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Abstract

Voter model perturbations can be viewed as voter model (neutral competition) plus a

small perturbation rate. Cox [C17] showed that the biased voter model, viewed as a voter

model perturbation, converges to Feller’s branching diffusion under mild mixing condi-

tion. We extend this result to a general class of perturbation functions on the setting of r-

regular random graphs where the nearest-neighbor voting kernel has a strong mixing prop-

erty, and prove a low-density diffusive limit of which the convergence of biased voter model

is considered as a special case. The other special case considered is the q-voter model whose

high-density ODE limit on torus for q ≈ 1 has been proved by Agarwal, Simper and Dur-

rett [ASD21]. We will introduce the low-density approach we use and show that a mean-

field simplification occurs.
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Chapter 1

Assumptions and main result

In [C17], Cox showed that rescaled density processes of biased voter models on large finite

sets converge to Feller’s branching diffusion, under the low initial density condition: the

initial number of particles has a smaller order than the size of the space. In their work,

the biased voter model is viewed as a voter model perturbation and voting kernels are as-

sumed to have minimum mixing property: no particular site can be visited significantly

more often than others, and that tNmeet, the expected meeting time of two walks starting

from stationary, has a larger order than the separation time tNsep. The time and mass scale

are assumed to be between tNsep and t
N
meet.

We extend the result in Cox [C17] to a class of generalized voter model perturbations

and prove a convergence for rescaled density processes to branching diffusion for the asymp-

totics on r-regular random graphs. The existence of the scale for getting this diffusive limit

is implied by that the mixing time tNmix has a smaller order than tNmeet on these graphs.

Walks with this property meet either quickly, or do not meet until they ”realize” that the

space is finite. This property also implies that macroscopic independence will happen un-

der suitable large time scale depending on initial number of particles.

Our introduction is structured as follows. In Section 1.1, we give the definition of voter

model perturbations and state its generator. We define the rescaled density processes on r-
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regular graphs and state the low initial density assumption and perturbation assumptions.

In Section 1.2, we define the collection of ”good” r-regular graphs and show that with high

probability, a simple, connected r-regular random graphs is a good graph. In particular,

these graphs have strong bound on the transition probabilities. Our assumption on the

time scale will be that its order is between tNmix and tNmeet. We are able to relax the lower

bound tNsep used in [C17] to tNmix as the mixing time for good r-regular random graphs is

sufficient for providing the control on the separation distance defined in (1.5). This fact

will be used frequently in later proofs.

We state the main result in Section 1.3 by using the martingale characterization of the

branching diffusion with a description of the limiting drift and branching term using coa-

lescing random walk probabilities. We will explain the implicit ”double-layer” randomness

in this result, and the fundamental reason for getting the branching limit.

We will describe two examples of the main result in Section 1.4. The first is the bi-

ased voter model considered in Cox [C17] and was first introduced by Williams and Bjerk-

nes [WB79] as a model of tumor growth. This model has been studied in many litera-

tures such as Durrett, Foo and Leder [DFL16] in which they studied the spatial Moran

model that is considered as a generalization of biased voter models, and Bramson, Grif-

feath [BG81] where they gave an estimation on the size of the cluster of the biased voter

model starting from a single particle on lattices.

The second example is the q-voter model which was introduced in Nettle [N99] as a

model of language change in social networks, and in Abraams and Strogatz [AS03] as a

model of language death. Under high initial density condition that initial number of parti-

cles is equal to the order of size of the space, Agarwal, Simper and Durrett [ASD21], the

first paper related to the study of this model in mathematics, proved an ODE limit on

torus under homogeneous mixing condition in Theorem 1.1 and 1.2 in their work. The

idea followed Cox, Durrett [CD16]: as shown in Theorem 6 in Section 7.2 of [CD16], the

reaction function in the limiting ODE is given by the expectation of perturbations un-
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der voter stationarity. We will give the low density diffusive limit of the q-voter model for

q < 1 close to 1 as a corollary of our main result. The connection between our low den-

sity diffusive limit and the high density ODE limit is the following: when under low initial

density, the local density of 0 at a site is very close to 1. Thus, the limiting drift in the

low density diffusive limit is exactly equal to the derivative at 0 of the reaction function in

the high density ODE. For complete details, see Section 1.8 in Cox, Durrett and Perkins

[CDP13].

In Section 1.5, we make a comparison between the low density branching limit theorem

and the Wright-Fisher limit theorem for voter models that is proved in Chen, Choi and

Cox [CCC16] where a mean-field approximation for this model is used and tNmeet serves as

the time scale. And finally, we give an outline of the low density approach we use in Sec-

tion 1.6.

1.1 Voter model perturbations

Let us begin with some definitions. Let VN be a set of N vertices and [N ] = {1, .., N} be

a numbering on it. We will assume that VN = [N ]. Suppose that GN is an r-regular graph

built on VN with r ≥ 3. Let d be the graph distance and denote y ∼ x if d(x, y) = 1.

Define the nearest neighbor transition kernel qN by

qN(x, y) = 1/r · 1{y∼x}, x, y ∈ VN .

For ξ ∈ {0, 1}VN , define the local densities fNi = fNi (x, ξ) by

fNi (x, ξ) =
∑
y∈VN

qN(x, y) · 1{ξ(y)=i}, i = 0, 1.

For x ∈ VN and l ∈ N, denote Nl(x) = {y : d(x, y) = l} and define

nil(x, ξ) =
∑

y∈Nl(x)

1{ξ(y) = i}, i = 0, 1

so that nil(x, ξ) is the count of type i in the boundary of distance-l neighborhood of x in ξ.
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Let |A| denote the cardinality of subset A. To simplify the story, we consider only fi-

nite interaction range which is enough for exhibition of the phenomena. Let the interac-

tion range R ≥ 1 be fixed. Define

NR = r(r − 1)R−1.

so that for any x ∈ VN , NR satisfies

max
l=1,..,R

|Nl(x)| ≤ NR.

Let θN,i be functions on {(l, k) : 1 ≤ l ≤ R, 1 ≤ k ≤ NR} for each N ∈ N and i = 0, 1.

Define the perturbation functions

FN
i (x, ξ) =

R∑
l=1

NR∑
k=1

θN,i(l, k)1{ni
l(x,ξ)=k}, i = 0, 1.

Let τN → ∞ be a positive sequence. Define ξGN
t as the {0, 1}VN -valued Markov process

with rates that at each event time at site x, ξ(x) makes transitions

0 → 1 at rate τNf
N
1 + FN

1 ,

1 → 0 at rate τNf
N
0 + FN

0 .

(1.1)

We will denote ξ̂(x) = 1− ξ(x) for convenience. Let ξx be the configuration

ξx(y) =


ξ(y), y ̸= x,

ξ̂(x), y = x,

and define rate functions

cvN(x, ξ) = ξ̂(x)fN1 (x, ξ) + ξ(x)fN0 (x, ξ),

c∗N(x, ξ) = ξ̂(x)FN
1 (x, ξ) + ξ(x)FN

0 (x, ξ).

We consider the asymptotic behavior of systems ξGN
t with time scale τN . Let cN(x, ξ) be

the rate function of the spin-flip system ξGN
t that is defined as

cN(x, ξ) = τN · cvN(x, ξ) + c∗N(x, ξ)
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so that the generator LN of ξGN
t is

LNf(ξ) =
∑
x∈VN

cN(x, ξ)(f(ξ
x)− f(ξ))

for functions f : {0, 1}VN → R.

Consider the density processes

ZN
t =

|ξGN
t |
τN

=
1

τN

∑
x∈VN

ξGN
t (x), logN ≪ τN ≪ N.

The following ”low initial density” assumption is in force:

ZN
0 =

|ξGN
0 |
τN

→ c ∈ [0,∞). (1.2)

This condition implies that there exist a constant C1.3 > 0 such that

ZN
0 ≤ C1.3, for all N. (1.3)

The fact (1.3) above will be applied frequently in later proofs.

The following perturbation assumptions will be assumed through out this work. For

i = 0, 1, N ∈ N, 1 ≤ l ≤ R and 1 ≤ k ≤ NR,

(P1) θN,i(l, k) ≥ 0,

(P2) θi(l, k) = lim
N→∞

θN,i(l, k) exists.

In particular, (P2) guarantees boundedness of the perturbation functions Fi(x, ξ).

1.2 Bound on transition probabilities

Denote Bl(x) = {y ∈ VN : d(x, y) ≤ l} as the distance-l neighborhood of x. To have

a quantitative description of whether Bl(x) is locally a finite tree , we introduce the tree

excess defined in Section 2.2 of [LS10], denoted as tx(Bl(x)):

tx(Bl(x)) = the maximum number of edges that can be deleted from the

induced subgraph on Bl(x) while keeping it connected.



6

Heuristically, the tree excess represents how many loops are there in the neighborhood. In

particular, tx(Bl(x)) = 1 means that Bl(x) contains one loop, and tx(Bl(x)) = 0 means

that Bl(x) does not contain any loops, and hence is a finite tree.

Denote lN = (1/5) logr−1N and define

ΓN = {x ∈ GN : tx(BlN (x)) = 0},

Γ′
N = {x ∈ GN : tx(BlN (x)) = 1}.

Let α0 be the constant in Theorem 6.3.2 of Durrett [D07] and let γ = α2
0/2. The transition

function pNt (x, y) is defined as the probability kernel of continuous time random walk with

jump kernel qN :

pNt (x, y) = e−t
∞∑
k=0

tk

k!
qNk (x, y) x, y ∈ VN (1.4)

where qNk is the k-th iteration of qN . This implies that the stationary distribution πN of

pNt is the uniform distribution on VN . Define

∆N
t = max

x,y∈VN

∣∣∣∣pNt (x, y)πN(x)
− 1

∣∣∣∣ = N · max
x,y∈VN

∣∣∣∣pNt (x, y)− 1

N

∣∣∣∣. (1.5)

We call GN a good graph if it has the following properties:

(i) GN is connected,

(ii) tx(BlN (x)) ≤ 1 for all x ∈ VN ,

(iii) |{x : tx(BlN (x)) ̸= 0}| ≤ r2N3/5,

(iv) ∆N
t satisfies that

∆N
t ≤ Ne−γt, for all t > 0. (1.6)

In particular, (ii) and (iii) imply

VN = ΓN ∪ Γ′
N and |Γ′

N | ≤ r2N3/5, (1.7)

and (iv) implies that for each x, y ∈ VN and t ≥ 0,

|pNt (x, y)− 1/N | ≤ e−γt. (1.8)
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Denote GN(r) as the collection of all simple r-regular graphs on VN , and endow GN(r)

with uniform measure. Define the sequence of events

EN = {G ∈ GN(r) : G is good}.

In the following definition and the next proposition, P denotes the uniform measure on

GN(r). And we say that a sequence of events AN ⊆ GN(r) occurs with high probability,

which we will abbreviate as w.h.p., if

P (AN) =
|AN |

|GN(r)|
→ 1 as N → ∞.

Proposition 1.1. Let G be chosen uniformly at random from GN(r). Then G ∈ EN

w.h.p.

See Section A.1 for the proof of this result.

1.3 Main result

We use the following martingale problem characterization of Feller’s branching diffusion.

