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NONLINEAR WAVES IN A MAGNETIZED PLASMA – A DIFFERENT APPROACH

Md. KHURSHED ALAM and A. ROY CHOWDHURY

High Energy Physics Division, Department of Physics, Jadavpur University,
Calcutta 700 032, India

Received 8 September 1998; Accepted 11 January 1999

An analysis of nonlinear waves in a low-frequency low-β magnetized plasma is per-
formed in a modified approach. Two different nonlinear equations are deduced, having
both solitary-wave-type and kink-type solutions. The solitary wave propagates obliquely
to a static magnetic field. It is observed that both the current and magnetic field show the
form of solitary and kink structure. Physical relevance of such nonlinear excitations is dis-
cussed.
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1. Introduction

A plasma is a medium which sustains various nonlinear phenomena, but each of them
is observable on a different scale. It was due to this fact that the reductive perturbation tech-
nique of Washimi and Taniuti [1] and Roy Chowdhury et al. [2] proved to be so successful.
The richness of the types of events can be attributed to the fact that plasma is a very non-
linear medium. On the other hand, without scaling the space and time, one can also scale
the frequency, i.e., each physical variable (density, pressure etc.) can be separated into
high- and low-frequency part and deduce the nonlinear equation. This was the approach
followed in Rao et al. [3], Sharma et al. [4] and Shukla [5]. In the present communication,
we wish to present an approach which does not rely on either of these methodologies, but
rests on the basic equations almost in an exact manner, of course, under some assumptions.
One of the main assumptions is that thez-component of the magnetic fieldBz is constant

FIZIKA A 7 (1998) 4, 193–204 193



ALAM AND ROY CHOWDHURY: NONLINEAR WAVES IN A MAGNETIZED . . .

inside the plasma. Under such an assumption, we can define two scalar potentialsφ andψ
(Kadomstev [6]) and subsequently deduce the nonlinear equations for them. The solutions
of these equations are then analysed and presented graphically.

2. Low-β plasma

We consider an electron-ion plasma placed in an external magnetic field. Furthermore,
we assume that the usual hydrodynamic description is valid. Of course, our main concern
is the region of low frequency (that is characteristic frequencies much lower than the ion
cyclotron frequency) events along with low value ofβ. Here,β represents the ratio of the
plasma pressure to the magnetic field pressure. It is given by

β = 2µ0KB(Ti +Te)n0=B2
0

The symbols we use,me;mi ;Te;Ti ;µ0;KB andn0 are, respectively, the electron mass, ion
mass, electron temperature, ion temperature, vacuum permeability, Boltzmann constant
and equillibrium value of electron and ion density,ne andni . Furthermore, we assume that
ions are cold (Ti = 0) and there is a constant background magnetic field in thez-direction,
~B= ẑB0. The collision-free equations describing the plasma are then written as:

0=�ene(~E+~ve�~B)�∇(neKBTe); (1)

mini

�
∂~vi

∂t
+(~vi �∇)~vi

�
= eni(~E+~vi�~B); (2)

∂ne

∂t
=�∇ � (ne~ve); (3)

∂ni

∂t
=�∇ � (ni~vi); (4)

∇�~E =�∂~B
∂t

; (5)

∇�~B= µ0~J+
1
c2

∂~E
∂t

; (6)

∇ �~B= 0; (7)

∇ �~E =
e
ε0

(ni �ne): (8)
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The current density~J is defined to be equal toe(ni~vi �ne~ve) and the magnetic field
~B is the sum of wave magnetic field and~B0. Another important assumption is that there is
no variation with respect to they-coordinate.

