj(r, r′;ω) −
↔

G0
j (r, r′;ω), (8)

where
↔

G0
j (r, r′;ω) is the infinite-medium Green function. In this way, from Eq. (2)

we have

T̃j,zz(z) =
h̄

4π
Im

∞∫

0

dω

2π

{
ω2

c2

[
Gsc

j,zz(r, r;ω) − Gsc
j,‖(r, r;ω)

]

+GB,sc
j,zz (r, r;ω) − GB,sc

j,‖ (r, r;ω)

}
, (9)
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where Gsc
j,‖(r, r′;ω) = Gsc

j,xx(r, r′;ω)+Gsc
j,yy(r, r′;ω). In Appendix A, we derive the

Green function
↔

Gsc
j (r, r′;ω) for a magnetodielectric multilayer and, in Appendix

B, we calculate the expression in the curly brackets of the above equation. We find
that

{. . .} = −2πiµj

∫
d2k

(2π)2
1

βj

∑

q=p,s

gqj(ω, k; z) , (10)

where k and βj(ω, k) =
√

n2
j (ω)ω2/c2 − k2, with nj(ω) =

√
εj(ω)µj(ω), are, re-

spectively, the parallel and the perpendicular component of the wave vector in the
layer, and the functions gqj(ω, k; z) are in the shifted-z representation (see Appen-
dix A) given by

gqj(ω, k; z) =
2rq

j−rq
j+e2iβjdj

Dqj

[
β2

j (1 + n−2
j ) + ∆qk

2(1 − n−2
j )

]
(11)

+∆q

rq
j−e2iβjz + rq

j+e2iβj(dj−z)

Dqj
(β2

j + k2)(1 − n−2
j ), 0 ≤ z ≤ dj .

Here ∆q = δqp − δqs, Dqj(ω, k) = 1 − rq
j−rq

j+e2iβjdj , (12)

and rq
j±(ω, k) are the reflection coefficients of the right and left stack bounding the

layer, respectively. Specially, noting that rq
0− = rq

n+ = 0 and recalling that d0 = 0
(see Appendix A), for the outmost (semi-infinite) layers we have

gq0(ω, k; z) = ∆qr
q
0+e−2iβ0z(β2

0 + k2)(1 − n−2
0 ), −∞ < z ≤ 0, (13a)

gqn(ω, k; z) = ∆qr
q
n−e2iβnz(β2

n + k2)(1 − n−2
n ), 0 ≤ z < ∞. (13b)

Converting the integral over the real ω-axis in Eq. (9) to that along the imagi-
nary ω-axis in the usual way, letting ω = iξ,

βj(iξ, k) ≡ iκj(ξ, k) = i

√
n2

j (iξ)
ξ2

c2
+ k2, (14)

and noticing the reality of the integrand, we finally obtain for the stress tensor in
the layer [8]

T̃j,zz(z) = − h̄

8π2

∞∫

0

dξ µj

∞∫

0

k dk

κj

∑

q=p,s

gqj(iξ, k; z) . (15)

As seen, the standard expression for the (Minkowski) stress tensor obtained with
[12]

gM
qj(iξ, k; z) = −4κ2

j

rq
j−rq

j+e−2κjdj

µjDqj
(16)
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tomaš: medium-assisted vacuum force

is recovered from the above result only in the case of the empty space between the
stacks, i.e., only if εj(ω) = µj(ω) = 1. We also note that, according to Eq. (13),
the stress tensor is discontinuous across the boundary between two semi-infinite
media (in this case, 0 and n). This implies the existence of a force acting on a layer
around the interface between the media (fint ≡ f0n(−a0, an))

fint = − h̄

8π2c2

∞∫

0

dξ ξ2

∞∫

0

dk k

[
µ0

κ0
(n2

0 − 1)e−2κ0a0 (17)

+
µn

κn
(n2

n − 1)e−2κnan

] ∑

q=p,s

∆qr
q
0n(iξ, k; z),

where a0 + an is the layer thickness and where we have used rq
0+ = −rq

n− = rq
0n

(Eq. (6a)). Since T̃M
zz = 0 in semi-infinite layers, as follows from Eq. (16), such a

force does not appear in the approach based on the calculation of the Minkowski
stress tensor [13] and in other equivalent approaches leading to the Lifshitz-like
expression [14] for the force.