An adapted a.s.-continuous non-negative real valued process Zt on a filtered probability

space (Ω,F , (Ft), P ) is said to be a Feller’s branching diffusion with drift θ and branching

rate β started at Z0 if its law solves the martingale problem:

(MP)β,θZ0
Mt = Zt−Z0−θ

∫ t

0

Zsds is a continuous (Ft)-martingale with predictable

square function ⟨M⟩t = β

∫ t

0

Zsds.

Let C0[0,∞) be the space of continuously differentiable functions vanishing at infinity.

The generator L of the solution of the above martingale problem is given by

Lf(z) = (θz)f ′(z) + (βz)
1

2
f ′′(z)

for f ∈ C0[0,∞) such that f ′, f ′′ ∈ C0[0,∞).

Let Gtr be the r-regular infinite tree with vertex set V tr. Introduce a system of coa-
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lescing random walks {“Be
t , e ∈ V tr}. Each “Be

t has rate 1 with step distribution qtr that is

given by

qtr(e, e′) = 1/r · 1{e′∼e}, e, e′ ∈ V tr.

For A ⊆ V tr finite, define “BA
t = {“Be

t , e ∈ A}. For finite disjoint A, B ⊆ V tr, define the

stopping times

σtr(A) = inf{t > 0 : |“BA
t | = 1},

τ tr(A,B) = inf{t > 0 : “BA
t ∩ “BB

t ̸= ∅}.

Denote ρ as the root of the infinite tree. Introduce the ”escape probability”:

ptr,e =
∑
e

qtr(ρ, e)P (τ tr(ρ, e) = ∞).

ptr,e is the probability that a walk starting at ρ never returns to ρ after leaving. A good

reference for it is Spitzer [S64]. Next, define

Nl(ρ) = {e ∈ V tr : d(ρ, e) = l},

Sl,k(ρ) = {A ⊆ Nl(ρ) : |A| = k},

Nl(ρ) = Nl(ρ) ∪ {ρ}.

and define the coalescing random walk probabilities

ptr,1(l, k) =
∑

A∈Sl,k(ρ)

B=Nl(ρ)∩Ac

P (τ tr(A,B) = ∞, σtr(A) <∞),

ptr,0(l, k) =
∑

A∈Sl,k(ρ)

B=Nl(ρ)∩Ac

P (τ tr(A,B) = ∞, σtr(B) <∞).

We will use the notation aN ≪ bN to mean that aN/bN → 0 as N → ∞. Let P β,θ
Z0

be the law of the solution of (MP)β,θZ0
on C([0,∞),R+). Denote PN as the law of ZN

· . Our

main result is



9

Theorem 1.2. Assume (1.2), (P1)-(P2) and

logN ≪ τN ≪ N. (1.9)

For any sequence of r-regular graphs {GN} such that GN ∈ EN for each N ,

PN ⇒ P β,θ
Z0

where

β = 2ptr,e,

θ =
R∑
l=1

NR∑
k=1

(θ1(l, k)ptr,1(l, k)− θ0(l, k)ptr,0(l, k)).

Here ⇒ denotes weak convergence. The upper bound in (1.9) is the order of tNmeet of

good r-regular random graphs which comes from the result of Oliveira [O11] who showed

that tNmeet is equal to O(N) for most graphs. This generalized the result in Cox [C89] who

showed that the order of voter model consensus time on torus for d ≥ 3 is equal to the

size of the space. The lower bound comes from the main result of Lubetzky and Sly [LS10]

who proved that tNmix for good r-regular random graphs has order logN .

Implicitly, there is a double-layer randomness in the law PN : one comes from the ran-

dom graph GN , and the other is from the voter model perturbation ξN· . Less formally, the

theorem above says that the rescaled density processes converge to Feller’s branching dif-

fusion with high probability. Therefore, Proposition 1.1 is essential for getting the theorem

above.

The key for obtaining the branching limit is low initial density. As the jump kernel

qtr defines transient walks, the low initial density assumption implies the following con-

sequence: as particles spread out quick and become far apart, only those at the boundary

can involve in the time evolution. The occurrence of a transition from 1 to 0 at a site de-

pends asymptotically on its local density of 0. Therefore, at the large time scale τN , this

proportion can be approximated by the ”escape” probability. This makes transitions at a
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site alike a branching mechanism.

1.4 Applications of Theorem 1.2

We describe two examples of Theorem 1.2. In each case we will see that the perturbation

conditions (P1)-(P2) hold.

Example 1.3.(Biased voter models). Suppose that bN → b is a convergent non-negative

sequence. Cox [C17] considered the biased voter model which has transitions

0 → 1 at rate τNf
N
1 + bNf

N
1 ,

1 → 0 at rate τNf
N
0 .

The perturbation assumption (P1) is satisfied by bN ≥ 0, and convergence of bN implies

(P2). If bN = 0 for all N , then ξGN
· is the basic voter model and one has

PN ⇒ P 2ptr,e,0
Z0

.

If bN → b ≥ 0, then

PN ⇒ P 2ptr,e,bptr,e

Z0
.

Example 1.4.(q-Voter models with q < 1 close to 1). Let ξGN
t (x) make transitions

i→ 1− i at rate τN · (fN1−i)q, i = 0, 1.

We consider q = qN < 1 close to 1. Note that these rates imply that interaction range

R = 1 so that l has only one value l = 1. Thus, we will use ni(x, ξ) = |{y ∼ x : ξ(y) = i}|

instead of the notation nil(x, ξ) in the definition of perturbation functions.

Following Section 1.1 of Agarwal, Simper and Durrett [ASD21], we view ξGN
t as a voter

model perturbation as follows. Let qN = 1− δN , δN ∈ (0, 1). For i = 0, 1, we can write

(fNi )qN = fNi + ((fNi )qN − fNi ) = fNi + (fNi ) · ((fNi )−δN − 1).
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This implies

τN · (fN1−i)qN = τNf
N
i + (fNi ) · (f

N
i )−δN − 1

1/τN
. (1.10)

Define

cNk =
k

r
· (r/k)

δN − 1

1/τN
, k = 1, .., r, i = 0, 1.

It is clear that cNk ≥ 0 for all N ∈ N and k = 1, .., r so that (P1) is satisfied. Now (1.10)

can be written as

τNf
N
i +

r∑
k=1

cNk · 1{ni(x,ξ)=k}, i = 0, 1.

Define

ck =


k

r
· log
Å
r

k

ã
, k = 1, .., r − 1,

0, k = r.

Note that if δN = τ−1
N , then for each k = 1, .., r, cNk → ck as N → ∞: let u = k/r,

lim
N
cNk = u · lim

N

u−δN − 1

δN

= u ·
ï
− (uα)′

∣∣∣∣
α=0

ò
= u · [u0 · (− log(u))] = ck.

This implies that cNk satisfies (P2).

Define N (ρ) = {e ∈ V tr : e ∼ ρ} as the nearest neighborhood of the root ρ on the

infinite tree, and N (ρ) = N (ρ) ∪ {ρ}.

Corollary 1.5. Let δN ∼ τ−1
N . Suppose that ξGN

t is the q-voter model defined in the exam-

ple above and assume (1.2). If logN ≪ τN ≪ N , then PN ⇒ P β,θ
Z0

as N → ∞ where

β = 2ptr,e,

θ =
r∑

k=1

ck ·
∑

A⊆N (ρ), |A|=k
B=N (ρ)∩Ac

Å
P (τ tr(A,B) = ∞, σtr(A) <∞)



12

− P (τ tr(A,B) = ∞, σtr(B) <∞)

ã
.

1.5 Comparison with high density diffusive limit theo-

rem

Chen, Choi and Cox [CCC16] proved that density processes of voter models with high ini-

tial density on large finite sets converge to Wright-Fisher diffusion, under mild mixing con-

dition. Convergence to either Feller’s branching diffusion or Wright-Fisher diffusion reflects

that mean-field simplification occurs for the asymptotics. This is guaranteed by macro-

scopic independence between particles. We now discuss the effects of the choices for time

scale τN and mass scale mN according to different initial density. To get a clear picture

of the story, we will assume that models are defined on good r-regular random graphs GN

which is a special case that satisfies the mixing conditions assumed in [CCC16] and [C17].

We will denote ξNt as the rate τN voter model on VN in this section: that is ξNt has rate

cN(x, ξ) defined in Section 1.1 with c∗N(x, ξ) = 0. We will write the density process ZN
t

defined in that section as XN
t below:

XN
t =

1

mN

∑
x∈VN

ξNt (x) =
N

mN

∑
x∈VN

πN(x)ξNt (x)

where mN → ∞ is the mass scale and πN is the uniform distribution on VN

πN(x) =
1

N
, for x ∈ VN ,

which is the stationary distribution of pNt defined in (1.4). Define

pN10(ξ) =
∑
x

πN(x)ξ(x)

Å∑
y

qN(x, y)ξ̂(y)

ã
=
∑
x,y

πN(x)qN(x, y)ξ(x)ξ̂(y), ξ ∈ {0, 1}VN .
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Let us recall a few definitions. The Feller’s branching diffusion Zt with zero drift is a

continuous martingale with quadratic variation

⟨Z⟩t = β

∫ t

0

Zs ds,

and Zt has generator

Lf(z) = (βz)
1

2
f ′′(z), z ∈ [0,∞).

The Wright-Fisher diffusion Yt is a continuous martingale that has quadratic variation

⟨Y ⟩t =
∫ t

0

Ys(1− Ys) ds,

and Yt has generator

Gf(z) = (z(1− z))
1

2
f ′′(z), for f ∈ C2([0, 1]).

where C2([0, 1]) denotes second order continuously differentiable functions on [0, 1].

Using the decomposition which we will introduce in Chapter 2, one obtains the quadratic

variation process for XN
t as

⟨XN⟩t =
1

τN

∫ t

0

2pN10(ξ
N
s ) ds.

Introduce

P (U = x, V ′ = y) = πN(x)qN(x, y),

P (U = x, U ′ = y) = πN(x)πN(y),

and let Mx,y be the first meeting time of two independent rate 1 random walks starting

from x, y ∈ VN respectively. Recall that tNmix is the mixing time that has order

tNmix ∼ logN as N → ∞,

and tNmeet is the expected meeting time of two independent walks starting from stationary

tNmeet = E(MU,U ′) ∼ N as N → ∞.
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The crucial fact is that if τN ∼ tNmeet, one gets the following exponential decay of the tail

probability

P (MU,V ′ > τN t) ≈ constant · e−t for N large (1.11)

while if tNmix ≪ τN ≪ tNmeet,

P (MU,V ′ > τN t) ≈ constant independent of t for N large. (1.12)

(1.11) is from Corollary 4.2 in [CCC16] and (1.12) is from Proposition 4.2 in [C17].

Under low initial density, τN and mN satisfy

tNmix ≪ τN = mN ≪ tNmeet,

XN
0 =

|ξN0 |
mN

→ x ∈ [0,∞).
(1.13)

Note that N/mN → ∞. In fact, if ξNt is the voter model perturbation defined in (1.1) and,

in addition, its drift term is positive, then XN
t has exponential growth asymptotically and

hence is an unbounded process.

By the duality equation for voter models,

EξN0 (pN10(ξ
N
2t)) = E

[
ξN0 (“BU,N

2tτN
)ξ̂N0 (“BV ′,N

2tτN
);MU,V ′ > 2tτN

]
.

