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Abstract

Amplitude analyses of B0 → J/ψ(1S)π−K+ and B0 → ψ(2S)π−K+ decays are presented.

The data correspond to the full LHCb Run 1 and Run 2 samples, which are much larger

than previously analyzed by the Belle and LHCb experiments in similar analyses. Many

more exotic ψ(nS)π− states are required for a good description of the data than disclosed

by the previous amplitude analyses. For the first time, significant contributions from exotic

ψ(nS)K+ states are observed. The JP = 1+ Z(4200)− state, previously established only in

the J/ψ(1S)π− mode, is confirmed and observed with the consistent mass and width in the

ψ(2S)π− mode. However, there are also a number of inconsistencies between the exotic states

required by the two data sets which point to theoretical limitations of modelling these decays

as a collection of resonances decaying only to K+π−, ψ(nS)π− or ψ(nS)K+. Possible future

directions in amplitude analyses of these decays are discussed.
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1 The Quark Model

The atomic nucleus was first discovered by Ernest Rutherford in the early 20th century

based on the results of a series of experiments conducted by his colleague Hans Geiger and

undergraduate student Ernest Marsden. Rutherford determined that based on the scattering

of α particles through gold foil that a massive, positively charged center must exist within

an atom. During additional experiments of striking various light elements with α particles

some years later, Rutherford recognized the presence of hydrogen atoms in his scintillators,

proving that “hydrogen nuclei” are present in the nuclei of other elements. This “hydrogen

nuclei” was in fact a proton, and this result is viewed as its discovery.

In the 1960s, electron beams with high energies (for the time) were used at the Stanford

Linear Accelerator (SLAC) for deep inelastic scattering experiments with a liquid hydrogen

target, and these experiments revealed point-like constituents inside the proton, dubbed

“partons”1 at the time. The discovery that the proton, and ultimately the neutron as well, was

not an elementary particle served as evidence for the quark model, which was independently

proposed by Murray Gell-Mann and George Zweig in 1964 to classify the numerous amount

of hadrons (i.e. particles experiencing strong interactions) that were being discovered at the

time. Hadrons, such as the proton, were determined to be made of valence quarks, gluons,

and sea quarks. The quark model catalogues hadrons according to their valence quark and

anti-quark content, which determine the quantum numbers of hadrons. Sea quarks are virtual

quark and anti-quark pairs that form when gluons split inside a hadron and annihilate each

other to form a gluon, and since they are much less stable than valence quarks, they do not

contribute to the quantum number determination of the hadron. Because of this, further

discussion on quark context will only refer to the valence quarks.

Hadrons are particles that contain quarks which are held together by gluons, which is the

gauge boson2 for the strong force. Strong interactions are well described by a quantum field

1The term parton nowadays refers to quarks, anti-quarks, and gluons collectively.
2A gauge boson is a particle that acts as an intermediary for a fundamental force.
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theory called Quantum Chromodynamics (QCD). Much like electric charge in relation to

the electromagnetic force, there exists a type of charge in relation to QCD known as color

charge. Quarks are color charged and can be red, green, or blue, while anti-quarks take on the

anti-colors of anti-red, anti-green, and anti-blue. To form bound states, color charges need to

be added in a way to form a colorless or color neutral state. This can be done in the simplest

manner by adding red, green, and blue (or the three anti-colors) or by adding a color and

its corresponding anti-color such as red and anti-red. A property called color confinement

exists in QCD: due to the strength of the strong force, when two color charges are separated,

rather than the bond between them be broken and the color charges be free, a corresponding

color-anticolor pair is created from the energy added into the system to form bonds with the

previous color charges. Thus, no free quarks can exist under normal conditions and can only

be found in colorless combinations with quarks and anti-quarks.

In the Standard Model, there are six known flavors of quarks: up (u), down (d), charm

(c), strange (s), top (t), and bottom (b), as can be seen in Figure 1. All quarks have a spin of

1/2 and have positive parity. The u, c, and t quarks have an electric charge of 2/3e, while

the d, s, and b quarks have an electric charge of -1/3e. The u, d, and s quarks constitute

the group called the light quarks, since their masses are much smaller than the remaining

quarks, and thus the c, b, and t quarks are called heavy quarks. Anti-quarks possess the

same quantum numbers but with opposite sign. These quantities along with the flavor of the

quarks are all conserved in strong interactions.
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Figure 1: The Standard Model. [3]

A quantity conserved in all decays is baryon number (B). All quarks have B=+1/3, while

anti-quarks have B=-1/3. Thus, the color neutral states formed from three quarks (qqq)

have a baryon number of 1 and are aptly called baryons. Their corresponding antiparticles,

qqq, have a baryon number of -1. The states formed from a quark and an anti-quark (qq̄)

have B=0 and are known as mesons. These are the simplest states that form a color neutral

configuration, and often are referred to as conventional hadrons. However, there are many

other ways to create a colorless states besides conventional mesonic and baryonic ones. As

discussed later in Section 3, mesonic molecules (qq)(qq), tightly bound tetraquarks (qqqq),

loosely bound baryon-meson molecules (qqq)(qq), tightly bound pentaquarks (qqqqq), or even

gluonic states such as (gg) gluonia or hybrid states (qqg) are all ways to form color singlets.

These various states are collectively called exotic hadronic states, as they possess more than

3 valence quarks or have valence gluons. Nothing in QCD expressly forbids the existence of

these states, and as such they could very well occur. However, such exotic hadrons might

decay so quickly that their masses may not be well defined via the Heisenberg’s Uncertainty

Principle (this mass ambiguity is known as particle width). Very large particles widths

would make them theoretically ill defined and experimentally difficult to identify. Even for
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reasonably narrow unstable hadrons, known as resonances, production rates in experimentally

accessible environments can be very small. Resonances are identified by detection of their

decay products to stable particles directly observable in particle detectors. Invariant mass of

the decay products serve as measurements of their mass and width. Angular correlations

between the decay products serve as determination of their intrinsic angular momentum

(spin) and parity (property under mirror reflection). Amplitude analysis is an experimental

method which allows for the analysis of resonance masses and of angular correlations at the

same time.

For a long time, it was not clear if exotic hadrons in experimentally identifiable form

existed at all. Recent results from Belle and LHCb have provided strong evidence for

resonances with heavy quarks, inconsistent with conventional hadrons, that are tetraquark

and pentaquark candidates, and many analyses are ongoing to identify additional exotic

states. This thesis deals with investigation of tetraquark candidates in decays of B0 mesons

(b̄d states) to a vector (JP = 1−, where J is spin and P is parity) charmonium mesons (cc̄

states) denoted as ψ particles, charged pion meson π− (dū ground state) and charged kaon

meson of opposite electric charge K+ (ground us̄ state). In this thesis, charged conjugate

states are automatically implied, thus we study both B0 → ψπ−K+ and B̄0 → ψπ+K−

decays. Such decays are due to weak decays of bottom quarks, b → cc̄s. Charged pions

and kaons are stable with respect to strong interactions and have sufficiently long lifetimes

such that, once produced, they usually go through many particle detector layers, in which

their momentum and charge are measured. Also their mass (distinguishing pions from kaons

and from other charged stable particles) is identified with dedicated detector layers. We

investigate two vector charmonium states corresponding to the first (n = 1) and second

(n = 2) radial excitations of the triplet (quark spins aligned to total quark spin of Scc̄ = 1)

S-wave (angular momentum between quarks Lcc̄ = 0) cc̄ states. Such particles, denoted as

J/ψ (we sometimes denote it as J/ψ(1S)) and ψ(2S), have suppressed strong decays and

therefore decay with reasonably large branching fractions via electromagnetic annihilation
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to dimuon pairs, ψ(nS) → µ+µ−. Muons are heavier versions of electrons. Their momenta

and charges are measured in the same way as other charged particles, but their identity is

established by the muon’s ability to penetrate a significant amount of dense material, as

muons lack strong interactions.

The studied decays of B0 mesons are dominated by the production of intermediate neutral

kaon excitations (ds̄ states), generically denoted K∗0, B0 → ψ(nS)K∗0, K∗0 → K+π−.

Strong decays of K∗0 resonances are associated with the generation of uū pairs out of their

excitation energy. However, there is also a possibility of observing resonances in ψ(nS)π−

or ψ(nS)K+ subsystems. Such resonances are necessarily exotic, as their minimum quark

content is cc̄dū and cc̄us̄, respectively. We denote them as Z− and Z+
K resonances (other

common conventions to denote them are Z−
c and Z+

cs states). Extra light quarks (u or ū)

needed to form them are easily generated via strong interactions accompanying the weak

decays in B0 disintegration (e.g. in B0 → Z−K+ intermediate decay).

We first describe the experimental set-up, before we turn to a more detailed discussion of

the selected physics topic and the amplitude analysis of the data.
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2 Detector Description

2.1 The Large Hadron Collider

The Large Hadron Collider, the largest and highest energy particle collider, is located on the

border between France and Switzerland and is housed by CERN - the European Organization

for Nuclear Research. The LHC was built to collide beams of protons with a center-of-mass

energy up to
√
s = 14 TeV. An overview of the 27-kilometer circumference collider is provided

in Figure 2 and details the many subaccelerators that feed to the LHC as well as the currrent

experiments and their relative positions along the ring. Providing 50 MeV of energy, the

linear particle accelerator LINAC2 accelerates hydrogen ions into the Proton Synchotron

Booster (PBS), which further accelerates the protons to 1.4 GeV. During the long shutdown

2 (LS2), LINAC2 was replaced with LINAC4, which provides 160 MeV protons, and the PBS

accelerates the protons to 2.0 GeV. Following the PBS is the Proton Synchotron (PS) and

then the Super Proton Synchotron (SPS), where protons achieve energies of 26 GeV and 450

GeV, respectively. After the SPS, the protons are finally injected into the main LHC rings,

where two proton beams are accelerated up to their final energies of a few TeV in opposite

directions using separate beampipes. These beampipes are held at extremely high vacuum

pressure (∼ 10−7 Pa) to avoid collisions with gas molecules, and the pressure is even lower

near the Interaction Points (∼ 10−9 Pa), making it the emptiest space in the Solar System.

The protons are accelerated and guided in the beampipes by strong magnetic fields, which

are maintained by superconducting magnets that must be held at cryogenic temperatures

(∼ 5 K). The proton beams are actually not continuous but consist of discrete bunches of

1011 protons each, separated by ∼ 25 ns corresponding to a bunch-crossing rate of 40 MHz.

The beams circulate and collide at the predesignated interaction points - where the ALICE,

ATLAS, CMS, and LHCb experiments’ detectors are located - for approximately 10-20 hours

until the beams are depleted and need to be dumped and replenished.
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Figure 2: Arrangement of CERN’s subaccelerators and experiments. [4]

2.2 The LHCb Experiment

The LHCb detector is a single-arm forward spectrometer, with a primary goal of precision

measurements of CP violation and studies of the decays of bottom and charm quarks. The

layout of the detector is shown in Fig. 3, and descriptions of the subdetectors are in the

following sections. The angular acceptance of the LHCb detector is 10-300 mrad in the

magnet bending place and up to 250 mrad in the vertical plane, which corresponds to a

pseudorapidity3 range of 1.8 < η < 4.9. The choice of this forward geometry is due to the

tendency of the directions of b and b̄ quarks produced at LHC energies to be along the beam

line, as can be seen in Fig 4, which shows the polar angles of the b and b̄-hadrons produced

in
√
14 TeV collisions as simulated in Pythia.

The LHC was able to operate at a design maximum instantaneous luminosity, L ≈

1034cm−2s−1, which was two orders of magnitude above the operational instantaneous lu-

minosity of the design of the LHCb detector, which was 2× 1032cm−2s−1. The beams were

3Pseudorapidity is defined as η ≡ − ln
[
tan

(
θ
2

)]
, where θ is the polar angle of the particle momentum

with respect to the beam. At hadron colliders, particle production from beam fragments is approximately
constant in η. Large η values correspond to small values of θ, thus so called ”forward” direction close to the
beam direction.
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Figure 3: A cross section of the LHCb detector [5]

Figure 4: Production angles for bb̄ pairs with respect to the beam line. The LHCb acceptance is in
red.

[8]

defocused at the LHCb interaction point to produce instantaneous luminosities of up to

4 × 1032cm−2s−1. Higher instantaneous luminosities correspond to more interactions per

second, resulting on average in more proton-proton collisions per bunch crossing (since the
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bunch crossing frequency is fixed at 40 MHz), while lower instantaneous luminosities represent

less busy events (on average).

During Run 1 (at which the LHC operated at
√
s =7 TeV in 2011 and 8 TeV in 2012)4,

the LHCb experiment collected data equivalent to a time integrated luminosity (Lint =
∫
Ldt)

of 3 fb−1 (1 fb−1 = 1039cm−2), while in Run 2, the experiment recorded data samples with an

integrated luminosity of 6 fb−1, during which the LHC operated at
√
s =13 TeV in 2015-2018.

Integrated luminosity multiplied by cross-section (specially normalized probability) for a

given reaction gives a number of events containing such reaction produced by the collider in

the detector. The cross-section for the production of bb̄ quark pairs increases with the beam

energy and is of the order of 102 µb (1 b=10−24 cm2) in the LHCb pseudorapdity range [9].

Less than a third of b̄ quarks create B0 mesons. An even smaller fraction of B0 mesons

decay to the channels under study here, BF (B0 → J/ψπ−K+) = (1.15± 0.05)× 10−3 and

BF (B0 → ψ(2S)π−K+) = (0.58± 0.04)× 10−3 [2]. The J/ψ channel is further favored over

the ψ(2S) channel, because of the larger dimuon branching fraction, BF (J/ψ → µ+µ−) =

(5.96± 0.03)× 10−2 as compared to BF (ψ(2S) → µ+µ−) = (0.80± 0.06)× 10−2 [2]. Only a

fraction of the produced events containing the channels we analyze produce the final state

particles in a configuration in which they can be properly reconstructed in the LHCb detector

and selected for physics analysis (this fraction is called efficiency). Data selection is necessary

to find events of interest (“signal”) among more frequently produced background events, and

occurs at the data collection stage (“triggering”), off-line standard filtering (“stripping”),

and our own data selection, as described below.

2.3 Tracking System

The tracking system of LHCb is composed of the Vertex Locator (VELO), the dipole magnet,

and the tracking stations. There are four tracking stations: TT, T1, T2, and T3, and the

layout of the tracking stations can be seen in Figure 5 along with the different types of tracks

4Here, s is the center-of-mass collision energy squared.
√
s is twice the beam energy.
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seen in LHCb. The TT, or Tracker Turicensis, is located directly upstream from the dipole

magnet, while the T1, T2, and T3 tracking stations are downstream of the magnet. The

tracking system is crucial in the LHCb detector to determine the locations of primary and

secondary vertices as well as measuring the momentum and charge of a particle based on how

much it bends in the magnetic field. Descriptions of the various subdetectors and components

that make up the tracking system are in the following subsections.

Figure 5: The components of the LHCb Tracking System. Different types of tracks are shown and
distinguished by what subdetector components see them. [6]

2.3.1 Vertex Locator

The Vertex Locator (VELO) encompasses the interaction point where the proton beams collide

and provides precise measurements on the positions of charged tracks near the interaction

region. Given the lifetimes of b and c-hadrons, the VELO is vital to reconstruct the production

and decay vertices of such hadrons, as they can travel several millimeters in the lab frame

before decaying, and the VELO is also able to measure the impact parameter of particles

with respect to the primary vertices. The determination of detached vertices assists in the

performance of the High Level Trigger as discussed in Sec. 2.5.2. The VELO consists of

2× 21 silicon modules which enclose the beampipe in several stations: half of the modules

are responsible for measuring the radial position (r) of tracks, while the other half measure

the angular position (ϕ) of tracks. The r modules and ϕ modules are mounted back-to-back,

and the position of each station provides the z-coordinate to provide a full three dimensional
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measurement of each hit. The aperture needed for the beam injection is larger than the radial

distance between the beampipe and the VELO, thus VELO is designed to be retractable

such that the beam can be focused over time. These open and closed configurations can

be seen in Fig. 6a. A wall of corrugated aluminum shields the VELO modules from the

radio frequency radiation generated by the beams, and this wall is designed to be as thin as

possible to minimize multiple scattering while still being vacuum-tight.

(a) The top image shows an overview of the VELO
in the (x,z) plane, and the bottom figures depict the
closed and open configurations of the VELO as seen
in the (x,y) plane.

(b) Overview of the staggering arrangement of r and
ϕ sensors in the VELO

Figure 6: Depictions of the VELO detector.

2.3.2 Dipole Magnets

The dipole magnets are used to measure the momentum of charged particles in the LHCb

detector. Two saddle-shaped aluminum coils are mounted symmetrically as seen in Figure 7

in a window-frame yoke. The magnetic field is vertically oriented in the y-direction, so as

charged particles traverse the magnetic field, their trajectories bend based on their momenta.

The integrated magnetic field for tracks of 10 m in length the lab frame is 4 Tm. The magnet

polarity within LHCb can be reversed, and this is done periodically during data taking to

study detector asymmetry which impacts CP violation measurements. The magnet thus
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spends equal time in the “up” and “down” polarities to avoid systematic biases in these

studies.

Figure 7: Depiction of the LHCb dipole magnet with dimensions in mm.

2.3.3 Silicon Tracker

The Silicon Tracker (ST) is comprised of the Tracker Turicensis (TT) and the Inner Tracker

(IT). They both consist of silicon microstrip sensors, which have a strip pitch of approximately

200 µm, giving a spatial resolution of 50 µm. The TT’s acceptance matches that of the full

detector, and the IT covers only a 120 cm wide and 40 cm high area in the center of the three

downstream tracking stations. Each station within the ST contains four layers arranged in a

(x− u− v − x) configuration, in which the outer layers have vertically aligned silicon strips

and the two inner layers have strips rotated by a stereo angle of −5◦ and +5◦, respectively.

The TT consists of half modules that cover half of the acceptance of the detector and

combined form full modules that give the full acceptance, as seen in Figure 8a which shows

the v layer of the TT. Each half module has seven silicon sensors which are arranged into

two or three readout sectors, depending on how far form the beampipe the module is located.

The first two layers consist of 15 full modules, and the last two layers have 17 full modules.
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To minimize gaps in the acceptance, the neighboring modules are staggered in z and overlap

in x. The readout electronics are mounted at the end of the modules, which minimizes the

multiple scattering within the active area of the detector.

The IT consists of three stations, each of which has four detector boxes around the

beampipe. Each box has four layers of silicon strips with a pitch of about 200 µm and the

same (x− u− v − x) configuration with a stereo angle of 5◦. Each layer has seven modules,

with adjacent modules again staggered in z and overlapping in x. The top and bottom

modules have a single silicon sensor each while the modules in the side boxes have two silicon

sensors, and an example of a layer within the IT is seen in Figure 8b.

(a) Depiction of the third TT layer (v layer). (b) Vertically aligned IT layer.

Figure 8: Layers within the different ST stations.

2.3.4 Outer Tracker

The Outer Tracker (OT) is a series of drift time detectors located at the T1, T2, and T3

positions around the IT to cover the remaining acceptance of the detector. Each station

consists of gas-tight straw-tube modules of inner diameter 4.9 mm containing a mixture of

70% Argon and 30% CO2 and is arranged in four layers, following the same (x− u− v − x)

configuration as in the ST. The gas mixture provides a maximum drift time of 50 ns and a

drift coordinate resolution of 200 µm. The arrangement of the OT stations and their relative
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positions compared to the ST is shown in Figure 9.

Figure 9: The three OT stations (light blue) and the components of the ST (purple).

2.4 Particle identification

Particle identification is performed by two Ring-Imaging Cherenkov (RICH) detectors and a

muon system and is a critical part of many analyses at LHCb. By combining the information

collected by these detectors, the probability of being a specific particle is calculated, allowing

for better discrimination between signal and background.

2.4.1 RICH

The RICH detectors enable LHCb to separate hadrons from one another. When a charged

particle moves through a dielectric medium at a speed greater than the phase velocity of light

in that medium, it emits electromagnetic radiation in a cone with an opening angle, θc. This

angle depends on the speed of light, c, the refractive index, n, of the dielectric material, and

the velocity of the particle, v, by the relationship cos θc =
c
nv
. Using the measurements of the

trajectories and momenta from the tracking system combined with the measured θc from the

RICH detectors, the mass and charge of a particle can be calculated, and with these, the
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likely identity of a particular particle can be determined. Since the momentum spectrum of

particles depends on the polar angle of the cone, covering a large range of momenta improves

the ability to distinguish particle identities. This is why the LHCb uses two RICH detectors

with different radiator materials to cover different areas of the momenta spectrum. RICH1

uses C4F10 as well as aerogel, with the goal of mainly targeting low momenta particles as

RICH1 lies upstream of the magnet. A plot showing the polar angle vs the momentum of the

particle in different radiator media is found in Figure 10a, and the polar angle as a function

of the momentum for RICH1 can be found in Figure10b. It covers the full angular acceptance

of LHCb and a momentum range of 1− 60 GeV. Downstream of the magnet lies RICH2, and

it covers a smaller angular acceptance (≈ ±15 mrad to ±120 mrad horizontally and ±100

mrad vertically). Using a CF4 radiator, RICH2 covers a high momentum range of ≈ 15− 100

GeV.

(a) The opening angle v. the particle momentum in
different radiator media shown for multiple particles.

(b) The opening angle vs. the particle momentum in
the RICH1.

Figure 10: RICH detector measurements of opening angles versus particle momenta.

RICH1 and RICH2 both use spherical and flat mirrors to focus the Cherenkov radiation

and reflect the image out of the acceptance of the main detector. Hybrid Photon Detectors

(HPDs) are used by both RICH detectors to measure the Cherenkov radiation in a wavelength

range of 200 − 600 nm and form the cone that originates from the charged track. RICH1
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uses a vertical optical layout, while RICH2 uses a horizontal optical layout, as can be seen in

Figure 11.

(a) Side view of the RICH1 detector. (b) Overhead view of the RICH2 detector.

Figure 11: RICH detector layouts.

2.4.2 Calorimeters

Downstream from the tracking stations is the calorimeter system in LHCb. The two main

calorimeters are the Electron Calorimeter (ECAL) and the Hadron Calorimeter (HCAL),

and upstream of these rest two more detectors: the Scintillating Pad Detector (SPD) and

the PreShower detector (PS). These detectors all use scintillation material to detect showers

of particles as they pass through. When particles pass through these scintillators, they lose

energy and emit light. The scintillation light produced is transmitted via wavelength-shifting

(WLS) fibers to photomultipliers, which have an increased efficiency for longer wavelength

photons. The detectors are segmented in the x− y plane with increased segmentation near

the beampipe, as seen in Figure 12.
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Figure 12: The segmentation of one-quarter of the SPD/PS and ECAL (left) and the HCAL (right).

The SPD/PS detector system contains two planes of scintillator pads with a lead converter

layer in between. Since the showers are generated when particles pass through the lead layer,

the SPD only detects charged tracks, while the PS can detect the existence of neutral particles

when the electromagnetic showers pass through the detector. This allows backgrounds from

neutral pions to be reduced by checking for hits in the SPD. Additionally, the backgrounds

of charged tracks are reduced by the longitudinal segmentation of the electromagnetic shower

detection in the PS. Both the SPD and PS assist the ECAL in the first trigger level (discussed

more in Section 2.5.1 by providing the transverse energies of hadrons, electrons, and photons

in addition to providing additional positional information about these candidates.

The ECAL and HCAL are sampling calorimeters: the ECAL is mainly responsible for

discriminating between electrons, photons, and neutral pions by recording the remaining

electromagnetic shower after the PS, and the HCAL identifies hadrons through hadronic

cascades. Both detectors use alternating scintillator and absorbing layers. The ECAL uses 4

mm thick scintillator tiles and 2 mm thick lead layers over a 42 cm distance, and the HCAL

uses 4 mm thick scintillators and a 16 mm thick iron layer. The HCAL’s thickness is limited

to 5.6 nuclear interaction lengths due to space constraints and thus can only provide an

estimation of the hadron energies, since the HCAL does not absorb the full hadronic shower.

2.4.3 Muon system

The muon system is located the furthest upstream in the LHCb detector, designed to identify

muons as they are the only charged particle able to pass through the whole Calorimeter

system. It consists of 5 stations (M1-M5) with 80 cm thick iron absorber walls between
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the M2-M5 stations, which necessitate that a muon has momentum of at least 6 GeV to

penetrate all the stations. A layout of the muon system can be seen in Figure 13. The M1

station is location upstream of the calorimeter system, while M2-M5 are downstream of

the HCAL. These stations are responsible for improving the measurement of high pT muon

triggers (to be discussed in Section 2.5.1) and for muon identification information for the

HLT (Section 2.5.2) and in offline analysis.

Figure 13: Layout of the muon system.

The muon stations are each made up of four regions (R1-R4), with each region representing

a range of distances from the beampipe, where R1 is the closest. Every region uses Multi-Wire

Proportional Chambers (MWPCs) except for R1 of M1, which instead uses triple Gas Electron

Multiplier (GEM) detectors due to their high radiation tolerances. As R1 of M1 is the most

radiation intense region of the muon system, it is necessary to use such detectors instead

in this region. The MWPCs use two cathode planes with a plane of wires in between, and

the space between is filled with a gaseous mixture of Ar/CO2/CF4 at a ratio of 40:55:5,

respectively. When an ionizing particle passes through the chamber, electrons and other

ions are created and pulled towards the wires. With a sufficiently strong enough electric
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field, these ions and electrons accelerate to high enough energies to further ionize the gas and

create additional electrons and ions via a Townsend avalanche, which ultimately creates an

electrical signal to identify which chamber was ionized by a particle and thus where the hit

took place.

The GEM detectors are made of 50 µm thick insulating kapton foil with a 5 µm thin

copper layer on each side. The foil is chemically perforated to create a high density of

hourglass-shaped holes, with an external diameter of 70 µm, an internal diameter of 50 µm,

and a pitch of 140 µm. These holes improve the gain of the detector by applying a voltage

difference between the two copper layers, generating a high electric field within the holes.

As these are triple GEM detectors, three of these foils are stacked and sandwiched between

the cathode and anode plates, allowing for even higher detector gain. Thus, when a particle

passes through the gaseous mixture with the triple GEM detector, the ions and electrons

generated can reach high enough energies to trigger an avalanche similar to the ones in the

MWPCs. The GEM detectors also use a mixture of Ar/CO2/CF4 but at a ratio of 45:15:40.

2.5 Trigger System

The rate at which events with enough measured information take place in the LHCb detector

is too high to record them all on disk. These so-called visible interactions occur when there

are at least two charged tracks seen by the tracking system. While pp collisions occur within

LHCb at a rate of 40 MHz, visible interactions happened at a rate of approximately 10-15

MHz in run 1, and this rate was roughly double in run 2. It is the role of the trigger system

to reduce the rate to a manageable level to save, including filtering out uninterested decays

which are not useful for physics analyses. In Run 1, this rate was 2-5 kHz, but this increased

to 12.5 kHz in Run 2 due to improvements in the ability to store larger number of events

for further analysis. To achieve this rate, the initial reduction comes from the level-0 (L0)

hardware trigger, which bases its decisions using information from the muon system and

the calorimeters, outputting data at 1 MHz. Next, the High Level Trigger (HLT) operates
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asynchronously with the collisions taking place by running on a processor farm and reduces

the rate further down to the final rate for storage. An overview of the schema used for the

triggers for run 1 and run 2 can be seen in Figure 14 and will be explained in more detail in

the following sections.

(a) Run 1 trigger scheme. (b) Run 2 trigger scheme.

Figure 14: LHCb trigger schema for Run 1 and Run 2.

2.5.1 L0 Trigger

The L0 hardware trigger is responsible for the first reduction in the data rate by looking for

high transverse momentum (pT) particles within the calorimeter and high pT muons in the

muon system, both of which are decent indications of a heavy particle decaying. This is done

through three independent triggers: the L0-Calorimeter trigger, the L0-Muon trigger, and
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the L0-PileUp trigger. The L0-PileUp trigger uses two pile-up modules located upstream

of the VELO and was designed to reject events that had too many visible interactions, but

since LHCb experience a higher average number of visible interactions per event, this trigger

is only used for the determination of luminosity.