For low frequency phenomena,(1=g)∂g=∂t << ωci, whereg is any quantity andωci =

eB0=mi . It is due to this fact that the displacement current can be neglected, and from the
beginning, we have neglected electron inertia [7]. We now introduceφ and~A by

~B= ∇�~A and ~E =�∂~A
∂t
�∇φ: (9)

Because of the low-β assumption, we shall seek the configuration for whichBz is constant
inside the plasma [8]. From Eq. (9), we get

Ay = B0x; Ey = 0 and Bx = 0:

On the other hand, for the constant magnetic field configuration, we can always choose
Ay = 0 as the gauge condition. These conditions show that we can defineψ via:

ψ = φ+
Z ∂Az

∂t
dz; (10)

so that one gets at once

Ex =�∂φ
∂x

; Ez =�∂ψ
∂z

: (11)

From they-component of Eq. (1), we getvex = 0 and thez-component of the same
equation yields

ne = ne0exp(
eψ

KBTe
): (12)

It is important to note that, since we are considering low-frequency Alfv´en type excitation,
the ion velocities in the transverse direction will be governed by the polarization drift and
~E�~B drift. On the other hand, these can also be obtained by solving the linearized version
of Eq. (2), which yields

vix =
1

B0ωci

∂Ex

∂t
and viy =�Ex

B0
: (13)

This is quite consistent with the fact that in a low-β plasma, the ion motion is primarily in
the perpendicular direction. From Eq. (4) and using Eq. (13), we can derive

∂ni

∂t
=� 1

B0ωci

�
ni

∂2Ex

∂t∂x
+

∂Ex

∂t
∂ni

∂x

�
; (14)
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but the Laplace equation leads to

ni = ne0exp

�
eψ

KBTe

�
� ε0

e

�
∂2φ
∂x2 +

∂2ψ
∂z2

�
: (15)

Substituting (15) in (14), we get

ene0

KBTe
exp

�
eψ

KBTe

�
ψt �

ε0

e
(φxxt +ψzzt)

=
1

B0ωci

��
ne0exp

�
eψ

KBTe

�
� ε0

e
(φxx+ψzz)

�
φxxt (16)

+φxt

�
ene0

KBTe
exp

�
eψ

KBTe

�
ψx�

ε0

e
(φxxx+ψxzz)

��
;

which is the first nonlinear equation forφ andψ. To derive the other equation, we observe
that thex-component of expression in (6) yields

∂By

∂z
=�eµ0vix; (17)

and they-component of expression in (9) gives

∂By

∂t
=�

�
∂2ψ
∂x∂z

� ∂2φ
∂x∂z

�
: (18)

Eliminating using these two equations and using the expression forvix, we get

� eµ0

B0ωci

�
� ∂2φ

∂x∂t

�
ene0

KBTe
exp

�
eψ

KBTe

�
ψt �

ε0

e

�
∂3φ

∂x2∂t
+

∂3ψ
∂z2∂t

��
(19)

+

�
ne0exp

�
eψ

KBTe

�
�ε0

e

�
∂2φ
∂2x

+
∂2ψ
∂2z

���
� ∂3φ

∂x∂t2

��
=�ψxxz+φxxz:

Equations (16) and (19) are the two coupled nonlinear partial differential equations forφ
andψ.

3. Dispersion relation

To get an idea of the nature of the wave sustained by the above coupled equations for
φ andψ, we linearize (16) and (19). The linearized forms of these equations are

ene0

KBTe
ψ1t �

ε0

e
(φ1xxt +ψ1zzt) =

ne0

B0ωci
φ1xxt; (20)
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φ1xzz�ψ1zzx=
eµ0ne0

B0ωci
φ1xxt: (21)

If we now assume a propagating wave in the(x;z) plane to be of the form

ψ1 = A1ei(kxx+kzz�ωt)

φ1 = A2ei(kxx+kzz�ωt)

then substituting in (20) and (21), we get the required dispersion relation

ω2 =V2
Ak2

z

�
1+

k2
x

k2
z

�
ε0+1=(µ0V2

A)

ε0+1=(k2
z γ2

Li µ0V2
A)

��
: (22)

In Eq. (22),
�
µ0V2

A

�
�1

>> ε0(� 1), hence this equation leads to

ω2 �V2
Ak2

z

�
1+

k2
x

k2
z

1=(µ0V2
A)