2.2. Force in a planar cavity

Owing to the z-dependence of T̃j,zz(z), Eqs. (11) and (15) imply the nonzero
force on a slice of the medium between the stacks, contrary to the Lifshitz-like
result (Eqs. (15) and (16)) obtained previously by many authors [2 – 6]. In order
to calculate this force, we consider a slightly more general configuration consisting
of a slab with refraction index ns and thickness ds embedded in a material cavity
with refraction index n and length L, as depicted in Fig. 2. The cavity walls are
conveniently described by the reflection coefficients rq

1 and rq
2.
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Fig. 2. A slab in a planar cavity shown schematically. The refraction index of the

slab is ns(ω) =
√

εs(ω)µs(ω) and that of the cavity n(ω) =
√

ε(ω)µ(ω). The cavity

walls are described by their reflection coefficients rq
1(ω, k) and rq

2(ω, k), with k being
the in-plane wave vector of a wave. The arrow indicates the direction of the force
on the slab.
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According to Eqs. (1) and (15), the force on the slab fs = T̃2,zz(0) − T̃1,zz(d1)
in this configuration is given by

fs(d1, d2) = − h̄

8π2

∞∫

0

dξ µ

∞∫

0

dk k

κ

∑

q=p,s

[gq2(iξ, k; 0) − gq1(iξ, k; d1)] . (18)

The functions Dq1 and Dq2 (Eq. (12)) are straightforwardly obtained using Eq.
(65) to determine the reflection coefficients at the right boundary of region 1 (rq

1+)
and the left boundary of region 2 (rq

2−). With rq
1− = rq

1 and rq
2+ = rq

2, we find

Dq1 = 1 − rq
1

(
rq +

tq2rq
2e

2iβd2

1 − rqrq
2e

2iβd2

)
e2iβd1 ,

Dq2 = 1 −
(

rq +
tq2rq

1e
2iβd1

1 − rqrq
1e

2iβd1

)
rq
2e

2iβd2 . (19)

Here rq = rq
1/2 = rq

2/1 and tq = tq1/2 = tq2/1 are the Fresnel coefficients for the

(whole) slab which are related through (Eq. (65))

rq = ρq 1 − e2iβsds

1 − ρq2e2iβsds
, tq =

(1 − ρq2)eiβsds

1 − ρq2e2iβsds
(20)

to the single-interface medium-slab Fresnel reflection coefficient ρq = rq
1s = rq

2s,
given by (see Eq. (6a))

ρq =
β − γqβs

β + γqβs
, γp =

ε

εs
, γs =

µ

µs
. (21)

This gives

gq2(ω, k; 0) − gq1(ω, k; d1) =

{
4β2

(
δqs +

1

n2
δqp

)
rq (22)

+
ω2

c2
(n2 − 1)[(1 + rq)2 − tq2]∆q

}
rq
2e

2iβd2 − rq
1e

2iβd1

Nq
,

where

Nq = 1 − rq(rq
1e

2iβd1 + rq
2e

2iβd2) + (rq2 − tq2)rq
1r

q
2e

2iβ(d1+d2). (23)

Combining Eqs. (18) and (22), we see that fs naturally splits into two rather
different components

fs(d1, d2) = f (1)(d1, d2) + f (2)(d1, d2), (24)
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where

f (1)(d1, d2) =
h̄

2π2

∞∫

0

dξ

∞∫

0

dk kκ
∑

q=p,s

(
µδqs +

1

ε
δqp

)
rq rq

2e
−2κd2 − rq

1e
−2κd1

Nq
,

(25)
and

f (2)(d1, d2) =
h̄

8π2c2

∞∫

0

dξ ξ2µ(n2 − 1)

∞∫

0

dk k

κ

∑

q=p,s

[(1 + rq)2 − tq2]

×∆q
rq
2e
−2κd2 − rq

1e
−2κd1

Nq
. (26)

Equation (25) differs in two respects from the formula for the Casimir force in a
dielectric cavity obtained through the Minkowski tensor calculation [4]. First, the
Fresnel coefficients refer to a magnetodielectric system [12]. Another new feature
in Eq. (25) is the (effective) screening of the force through the multiplication of the
contributions coming from TE- and TM-polarized waves by µ and 1/ε, respectively.
This gives a simple recipe how to adapt the traditionally obtained formulas for the
Casimir force to the Lorentz-force approach, as we illustrate below.

Clearly, f (2) owes its appearance to the cavity medium (note that it vanishes
when n = 1) and is therefore a genuine consequence of the Lorentz force approach,
so that below we consider this force in more detail.