The L0-Calorimeter trigger collects information from the entire calorimeter system to

determine if an event should be recorded. The transverse energy, ET, is computed by looking

at the deposits from incident particles in 2× 2 cell clusters, and from these, three different

candidate species are constructed: L0Hadron, which is the highest ET cluster from the

HCAL and also contains the corresponding ECAL cluster energy; L0Photon, which is the

highest ET ECAL cluster that has 1 or 2 PS hits and no corresponding hits in the SPD; and

L0Electron, which is the same as L0Photon except that there is at least one hit in the SPD

that corresponds to the PS hits. A ET threshold exists for each candidate type, and if that

threshold is met for any candidate type, then the L0 trigger is fired. Similarly, a maximum

threshold of SPD hits is used to veto events that would take too long to process the event in

the HLT. These values are in Table 1 for both Run 1 and Run 2.

Table 1: Thresholds used for L0 trigger in Run 1 and Run 2. The values represent a minimum
threshold for ET or pT in GeV and a maximum threshold for SPD hits.

L0 Trigger ET or pT threshold SPD threshold
2011 2012 2015 2016 2017 Run 1 Run 2

Hadron 3.50 3.70 3.60 3.70 3.46 600 450
Electron 2.50 3.00 2.70 2.40 2.11 600 450
Photon 2.50 3.00 2.70 2.78 2.47 600 450
Muon 1.48 1.76 2.80 1.80 1.35 600 450
Muon high pT - - 6.00 6.00 6.00 - none
DiMuon (pT1 × pT2) (1.30)2 (1.60)2 (1.69)2 (2.25)2 (1.69)2 900 900

Similar to how the L0-Calorimeter trigger works, the L0-Muon trigger checks for the

two highest pT tracks in each quadrant of the muon system. The pT of muon candidates is

estimated based on the direction of the track with the assumptions that the muon came from

the interaction point and that the path of the muon was bent by the magnetic field once.

The pT resolution is approximately 25% averaged over the relevant pT range. The trigger is
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fired either if the largest pT muon is above the L0Muon threshold or if the product of the two

largest pT values is above the L0DiMuon threshold. A special high pT single muon line exists

that checks for a higher threshold than the default single muon line, but it has no maximum

threshold for SPD hits. This trigger is used in analyses of electroweak production, and the

SPD threshold is removed to not have systematic uncertainties dealing with determining the

efficiency of the SPD threshold. These values are also found in Table 1 for both Run 1 and

Run 2.

The L0DecisionUnit (L0DU) is passed the information from the various subdetector

systems at the collision rate of 40 MHz and renders the final decision of the L0 for an

event. Based on beforehand knowledge of the number of collisions LHCb will experience, the

thresholds for the different trigger decisions are tuned such that following a logical OR of the

trigger decisions made by the L0DU, the L0 output rate is approximately 1 MHz.

2.5.2 HLT

The HLT is a two-stage software trigger that runs on the output from the L0 trigger. It runs

on the Event Filter Farm (EFF), which processes the events in parallel on 1,700 nodes with

27,000 CPU cores as of Run 2. The goal of the HLT is to reduce the data rate of 1 MHz from

the L0 trigger to a value that can be reasonably recorded onto disk. Given that the HLT has

a limited amount of computing resources, this goal is accomplished by first rejecting a large

amount of uninteresting events using partial reconstruction (done in the HLT1) and then a

more complex veto after performing typically full reconstruction on the event (done in the

HLT2).

The HLT1 does its partial reconstruction by performing a precise reconstruction of the

primary vertices and of the trajectories of charged particles that go through the entire LHCb

detector (so-called ”long tracks”) that have a pT > 500 MeV. To form long tracks, a sequence

of algorithms is performed, as can be seen in Figure 15. First, VELO hits are reconstructed

into straight lines that point towards the beam line to create VELO tracks. Then using

22



three hits in the TT that appear to form a straight line from the VELO, upstream tracks are

created. Since the TT is in the fringe area of the magnet, the momentum can be calculated

with a resolution of approximately 20%, which allows for the rejection of low pT tracks. By

matching long tracks with TT hits, fake VELO tracks are able to be identified and thus

reduced in number. VELO tracks that have a low impact parameter are not able to deposit

energy in the TT and thus are passed in the HLT without requiring hits in the TT. Upstream

tracks are searched for in a window that is defined by the maximum deflection of a charged

particle with pT > 500 MeV for Run 2. This value is lower than in Run 1, because in

Run 2, the search is limited to one side of the straight line extrapolation as the charge of

the upstream track is able to be estimated. Based on the track upstream and a hit in the

downstream tracking stations, the momentum is determined, and hits are projected into a

common plane, and then finally by checking for hit clusters, a long track can be identified.

After tracks are formed, they are all fit with a Kalman filter that is the same as used in offline

reconstruction and uses an improved simplified geometry description of the detector from

Run 1 to Run 2. This optimizes parameter estimation of the tracks and takes into account

multiple scattering from the material budget of the detector. The fake track rejection has

reduced the rate of events passing through this step in the HLT1 by 4%.

The HLT1 also identifies muons beginning with the fully fitted tracks. The geometry of

the detector makes the muon identification algorithm momentum dependent: tracks that

have momentum p < 3 GeV cannot be identified as muons as they would not have enough

energy to reach the muon system. The next momentum range is between 3 and 6 GeV, in

which hits in M2 and M3 are required to identify a muon. Above 6 GeV and below 10 GeV,

a hit in either M4 or M5 is needed in addition to the hits in M2 and M3. Above 10 GeV,

hits are required in M2-M5 to identify a muon. This algorithm is also used in HLT2 and

offline, but in HLT1, the track reconstruction is only done for tracks with pT > 500 MeV. For

particles with pT below this, an additional muon identification algorithm is used. Upstream

tracks are extrapolated to M1-M5, and hits are searched near the extrapolation. If hits are
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found in the muon system, then the VELO-TT tracks are also extrapolated with a bend

from the magnetic field based on the momentum estimation of the track. Hits that do not

already belong to reconstructed long tracks are checked to see if they correspond to the

upstream-muon system tracks segments. This allows for muon identification down to a pT ≈

80 MeV at only a small computational cost to the trigger system.

Figure 15: Process through which the HLT1 performs track and vertex reconstruction.

Roughly 55 kB per event pass the HLT1, so with a disk buffer on the EFF of approximately

10 PB, the HLT2 can operate on two weeks of HLT1 data. The HLT2 performs full event

reconstruction to further reduce the data rate of about 150 kHZ coming out of the HLT1.

The process begins with track reconstruction of charged particles, using the full information

from the tracking system and finishing any pattern recognition steps omitted from HLT1

due to time constraints. This provides high-quality long and downstream tracks with very

precise momentum estimation, and similarly, neutral particle reconstruction algorithms are

also executed. Lastly the HLT2 performs particle identification using the RICH detectors,
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the calorimeter system, and the muon system. This enables the HLT2 to render decisions on

many decision lines, reducing the data rate to a final 12.5 kHz for storage.

Figure 16: Process through which the HLT2 performs track and vertex reconstruction.

Many decision lines exist in the HLT: 20 in the HLT1 and 500 in the HLT2. The

HLT1 renders a decision on two inclusive lines that look for high pT tracks, one with a single

displaced track and the other with a displaced two-track vertex. It also has lines dedicated to

select muonic decays of b and c hadrons and muons from W and Z boson decays, such as a

displaced muon with high pT line and a high pT muon line with no displacement requirement.

Lines also exist in the HLT1 to calibrate the trigger, select events with low multiplicity, and

select a few exclusive lines such as two-body beauty and charm hadron decays. The HLT2 has

many trigger lines, both inclusive and exclusive. The bandwidth of the HLT2 is dominated

by the topological b-hadron, inclusive c-hadron, and dimuon trigger lines as well as a large

number of exclusive c-hadron TURBO trigger lines.

25



2.6 Data Flow

Both real data stored by the HLT2 from the detector and simulated Monte Carlo data require

additional processing before they are used in offline analyses, as can been seen in Figure 17.

This processing is done by a suite of packages developed on the Gaudi framework in order to

provide physicists data files that only contain the information relevant to their analysis. For

simulated data, the Gauss project uses Pythia and EvtGen to generate pp collisions and

simulate the decays of the produced particles, and Geant4 is used to simulate the detector

geometry and the propagation of the physics generated by Pythia and EvtGen through

the detector. Following this, the Gauss output is run through the Boole project to emulate

the detector’s electronics, converting the geometrical hits into signals that are very similar

to the output generated by the detector itself, which allows for simulated data at this point

to follow the same pipeline for data processing. The next step for real data or Monte Carlo

data is the HLT stage (as discussed previously in Section 2.5.2), which is handled by the

Moore package. To create tracks, vertices, and hit clusters, data is then run through the

Brunel package which performs a full reconstruction of the triggered data and contains all

the information from an event. Data is further processed and filtered through the stripping

process, which applies loose cuts specific to certain decays and studies. Each specific set of

cuts corresponds to a stripping line, and the stripping lines for decay channels that are similar

and come from similar physics processes are grouped into streams. This process is conducted

by the DaVinci project and is done by the collaboration to ease the processing needed each

time a user reconstructs data.. Finally, also using the DaVinci project, data can be acquired

from these streams, providing the information needed for offline physics analysis.

26



Figure 17: Flowchart depicting the data flow within LHCb for Run 2.
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3 Tetraquark candidates observed in B0 → ψ(nS)π−K+

decays

Belle observed the first charmonium-like charged state, Z(4430)−, in the ψ(2S)π− mass

spectrum in 2007 analyzing B → ψ(2S)πK decays [10]. The minimal quark content of such

a state is (cc̄dū). Using a two-dimensional amplitude analysis (i.e. “Dalitz analysis”), Belle

updated their result in 2009 using a fit of a decay amplitude to m2
Kπ and m2

ψ(2S)π distributions

with known K∗0 resonances and the exotic Z(4430)− resonance [11]. They claimed preference

of a model with Z(4430)− over a model with only K∗0 resonances by 6.5σ. The mass of

the Z(4430)− was determined to be 4443+15
−12

+19
−13 MeV, and its width was determined to

be 107+86
−43

+74
−56 MeV. In 2013, Belle updated their analysis further with a 4D amplitude fit,

using the masses, the ψ(2S) helicity angle, and an angle between the decay planes of the

intermediate resonances [12]. They measured the mass and width of the Z(4430)− to be

4485± 22+28
−11 MeV and 200+41

−46
+26
−35 MeV, respectively. Given the construction of the helicity

amplitudes, they were also able to probe the quantum numbers and found a preference of

JP (Z) = 1+ over other hypotheses by 3.4σ.

BaBar analyzed their B → ψ(2S)πK and B → J/ψπK data with a different approach,

determining the angular moments of cos θK∗ (K∗0 helicity angle) as a function of the K+π−

mass [13]. For a given mKπ value, there is a one-to-one correspondence between the cos θK∗

and mψπ variables. The angular moments for their B → ψ(2S)πK and B → J/ψπK data

appeared consistent within the errors, thus they assumed they should be the same for a

given mKπ value. They had no statistically significant peaks in the mJ/ψπ distribution, so

they also assumed that the B → J/ψπK data were free of J/ψπ− resonances. Using the

angular moments determined in the higher statistics B → J/ψπK data and the observed

mKπ distribution in B → ψ(2S)πK data, they predicted the mψ(2S)π mass distribution in

the B → ψ(2S)πK sample. BaBar claimed that there was no need for a Z(4430)− resonance

to explain their data within the errors of their analysis approach. Their upper limit, however,
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did not contradict Belle’s claim.

In 2014, LHCb confirmed presence of the Z(4430)− → ψ(2S)π− resonance (with signifi-

cance of 14σ) in B0 → ψ(2S)π−K+ decays using Run 1 data (3 fb−1) and the 4D amplitude

analysis with ∼10 times larger signal statistics than available in Belle or BaBar [7]. The

mass and width of Z(4430)− were determined to be 4475 ± 7+15
−25 MeV and 172 ± 13+37

−34

MeV, respectively. Its quantum numbers were established to be JP = 1+ at 9.7σ. Resonant

character of Z(4430)− was demonstrated on an Argand diagram. The analysis also produced

evidence for a significant structure at lower mψ(2S)π mass, ∼ 4240 MeV, with a large width,

200− 700 MeV, which could be attributed to either 0− or 1+ partial wave.

LHCb also demonstrated, with a high significance, presence of exotic hadron structures in

the B0 → ψ(2S)π−K+ decays using semi-model-independent approach [7, 14] similar to the

method used by BaBar [13]. This approach makes assumptions only about the highest spin

of the π−K+ partial waves contributing to the data at a given mKπ. In quark model, high

spin resonances require a high value of relative angular momentum between constituent sd̄

quarks inside an excited kaon, which necessarily means a high mass value of the resonance.

Therefore, lower mKπ values are expected to be populated by low-spin partial waves. In this

method, unlike in the amplitude analysis, it is not necessary to specify the exact number

and parameters of the contributing K∗0 resonances. An outcome of such an analysis is to

assess consistency of the data with the hypothesis that only conventional K∗0 resonances

can contribute. In case of inconsistency, the semi-model-independent approach is not able to

characterize composition of the exotic structures, or even distinguish between ψπ− or ψK+

exotics. This approach is also sensitive to only relatively narrow exotic structures, as broader

structures contribute to low-spin K+π− partial waves and “self-subtract” [15].

In 2014, Belle analyzed the B → J/ψπK data with the 4D amplitude fit [16]. They claimed

to observe (6.2σ) a J/ψπ− resonance at 4196+31
−29

+17

−13
MeV, with a width of 370± 70+ 70

−132 MeV

and JP = 1+ determined at 6.1σ (so called Z(4200)− resonance). They also claimed to

observe 4.0σ evidence for Z(4430)− → J/ψπ− decays, albeit by fixing the mass and width
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of that resonance to the values determined in the B → ψ(2S)πK amplitude fits. It should

be noted that their amplitude analysis did not find evidence for the narrow 1+ Zc(3900)
−

resonance discovered in J/ψπ− decays by BESIII [17] and Belle [18] in e+e− → J/ψπ−π+

data.

LHCb analyzed B0 → J/ψπ−K+ Run 1 data with the 4D amplitude fit (much larger data

sample than available in Belle) [19,20] but did not publish these results. The semi-model-

independent analysis of the B0 → J/ψπ−K+ Run 1 data by LHCb demonstrated with a very

high significance presence of exotic J/ψπ− mass structures [21]. However, as discussed above,

such approach cannot characterize exotic resonances.

The most popular interpretation of Zc(3900) resonance, also observed in the neutral

version, is a loosely bound DD̄∗ molecular state, since the state is narrow (Γ = 28.4± 2.6

MeV), has a mass near the DD̄∗ threshold, has a large branching fraction for the DD̄∗

decays, and has the quantum numbers of the DD̄∗ pair in S-wave [2]. The Z(4430)− and

Z(4200)− do not fit all the properties expected in the molecular model, thus could be tightly

bound tetraquarks. In fact, such states should be relatively wide, since there is no obvious

mechanism to suppress ψπ− decay widths, given the substantial phase-space for such decays.

If the tightly bound tetraquark picture is correct, there should be many more ψπ− states of

different quantum numbers corresponding to various quark spin configurations and radial or

orbital angular momentum excitations.

The goal of our analysis is to perform the 4D amplitude fits to the LHCb Run 1 and Run

2 data (9 fb−1) in B0 → J/ψπ−K+ and B0 → ψ(2S)π−K+ channels. These data samples

are much larger than available in the Belle experiments and larger then previously analyzed

in LHCb. The increase is not only due to the larger integrated luminosity, but also higher

proton-proton collision energies during Run 2 of the LHC, which increased B0 production

cross-section. We also increase the data selection efficiency by improving the selection criteria.

By performing back-to-back analyses of the two channels, we hope to shed new light into

ψπ− exotic hadron structures.
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4 Data Selection

The analyzed data consist of 3 fb−1 for Run 1 (collected at
√
s = 7− 8 TeV) and 5.9 fb−1 for

Run 2 (collected at
√
s = 13 TeV) for both B → ψ(2S)πK and B → J/ψπK channels. A

breakdown of the stripping versions and luminosity by year is presented in Table 2.

Table 2: Stripping campaigns and luminosity by year.

Year Stripping Campaign Luminsoity (fb−1)

2011 21r1 1.11
2012 21 2.08
2015 24r0p1 0.33
2016 28 1.67
2017 29r2 1.71
2018 34 2.19

B candidates from the B2XMuMu stripping line are used as starting point and some cuts

are tightened or added. The selection criteria are summarized in Table 3.

4.1 Preselection

Only good quality charged tracks (χ2/ndf) with low track ghost probability (GhostProb) are

used for B0 meson reconstruction. Muons are identified with help of Muon detector (IsMuon

flag, log-likelihood difference, hereafter DLL, between muon and pion hypothesis: PIDµ ≡

DLL(µ-π)) and are required to have a transverse momentum to the beam (pT ) of at least

0.3 GeV. Oppositely charged muon candidates are required to form a good quality vertex

(χ2/ndf). The J/ψ or ψ(2S) candidates are selected by applying cuts on the dimuon mass.

After that the muon four-momenta are constrained to reproduce the known J/ψ and ψ(2S)

masses [22] exactly. Charged hadron candidates must have pT > 0.1 GeV and must miss the

primary pp interaction points by at least 3 standard deviations (χ2
IP > 9). Together with

the muon candidates, they must form a good quality B0 vertex (χ2/ndf), well separated

from the primary pp interaction vertex (cut on B0 lifetime) By design, only loose hadron
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Table 3: Data selection requirements.

Particle Quantity Requirement

All tracks Track quality: χ2/ndf < 3 (< 4 for Run 2)
All tracks Ghost Probability: GhostProb < 0.35 (<0.4 for Run 2)
µ pT > 0.300 GeV
µ IsMuon True
µ PIDµ (DLL(µ-π)) > -0.3
Di-µ Vertex quality: χ2/ndf < 9
Di-µ pT > 0.100 GeV
J/ψ Mass window [3.040,3.140] GeV
ψ(2S) Mass window [3.631,3.731] GeV
π pT > 0.100 GeV
π χ2

IP > 9
π PIDK (DLL(K-π)) < 5 && != 0
K pT > 0.100 GeV
K χ2

IP > 9
K PIDK (DLL(K-π)) > -5 && != 0
K, π ProbNNK(K) ∗ (1 - ProbNNπ(K))

- ProbNNK(π) ∗ (1 - ProbNNπ(π)) >0
Kπµµ (π →K mass) KKµµ mass veto window (mKK ⊂[1.0125, 1.0265] GeV

|πProbNNK >0.2)
& mKKµµ ⊂[5.355, 5.380] GeV

Kπµµ (K→ π mass) ππµµ mass veto window [5.355, 5.380] GeV
& KProbNNπ >0.2

Kπµµ (π →p mass) pKµµ mass veto window [5.605, 5.635] GeV
& πProbNNp >0.2

B0 Mass window [5.1, 5.6] GeV
B0 Vertex quality: χ2/ndf < 9
B0 Lifetime: τ >0.250 ps
B0 Trigger L0, Hlt1, Hlt2 TOS
B0 DLL (multivariate - Sec. 4.2) < 2.2

identification cuts are used. The RICH detectors are the main contributors to the related

DLL values. Since the accepted DLL(K-π) ranges for kaons and pions have an overlap region,

we choose for a kaon, the track which is more likely to be a kaon among the two hadrons in

B0 candidate (a combination of ProbNN variables is used, which are also determined mostly

from the RICH detectors).

The selected B0 candidate must be among the reasons for why the event was saved

during the data taking for offline analysis (so called Triggered-On-Signal requirement - TOS).
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The detailed trigger criteria are for the three decision stages (L0, Hlt1 and Hlt2) are:

(L0MuonTOS|L0DiMuonTOS)&

(Hlt1TrackAllL0TOS|Hlt1TrackMuonTOS|Hlt1TrackMVATOS|Hlt1DiMuonHighMassTOS)&

(Hlt2DiMuonPsi2S(JPsi)TOS|(Hlt2Topo(2,3,4)BBDTTOS|(Hlt2TopoMu(2,3,4)BBDTTOS|

Hlt2DiMuonPsi2S(JPsi)HighPTTOS|Hlt2DiMuonDetachedPsi2S(JPsi)TOS|

Hlt2DiMuonDetachedHeavyTOS).

Decays of other neutral b−quark hadrons to ψ → µ+µ− and oppositely charged hadron

pair can fake B0 → ψK+π− candidates, when a hadron is misidentified. In particular,

B0
s → ψK+K− (among which ϕ→ K+K− is most prevalent) can easily become B0 candidate

when K− is taken as π− candidate. To veto such cases the b−hadron mass is recalculated

under π− → K− reassignment. The B0 candidate is eliminated if such mass falls into the

B0
s mass window. To reduce loss of signal efficiency, this is done only if either K+K− mass

is within the ϕ mass window or probability of the π− candidate to be kaon (πProbNNK ) is

reasonably high. While B0
s → ψπ+π− decays cannot contribute to the B0 mass peak when

π+ is mistaken as K+, they can peak in the upper B0 sideband, thus such decays are also

eliminated. Similarly we veto Λ̄0
b → ψK+p̄ decays, with p̄ mistaken as π−.

4.2 The multivariate final selection

Background is further suppressed by selecting events based on a likelihood ratio. The total

likelihood is a product of the probability density functions (PDF s) of four sensitive variables

(xi):

• the minimum impact parameter (IP) χ2 of K or π with respect to the closest primary

vertex (PV),

• χ2
vtx/ndf of the B candidate,

• the B candidate IP significance (χ2
IP),
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• and minimum transverse momentum of K or π.

The signal PDF s (PDFsig(xi)) are obtained from the real B → J/ψπK data using 10% of

the run 2 statistics. The background PDF s (PDFbkg(xi)) come from the B signal’s side-band

region in the same sample of data (5207− 5251 | 5309− 5353 MeV).

We form the logarithm of the ratio between the signal and background PDFs, DLLsig/bkg =

−2
∑4

i=1 ln(PDFsig(xi)/PDFbkg(xi)). Figure 18 shows the good agreement between the data

and the training sample on the DLL distribution as well as the discrimination between

signal and background of B → ψ(2S)πK. We require DLLsig/bkg < 2.2 to maximize

Nsig/
√
Nsig +Nbkg, where Nsig is the expected signal yield and Nbkg is the background yield

in the region of the B peak. The normalization of Nsig and Nbkg is obtained from a fit to the

B mass distribution.5
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Figure 18: Fraction of the B → J/ψKπ signal events passing a cut DLL < x for the data (black),
the signal training sample (blue), and fraction of the background events (B sideband) passing this
cut (red).

5The B0 peak region here is defined as ±2.0σ, where σ is the observed mass resolution given later in the
text.
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Figure 19: Fraction of the B → J/ψKπ signal events passing a cut DLL < x for the data (black)
and fraction of the signal MC events passing this cut (blue).

The signal PDF produced from the real B → J/ψπK data was also used for calculating

the DLL variable in B → ψ(2S)πK.

The mass of the ψ(2S) and J/ψ candidates are constrained to their nominal respective

masses, and the ψπK candidate is constrained to point to the nearest primary vertex when

calculating the mass of the B0 candidates. The ψπK candidate is also constrained to the

world average B0 mass, before events are used in the amplitude fitter.

The mass distribution of the B → ψ(2S)πK candidates passing the full selection is

shown in Fig. 22. The distribution is fit with a double-sided asymmetric Crystal Ball

function for the signal B0, another double-sided asymmetric Crystall Ball function for the

B0
s peak, and a quadratic function for the background. The Crystal Ball shapes used for

both the signal B0 and the background B0
s are forced to share the same tails, i.e. the same

αleft, αright, nleft, and nright are used for each peak, but each peak has its own mean, width,

and amplitude. The fit gives 140 344± 435 B → ψ(2S)πK events as compared to 2 255± 50

in Belle’s 2D analysis, 2 021± 53 in BaBar’s, and 25 176± 174 in LHCb’s 2014 analysis. The

35



DLL
10− 5− 0 5 10 15

ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1

Figure 20: Fraction of the B → ψ(2S)Kπ signal events passing a cut DLL < x for the data (black)
and fraction of the background events (B sideband) passing this cut (red).
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Figure 21: Fraction of the B → ψ(2S)Kπ signal events passing a cut DLL < x for the data (black)
and fraction of the signal MC events passing this cut (blue).
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fitted B0 mass resolution is 5.22± 0.03 MeV. We define a B → ψ(2S)πK signal region as

5270 < m(ψ(2S)K+π−) < 5290 MeV (±2σ around the peak) and two mass sidebands as

5175 − 5215 MeV and 5390 − 5430 MeV to probe the background. The background level

(from B0
s and combinatorial) in the signal region is 1.55% (hereafter denoted as fbkg).

Likewise, the mass distribution of the B → J/ψπK candidates passing the full selection

is shown in Fig. 23. The distribution is also fit with a double-sided asymmetric Crystal

Ball function for the signal and a quadratic function for the background. The fit gives

2 278 460± 1 786 B → J/ψπK events as compared to 29 990± 190 in Belle’s analysis. The

fitted B0 mass resolution for the J/ψ channel is 7.20± 0.01 MeV. We define a B → J/ψπK

signal region as 5265 < m(ψ(2S)K+π−) < 5295 MeV (±2σ around the peak) and two

mass sidebands as 5175− 5205 MeV and 5400− 5430 MeV to probe the background. The

background level in the signal region is fbkg = 2.32%.

The Monte Carlo sample contains 583 466 events in the signal range for B0 → ψ(2S)π−K+

and 1 814 640 events for B0 → J/ψπ−K+.
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Figure 22: Mass distribution of the B → ψ(2S)πK candidates in Run 1 and Run 2 data. The fit
(blue line) of a double-sided asymmetric Crystal Ball signal shape and quadratic background (green
line) are superimposed. The fit results are m(B0) = 5280.2± 0.02 MeV, σ(B0) = 5.22± 0.03 MeV,
m(B0

s ) = 5367.7± 0.25 MeV, σ(B0
s ) = 5.01± 0.24 MeV, αleft = 1.56± 0.03, αright = 1.43± 0.04,

Nsig = 140, 344± 435 events, NB0
s
= 1, 538± 72 events, and Nbkg = 2232± 277 events. Vertical red

lines show the signal region used in the default amplitude fit. Smaller vertical black lines indicate
boundaries of the sidebands used for the background parameterization in the fit. A log scale is used
to better show the B0

s peak.
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Figure 23: Mass distribution of the B → J/ψπK candidates in Run 1 and Run 2 data. The fit
(blue line) of a double-sided asymmetric Crystal Ball signal shape and quadratic background (green
line) are superimposed. The fit results are m(B0) = 5280.3± 0.007 MeV, σ = 7.20± 0.009 MeV,
m(B0

s ) = 5367.6± 0.10 MeV, σ(B0
s ) = 6.49± 0.10 MeV, αleft = 1.45± 0.008, αright = 1.44± 0.009,

Nsig = 2, 278, 460 ± 1, 786 events, NB0
s
= 20, 597 ± 341 events, and Nbkg = 36, 606 ± 131 events.

Vertical red lines show the signal region used in the default amplitude fit. Smaller vertical black
lines indicate boundaries of the sidebands used for the background parameterization in the fit. A
log scale is also shown to better show the B0

s peak.
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5 Kinematic re-weighting of Monte Carlo

To correct for possible inaccuracies in the modeling the B0 production within the LHCb

acceptance and in the modeling of the detector efficiency, we give Monte Carlo events weights

(wMC) based on the relative yields of the data and MC in certain kinematic or event variables,

following all previous cuts and corrections.