The time and mass scale in (1.13) imply the following two kernel properties: first, for any

x, y ∈ VN ,

mNp
N
tτN

(x, y) ≤ 2mN

N
→ 0

This implies that with large probability walks do not hit ξN0 by time at the scale so that

P (“BN,x
2tτN

∈ ξN0 , “BN,y
2tτN

/∈ ξN0 ) ≈ P (“BN,x
2tτN

∈ ξN0 , τ
N(x, y) > tτN).

We will prove the fact above in Chapter 4. This implies

EξN0 (pN10(ξ
N
2t)) ≈ E(ξN0 (“BU,N

2tτN
);MU,V ′ > tτN).
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Secondly, as τN ≫ tNmix, then macroscopic independence is implied by the bound

|NpNtτN (x, y)− 1| ≤ Ne−γ(tτN ) → 0 (1.14)

so that

E(ξN0 (“BU,N
2tτN

);MU,V ′ > tτN) ≈ E(ξN0 (“BU,N
2tτN

)) · P (MU,V ′ > tτN).

Together with (1.12) leads to the mean-field simplification

⟨XN⟩t ≈ 2P (MU,V ′ > τN t)

∫ t

0

XN
s ds.

Note that on GN , the limit of the probabilities P (MU,V ′ > τN t) is exactly the escape prob-

ability ptr,e defined in Section 1.3.

Under high initial density, the time and mass scale are

τN = mN ∼ tNmeet,

XN
0 =

|ξN0 |
mN

→ x ∈ [0, 1].
(1.15)

Under (1.15),

XN
· ⇒ Y· as N → ∞

according to the main result of [CCC16]. Note that XN
· is a bounded process.

For simplicity, let us assume mN = τN = N . For u ∈ [0, 1], let µu be the product

measure on {0, 1}VN ,

µu(ξ = 1 on A) = u|A|

for A ⊆ VN finite. The duality equation for voter models implies that for x, y ∈ VN ,

P µu(ξNt (x) = 1, ξNt (y) = 0) = u(1− u)P (Mx,y > tτN)

so that

Eµu(pN10(ξ
N
t )) = u(1− u)P (MU,V ′ > tτN).
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Furthermore, the duality equation also implies

Eµu(XN
t (1−XN

t )) = Eµu

Å
1

N2

∑
x,y

ξNt (x)ξ̂
N
t (y)

ã
= u(1− u)P (MU,U ′ > tτN).

As τN = N ≫ tNmix, a bound similar to (1.14) can be obtained. This implies that particles

must be separated apart by a macroscopic distance so that successive meetings are roughly

independent. Also, note the fact that

P (MU,U ′ > τN t) → e−t as N → ∞

which can be implied by [O11], and (1.11) says that the meeting time MU,V ′ is almost ex-

ponential. In symbol, this mean that

⟨XN⟩t ≈
∫ t

0

XN
s (1−XN

s ) ds.

For details of the last line, see Lemma 6.2 in [CCC16].

We make a final remark. The Wright-Fisher diffusion originally can be viewed as the

limiting average of allele densities. Thus, the macroscopic independence plays the ma-

jor role for obtaining this diffusive limit. For details regarding this point, see the proof of

(3.1), (6.6) and the discussion in Section 1 of Cox [C89] on Kingman’s coalescent lurking

behind under the large scale.

1.6 Outline

The low density approach we use is structured as follows. In Section 2 we obtain a semi-

martingale decomposition. In Section 3, we give an argument of a comparison with the

biased voter model and derive some bounds on ZN
t . In Chapter 4, we provide some tech-

nical estimates of the drift term and branching rate using duality for voter models. Con-

vergence of these estimates to coalescing random walk probabilities on the infinite tree will

be proved in Chapter 5. Finally in Chapter 6 we establish tightness by verifying Aldou’s
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criterion and identification of the limit is done by L1-estimation.

From now on, {GN} is a sequence of good graphs. We will use the notation ξNt

to denote the processes ξGN
t . Until further notice,

∑
x

will denote
∑
x∈VN

.
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Chapter 2

Semimartingale decomposition

Define

LvNf(ξ) = τN ·
∑
x

cvN(x, ξ)(f(ξ
x)− f(ξ)),

L∗
Nf(ξ) =

∑
x

c∗N(x, ξ)(f(ξ
x)− f(ξ)).

so that the generator LN of ξNt can be written as

LNf(ξ) = (LvN + L∗
N)f(ξ).

For ξ ∈ {0, 1}VN , define

vN(ξ) =
∑
x

(ξ̂(x)fN1 (x, ξ) + ξ(x)fN0 (x, ξ)),

dN,1(ξ) =
∑
x

ξ̂(x)FN
1 (x, ξ),

dN,0(ξ) =
∑
x

ξ(x)FN
0 (x, ξ).

The next proposition provide the decomposition for |ξNt |.

Proposition 2.1. For all t ≥ 0,

|ξNt | = |ξN0 |+DN
t +MN

t
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where MN
t is a P ξN0 -martingale with quadratic variation

⟨MN⟩t =
∫ t

0

[τNvN(ξ
N
s ) + dN,1(ξNs ) + dN,0(ξNs )] ds

and

DN
t =

∫ t

0

[dN,1(ξNs )− dN,0(ξNs )] ds.

Denote

mN
1 (ξ) = dN,1(ξ)− dN,0(ξ),

mN
2 (ξ) = τNvN(ξ) + [dN,1(ξ) + dN,0(ξ)].

An immediate consequence of Proposition 2.1 is the decomposition of ZN
· :

Corollary 2.2. Let MN
t =

1

τN
MN

t . Then MN
t is a martingale with quadratic variation

⟨MN⟩t =
1

τ 2N

∫ t

0

mN
2 (ξ

N
s ) ds.

Moreover, define

DN
t =

1

τN

∫ t

0

mN
1 (ξ

N
s ) ds.

Then for all t ≥ 0, ZN
t has the semimartingale decomposition

ZN
t = ZN

0 +MN
t +DN

t .

To prove Proposition 2.1 we will need several preliminary results. In the next lemma

we give some basic facts which will be frequently used in the proofs later. Define functions

f(ξ) = |ξ|, g(ξ) = |ξ|2.

Lemma 2.3.

(a) f(ξx)− f(ξ) = ξ̂(x)− ξ(x).

(b) g(ξx)− g(ξ) = 1 + 2|ξ|(ξ̂(x)− ξ(x)).

(c)
∑
x,y

qN(x, y)ξ̂(x)ξ(y) =
∑
x,y

qN(x, y)ξ(x)ξ̂(y).
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Proof. (a) is immediate by a simple calculation. For (b), we have

|ξx| =
Å∑
y ̸=x

ξ(y)

ã
+ ξ̂(x) = |ξ|+ (ξ̂(x)− ξ(x))

so that

g(ξx)− g(ξ) = (|ξx| − |ξ|)(|ξx|+ |ξ|)

= (ξ̂(x)− ξ(x))(2|ξ|+ (ξ̂(x)− ξ(x))

= 2|ξ|(ξ̂(x)− ξ(x)) + 1.

And lastly, (c) is by symmetry of the kernel qN(x, y).

■

Lemma 2.4.

(a) LvNf(ξ) = 0.

(b) LvNg(ξ) = τNvN(ξ).

Proof. For (a), by Lemma 2.3 (a), we have

LvNf(ξ) =
∑
x

τNc
v
N(x, ξ)(f(ξ

x)− f(ξ))

= τN
∑
x,y

qN(x, y)(ξ(x)ξ̂(y) + ξ̂(x)ξ(y)) · (ξ̂(x)− ξ(x))

= τN

Å∑
x,y

qN(x, y)(ξ(x)ξ̂(x)ξ̂(y)− ξ̂(x)ξ(x)ξ(y)) (2.1)

+
∑
x,y

qN(x, y)(ξ̂(x)ξ(y)− ξ(x)ξ̂(y))

ã
.

By the fact that ξ(x)ξ̂(x) = 0, (2.1) is equal to

τN
∑
x,y

qN(x, y)(ξ̂(x)ξ(y)− ξ(x)ξ̂(y)) = 0

where the last equality is by Lemma 2.3 (c).

For (b), by Lemma 2.3 (a) and (b)

LvNg(ξ) =
∑
x

τNc
v
N(x, ξ)(g(ξ

x)− g(ξ))
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=
∑
x

τNc
v
N(x, ξ)(1 + 2|ξ|(ξ̂(x)− ξ(x)))

= τN

ï∑
x

cvN(x, ξ) + 2|ξ|
∑
x

cvN(x, ξ)(ξ̂(x)− ξ(x)))

ò
= τN

∑
x

cvN(x, ξ) = τNvN(ξ) (2.2)

where (2.2) is by part (a). ■

Lemma 2.5.

(a) L∗
Nf(ξ) = dN,1(ξ)− dN,0(ξ).

(b) L∗
Ng(ξ) = dN,1(ξ) + dN,0(ξ) + 2|ξ| · (dN,1(ξ)− dN,0(ξ)).

Proof. Direct calculations show that

L∗
Nf(ξ) =

∑
x

c∗N(x, ξ)(f(ξ
x)− f(ξ))

=
∑
x

(ξ̂(x) · FN
1 (x, ξ) + ξ(x) · FN

0 (x, ξ)) · (ξ̂(x)− ξ(x))

=
∑
x

ξ̂(x)FN
1 (x, ξ)−

∑
x

ξ(x)FN
0 (x, ξ)

= dN,1(ξ)− dN,0(ξ)

and by Lemma 2.3 (b),

L∗
Ng(ξ) =

∑
x

c∗N(x, ξ)(g(ξ
x)− g(ξ))

=
∑
x

c∗N(x, ξ)(1 + 2|ξ|(ξ̂(x)− ξ(x)))

= (dN,1(ξ) + dN,0(ξ)) + 2|ξ|(dN,1(ξ)− dN,0(ξ)).

■

Proof of Proposition 2.1. Recall that f(ξ) = |ξ|, and g(ξ) = |ξ|2. Define

MN
t = f(ξNt )− f(ξN0 )−

∫ t

0

LNf(ξNs )ds,

QN
t = g(ξNt )− g(ξN0 )−

∫ t

0

LNg(ξNs )ds.
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By Theorem I.5.2 in [L85], MN
t and QN

t are martingales. Combining Lemma 2.4 and 2.5,

MN
t equals to

MN
t = |ξNt | − |ξN0 | −

∫ t

0

[dN,1(ξNs )− dN,0(ξNs )] ds (2.3)

= |ξNt | − |ξN0 | −DN
t ,

and QN
t equals to

QN
t = |ξNt |2 − |ξN0 |2 −

∫ t

0

[τNvN(ξ
N
s ) + (dN,1(ξNs ) + dN,0(ξNs ))

+ 2|ξ|(dN,1(ξNs )− dN,0(ξNs ))] ds.

Apply Exercise 2.9.29 in [EK86] to MN
t and QN

t so that one gets the martingale

(MN
t )2 −

∫ t

0

[τNvN(ξ
N
s ) + dN,1(ξNs ) + dN,0(ξNs )] ds.

Now the integral part of the last line gives ⟨MN⟩t. ■
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Chapter 3

Comparison with biased voter model

In this chapter, we show that ξNt is close to the voter model over a short time period. This

will be done by a comparison with the biased voter model ξN,bt which we define now.