3. Medium-assisted force

3.1. Force on a slab

Assuming, for simplicity, a large (semi-infinite) cavity obtained formally by
letting d1 → ∞ (or rq

1 = 0), from Eq. (26), we have

f (2)(d) =
h̄

8π2c2

∞∫

0

dξ ξ2µ(n2 − 1)

∞∫

0

dk k

κ

∑

q=p,s

∆q
[(1 + rq)2 − tq2]Rqe−2κd

1 − rqRqe−2κd
, (27)

where we have changed the notation so that d2 ≡ d and rq
2 ≡ Rq. Another re-

markable feature of the medium-assisted force is that its sign depends only on the
properties of the mirror. Indeed, assuming an ideally reflecting mirror and letting
Rq = ±∆q (the minus sign is for an infinitely permeable mirror, see Eq. (38) below),

we clearly see that f (2) is attractive or repulsive, depending on whether the mirror
is (dominantly) conducting (dielectric) or permeable, irrespective of the properties
of the slab.

3.1.1. Small distances

The integral over ξ in Eq. (27) effectively extends up to a frequency Ω beyond
which the mirror becomes transparent. Accordingly, at small mirror-slab distances
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d ≪ Λ = 2πc/Ω, the main contribution to f (2) comes from large k’s (k ∼ 1/d). In
this region, the nonretarded (quasistatic) approximation applies to the integrand
obtained formally by letting κ = κl = k everywhere. Thus, for example, for a
structureless mirror consisting of a semi-infinite medium with refraction index nm,
we have (from Eq. (6a))

Rp
nr∞(iξ, k) =

εm − ε

εm + ε
≡ ρ(εm, ε), Rs

nr∞(iξ, k) =
µm − µ

µm + µ
, (28)

and the nonretarded Fresnel coefficients of the slab are from Eq. (20) given by

rq
nr(iξ, k) = ρq

nr

1 − e−2kds

1 − [ρq
nr]2e−2kds

, tqnr(iξ, k) =
(1 − ρq

nr)
2e−kds

1 − [ρq
nr]2e−2kds

, (29)

with ρp
nr = ρ(εs, ε) and ρs

nr = ρ(µs, µ) [see Eq. (21)]. With the substitution u = 2kd,
this gives

f (2)(d ≪ Λ) = (30)

h̄

16π2c2d

∞∫

0

dξ ξ2µ(n2 − 1)

∞∫

0

du
∑

q=p,s

∆q
[(1 + rq)2 − tq2]nrR

q
nre
−u

1 − rq
nrR

q
nre−u

,

where the (nonretarded) reflection coefficients are now functions of (iξ, u/2d).

The medium-assisted force on a thick, ds → ∞, slab at small distances is ob-
tained from the above equation when letting tqnr = 0 and rq

nr = ρq
nr (see Eq. (29)).

Specially, in the case of a single-medium mirror, corresponding to the classical Lif-
shitz (L) configuration [14], all reflection coefficients in Eq. (30) are independent of
u so that the entire dependence of f (2) on d is given by the factor in front of the
integral. Using Eq. (28), in this case we find

f
(2)
L (d ≪ Λ; ds ≫ d) =

h̄

16π2c2d

∞∫

0

dξ ξ2µ(n2 − 1)

∞∫

0

du

{(
2εs

εs + ε

)2

(31)

×
[
εm + ε

εm − ε
eu − εs − ε

εs + ε

]−1

−
(

2µs

µs + µ

)2 [
µm + µ

µm − µ
eu − µs − µ

µs + µ

]−1}
.

We compare this with the screened Casimir force in the Lifshitz configuration which,
by applying the recipe embodied in Eq. (25) directly to the Lifshitz formula [14],
reads

f
(1)
L (d ≪ Λ; ds ≫ d) =

h̄

16π2d3

∞∫

0

dξ

∞∫

0

duu2

{
1

ε

[
εs + ε

εs − ε

εm + ε

εm − ε
eu − 1

]−1

+µ

[
µs + µ

µs − µ

µm + µ

µm − µ
eu − 1

]−1}
. (32)
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If we scale the frequency in the above integrals with Ω, we see that f
(2)
L /f

(1)
L ∼

(Ωd/c)2 ≪ 1. Accordingly, the medium-assisted force at small distances is very
small when compared with the screened Casimir force.