The variables corrected for in this study are: the number of tracks in the event (nTracks),

transverse momentum of the B0 (pT(B)), the momentum of the kaon (p(K)), and the

momentum of the pion (p(π)). The overall weight applied to a Monte Carlo event is the

product of the individual weights for each variable:

wMC = wpT(B) · wnTracks · wp(K) · wp(π). (1)

Data in the signal region is background subtracted using the distribution in the sideband

region. To produce a given weight, a normalized plot of both Monte Carlo and the background

subtracted data was produced. A binning was chosen based on trends in discrepancy as well

as statistical errors. This leads to a finer binning at lower variable values (e.g. low momentum,

low multiplicity, etc.) and a coarser binning at higher values (e.g. high momentum, high

multiplicity, etc.). Once an appropriate binning has been established, a ratio of data to

Monte Carlo is found for each bin. The plot of each ratio is then fit with an appropriate

functional shape, which can be found in Table 4.

Table 4: Fit shapes used for each kinematic/event variable for each channel.

Variable ψ(2S) J/ψ

nTracks 4th order polynomial 4th order polynomial
pT (B) Gaussian + constant Gaussian + constant
p(K) Crystal Ball + 2nd order polynomial Crystal Ball + constant
p(π) 2nd order polynomial Crystal Ball + constant

Then, each Monte Carlo event is weighted by the function value corresponding to that
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event before similar procedure is repeated for the next kinematic weight variable. After

weighting, all kinematic variables of both data and MC are once again plotted and compared

to ensure proper agreement. Following this process, the Monte Carlo set and data reasonably

agree with each other. The individual weights used in this analysis are obtained from the

plots in Fig. 24 for ψ(2S) and Fig. 26 for J/ψ, while the final comparison between the data

and MC is shown in Fig. 25 for ψ(2S) and Fig. 27 for J/ψ.

Analyzing the data while using unweighted Monte Carlo events in the amplitude fitter

produces surprisingly little change in the fit results.
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Figure 24: Plots of the fits (in red) used to re-weight ψ(2S) MC. Weights are applied in order (left
to right, top to bottom): the number of tracks, the transverse momentum of B, the momentum of
the kaon, and the momentum of the pion.
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Figure 25: Comparison of MC (red) and data (black) for the 4 kinematic variables used to re-weight
MC after complete re-weighting for ψ(2S).
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Figure 26: Plots of the fits (in red) used to re-weight J/ψ MC. Weights are applied in order (left to
right, top to bottom): the number of tracks, the transverse momentum of B, the momentum of the
kaon, and the momentum of the pion.
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Figure 27: Comparison of MC (red) and data (black) for the 4 kinematic variables used to re-weight
MC after complete re-weighting for J/ψ.
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6 Amplitude Analysis

The goal of this analysis is to search for exotic charmonium-like Z states by fitting a model

of the B → ψ(2S)πK or B → J/ψπK amplitude to the data. First, we evaluate how well

the data can be described without Z contributions, i.e. with the K∗0 → K+π− contributions

alone. We then add a Z contribution to the amplitude model, allowing us to obtain the

significance of the Z signal from the change of the fit quality, repeating the process for every

additional Z contribution. Since the model depends on the Z spin and parity, we repeat this

exercise for JP (Z) = 0−, 1+, 1−, 2− and 2+. Higher spin values are not plausible, and 0+

hypothesis is forbidden by parity conservation in the Z → ψπ decay. Thus, if a significant Z

contribution is found, we can in principle also identify its quantum numbers, in addition to

determining its mass and width. The fit fraction (fraction of the integral of the amplitude

squared) corresponding to each Z is determined as well. This process will be repeated for

ZK → Kπ as well. We evaluate the K∗0 model dependence and other systematic effects.

For the best use of the information contained in the data sample, we use an unbinned

maximum likelihood method. In this section, we describe the fit formalism.

6.1 Fitted kinematic variables

Let us first consider the B0 → ψK∗0, ψ → µ+µ−, K∗0 → K+π− decay chain, which we call

the “K∗0 decay chain”. There are four independent variables which completely describe the

kinematics of this decay:

mKπ, the K+π− invariant mass, i.e. the K∗0 mass;

cos θK∗, the cosine of the K∗0 helicity angle, which is the angle between the K− direction

and the B0 direction in the K∗0 rest frame; equivalently, one can think about this degree

of freedom as mψπ, since for a given value of mKπ, there is a one-to-one transformation

between cos θK∗ and mψπ;
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Figure 28: Definition of the helicity angles. See text for details.

cos θJ/ψ, the cosine of the ψ helicity angle, which is the angle between the µ+ direction and

the B0 direction in the ψ rest frame;

ϕ, the angle between the decay planes of the K∗0 and ψ mesons.

The angles are defined in Fig. 28. For the parameterization of the amplitude of the

B0 → ZK+, Z → ψπ−, ψ → µ+µ− decay chain (which we call the “Z decay chain”), the

following four different variables are more convenient:

mψπ, the ψπ− invariant mass, i.e. the Z mass;

cos θZ, the cosine of the Z helicity angle, which is the angle between the π− direction and

the B0 direction in the Z rest frame; equivalently, one can think about this degree of

freedom as mKπ, since for a given value of mψπ there is a one-to-one transformation

between cos θZ and mKπ;

cos θZJ/ψ, the cosine of the ψ helicity angle, which is the angle between the µ+ direction and

the Z direction in the ψ rest frame;

ϕZ, the angle between the decay planes of the Z and ψ mesons.

These four variables can be determined with no ambiguities from the four variables used to

describe the K∗0 decay chain, thus they do not represent independent degrees of freedom.
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The ψ helicity frame used to describe the Z decay chain is not the same as the ψ helicity

frame used to describe the K∗0 decay chain. To properly describe the interference between

the K∗0 and Z amplitudes, a rotation is needed, which again can be calculated from the 4

variables describing the K∗0 decay.

Similarly, to parameterize the amplitude of the B0 → Zπ−, Z → ψK+, ψ → µ+µ− decay

chain (which we call the “ZK decay chain”), these four different variables are more convenient:

mψK, the ψK+ invariant mass, i.e. the ZK mass;

cos θZK , the cosine of the ZK helicity angle, which is the angle between the K+ direction

and the B0 direction in the ZK rest frame; equivalently, one can think about this degree

of freedom as mKπ, since for a given value of mψK there is a one-to-one transformation

between cos θZK and mKπ;

cos θZKJ/ψ, the cosine of the ψ helicity angle, which is the angle between the µ+ direction and

the ZK direction in the ψ rest frame;

ϕZK , the angle between the decay planes of the ZK and ψ mesons.

Much like those in the Z decay chain, these four variables can be determined with no

ambiguities from the four variables used to describe the K∗0 decay chain, and thus they also

do not represent independent degrees of freedom.

Again, the ψ helicity frame used to describe the ZK decay chain is not the same as the

ψ helicity frame used to describe the K∗0 decay chain or the Z decay chain. To properly

describe the interference between the amplitudes in the other chains, a rotation is needed,

which again can be calculated from the 4 variables describing the K∗0 decay.

The prescription to calculate the angles defined above, including treatment of B̄0 vs. B0

candidates, can be found in the appendix of Ref. [12].6

To maximize the statistical and systematic sensitivity of our analysis, we perform four-

dimensional (4D) fits to the data. We will denote the fitted variables as v⃗. It is a technical

6In Belle’s notation ϕ̃ = ϕZ .
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detail which four independent variables are chosen in the formulation of the matrix el-

ement. For example, they can be chosen as v⃗ = (m2
Kπ, m

2
ψπ, cos θJ/ψ, ϕ) (choice A) or

v⃗ = (mKπ, cos θK∗ , cos θJ/ψ, ϕ) (choice B). Choice A corresponds to phase-space variables, of

which the probability density function (PDF) is given by7

P (v⃗) ∝ |M(v⃗)|2 , (2)

where M is the matrix element for the decay. With no dynamics and only spinless particles

(which is not the case here), the PDF would be constant for this choice. For choice B, known

as “rectangular phase-space” variables,

P (v⃗) ∝ |M(v⃗)|2 p(v⃗) q(v⃗) , (3)

where p (q) is the daughter momentum in the B0 (K∗0) rest frame. In this case, phase-space

distribution is proportional to p(v⃗) q(v⃗).

6.2 The signal PDF

The signal probability density function, Psig, is a four-dimensional function that depends on

mKπ and the set of independent angular variables in the K∗ decay chain labeled Ω. The

combined set of the four independent variables is labeled as v⃗. The PDF also depends on the

fit parameters, referred to as ω, that consists of the helicity couplings, masses and widths of

resonances, etc. The signal PDF is given by

Psig(v⃗|ω⃗) =
1

I(ω⃗)
|M(v⃗|ω⃗)|2Φ(mKπ)ϵ(v⃗) , (4)

where Φ(mKπ) = pq is the phase space function (with p as the momentum of the Kπ

system in the B0 rest frame and q as the momentum of the K in the K∗ rest frame). ϵ(v⃗) is

7See e.g. PDG write-up on kinematics in three-body decays.
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the signal efficiency, and I(ω⃗) is the normalization integral:

I(ω⃗) =

∫
Psig(v⃗|ω⃗)dv⃗ ∝

∑
j w

MC
j |M(v⃗j|ω⃗)|2∑

j w
MC
j

, (5)

where the sum is over the fully simulated Monte Carlo events, which are generated uniformly

over the entire phase-space. In the case of B0 → J/ψπ−K+, a large portion of MC was

produced with non-uniform mKπ distribution, enhancing rates in the K∗(892) and K2(1430)

peak regions (so called ”XLL model”). We reweight this MC sample to being uniformly

spread in phase space. This procedure folds in the efficiency corrections without a need to

parameterize them, as can be seen in the equation for the log-likelihood sum over the N data

events:

lnL(ω⃗) =
∑
i

lnPsig(v⃗i|ω⃗)

=
∑
i

ln |M(v⃗i|ω⃗)|2 −N ln I(ω⃗) +
∑
i

ln[Φ(mKπ,i)ϵ(v⃗i)] .

(6)

Since the last term has no dependence on ω⃗, it can be dropped.

6.3 Background treatment

The backgrounds in the data are small, but not completely negligible. As such, we construct

a probability density function for the background events (Pbkg) using the sidebands of the B0

mass peak and add it to the probability density for the signal events to construct the total
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PDF (so called ”cFit” procedure). Thus, the log-likelihood is defined as:

− lnL(ω⃗) =
∑
i

ln
[
(1− fbkg)Psig(v⃗i|ω⃗) + fbkgPbkg(v⃗i)

]
= −

∑
i

ln

[
(1− fbkg)

|M(v⃗i|ω⃗)|2Φ(mKπ,i)ϵ(v⃗i)

I(ω⃗)
+ fbkg

P u
bkg(v⃗i)

Ibkg

]
= −

∑
i

ln

{
(1− fbkg)Φ(mKπ,i)ϵ(v⃗i)

I(ω⃗)

[
|M(v⃗i|ω⃗)|2 +

fbkgI(ω⃗)

(1− fbkg)Ibkg

P u
bkg(v⃗i)

Φ(mKπ,i)ϵ(v⃗i)

]}
= −

∑
i

ln

[
|M(v⃗i|ω⃗)|2 +

fbkgI(ω⃗)

(1− fbkg)Ibkg

P u
bkg(v⃗i)

Φ(mKπ,i)ϵ(v⃗i)

]
+N ln I(ω⃗) + constant ,

(7)

where N is the number of events, fbkg is the background fraction in the peak region (as de-

scribed in Sec. 4.2), I(ω⃗) is the normalization integral of the signal PDF (Eq. 5), P u
bkg(mKπ,Ω)

is the unnormalized background density proportional to the density of the side-band events,

with its normalization determined by:

Ibkg ≡
∫
P u
bkg(v⃗)dv⃗ ∝

∑
iw

MC
i

Pubkg(v⃗i)

Φ(mKπ,i)ϵ(v⃗i)∑
iw

MC
i

. (8)

The background term is then efficiency-corrected so it can be added to the efficiency-

independent signal probability expressed by the matrix element squared, |M|2. Thus, the

signal efficiency parameterization, ϵ(v⃗), bcomes only a part of the background parameteriza-

tion, and therefore only affects a small part of the total PDF (< 3% for both channels).

We assume that the efficiency used in the background parameterization approximately

factorizes as

ϵ(m2
Kπ,m

2
ψπ, cos θJ/ψ, ϕ) = ϵ1(m

2
Kπ,m

2
ψπ) · ϵ2(cos θJ/ψ|mKπ) · ϵ3(ϕ|mKπ) . (9)

To avoid dealing with inconvenient kinematic boundaries in the (m2
Kπ,m

2
ψπ) Dalitz plane, we

use the “rectangular” Dalitz plane (mKπ, cos θK∗) in the parameterization of the first term:

ϵ1(m
2
Kπ,m

2
ψπ) = ϵ′1(mKπ, cos θK∗) . (10)
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To obtain ϵ′1, we make a 2D histogram in (mKπ, cos θK∗) of the fully simulated phase-space

MC passed through the analysis procedure. At the generator level, the phase-space is flat

in cos θK∗ and has a p · q dependence on mKπ. Therefore, we weight each MC event by

1/(p · q) to obtain the efficiency variation. We smooth the efficiency histogram, and then

interpolate between the bin centers using bi-cubic interpolation. This efficiency is displayed

in Fig. 29 and Fig. 36 for ψ(2S) and J/ψ channels, respectively, in both the (mKπ, cos θK∗)

and (m2
Kπ,m

2
ψπ) planes. The efficiencies for ϵ2 and ϵ3 are displayed in Figs. 30 and 31 for

the ψ(2S) channel and in Figs. 37 and 38 for the J/ψ channel.

The background PDF, P u
bkg(v⃗)/Φ(mKπ), is parameterized using exactly the same approach

as ϵ(v⃗), except that the histograms are not smoothed because of the presence of a narrow

K∗0(892) peak in the data:

P u
bkg(v⃗)

Φ(mKπ)
= P u

bkg 1(mKπ, cos θK∗) · P u
bkg 2(cos θJ/ψ|mKπ) · P u

bkg 3(ϕ|mKπ) . (11)

The individual terms are displayed in Figs. 32, 33, and 34 for the ψ(2S) channel, while for

the J/ψ channel, the individual background parameterization distributions are displayed in

Figs. 39, 40, and 41. Comparisons between the background from data and the parameterized

background for each of the variables used in the efficiency functions are represented in Figs. 35

and 42 for ψ(2S) and J/ψ channels, respectively.
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Figure 29: Parameterized efficiency (ϵ1) in the rectangular Dalitz plane (mKπ, cos θK∗) (top) and in
the traditional Dalitz plane (mKπ

2,mJ/ψπ
2) (bottom) for the ψ(2S) channel. The normalization

arbitrarily corresponds to an average efficiency of 1 over the phase-space.

51



0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

) (GeV)πm(K

1−

0.8−

0.6−
0.4−

0.2−
0

0.2

0.4

0.6

0.8

1)
ψθ

co
s(

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Figure 30: Parameterized efficiency function ϵ2(cosθψ—mKπ) for the ψ(2S) channel. By construction
it integrates to 1.0 at each mKπ value.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

) (GeV)πm(K

3−

2−

1−

0

1

2

3ψφ

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Figure 31: Parameterized efficiency function ϵ3(ϕ—mKπ) for the ψ(2S) channel. By construction it
integrates to 1.0 at each mKπ value.
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Figure 32: Parameterized background distributions in the rectangular Dalitz plane (mKπ, cos θK∗)
(top) and in the traditional Dalitz plane (mKπ

2,mJ/ψπ
2) (bottom) for the ψ(2S) channel. The

normalization arbitrarily corresponds to an average efficiency of 1 over the phase-space.
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Figure 33: Parameterized background distribution for (cosθψ|mKπ) for the ψ(2S) channel. By
construction it integrates to 1.0 at each mKπ value.
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Figure 34: Parameterized background distribution for (ϕψ|mKπ) for the ψ(2S) channel. By con-
struction it integrates to 1.0 at each mKπ value.
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Figure 35: Comparison of the background from the data (black) and the parameterized background
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Figure 36: Parameterized efficiency (ϵ1) in the rectangular Dalitz plane (mKπ, cos θK∗) (top) and
in the traditional Dalitz plane (mKπ

2,mJ/ψπ
2) (bottom) for the J/ψ channel. The normalization

arbitrarily corresponds to an average efficiency of 1 over the phase-space.
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Figure 37: Parameterized efficiency function ϵ2(cosθψ—mKπ) for the J/ψ channel. By construction
it integrates to 1.0 at each mKπ value.
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Figure 38: Parameterized efficiency function ϵ3(ϕ—mKπ) for the J/ψ channel. By construction it
integrates to 1.0 at each mKπ value.
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Figure 39: Parameterized background distributions in the rectangular Dalitz plane (mKπ, cos θK∗)
(top) and in the traditional Dalitz plane (mKπ

2,mJ/ψπ
2) (bottom) for the J/ψ channel. The

normalization arbitrarily corresponds to an average efficiency of 1 over the phase-space.
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Figure 40: Parameterized background distribution for (cosθψ|mKπ) for the J/ψ channel. By
construction it integrates to 1.0 at each mKπ value.
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Figure 41: Parameterized background distribution for (ϕψ|mKπ) for the J/ψ channel. By construction
it integrates to 1.0 at each mKπ value.
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Figure 42: Comparison of the background from the data (black) and the parameterized background
(red) for mKπ, cosθK∗ , cosθψ, and ϕψ for the J/ψ channel.
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7 Helicity formalism and matrix element

The matrix element formulation is the same as used in the 2014 analysis [19] and by Belle in

their 4D [12] analysis.

We use the helicity basis for the decay amplitudes, and here we will describe how this

is applied to the K∗, Z, and ZK decay chains and how the complete matrix element is

constructed such that the different decay chains can interfere.

7.1 Helicity formalism for the K∗ decay chain

In the K∗ decay chain, B decays proceed via B → ψK∗, K∗ → πK, with ψ decaying via

ψ → µµ. The K∗ resonances that are expected to contribute are discussed later.

The full 4D matrix element for the K∗ decay chain is given by:

∣∣MK∗∣∣2 ≡ ∑
∆λµ=−1,1

∣∣∣∣∣∣
∑

λψ=−1,0,1

∑
k

Ak,λψ R(mKπ|m0 k,Γ0 k) d
Jk
λψ ,0

(θK∗) eiλψϕ d1λψ ,∆λµ(θψ)

∣∣∣∣∣∣
2

,

(12)

where k indexes specific K∗ contributions (i.e. K∗(892)0, K∗
2(1430)

0, . . . ). Jk is the spin of

the given K∗ resonance. λ is helicity of the particle (projection of the particle spin onto its

momentum in the rest frame of its parent) and ∆λµ ≡ λµ+ − λµ− . d
J
λ1,λ2

(θ) denotes Wigner

d−functions. R(mKπ) is the mass dependence of the contribution, which is discussed in

greater detail later. The fitted helicity amplitudes are complex numbers,

Ak,λψ = Ak,λψ exp
(
i ϕk,λψ

)
= ReAk,λψ + i ImAk,λψ , (13)

therefore, each amplitude must be represented by two free parameters in the fit, for which

we use the real and imaginary components. For K∗ resonances with Jk = 0, only λψ = 0 is

allowed, as λψ = λK∗ as JB = 0, thus there is only one complex amplitude to fit. For K∗

resonances with Jk > 0, there are 3 complex amplitudes to fit, totaling 6 free parameters. To
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fix the magnitude and phase conventions, we set

ReAK∗(892)0,0 = 1 , ImAK∗(892)0,0 = 0 . (14)

7.2 Helicity formalism for the Z decay chain

In the Z decay chain, B decays proceed via B → ZK, Z → ψπ, with ψ decaying via ψ → µµ.

The matrix element for the Z decay chain is formed in a similar way as in the K∗ chain. The

Z decay chain also picks up a rotation to align the muon frames to the ones used in the K∗

decay chain and allows for the proper description of interference between the decay chains.

The full 4D matrix element for the Z chain is given by:

∣∣MZ
∣∣2 ≡ ∑

∆λµ=−1,1

∣∣∣∣∣∣
∑

λZψ=−1,0,1

∑
n

An,λZψ R(mψπ|m0n,Γ0n) d
Jn
0,λZψ

(θZ) e
iλZψϕ

Z

d1λZψ ,∆λµ
(θZψ ) e

i∆λµα

∣∣∣∣∣∣
2

,

(15)

where n indexes specific Z contributions. Jn is the spin of the given Z resonance. α is the

angle between the muon helicity frames produced via K∗ and Z decay chains.

In the B → ZK decay, the Z helicity must be zero since both B and K have spin J = 0.

When Jn = 0, the ψ helicity must also be zero, so there will be only one complex amplitude

to fit for a spinless Z contribution. When Jn ̸= 0, the ψ can take values of -1, 0, or +1, thus

the ψ helicity labels the amplitudes; however, the strong Z decay conserves parity, thus these

amplitudes are not independent:

An,−λZψ = PψPπPn(−1)Jψ+Jπ−JnAn,λZψ , (16)

where Pn is the parity of a specific Z contribution. Given Pψ = Pπ = −1, which are the ψ

and π parities, Jψ = 1, and Jπ = 0, this becomes

An,−λZψ = −Pn(−1)JnAn,λZψ . (17)
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This presents a few scenarios. First, when Jn = 0, we see that An,0 = −PnAn,0, so the Z

parity must be odd, otherwise An,0 = −An,0, meaning An,0 = 0. Similarly, when JPn = 1−, 2+,

the helicity-zero amplitude is forbidden, and An,−1 = −An,+1. Thus for Jn = 0−, 1−, 2+, there

is only one complex amplitude to fit. For JPn = 1+, 2−, the helicity-zero amplitude is allowed,

and An,−1 = An,+1, therefore there are only two complex amplitudes to fit for these JPn values.

Thus combining the K∗ and Z chains matrix elements, we get the full 4D matrix element:

∣∣M∣∣2 ≡ ∑
∆λµ=−1,1

∣∣∣∣ ∑
λψ=−1,0,1

∑
k

Ak,λψ R(mKπ|m0 k,Γ0 k) d
Jk
λψ ,0

(θK∗) eiλψϕ d1λψ ,∆λµ(θψ)

+
∑

λZψ=−1,0,1

∑
n

An,λZψ R(mψπ|m0n,Γ0n) d
Jn
0,λZψ

(θZ) e
iλZψϕ

Z

d1λZψ ,∆λµ
(θZψ ) e

i∆λµα

∣∣∣∣2, (18)

7.3 Helicity formalism for the ZK decay chain

The ZK chain follows the same construction as the Z chain for its contribution to the matrix

element. It uses the same logic for helicity values and applies the same parity constraint

for helicity amplitudes. The difference lies in that variables used for the ZK chain are in a

different rest frame than those in the Z chain. Thus, the full 4D matrix element for the ZK

chain is:

∣∣MZK
∣∣2 ≡ ∑

∆λµ=−1,1

∣∣∣∣∣∣∣
∑

λ
ZK
ψ =−1,0,1

∑
l

A
l,λ

ZK
ψ

R(mψK |m0 l,Γ0 l) d
Jl

0,λ
ZK
ψ

(θZK )

×eiλ
ZK
ψ ϕZK d1

λ
ZK
ψ ,∆λµ

(θZKψ ) ei∆λµαK
∣∣∣∣2 , (19)

where l indexes specific ZK contributions. Jl is the spin of the given ZK resonance. αK is

the angle between the muon helicity frames produced via K∗ and ZK decay chains.
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Thus the full 4D matrix element when including all three decay chains is as follows:

∣∣M∣∣2 ≡ ∑
∆λµ=−1,1

∣∣∣∣ ∑
λψ=−1,0,1

∑
k

Ak,λψ R(mKπ|m0 k,Γ0 k) d
Jk
λψ ,0

(θK∗) eiλψϕ d1λψ ,∆λµ(θψ)

+
∑

λZψ=−1,0,1

∑
n

An,λZψ R(mψπ|m0n,Γ0n) d
Jn
0,λZψ

(θZ) e
iλZψϕ

Z

d1λZψ ,∆λµ
(θZψ ) e

i∆λµα

+
∑

λ
ZK
ψ =−1,0,1

∑
l

A
l,λ

ZK
ψ

R(mψK |m0 l,Γ0 l) d
Jl

0,λ
ZK
ψ

(θZK ) e
iλ
ZK
ψ ϕZK d1

λ
ZK
ψ ,∆λµ

(θZKψ ) ei∆λµα
K

∣∣∣∣2, (20)

7.4 Amplitude dependence on the invariant masses

Each contribution to the matrix element comes with its own R(mA) function, which gives

its dependence on the invariant mass of the intermediate resonance in the decay chain A

(A = K∗ or Z).

7.4.1 Single channel K-matrix

Historically, Breit-Wigner sums were used in the Isobar model approach to calculate the

full matrix element for the K∗ decay chain. In either decay chain though, B0 can decay to

multiple states in the same partial wave, i.e. B0 → ψK∗
1(892), B

0 → ψK∗
1(1410)..., which

can have strong overlaps and thus interfere with each other. To account for these overlaps

and interferences, we use a single-channel K-matrix to model the resonant contributions from

multiple states in the same partial wave, combined with Blatt-Weisskopf functions:

R(m|M0,Γ0) = B′
LB

(p, p0, d)

(
p

mB

)LB

KM(m|M0,Γ0)B
′
LA

(q, q0, d)

(
q

q0

)LA

, (21)

where

KM(m|M0,Γ0) =

√
k

M2
0−m2

1− i(
∑

j
M0jΓj(m)

M2
0j−m2 + ρ(m)fSC)

, (22)
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is the single-channel K-matrix amplitude including the mass dependent width,

Γ(m) = Γ0

(
q

q0

)2LA+1
M0

m
B′
LA

(q, q0, d)
2 . (23)

The sum over j is a sum over all the resonances in the same partial wave for that decay chain,

where fSC is a real constant (which is free to float in the fit) representing the non-resonant

scattering in that partial wave (we use it only in some S-wave components). ρ(m) = 2q/m is

a phase space factor for this non-resonant term. Here, p is the momentum of the resonance

A (K∗ or Z) in the rest frame of B0. q is the momentum of the A resonance’s daughter in

the rest frame of the A resonance. The symbols p0 and q0 are used to indicate values of

these quantities at the resonance peak mass (m =M0). The orbital angular momentum in B

decay is denoted as LB, while in the decay of the resonance A as LA. The orbital angular

momentum barrier factors, pLB′
L(p, p0, d), involve the Blatt-Weisskopf functions:

B′
0(p, p0, d) = 1 , (24)

B′
1(p, p0, d) =

√
1 + (p0 d)2

1 + (p d)2
, (25)

B′
2(p, p0, d) =

√
9 + 3(p0 d)2 + (p0 d)4

9 + 3(p d)2 + (p d)4
, (26)

B′
3(p, p0, d) =

√
225 + 45(p0 d)2 + 6(p0 d)4 + (p0 d)6

225 + 45(p d)2 + 6(p d)4 + (p d)6
, (27)

B′
4(p, p0, d) =

√
11025 + 1575(p0 d)2 + 135(p0 d)4 + 10(p0 d)6 + (p0 d)8

11025 + 1575(p d)2 + 135(p d)4 + 10(p d)6 + (p d)8
, (28)

B′
5(p, p0, d) =

√
893025 + 99225(p0 d)2 + 6300(p0 d)4 + 315(p0 d)6 + 15(p0 d)8 + (p0 d)10

893025 + 99225(p d)2 + 6300(p d)4 + 315(p d)6 + 15(p d)8 + (p d)10
, (29)

which account for the difficulty in creating the orbital angular momentum (L) and depends

on the momentum of the decay products in the rest frame of the decaying particle (p) as

well as the size of the decaying particle given by the constant d. In this analysis, we set this

parameter to a nominal value of d = 3.0 GeV−1.

In the helicity approach, each helicity state is a mixture of many different L values. We
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follow the usual approach of using in the functions above the minimal L value allowed by the

quantum numbers of the given resonance A.

The k constant follows suit from the formula for a relativistic Breit-Wigner amplitude. It

is conventional and is introduced here in an attempt to decouple the numerical values of the

helicity couplings to be fit from M0 and Γ0 parameters of the resonance:

k ≡ M0Γ0γ√
M0

2 + γ
(30)

with γ ≡
√
M0

2 (M0
2 + Γ0

2) (see Wikipedia for the Relativistic Breit-Wigner).