For ξ ∈ {0, 1}VN , recall the definition of local densities

fNi = fNi (x, ξ) =
∑
y

qN(x, y)1{ξ(y)=i}, i = 0, 1

Define the bias parameter

b = sup
N

R∑
l=1

NR∑
k=1

(θN,0(l, k) + θN,1(l, k)).

For x ∈ VN , define

N (x) = {y ∈ VN : 1 ≤ d(x, y) ≤ R},

N (x) = N (x) ∪ {x},

K = 1 +R ·NR.

A few facts from the definitions above are

N (x) =
R⋃
l=1

Nl(x),

K ≥ |N (x)| ≥
Å ∑
y∈N (x)

ξ(y)

ã
∨
Å ∑
y∈N (x)

ξ̂(y)

ã
.
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Recall that nil(x, ξ) is the count in ξ of type i in Nl(x):

nil(x, ξ) =
∑

y∈Nl(x)

1{ξ(y) = i}, i = 0, 1 (3.1)

and define the total count of type 1 in N (x)

n1(x, ξ) =
R∑
l=1

n1
l (x, ξ).

The biased voter model ξN,bt has the following dynamics: at x ∈ VN , ξ
N,b
t (x) makes transi-

tions

0 → 1 at rate τNf
N
1 + b · n1(x, ξ),

1 → 0 at rate τNf
N
0

so that the rate function for ξN,bt (x) is

cbN(x, ξ) = τNc
v
N(x, ξ) + ξ̂(x) · (b · n1(x, ξ)).

We first provide the bounds on biased voter models in the next proposition.

Proposition 3.1. For t ≥ 0 and ξN0 ∈ {0, 1}VN ,

(a) EξN0 |ξN,bt | ≤ |ξN0 | · e(bK)t.

(b) EξN0 (|ξN,bt |2) ≤
ï
|ξN0 |2 + |ξN0 |(2τN + bK) · tet(bK)

ò
· e(2bK)t.

Proof. We follow the idea of Corollary 2.1 in [C17]. Notice that∑
x

ξ̂(x)n1(x, ξ) =
∑
x

∑
y∈N (x)

ξ̂(x)ξ(y)

=
∑
y

ξ(y)

Å ∑
x∈N (y)

ξ̂(x)

ã
≤ K|ξ|. (3.2)

By (3.2) and applying Proposition 2.1 to |ξN,bt | , we have

EξN0 |ξN,bt | = |ξN0 |+
∫ t

0

b ·
∑
x

EξN0 (ξ̂N,bs (x) · n1(x, ξ
N,b
s )) ds
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≤ |ξN0 |+ (bK)

∫ t

0

EξN0 |ξN,bs | ds.

Thus, apply Grownwall’s inequality to the function f(s) = EξN0 (|ξN,bs |) and the proof of (a)

is complete.

For (b), using Theorem I.5.2 in [L85] and Lemma 2.3(b), we get

EξN0 (|ξN,bt |2) = |ξN0 |2 +
∫ t

0

τNE
ξN0 [vN(ξ

N,b
s )]

+ b · EξN0

ï∑
x

ξ̂N,bs (x)n1(x, ξ
N,b
s ) ·

(
1 + 2|ξN,bs | · (ξ̂N,bs (x)− ξN,bs (x))

)ò
ds.

By (3.2), ∑
x

ξ̂(x)n1(x, ξ) · (1 + 2|ξ| · (ξ̂(x)− ξ(x)))

= (1 + 2|ξ|)
∑
x

n1(x, ξ)ξ̂(x) ≤ (1 + 2|ξ|) · K|ξ|.

This implies

EξN0 (|ξN,bt |2) ≤ |ξN0 |2 +
∫ t

0

2τNE
ξN0 |ξN,bs |+ EξN0 [(1 + 2|ξN,bs |)(bK · |ξN,bs |)] ds.

Rearrange the terms and apply part (a), we obtain

EξN0 (|ξN,bt |2) ≤ |ξN0 |2 + (2τN + bK)

∫ t

0

EξN0 |ξN,bs | ds+ 2bK
∫ t

0

EξN0 (|ξN,bs |2) ds

≤
ï
|ξN0 |2 + |ξN0 |(2τN + bK) · tet(bK)

ò
+ 2bK

∫ t

0

EξN0 (|ξN,bs |2) ds.

The result follows by applying Gronwall’s inequality to the function g(s) = EξN0 (|ξN,bs |2).

■

We now construct two couplings which make a comparison between particle systems.

The existence of both will be implied by Theorem III.1.5 in [L85].

We say that ξ ≤ η if ξ(x) ≤ η(x) for every x ∈ VN . The first coupling is between the

voter model perturbation and biased voter model. To verify the assumptions of Theorem

III.1.5, suppose that ξ ≤ η. If η(x) = ξ(x) = 0, then

cN(x, ξ) = τNf
N
1 (x, ξ) + FN

1 (x, ξ)
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= τNf
N
1 (x, ξ) +

R∑
l=1

NR∑
k=1

θN,i(l, k)1{n1
l (x,ξ)=k}

≤ τNf
N
1 (x, η) + b

R∑
l=1

NR∑
k=1

1{n1
l (x,η)=k}

≤ τNf
N
1 (x, η) + bn1(x, η) = cbN(x, η)

and similarly, if η(x) = ξ(x) = 1,

cN(x, ξ) = τNf
N
0 (x, ξ) + FN

0 (x, ξ)

≥ τNf
N
0 (x, η) = cbN(x, η).

Thus by Theorem III.1.5 in [L85], given that ξN0 = ξN,b0 , there is a common probability

space such that with probability 1,

ξNt ≤ ξN,bt for all t ≥ 0. (3.3)

The coupling between the voter model and the biased voter model is constructed in a

similar way. Let ξN,vt be the voter model with generator LvN and suppose that ξ ≤ η. If

η(x) = ξ(x) = 0,

τNf
N
1 (x, η) ≤ τNf

N
1 (x, η) + bn1(x, η) = cbN(x, η)

and if η(x) = ξ(x) = 1,

τNf
N
0 (x, ξ) ≥ τNf

N
0 (x, η) = cbN(x, η).

Thus, the assumptions of Theorem III.1.5 in [L85] are verified. Given that ξN,v0 = ξN0 , there

is a common probability space such that with probability 1,

ξN,vt ≤ ξN,bt for all t ≥ 0. (3.4)

By Corollary III.1.7 in [L85], (3.3) and (3.4) imply

EξN0 (h(ξNt )) ≤ EξN0 (h(ξN,bt )) (3.5)

EξN0 (h(ξN,vt )) ≤ EξN0 (h(ξN,bt )) (3.6)
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for any function h = h(ξ) such that h(ξ) ≤ h(η) given that ξ ≤ η.

Corollary 3.2. For any ξN0 ∈ {0, 1}VN and t ≥ 0,

(a) EξN0 |ξNt | ≤ |ξN0 | · e(bK)t.

(b) EξN0 [|ξNt |2] ≤
ï
|ξN0 |2 + |ξN0 |(2τN + bK) · tet(bK)

ò
· e(2bK)t.

Proof. Part (a) is immediate by (3.5) by taking h(ξ) = |ξ| so that

EξN0 |ξNt | ≤ EξN0 |ξN,bt |.

Similarly for part (b), take h(ξ) = |ξ|2 and obtain

EξN0 (|ξNt |2) ≤ EξN0 (|ξN,bt |2).

■

Recall the definitions vN and dN,i

vN(ξ) =
∑
x

(ξ̂(x)fN1 (x, ξ) + ξ(x)fN0 (x, ξ))

dN,1(ξ) =
∑
x

ξ̂(x)FN
1 (x, ξ)

dN,0(ξ) =
∑
x

ξ(x)FN
0 (x, ξ).

The next proposition will be used in Corollary 3.7 to show that the voter model perturba-

tion is close to the voter model over a short time period.

Proposition 3.3. There exists a constant C3.3 such that for all t ≥ 0,

(a) EξN0 |vN(ξNt )− vN(ξ
N,v
t )| ≤ 4(2 ∨ (2bC3.3)) · |ξN0 |

[
(e(bK)t − 1) + te(bK)t

]
.

(b) EξN0 |dN,i(ξNt )− dN,i(ξN,vt )| ≤ C3.3(2 ∨ (2bC3.3)) · |ξN0 |
[
(e(bK)t − 1) + te(bK)t

]
, for i = 0, 1.

To prepare for the proof, we first give some preliminary bounds. For x ∈ VN , ξ ∈

{0, 1}VN , A ⊆ VN , define

χ(x, ξ, A) =
∏
a∈A

ξ(a).
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Lemma 3.4. For ξ, η ∈ {0, 1}VN , and A,B ⊆ VN disjoint,

|χ(x, ξ, A)χ(x, ξ̂, B)− χ(x, η, A)χ(x, η̂, B)| ≤
∑

y∈A∪B

|ξ(y)− η(y)|.

Proof. By twice using the fact that |
∏
zi −

∏
wi| ≤

∑
|zi − wi| for zi, wi such that

|zi|, |wi| ≤ 1 (Lemma 3.4.3 in [D19]), we have

|χ(x, ξ, A)χ(x, ξ̂, B)− χ(x, η, A)χ(x, η̂, B)|

≤ |χ(x, ξ, A)− χ(x, η, A)|+ |χ(x, ξ̂, B)− χ(x, η̂, B)|

≤
∑
a∈A

|ξ(a)− η(a)|+
∑
b∈B

|ξ̂(b)− η̂(b)|

=
∑

y∈A∪B

|ξ(y)− η(y)|.

■

For i = 0, 1, define dN,il,k

dN,1l,k (ξ) =
∑
x

ξ̂(x)1{n1
l (x,ξ)=k},

dN,0l,k (ξ) =
∑
x

ξ(x)1{n0
l (x,ξ)=k},

then we can write dN,i as

dN,1(ξ) =
∑
x

ξ̂(x)FN
1 (x, ξ)

=
∑
x

ξ̂(x)

Å R∑
l=1

NR∑
k=1

θN,1(l, k)1{n1
l (x,ξ)=k}

ã
=

R∑
l=1

NR∑
k=1

θN,1(l, k)

Å∑
x

ξ̂(x)1{n1
l (x,ξ)=k}

ã
=

R∑
l=1

NR∑
k=1

θN,1(l, k)dN,1l,k (ξ),

dN,0(ξ) =
∑
x

ξ(x)FN
0 (x, ξ) =

R∑
l=1

NR∑
k=1

θN,0(l, k)dN,0l,k (ξ).

Lemma 3.5. For ξ ∈ {0, 1}VN ,
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(a) vN(ξ) ≤ 2|ξ|.

(b) There is a constant C3.5 such that dN,il,k (ξ) ≤ C3.5 · |ξ|, for i = 0, 1 and 1 ≤ l ≤ R,

1 ≤ k ≤ NR.

Proof. Part (a) is by

vN(ξ) =
∑
x,y

qN(x, y)(ξ̂(x)ξ(y) + ξ(x)ξ̂(y))

≤
∑
x,y

qN(x, y)(ξ(x) + ξ(y)) = 2|ξ|.