Of interest is also the medium-assisted force on a thin, ds ≪ d, slab. From
Eqs. (20) and (21), we find that to the first order in κsds

rq(iξ, k) ≃ 2ρqκsds, [(1 + rq)2 − tq2](iξ, k) ≃ 2
κds

γq
. (33)

Making here the nonretarded approximation (κs = κ = k) and letting k → u/2d,
from Eq. (30) we find that to the first order in ds/d

f (2)(d ≪ Λ; ds ≪ d) (34)

=
h̄ds

16π2c2d2

∞∫

0

dξ ξ2µ(n2 − 1)

∞∫

0

duue−u

[
εs

ε
Rp

nr(iξ,
u

2d
) − µs

µ
Rs

nr(iξ,
u

2d
)

]
,

which, for a single-medium (s-m) mirror, reduces to

f
(2)
s-m(d ≪ Λ; ds ≪ d) =

h̄ds

16π2c2d2

∞∫

0

dξ ξ2µ(n2 − 1)

(
εs

ε

εm − ε

εm + ε
− µs

µ

µm − µ

µm + µ

)
.

(35)

3.1.2. Large distances

To find f (2) for large d, we use the standard substitution κ = nξp/c in Eq. (27).
This gives

f (2)(d) =
h̄

8π2c3

∞∫

0

dξ ξ3µn(n2 − 1)

∞∫

1

dp
∑

q=p,s

∆q
[(1 + rq)2 − tq2]Rqe−2nξpd/c

1 − rqRqe−2nξpd/c
,

(36)
where the reflection coefficients as functions of (iξ, p) are obtained from their (iξ, k)-
counterparts by letting

κl → n
ξ

c
sl, sl =

√
p2 − 1 + n2

l /n2 (37)

for all relevant layers. Thus, for example, for a single-medium mirror we have (from
(Eq. (6a))

Rp
∞(iξ, p) =

εmp − εsm

εmp + εsm
≡ ρ(εm, ε; p), Rs

∞(iξ, p) =
µmp − µsm

µmp + µsm
. (38)
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Now, since p ≥ 1, for large d the contributions from the ξ ≃ 0 region dominate the
integral in Eq. (36). Consequently, we may approximate the frequency-dependent
quantities with their static values (which we denote by the subscript 0). With the
substitution v = 2n0ξpd/c, this leads to

f (2)(d ≫ Λ) =
h̄cµ0(n

2
0 − 1)

27π2n3
0d

4

∞∫

0

dv v3

∞∫

1

dp

p4

∑

q=p,s

∆q
[(1 + rq)2 − tq2]0R

q
0e
−v

1 − rq
0R

q
0e
−v

. (39)

For the Lifshitz configuration (tq = 0, rp = ρ(εs, ε; p), rs = ρ(µs, µ; p) and
Rq = Rq

∞, see Eq. (38)), we now obtain

f
(2)
L (d ≫ Λ; ds ≫ d) (40)

=
h̄cµ0(n

2
0 − 1)

27π2n3
0d

4

∞∫

0

dv v3

∞∫

1

dp

p4

{ (
2εsp

εsp + εss

)2

0

[
εmp + εsm

εmp − εsm
ev − εsp − εss

εsp + εss

]−1

0

−
(

2µsp

µsp + µss

)2

0

[
µmp + µsm

µmp − µsm
ev − µsp − µss

µsp + µss

]−1

0

}
,

which is to be compared with the screened Casimir force at large distances [14]

f
(1)
L (d ≫ Λ; ds ≫ d) (41)

=
h̄c

25π2n0d4

∞∫

0

dv v3

∞∫

1

dp

p2

{
1

ε0

[
εsp + εss

εsp − εss

εmp + εsm

εmp − εsm
ev − 1

]−1

0

+µ0

[
µsp + µss

µsp − µss

µmp + µsm

µmp − µsm
ev − 1

]−1

0

}
.

The relative magnitude of f (2) and f (1) is best estimated if we consider the force
in a cavity with ideally reflecting mirrors, corresponding to the classical Casimir
configuration. Letting εs0 → ∞ and εm0 → ∞, the integrals in Eqs. (40) and (41)
become elementary and we find

f
(2)
id (d ≫ Λ) =

h̄cπ2

45 · 25d4

√
µ0

ε0

(
1 − 1

n2
0

)
, (42)

f
(1)
id (d ≫ Λ) =

h̄cπ2

15 · 25d4

√
µ0

ε0

(
1 +

1

n2
0

)
, (43)

It is seen that at large distances f (2) is comparable in magnitude with f (1), espe-
cially for optically denser media where, ideally, f (2) is only three times smaller than
f (1).
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To find the force on a thin slab at large distances, we note that according to
Eq. (33)

rq(iξ, p) = 2ρq nξssds

c
, [(1 + rq)2 − tq2](iξ, p) ≃ 2

nξpds

cγq
. (44)