7.4.2 Model Independent Contribution

An alternate approach to representing a partial wave for Zs is to replace the K-matrix (which

assumes a specific resonance shape) with a number of complex amplitudes equally spaced

in mψπ. The real and imaginary parts of the amplitude are interpolated between the bin

centers using a cubic spline based on the nearest four bins. We try this approach only for the

dominant JP = 1+ Z wave. Since it has two sets of helicity couplings, we allocate two sets of

these complex amplitudes: one for each helicity coupling. Both helicity couplings float in

the fit, so in order to minimize correlated errors, we fix one mass bin (the one which has the

greatest magnitude from an Argand plot produced from the nominal resonant model fits) to

set the convention for the model independent amplitudes. The complex amplitudes for the

remaining mass bins are free to float in the fit, which allows us to probe for ψπ contributions

without making assumptions regarding the complex phase motion of the contribution.
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8 Significance and fit quality calculations

In this section, metrics used to evaluate fit models are described. The calculation of significance

from the log-likelihoods and the change in two-dimensional and four-dimensional χ2s are all

fit quality measures that are used to assess the validity of adding additional states to the

model as well as determine spin-parity assignments of additional states. The results of these

tests are reported in future sections.

8.1 Calculation of significance of adding states

The log-likelihoods for each fit are calculated according to Equation 7 in Section 6.3. When

adding new states with a fixed resonance shape, a log-likelihood difference is used as a

test statistic to evaluate the hypothesis of these new states. To account for the change in

parameters when adding new shapes, Wilks’ theorem is employed, which states that as the

sample size approaches infinity, the test statistic ∆(−2 log(L)) asymptotically approaches

the χ2 distribution with a number of degrees of freedom equal to the number of constrained

parameters in the null hypothesis (no resonant contribution present) relative to the alternative

hypothesis (the resonant contribution is present). This allows for calculation of the p-value

of the null hypothesis, which is converted to number of standard deviations in a Gaussian

distribution. Wilks’ theorem applies only if the shape of the resonant contribution is fixed i.e.

its mass and width are fixed. The previous Z(4430)− amplitude analysis conducted extensive

statistical simulations of pseudo-experiments and determined that ∆(−2 lnL) distribution is

much better approximated by χ2 with the number of degrees of freedom equal to twice the

difference in the number of free parameters between the hypotheses when the Z(4430)− mass

and width are free to float. As such, the calculation of significance of a new state with mass

and width free to float is:

nσ(∆(−2 lnL)) =
√
2 erfc−1

[
P
(
∆(−2 lnL), 2∆(nPar)

)]
, (31)
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where nσ is the number of Gaussian standard deviations that represents the significance

of the new state, and P
(
∆(−2 lnL), 2∆(nPar)

)
is the χ2 probability with number of degrees

of freedom equal to twice the difference of the number of free parameters between the null

hypothesis fit and the alternative hypothesis fit. erfc−1 is the inverse error function used to

convert the p-value into Gaussian standard deviations.

8.2 Multidimensional χ2s

While the pulls of mass or angle projections are useful to identify missing contributions to

the fit model, these fits are multidimensional, and therefore it is also informative to measure

the quality of the fits in more than one dimension. The fit quality is measured both in the

two-dimensional Dalitz plane (m2
Kπ vs m2

ψπ) as well as in the full, four-dimensional phase

space with cos θψ and ϕψ being the two additional dimensions combined with the Dalitz

plane. To obtain the χ2 values, the data is binned, and the pulls between the data and the fit

prediction for all bins are summed in quadrature, χ2 =
∑Nbins

j=1 δ2j , where δj is the difference

between the data and the fit value in the j-th bin divided by the expected error.

When the count of a data bin is sufficiently large, the χ2 variable follows the χ2 distribution

to a good approximation with ndf value in the range [Nbins − 1− npar, Nbins − 1], where npar

is the number of free parameters in the fit. To bin the data, all entries are first put into

one bin, and then the data count is split in half based on new bin boundaries according to

the number of divisions set for each variable. Therefore, the bin size is adaptive trying to

maintain equal number of events in all bins. Bins are not divided if the bin content falls

below 10. For the 2-D (Dalitz plane) χ2, each mass variable is divided 5 times, alternating

between the mass variables for each division. This produces 1024 bins for the 2-D χ2. For

the full 4-D χ2, each variable is divided twice, cycling through the variables for each division

(first m2
Kπ, then m

2
ψπ, cos θψ, and finally ϕψ), and after, the mass variables are divided twice

more each, producing 4096 bins. Smaller χ2 values indicate that an alternative hypothesis

improves either the 2-D or 4-D phase space compared to the null hypothesis, and thus they

68



are used to justify the inclusion of additional states as will be seen in the coming sections.

Change of χ2 value between the null and alternative hypotheses can also be used to assess

significance of the resonance added to the amplitude model. However, since there is a loss

of information when binning the data, this approach is less sensitive than the log-likelihood

difference. Since the mass variables discriminate better between various resonant contributions

than the angular distributions, the 4D χ2 approach is often less sensitive than the 2D χ2

approach as it has coarser bins in masses.
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9 K∗0 model

In B0 → ψKπ decays, the mKπ distribution features several resonant structures, most

notably K∗(892) and K∗
2(1430). Listed in Table 5, the K∗0 resonances known to decay to

Kπ are listed along with their properties. The lightest K∗0 is K∗
0(800)

0 (often called κ in

the literature); it has spin 0, is very broad and its existence was questioned in the past. In

recent years, both experimental and theoretical evidences support its existence [23]. From a

theoretical point of view, this state is not a traditional sd̄ state, but rather a state predicted

by the chiral Lagrangian for lightest mesons, which explains its very large width. The other

K∗0 resonances find their interpretation in classical sd̄ spectroscopy [24] and correspond

to various radial (n = 1, 2, ...), angular momentum (L = S, P,D, F, ..., not to be confused

with the angular momenta between the final state particles in the decay) and quark total

spin (S = 0, 1) configurations. Their likely spectroscopic assignments (n2S+1LJ) are given in

Table 5. The total spin of the meson J (≡ Jk) is of particular importance for this analysis,

since it determines the number of complex amplitudes to be included in the fit and impacts

their mψπ distribution.

For B0 → ψ(2S)Kπ decays, the mass of the Kπ system is limited to less than 1593 MeV,

below which lie an additional spin-0 resonance, K∗
0(1430)

0, two spin-1 resonances, K∗(892)0

and K∗
1(1410)

0, and a spin-2 resonance, K∗
2(1430)

0. Above the kinematic mass limit lie

several more K∗s, including those of higher spin. There is an additional spin-0 resonance,

K∗
0 (1950)

0, a spin-1 resonance, K∗
1 (1680)

0, a spin-2 resonance, K∗
2 (1980)

0, a spin-3 resonance,

K∗
3 (1780)

0, a spin-4 resonance, K∗
4 (2045)

0, and a spin-5 resonance, K∗
5 (2380)

0. The K∗
2 (1980)

0

was not used in the previous B0 → ψKπ amplitude analysis, but it was since included in

the amplitude analysis for B+ → J/ψϕK+ [25] as part the model of ϕK+ structures. All of

these higher mass states can contribute their resonance tails to the Kπ mass spectrum in

B0 → ψ(2S)Kπ decays, but the heavier the resonance, the lower the probability for it to

show up due to phase-space suppression. Also the higher the spin the lower the probability,
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since LminB = |J−1|, and high angular momenta are efficiently suppressed by the |(p/mB)
LB |2

term in the matrix element squared. Relatively to a spin-1 resonance for which LminB = 0,

this term for a mid-range mKπ (1.1 GeV) is 0.03, 0.001, 0.00004 and 0.000001 for J = 0 or 2,

3, 4 and 5, respectively. Therefore, spin-3 is not likely to contribute much to the decay width,

and spin 4 and 5 contributions are extremely unlikely to be present.

For most K∗0 resonances, we fix the masses and widths to the PDG world average values,

but because of the dominant mass peaks of K∗(892)0 and K∗
2 (1430), small variations in their

masses and widths can greatly impact the goodness-of-fit measures. As such, we allow their

masses and widths to float freely in the fit. We also allow the mass and width of K∗
0 (800)

0 to

float freely, as it contributes strongly to the K∗0 S-wave, and the flexibility in its fit shape

improves goodness-of-fit measures in a similar manner as K∗(892)0 and K∗
2(1430).

Since the J/ψ mass is lower than the ψ(2S) mass, the kinematic limit for themKπ spectrum

is at 2183 MeV for B0 → J/ψKπ decays. This means that known K∗0s up to spin J = 4 are

within phase space. The only known K∗0 above the mKπ kinematic limit for the J/ψ channel

is K∗
5(2380)

0, which is also the first (and only known) spin J = 5 K∗0. Much like the K∗0s

above the mass limit for the B0 → ψ(2S)Kπ channel, this resonance can also contribute via

its resonance tail. As with the ψ(2S) channel, K∗
0 (800)

0, K∗(892)0, and K∗
2 (1430) have freely

floating masses and widths. In addition to those, we allow the K∗
0 (1430)’s mass and width to

float freely, since it improves the goodness-of-fit measures in the larger data sample in the

B0 → J/ψKπ channel.

71



Table 5: Known K∗0 resonances decaying to K+π−, with their spectroscopic classification and
measured properties [1].

Resonance JP Likely n2S+1LJ Mass (MeV) Width (MeV) B(K∗0 → K+π−)
K∗

0(800)
0 (κ) 0+ — 845± 17 468± 30 ∼ 100%

K∗(892)0 1− 13S1 895.55± 0.20 47.3± 0.5 ∼ 100%
K∗

0(1430)
0 0+ 13P0 1425± 50 270± 80 (93± 10)%

K∗
1(1410)

0 1− 23S1 1414± 15 232± 21 (6.6± 1.3)%
K∗

2(1430)
0 2+ 13P2 1432.4± 1.3 109± 5 (49.9± 1.2)%

B0 → ψ(2S)Kπ phase space limit 1593
K∗

1(1680)
0 1− 13D1 1718± 18 322± 110 (38.7± 2.5)%

K∗
3(1780)

0 3− 13D3 1779± 8 161± 17 (18.8± 1.0)%
K∗

0(1950)
0 0+ 23P0 1944± 18 100± 40 (52± 14)%

K∗
2(1980)

0 2+ 23P2 1994+60
−50 348+50

−30 -
K∗

4(2045)
0 4+ 13F4 2048+8

−9 199+27
−19 (9.9± 1.2)%

B0 → J/ψKπ phase space limit 2183
K∗

5(2380)
0 5− 13G5 2382± 24 178± 50 (6.1± 1.2)%
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10 K∗ Only Amplitude Model

We present here the results of 4D fits that use the full K∗0 model without any ψπ resonances.

Each partial wave was represented with the K-matrix formulation discussed in Sec 7. For

the B0 → J/ψKπ channel only, we include a non-resonant term in the K∗0 S-wave K-matrix.

This term was not necessary for the B0 → ψ(2S)Kπ dataset or for other partial waves in the

K∗0 model.

We show the projections for the masses in Fig. 43 for the B0 → ψ(2S)Kπ dataset and

in Fig. 46 for the B0 → J/ψKπ dataset. The fits to both datasets describe mKπ fairly well,

but there is a significant disagreement for both channels below K∗(892) (see the fit pull

distributions). For B0 → J/ψKπ decays, there are additional disagreements near K∗(1430)

and at high mKπ mass (well above the B0 → ψ(2S)Kπ phase space limit).

The mψπ projections for both channels are not well represented by the fits. For B0 →

ψ(2S)Kπ, there is a large disagreement at mψπ > 4.4 GeV. In B0 → J/ψKπ, there is a

large disagreement at mψπ > 4.4 GeV too, and in addition, there is a disagreement between

mψπ = 4.0 GeV and 4.3 GeV.

We also show the projections for the mψπ distribution in different slices of mKπ, which

are in Fig. 44 for the B0 → ψ(2S)Kπ dataset and Fig.47 for the B0 → J/ψKπ dataset. In

the ψ(2S) channel, the mψπ projections for slices of mKπ near a known K∗0 resonance, i.e.

K∗(892) and K∗(1430) mass slices, are fairly well described by the fits, but in regions of

mKπ near no obvious Kπ structures, the mψπ projections have disagreements at mψπ > 4.4

GeV and also below mψπ = 4.2 GeV. In the J/ψ channel, the mψπ projections show several

disagreements throughout phase space, even in regions close to prominent K∗0 resonances.

Similarly, the various angular distributions are shown in Fig. 45 for the B0 → ψ(2S)Kπ

dataset and in Fig. 48 for the B0 → J/ψKπ dataset. While the cos(θψ and ϕψ projections

have minimal disagreements, the cos(θψ projection for both channels is not well represented

with large disagreements between the fit and the data.
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Given the numerous discrepancies between the fit results and data, it is clear that the

data cannot be described by the K∗0-only model, which confirms the finding in the previous

analyses by LHCb and Belle (see Sec. 3).
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Figure 43: The distribution of mKπ for the B0 → ψ(2S)Kπ data (black) and the fit (red) using a
model with only the K∗0s listed in PDG. Masses and widths of the states are fixed to the PDG
values except for those mentioned in Sec. 9. The widths are fixed to the PDG values or left free for
the predicted states.
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Figure 44: Projections of the B0 → ψ(2S)Kπ data (black points) and of the K∗0-only 4D amplitude
fit (red) onto the mψπ axis in different slices of mKπ: below K∗(892) (top left), at K∗(892) (top
right), in between K∗(892) and K∗

2(1430) (middle left), at K∗
2(1430) (middle right), and above

K∗
2 (1430) (bottom).
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Figure 45: Projections of the B0 → ψ(2S)Kπ data (black points) and of the K∗0-only 4D amplitude
fit (red) onto the angular variables of the fit: cosine of the K∗0 helicity angle (top), cosine of the ψ
helicity angle (middle), and the angle between the K∗0 and ψ decay planes (ϕ).
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Figure 46: The distribution of mKπ for the B0 → J/ψKπ data (black) and the fit (red) using a
model with only the K∗0s listed in PDG. Masses and widths of the states are fixed to the PDG
values except for those mentioned in Sec. 9. The widths are fixed to the PDG values or left free for
the predicted states.
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Figure 47: Projections of the B0 → J/ψKπ data (black points) and of the K∗0-only 4D amplitude
fit (red) onto the mψπ axis in different slices of mKπ: below K∗(892) (top left), at K∗(892) (top
right), in between K∗(892) and K∗

2 (1430) (middle left), at K∗
2 (1430) (middle right), above K∗

2 (1430)
but below the mKπ phase space limit in B0 → ψ(2S)Kπ decays (bottom left), and above the mKπ

phase space limit in B0 → ψ(2S)Kπ decays (bottom right).
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Figure 48: Projections of the B0 → J/ψKπ data (black points) and of the K∗0-only 4D amplitude
fit (red) onto the angular variables of the fit: cosine of the K∗0 helicity angle (top), cosine of the ψ
helicity angle (middle), and the angle between the K∗0 and ψ decay planes (ϕ).
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11 Previous ψ(2S)Kπ Model on Current Dataset

The present Run 1 and 2 data set has about 6 times more signal events than used in the

previously published LHCb amplitude analysis of the B0 → ψ(2S)π−K+ channel [7], which

was based on Run 1 data and on less efficient data selection. To check compatibility of the

new data set with the previously published results, we fit it with the amplitude model used

previously. The new amplitude model uses single-channel K-matrix approach. It reduces to

the Breit-Wigner representation in the case that there is only one resonance in the partial

wave, however, it adds multiple resonances of the same quantum numbers differently than the

Breit-Wigner sum used previously. Therefore, in this section we revert to the Breit-Wigner

sum approach.

11.1 Fits with the previous K∗0-only model

The resonant content is set to be the same as in the default model used in Ref. [7], which

includes K∗0 resonances up to spin 2, but without resonances with pole masses beyond

the phase-space limit (i.e. no K∗
0(1950)

0 or K∗
2(1980)

0). The previous analysis floated, but

constrained, K∗(892) and K∗
0(800) masses and widths. Since we have much more data, we

just float them. We also do not use the cut on the Dalitz plot boundary, which excluded

4% of the maximal m2 range (reducing statistics by 12%). Obviously, such K∗0-only model

cannot describe the new data as shown in Figs. 49-51.
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Figure 49: The distribution of mKπ for the B0 → ψ(2S)Kπ data (black) and the fit (red) using the
2014 LHCb model with only K∗ contributions.
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Figure 50: The distribution of mψ(2S)π for the B0 → ψ(2S)Kπ data (black) and the fit (red) using
the 2014 LHCb model with only K∗ contributions.
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Figure 51: Projections of the B0 → ψ(2S)Kπ data (black points) and of the 2014 LHCb model
4D amplitude fit (red) with only K∗ contributions onto the mψπ axis in different slices of mKπ:
below K∗(892) (top left), at K∗(892) (top right), in between K∗(892) and K∗

2 (1430) (middle left),
at K∗

2 (1430) (middle right), and above K∗
2 (1430) (bottom).

84



11.2 Fits with the old model including Z(4430)−

Like in the previous default model, we now add just one 1+ ψ(2S)π− resonance, assumed to

decay in S-wave, which imposes a constraint on its helicity couplings (AZ,1 = AZ,−1 = AZ,0.).

The fit quality improves dramatically as shown in Figs. 52-55, and quantified by multiple

metrics summarized in Tab. 6. We see huge improvement in the negative log-likelihood, 2D,

and 4D χ2s from the fit.

Table 6: Fit quality metrics comparing 2014 K∗0-only fit with 2014 model fit on current dataset.

Metric 2014 K∗0-only model 2014 Z(4430)− model

NDF 34 38
logL (∆(−2 logL)) -100,113 -101,625 (3,024)

2D χ2 1024 bins (∆χ2)) 3510 1794 (1,716)
4D χ2 4096 bins (∆χ2)) 6571 4984 (1,587)

Parameters of the Z(4430)− resonances are in agreement with the published results as

shown in Tab. 7.

Table 7: Mass and width of the Z(4430)− compared to results from 2014 using the model from
LHCb in 2014.

Parameter 2014 Data Current Data

M(Z(4430)−) 4475±7+15
−25 MeV 4475±2 MeV

Γ(Z(4430)−) 172±13+37
−34 MeV 187±5 MeV

Remarkably, individual fit fractions of all model components are also very similar as

shown in Tab. 8.

In spite of huge improvement in the fit quality, the old default model has deficiencies

even in the description of the Kπ mass spectrum, as noticeable in the 1350-1550 MeV

region (Fig. 52), which are mostly removed with more K∗0 components, even without exotic

contributions in the model (Fig. 43).

As already recognized in the previously published analysis even bigger disagreements

between the data and the model are seen in ψ(2S)π mass distribution, in particular in the
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Table 8: All resonance fit fractions compared to results from 2014 using the model from LHCb in
2014.

Contribution 2014 Data Current Data

Z(4430) 5.9±0.9% 8.0%

K∗ Total S-wave 10.8±1.3% 13.2%
K∗ S-wave NR 0.3±0.8% 0.02%

K∗
0(800) 3.2±2.2% 6.0%

K∗
0(1430) 3.6±1.1% 3.6%
K∗(892) 59.1±0.9% 57.6%
K∗

1(1410) 1.7±0.8% 2.0%
K∗

1(1680) 4.0±1.5% 2.8%
K∗

2(1430) 7.0±0.4% 6.3%

Kπ mass slice in between K∗(892) and K∗
2(1430) resonances (Fig. 54). Upgrades to the

model of exotic contributions are discussed in the section which follow.
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Figure 52: The distribution of mKπ for the B0 → ψ(2S)Kπ data (black) and the fit (red) using the
2014 LHCb model with Z(4430)−.
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Figure 53: The distribution of mψ(2S)π for the B0 → ψ(2S)Kπ data (black) and the fit (red) using
the 2014 LHCb model with Z(4430)−.
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Figure 54: Projections of the B0 → ψ(2S)Kπ data (black points) and of the 2014 LHCb model 4D
amplitude fit (red) with Z(4430)− onto the mψπ axis in different slices of mKπ: below K∗(892) (top
left), at K∗(892) (top right), in between K∗(892) and K∗

2 (1430) (middle left), at K∗
2 (1430) (middle

right), and above K∗
2 (1430) (bottom).
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Figure 55: Projections of the B0 → ψ(2S)Kπ data (black points) and of the 2014 LHCb model 4D
amplitude fit (red) with Z(4430)− onto the angular variables of the fit: cosine of the K∗0 helicity
angle (top), cosine of the ψ helicity angle (middle), and the angle between the K∗0 and ψ decay
planes (ϕ).
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11.3 Z(4430)− using a Model Independent Approach

An important part of the previous LHCb publication was a demonstration of resonant phase-

motion of JP = 1+ ψ(2S)π amplitude in the Z(4430)− region. This was accomplished by

replacing the Breit Wigner Z(4430)− shape with 6 complex amplitudes, equally spaced in

m2
ψ(2S)π bins in the region 18.0 - 21.5 GeV2, and these complex amplitudes were free to

float in the fit. This follows a similar approach as described later in Sec. 7, except that like

previously, we fit here only one set of helicity couplings stemming from the S-wave constraint

on Z− → ψ(2S)π decay. The fit projections are shown in Fig. 56- 58. They exhibit similar

agreements and disagreements with the new data as discussed in Sec. 11.2. The obtained

Argand plot is presented in Fig. 59, where it is compared to the one previously published. The

amplitude scale convention is different than in the previous analysis, thus absolute values of

amplitude magnitudes should not be compared. Overall phase of the diagram is also different,

which is likely due to small differences in the size of various K∗0 components. However, the

counter-clockwise relative phase running with ψ(2S)π mass, and nearly circular shape of the

amplitude is the same, with much smaller errors than previously obtained.

In conclusion, when treating the new dataset with the previous approach we arrive at

the same conclusions as published by LHCb in 2014 [7]. However, the increased data sample

also reveals that the old model is insufficient in describing all features in the data, therefore

the model requires additional components. Additional K∗0 components have been added as

already discussed in Sec. 10. Following sections discuss improvements to the model of the

exotic hadron sector, as well as the amplitude analysis of the B0 → J/ψπ−K+ data, which

has never been published by LHCb.
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Table 9: Fit quality metrics comparing 2014 K∗0-only fit with 2014 model independent fit on current
dataset.

Metric 2014 K∗0-only model plus Z(4430)− in model independent form

NDF 34 48
logL (∆(−2 logL)) -100,113 -101,527 (2,828)

2D χ2 1024 bins (∆χ2)) 3510 1908 (1,602)
4D χ2 4096 bins (∆χ2)) 6571 5062 (1,509)
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Figure 56: The distribution of mKπ for the B0 → ψ(2S)Kπ data (black) and the fit (red) using the
2014 LHCb model independent approach.
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Figure 57: The distribution of mψ(2S)π for the B0 → ψ(2S)Kπ data (black) and the fit (red) using
the 2014 LHCb model independent approach.
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Figure 58: Projections of the B0 → ψ(2S)Kπ data (black points) and of the 2014 LHCb model 4D
amplitude fit (red) with Z(4430)− as model independent contribution onto the mψπ axis in different
slices of mKπ: below K∗(892) (top) and in between K∗(892) and K∗

2 (1430) (bottom).
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amplitude is labeled with its mψπ bin center in the Argand plot from the current analysis.
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12 Resonant Z models with ψ(2S) channel

Since the 2014 LHCb model [7] is insufficient to represent the current dataset in all detail,

here we explore improving a Z model to reconcile the disagreements between these earlier fits

and the data. Zs are added to the model one by one, testing all possible JP contributions

for up to spin J = 2. Based on a combination of significance from goodness-of-fit metrics and

improvements in projections of kinematic variables, we continue to add Z resonances until no

further improvements can be made.

12.1 Models with one Z− → ψ(2S)π−

Fits were performed, each adding a Z with unique JP to the K∗-only model in Section 10 for

B0 → ψ(2S)Kπ. This is similar to the Z(4430)− spin analysis performed previously [7] with

the smaller data set. However, the K∗0 model has been extended since then as discussed in

Sec. 9-10. We also no longer impose the S-wave constraint on Z− helicity couplings.

The fit quality metrics for each of these fits are presented in Table 10. The best such fit

is adding a JP = 1+ Z, which is the same conclusions as reached in the previous amplitude

analyses of this channel [7, 12]. The significance of this contribution is 36.8σ, which is as

expected much higher than 18.7σ obtained in the previous LHCb analysis [7]. The mass,

4477± 4 MeV, and width, 226± 8 MeV, are consistent within the systematic errors with the

previous LHCb results [7], 4475± 7+15
−25 MeV and 172± 13+37

−34 MeV.

Table 10: Goodness-of-fit metrics for adding the first Z with the given JP to the ψ(2S) channel.

Variable K∗-only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 58 62 62 64 64 62
logL -101529 -102075 -101579 -102238 -101866 -101560

∆(−2 logL) - 1091 98 1418 674 62
2-D χ2 (1024 bins) 1907 1458 1800 1285 1540 1833

2-D ∆χ2 - 449 106 621 366 73
4-D χ2 (4096 bins) 5137 4746 5038 4581 4839 5075

4-D ∆χ2 - 391 99 556 298 62
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Table 11: Mass and width of the Z added to the ψ(2S) channel model.

Contribution JP M (GeV) Γ (GeV)
Z(4430) 1+ 4.477±0.004 0.226±0.008
Ref. [7] 1+ 4.475±0.007+0.015

−0.025 0.172±0.013+0.037
−0.034

The significance of the Z(4430) is apparent in the mass projections. With the K∗-only

model, there is a noticeable disagreement at lowmKπ (below K*(892)), but this disagreement is

resolved after adding the Z(4430) as seen in Figure 60. Even more evident is the improvement

in the ψ(2S)π distribution in Figure 61, which shows much better agreement with the data

near the Z(4430) pole when compared to the K∗-only model.

Despite these improvements to the overall mass distributions, the mψ(2S)π projections in

the different mKπ slices still show disagreement at lower mass (mψ(2S)π < 4.2 GeV). This is

best seen in Figure 62, which shows the mψ(2S)π projection in the mKπ slices below K*(892)

and between K*(892) and K*(1430). Thus, we need to investigate if this model can be

improved by included another ψ(2S)π resonance.
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Figure 60: The distribution of mKπ for the B0 → ψ(2S)Kπ data (black) and the fit (red) which
adds a JP = 1+ Z.
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Figure 61: The distribution of mψ(2S)π for the B0 → ψ(2S)Kπ data (black) and the fit (red) which

adds a JP = 1+ Z.
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Figure 62: Projections of the B0 → ψ(2S)Kπ data (black points) and of the 4D amplitude fit (red)
with Z(4430)− as a JP = 1+ resonance onto the mψπ axis in different slices of mKπ: below K∗(892)
(top left), in between K∗(892) and K∗

2 (1430) (top right), and above K∗
2 (1430) (bottom).
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12.2 Models with two Z− → ψ(2S)π−

To improve upon the 1 Z model, more fits were performed, once again adding a Z with various

JP values to the model for B0 → ψ(2S)π−K+. The fit quality metrics for each of these fits

are presented in Table 12, which finds adding another JP = 1+ Z significant at 17.6σ in

terms of log-likelihood, with significant improvements in the 2-D and 4-D χ2s, as well. This

second 1+ Z was added to the K-matrix with the Z(4430) from the 1 Z model, with both Zs

masses and widths allowed to float, and the fit results for these parameters are in Table 13.

The new Z resonance, which we call Z(4200)−, has mass at 4.120±0.006 GeV and a width of

0.183±0.012 GeV, and the fit now prefers the Z(4430)− pole at m=4.539±0.006 GeV but

maintains the width at Γ=0.226±0.010 GeV.

Table 12: Goodness-of-fit metrics for adding a second Z with the given JP to the ψ(2S) channel.

Variable 1 Z Only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 64 68 68 70 70 68
logL -102238 -102311 -102276 -102417 -102342 -102244

∆(−2 logL) - 145 75 358 208 11
2-D χ2 (1024 bins) 1285 1213 1259 1151 1253 1288

2-D ∆χ2 - 73 26 134 32 -3
4-D χ2 (4096 bins) 4581 4526 4561 4464 4541 4585

4-D ∆χ2 - 55 20 117 40 -4

Table 13: Masses and widths of the Zs in the 2 Z model for the ψ(2S) channel.