For (b), for i = 1, by definition we have

dN,1l,k (ξ) =
∑
x

ξ̂(x)1{n1
l (x,ξ)=k} (3.7)

=
∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

χ(x, ξ, A) · χ(x, ξ̂, B)

≤
∑
x

∑
A∈Sl,k(x)

χ(x, ξ, A)

≤
∑
x

∑
A⊆N (x)

∑
a∈N (x)

ξ(a) ≤ K2K · |ξ| (3.8)

so that we could choose C3.5 = K2K.

Similarly for i = 0,

dN,0l,k (ξ) =
∑
x

ξ(x)1{n0
l (x,ξ)=k}

=
∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

χ(x, ξ̂, A) · χ(x, ξ, B)

≤
∑
x

∑
B⊆N (x)

χ(x, ξ, B)

≤
∑
x

∑
B⊆N (x)

∑
b∈B

ξ(b) ≤ K2K|ξ|.

■

Lemma 3.6. For any η, ξ ∈ {0, 1}VN with ξ ≤ η,
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(a) |vN(ξ)− vN(η)| ≤ 4(|η| − |ξ|).

(b) |dN,il,k (ξ)− dN,il,k (η)| ≤ C3.5(|η| − |ξ|), i = 0, 1.

Proof. For (a), direct calculation with applying Lemma 3.4 gives

|vN(ξ)− vN(η)|

≤
∑
x,y

qN(x, y)

Å
|ξ̂(x)ξ(y)− η̂(x)η(y)|+ |ξ(x)ξ̂(y)− η(x)η̂(y)|

ã
≤
∑
x,y

qN(x, y) · 2
Å ∑
a∈{x,y}

|ξ(a)− η(a)|
ã

≤
∑
x,y

qN(x, y) · 2
Å
|ξ(x)− η(x)|+ |ξ(y)− η(y)|

ã
= 2

Å∑
x,y

qN(x, y)(η(y)− ξ(y)) +
∑
x,y

qN(x, y)(η(x)− ξ(x))

ã
= 4(|η| − |ξ|).

For (b), by Lemma 3.4 we have

|dN,1l,k (ξ)− dN,1l,k (η)|

≤
∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

|χ(x, ξ, A)χ(x, ξ̂, B)− χ(x, η, A)χ(x, η̂, B)|

≤
∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

∑
y∈A∪B

|ξ(y)− η(y)|

≤
∑
x

∑
y∈N (x)

|ξ(y)− η(y)| ·
∑

A∈Sl,k(x)

B=Nl(x)∩Ac

1.

Since ξ ≤ η, the last line is bounded by

2K ·
∑
x

∑
y∈N (x)

(η(y)− ξ(y)) = 2KK · (|η| − |ξ|).

The calculation for i = 0 is similar. ■

Now we prove Proposition 3.3.

Proof of Proposition 3.3. We first bound the difference of the total masses. By Lemma 2.4
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(a) and Lemma A.1, |ξN,vt | is a martingale and |ξN,bt | is a submartingale. This implies

0 ≤EξN0 |ξN,bt | − EξN0 |ξNt | ≤
Å
EξN0 |ξN,bt | − |ξN0 |

ã
+

∣∣∣∣EξN0 |ξNt | − |ξN0 |
∣∣∣∣, (3.9)

0 ≤EξN0 |ξN,bt | − EξN0 |ξN,vt | = EξN0 |ξN,bt | − |ξN0 |. (3.10)

Using Proposition 3.1(a),

EξN0 |ξN,bt | − |ξN0 | ≤ |ξN0 |(e(bK)t − 1). (3.11)

And by Proposition 2.1,∣∣∣∣EξN0 |ξNt | − |ξN0 |
∣∣∣∣ = ∣∣∣∣EξN0 (MN

t ) + EξN0 (DN
t )

∣∣∣∣
=

∣∣∣∣EξN0 (DN
t )

∣∣∣∣ ≤ ∫ t

0

EξN0 |mN
1 (ξ

N
s )| ds

To bound EξN0 |mN
1 (ξ

N
s )|, we have

|mN
1 (ξ)| =

∣∣∣∣ R∑
l=1

NR∑
k=1

(θN,1(l, k)dN,1l,k (ξ)− θN,0(l, k)dN,0l,k (ξ))

∣∣∣∣
≤ b ·

R∑
l=1

NR∑
k=1

(|dN,1l,k (ξ)|+ |dN,0l,k (ξ)|). (3.12)

Recall that K = 1 +R ·NR. By Lemma 3.5 (b), (3.12) is bounded by

b · 2C3.5|ξ| ·
R∑
l=1

NR∑
k=1

1 ≤ 2bK · C3.5|ξ|.

Define C3.3 = K · C3.5. Therefore, by Corollary 3.2(a),∣∣∣∣EξN0 |ξNt | − |ξN0 |
∣∣∣∣ ≤ (2bC3.3) ·

∫ t

0

EξN0 |ξNs | ds

≤ (2bC3.3) · |ξN0 |te(bK)t. (3.13)

We now prove part (a). By Lemma 3.6(a), the coupling (3.3) and (3.4), (3.9) and (3.10),

EξN0 |vN(ξNt )− vN(ξ
N,v
t )|

≤ EξN0 |vN(ξNt )− vN(ξ
N,b
t )|+ EξN0 |vN(ξN,vt )− vN(ξ

N,b
t )|

≤ 4

Å
EξN0

∣∣∣|ξNt | − |ξN,bt |
∣∣∣+ EξN0

∣∣∣|ξN,vt | − |ξN,bt |
∣∣∣ã
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= 4

Å
EξN0 (|ξN,bt | − |ξNt |) + EξN0 (|ξN,bt | − |ξN,vt |)

ã
≤ 4

ï
2

Å
EξN0 (|ξN,bt | − |ξN0 |)

ã
+

∣∣∣∣EξN0 (|ξNt | − |ξN0 |)
∣∣∣∣ò.

By (3.11) and (3.13), the last line is bounded by

4
[
2|ξN0 |(e(bK)t − 1) + (2bC3.3)|ξN0 |te(bK)t

]
≤ 4(2 ∨ (2bC3.3))|ξN0 |

[
(e(bK)t − 1) + te(bK)t

]
.

For (b), we have that for i = 0, 1,

|dN,i(ξNt )− dN,i(ξN,vt )| ≤ |dN,i(ξNt )− dN,i(ξN,bt )|+ |dN,i(ξN,vt )− dN,i(ξN,bt )|

≤
R∑
l=1

NR∑
k=1

Å
|dN,il,k (ξ

N
t )− dN,il,k (ξ

N,b
t )|+ |dN,il,k (ξ

N,b
t )− dN,il,k (ξ

N,v
t )|
ã
.

By Lemma 3.6, the coupling result (3.9),

EξN0 |dN,il,k (ξ
N
t )− dN,il,k (ξ

N,b
t )| ≤ C3.5

Å
EξN0 |ξN,bt | − EξN0 |ξNt |

ã
≤ C3.5

ïÅ
EξN0 |ξN,bt | − |ξN0 |

ã
+

∣∣∣∣EξN0 |ξNt | − |ξN0 |
∣∣∣∣ò (3.14)

and similarly by (3.4) and (3.10),

EξN0 |dN,il,k (ξ
N,b
t )− dN,il,k (ξ

N,v
t )| ≤ C3.5

Å
EξN0 |ξN,bt | − EξN0 |ξN,vt |

ã
≤ C3.5

ï
EξN0 |ξN,bt | − |ξN0 |

ò
. (3.15)

Combining (3.14) and (3.15), applying (3.11) and (3.13) we have

EξN0 |dN,i(ξNt )− dN,i(ξN,vt )|

≤ K · C3.5 ·
Å
2

ï
EξN0 |ξN,bt | − |ξN0 |

ò
+

∣∣∣∣EξN0 |ξNt | − |ξN0 |
∣∣∣∣ã

≤ C3.3 ·
Å
2

ï
EξN0 |ξN,bt | − |ξN0 |

ò
+

∣∣∣∣EξN0 |ξNt | − |ξN0 |
∣∣∣∣ã

≤ C3.3(2 ∨ (2bC3.3)) · |ξN0 |
[
(e(bK)t − 1) + te(bK)t

]
.

■
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Recall that

mN
1 (ξ) = dN,1(ξ)− dN,0(ξ),

mN
2 (ξ) = τNvN(ξ) + [dN,1(ξ) + dN,0(ξ)].

Corollary 3.7. There is a constant C3.7 such that for all t ≥ 0,

(a)
1

τN
EξN0 |mN

1 (ξ
N
t )−mN

1 (ξ
N,v
t )| ≤ C3.7 · ZN

0

Å
(e(bK)t − 1) + te(bK)t

ã
.

(b)
1

τ 2N
EξN0 |mN

2 (ξ
N
t )−mN

2 (ξ
N,v
t )| ≤ C3.7

Å
1 +

1

τN

ã
· ZN

0

Å
(e(bK)t − 1) + te(bK)t

ã
.

Proof. For (a), apply Proposition 3.3 (b) we have

1

τN
EξN0 |mN

1 (ξ
N
t )−mN

1 (ξ
N,v
t )|

≤ 1

τN

Å
EξN0 |dN,1(ξNt )− dN,1(ξN,vt )|+ EξN0 |dN,0(ξNt )− dN,0(ξN,vt )|

ã
≤ 2C3.3(2 ∨ 2bC3.3) · ZN

0

ï
(e(bK)t − 1) + te(bK)t

ò
. (3.16)

And for (b), let N be large. Apply both (a) and (b) of Proposition 3.3 and obtain

1

τ 2N
EξN0 |mN

2 (ξ
N
t )−mN

2 (ξ
N,v
t )|

≤ 1

τ 2N

Å
τN · EξN0 |vN(ξNt )− vN(ξ

N,v
t )|+ EξN0 |dN,1(ξNt )− dN,1(ξN,vt )|

+ EξN0 |dN,0(ξNt )− dN,0(ξN,vt )|
ã

≤ 1

τN

[
τN · 4(2 ∨ (2bC3.3)) + 2C3.3(2 ∨ (2bC3.3))

]
· |ξ

N
0 |
τN

[
(e(bK)t − 1) + te(bK)t

]
≤
ï
4 +

2C3.3

τN

ò
· (2 ∨ (2bC3.3)) · ZN

0

ï
(e(bK)t − 1) + te(bK)t

ò
(3.17)

≤ (4 + 2C3.3) · (2 ∨ (2bC3.3)) ·
ï
1 +

1

τN

ò
· ZN

0

ï
(e(bK)t − 1) + te(bK)t

ò
. (3.18)

The proof for the corollary is completed by taking

C3.7 =
[
(2C3.3) ∨ (4 + 2C3.3))

]
· (2 ∨ 2bC3.3).

■



34

Chapter 4

Estimation by the voter model

Given the results in the previous chapter, the main work in this chapter will be in proving

Proposition 4.1 to obtain the estimate of the drift term and branching rate of the voter

perturbation. We shall see that this estimation is almost trivial by the comparison bound

in Chapter 3 and Proposition 4.2 which gives estimates for the voter model.

The key of this estimation is that we choose a correct time scale tN for averaging the

macroscopic density of 1’s. In particular, this time scale should provide sufficient mixing

condition so that uniformity of local densities can be established, meanwhile it keeps the

motion of particles at time points of the scale relatively (comparing to τN) local so that if

two particles coalesce, then they must meet early. Recall from (1.9) that

logN ≪ τN ≪ N.