Inserting this into Eq. (36) and proceeding in the same way as above, we find to
the first order in ds/d

f (2)(d ≫ Λ; ds ≪ d) =
3h̄cµ0(n

2
0 − 1)ds

16π2n3
0d

5

∞∫

1

dp

p4

[
εs0

ε0
Rp(0, p) − µs0

µ0
Rs(0, p)

]
. (45)

3.2. Force on the cavity medium

Clearly, when ns = n, f
(2)
s describes the force on a layer of the medium in the

cavity fm. Since in this case ρq = 0 in Eq. (20), the corresponding results for fm

are straightforwardly obtained from the above formulas when letting rq(iξ, k) = 0
and tq(iξ, k) = e−κds . Thus, from Eq. (27) we find that fm is generally given by

fm(d) =
h̄

8π2c2

∞∫

0

dξ ξ2µ(n2 − 1)

∞∫

0

dk k

κ
(1 − e−2κds)e−2κd

∑

q=p,s

∆qR
q(iξ, k). (46)

The small-distance behavior of fm from Eq. (30) is described by

fm(d ≪ Λ) =
h̄

16π2c2d

∞∫

0

dξ ξ2µ(n2 − 1)

∞∫

0

du (1 − e−uds/d)e−u
∑

q=p,s

∆qR
q
nr(iξ,

u

2d
),

(47)
and, as follows from Eq. (39) (upon performing the integration over v), at large
distances fm behaves as

fm(d ≫ Λ) =
3h̄cµ0(n

2
0 − 1)

64π2n3
0

[
1

d4
− 1

(d + ds)4

] ∞∫

1

dp

p4

∑

q=p,s

∆qR
q(0, p). (48)

Note that for an ideally reflecting mirror, the value of the above integral is ±2/3. Ac-
cordingly, the force on the medium is attractive or repulsive depending on whether
the mirror is (dominantly) dielectric or permeable, resembling, in this respect, the
force on an (electrically polarizable) atom [15 – 17] near a mirror.

The thick-layer results are easily recognized from the above formulas when let-
ting ds ≫ d. Similarly, the force on a thin layer is given by these equations in the
limit ds ≪ d. At small distances, from Eq. (47) we find

fm(d ≪ Λ; ds ≪ d)
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=
h̄ds

16π2c2d2

∞∫

0

dξ ξ2µ(n2 − 1)

∞∫

0

duue−u
∑

q=p,s

∆qR
q
nr(iξ,

u

2d
), (49a)

=
h̄ds

16π2c2d2

∞∫

0

dξ ξ2µ(n2 − 1)

(
εm − ε

εm + ε
− µm − µ

µm + µ

)
(49b)

in agreement with Eq. (34). Here the second line corresponds to the system with
a structureless mirror. Finally, the force on a thin layer at large distances is from
Eq. (48) found to be

fm(d ≫ Λ; ds ≪ d) =
3h̄c(n2

0 − 1)ds

16π2n0ε0d5

∞∫

1

dp

p4
[Rp(0, p) − Rs(0, p)] , (50)

in agreement with Eq. (45).

We end this short discussion by noting that for a dilute medium, fm is the
sum of the forces fai acting on each atom i in the layer. Accordingly, the force
on an atom fa at distance d from a mirror is obtained from fm for a thin layer
as fa = fm/Nds, where N is the atomic number density. Since for dilute media
n2 − 1 = 4πN(αe + αm), it follows that fa is given by the above thin-layer results
upon making the formal replacement

n2(iξ) − 1

4π
ds → αe(iξ) + αm(iξ) , (51)

where αe(m) is the electric (magnetic) polarizability of the atom. Thus, expanding
the integrand in Eq. (46) for small 2κds ∼ ds/d and using the above recipe, we find
that generally

fa(d) =
h̄

πc2

∞∫

0

dξ ξ2µ(αe + αm)

∞∫

0

dk k e−2κd [Rp(iξ, k) − Rs(iξ, k)] . (52)

We also observe that Eq. (49) then implies a Coulomb-like force on an atom at small
distances from a mirror rather than the common van der Waals force [3]. At large
atom-mirror distances, however, Eq. (50) implies a screened Casimir–Polder force
on the atom. Of course, in accordance with the above mentioned unique property
of the medium-assisted force, the sign of fa is insensitive to the polarizability type
(electric or magnetic) of the atom, contrary to the standard Casimir–Polder force
[18]. Note also that, since n0ε0 ≃ 1 for dilute media, fa at large distances from
an ideally reflecting dielectric mirror is effectively three times smaller than the
Casimir–Polder force. We stress, however, that, as a medium-assisted force, fa is
a collective property of the atomic system and this (perhaps) explains its unusual
properties.
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It is natural to compare the above medium-assisted atomic force with the fa-
miliar force f̃a acting on an atom in vacuum near a mirror. This single-atom force
can be obtained in the same way as above by considering the force on a thin dilute
slab in an empty semi-infinite cavity. We find

f̃a(d) =
h̄

πc2

∞∫

0

dξ ξ2

∞∫

0

dk k e−2κd

{ [
αe

(
2
κ2c2

ξ2
− 1

)
− αm

]
Rp(iξ, k)