Contribution JP M (GeV) Γ (GeV)
Z(4430) 1+ 4.539±0.006 0.226±0.010
Z(4200) 1+ 4.120±0.006 0.183±0.012

The overall mass projections for Kπ and ψ(2S)π remain overall pretty good in terms of

their pull plots as seen in Figures 63 and 64, but the addition of the second 1+ Z shows

improvement in the ψ(2S)π mass distribution in the different mKπ slices. The disagreement

between the fit and the data from the Z model in the range 4.0 < mψ(2S)π ¡ 4.25 GeV is no

longer present in these slices when adding the second Z, as seen in Figure 65, most notably

in the ”middle” slice of mKπ that falls between K*(892) and K*(1430).
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Figure 63: The distribution of mKπ for the B0 → ψ(2S)Kπ data (black) and the fit (red) which
adds a second JP = 1+ Z.

The need for a second Z− → ψ(2S)π− resonance at the lower mass was already reported in

the previous LHCb analysis of the B0 → ψ(2S)π−K+ channel [7]. However, with the smaller

data set, both 0− and 1+ resonances were giving similar fit qualities, with 1σ preference

for the 0− hypothesis. The previous amplitude analysis was adding two 1+ resonances in

Breit-Wigner form, while the present model adds two 1+ poles into the same K-matrix term.

The latter prescription improves analytical properties of the amplitude, therefore it is better

motivated theoretically. As discussed previously, also the K∗0 model has been improved.

With these changes and with much larger data set, our analysis prefers the 1+ hypothesis

by significant margins: 12.2σ over 2−, 14.6σ over 0−, 16.8σ over 1−, and 18.6σ over 2+, as

estimated by taking the square-root of the −2 logL differences as appropriate for testing the

hypotheses which are not nested in each other [7].
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Figure 64: The distribution of mψ(2S)π for the B0 → ψ(2S)Kπ data (black) and the fit (red) which

adds a second JP = 1+ Z near mψ(2S)π = 4.1GeV .

The two 1+ Z− → ψ(2S)π− model is reminiscent of the two 1+ Z− → J/ψπ− model

deduced by the Belle experiment from the amplitude analysis of the B0 → J/ψπ−K+ data [16],

in which the lower mass Breit-Wigner resonances was claimed at 4.196+0.031
−0.029

+0.017
−0.013 GeV, with

a width of 0.370+0.070
−0.070

+0.070
−0.132 GeV while also requiring the presence of the higher mass 1+

Z(4430)− → J/ψπ− resonance with the mass and width fixed at their results from the analysis

of the B0 → ψ(2S)π−K+ data. Since Belle did not use the K-matrix formulation, the masses

and widths cannot be rigorously compared to our results. However, qualitatively the models

are similar.
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Figure 65: Projections of the B0 → ψ(2S)Kπ data (black points) and of the 4D amplitude fit (red)
with 2 JP = 1+ Zs in a K-matrix onto the mψπ axis in different slices of mKπ: below K∗(892) (top
left), in between K∗(892) and K∗

2 (1430) (top right), and above K∗
2 (1430) (bottom).
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12.3 Models with three Z− → ψ(2S)π−

Fits are performed again to improve upon the 2 Z model for B0 → ψ(2S)π−K+. The fit

quality metrics for each of these fits are presented in Table 14, which finds adding a JP = 2−

Z significant at 11.3σ in terms of log-likelihood, and a third Z modestly improves the 2-D and

4-D χ2s. These 2− quantum numbers are preferred over the other spin-parity hypotheses by

9σ. This is the first significant evidence that exotic ψπ− resonances, other than in 1+ wave

exist. The new Z is added as a separate resonance from the two 1+ Zs in a K-matrix together,

with all Zs masses and widths allowed to float, and the fit results for these parameters are in

Table 15. The new Z resonance, which we call Z(4470)−, has mass at 4.465±0.006 GeV and

a width of 0.125±0.014 GeV, and the masses and widths of the other Zs remain largely the

same.

Table 14: Goodness-of-fit metrics for adding a third Z with the given JP to the ψ(2S) channel.

Variable 2 Z Only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 70 74 74 76 76 74
logL -102417 -102451 -102431 -102460 -102501 -102423

∆(−2 logL) - 68 28 84 166 11
2-D χ2 (1024 bins) 1151 1127 1153 1123 1115 1149

2-D ∆χ2 - 24 -2 28 36 2
4-D χ2 (4096 bins) 4464 4458 4456 4440 4438 4459

4-D ∆χ2 - 6 8 24 27 5

Table 15: Masses and widths of the Zs in the 3 Z model for the ψ(2S) channel.

Contribution JP M (GeV) Γ (GeV)
Z(4430) 1+ 4.556±0.006 0.234±0.009
Z(4200) 1+ 4.117±0.004 0.164±0.009
Z(4470) 2− 4.465±0.006 0.125±0.014

The overall mass projection for Kπ (Figure 66) improved at high mass (> 1.5 GeV), as a

small disagreement between the 2 Z fit and data is not present in the 3 Z fit. The ψ(2S)π

mass projection in Fig. 67 remains mostly the same, and both of the overall projections look

good. There is also improvement in the ψ(2S)π mass distribution in the different mKπ slices
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in Fig. 68. The pulls improve near the peak of the new Z in both the slice below K∗(892)

and in the slice above K∗
2 (1430). In addition, there is much smaller interference between the

K∗ and Z waves than before as seen in the slice above K∗
2 (1430), as the total K∗ wave is no

longer well above the fit in the plot.
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Figure 66: The distribution of mKπ for the B0 → ψ(2S)Kπ data (black) and the fit (red) which
adds a JP = 2− Z into the model with two 1+ Zs in a K-matrix.
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Figure 67: The distribution of mψ(2S)π for the B0 → ψ(2S)Kπ data (black) and the fit (red) which

adds a JP = 2− Z near mψ(2S)π = 4.4GeV into the model with two 1+ Zs in a K-matrix.
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Figure 68: Projections of the B0 → ψ(2S)Kπ data (black points) and of the 4D amplitude fit (red)
with 2 JP = 1+ Zs in a K-matrix and 1 JP = 2− Z as a separate resonance onto the mψπ axis in
different slices of mKπ: below K∗(892) (top left), in between K∗(892) and K∗

2(1430) (top right),
and above K∗

2 (1430) (bottom).
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12.4 Models with four Z− → ψ(2S)π−

Fits with a fourth Z were performed on B0 → ψ(2S)π−K+ data, and the fit quality metrics

for these are shown in Table 16. Adding a third 1+ Z to the K-matrix with the Z(4430)

and Z(4200) proves to be the most significant at 8.0σ in terms of log-likelihood, and it also

slightly improves the 2-D and 4-D χ2s. The JP preference is not as significant as when adding

the other Z resonances. The preference over 2− hypothesis (the second pole in this wave) is

2.8σ and > 4.1σ for the other JP values. The numbers given here include only statistical

factors, with systematic effects neglected. We allow all masses and widths of these Zs to float,

and their results are found in Table 17. The new Z resonance, which we call Z(4800), has

the mass at 4.804±0.007 GeV, which is near the upper kinematic bound, and a relatively

narrow width of 0.139±0.025 GeV. The masses and widths of the other Zs remain largely

the same, save for Z(4430), which is slightly less broad than it was in the 3 Z fit. The masses

and widths of the K∗s that are floating can be found in Table 18, and are consistent with the

world average values [22]. The fit fractions for all resonances and partial waves are found in

Table 19.

Table 16: Goodness-of-fit metrics for adding a fourth Z with the given JP to the ψ(2S) channel.

Variable 3 Z Only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 76 80 80 82 82 80
logL -102501 -102530 -102533 -102542 -102538 -102533

∆(−2 logL) - 59 66 83 75 66
2-D χ2 (1024 bins) 1115 1085 1097 1081 1096 1097

2-D ∆χ2 - 30 18 34 19 18
4-D χ2 (4096 bins) 4438 4404 4420 4395 4409 4420

4-D ∆χ2 - 34 18 43 29 18

The overall mass projection for Kπ (Figure 69) remains the same and good, while the

overall mass projection for ψ(2S)π (Figure 70) improves slightly at high mass near the new

Z but largely remains the same and good. There is also improvement in the ψ(2S)π mass

distribution in the mKπ slice between K∗(892) and K∗
2(1430) in Figure 71. There is a small
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Table 17: Masses and widths of the Zs in the 4 Z model for the ψ(2S) channel.

Contribution JP M (GeV) Γ (GeV)
Z(4430) 1+ 4.522±0.009 0.199±0.010
Z(4200) 1+ 4.119±0.007 0.164±0.008
Z(4470) 2− 4.471±0.005 0.116±0.010
Z(4800) 1+ 4.804±0.007 0.139±0.025

Table 18: Masses and widths of the K∗s in the 4 Z model for the ψ(2S) channel.

Contribution JP M (GeV) Γ (GeV)
K∗(892) 1− 0.889±0.0001 0.045±0.0003
K∗

0(800) 0+ 0.801±0.009 0.317±0.011
K∗

2(1430) 2+ 1.416±0.001 0.104±0.002

improvement at high mass near the new Z pole.

Table 19: All resonance fit fractions in the 4 Z fit for the ψ(2S) channel.

Contribution Fit fraction

K∗ Total S-wave 17.2%
K∗

0(800) 4.6%
K∗

0(1430) 5.5%
K∗

0(1950) 1.2%
K∗ Total P-wave 58.9%

K∗(892) 55.9%
K∗

1(1410) 2.5%
K∗

1(1680) 1.7%
K∗ Total D-wave 7.4%

K∗
2(1430) 6.4%

K∗
2(1980) 1.0%

K∗
3(1780) 0.4%

K∗
4(2045) 0.2%

K∗
5(2380) 0.08%

Z Total 1+ wave 5.3%
Z(4430) 2.8%
Z(4200) 1.2%
Z(4800) 0.3%

Z(4470) 2− wave 0.5%
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Figure 69: The distribution of mKπ for the B0 → ψ(2S)Kπ data (black) and the fit (red) which
adds a third JP = 1+ Z into the model with two 1+ Zs in a K-matrix and a separate 2− Z resonance.
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Figure 70: The distribution of mψ(2S)π for the B0 → ψ(2S)Kπ data (black) and the fit (red) which

adds a third JP = 1+ Z near mψ(2S)π = 4.8GeV into the model with two 1+ Zs in a K-matrix and
a separate 2− Z resonance.
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Figure 71: Projections of the B0 → ψ(2S)Kπ data (black points) and of the 4D amplitude fit (red)
with 3 JP = 1+ Zs in a K-matrix and 1 JP = 2− Z as a separate resonance onto the mψπ axis in
different slices of mKπ: below K∗(892) (top left), in between K∗(892) and K∗

2(1430) (top right),
and above K∗

2 (1430) (bottom).
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12.5 Models with five Z− → ψ(2S)π−

Fits with a fifth Z were performed on B0 → ψ(2S)Kπ, and the fit quality metrics for these

are in Table 20. While in terms of log-likelihood the fifth Z component is still 9.7σ significant

for the second 2− pole, the changes in the 2-D χ2 values calculated on the binned Dalitz

plot no longer provide supporting evidence. Its value hardly changes, and it prefers a fourth

1+ pole instead. Furthermore, the model has reached a complexity where fits converge with

warnings of machine accuracy limits. Therefore, we conclude that while the data may contain

even more Z resonant poles, most likely in 2− or 1+ waves, we cannot reliably extract their

parameters.

Table 20: Goodness-of-fit metrics for adding a fifth Z with the given JP to the ψ(2S) channel.

Variable 4 Z Only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 82 86 86 88 88 86
logL -102542 -102557 -102550 -102576 -102608 -102533

∆(−2 logL) - 29 15 67 132 47
2-D χ2 (1024 bins) 1081 1081 1079 1061 1078 1074

2-D ∆χ2 - 0 2 20 3 7
4-D χ2 (4096 bins) 4395 4391 4388 4378 4360 4393

4-D ∆χ2 - 4 7 17 35 2
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13 Resonant ZK models with ψ(2S) channel

This section will explore adding Z+
K → ψ(2S)K+ resonances into the B0 → ψ(2S)π−K+

model already equipped with the K∗0 → K+π− contributions and four Z− → ψ(2S)π−

states.

13.1 Plots of mψ(2S)K with no Z+
K → ψ(2S)K+

To compare with models that add Z+
K → ψ(2S)K+ states, presented here are the mψ(2S)K

distributions both overall (Fig 72) and in different slices of mKπ (Fig 73) from the fits done

with 4 Z− → ψ(2S)π− states without any ZK states. Fit quality metrics are in Sec. 12.4.

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1

 [GeV]K(2S)ψm

0

500

1000

1500

2000

2500

3000

E
ve

nt
s/

(0
.0

12
5 

G
eV

)

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1

 [GeV]K(2S)ψm
3−
2−
1−
0
1
2
3

Figure 72: The distribution of mψ(2S)K for the B0 → ψ(2S)π−K+ data (black) and the fit (red)

which has three JP = 1+ Zs in a K-matrix and a separate 2− Z resonance.
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Figure 73: Projections of the B0 → ψ(2S)π−K+ data (black points) and of the 4D amplitude fit
(red) with Z(4200)−, Z(4430)−, and Z(4800)− as a JP = 1+ K-matrix and Z(4470)− as a JP = 2−

resonance onto the mψ(2S)π axis in different slices of mKπ: below K∗(892) (top left), in between
K∗(892) and K∗

2 (1430) (top right), and above K∗
2 (1430) until the end of ψ(2S) phase space (bottom).
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13.2 Models with one Z+
K → ψ(2S)K+

Fits with a single Z+
K state added to the best K∗0 and Z− model were performed on

B0 → ψ(2S)π−K+ data, and the fit quality metrics for these are given in Table 21.

Adding a 1− Z+
K is the most significant in terms of the likelihood (7.4σ), and it also

slightly improves the 2-D and 4-D χ2s. We allow the mass and width of the Z+
K to float,

and the result is found in Table 24. The new Z+
K resonance, which we label ZK(4480), has

mass at 4.498±0.014 GeV and a width of 0.183±0.029 GeV. The masses and widths of the

Z− → ψ(2S)π− states do not change much except for Z(4430) which becomes a little bit

narrower (see Table 22). The masses and widths of the K∗s that are floating can be found in

Table 23.

Table 21: Goodness-of-fit metrics for adding one ZK with the given JP to the ψ(2S) channel.

Variable No ZK 0− ZK 1− ZK 1+ ZK 2− ZK 2+ ZK
nPar 82 86 86 88 88 86
logL -102542 -102568 -102581 -102577 -102564 -102575

∆(−2 logL) - 51 78 70 44 65
2-D χ2 (1024 bins) 1081 1070 1072 1075 1068 1078

2-D ∆χ2 - 11 9 6 13 4
4-D χ2 (4096 bins) 4396 4382 4377 4381 4377 4381

4-D ∆χ2 - 14 18 15 18 14

Table 22: Masses and widths of the Zs in the 1 ZK model for the ψ(2S) channel.

Contribution JP M (GeV) Γ (GeV)
Z(4430) 1+ 4.526±0.011 0.130±0.042
Z(4200) 1+ 4.124±0.010 0.166±0.015
Z(4470) 2− 4.473±0.007 0.119±0.013
Z(4800) 1+ 4.816±0.011 0.130±0.042

The overall mass projections for Kπ (Figure 74) and ψ(2S)π (Figure 75) do not change

much after adding a ZK resonance to the 4 Z model. The Kπ slices for the ψ(2S)π mass

projections also are pretty similar to those in the 4 Z model (Figure 76). The overall mass

projection for ψ(2S)K does improve slightly near the new pole (Fig. 77), where a slight
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Table 23: Masses and widths of the K∗s in the 1 ZK model for the ψ(2S) channel.

Contribution JP M (GeV) Γ (GeV)
K∗(892) 1− 0.889±0.0002 0.045±0.0003
K∗

0(800) 0+ 0.804±0.003 0.306±0.003
K∗

2(1430) 2+ 1.415±0.001 0.098±0.003

Table 24: Masses and widths of the ZK in the 1 ZK model for the ψ(2S) channel.

Contribution JP M (GeV) Γ (GeV)
ZK(4480) 1− 4.498±0.014 0.183±0.029

improvement in the pulls can be seen. The Kπ slices for the ψ(2S)K mass projections do

not change much when adding a ZK as seen in Figure 78.
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Figure 74: The distribution of mKπ for the B0 → ψ(2S)π−K+ data (black) and the fit (red) which
adds a new JP = 1− ZK into the default model which already has 4 Z → ψ(2S)π resonances.
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Figure 75: The distribution of mψ(2S)π for the B0 → ψ(2S)π−K+ data (black) and the fit (red)

which adds a new JP = 1− ZK into the default model which already has 4 Z → ψ(2S)π resonances.
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Figure 76: Projections of the B0 → ψ(2S)π−K+ data (black points) and of the 4D amplitude fit
(red) with Z(4200)−, Z(4430)−, and Z(4800)− as a JP = 1+ K-matrix, Z(4470)− as a JP = 2−

resonance, and Zcs)(4480)
− as a JP = 1− ψ(2S)K resonance. onto the mψ(2S)π axis in different

slices of mKπ: below K∗(892) (top left), in between K∗(892) and K∗
2 (1430) (top right), and above

K∗
2 (1430) until the end of ψ(2S) phase space (bottom).
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Figure 77: The distribution of mψ(2S)K for the B0 → ψ(2S)π−K+ data (black) and the fit (red)

which adds a new JP = 1− ZK into the default model which already has 4 Z → ψ(2S)π resonances.
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Figure 78: Projections of the B0 → ψ(2S)π−K+ data (black points) and of the 4D amplitude fit
(red) with Z(4200)−, Z(4430)−, and Z(4800)− as a JP = 1+ K-matrix, Z(4470)− as a JP = 2−

resonance, and Zcs)(4480)
− as a JP 1+ ψ(2S)K resonance. onto the mψ(2S)K axis in different slices of

mKπ: below K∗(892) (top left), in between K∗(892) and K∗
2 (1430) (top right), and above K∗

2 (1430)
until the end of ψ(2S) phase space (bottom).
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13.3 Models with two Z+
K → ψ(2S)K+

Fits with two Z+
Ks were performed on B0 → ψ(2S)π−K+ data, and the fit quality metrics

for these are in Table 25.

Adding a 1+ Z+
K is the most significant in terms of the likelihood (6.1σ), and it also

improves the 2-D and 4-D χ2s. The plot of the pulls for each bin in the Dalitz plane for

the 2-D χ2 is in Figure 84, and the distribution of the 2-D and 4-D pulls fit to a Gaussian

are in Figure 85, which feature a mean close to 0 (moreso for the 2-D distribution) and a

width close to 1. We allow the mass and width of the ZKs to float, and the results are found

in Table 28. The new ZK resonance, which we label ZK(4520), has mass at 4.521±0.007

GeV and a width of 0.056±0.012 GeV. The masses and widths of the Zs (ψ(2S)π states) do

not change much except for Z(4430) which returns from the 1 ZK fit to being a bit more

broad, and their values can be found in Table 26. The masses and widths of the K∗s that are

floating can be found in Table 27, and the fit fractions for all resonances and partial waves

are found in Table 29.

Table 25: Goodness-of-fit metrics for adding two ZKs with the given JP to the ψ(2S) channel.

Variable 1 ZK Only 0− ZK 1− ZK 1+ ZK 2− ZK 2+ ZK
nPar 86 90 90 92 92 90
logL -102581 -102597 -102592 -102615 -102592 -102588

∆(−2 logL) - 32 21 67 21 14
2-D χ2 (1024 bins) 1072 1060 1073 1057 1068 1067

2-D ∆χ2 - 13 -1 15 5 5
4-D χ2 (4096 bins) 4377 4365 4378 4365 4371 4376

4-D ∆χ2 - 13 -1 12 6 1

Table 26: Masses and widths of the Zs in the 2 ZK model for the ψ(2S) channel.

Contribution JP M (GeV) Γ (GeV)
Z(4430) 1+ 4.526±0.012 0.213±0.012
Z(4200) 1+ 4.113±0.009 0.169±0.017
Z(4470) 2− 4.471±0.006 0.106±0.013
Z(4800) 1+ 4.818±0.013 0.141±0.044
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Table 27: Masses and widths of the K∗s in the 2 ZK model for the ψ(2S) channel.

Contribution JP M (GeV) Γ (GeV)
K∗(892) 1− 0.889±0.0001 0.045±0.0003
K∗

0(800) 0+ 0.799±0.042 0.319±0.019
K∗

2(1430) 2+ 1.415±0.002 0.109±0.003

Table 28: Masses and widths of the ZKs in the 2 ZK model for the ψ(2S) channel.

Contribution JP M (GeV) Γ (GeV)
ZK(4480) 1− 4.487±0.013 0.155±0.025
ZK(4520) 1+ 4.521±0.007 0.056±0.012

The overall mass projections for Kπ (Figure 79) and ψ(2S)π (Figure 80) again do not

change much after adding a second Z+
K resonance to the 1 Z+

K model. The Kπ slices for the

ψ(2S)π mass projections do not change much, but there is more interference required from

the total K* wave that is necessary to get a good fit in the Kπ mass slice above K∗(1430)

for mψπ in Figure 81. The overall mass projection for ψ(2S)K in Figure 82 does not change

much when adding a second ZK , while the Kπ slices for the ψ(2S)K mass projections slightly

improve near the new pole, as seen in the slice below K∗(892), and again more interference is

seen in the slice above K∗(1430) from the total K* wave (Figure 83).

As it will become clear from the next subsection, the model presented here becomes our

nominal pick for the ψ(2S) channel, which we later use in the comparison to the J/ψ model

(Sec. 16). We include additional plots showing the fit quality on the Dalitz plane and in

all four fitted dimensions of the data (Figs. 84-85). We also show comparison between this

model and the data on various moments of the K∗0 helicity angle, which is another way to

test fit quality on the Dalitz plane (see Appendix B).
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Table 29: All resonance fit fractions in the 2 ZK fit for the ψ(2S) channel.

Contribution Fit fraction

K∗ Total S-wave 18.4±0.9%
K∗

0(800) 4.7±1.6%
K∗

0(1430) 6.9±0.5%
K∗

0(1950) 1.0±0.4%
K∗ Total P-wave 58.6±1.1%

K∗(892) 55.2±1.1%
K∗

1(1410) 2.8±0.3%
K∗

1(1680) 1.5±0.2%
K∗ Total D-wave 7.9±0.3%

K∗
2(1430) 7.1±0.3%

K∗
2(1980) 0.9±0.2%

K∗
3(1780) 0.6±0.1%

K∗
4(2045) 0.2±0.05%

K∗
5(2380) 0.1±0.04%

Z Total 1+ wave 5.3±0.1%
Z(4430) 2.5±0.05%
Z(4200) 1.3±0.03%
Z(4800) 0.4±0.01%

Z Total 2− wave 0.4±0.01%
Z2(4470) 0.4±0.01%

ZK Total 1− wave 0.4±0.01%
ZK(4480) 0.4±0.01%

ZK Total 1+ wave 0.1±0.002%
ZK(4520) 0.1±0.002%
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Figure 79: The distribution of mKπ for the B0 → ψ(2S)π−K+ data (black) and the fit (red) which
adds a new JP = 1+ ZK into the 1 ZK model.
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Figure 80: The distribution of mψ(2S)π for the B0 → ψ(2S)π−K+ data (black) and the fit (red)

which adds a new JP = 1+ ZK into the 1 ZK model.
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Figure 81: Projections of the B0 → ψ(2S)π−K+ data (black points) and of the 4D amplitude fit
(red) with Z(4200)−, Z(4430)−, and Z(4800)− as a JP = 1+ K-matrix, Z(4470)− as a JP = 2−

resonance, Zcs)(4480)
− as a JP = 1− ψ(2S)K resonance, and Zcs)(4520)

− as a JP = 1+ ψ(2S)K
resonance onto the mψ(2S)π axis in different slices of mKπ: below K∗(892) (top left), in between
K∗(892) and K∗

2 (1430) (top right), and above K∗
2 (1430) until the end of ψ(2S) phase space (bottom).
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Figure 82: The distribution of mψ(2S)K for the B0 → ψ(2S)π−K+ data (black) and the fit (red)

which adds a new JP = 1+ ZK into the 1 ZK model.
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Figure 83: Projections of the B0 → ψ(2S)π−K+ data (black points) and of the 4D amplitude fit
(red) with Z(4200)−, Z(4430)−, and Z(4800)− as a JP = 1+ K-matrix, Z(4470)− as a JP = 2−

resonance, Zcs)(4480)
− as a JP = 1− ψ(2S)K resonance, and Zcs)(4520)

− as a JP = 1+ ψ(2S)K
resonance onto the mψ(2S)K axis in different slices of mKπ: below K∗(892) (top left), in between
K∗(892) and K∗

2 (1430) (top right), and above K∗
2 (1430) until the end of ψ(2S) phase space (bottom).
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Figure 84: Dalitz plot with fit pulls in each bin used to calculate 2-D χ2. White line draws phase
space boundary for the B0 → ψ(2S)π−K+ decay.
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Figure 85: Distributions of the pulls from the 2-D and 4-D pulls from the multidimensional χ2s for
the default B0 → ψ(2S)π−K+ model. The distribution is fit with a Gaussian (red line).
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13.4 Models with three Z+
K → ψ(2S)K+

Fits with a third Z+
K state were performed on B0 → ψ(2S)π−K+ data, and the fit quality

metrics for these are in Table 30. These fits do not produce significant log-likelihood

improvements, thus a third Z+
K is not introduced into the default model. As such, the most

reliable Z+
K resonance model for the ψ(2S) channel is the one in the 3 Z+

K fit model.

Table 30: Goodness-of-fit metrics for adding a third ZK with the given JP to the ψ(2S) channel.

Variable 2 ZK only 0− ZK 1− ZK 1+ ZK 2− ZK 2+ ZK
nPar 92 96 96 98 98 96
logL -102615 -102624 -102621 -102632 -102631 -102625

∆(−2 logL) - 19 14 35 33 20
2-D χ2 (1024 bins) 1057 1055 1058 1049 1050 1060

2-D ∆χ2 - 2 -1 8 7 -3
4-D χ2 (4096 bins) 4365 4364 4365 4358 4361 4369

4-D ∆χ2 - 1 0 7 4 -4
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14 Resonant Z models with J/ψ channel

This section will follow the same procedure as the last but instead deals with the B0 →

J/ψπ−K+ dataset, which has much higher statistics and enlarged phase-space for conventional

and exotic resonances at the higher and lower masses, respectively. The modeling will begin

again with one Z− → J/ψπ− resonance of various JP added to the K∗-only model, and then

sequentially adding more Z resonances.

14.1 Models with one Z− → J/ψπ−

Fits were performed each adding a Z with various JP to the K∗-only model discussed in

Section 10 for B0 → J/ψπ−K+. In Table 31, the goodness-of-fit metrics are listed for these

fits, with the best being the one adding a JP = 1+ Z. The mass and width of the Z is allowed

to float in the fit, which gives m(Z) = 4.145±0.003 GeV and Γ(Z) = 0.214±0.004 GeV. We

label this pole Z(4200), because its parameters are not far from the mass and width of the

state first claimed by Belle in the amplitude analysis of the B → J/ψπK channel [16]. Our 1

Z model is favored over the K∗-only model by > 37σ in terms of log-likelihood values. It also

improves the 2-D and 4-D χ2s by very large numbers.

Table 31: Goodness-of-fit metrics for adding the first Z with the given JP to the J/ψ channel.

Variable K∗-only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 63 67 67 69 69 67
logL -3048980 -3049165 -3049314 -3051810 -3051076 -3049159

∆(−2 logL) - 370 668 5660 4192 358
2-D χ2 (1024 bins) 4476 4401 4118 3206 3109 4325

2-D ∆χ2 - 75 358 1270 1367 151
4-D χ2 (4096 bins) 6893 6827 6622 5798 5880 6759

4-D ∆χ2 - 66 271 1095 1013 134

The high significance of the Z(4200) is clear in the different mass projections. With the

K∗-only model, there is a large disagreement at high mKπ near the end of Kπ phase space,

but this disagreement is improved upon after adding the Z(4200) as seen in Figure 86. The
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Table 32: Mass and width of the Z(4200) in the 1 Z model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
Z(4200) 1+ 4.145±0.003 0.214±0.004

J/ψπ distribution in Figure 87 improves tremendously near the pole of the new Z ( 4.1 GeV),

resolving a very large disagreement present in K∗-only model.