We choose tN such that

tN = δNτN where δN → 0 and tN ≫ logN.

This definition gives the following consequences:

tN
τN

→ 0 as N → ∞, (4.1)

Ne−γtN ≤ 1

N
for large N, (4.2)
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and by (1.8)

max
x,y∈VN

∣∣∣∣pNtN (x, y)− 1

N

∣∣∣∣ ≤ 1

N
for large N. (4.3)

We will see later in the proofs that several error terms along the estimation are defined

according to the consequences above.

Recall that ξN,vt is the voter model with rates cvN . Define

V N,v
t =

1

τ 2N
EξN0 (τN · vN(ξN,vt ))

=
1

τN

∑
x

EξN0

[
ξ̂N,vt (x)fN1 (x, ξN,vt ) + ξN,vt (x)fN0 (x, ξN,vt )

]
=

1

τN

∑
x

∑
y

qN(x, y) · EξN0

[
ξ̂N,vt (x)ξN,vt (y) + ξN,vt (x)ξ̂N,vt (y)

]
=

2

τN

∑
x

∑
y

qN(x, y) · EξN0

[
ξ̂N,vt (x)ξN,vt (y)

]
.

Recall the definitions

Nl(x) = {y ∈ VN : d(x, y) = l},

Nl(x) = Nl(x) ∪ {x},

Sl,k(x) = {A ⊆ Nl(x) : |A| = k},

χ(x, ξ, A) =
∏
a∈A

ξ(a),

and define

V N,1
t (l, k) =

1

τN
EξN0 (dN,1l,k (ξN,vt ))

=
1

τN

∑
x

EξN0

(
ξ̂N,vt (x) · 1{n1

l (x, ξ
N,v
t ) = k}

)
=

1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

EξN0 (χ(x, ξN,vt , A) · χ(x, ξ̂N,vt , B)),

V N,0
t (l, k) =

1

τN
EξN0 (dN,0l,k (ξN,vt ))

=
1

τN

∑
x

EξN0

(
ξN,vt (x) · 1{n0

l (x, ξ
N,v
t ) = k}

)
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=
1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

EξN0 (χ(x, ξ̂N,vt , A) · χ(x, ξN,vt , B)).

Let {“BN,x
t : x ∈ VN} be a family of rate 1 coalescing random walks on GN with step

distribution qN such that “BN,x
0 = x. For A ⊆ VN , define “BN,A

t = {“BN,x
t : x ∈ A}. The

duality equation for voter models is

P ξN0 (ξN,vt = 1 on A) = P (“BN,A
tτN

∈ ξN0 ) for A ⊆ VN . (4.4)

See [HL75] for more details about the duality equation above. Note that any A ⊆ VN is

finite since VN is finite. By (4.4), V N,v
2δN

, V N,1
2δN

(l, k) and V N,0
2δN

(l, k) can be written as

V N,v
2δN

=
2

τN

∑
x,y

qN(x, y)P (“BN,x
2tN

/∈ ξN0 ,
“BN,y
2tN

∈ ξN0 ),

V N,1
2δN

(l, k) =
1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (“BN,A
2tN

⊆ ξN0 ,
“BN,B
2tN

⊆ ξ̂N0 ),

V N,0
2δN

(l, k) =
1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (“BN,A
2tN

⊆ ξ̂N0 ,
“BN,B
2tN

⊆ ξN0 ).

Define the first meeting times

τN(x, y) = inf{t ≥ 0 : “BN,x
t = “BN,y

t },

τN(A,B) = inf{t ≥ 0 : “BN,A
t ∩ “BN,B

t ̸= ∅},

and let σN(A) denote the time at which walks starting from sites in A have coalesced into

a single particle,

σN(A) = inf{t ≥ 0 : |“BN,A
t | = 1}.

Define the coalescing walk probabilities on GN

pN,e =
1

N

∑
x,y

qN(x, y)P (τN(x, y) > tN),

pN,1(l, k) =
1

N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > tN , σ
N(A) ≤ tN),
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pN,0(l, k) =
1

N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > tN , σ
N(B) ≤ tN).

The main result of this chapter is

Proposition 4.1. There is a sequence εN4.1 → 0 as N → ∞ such that

(a)

∣∣∣∣ 1τNEξN0 [mN
1 (ξ

N
2δN

)]− θNZN
0

∣∣∣∣ ≤ εN4.1(1 + ZN
0 )2,

(b)

∣∣∣∣ 1τ 2NEξN0 [mN
2 (ξ

N
2δN

)]− βNZN
0

∣∣∣∣ ≤ εN4.1(1 + ZN
0 )2

where

θN =
R∑
l=1

NR∑
k=1

(θN,1(l, k)pN,1(l, k)− θN,0(l, k)pN,0(l, k)), (4.5)

βN = 2pN,e. (4.6)

We need to first prove the follow two propositions for the voter model.

Proposition 4.2. There is a sequence εN4.2 → 0 as N → ∞ such that

(a)

∣∣∣∣ 1τNEξN0 [mN
1 (ξ

N,v
2δN

)]− θNZN
0

∣∣∣∣ ≤ εN4.2(1 + (ZN
0 )2),

(b)

∣∣∣∣ 1τ 2NEξN0 [mN
2 (ξ

N,v
2δN

)]− βNZN
0

∣∣∣∣ ≤ εN4.2(1 + ZN
0 + (ZN

0 )2).

where θN and βN are as in (4.5) and (4.6).

Proposition 4.3. There are sequences εN,v, εN,i → 0 such that

(a)
∣∣∣V N,v

2δN
− 2pN,e · ZN

0

∣∣∣ ≤ εN,v ·
[
1 + (ZN

0 )2
]
.

(b)
∣∣∣V N,i

2δN
(l, k)−pN,i(l, k)·ZN

0

∣∣∣ ≤ εN,i ·
[
1+(ZN

0 )2
]
, for i = 0, 1, 1 ≤ l ≤ R and 1 ≤ k ≤ NR.

We first give some preliminary results. Let {BN,x
t : x ∈ VN} be a family of rate 1 in-

dependent walks with step distribution qN such that BN,x
0 = x so that BN,x

t has transition

function pNt as defined in (1.4). Lemma 4.4 gives bounds on probabilities of independent

walks, and Lemma 4.5 gives a bound on meeting time probabilities.

Lemma 4.4. For any x, y ∈ VN , x ̸= y,

(a) P (BN,x
t ∈ ξN0 ) ≤ 2|ξN0 |

N
, for t ≥ 1

γ
logN .
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(b)

∣∣∣∣P (BN,x
t ∈ ξN0 )− |ξN0 |

N

∣∣∣∣ ≤ |ξN0 | · e−γt, for all t ≥ 0.

Proof. For (a), by (1.8) we have

pNt (x, y) ≤
1

N
+ e−γt, for all t > 0.

Thus if t ≥ 1

γ
logN ,

pNt (x, y) ≤
2

N
for all x, y ∈ VN .

This implies

P (BN,x
t ∈ ξN0 ) =

∑
w

pNt (x,w)ξ
N
0 (w) ≤ |ξN0 | · 2

N
. (4.7)

For (b), ∣∣∣∣P (BN,x
t ∈ ξN0 )− |ξN0 |

N

∣∣∣∣ = ∣∣∣∣∑
w

ξN0 (w)(pNt (x,w)− 1/N)

∣∣∣∣
≤
∑
w

ξN0 (w)|pNt (x,w)− 1/N |

≤ |ξN0 | · e−γt.

where the last inequality is by (1.8).

Lemma 4.5. P (τN(x, y) ∈ (tN , 2tN ]) ≤
2e2(1 + tN)

N
.

Proof. For t ∈ (tN , 2tN ] and large N , by (4.3) we have

P (BN,x
t = BN,y

t ) =
∑
z

pNt (x, z)p
N
t (y, z) ≤

2

N

∑
z

pNt (y, z) =
2

N
.

Then by Lemma A.2,

P (τN(x, y) ∈ (tN , 2tN ]) ≤ e2
∫ 2tN+1

tN

P (BN,x
t = BN,y

t ) dt

≤ 2e2(tN + 1)

N
.

■

We now prove Proposition 4.3(a).
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Proof of Proposition 4.3 (a). We can write the probability P (“BN,x
2tN

/∈ ξN0 , “BN,y
2tN

∈ ξN0 ) as a

sum of three terms:

P (“BN,x
2tN

/∈ ξN0 ,
“BN,y
2tN

∈ ξN0 ) (4.8)

=

ï
P (“BN,x

2tN
/∈ ξN0 , “BN,y

2tN
∈ ξN0 )− P (τN(x, y) > 2tN , “BN,y

2tN
∈ ξN0 )

ò
(4.9)

+

ï
P (τN(x, y) > 2tN , “BN,y

2tN
∈ ξN0 )− P (τN(x, y) > tN , “BN,y

2tN
∈ ξN0 )

ò
(4.10)

+ P (τN(x, y) > tN , “BN,y
2tN

∈ ξN0 ). (4.11)

To bound (4.9), we have∣∣∣P (“BN,x
2tN

/∈ ξN0 , “BN,y
2tN

∈ ξN0 )− P (τN(x, y) > 2tN , “BN,y
2tN

∈ ξN0 )
∣∣∣

= P (τN(x, y) > 2tN , “BN,y
2tN

∈ ξN0 )− P (“BN,x
2tN

/∈ ξN0 ,
“BN,y
2tN

∈ ξN0 )

= P (“BN,x
2tN

∈ ξN0 , “BN,y
2tN

∈ ξN0 , τ
N(x, y) > 2tN)

≤ P (BN,x
2tN

∈ ξN0 , B
N,y
2tN

∈ ξN0 ) (4.12)

≤ 4|ξN0 |2

N2
. (4.13)

Note that (4.12) is implied by the fact that coalescing walks are independent until their

first meeting. And (4.13) is by Lemma 4.4(a).

To bound (4.10), notice that∣∣∣P (τN(x, y) > 2tN , “BN,y
2tN

∈ ξN0 )− P (τN(x, y) > tN , “BN,y
2tN

∈ ξN0 )
∣∣∣

= P (τN(x, y) ∈ (tN , 2tN ], “BN,y
2tN

∈ ξN0 )

≤ P (τN(x, y) ∈ (tN , 2tN ])

≤ 2e2(1 + tN)

N
. (4.14)

and (4.14) is by Lemma 4.5.