+

[
αm

(
2
κ2c2

ξ2
− 1

)
− αe

]
Rs(iξ, k)

}
, (53)

which generalizes (in different directions) earlier results obtained for f̃a in vari-
ous systems [2,3,7,15 – 18]. This expression correctly reproduces the dependence of
the Casimir–Polder force on the polarizability type of the atom [18] and the di-
electric/magnetic properties of the mirror [15 – 17]. Also, for structureless mirrors,

f̃a ∼ 1/d4 at small and f̃a ∼ 1/d5 at large distances. Apparently, this asymptotic
behaviour of the atom-mirror force is well supported experimentally [19 – 26]. How-
ever, we note that the results presented in these works do not definitely disqualify
the medium-assisted force. Indeed, being a collective property, fa is expected to
show up at higher atomic densities, whereas most experiments were usually per-
formed with low-density atomic beams [20 – 24,26], i.e. under the conditions in
favour of the single-atom force. Besides, a number of these experiments probed the
d−5 tail of the force [20,21,23,25,26], which is common to both fa and f̃a. Actually,
there were also spectroscopic evidences showing that the characteristic features
due to the d−4 tail of f̃a disappear from the spectra at higher atomic densities [19].
Accordingly, to test the existence of fa, one must design an experiment involving
a higher-density homogeneous atomic system close to a mirror and probing the
nonretarded atom-mirror interaction, where fa substantially differs from f̃a. On
the theoretical side, to understand the properties of the medium-assisted force, a
microscopic consideration of the atom-mirror interaction is needed, for an atom of
the medium in the vicinity of a mirror.

4. Summary

In summary, in this work we have discussed a formula for the force on a slab in
a planar cavity, as derived very recently by Raabe and Welsch using the Lorentz-
force approach [8]. We have shown that this result naturally splits into a formula
for a medium-screened Casimir force and a formula for a medium-assisted force. A
remarkable feature of the latter force is that its sign depends only on the properties
of the cavity mirrors. In the classical Lifshitz configuration, at small distances the
medium-assisted force is proportional to d−1 and is generally very small compared
with the screened Casimir (∼ d−3). At large distances, however, the medium-
assisted force is proportional to d−4 and is comparable with the screened Casimir
force, especially for denser media (actually, for a dense medium in a cavity with
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ideally reflecting mirrors, it is only three times smaller). As usual, the exponents
in these power laws decrease by 1 in the case of a thin slab. The formula for the
medium-assisted force also describes the force on the cavity medium. For dilute
media, it predicts the atom-mirror interaction of the Coulomb type at small and of
the Casimir–Polder type at large atom-mirror distances. In a semi-infinite cavity
with an ideally reflecting mirror, the predicted medium-assisted force on an atom
is effectively only three times smaller at large distances than the Casimir–Polder
force.
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Appendix A. Green function

Following the derivation presented in Ref. [27] for a purely dielectric multilayer,
for clarity, we consider the field

E(r, r′;ω) =
ω2

c2

↔

G(r, r′;ω) · p (54)

of an oscillating point dipole p exp (−iωt) at a position r′, rather than the Green

function itself. Assuming the dipole in the jth layer, its field E
(j)
l (r, r′;ω) in an lth

layer is given by

E
(j)
l (r, r′;ω) = E0

j (r, r′;ω)δlj + Eh
l (r, r′;ω), (55)

where E0
j (r, r′;ω) is the field of the dipole as it would be in the infinite medium j,

and Eh
l (r, r′;ω) describe the propagation of this source field through the system.

Specially, Eh
j (r, r′;ω) ≡ Esc

j (r, r′;ω) represents the scattered (reflected) field in
the jth layer.