The mJ/ψπ projections in the different mKπ slices also improve a lot near the new Z pole,

as can be seen in Figure 88 Better agreement between the fit and data is best seen in the

slice between K*(892) and K*(1430) and in the slice above ψ(2S) phase space. Despite these

improvements, there remain large disagreements in the mass distributions at high J/ψπ mass

(near 4.5 GeV) and also near 3.8 GeV either in the overall projection or in the mKπ slices. In

the subsequent subsections, additional J/ψπ resonances are added to attempt to improve this

1 Z fit.
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Figure 86: The distribution of mKπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which
adds a JP = 1+ Z.
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Figure 87: The distribution of mJ/ψπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds a JP = 1+ Z.
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Figure 88: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit
(red) with Z(4200)− as a JP = 1+ resonance onto the mJ/ψπ axis in different slices of mKπ: below
K∗(892) (top left), in between K∗(892) and K∗

2(1430) (top right), and above ψ(2S) phase space
(bottom).
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14.2 Models with two Z− → J/ψπ−

Given the number of disagreements between the data and the 1 Z model fit, two Z fits were

performed on B0 → J/ψπ−K+. The fit quality metrics for these are in Table 33, which shows

including a very broad 0− Z as the most significant in terms of the all the fit quality metrics.

It has a significance of > 37σ based on the log-likelihood difference. The masses and widths

of both Zs are free to float in the fit, with their values are listed in Table 34. The new broad

0− Z resonant pole has a mass at 4.201±0.008 GeV and a width of 0.826±0.015 GeV, and

while the 1+ Z(4200)’s mass is similar to the value from the 1 Z fit, it becomes significantly

broader in the 2 Z fit.

Table 33: Goodness-of-fit metrics for adding the second Z with the given JP to the J/ψ channel.

Variable 1 Z only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 69 73 73 75 75 73
logL -3051810 -3053797 -3051912 -3053467 -3052510 -3051841

∆(−2 logL) - 3974 204 3314 1400 62
2-D χ2 (1024 bins) 3206 2434 3092 2504 2836 3181

2-D ∆χ2 - 772 113 701 369 25
4-D χ2 (4096 bins) 5798 5181 5743 5181 5535 5771

4-D ∆χ2 - 617 55 618 263 27

Table 34: Masses and widths of the Zs in the 2 Z model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
Z(4200) 1+ 4.111±0.003 0.306±0.006
Z0(4200) 0− 4.201±0.008 0.826±0.015

In Figure 89, the overall mass projection for K+π− improves very significantly, finding

much better agreement at low mass (below K*(892)), near the K*(1430) peak, and above the

K*(1430) peak until the end of K+π− phase space. The overall mass projection for J/ψπ−

(Figure 90) does not change much from the 1 Z fit, still featuring the same disagreements

above 4.2 GeV. However, the J/ψπ− mass distributions in the different mKπ slices in Figure 91

improve a lot, as all slices shown exhibit many improvements throughout J/ψπ− phase space.

Nonetheless large disagreements remain near 3.8 GeV and 4.5 GeV in the mJ/ψπ spectrum.
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Figure 89: The distribution of mKπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which
adds a JP = 0− Z on top of a model with a separate 1+ Z resonance.
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Figure 90: The distribution of mJ/ψπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds a JP = 0− Z on top of a model with a separate 1+ Z resonance.
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Figure 91: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit (red)
with Z(4200)− as a JP = 1+ resonance and a broad Z(4200)− as a JP = 0− resonance onto the
mJ/ψπ axis in different slices of mKπ: below K∗(892) (top left), in between K∗(892) and K∗

2 (1430)
(top right), and above ψ(2S) phase space (bottom).
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14.3 Models with three Z− → J/ψπ−

To improve on the 2 Z model, three Z fits were performed on B0 → J/ψπ−K+, and the fit

quality metrics for these are in Table 35. Including a second 1+ Z to the K-matrix with

Z(4200) proves to be the most significant in terms of the all the fit quality metrics. This

term is > 37σ significant based on the log-likelihood difference. The masses and widths of

the Zs are free to float in the fit, and their values are listed in Table 36. The second 1+ Z

resonance is labeled Z(4430), since its mass, 4.553±0.003 GeV, and width, 0.165±0.005 GeV,

are in the range of values obtained for the Z(4430)− → ψ(2S)π− resonance. The masses and

widths of the 1+ Z(4200) and the broad 0− Z0(4200) change very little between fits, with

only the width of the very broad 0− Z0(4200) getting even slightly larger.

The need for at least two 1+ Z− → J/ψπ− resonances, one near 4.2 GeV, and the other

near the Z(4430)− pole, to explain B0 → J/ψπ−K+ data was first claimed by Belle [16],

albeit they fixed the Z(4430)− mass and width to their ψ(2S)π− values. Our data confirm

the need for a higher mass 1+ resonance without such constraint. However, they point also

to even more urgent need to include a broad 0− Z− → J/ψπ− state in the model.

Table 35: Goodness-of-fit metrics for adding the third Z with the given JP to the J/ψ channel.

Variable 2 Z only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 73 77 77 79 79 77
logL -3053797 -3054148 -3054035 -3055331 -3054170 -3054054

∆(−2 logL) - 702 476 3068 746 514
2-D χ2 (1024 bins) 2434 2228 2278 1899 2222 2399

2-D ∆χ2 - 206 156 535 212 35
4-D χ2 (4096 bins) 5181 5018 5029 4628 4917 5105

4-D ∆χ2 - 163 152 553 264 76

Table 36: Masses and widths of the Zs in the 3 Z model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
Z(4200) 1+ 4.100±0.003 0.352±0.006
Z0(4200) 0− 4.265±0.011 1.014±0.020
Z(4430) 1+ 4.553±0.003 0.165±0.005
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In Figure 92, the overall mass projection for K+π− does not change much. The overall

mass projection for J/ψπ− improves greatly near the newly added Z(4430) pole, as can be

easily seen in Fig. 93. There is also great improvement in the J/ψπ− mass distributions in the

mKπ slices as seen in Figure 94. Both the slice between K∗(892) and K∗(1430), and the slice

above the phase space limit reachable in the ψ(2S) channel, show much better agreement in

the pull plots near the new pole.
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Figure 92: The distribution of mKπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which
adds an additional JP = 1+ Z into a K-matrix with one other 1+ Z and a separate 0− Z resonance.
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Figure 93: The distribution of mJ/ψπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds an additional JP = 1+ Z into a K-matrix with one other 1+ Z and a separate 0− Z resonance.
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Figure 94: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit
(red) with Z(4200)− and Z(4430)− as a JP = 1+ K-matrix and a broad Z(4200)− as a JP = 0−

resonance onto the mJ/ψπ axis in different slices of mKπ: below K∗(892) (top left), in between
K∗(892) and K∗

2 (1430) (top right), and above ψ(2S) phase space (bottom).
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14.4 Models with four Z− → J/ψπ−

Four Z fits were performed on B0 → J/ψπ−K+, and the fit quality metrics for these are in

Table 37. Adding a 2− Z is the most significant in terms of log-likelihood and improves the

multidimensional χ2s. From the likelihood change, such contribution is 22.8σ significant. We

allow all masses and widths of these Zs to float, and their results are found in Table 38. The

new 2− Z resonance has a pole mass at 4.730±0.015 GeV and a width of 0.610±0.068 GeV.

We label it as Z(4700).

With the addition of Z(4700), the masses and widths of the other Zs change very

little overall. The overall mass projection for Kπ (Figure 95) remains the same, but the

mass projections for J/ψπ improve near the new pole as seen in Figures 96 and 97, with

disagreements as seen in the pulls becoming smaller.

Table 37: Goodness-of-fit metrics for adding the fourth Z with the given JP to the J/ψ channel.

Variable 3 Z only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 79 83 83 85 85 83
logL -3055331 -3055528 -3055487 -3055511 -3055605 -3055522

∆(−2 logL) - 394 312 360 548 382
2-D χ2 (1024 bins) 1899 1720 1919 1691 1843 1918

2-D ∆χ2 - 179 -21 208 56 -19
4-D χ2 (4096 bins) 4628 4493 4615 4463 4543 4591

4-D ∆χ2 - 135 13 164 85 36

Table 38: Masses and widths of the Zs in the 4 Z model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
Z(4200) 1+ 4.135±0.003 0.352±0.006
Z(4200) 0− 4.266±0.007 0.951±0.017
Z(4430) 1+ 4.579±0.002 0.172±0.005
Z(4700) 2− 4.730±0.015 0.610±0.068

146



0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

 [GeV]πKm

0

50

100

150

200

250

300

350

400
310×

E
ve

nt
s/

(0
.0

2 
G

eV
)

data
Background
K* S-wave NR

(800)0K*
(1430)0K*
(1950)0K*

K*(892)
(1410)1K*
(1680)1K*
(1430)2K*
(1980)2K*
(1780)3K*
(2045)4K*
(2380)5K*

(4430)1Z
(4200)1Z
(4700)2Z
(4200)0Z

K* S-wave
K* P-wave
K* D-wave
Total K*

 Z wave
-

2
 Z wave

+
1
Total Z
Total fit

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

 [GeV]πKm

6−
4−
2−
0
2
4
6

Figure 95: The distribution of mKπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which
adds a new JP = 2− Z into the model with a K-matrix of two 1+ Zs and a separate 0− Z resonance.
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Figure 96: The distribution of mJ/ψπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds a new JP = 2− Z into the model with a K-matrix of two 1+ Zs and a separate 0− Z resonance.
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Figure 97: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit (red)
with Z(4200)− and Z(4430)− as a JP = 1+ K-matrix, a broad Z(4200)− as a JP = 0− resonance,
and a broad Z(4700)− as a JP = 2− resonance onto the mJ/ψπ axis in different slices of mKπ: below
K∗(892) (top left), in between K∗(892) and K∗

2(1430) (top right), and above ψ(2S) phase space
(bottom).
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14.5 Models with five Z− → J/ψπ−

Fits with a fifth Z were performed on B0 → J/ψπ−K+, and the fit quality metrics for these

are in Table 39.

Adding a 0− Z to the K-matrix with Z(4200) proves to be the most significant in terms of

the likelihood, and it improves the χ2s as well. We allow all masses and widths of these Zs to

float, and their results are found in Table 40. The new Z resonance, which we label Z(3900),

has mass at 3.905±0.004 GeV and a width of 0.169±0.006 GeV, and the masses and widths

of the other Zs remain largely the same, except for the JP = 0− Z(4200) which becomes less

broad, but it still remains largely broad.

Table 39: Goodness-of-fit metrics for adding the fifth Z with the given JP to the J/ψ channel.

Variable 4 Z only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 85 89 89 91 91 89
logL -3055605 -3055806 -3055778 -3055765 -3055711 -3055747

∆(−2 logL) - 402 346 320 212 284
2-D χ2 (1024 bins) 1843 1671 1827 1663 1751 1840

2-D ∆χ2 - 172 16 180 92 3
4-D χ2 (4096 bins) 4543 4416 4533 4400 4450 4528

4-D ∆χ2 - 127 10 143 93 15

Table 40: Masses and widths of the Zs in the 5 Z model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
Z(4200) 1+ 4.128±0.002 0.329±0.005
Z(4200) 0− 4.298±0.006 0.677±0.016
Z(4430) 1+ 4.575±0.002 0.161±0.004
Z(4700) 2− 4.745±0.019 0.635±0.101
Z(3900) 0− 3.905±0.004 0.169±0.006

The overall mass projection for Kπ (Figure 98) remains the same, while the overall mass

projection for J/ψπ (Figure 99) improves in the middle of J/ψπ phase space, near the pole

mass of the new Z. There is also improvement in the J/ψπ mass distribution in the mKπ

slices, notably below K∗(892) and between K∗(892) and K∗
2(1430) in Figure 100 near the

new pole as well.
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Figure 98: The distribution of mKπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which
adds an additional JP = 0− Z into a K-matrix with one other 0− Z, two 1+ Zs, and a separate 2−

Z resonance.
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Figure 99: The distribution of mJ/ψπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds an additional JP = 0− Z into a K-matrix with one other 0− Z, two 1+ Zs, and a separate 2−

Z resonance.
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Figure 100: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit
(red) with Z(4200)− and Z(4430)− as a JP = 1+ K-matrix, a broad Z(4200)− and Z(3900)− as a
JP = 0− K-matrix, and Z(4700)− as a JP = 2− resonance onto the mJ/ψπ axis in different slices of
mKπ: below K∗(892) (top left), in between K∗(892) and K∗

2(1430) (top right), and above ψ(2S)
phase space (bottom).
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14.6 Models with six Z− → J/ψπ−

Fits with a sixth Z were performed on B0 → J/ψπ−K+, and the fit quality metrics for these

are in Table 41.

Adding a 1− Z as a separate resonance to the other K-matrices proves to be the most

significant in terms of the likelihood, and it slightly improves the χ2s as well. We allow all

masses and widths of these Zs to float, and their results are found in Table 42. The new Z

resonance, which we label Z(4300), has mass at 4.349±0.013 GeV and a width of 0.412±0.047

GeV, and the masses and widths of the other Zs remain mostly the same, except for JP = 2−

Z(4700) which becomes half as broad.

Table 41: Goodness-of-fit metrics for adding the sixth Z with the given JP to the J/ψ channel.

Variable 5 Z only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 89 93 93 95 95 93
logL -3055806 -3055810 -3055965 -3055914 -3055942 -3055923

∆(−2 logL) - 8 318 216 272 234
2-D χ2 (1024 bins) 1671 1673 1658 1592 1614 1669

2-D ∆χ2 - -3 13 79 57 2
4-D χ2 (4096 bins) 4417 4417 4404 4357 4363 4406

4-D ∆χ2 - 0 13 59 54 10

Table 42: Masses and widths of the Zs in the 6 Z model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
Z(4200) 1+ 4.128±0.003 0.324±0.006
Z(4200) 0− 4.311±0.007 0.726±0.015
Z(4430) 1+ 4.573±0.002 0.156±0.004
Z(4700) 2− 4.761±0.013 0.345±0.045
Z(3900) 0− 3.909±0.005 0.145±0.008
Z(4300) 1− 4.349±0.013 0.412±0.047

The overall mass projection for Kπ (Figure 101) remains the same, and the overall mass

projection for J/ψπ (Figure 102) also does not change much from the 5 Z fit. Similarly, there

is not much difference in the Kπ slices for the J/ψπ distribution, seen in Figure 103.
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Figure 101: The distribution of mKπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which
adds a new JP = 1− Z into the model with two JP = 0− Zs, two 1+ Zs, and a separate 2− Z
resonance.
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Figure 102: The distribution of mJ/ψπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds a new JP = 1− Z into the model with two JP = 0− Zs, two 1+ Zs, and a separate 2− Z
resonance.
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Figure 103: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit
(red) with Z(4200)− and Z(4430)− as a JP = 1+ K-matrix, a broad Z(4200)− and Z(3900)− as
a JP = 0− K-matrix, Z(4700)− as a JP = 2− resonance, and Z(4300)− as a JP = 1− resonance.
onto the mJ/ψπ axis in different slices of mKπ: below K∗(892) (top left), in between K∗(892) and
K∗

2 (1430) (top right), and above ψ(2S) phase space (bottom).
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14.7 Models with seven Z− → J/ψπ−

Fits with a seventh Z were performed on B0 → J/ψπ−K+, and the fit quality metrics for

these are in Table 43.

Adding an additional 1+ Z into the K-matrix with the others is the most significant in

terms of the likelihood (15.7σ), and it improves the 2-D and 4-D χ2s. We allow all masses

and widths of these Zs to float, and their results are found in Table 44. The new Z resonance,

which we label Z(3900), has mass at 3.911±0.008 GeV and a width of 0.216±0.009 GeV, and

the masses and widths of the other Zs remain mostly similar, except for JP = 1− Z(4300)

which becomes twice as broad.

Our relatively broad 1+ Z(3900) resonance should not be confused with the narrow

Z(3900)− → J/ψπ− state discovered by the BESIII [17] and Belle [18] in e+e− → J/ψπ−π+(γ)

data, seen also in other channels, which has a very similar mass, 3.8871± 0.0026 GeV, but

an order of magnitude narrower width, 0.0284± 0.0026 GeV [2]. The narrow Zc(3900) state

is often interpreted as isovector molecule made out of DD̄∗ pairs, as such constituent masses

sum up to 3.872-3.880 GeV. The narrow width is expected in the molecular binding, as the

decays to the constituents are suppressed by phase-space, while decays to J/ψπ require c and

c̄ to be found in close proximity overcoming the spacial separation by a near confinement

in two different charm mesons. The large width observed in this analysis, does not fit the

molecular interpretation. However, it would be naturally expected in compact tetraquark

models, in which all four quarks, including c and c̄, are confined by direct color interactions

into a volume not much larger than a regular charmonium state like J/ψ. The situation could

be similar to the one observed near the DD̄∗
s threshold [26], where a narrow state is observed

in e+e− annihilation, and a broad state is observed in B decays [27].

The overall mass projections for Kπ (Figure 104) and J/ψπ (Figure 105) do not change

with the inclusion of the seventh Z. The mass projection for J/ψπ improves in the Kπ slices

a bit, most notably in the slice below K∗(892), seen in Figure 106.
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Table 43: Goodness-of-fit metrics for adding the seventh Z with the given JP to the J/ψ channel.

Variable 6 Z only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 93 97 97 99 99 97
logL -3055965 -3056010 -3056015 -3056111 -3056054 -3055986

∆(−2 logL) - 90 100 292 178 42
2-D χ2 (1024 bins) 1658 1673 1646 1574 1584 1649

2-D ∆χ2 - -16 11 84 74 9
4-D χ2 (4096 bins) 4404 4413 4417 4363 4325 4398

4-D ∆χ2 - -10 -14 40 79 6
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Figure 104: The distribution of mKπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which
adds a new JP = 1+ Z into the model with two other JP = 1+ Zs in a K-matrix, two JP = 0− Zs,
one 1− Z, and a separate 2− Z resonance.
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Table 44: Masses and widths of the Zs in the 7 Z model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
Z(4200) 1+ 4.139±0.005 0.290±0.005
Z(4200) 0− 4.360±0.008 0.915±0.068
Z(4430) 1+ 4.592±0.004 0.200±0.006
Z(4700) 2− 4.740±0.015 0.321±0.030
Z(3900) 0− 3.871±0.005 0.114±0.006
Z(4300) 1− 4.281±0.020 0.915±0.068
Z(3900) 1+ 3.911±0.008 0.216±0.009
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Figure 105: The distribution of mJ/ψπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds a new JP = 1+ Z into the model with two other JP = 1+ Zs in a K-matrix, two JP = 0− Zs,
one 1− Z, and a separate 2− Z resonance.
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Figure 106: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit
(red) with Z(3900)−, Z(4200)−, and Z(4430)− as a JP = 1+ K-matrix, a broad Z(4200)− and
Z(3900)− as a JP = 0− K-matrix, Z(4700)− as a JP = 2− resonance, and Z(4300)− as a JP = 1−

resonance. onto the mJ/ψπ axis in different slices of mKπ: below K∗(892) (top left), in between
K∗(892) and K∗

2 (1430) (top right), and above ψ(2S) phase space (bottom).
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14.8 Models with eight Z− → J/ψπ−

Fits with a eighth Z were performed on B0 → J/ψπ−K+, and the fit quality metrics for these

are in Table 45.

Adding yet another 1+ Z into the K-matrix with the others is the most significant in

terms of the likelihood (15.3σ), and it again improves the 2-D and 4-D χ2s. We allow all

masses and widths of these Zs to float, and their results are found in Table 46. The new Z

resonance, which we label Z(4660), has mass at 4.665±0.007 GeV and a width of 0.223±0.013

GeV. The masses and widths of the other Zs do change significant in this model. Z(4430)

has a lower pole mass and becomes a lot more narrow, Z(4200) also has a lower pole mass

and becomes more narrow (though to a lesser extent than Z(4430)), while the rest of the Zs

do not change much in terms of mass and width.

Table 45: Goodness-of-fit metrics for adding the eighth Z with the given JP to the J/ψ channel.

Variable 7 Z only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 99 103 103 105 105 103
logL -3056111 -3056106 -3056117 -3056251 -3056133 -3056132

∆(−2 logL) - -10 12 280 44 42
2-D χ2 (1024 bins) 1574 1698 1572 1528 1566 1568

2-D ∆χ2 - -124 2 46 8 5
4-D χ2 (4096 bins) 4363 4375 4362 4322 4353 4359

4-D ∆χ2 - -12 2 41 10 4

Table 46: Masses and widths of the Zs in the 8 Z model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
Z(4200) 1+ 4.159±0.006 0.225±0.005
Z(4200) 0− 4.362±0.009 0.737±0.017
Z(4430) 1+ 4.472±0.005 0.065±0.005
Z(4700) 2− 4.746±0.008 0.297±0.025
Z(3900) 0− 3.870±0.005 0.118±0.008
Z(4300) 1− 4.291±0.016 0.943±0.075
Z(3900) 1+ 3.912±0.012 0.200±0.009
Z(4660) 1+ 4.665±0.007 0.223±0.013

The overall mass projection for Kπ (Figure 107) remains pretty much the same after
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including an eighth Z, while the overall J/ψπ mass projection (Figure 108) improves near 4.4

GeV. A similar improvement is seen in the mass projection for J/ψπ in the Kπ slice between

K ∗ (892) and K ∗ (1430), and the slice above the B0 → ψ(2S)Kπ phase space limit for

m(Kπ) improves near the mass of the new pole, both seen in Figure 109.
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Figure 107: The distribution of mKπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which
adds a new JP = 1+ Z into the model with three other JP = 1+ Zs in a K-matrix, two JP = 0− Zs,
one 1− Z, and a separate 2− Z resonance.
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Figure 108: The distribution of mJ/ψπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds a new JP = 1+ Z into the model with three other JP = 1+ Zs in a K-matrix, two JP = 0− Zs,
one 1− Z, and a separate 2− Z resonance.
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Figure 109: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit (red)
with Z(3900)−, Z(4200)−, Z(4430)−, and Z(4660)− as a JP = 1+ K-matrix, a broad Z(4200)− and
Z(3900)− as a JP = 0− K-matrix, Z(4700)− as a JP = 2− resonance, and Z(4300)− as a JP = 1−

resonance. onto the mJ/ψπ axis in different slices of mKπ: below K∗(892) (top left), in between
K∗(892) and K∗

2 (1430) (top right), and above ψ(2S) phase space (bottom).
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14.9 Models with nine Z− → J/ψπ−

Fits with a ninth Z were performed on B0 → J/ψπ−K+, and the fit quality metrics for these

are in Table 47.

Adding a fifth 1+ Z into the K-matrix with the others is again the most significant in

terms of the likelihood (10.4σ), and it also moderately improves the 2-D and 4-D χ2s. We

allow all masses and widths of these Zs to float, and their results are found in Table 48.

The new Z resonance, which we label Z(4800), has mass at 4.817±0.012 GeV and a width

of 0.410±0.036 GeV. The masses and widths of the other Zs do change significantly in this

model. In the 1+ Z K-matrix for the 8 Z model, there was a less broad pole at 4.47 GeV

(then labeled Z(4430)) and a moderately broad pole at 4.67 GeV (labeled Z(4660)) along

with Z(4200) and Z(3900) as usual. However here we get a pole again at 4.56 GeV, which

was typical for Z(4430) in earlier fits and in the ψ(2S) channel, another pole at 4.4 GeV, and

the typical Z(4200) and Z(3900) poles along with the new Z(4800) pole. The masses and

widths of Zs of other quantum numbers change very little with the addition of a ninth Z.

The masses and widths of the K∗s that are floating can be found in Table 49, and the fit

fractions for all resonances and partial waves are found in Table 50.

Table 47: Goodness-of-fit metrics for adding the ninth Z with the given JP to the J/ψ channel.

Variable 8 Z only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 105 109 109 111 111 109
logL -3056251 -3056282 -3056258 -3056324 -3056275 -3056272

∆(−2 logL) - 62 14 146 48 42
2-D χ2 (1024 bins) 1528 1519 1528 1506 1520 1523

2-D ∆χ2 - 9 0 23 8 5
4-D χ2 (4096 bins) 4322 4315 4322 4295 4311 4318

4-D ∆χ2 - 7 0 27 11 5

The overall mass projections for Kπ (Figure 110) and J/ψπ (Figure 111) do not change

much after adding a ninth Z. Also the Kπ slices for the J/ψπ mass projections remain largely

the same in the new 9 Z model, shown in Figure 112.

166



Table 48: Masses and widths of the Zs in the 9 Z model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
Z(4200) 1+ 4.121±0.004 0.176±0.007
Z(4200) 0− 4.363±0.007 0.737±0.015
Z(4430) 1+ 4.562±0.005 0.152±0.006
Z(4700) 2− 4.746±0.011 0.296±0.028
Z(3900) 0− 3.870±0.005 0.118±0.008
Z(4300) 1− 4.309±0.026 0.939±0.073
Z(3900) 1+ 3.881±0.008 0.291±0.012
Z(4400) 1+ 4.405±0.006 0.093±0.009
Z(4800) 1+ 4.817±0.012 0.410±0.036

Table 49: Masses and widths of the K∗s in the 9 Z model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
K∗(892) 1− 0.890±0.00003 0.045±0.00007
K∗

0(800) 0+ 0.814±0.005 0.293±0.004
K∗

0(1430) 0+ 1.457±0.002 0.222±0.002
K∗

2(1430) 2+ 1.417±0.0003 0.098±0.0006
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Table 50: All resonance fit fractions in the 9 Z fit for the J/ψ channel.

Contribution Fit fraction

K∗ Total S-wave 13.8%
K∗ S-wave NR 0.7%

K∗
0(800) 3.4%

K∗
0(1430) 7.7%

K∗
0(1950) 0.4%

K∗ Total P-wave 65.3%
K∗(892) 61.3%
K∗

1(1410) 1.9%
K∗

1(1680) 1.1%
K∗ Total D-wave 6.5%

K∗
2(1430) 6.2%

K∗
2(1980) 0.5%

K∗
3(1780) 0.3%

K∗
4(2045) 0.03%

K∗
5(2380) 0.012%

Z Total 1+ wave 1.7%
Z(4200) 0.9%
Z(4430) 0.3%
Z(3900) 0.7%
Z(4400) 0.01%
Z(4800) 0.02%

Z Total 0− wave 3.23%
Z0(4200) 2.7%
Z0(3900) 0.7%

Z Total 1− wave 0.26%
Z1(4300) 0.26%

Z Total 2− wave 0.13%
Z2(4700) 0.13%
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Figure 110: The distribution of mKπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which
adds a new JP = 1+ Z into the model with four other JP = 1+ Zs in a K-matrix, two JP = 0− Zs,
one 1− Z, and a separate 2− Z resonance.
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Figure 111: The distribution of mJ/ψπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds a new JP = 1+ Z into the model with four other JP = 1+ Zs in a K-matrix, two JP = 0− Zs,
one 1− Z, and a separate 2− Z resonance.
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Figure 112: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit
(red) with Z(3900)−, Z(4200)−, Z(4400)−, Z(4430)−, and Z(4800)− as a JP = 1+ K-matrix, a
broad Z(4200)− and Z(3900)− as a JP = 0− K-matrix, Z(4700)− as a JP = 2− resonance, and
Z(4300)− as a JP = 1− resonance. onto the mJ/ψπ axis in different slices of mKπ: below K∗(892)
(top left), in between K∗(892) and K∗

2 (1430) (top right), and above ψ(2S) phase space (bottom).
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14.10 Models with ten Z− → J/ψπ−

Fits with a tenth Z were performed on B0 → J/ψπ−K+, and the fit quality metrics for these

are in Table 51. While in terms of changes in log-likelihood value these fits are significant,

much like the ψ(2S) channel, these fits only converge with warnings about machine accuracy

limits, and they have not positive definite error matrices. They also fail to produce significant

change in 2-D and 4-D χ2 values. As such, the most reliable Z− → J/ψπ− resonance model

for the J/ψ channel is the one in the 9 Z resonances described in the previous subsection.