Lastly, to estimate (4.11), use the Markov property and Lemma 4.4(b) to obtain∣∣∣∣P (τN(x, y) > tN , “BN,y
2tN

∈ ξN0 )− |ξN0 |
N

P (τN(x, y) > tN)

∣∣∣∣
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=

∣∣∣∣ ∑
w∈VN

Å
P (τN(x, y) > tN , “BN,y

tN
= w) · P (“Bw

tN
∈ ξN0 )

− P (τN(x, y) > tN , “BN,y
tN

= w) · |ξ
N
0 |
N

ã∣∣∣∣
≤
∑
w∈VN

P (τN(x, y) > tN , “BN,y
tN

= w) ·
∣∣∣P (“Bw

tN
∈ ξN0 )− |ξN0 |

N

∣∣∣
≤ 1 · |ξN0 |e−γtN . (4.15)

Therefore, since we can write pN,e · ZN
0 as

pN,e · ZN
0 =

1

τN

∑
x,y

qN(x, y)

ï
P (τN(x, y) > tN) ·

|ξN0 |
N

ò
,

then (4.13), (4.14) and (4.15) together imply∣∣∣∣V N,v
2δN

− 2pN,e · ZN
0

∣∣∣∣
≤ 2

τN

∑
x,y

qN(x, y)

∣∣∣∣P (“BN,x
2tN

/∈ ξN0 ,
“BN,y
2tN

∈ ξN0 )− |ξN0 |
N

P (τN(x, y) > tN)

∣∣∣∣
≤ 2N

τN

Å
4|ξN0 |2

N2
+

2e2(1 + tN)

N
+ |ξN0 |e−γtN

ã
≤ 2

Å
4τN
N

(ZN
0 )2 +

2e2(1 + tN)

τN
+ C1.3 ·Ne−γtN

ã
≤ 2

Å
4τN
N

(ZN
0 )2 +

2e2(1 + tN)

τN
+ C1.3 ·N−1

ã
where the last line is by (4.2). Take

εN,v = 2max

Å
4τN
N

,
2e2(1 + tN)

τN
+ C1.3 ·N−1

ã
and εN,v → 0 by (4.1) and (4.2). ■

For Proposition 4.3(b), we will prove case i = 1 and the proof of i = 0 is exactly simi-

lar. This will be done in three steps, as summarized in Lemma 4.6 - 4.9. Recall that

N (x) = {y : 1 ≤ d(x, y) ≤ R}, N (x) = N (x) ∪ {x}

Nl(x) = Nl(x) ∪ {x},

Sl,k(x) = {A ⊆ Nl(x) : |A| = k},
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K = 1 +R ·NR.

Let CR = K2 · 2K. The following simple fact will be used frequently in later proofs:∑
A∈Sl,k(x)

B=Nl(x)∩Ac

|A||B| ≤
∑

A∈Sl,k(x)

B=Nl(x)∩Ac

K2 ≤ CR. (4.16)

Fix 1 ≤ l ≤ R and 1 ≤ k ≤ NR and let A,B ∈ Sl,k(x). In the figure of each of the following

three steps, the time goes up.

Step 1. Define events

E11(A,B) = {“BN,A
2tN

⊆ ξN0 , “BN,B
2tN

∩ ξN0 ̸= ∅, τN(A,B) > 2tN},

E12(A,B) = {“BN,A
2tN

⊆ ξN0 , τ
N(A,B) > 2tN}.

Figure 4.1: Event in the definition of V N,1
2δN

, E11(A,B) and E12(A,B) from left to right.

The relation between E11(A,B) and E12(A,B) is

{“BN,A
2tN

⊆ ξN0 ,
“BN,B
2tN

⊆ ξ̂N0 } ∪ E11(A,B) = E12(A,B).

Let

E1j =
1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (E1j(A,B)), j = 1, 2.

Thus, V N,1
2δN

(l, k) = E12 − E11. Lemma 4.6 below shows that E11 is negligible.

Lemma 4.6. E11 ≤ 4CR
τN
N

· (ZN
0 )2.
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Proof. By Lemma 4.4(a) and using independence between walks,

P (E11(A,B)) = P (“BN,A
2tN

⊆ ξN0 ,
“BN,B
2tN

∩ ξN0 ̸= ∅, τN(A,B) > 2tN)

≤
∑

a∈A,b∈B

P (“BN,A
2tN

∈ ξN0 , “BN,B
2tN

∈ ξN0 , τN(A,B) > 2tN)

≤
∑

a∈A,b∈B

P (Ba
2tN

∈ ξN0 , B
b
2tN

∈ ξN0 )

≤ |A||B|4|ξ
N
0 |2

N2
. (4.17)

Therefore,

E11 ≤
1

τN
· 4|ξ

N
0 |2

N2

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

|A||B|

≤ 1

τN
· 4|ξ

N
0 |2

N2
·NCR = 4CR

τN
N

· (ZN
0 )2 (4.18)

where the last inequality is by (4.16). ■

Step 2. Define

E21(A,B) = {“BN,A
2tN

⊆ ξN0 , τ
N(A,B) ∈ (tN , 2tN ]},

E22(A,B) = {“BN,A
2tN

⊆ ξN0 , τ
N(A,B) > tN}.

Figure 4.2: E12(A,B), E21(A,B), E22(A,B) from left to right.

By the definition above, E12(A,B) ∪ E21(A,B) = E22(A,B). Let

E2j =
1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (E2j(A,B)), j = 1, 2.
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so that E12 = E22 − E21. In Lemma 4.7 we show that E21 is negligible.

Lemma 4.7. E21 ≤ CR
2e2(1 + tN)

τN
.

Proof. By Lemma 4.5,

P (E21(A,B)) = P (“BN,A
2tN

⊆ ξN0 , τ
N(A,B) ∈ (tN , 2tN ])

≤
∑

a∈A,b∈B

P (τN(a, b) ∈ (tN , 2tN ])

≤ |A||B|2e
2(1 + tN)

N
.

Therefore, by (4.16)

E21 ≤
1

τN
· 2e

2(1 + tN)

N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

|A||B|

≤ CR
2e2(1 + tN)

τN
.

■

Step 3. Define

E31(A,B) = {“BN,A
2tN

⊆ ξN0 , τ
N(A,B) > tN , σ

N(A) > 2tN},

E32(A,B) = {“BN,A
2tN

⊆ ξN0 , τ
N(A,B) > tN , , σ

N(A) ∈ (tN , 2tN ]},

E33(A,B) = {“BN,A
2tN

∈ ξN0 , τ
N(A,B) > tN , σ

N(A) ≤ tN}.

Figure 4.3: Illustration of E22(A,B), E31(A,B), E32(A,B) and E33(A,B).



44

The relation among the events above is

E22(A,B) =
3⋃
j=1

E3j(A,B).

Let

E3j =
1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (E3j(A,B)), j = 1, 2, 3.

so that E22 = E31 + E32 + E33. We will show that E31 and E32 are negligible in Lemma 4.8,

and that E33 is close to pN,1(l, k) · ZN
0 in Lemma 4.9.

Lemma 4.8.

(a) E31 ≤ 4CR
τN
N

· (ZN
0 )2.

(b) E32 ≤ CR
2e2(1 + tN)

τN
.

Proof. For (a), apply Lemma 4.4(a) and we have

P (E31(A,B)) = P (“BN,A
2tN

⊆ ξN0 , τ
N(A,B) > tN , σ

N(A) > 2tN)

≤ P (“BN,A
2tN

⊆ ξN0 , σ
N(A) > 2tN)

≤
∑
a,a′∈A

P (“BN,A
2tN

∈ ξN0 ,
“Ba′

2tN
∈ ξN0 , τN(a, a′) > 2tN)

≤ |A|24|ξ
N
0 |2

N2
(4.19)

where (4.19) follows similarly as (4.17). Therefore,

E31 ≤
1

τN
· 4|ξ

N
0 |2

N2

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

|A|2 ≤ 4CR
τN
N

· (ZN
0 )2

where the last inequality is from (4.16).

For (b), apply Lemma 4.5 and we have

P (E32(A,B)) = P (“BN,A
2tN

⊆ ξN0 , τ
N(A,B) > tN , σ

N(A) ∈ (tN , 2tN ])

≤ P (σN(A) ∈ (tN , 2tN ])
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≤
∑
a,a′∈A

P (τN(a, a′) ∈ (tN , 2tN ])

≤ |A|22e
2(1 + tN)

N
.

Thus, by (4.16),

E32 ≤
1

τN
· 2e

2(1 + tN)

N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

|A|2 ≤ CR
2e2(1 + tN)

τN
.

■

Recall that pN,1(l, k) is defined as

pN,1(l, k) =
1

N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > tN , σ
N(A) ≤ tN),

and the definition of E33 is

E33 =
1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (E33(A,B))

where

E33(A,B) = {“BN,A
2tN

∈ ξN0 , τ
N(A,B) > tN , σ

N(A) ≤ tN}.

Lemma 4.9. There is a constant C4.9 such that |E33 − pN,1(l, k) · ZN
0 | ≤ C4.9 ·N−1.

Proof. We will write “BN,A
t = {a} as “BN,A

t = a. We first decompose the probability P (E33(A,B))

using the Markov property at tN :

P (E33(A,B))

= P (“BN,A
2tN

∈ ξN0 , τ
N(A,B) > tN , σ

N(A) ≤ tN)

=
∑
a′∈VN

B′⊆VN ,a′ /∈B′

P (“BN,A
tN

= a′, “BN,B
tN

= B′, τN(A,B) > tN , σ
N(A) ≤ tN) (4.20)

· P (“Ba′

tN
∈ ξN0 ).
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Write P (“Ba′
tN

∈ ξN0 ) in (4.20) as

P (“Ba′

tN
∈ ξN0 ) =

|ξN0 |
N

+

Å
P (“Ba′

tN
∈ ξN0 )− |ξN0 |

N

ã
.

Hence P (E33(A,B)) is equal to the sum of Σ1(A,B) and Σ2(A,B), defined as

Σ1(A,B) =
∑
a′∈VN

B′⊆VN ,a′ /∈B′

P (“BN,A
tN

= a′, “BN,B
tN

= B′, τN(A,B) > tN , σ
N(A) ≤ tN) ·

|ξN0 |
N

= P (τN(A,B) > tN , σ
N(A) ≤ tN) ·

|ξN0 |
N

,

Σ2(A,B) =
∑
a′∈VN

B′⊆VN ,a′ /∈B′

P (“BN,A
tN

= a′, “BN,B
tN

= B′, τN(A,B) > tN , σ
N(A) ≤ tN)

·
Å
P (“Ba′

tN
∈ ξN0 )− |ξN0 |

N

ã
.

Therefore, E33 is the sum of Σ1 and Σ2 which are defined as

Σ1 =
1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

Σ1(A,B)

=
1

τN
· |ξ

N
0 |
N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > tN , σ
N(A) ≤ tN)

= pN,1(l, k) · ZN
0 ,

Σ2 =
1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

Σ2(A,B).

We sill see that Σ2 is negligible. Applying Lemma 4.4(b), Σ2(A,B) is bounded by

|Σ2(A,B)|

≤
∑
a′∈VN

B′⊆VN ,a′ /∈B′

P (“BN,A
tN

= a′, “BN,B
tN

= B′, τN(A,B) > tN , σ
N(A) ≤ tN)

·
∣∣∣∣P (“Ba′

tN
∈ ξN0 )− |ξN0 |

N

∣∣∣∣
≤

∑
a′∈VN

B′⊆VN ,a′ /∈B′

P (“BN,A
tN

= a′, “BN,B
tN

= B′, τN(A,B) > tN , σ
N(A) ≤ tN) ·

(
|ξN0 |e−γtN

)
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≤ 1 · |ξN0 |e−γtN .

Consequently, by (4.2) and (1.3),

|Σ2| ≤
1

τN

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

|Σ2(A,B)| ≤ CR · ZN
0 ·Ne−γtN ≤ CR · C1.3 ·N−1.