According to Eq. (5), E0
j (r, r′;ω) is of the same form as the dipole field in a

purely dielectric medium multiplied by µj , except that this time the wave vector is
given by kj = njω/c =

√
εjµjω/c. In the plane-wave representation

E(r, r′;ω) =

∫
d2k

(2π)2
E(k, ω; z, z′)eik·(r‖−r′

‖) . (56)

We therefore have [27]

E0
j (k, ω; z, z′) = −4π

µj

εj
ẑẑ · pδ(z − z′) +

∑

q=p,s

[
ê

+
qj(k)eiβjzE0+

qj θ(z − z′)

+ê
−
qj(k)e−iβjzE0−

qj θ(z′ − z)
]
, (57)
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where βj =
√

k2
j − k2,

E0±
qj = µj

2πi

βj

ω2

c2
ξqê
∓
qj(−k) · p e∓iβjz′

, (58)

with ξq = δqp − δqs, and

ê
±
pj(k) =

1

kj
(kẑ ∓ βj k̂), ê

±
sj(k) = k̂ × ẑ ≡ n̂, (59)

are unit polarization vectors for q = p (TM) and q = s (TE) polarized waves,
respectively.

The fields Eh
l (r, r′;ω) obey homogeneous Maxwell equations. In analogy to Eq.

(57), Eh
l (k, ω; z, z′) can therefore be written as

Eh
l (k, ω; z, z′) =

∑

q=p,s

[
ê

+
ql(k)eiβlzE+

ql + ê
−
ql(k)e−iβlzE−ql

]
. (60)

Since only the outgoing waves should exist in the external layers, E+
q0 = E−qn = 0

and the remaining coefficients E±ql can be expressed in terms of the generalized
reflection and transmission coefficients of the corresponding stacks of layers. A
reflection coefficient rq of a stack is defined as the ratio of the reflected to incoming
wave (electric-field) amplitude (factors multiplying ê’s) at the corresponding stack’s
boundary. Similarly, a transmission coefficient tq of a stack is defined as the ratio of
the transmitted to incident wave amplitude calculated at the corresponding stack’s
boundary. In calculating these coefficients, it is convenient to adopt a (shifted-z)
representation for the field [27] in which 0 ≤ z ≤ dl in any finite layer, whereas
−∞ < z ≤ 0 (l = 0) and 0 ≤ z < ∞ (l = n), respectively, in the external layers.

According to the above definitions, the coefficients E±qj of the field in the jth
layer are given by

E+
qj = rq

j−(E0−
qj + E−qj), e−iβjdj E−qj = rq

j+eiβjdj (E0+
qj + E+

qj), (61)

where we have introduced the notation rq
j− ≡ rq

j/0 and rq
j+ ≡ rq

j/n for the reflection

coefficients of the bounding stacks. With Eq. (58), we find

E+
qj = µj

2πi

βj

ω2

c2
ξq

rq
j−eiβjdj

Dqj
[ê+

qj(−k)e−iβjz′
+ + rq

j+ê
−
qj(−k)eiβjz′

+ ] · p, (62a)

E−qj = µj
2πi

βj

ω2

c2
ξq

rq
j+e2iβjdj

Dqj
[ê−qj(−k)e−iβjz′

− + rq
j−ê

+
qj(−k)eiβjz′

− ] · p, (62b)

where z′+ ≡ dj − z′ and z′− ≡ z′ are the distances of the dipole from the layer’s
boundaries and

Dqj = 1 − rq
j−rq

j+e2iβjdj . (63)
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Repeating the same considerations for the dipole embedded in the layer 0 (n), we
find that its field Esc

0 (r, r′;ω) (Esc
n (r, r′;ω)) is also given by the above equations,

with j = 0 (n), provided that we let rq
0− = 0 (rq

n+ = 0) and put d0 (dn), which
appears formally in Eq. (62), equal to zero.

Collecting the equations and using Eq. (54), we obtain the Green function for
the scattered field in the jth layer in the form

↔

Gsc
j (r, r′;ω) = µj

i

2π

∫
d2k

βj
eik·(r‖−r′

‖)
∑

q=p,s

ξq
eiβjdj

Dqj
(64)

×
{

rq
j−ê

+
qj(k)eiβjz−

[
ê

+
qj(−k)e−iβjz′

+ + rq
j+ê
−
qj(−k)eiβjz′

+

]

+rq
j+ê
−
qj(k)eiβjz+

[
ê
−
qj(−k)e−iβjz′

− + rq
j−ê

+
qj(−k)eiβjz′

−

] }
, 0 ≤ z, z′ ≤ dj .