Table 51: Goodness-of-fit metrics for adding the tenth Z with the given JP to the J/ψ channel.

Variable 9 Z only 0− Z 1− Z 1+ Z 2− Z 2+ Z
nPar 111 115 115 117 117 115
logL -3056324 -3056417 -3056329 -3056335 -3056338 -3056343

∆(−2 logL) - 186 10 22 28 38
2-D χ2 (1024 bins) 1506 1511 1505 1506 1503 1499

2-D ∆χ2 - -5 0 -1 2 7
4-D χ2 (4096 bins) 4295 4289 4294 4294 4289 4291

4-D ∆χ2 - 6 1 1 6 4
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15 Resonant ZK models with J/ψ channel

This section will again try to add resonances into the B0 → J/ψπ−K+ model but in the

Z+
K → J/ψK+ decay chain. The modeling will begin with one Z+

K → J/ψK+ resonance of

various JP added to the default 9 Z model from the previous section and then sequentially

trying to add more ZK resonances.

15.1 Plots of mJ/ψK with no Z+
K → J/ψK+

To compare with models that add Z+
K → J/ψK+ states, presented here are the mJ/ψK

distributions both overall (Fig 113) and in different slices of mKπ (Fig 114) from the fits done

with 9 Z− → J/ψπ− states without any ZK states. Fit quality metrics are in the last section

(14.9).
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Figure 113: The distribution of mJ/ψK for the B0 → J/ψπ−K+ data (black) and the fit (red) which

has five JP = 1+ Zs in a K-matrix, two JP = 0− Zs, one 1− Z, and a 2− Z resonance.
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Figure 114: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit
(red) with Z(3900)−, Z(4200)−, Z(4400)−, Z(4430)−, and Z(4800)− as a JP = 1+ K-matrix, a
broad Z(4200)− and Z(3900)− as a JP = 0− K-matrix, Z(4700)− as a JP = 2− resonance, and
Z(4300)− as a JP = 1− resonance. onto the mJ/ψπ axis in different slices of mKπ: below K∗(892)
(top left), in between K∗(892) and K∗

2 (1430) (top right), and above ψ(2S) phase space (bottom).
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15.2 Models with one Z+
K → J/ψK+

Fits with a single ZK were performed on B0 → J/ψπ−K+, and the fit quality metrics for

these are in Table 52.

Adding a 1+ ZK is the most significant in terms of the likelihood, and it also improves

the 2-D and 4-D χ2s. The plot of the pulls for each bin in the Dalitz plane for the 2-D

χ2 is in Figure 120, and the distribution of the 2-D and 4-D pulls fit to a Gaussian are in

Figure 121, which feature a mean consistent with 0 for the 2-D distribution. The width of the

2-D distribution is a bit larger than 1, which is not too surprising given the 2-D χ2 fit quality.

The 4-D distribution has a mean close to 0 and a width close to 1. We allow the mass and

width of the ZK to float, and the result is found in Table 55. The new ZK resonance, which

we label ZK(4470), has mass at 4.469±0.013 GeV and a width of 0.204±0.015 GeV. The

masses and widths of the Zs (J/ψπ states) do not change much, and their values can be found

in Table 53. The masses and widths of the K∗s that are floating can be found in Table 54,

and the fit fractions for all resonances and partial waves are found in Table 56.

Table 52: Goodness-of-fit metrics for adding one ZK with the given JP to the J/ψ channel.

Variable No ZK 0− ZK 1− ZK 1+ ZK 2− ZK 2+ ZK
nPar 111 115 115 117 117 115
logL -3056324 -3056385 -3056390 -3056472 -3056341 -3056420

∆(−2 logL) - 122 132 296 34 192
2-D χ2 (1024 bins) 1506 1493 1492 1457 1494 1506

2-D ∆χ2 - 12 13 49 12 -1
4-D χ2 (4096 bins) 4295 4292 4275 4248 4289 4278

4-D ∆χ2 - 3 20 47 6 17

The overall mass projections for Kπ (Figure 115) and J/ψπ (Figure 116) do not change

much after adding a ZK resonance to the 9 Z model. The Kπ slices for the J/ψπ mass

projections do improve slightly most notably in the middle of J/ψπ phase space in the mKπ

slice below K∗(892), seen in Figure 117. The overall mass projection for J/ψK improves

slightly near the new pole (Fig. 118). The Kπ slices for the J/ψK mass projections improve
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Table 53: Masses and widths of the Zs in the 1 ZK model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
Z(4200) 1+ 4.118±0.005 0.174±0.007
Z(4200) 0− 4.337±0.007 0.651±0.015
Z(4430) 1+ 4.554±0.005 0.152±0.006
Z(4700) 2− 4.749±0.013 0.291±0.029
Z(3900) 0− 3.880±0.006 0.134±0.008
Z(4300) 1− 4.310±0.002 0.908±0.075
Z(3900) 1+ 3.899±0.008 0.270±0.012
Z(4400) 1+ 4.400±0.007 0.087±0.009
Z(4800) 1+ 4.798±0.010 0.340±0.032

Table 54: Masses and widths of the K∗s in the 1 ZK model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
K∗(892) 1− 0.890±0.00003 0.045±0.00007
K∗

0(800) 0+ 0.805±0.005 0.306±0.004
K∗

0(1430) 0+ 1.455±0.002 0.218±0.002
K∗

2(1430) 2+ 1.417±0.0003 0.098±0.0006

Table 55: Masses and widths of the ZK in the 1 ZK model for the J/ψ channel.

Contribution JP M (GeV) Γ (GeV)
ZK(4470) 1+ 4.469±0.013 0.204±0.015

considerably as well near the new pole, best seen in the slices below K∗(892) and between

K∗(892) and K∗(1430) in Figure 119.

As it will become clear from the next subsection, the model presented here becomes our

nominal pick for the J/ψ channel, which we later use in the comparison to the ψ(2S) model

(Sec. 16). We include additional plots showing the fit quality on the Dalitz plane and in all

four fitted dimensions of the data (Figs. 120-121). We also show comparison between this

model and the data on various moments of the K∗0 helicity angle, which is another way to

test fit quality on the Dalitz plane (see Appendix B).
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Table 56: All resonance fit fractions in the 1 ZK fit for the J/ψ channel.

Contribution Fit fraction

K∗ Total S-wave 14.1±0.2%
K∗ S-wave NR 0.7±0.04%

K∗
0(800) 3.4±0.1%

K∗
0(1430) 7.8±0.1%

K∗
0(1950) 0.5±0.02%

K∗ Total P-wave 65.7±0.2%
K∗(892) 61.6±0.2%
K∗

1(1410) 1.9±0.04%
K∗

1(1680) 1.1±0.04%
K∗ Total D-wave 6.3±0.05%

K∗
2(1430) 6.1±0.04%

K∗
2(1980) 0.4±0.02%

K∗
3(1780) 0.2±0.01%

K∗
4(2045) 0.02±0.003%

K∗
5(2380) 0.007±0.002%

Z Total 1+ wave 1.7±0.006%
Z(4200) 0.9±0.003%
Z(4430) 0.3±0.001%
Z(3900) 0.8±0.003%
Z(4400) 0.02±0.0001%
Z(4800) 0.004±0.00001%

Z Total 0− wave 3.07±0.01%
Z0(4200) 2.6±0.01%
Z0(3900) 0.7±0.002%

Z Total 1− wave 0.26±0.001%
Z1(4300) 0.26±0.001%

Z Total 2− wave 0.14±0.0005%
Z2(4700) 0.14±0.0005%

ZK Total 1+ wave 0.046±0.0002%
ZK(4470) 0.046±0.0002%
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Figure 115: The distribution of mKπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which
adds a new JP = 1+ ZK into the default model which already has 9 Z → J/ψπ resonances.
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Figure 116: The distribution of mJ/ψπ for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds a new JP = 1+ ZK into the default model which already has 9 Z → J/ψπ resonances.
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Figure 117: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit (red)
with Z(3900)−, Z(4200)−, Z(4400)−, Z(4430)−, and Z(4800)− as a JP = 1+ K-matrix, a broad
Z(4200)− and Z(3900)− as a JP = 0− K-matrix, Z(4700)− as a JP = 2− resonance, Z(4300)−

as a JP = 1− resonance, and Zcs)(4470)
− as a JP = 1+ J/ψK resonance. onto the mJ/ψπ axis in

different slices of mKπ: below K∗(892) (top left), in between K∗(892) and K∗
2(1430) (top right),

and above ψ(2S) phase space (bottom).
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Figure 118: The distribution of mJ/ψK for the B0 → J/ψπ−K+ data (black) and the fit (red) which

adds a new JP = 1+ ZK into the default model which already has 9 Z → J/ψπ resonances.
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Figure 119: Projections of the B0 → J/ψπ−K+ data (black points) and of the 4D amplitude fit (red)
with Z(3900)−, Z(4200)−, Z(4400)−, Z(4430)−, and Z(4800)− as a JP = 1+ K-matrix, a broad
Z(4200)− and Z(3900)− as a JP = 0− K-matrix, Z(4700)− as a JP = 2− resonance, Z(4300)−

as a JP = 1− resonance, and Zcs)(4470)
− as a JP = 1+ J/ψK resonance. onto the mJ/ψK axis in

different slices of mKπ: below K∗(892) (top left), in between K∗(892) and K∗
2(1430) (top right),

and above ψ(2S) phase space (bottom).
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Figure 120: Dalitz plot with fit pulls in each bin used to calculate 2-D χ2. White line draws phase
space boundary for the B0 → J/ψπ−K+ decay.
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Figure 121: Distributions of the pulls from the 2-D and 4-D pulls from the multidimensional χ2s for
the default B0 → J/ψπ−K+ model. The distribution is fit with a Gaussian (red line).
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15.3 Models with two Z+
K → J/ψK+

Fits with a second ZK were performed on B0 → J/ψπ−K+, and the fit quality metrics for

these are in Table 57. These fits, while yielding significant log-likelihood improvements,

converge with warnings such as machine accuracy limits, and they have not positive definite

error matrices. As such, the most reliable ZK resonance model for the J/ψ channel is the one

in the 1 ZK fit model.

Table 57: Goodness-of-fit metrics for adding a second ZK with the given JP to the J/ψ channel.

Variable 1 ZK only 0− ZK 1− ZK 1+ ZK 2− ZK 2+ ZK
nPar 117 121 121 123 123 121
logL -3056472 -3056522 -3056577 -3056532 -3056532 -3056617

∆(−2 logL) - 100 210 120 120 290
2-D χ2 (1024 bins) 1457 1463 1432 1454 1438 1443

2-D ∆χ2 - -6 25 3 19 14
4-D χ2 (4096 bins) 4248 4247 4223 4218 4237 4237

4-D ∆χ2 - 0 25 30 10 11

15.4 Fits with fixed-shape Zcs(4000) and Zcs(4220)

LHCb published in 2021 evidence of two exotic J/ψK states in the amplitude analysis of

B+ → J/ψϕK+ [27]. Fits to our data were attempted to include these states but with fixed

masses and widths and free floating amplitudes. Both fits included Zcs(4000) as a J
P = 1+ as

it was determined to have such quantum numbers with high significance. Different quantum

numbers are used for Zcs(4220) in the two fits, since the LHCb paper only preferred 1+ over

1− by 2σ while ruling out other quantum numbers. The fit qualities of both fits compared to

the default 1 ZK model in this analysis are presented in Table 58. Fits heavily prefer the

single ZK(4470) model over the two resonances with quantum numbers, masses and widths

taken from the B+ → J/ψϕK+ data,
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Table 58: Goodness-of-fit metrics comparing the 1 ZK model presented in this analysis with the
published LHCb Zcs states with fixed masses and widths.

Variable 1 ZK Zcs(4000) + 1+ Zcs(4220) Zcs(4000) + 1− Zcs(4220)
nPar 117 119 117
logL -3056472 -3056406 -3056381

∆(−2 logL) - -132 -182
2-D χ2 (1024 bins) 1457 1489 1493

2-D ∆χ2 - -32 -36
4-D χ2 (4096 bins) 4248 4247 4268

4-D ∆χ2 - 0 -21
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16 Comparison of resonant models between ψ(2S) and

J/ψ channels

It is very interesting to compare the poles (Tables 59-60) and fit fractions (Table 61) from

the best models of ψ(2S) and J/ψ channels.

The fit fractions for the two channels show a similar pattern for the conventional K∗0 →

π−K+ contributions, which dominate the B0 → ψ(nS)π−K+ decays. They are not expected

to be exactly the same because of different phase-space factors but also because the internal

structures of the J/ψ(1S) and ψ(2S) differ, with the ψ(2S) state having an extra node in

the radial wave function of the cc̄ system and extending towards larger quark separation.

Interplay between these differences and an internal structure of a companion hadron, both

conventional or exotic, will make production couplings somewhat different. The 1− K+π−

wave (labeled P-wave, for one unit of angular momentum in its disintegration to K+ and π−)

dominates. No angular momentum is required in a B0 decay to produce it in a ψ(nS)K∗0

decay. The dominant contributor to this wave is the K∗(892)0 state, which is a 13S1 sd̄ state.

The wave function similarity to J/ψ, which is 13S1 cc̄ state, may be playing a role in enlarging

its production rate in this channel. The production of S-wave (0+) or D-wave (2+) K+π−

requires one unit of angular momentum in B0 decay. S-wave is more pronounced, perhaps

since it involves no angular momentum in its decay. Higher spin states are progressively more

suppressed by increasing angular momentum needed for production in the B0 decay and

subsequent disintegration. The phase space suppression also enters via increasing resonance

mass. The K∗ masses and widths which were allowed to float in the fits are fairly consistent

with each other and consistent with the world average values as shown in Table 60, which

is very reassuring. The biggest difference with the world average values is for the width of

K∗
0(800). However, this very broad state may well be a part of effective parametrization of

non-resonant effects in Kπ S-wave, rather than a true resonance. In fact, it does not belong

to the sd̄ quark model of kaon excitations. Non-resonant effects don’t need to be universal in
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various reactions.

The exotic hadron component in the ψ(2S) channel is significantly more pronounced

than in the J/ψ channel. Various models of exotic hadrons and their production mechanisms

should take clues from this observation. Unlike for the conventional hadrons, there are also

significant differences in the rate pattern (i.e. values of fit fractions) over various exotic waves.

In both channels, 1+ ψ(nS)π− wave is pronounced, which is not surprising since it requires

no angular momentum in its disintegration to ψ(nS) and π−. Its production in B0 decay

requires one unit of angular momentum. The values of angular momentum in production and

decay are reversed for the 0− ψ(2S)π− wave. Since it is produced in S−wave, its dominant

exotic rate in the J/ψπ− channel is again not surprising. However, it is more difficult to

understand why this wave does not register in the ψ(2S)π− channel.

The 1+ ψ(nS)π− wave has a rich pole structure in both channels. There are so many that

it is hard to have full confidence in the exact pole decomposition. While one can find strong

similarities in some pole positions, it would be difficult to claim that they are definitely the

same within commonly accessible phase-space (which is smaller in ψ(2S)π− channel), since

the widths often differ quite a bit. Also the number of the poles is different even within the

same mass range. In fact, fitting the ψ(2S) data with the masses and widths fixed to the

J/ψ data model, or vice-versa, produces poor quality fits. For these reasons, we also present

model independent fits to this wave in the following sections.

Among the 1+ ψ(nS)π− poles, we compared the dominant poles (i.e. with the largest fit

fraction) to the Z(4430)− → ψ(2S)π− and Z(4200)− → J/ψπ− resonances claimed in the

previously published analyses (see Table 59). The masses agree within 2.4σ and the widths

agree within 1.3σ even without assigning systematic errors to our results, which is quite

satisfactory given that in our models we use K-matrix formula with many interfering poles,

while the previous analyses used a sum of Breit-Wigner resonances with just one or two 1+

Z− states. The results for Z(4430)− → ψ(2S)π− agree much better with the published LHCb

analysis on a fraction of the present data [7] if the same fit model is used (see Sec. 11.2).
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The ψ(2S) and J/ψ data agree within the statistical errors on mass and width of the

Z(4200)− pole. Averaging over the two channels we obtain 4116± 4 MeV for the pole mass

and 174± 5 MeV for the width. This analysis should be taken as the confirmation of this

state previously claimed in the J/ψπ− decay mode by Belle [16]. Our analysis also firmly

establishes it in the ψ(2S)π− decay mode.

The 1+ pole, that we associate with the Z(4430)− state, differs by 2.1σ in mass and by

4.5σ in width between the ψ(2S) and J/ψ data. The statistical disagreement in width value

is of concern. The previous attempt to include the Z(4430)− state in the amplitude analysis

of B0 → J/ψπ−K+ by Belle [16], fixed its mass and width to the B0 → ψ(2S)π−K+ results,

thus they did not perform a consistency check.

There is a 1+ Z− state near 4.8 GeV in our data, which has consistent mass but a

width different by 3.7σ between the ψ(2S) and J/ψ channels. It is also not clear why 1+

Z(4400)− and Z(3900)− states were required by the J/ψ but not the ψ(2S) data. The

Z(3900)− → J/ψπ− pole has a large width, 270 ± 12 MeV, which is inconsistent with the

narrow 28± 3 MeV width for the 1+ Zc(3900) state [2] observed near the DD̄∗ threshold by

BESIII and BaBar. Therefore, it cannot be assumed to be the same state. The ψ(nS)π−

poles with the other spin and parity are not consistent at all between the J/ψ and ψ(2S)

data.

Both J/ψ and ψ(2S) channels require ψ(nS)K+ components, which are much smaller than

the ψ(nS)π− contributions. The poles are not the same between the two channels. None of

them coincide with the J/ψK+ states observed in the amplitude analyses of B+ → J/ψK+ϕ

data by LHCb [27].

Already at this point, we can see that the only conclusion we can reach is that both

channels have a very rich exotic hadron structure, far more complicated than previously

believed based on the amplitude fits with less data.

Lack of universality in number and values of masses and widths of exotic hadrons between

the J/ψ and ψ(2S) channels likely point to incompleteness of our theoretical framework in
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which data models are formulated. One known shortcoming of this and all previous amplitude

fits to these channels is lack of accounting for coupled-channel effects. Coupled-channels are

other decay modes accessible to the same hadronic systems. They exist for both K∗0 and

exotic hadrons. For example, K∗0 resonances can decay also to K0ω, K0η, K∗(892)π etc.

Z− states can decay to various combinations of charmed meson-antimeson pairs. The best

theoretical approaches integrate hadronic amplitudes in coupled-channels into one common

description. In fact, K-matrix approach can handle it. Each decay mode contributes one

dimension to the K-matrix. Since, in this analysis, we fit and describe only ψ(nS)π−K+

data, our K-matrix is not really a matrix but a one-dimensional formula. Resonant poles are

expected to be the same in all the channels, while resonant width is not a fit parameter in

multidimensional K-matrix. It instead emerges from a pattern of coupling constants to various

decay channels. The coupled-channel amplitudes reflect themselves into other decay channels.

To properly constrain such multi-dimensional coupled-channel models, one in principle needs

to fit data from all the related decay channels. Unfortunately, this may be impossible to

ever achieve for the exotic systems studied here, because of the experimental difficulties

in reconstructing all relevant decay modes. An intermediate step would be to include all

coupled-channel contributions from the expected dominant channels without constraining

them to the data from the channels other than the one analyzed here, simply to evaluate

their potential impact. This would be a natural next step for any future amplitude analyses

of the data presented in this work.

Because we have no confidence that the present approach is a proper extraction of all the

exotic resonant poles, there is also no motivation to study other systematic uncertainties to

the masses and widths presented in this thesis. The results of our work are qualitative rather

then quantitative. Nevertheless, they represent a significant progress over the previously

published results, by revealing the complexity of exotic hadron effects in these channels. The

diversity of various quantum-numbers and sheer number of resonant poles needed to describe

the data point to rich spectroscopy underlying them. They are more likely a product of
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direct color interactions of four-quarks rather than meson-meson forces in “molecular” models.

Large widths of the states observed here also point in this direction.

Table 59: Masses and widths of the Zs in the default K-matrix models for both the ψ(2S) and J/ψ
channels. While we tried to associate poles between the ψ(2S) and J/ψ channels with each other by
their mass proximity, their widths often differ a lot. Therefore, these associations, marked by the
same contribution label, should be taken with caution. Comparison to the world average values for
Z(4430) and Z(4200) are also included [2] but should be taken with caution since our values are
K-matrix poles, while the PDG values are from Breit-Wigner form.

ψ(2S) Channel J/ψ Channel PDG [2]
State JP M (GeV) Γ (GeV) M (GeV) Γ (GeV) M (GeV) Γ (GeV)

Z(4430) 1+ 4.526±0.012 0.213±0.012 4.554±0.005 0.152±0.006 4.478+0.015
−0.018 0.181± 0.031

Z(4200) 1+ 4.113±0.009 0.169±0.017 4.118±0.005 0.174±0.007 4.196+0.035
−0.032 0.370+0.100

−0.150

Z(4800) 1+ 4.818±0.013 0.141±0.044 4.798±0.010 0.340±0.032 - -
Z(3900) 1+ - - 3.899±0.008 0.270±0.012 - -
Z(4400) 1+ - - 4.400±0.007 0.087±0.009 - -
Z2(4470) 2− 4.471±0.006 0.106±0.013 - - - -
Z2(4700) 2− - - 4.749±0.013 0.291±0.029 - -
Z0(4200) 0− - - 4.337±0.007 0.651±0.015 - -
Z0(3900) 0− - - 3.880±0.006 0.134±0.008 - -
Z1(4300) 1− - - 4.310±0.002 0.908±0.075 - -
ZK1(4480) 1− 4.487±0.013 0.155±0.025 - - - -
ZK(4520) 1+ 4.521±0.007 0.056±0.012 - - - -
ZK(4470) 1+ - - 4.469±0.013 0.204±0.015 - -

Table 60: Masses and widths of the K∗s in the default K-matrix models for both the ψ(2S) and
J/ψ channels compared to the world average values [2]. The comparison should be taken with some
caution since our values are K-matrix poles, while the PDG values are not precisely defined.

ψ(2S) Channel J/ψ Channel PDG [2]
Contribution JP M (MeV) Γ (MeV) M (MeV) Γ (MeV) M (MeV) Γ (MeV)
K∗(892) 1− 889±0.1 45±0.3 890±0.03 45±0.07 895.5±0.2 47.3± 0.5
K∗

0(800) 0+ 799±42 319±19 805±5 306±4 845±17 468±30
K∗

2(1430) 2+ 1415±2 109±3 1417±0.3 98±0.6 1432.4±1.3 109± 5
K∗

0(1430) 0+ - - 1455±2 218±2 1425±50 270±80
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Table 61: All resonance fit fractions in the default K-matrix models in this work for both the ψ(2S)
and J/ψ channels compared to the fit fractions from the previously published Breit-Wigner models.

Contribution Fit fraction (ψ(2S)) Fit fraction (J/ψ)
this work Ref. [7] this work Ref. [16]

K∗ Total S-wave (18.4± 0.9)% (14.1± 0.2)%
K∗ S-wave NR - (0.3± 0.8)% (0.7± 0.04)%

K∗
0(800) (4.7± 1.6)% (3.2± 2.2)% (3.4± 0.1)% (7.1+0.7

−0.5)%
K∗

0(1430) (6.9± 0.5)% (3.6± 1.1)% (7.8± 0.1)% (5.9+0.6
−0.4)%

K∗
0(1950) (1.0± 0.4)% - (0.5± 0.02)% (0.1± 0.1)%

K∗ Total P-wave (58.6± 1.1)% (65.7± 0.2)%
K∗(892) (55.2± 1.1)% (59.1± 0.9)% (61.6± 0.2)% (69.0+0.6

−0.5)%
K∗

1(1410) (2.8± 0.3)% (1.7± 0.8)% (1.9± 0.04)% (0.3+0.2
−0.1)%

K∗
1(1680) (1.0± 0.4)% (4.0± 1.5)% (1.1± 0.04)% (0.3+0.2

−0.1)%
K∗ Total D-wave (7.9± 0.3)% (6.3± 0.05)%

K∗
2(1430) (7.1± 0.3)% (3.6± 1.1)% (6.1± 0.04)% (6.3+0.3

−0.4)%
K∗

2(1980) (0.9± 0.2)% - (0.4± 0.02)% (0.4± 0.1)%
K∗

3(1780) (0.6± 0.1)% - (0.2± 0.01)% (0.2± 0.1)%
K∗

4(2045) (0.2± 0.05)% - (0.02± 0.003)% (0.2± 0.1)%
K∗

5(2380) (0.1± 0.04)% - (0.007± 0.002)% -
Z Total 1+ wave (5.3± 0.1)% (5.9+1.7

−3.4)% (1.7± 0.006)%
Z(4430) (2.5± 0.05)% (5.9+1.7

−3.4)% (0.3± 0.001)% (0.5+0.4
−0.1)%

Z(4200) (1.3± 0.04)% - (0.9± 0.003)% (1.9+0.7
−0.5)%

Z(4800) (0.4± 0.01)% - (0.004± 0.00001)% -
Z(4400) - - (0.02± 0.0001)% -
Z(3900) - - (0.8± 0.003)% -

Z Total 0− wave - (3.1± 0.01)% -
Z0(4200) - - (2.6± 0.01)% -
Z0(3900) - - (0.7± 0.002)% -
Z2(4470) (0.4± 0.01)% - - -
Z2(4700) - - (0.14± 0.005)% -
Z1(4300) - - (0.26± 0.001)% -

ZK Total 1− wave (0.4± 0.01)% - - -
ZK1(4480) (0.4± 0.01)% - - -

ZK Total 1+ wave (0.1± 0.002)% - (0.046± 0.0002)% -
ZK(4520) (0.1± 0.002)% - - -
ZK(4470) - - (0.046± 0.0002)% -
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17 Model Independent Fit of 1+ Z Wave with ψ(2S)

Channel

In this section and the next, the K-matrix model of JP = 1+ Z wave, which exhibits large

number of resonant poles, is replaced with a set of independent complex amplitudes in

different mass bins to probe the resonant nature of the states without enforcing a particular

mass shape. If there are significant coupled channel effects from the DD̄∗ or D∗D̄∗ modes in

this wave, they are automatically absorbed into this model independent representation. For

B0 → ψ(2S)Kπ, the 1+ Z K-matrix is replaced with 14 independent complex amplitudes

per helicity coupling, equally spaced in mψ(2S)π phase space.

To set convention, Argand plots for each helicty are first generated using the default

K-matrix model of 1+ Z wave in the same mass binning, and the mass bin with the greatest

magnitude is chosen to be fixed in the model independent representation to the K-matrix

values, while still floating overall complex scale factors for the entire model independent sets

of the helicity couplings. Fixing complex amplitudes for one of the mass bins allows the rest

of helicity couplings to have less correlated fit errors as the overall scales/phases are factored

out. Since the default model contains a separate JP = 2− Z resonance, this Z is included in

the fit along with the default K∗ model and the two ZK resonances, with the same masses

and widths being free to float.

The fit quality metrics for this fit are presented in Table 62, and the default K-matrix model

fit qualities are shown for comparison. Following Wilks’ Theorem, the model independent

fit is more significant in terms of log-likelihood change by 9.0σ, and it also outperforms the

K-matrix model in the 2-D and 4-D χ2 values. This can be interpreted as the K-matrix

model of the 1+ Z wave missing some significant aspects of our data.

The fit value of the masses and widths of K-matrix poles for other waves that floated

in the fit are reported in Table 63, and they are fairly similar to the results from the all

K-matrix model. The main differences are that the K∗0(800) pole is at a higher mass position

194



and that the JP = 1− ZK1(4480) mass pole is slightly higher. Despite these differences, the

fit fractions for the model independent 1+ Z fit, as seen in Table 64, are comparable to those

from the default all K-matrix fit model (Table 29). Much like the mass projections in the

default all K-matrix fit model, the mass projections for the model independent 1+ Z fit look

very good and agree with data well (Figs. 122-126).