1=(k2
z γ2

Li µ0V2
A)

�
=V2

Ak2
z

�
1+

C2
s

ω2
ci

k2
x

�
;

which is the usual dispersion relation for the linear kinetic Alfv´en waves. It includes the
effect of finite gyroradius giving rise to the dispersion which competes with dispersion
to generate the solitary wave. In these equations,γLi = Cs=ωci = ion gyroradius,Cs =

ion sound speed=
p

KBTe=mi andVA =
p

B0=(µ0ne0mi). This dispersion relation can be
written also in the following form

kz =�
s
�(1�ω2γ2

Li)� (1�ω2γ2
Li)

2+4ω2γ2
Li(cosec2θ+cot2(θ=V2

A)

2γ2
Li cot2 θ(1+V2

A sec2 θ)
; (23)

where tanθ = kz=kx.

4. Solution of the nonlinear wave equation

Instead of considering the linearised form of the coupled system (16) and (19), let us
now consider their full nonlinear version. We consider an arbitrary wave form

φ = f (λx+σz�ωt) = f (ξ); (24)

ψ = g(λx+σz�ωt) = g(ξ)

as a solution of Eqs. (16) and (19). This set is converted into the following nonlinear
ordinary differential equations�

1� λ2 f 00

ene0µ0V2
A

��
ε0
�
λ2 f 00+σ2g00

�
�ene0e

αg�
= 0; (25)
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f 00
�
ε0
�
λ2 f 00+σ2g00

�
�ene0eαg�= ene0V2

Aσ2

ω2 (g00� f 00) ; (26)

whereα = e=(KBTe).

4.1. Case I

To proceed with the solution, we assume 1� λ2 f 00=(ene0µ0V2
A) ==0, so that

g00 = f 00, whence

g00 =
ene0

ε0(λ2+σ2)
eαg; (27)

which is nothing but the Liouville’s equation. One can at once write down two solutions

g1 =
1
α

"
log

(
αd(λ2+σ2)ε0

2ene0
sec2

 
α
p

d
2

(ξ+e0)

!)#
; (28)

g2 =
1
α
�
log(4θ)� logfsech2(δ+αξ=2)g

�
; (29)

whereθ = ene0=(2ε0α(λ2+σ2)), δ ande0 are arbitrary constants.

4.2. Case II

If 1�λ2 f 00=(ene0µ0V2
A) = 0, then it turns out that

f =
ene0µ0V2

A

2λ
ξ+Dξ+E (30)

and

g= a2sinh

"
ξ
p

b=2p
σ1

+ log

�
1
a2

�#
� 2a

b
; (31)

wherea2
2 = (2=b)(c�4a2=b2); b= ene0α,

a= ene0�
�

ene0V2
Aσ2

ω2 + ε0ene0µ0V
2
A

�
;

σ1 = ε0σ2� ene0V2
Aσ2

Q2
1ω2

;

Q1 =
ene0µ0V2

A

λ2 :
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We next consider the current density inside the plasma which can be computed from

~J = e(ni~vi �ne~ve): (32)

Here we obtain the following expressions for the components of the current density in the
Case I and Case II:

Case I.

Jx = 0 if g= f = g1; (33a)

Jx =
ε0α2λω
4B0ωci

(λ2+σ2)

"�
2ene0

ε0α(λ2+σ2)

�2

�sech4(δ+
αξ
2
)

#
; if g= f = g2; (33b)

Jz =�ωene0

σ
eαψ if g= f = g1; (33c)

Jz =�ωene0

σ
eαψ
�
1� 1

2
sech2(δ+

αξ
2
)

�
if g= f = g2 : (33d)

Case II.