Apparently, except for the multiplication by µj ,
↔

Gsc
j (r, r′;ω) is formally the same

as for a purely dielectric system. This time, however, the wave vectors in the layers
are given by kl =

√
εlµlω/c. As follows from their definition, for local stratified

media the Fresnel coefficients satisfy recurrence and symmetry relations

rq
i/j/k = rq

i/j +
tqi/jt

q
j/ir

q
j/ke2iβjdj

1 − rq
j/ir

q
j/ke2iβjdj

, (65a)

tqi/j/k =
tqi/jt

q
j/keiβjdj

1 − rq
j/ir

q
j/ke2iβjdj

=
µkβi

µiβk
tqk/j/i, (65b)

and, for a single i − j interface, reduce to

rq
ij =

βi − γq
ijβj

βi + γq
ijβj

= −rq
ji, (66a)

tqij =

√
γq

ij

γs
ij

(1 + rq
ij) =

µjβi

µiβj
tqji, (66b)

where γp
ij = εi/εj and γs

ij = µi/µj .

Appendix B. Calculation of Eq. (10)

Performing the derivations indicated in Eq. (7) and using

K±j (k) × ê
±
qj(k) = kjξqê

±
q′j(k), p′ = s, s′ = p, (67)

44 FIZIKA A 14 (2005) 1, 29–46
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we find that
↔

G
B,sc
j (r, r′;ω) is given by Eq. (64) multiplied by −k2

j and with ê
±
qj →

ê
±
q′j . Noting that the equal-point Green function dyadics consist only of diagonal

elements, we easily find

↔

Gsc
j (r, r;ω) =

iµj

2πk2
j

∫
d2k

βj

{
k̂k̂

β2
j

Dpj

[
2rp

j−rp
j+e2iβjdj − rp

j−e2iβz− − rp
j+e2iβz+

]

+n̂n̂
k2

j

Dsj

[
2rs

j−rs
j+e2iβjdj + rs

j−e2iβjz− + rs
j+e2iβjz+

]

+ẑẑ
k2

Dpj

[
2rp

j−rp
j+e2iβjdj + rp

j−e2iβjz− + rp
j+e2iβjz+

]}
, (68)

and
↔

G
B,sc
j (r, r;ω) is given by this equation multiplied by k2

j and with p ↔ s. The

traces Gsc
j,‖(r, r;ω) and GB,sc

j,‖ (r, r;ω) can be easily recognized from these equations

and one has, for example,

ω2

c2

[
Gsc

j,zz(r, r;ω) − Gsc
j,‖(r, r;ω)

]

=
iµj

2πn2
j

∫
d2k

βj

{
k2

Dpj

[
2rp

j−rp
j+e2iβjdj + rp

j−e2iβjz− + rp
j+e2iβjz+

]

−
β2

j

Dpj

[
2rp

j−rp
j+e2iβjdj − rp

j−e2iβz− − rp
j+e2iβz+

]

−
k2

j

Dsj

[
2rs

j−rs
j+e2iβjdj + rs

j−e2iβjz− + rs
j+e2iβjz+

]}
, (69)

while GB,sc
j,zz (r, r;ω) − GB,sc

j,‖ (r, r;ω) is given by this equation multiplied by n2
j and

with p ↔ s. Adding these two quantities, one obtains Eq. (10) for the expression
in the curly bracket of Eq. (9).
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VAKUUMSKA SILA POTPOMOGNUTA SREDSTVOM

Raspavljamo implikacije nedavno dobivenog rezultata za silu na neku ploču u pla-
narnom rezonatoru baziranom na proračunu vakuumske Lorentzove sile [C. Raabe
and D.-G. Welsch, Phys. Rev. A 71 (2005) 013814]. Prema toj formuli, ukupna
se sila na ploču sastoji od zasjenjene Casimirove sile i sredstvom potpomognute
sile čiji je predznak odred–en isključivo svojstvima zidova rezonatora. U Lifshitzovoj
konfiguraciji, ova sila je proporcionalna 1/d na malim udaljenostima i jako mala u
usporedbi s odgovarajućom van der Waalsovom silom. Med–utim, na velikim udalje-
nostima ona je proporcionalna 1/d4 i usporediva s Casimirovom silom, posebno za
gušća sredstva u rezonatoru. U slučaju tankog sloja, ova asimptotska ponašanja
prelaze u 1/d2 odnosno 1/d5. Formula za sredstvom potpomognutu silu opisuje
takod–er silu na neki sloj sredstva u rezonatoru, koja ima slična svojstva. Za razri-
jed–ena sredstva, ona implicira interakciju atom-zid Coulombovog tipa na malim
i Casimir-Polder tipa na velikim udaljenostima. U slučaju idealno reflektirajućeg
zida, ova sila je efektivno samo tri puta slabija od Casimir-Polderove sile.
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