The Argand plots are presented in Figure 127. While the 2014 model independent fits

both on the old and current dataset showed a single circular shape with counter-clockwise

motion near the Z(4430) pole in the Argand diagram, these plots over the entire ψ(2S)π

phase space in the decay show more complicated exotic activity. Shown alongside the Argand

plots from this model independent fit are the Argand plots generated from the 1+ Z K-matrix

from Sec. 13.3. Qualitatively they are very similar with a lot of curling and counter-clockwise

complex phase motion, thus the model independent parametrization confirms complicated

resonant structure of 1+ Z wave. There are some differences, for example the behavior of the

helicity-0 Argand plot at low mass, in which the model independent fit curls in a loop-like

manner while the K-matrix fit trends towards low magnitude. The helicity-1 Argand plots

differ even more, especially at lower masses.

Table 62: Fit quality metrics comparing default K-matrix Z model fit with model independent Z fit
on current dataset.

Metric Default K-matrix Z Model Independent Z

nPar 92 130
logL -102,615 -102,702

∆(−2 logL) - 174
2-D χ2 (1024 bins) 1057 1008

2-D ∆χ2 - 49
4-D χ2 (4096 bins) 4365 4337

4-D ∆χ2 - 28
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Table 63: Masses and widths of the K∗s and JP = 2− Z in the model independent fit for the ψ(2S)
channel.

Contribution JP M (GeV) Γ (GeV)
K∗(892) 1− 0.889±0.0001 0.045±0.0003
K∗

0(800) 0+ 0.842±0.020 0.305±0.019
K∗

2(1430) 2+ 1.416±0.002 0.113±0.003
Z2(4470) 2− 4.468±0.006 0.089±0.012
ZK1(4480) 1− 4.503±0.015 0.164±0.030
ZK1(4520) 1+ 4.524±0.008 0.057±0.019

Table 64: All resonance fit fractions in the model independent Z fit for the ψ(2S) channel.

Contribution Fit fraction

K∗ Total S-wave 18.0%
K∗

0(800) 5.4%
K∗

0(1430) 7.2%
K∗

0(1950) 0.8%
K∗ Total P-wave 58.5%

K∗(892) 55.9%
K∗

1(1410) 2.6%
K∗

1(1680) 1.8%
K∗ Total D-wave 7.5%

K∗
2(1430) 6.5%

K∗
2(1980) 1.0%

K∗
3(1780) 0.5%

K∗
4(2045) 0.2%

K∗
5(2380) 0.08%

Model Indep. 1+ Z 6.7%
Z Total 2− wave 0.4%

Z2(4470) 0.4%
ZK Total 1− wave 0.3%

ZK(4480) 0.3%
ZK Total 1+ wave 0.1%

ZK(4520) 0.1%
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Figure 122: The distribution of mKπ for the B0 → ψ(2S)Kπ data (black) and the fit (red) using
the model independent approach.
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Figure 123: The distribution of mψ(2S)π for the B0 → ψ(2S)Kπ data (black) and the fit (red) using
the model independent approach.
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Figure 124: Projections of the B0 → ψ(2S)Kπ data (black points) and of the model independent
amplitude fit (red) onto the mψπ axis in different slices of mKπ: below K∗(892) (top left), at K∗(892)
(top right), in between K∗(892) and K∗

2 (1430) (middle left), at K∗
2 (1430) (middle right), and above

K∗
2 (1430) (bottom).

199



4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1

 [GeV]K(2S)ψm

0

500

1000

1500

2000

2500

3000

E
ve

nt
s/

(0
.0

12
5 

G
eV

)

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1

 [GeV]K(2S)ψm
4−
3−
2−
1−
0
1
2
3
4

Figure 125: The distribution of mψ(2S)K for the B0 → ψ(2S)Kπ data (black) and the fit (red) using
the model independent approach.
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Figure 126: Projections of the B0 → ψ(2S)Kπ data (black points) and of the model independent
amplitude fit (red) onto the mψK axis in different slices of mKπ: below K∗(892) (top left), at
K∗(892) (top right), in between K∗(892) and K∗

2(1430) (middle left), at K∗
2(1430) (middle right),

and above K∗
2 (1430) (bottom).
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Figure 127: Argand plots for model independent 1+ Z contribution (black points) for helicity-0 (top)
and helicity-±1 (bottom). Each complex amplitude is labeled with its mψπ bin center. The Argand
plots generated from the default 1+ Z K-matrix for both helicities are shown in red for comparison.
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18 Model Independent Fit of 1+ Z Wave with J/ψ Chan-

nel

Like the previous section with the ψ(2S) channel, the JP = 1+ Z wave K-matrix is replaced

with a set of independent complex amplitudes to probe the resonant nature of the states

without enforcing a particular mass shape model. For B0 → J/ψKπ, 14 independent complex

amplitudes per helicity coupling, equally spaced in mJ/ψπ phase space, replace the 1+ Z

K-matrix parameterization. Similarly to ψ(2S) channel, to set convention, Argand plots

are generated using the default K-matrix model in the same binning, and the bin with the

greatest magnitude is chosen to be fixed in the model independent fit to the K-matrix values,

while overall complex scale factors for two helicities are allowed to float. The 9 Z J/ψ channel

K-matrix model (Sec. 14.9) contains Zs of other quantum numbers besides JP = 1+, so these

K-matrix Z poles are included in the fit along with the default K∗ model. Model independent

fits to the 1+ Z wave with ZK included in the model were unable to converge at various

numbers of mass bins, thus ZK(4470) is omitted from the model independent 1+ Z fit.

The fit quality metrics for this fit are presented in Table 65, and the default K-matrix

model fit qualities are shown for comparison. The model independent fit is significant better

in terms of log-likelihood (by 11.5σ using Wilks’ Theorem), and the 2-D and 4-D χ2s also

are considerably better compared to those from the all K-matrix fit. The final value of the

masses and widths that floated in the fit are reported in Table 66, and for most poles, they

are quite similar to the results from the 9 Z model fit. The main differences are both the

Z0(4200) and Z1(4300) become quite a bit less broad compared to in the 9 Z model fit. The

fit fractions for the model independent fit, as seen in Table 67, are pretty similar to those

from the 9 Z fit model (Table 50). The mass projections for the model independent fit are

similar to the mass projections from the 9 Z fit, but there is improvement in the Kπ slices

for the mJ/ψπ mass projections, notably in the slice between K∗(892) and K∗(1430) and in

the slice above B → ψ(2S)Kπ phase space (Figs. 128-130).
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The Argand plots are presented in Figure 131, with Argand plots generated by the 1+

K-matrix from the 9 Z fit for the J/ψ channel drawn in red. Much like with the Argand

plots with the ψ(2S) channel on the current dataset, these plots over the entire J/ψπ phase

space in the decay show a lot of complicated resonant activity. There are at least two loops

in the Argand plot with counterclockwise motion. The Argand plots between the model

independent fit and the K-matrix are mostly the same, they differ slightly at very low and

very high J/ψπ mass. The model independent fit prefers low J/ψπ mass with low magnitude

and high J/ψπ mass with higher magnitude, and the opposite can be seen in the Argand plots

for the K-matrix fits. Again, despite these differences at the ends of phase space, the multiple

looping activity in both the K-matrix model fit and the model independent fit results suggest

multiple resonances in the J/ψπ distribution, matching the conclusion drawn from ψ(2S)

model independent fits.

Table 65: Fit quality metrics comparing 9 Z K-matrix model fit with model independent Z fit on
current dataset.

Metric K-matrix 1+ Z Model Model Independent 1+ Z

nPar 111 137
logL -3,056,324 -3,056,457

∆(−2 logL) - 266
2-D χ2 (1024 bins) 1506 1403

2-D ∆χ2 - 103
4-D χ2 (4096 bins) 4295 4220

4-D ∆χ2 - 75
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Table 66: Masses and widths of the K∗s and Zs (not 1+) in the model independent fit for the J/ψ
channel.

Contribution JP M (GeV) Γ (GeV)
K∗(892) 1− 0.890±0.00002 0.045±0.00004
K∗

0(800) 0+ 0.807±0.0007 0.314±0.001
K∗

0(1430) 0+ 1.455±0.0003 0.212±0.0008
K∗

2(1430) 2+ 1.417±0.0001 0.098±0.0003
Z(4200) 0− 4.342±0.001 0.589±0.004
Z(4700) 2− 4.795±0.005 0.263±0.007
Z(3900) 0− 3.881±0.001 0.149±0.002
Z(4300) 1− 4.345±0.004 0.424±0.017

Table 67: All resonance fit fractions in the model independent Z fit for the J/ψ channel.

Contribution Fit fraction

K∗ Total S-wave 13.0%
K∗ S-wave NR 0.48%

K∗
0(800) 3.5%

K∗
0(1430) 6.9%

K∗
0(1950) 0.3%

K∗ Total P-wave 66.0%
K∗(892) 62.0%
K∗

1(1410) 2.0%
K∗

1(1680) 1.0%
K∗ Total D-wave 6.4%

K∗
2(1430) 6.2%

K∗
2(1980) 0.5%

K∗
3(1780) 0.3%

K∗
4(2045) 0.03%

K∗
5(2380) 0.007%

Model Indep. 1+ Z 1.4%
Z Total 0− wave 2.6%

Z0(4200) 2.0%
Z0(3900) 0.7%

Z Total 1− wave 0.14%
Z1(4300) 0.14%

Z Total 2− wave 0.17%
Z2(4700) 0.17%
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Figure 128: The distribution of mKπ for the B0 → J/ψKπ data (black) and the fit (red) using the
model independent approach.
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Figure 129: The distribution of mψ(2S)π for the B0 → J/ψKπ data (black) and the fit (red) using
the model independent approach.
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Figure 130: Projections of the B0 → J/ψKπ data (black points) and of the model independent
amplitude fit (red) onto the mψπ axis in different slices of mKπ: below K∗(892) (top left), at K∗(892)
(top right), in between K∗(892) and K∗

2 (1430) (middle left), at K∗
2 (1430) (middle right), and above

K∗
2 (1430) (bottom).
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Figure 131: Argand plots for model independent 1+ Z contribution for helicity-0 (top) and helicity-±1
(bottom). Each complex amplitude is labeled with its mJ/ψπ bin center. Red graph represents 1+

K-matrix from 9 Z fit drawn Argand-style in the same binning as used in the model independent
fits.

209



19 Summary

Four-dimensional amplitude fits of B0 → ψ(2S)π−K+ and B0 → J/ψπ−K+ decays studied

with the LHCb detector have been presented. The analyzed data samples are much larger

than utilized in the previously published results from the analyses of that type: a factor of

76 increase over the Belle B0 → J/ψπ−K+ sample [16] and nearly a factor of 6 increase over

the LHCb B0 → ψ(2S)π−K+ sample [7] (see Sec. 4).

The earlier results proved that even though both of these channels are dominated by

production of conventional hadrons in the form of kaon excitations (s̄d states), K∗0 → K+π−,

exotic tetraquark contributions, in the form of Z− → ψ(nS)π− (cc̄dū) states (n = 1, 2),

were also necessary to explain the data. The dominant resonances were identified as 1+

Z(4430)− → ψ(2S)π− [7, 12] and Z(4200)− → J/ψπ− [16], with some indication that both

resonances were decaying to both J/ψ(1S)π− [16] and ψ(2S)π− [7].

The results presented here confirm that production of kaon excitations is dominant

but grossly insufficient to describe the B0 → J/ψπ−K+ and B0 → ψ(2S)π−K+ decays (see

Sec. 10) and that the dominant exotic hadron contributions are in the form of Z− → ψ(nS)π−

states. The decay rate pattern is similar between our results and the previously published

results, in spite of more advanced formalism used in our analysis (K-matrix) than in the

previous approaches (sum over Breit-Wigner amplitudes) and with a much richer resonance

model (see Table 61).

However, our results also show that exotic resonance spectrum is by far more abundant

than previously disclosed. Instead of two Z− → ψ(nS)π− resonances utilized in the previous

analyses, our fits point to at least four in the ψ(2S)π− channel and nine in the J/ψ(1S)π−

channel with spin-parity numbers going beyond the 1+ wave. Furthermore, two (one)

Z+
K → ψ(nS)K+ resonances are needed for the best description of the ψ(2S) (J/ψ(1S)) data.

This is the first observation of such contributions in these decay modes.

None of these exotic resonances are narrow, with the dominant ones having widths of
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the order of 102 MeV. Diversity of quantum numbers and width values point to direct color

interactions of tetraquark configurations (cc̄dū and cc̄us̄) responsible for these states, rather

than loose nuclear-type binding between meson-antimeson pairs for charmed mesons. In fact,

our fits do not provide any evidence for production of the narrow Z−
c and Z+

cs states observed

by BESIII and Belle experiments at the DD̄∗, D∗D̄∗ and DD̄∗
s +DsD̄

∗ thresholds [2], which

are good candidates for the latter (i.e. for ”molecular states”). Qualitatively, our results

lead to the same conclusions as previously obtained for the J/ψϕ and J/ψK+ states seen in

amplitude analysis of the B+ → J/ψϕK+ decays by the LHCb [27], in which a large number

of relatively wide exotic states of different quantum numbers were required.

The largest number of exotic states is observed in the JP = 1+ ψ(nS)π− wave (see

Table 59). Among them, a state matching Z(4200)− parameters from the previous analyses

appears with consistent mass and width in both ψ(2S)π− and J/ψ(1S)π− decay modes. This

is the first confirmation of this state previously claimed only by the Belle experiment in the

J/ψπ− mode [16].

The dominant pole in the 1+ ψ(2S)π− wave appears in our data with the mass and width

consistent with the previous Belle and LHCb results for the Z(4430)− → ψ(2S)π− state,

with the differences attributable to the change in amplitude formalism from Breit-Wigner

sum to K-matrix and the richer overall resonant model (see Sec. 16). While it also appears

in the J/ψ(1S)π− decay mode with the consistent mass, the widths disagree by 4.5σ.

Both decay modes point to existence of previously unobserved 1+ Z(4800)− resonance.

While the mass measurements are consistent between the two modes, the widths disagree by

3.7σ. The J/ψπ− data require two additional 1+ Z− states not supported by the ψ(2S)π−

sample. One of them has the mass consistent with the 1+ Zc(3900) isospin-1 state observed

by BESIII and Belle via a different production mechanism in various decay modes, including

J/ψπ−. However, the width observed in our data is a factor of 10 larger, thus it cannot be

the same state.

Because of a large number of 1+ Z− poles extracted from our data, we have also performed
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model independent fits to this wave, in which the K-matrix parameterization for it is replaced

by a set of helicity zero and helicity ones amplitudes not constrained by any ansatz about

their mass dependence. The obtained Argand plots confirm very rich resonant activity (see

Secs. 17-18).

The spectrum of the other ψ(nS)π− and ψ(nS)K+ states uncovered by our amplitude

analyses do not agree on masses, widths, and JP pattern between the ψ(2S) and J/ψ(1S)

data. This is in contrast with a good consistency between the values of any free parameters

in the K∗0 → K+π− sector fit independently to the ψ(2S) and J/ψ(1S) data (see Table 60).

Together, with the other inconsistencies mentioned above, this casts doubt into completeness of

our modelling of the exotic amplitudes. This is the first time both B0 → J/ψπ−K+ and B0 →

ψ(2S)π−K+ decays were simultaneously investigated with a sufficient statistics to perform

such consistency tests. Therefore, we consider the observation of these inconsistencies to be an

important outcome of our work, which calls for further improvements to modelling of relevant

amplitudes. A natural next step would be to fit our data with models including coupled-

channel effects, which have been neglected so far in all amplitude analyses performed for B

meson decays to charmonium and light hadrons. This complicates amplitude parameterization

by a lot and was beyond the scope of this thesis. See Sec. 16 for a more detailed discussion.

The other possible source of the inconsistencies seen between the two data sets are genuine

three-body decays, not proceeding via a sequence of two-body decays. Theoretical input is

needed on possible parameterizations of such effects.

We approached computational limitations on complexity of the models, which we were

successfully able to fit to our data (see e.g. Secs. 12.5, 14.10, 15.3 and 18). The LHCb detector

is presently undergoing a major upgrade, with another major upgrade likely to follow after a

decade of data taking. The upgrades will allow collection of much larger data samples than

analyzed here. This should be helpful in overcoming these limitation.
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Appendices

A PID Corrected Monte Carlo

We have investigated using particle-ID corrected Monte Carlo as input to our fitter.

The PID response in MC is corrected using PIDCorr in the Meerkat tool in the PIDCalib

package, which transforms the PID variables in simulation based on calibration samples

such that they are distributed like in data. The variables ProbNNk, ProbNNpi, and PIDK are

transformed in this way for both the kaon and the pion, with the addition of ProbNNp being

transformed for the pion only. After the variable transformation, the PID-corrected MC

sample applies the same selection as in Sec. 4, using the same loose PID cuts.

With the PID-correct MC sample, we perform our default resonant Z model fit with ψ(2S)

and compare the results to the fit that uses a sample without MC PID correction. The results

are presented in Tables 68, 69,and 70. Both fits performed well, but the multidimensional

χ2s were worse in the PID corrected sample, while masses, widths, and fit fractions for each

resonance were similar between the uncorrected and PID corrected MC samples within fit

errors. Since we do not see improvement in our fits, we have elected to continue using an

uncorrected PID sample.

Table 68: χ2s for default resonant Z model fits for uncorrected and PID-corrected ψ(2S) MC.

Variable Uncorrected PID Corrected

nParameters 82 82
2-D χ2 (1024 bins) 1078.14 1116.85
2-D χ2/nBins 1.05 1.09
4-D χ2 (4096 bins) 4399.48 4447.74
2-D χ2/nBins 1.07 1.09
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Table 69: Fit results for floating masses and widths in default resonant Z model fits for uncorrected
and PID-corrected ψ(2S) MC.

Uncorrected PID Corrected
Contribution JP M0 (GeV) Γ0 (GeV) M0 (GeV) Γ0 (GeV)

K*(800) 0+ 0.823± 0.029 0.384± 0.024 0.812± 0.024 0.354± 0.021
K*(892) 1− 0.889± 0.0001 0.045± 0.0003 0.889± 0.0001 0.045± 0.0003
K*(1430) 2+ 1.417± 0.001 0.104± 0.003 1.417± 0.001 0.104± 0.003
Z(4430) 1+ 4.535± 0.012 0.231± 0.014 4.535± 0.012 0.229± 0.015
Z(4200) 1+ 4.092± 0.009 0.152± 0.015 4.094± 0.010 0.163± 0.017
Z(4800) 1+ 4.820± 0.010 0.104± 0.050 4.822± 0.011 0.111± 0.049
Z(4470) 2− 4.476± 0.008 0.130± 0.014 4.480± 0.009 0.136± 0.015

Table 70: Fit fractions for default resonant Z model fits for uncorrected and PID-corrected ψ(2S)
MC.

Contribution Uncorrected PID Corrected

K0*(800) 6.32 5.85
K0*(1430) 6.07 6.28
K0*(1950) 0.38 0.63
K1*(892) 56.57 56.43
K1*(1410) 2.77 2.91
K1*(1680) 2.03 1.95
K2*(1430) 6.56 6.59
K2*(1980) 1.07 1.04
K3*(1780) 0.46 0.43
K4*(2045) 0.21 0.23
K5*(2380) 0.10 0.10
Z(4430) 1+ 3.48 3.06
Z(4200) 1+ 0.34 0.42
Z(4800) 1+ 0.43 0.44
Z(4460) 2− 0.54 0.52

K* S-wave 17.14 17.70
K* P-wave 59.42 59.44
K* D-wave 7.73 7.73
Total K* 87.59 88.17
Z 1+ 4.89 4.56
Total Z 5.41 5.07
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B Fit displays for Legendre moments of cos θK∗ helicity

angle

An interesting insight into Kπ orbital-momentum structures in the data and the fits is

provided by calculating moments of cos θK∗ distribution and plotting them in a function of

mKπ. Such moments were the starting point for the semi-model-independent analysis of the

decays considered here, as discussed in the introduction (Sec. 3). Unnormalized moment of

lth degree is defined as:

< PU
l >=

Ndata∑
i=1

1

ϵi
Pl(cos θK∗ i) (32)

where Pl(x) is a Legendre polynomial of order l, and ϵi is the efficiency for given event. We

use parameterized efficiency to calculate ϵi as described in Sec. 6.3. We calculate moments for

both the data, and the phase-space MC reweighted by the matrix element squared obtained

from the default fit model.

AK∗0 resonance of spin J can only contribute its amplitude in quadrature up to lmax = 2 J .

If it interferes with a resonance of spin J ′, this will show up in moments up to lmax = J + J ′.

Only J ≤ 2 K∗0 resonances have large contributions to our data. For these resonances, we

expect (see Eqs. 27–30 of Ref. [13]):

< PU
1 > to contain S − P and P −D interference terms;

< PU
2 > to contain |P |2, |D|2 and S −D interference terms;

< PU
3 > to contain P −D interference terms;

< PU
4 > to contain |D|2 term.

Non-zero higher moments can be induced by higher spins of K∗0 resonances, or exotic hadrons,

or interplay of both. Reflections of exotic Z− and Z−
K resonances can contribute to any order

of moments of K+π− helicity angle. Vice-versa, reflections of K∗0 resonances spread to any
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order of ψπ− or ψK+ helicity angles. Since the K∗0 resonances dominate our data, inspecting

moments of the latter helicity angles is less interesting. Regardless, comparison between the

moments of the data and of the fitted model is a good visual way to access fit quality on the

Dalitz plane. We present such comparisons for fits without (K∗0-only models as described

in Sec. 10) and with exotic hadron contributions (best models as described in Sec. 13.3 for

the ψ(2S) and Sec. 15.2 for the J/ψ data), which illustrate which parts of the K∗0 angular

momentum structures in the data require exotic hadron contributions.

Figs. 132-133 show < PU
1 >, with the structures driven mostly by interference of the

S-wave with K∗(892), K∗
1(1410) and K∗

1(1680) ( P -wave) and K∗
2(1430) (D-wave). Even

though model without exotics reproduces the main features of the data, inspection of the pull

distributions reveal significant drawbacks of the K∗-only models, in the region at and below

the K∗(892) resonance, and above 2 GeV for the J/ψ data. The exotic hadron contributions

mitigate these shortcomings (notice the change in the range of the fit pull distributions

between the top and bottom plots).

Figs. 134-135 show < PU
2 >, which is dominated by P -wave amplitudes squared. K∗

2 (1430)

( D-wave) can also contribute on its own and interfering with S-wave, but produces no peaking

structure, except for the wiggle when crossing K∗
2 (1430) resonance. Effect of the exotic hadron

contribution is limited in this moment. In contrast, they play a much bigger role in describing

< PU
3 > moment, especially below the K∗(892) region (Figs. 136-137 ). Interference of

K∗
2(1430) with the higher mass P-wave resonances explain the peaking structure near this

resonance pole, but its tail does not reach below the K∗(892) peak. The S-wave, which is

significant at this mass range, cannot contribute to this moment. Therefore, significant value

of this moment below the K∗(892) is entirely due to the presence of exotic resonances (mostly

Z− states, which have higher rate than Z+
K states).

The exotic hadron contribution improve description of of the < PU
4 > moment in a wide

range between the K∗(892) and K∗
2(1430) resonances, and at the high masses for the J/ψ

data (Figs. 138-139).
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The < PU
5 > and higher moments are driven by interference of the K2(1430) resonance

with tails of the higher spin states. While impact of the exotic hadrons on this moment

is minor for the ψ(2S) data, they often significantly improve description of the J/ψ data

(Figs. 140-151) at and below this resonances.

Overall agreement between the data and the fits which include the exotic hadrons is very

good, especially for the ψ(2S) data. The much bigger sample of the J/ψ data, which also

spread to a bigger phase-space, is harder to describe within the small statistical errors. The

statistical errors in the Monte Carlo sample for the J/ψ channel are bigger than in the data,

which may be one of the limiting factors in construction of even more complex models of

the J/ψ data. Overcoming such limitations in the future will not be trivial because of the

computing time limitation.
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Figure 132: Unnormalized Legendre polynomial moment < PU1 > of cos θK∗ in a function of mKπ

for the B0 → ψ(2S)π−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 4 Zs and 2 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 133: Unnormalized Legendre polynomial moment < PU1 > of cos θK∗ in a function of mKπ

for the B0 → J/ψπ−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 9 Zs and 1 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 134: Unnormalized Legendre polynomial moment < PU2 > of cos θK∗ in a function of mKπ

for the B0 → ψ(2S)π−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 4 Zs and 2 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 135: Unnormalized Legendre polynomial moment < PU2 > of cos θK∗ in a function of mKπ

for the B0 → J/ψπ−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 9 Zs and 1 ZK (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 136: Unnormalized Legendre polynomial moment < PU3 > of cos θK∗ in a function of mKπ

for the B0 → ψ(2S)π−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 4 Zs and 2 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 137: Unnormalized Legendre polynomial moment < PU3 > of cos θK∗ in a function of mKπ

for the B0 → J/ψπ−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 9 Zs and 1 ZK (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 138: Unnormalized Legendre polynomial moment < PU4 > of cos θK∗ in a function of mKπ

for the B0 → ψ(2S)π−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 4 Zs and 2 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 139: Unnormalized Legendre polynomial moment < PU4 > of cos θK∗ in a function of mKπ

for the B0 → J/ψπ−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 9 Zs and 1 ZK (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 140: Unnormalized Legendre polynomial moment < PU5 > of cos θK∗ in a function of mKπ

for the B0 → ψ(2S)π−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 4 Zs and 2 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 141: Unnormalized Legendre polynomial moment < PU5 > of cos θK∗ in a function of mKπ

for the B0 → J/ψπ−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 9 Zs and 1 ZK (bottom). The plots below the moment displays shows the fit
pull distributions.

227



0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
) (GeV)πM(K

1000−

800−

600−

400−

200−

0

200

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.53−
2−
1−
0
1
2
3

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
) (GeV)πM(K

800−

600−

400−

200−

0

200

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.52−
1.5−

1−
0.5−

0
0.5

1
1.5

2

Figure 142: Unnormalized Legendre polynomial moment < PU6 > of cos θK∗ in a function of mKπ

for the B0 → ψ(2S)π−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 4 Zs and 2 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 143: Unnormalized Legendre polynomial moment < PU6 > of cos θK∗ in a function of mKπ

for the B0 → J/ψπ−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 9 Zs and 1 ZK (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 144: Unnormalized Legendre polynomial moment < PU7 > of cos θK∗ in a function of mKπ

for the B0 → ψ(2S)π−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 4 Zs and 2 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 145: Unnormalized Legendre polynomial moment < PU7 > of cos θK∗ in a function of mKπ

for the B0 → J/ψπ−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 9 Zs and 1 ZK (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 146: Unnormalized Legendre polynomial moment < PU8 > of cos θK∗ in a function of mKπ

for the B0 → ψ(2S)π−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 4 Zs and 2 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 147: Unnormalized Legendre polynomial moment < PU8 > of cos θK∗ in a function of mKπ

for the B0 → J/ψπ−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 9 Zs and 1 ZK (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 148: Unnormalized Legendre polynomial moment < PU9 > of cos θK∗ in a function of mKπ

for the B0 → ψ(2S)π−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 4 Zs and 2 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 149: Unnormalized Legendre polynomial moment < PU9 > of cos θK∗ in a function of mKπ

for the B0 → J/ψπ−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 9 Zs and 1 ZK (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 150: Unnormalized Legendre polynomial moment < PU10 > of cos θK∗ in a function of mKπ

for the B0 → ψ(2S)π−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 4 Zs and 2 ZKs (bottom). The plots below the moment displays shows the fit
pull distributions.
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Figure 151: Unnormalized Legendre polynomial moment < PU10 > of cos θK∗ in a function of mKπ

for the B0 → J/ψπ−K+ data (black points) and for the fits (red points) with the K∗-only model
(top) and including 9 Zs and 1 ZK (bottom). The plots below the moment displays shows the fit
pull distributions.
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