Jx =
ω
λ

�
ene0(1+αψ)� ε0

�
2D1+

bσ2

2σ1

�
ψ+

2a
b

���
; (34a)

Jz =�ωene0αω
σ

"�
1� 2aα

b

��
ψ+

2a
b

�
+

α
4

(
a4

2+2

�
ψ+

2a
b

�2
)#

: (34b)

Here,D1 = Q1λ2=2.
We can also calculate the magnetic field inside the plasma, which is actually one of the

most important experimentally observed quantities. For Case I and Case II, we have

Case I.

By =� 2ωλ
3ασV2

A

p
d

�
αd
2
� ene0

ε0(λ2+σ2)

�
tan

 
α
p

d
2

(ξ+e0)

!

�
"

2+sec2
 

α
p

d
2

(ξ+e0)

!#
for g= f = g1 (35a)
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By =�λωα
V2

A

�
ene0σ

ε0α(λ2+σ2)
� ε0(λ2+σ2)

6ene0σ
tanh(δ+αξ=2)

�
2+sech2(δ+αξ=2)

	�

for g= f = g2 : (35b)

Case II.

By =�ene0µ0ω
λ

�
��

1� 2aα
b
� ε0µ0V

2
A

�
σ

+
a2α
σ

(
1�
�

2� 2λ2

ε0µ0ω2

�
�1
)�

2ε0σ2

ene0σ2

�
1� λ2

ε0µ0ω2

��1=2
#

�cosh

"
ξ
p

ene0α=2p
ε0σ2(1�λ2=(ε0µ0ω2))

+ log

�
1
a2

�#
: (36)

5. Discussion

We now proceed to analyse the nature of the solutionsφ and ψ and that of cur-
rent and magnetic fields whose analytic expressions have been obtained above. In
Fig. 1, we show the variation of exp(αψ) versusξ for the caseφ = ψ, whereas

Φ = Ψ case

ex
p 

( 
   

  )
*1

0
α

Ψ
-7

ξ
-8 -6 -4 -2  0  2  4  6  8

3.52

3.48

3.44

3.40

3.36

3.32

3.28

Φ = /  Ψ case

Φ
 *

10
-2

3

ξ
-8 -6 -4 -2  0  2  4  6  8

12.0

10.0

 8.0

 6.0

 4.0

 2.0

 0.0

Fig. 1. The variation ofexp(αψ) with ξ when φ = ψ = (1=α)[logfαd(λ2 + σ2)

ε0sec2((α=2)
p

d(ξ+e0))g=(2ne0] = g1.

Fig. 2 (right). Variation ofφ with ξ, for theφ ==ψ case.
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Fig. 2 depicts that ofφ versusξ in the situationφ ==ψ. Both of these show and inverted
solitonic profile whereasψ for the later case is shown in Fig. 3 which clearly exhibits a
kink profile. One may note the similarity with a shock-like structure [7].

Φ = / Ψ case

Ψ
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Ψ
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 -8.0

-10.0

-12.0

Fig. 3. Variation ofψ with ξ, whenφ ==ψ.

Fig. 4 (right). Variation of the plasma current density (Jx) with ξ when φ = ψ =

(1=α) [logf2ene0=(ε0α(λ2+σ2)g�2logsech(δ+αξ=2)] = g2.

Φ = Ψ case
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Fig. 5. Variation of the magnetic field (By) with ξ whenφ = ψ = g2.

Fig. 6 (right). Variation of the magnetic field (By) with ξ whenφ = ψ = g1.

So, here is an interesting physical situation, where we have both the solitonic and kink-
type excitation simultaneously. Lastly, second solution of theφ = ψ case is exhibited in
Fig. 4. To understand the situation better, we have calculated the induced magnetic fieldBy
and the current componentJz which we show in Figs. 5 to 9. While Fig 5. clearly depicts a
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kink-type structure for the componentBy for the first case ofφ = ψ. Fig. 6 shows a slightly
different behaviour for the second case. On the other hand, in the situationφ ==ψ, theBy
component shows a saturation type tendency withξ. Among the Figs. 8 and 9 only Fig. 8
shows a solitonic behaviour for the current componentJz. The situation for the other case
is shown in the accompanying Fig. 9, which shows a quite different trend.

Φ = Ψ case
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y
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-2.0 -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  0.0

 -4.0

 -8.0

-12.0

-16.0

-20.0
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Φ = Ψ case
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Fig. 7. Variation of the magnetic field (By) with ξ whenφ ==ψ.

Fig. 8 (right). Variation of the current density (Jz) with ξ whenφ = ψ = g1.

Φ = Ψ case

-J
 *

10
-4

z

ξ∗103

-1.6 -1.2 -0.8 -0.4 -0.0  0.4  0.8  1.2  1.6
 0

 5

10

15

20

Fig. 9. Variation of the current density (Jz) with ξ whenφ = ψ = g2.

The situation discussed above is interesting due to the fact that these excitations give
rise to a D.C. current in the plasma in the steady state. Both the longitudinal and transverse
components of the current exist and exhibit a behaviour similar to a nonlinear wave except
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for a particular situation. Actually, by a D.C. current we mean a time averaged current. In
this connection, it may be mentioned that the possibility of producing a D.C. current by
using a wave has been extensively considered in the last few years [8,9]. The motivation
was that if such steady current can be generated in a tokamak [10], then it can be operated
continuously. Lastly, we may add a few comments about the idea of D.C. current. From
the basic law connectingJz andBy, we can define

Jz =

Z
Jzdn;

whenceJz = 2kxBy(y! ∞). Jz is proportional to the total longitudinal current in a slab of
unit width in y-direction. It is actually proportional to the total charge that passes through
unit area in unit time. In general, the average of any wave-like quantity is zero, but if
we think that we have a train of well separated solitons each following the other but not
interacting, then it is possible to have a non-zero value. That is why we term such aJz
current as a D.C. one.

Acknowledgements

One of the authors (M.K.A) is grateful to I.C.C.R. for a fellowship and to BAEC
(Bangladesh) for granting him leave which made this work possible.

References

1) X. X. Washimi and T. Taniuti, Phys, Rev. Lett.17 (1966) 966;

2) A. Roy Chowdhyry, G. Pakira and S. N. Paul, J. Plasma Phys.41 (1989) 447;

3) N. N Rao, P. K. Shukla and M. Y. Yu, Plasma Phys. Cont. Fus.32 (1990) 1221;

4) S. R. Sharma, R. S. Chabra and M. K. Mishra, Phys. Rev. A42 (1990) 2292;

5) P. K. Shukla, Phys. Rev. A34 (1986) 644;

6) B. B. Kadomtsev,Plasma Turbulence, Wiley, New York (1965);

7) K. Roy Chowdhury, A. Roy Chowdhury and S. N. Paul, Austral. J. Phys.47 (1994) 785;

8) N. J. Fisch, Phys. Rev. Lett.41 (1978) 873;

9) N. J. Fisch, Rev. Mod. Phys.59 (1987) 175.

10) B. Chakravorty,Plasma Mechanics, 2nd Edition, Wiley Eastern (1980).

FIZIKA A 7 (1998) 4, 193–204 203



ALAM AND ROY CHOWDHURY: NONLINEAR WAVES IN A MAGNETIZED . . .

NELINEARNI VALOVI U MAGNETIZIRANOJ PLAZMI – NOV PRISTUP

Načinili smo analizu nelinearnih valova u niskofrekventnoj magnetiziranoj plazmi niskog
β u izmijenjenom pristupu. Izveli smo dvije razliˇcite nelinearne jednadˇzbe. Obje imaju
solitonsko i skokovito rjeˇsenje. Solitonski se val ˇsiri koso u odnosu na smjer statiˇckog
magnetskog polja. Opaˇza se da i struja i magnetsko polje pokazuju solitonsku i skokovitu
strukturu. Raspravlja se fiziˇcko značenje tih nelinearnih uzbuda.
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