Therefore,

|E33 − pN,1(l, k) · ZN
0 | = |Σ2| ≤ CR · C1.3 ·N−1.

Thus, we can choose C4.9 = C1.3 · CR. ■

Proof of Proposition 4.3(b). Define

εN,1 = max

Å
8CR

τN
N
, 2CR

2e2(1 + tN)

τN
+ C4.9 ·N−1

ã
.

We have εN,1 → 0 since tN ≫ logN . By combining the bounds in Lemma 4.6, 4.7, 4.8 and

4.9, we have

|V N,1
2δN

(l, k)− pN,1(l, k) · ZN
0 |

≤ |V N,1
2δN

(l, k)− E12|+ |E12 − E22|+ |E22 − E33|+ |E33 − pN,1(l, k) · ZN
0 |

= E11 + E21 + (E31 + E32) + |E33 − pN,1(l, k) · ZN
0 |

≤ 8CR
τN
N

· (ZN
0 )2 + 2CR

2e2(1 + tN)

τN
+ C4.9 ·N−1

≤ εN,1(1 + (ZN
0 )2).

The proof for showing that

|V N,0
2δN

(l, k)− pN,0(l, k) · ZN
0 | ≤ εN,0(1 + (ZN

0 )2)

is exactly similar, and one can choose εN,0 to be equal to εN,1. ■

Proof of Proposition 4.2. We have

1

τN
EξN0 [mN

1 (ξ
N,v
2δN

)] =
R∑
l=1

NR∑
k=1

(θN,1(l, k) · V N,1
2δN

(l, k)− θN,0(l, k) · V N,0
2δN

(l, k)).
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By Proposition 4.3,∣∣∣∣ 1τNEξN0 [mN
1 (ξ

N,v
2δN

)]− θNZN
0

∣∣∣∣
≤

R∑
l=1

NR∑
k=1

|θN,1(l, k)| ·
∣∣∣∣V N,1

2δN
(l, k)− pN,1(l, k)ZN

0

∣∣∣∣
+ |θN,0(l, k)| ·

∣∣∣∣V N,0
2δN

(l, k)− pN,0(l, k)ZN
0

∣∣∣∣
≤ bK(εN,1 + εN,0) · (1 + (ZN

0 )2).

The proof for part (b) is similar. By definition,

1

τ 2N
EξN0 [mN

2 (ξ
N,v
2δN

)]

=
1

τ 2N
EξN0

[
τNvN(ξ

N,v
2δN

)
]
+

1

τN
·

([
1

τN
EξN0

[
dN,1(ξN,v2δN

)
]]

+

[
1

τN
EξN0

[
dN,0(ξN,v2δN

)
]])

= V N,v
2δN

+
1

τN

R∑
l=1

NR∑
k=1

Å
θN,1(l, k)

ï
1

τN
EξN0 (dN,1l,k (ξN,vt ))

ò
+ θN,0(l, k)

ï
1

τN
EξN0 (dN,0l,k (ξN,vt ))

òã
= V N,v

2δN
+

1

τN

R∑
l=1

NR∑
k=1

Å
θN,1(l, k) · V N,1

2δN
(l, k) + θN,0(l, k) · V N,0

2δN
(l, k)

ã
.

By Lemma 3.5(b) and the fact that |ξN,vt | is a martingale, for i = 0, 1

|V N,i
2δN

(l, k)| =
∣∣∣∣ 1τNEξN0 (dN,il,k (ξ

N,v
2δN

))

∣∣∣∣ ≤ C3.5 ·
1

τN
EξN0 (|ξN,v2δN

|) = C3.5Z
N
0 .

Therefore, ∣∣∣∣ 1τ 2NEξN0 [mN
2 (ξ

N,v
2δN

)]− βNZN
0

∣∣∣∣
≤
∣∣∣V N,v

2δN
− 2pN,eZN

0

∣∣∣+ b

τN

R∑
l=1

NR∑
k=1

(
|V N,1

2δN
(l, k)|+ |V N,0

2δN
(l, k)|

)
≤ εN,v ·

[
1 + (ZN

0 )2
]
+

2bK
τN

· C3.5Z
N
0 .
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Consequently, we could choose

εN4.2 = max

Å
bK(εN,1 + εN,0), εN,v,

2bK
τN

· C3.5

ã
.

■

Proof of Proposition 4.1. For (a), apply Corollary 3.7 (a) and Proposition 4.2 (a),∣∣∣∣ 1τNEξN0 [mN
1 (ξ

N
2δN

)]− θNZN
0

∣∣∣∣
≤
∣∣∣∣ 1τNEξN0 [mN

1 (ξ
N,v
2δN

)]− θNZN
0

∣∣∣∣+ 1

τN
EξN0

∣∣∣∣mN
1 (ξ

N
2δN

)−mN
1 (ξ

N,v
2δN

)

∣∣∣∣
≤ εN4.2(1 + (ZN

0 )2) + C3.7 · ZN
0

Å
(e(bK)(2δN ) − 1) + (2δN)e

(bK)(2δN )

ã
.

Similarly for (b), apply Corollary 3.7 (b) and Proposition 4.2 (b),∣∣∣∣ 1τNEξN0 [mN
2 (ξ

N
2δN

)]− βNZN
0

∣∣∣∣
≤
∣∣∣∣ 1τNEξN0 [mN

2 (ξ
N,v
2δN

)]− βNZN
0

∣∣∣∣+ 1

τN
EξN0

∣∣∣∣mN
2 (ξ

N
2δN

)−mN
2 (ξ

N,v
2δN

)

∣∣∣∣
≤ εN4.2(1 + ZN

0 + (ZN
0 )2) + C3.7

Å
1 +

1

τN

ã
· ZN

0

Å
(e(bK)(2δN ) − 1)

+ (2δN)e
(bK)(2δN )

ã
.

Note that e(bK)(2δN ) − 1 → 0 as δN → 0. Since by (1.3), ZN
0 ≤ C1.3, then we can choose

εN4.1 = max

ß
εN4.2(1 + C1.3), 2C3.7

Å
(e(bK)(2δN ) − 1) + (2δN)e

(bK)(2δN )

ã™
so that εN4.1 → 0. ■
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Chapter 5

Convergence of coalescing random

walk probabilities

In this chapter, we will show in Proposition 5.1 that the coalescing random walk proba-

bilities defined on GN in the previous chapter converge and the limits as N → ∞ are the

corresponding coalescing walk probabilities on the infinite tree.

Recall the definitions

qN(x, y) = 1/r · 1{x∼y}, x, y ∈ VN

and

qtr(a, b) = 1/r · 1{a∼b}, a, b ∈ V tr.

The sequence tN satisfies logN ≪ tN ≪ τN and the coalescing random walk probabilities

defined in Chapter 4 are

pN,e =
1

N

∑
x,y∈VN

qN(x, y)P (τN(x, y) > tN),

pN,1(l, k) =
1

N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > tN , σ
N(A) ≤ tN),
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pN,0(l, k) =
1

N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > tN , σ
N(B) ≤ tN).

Recall that ρ ∈ V tr is the root of the tree, and the system of rate 1 coalescing walk system

is denoted as {“Be
t : e ∈ V tr}. For A, B ⊂ V tr disjoint, the stopping times defined in

Section 1.3 are

σtr(A) = inf{t > 0 : |“BA
t | = 1},

τ tr(A,B) = inf{t > 0 : “BA
t ∩ “BB

t ̸= ∅}.

The coalescing walk probabilities on the infinite tree defined in Section 1.3 are

ptr,e =
∑
e

qtr(ρ, e)P (τ tr(ρ, e) = ∞),

ptr,1(l, k) =
∑

A∈Sl,k(ρ)

B=Nl(ρ)∩Ac

P (τ tr(A,B) = ∞, σtr(A) <∞),

ptr,0(l, k) =
∑

A∈Sl,k(ρ)

B=Nl(ρ)∩Ac

P (τ tr(A,B) = ∞, σtr(B) <∞)

where Sl,k(ρ) = {A ⊆ Nl(ρ) : |A| = k} for ρ ∈ V tr.

We now state the main result of this chapter.

Proposition 5.1. As N → ∞,

(a) pN,e → ptr,e.

(b) pN,i(l, k) → ptr,i.(l, k), i = 0, 1

We begin with proving Lemma 5.2-5.6 to prepare for the proof.

Lemma 5.2. For any sN → ∞, sN < tN , there is a sequence εN5.2 → 0 such that

P (τN(x, y) ∈ (sN , tN ]) ≤ εN5.2, for all x, y ∈ VN .

Proof. Let x, y ∈ VN be arbitrary. By Lemma A.2

P (τN(x, y) ∈ (sN , tN ]) ≤ e2
∫ tN+1

sN

P (BN,x
s = BN,y

s ) ds. (5.1)
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By (1.8),

P (BN,x
s = BN,y

s ) =
∑
z

P (BN,x
s = z)P (BN,y

s = z)

≤
∑
z

pNs (x, z) ·
Å∣∣∣∣pNs (y, z)− 1

N

∣∣∣∣+ 1

N

ã
≤ e−γs +

1

N
.

Therefore,∫ tN+1

sN

P (BN,x
s = BN,y

s ) ds ≤
∫ tN+1

sN

ï
e−γs +

1

N

ò
ds ≤ tN + 1

N
+

1

γ
e−γsN .

Thus, choose εN5.2 to be

εN5.2 = e2
Å
tN + 1

N
+

1

γ
e−γsN

ã
and εN5.2 → 0 since tN ≪ N and sN → ∞. ■

Let sN be a positive sequence such that sN → ∞ and sN ≪ logN . Note that tN ≫

logN implies sN ≪ tN . Now define

pN,e1 =
1

N

∑
x

∑
y

qN(x, y)P (τN(x, y) > sN),

pN,11 (l, k) =
1

N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > sN , σ
N(A) ≤ sN),

pN,01 (l, k) =
1

N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > sN , σ
N(B) ≤ sN).

Recall that K = 1 +R ·NR and CR = 2KK2.

Lemma 5.3.

(a) |pN,e1 − pN,e| ≤ εN5.2.

(b) |pN,i1 (l, k)− pN,i(l, k)| ≤ 2CRε
N
5.2, i = 0, 1.

Proof. For part (a), by Lemma 5.2 we have

|pN,e1 − pN,e| ≤ 1

N

∑
x,y

qN(x, y)|P (τN(x, y) > sN)− P (τN(x, y) > tN)|
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=
1

N

∑
x,y

qN(x, y)P (τN(x, y) ∈ (sN , tN ])

≤
Å
1

N

∑
x,y

qN(x, y)

ã
· εN5.2 = εN5.2.

For (b), we have that for i = 1,

|P (τN(A,B) > tN , σ
N(A) ≤ tN)− P (τN(A,B) > sN , σ

N(A) ≤ sN)|

≤ P (τN(A,B) ∈ (sN , tN ]) + P (σN(A) ∈ (sN , tN ])

≤
∑
a∈A
b∈B

P (τN(A,B) ∈ (sN , tN ]) +
∑

a′,a′′∈A

P (τN(a′, a′′) ∈ (sN , tN ])

so that by Lemma 5.2,

|pN,11 (l, k)− pN,1(l, k)| ≤ 1

N

∑
x

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

(|A||B|+ |A|2)εN5.2 ≤ 2CRε
N
5.2.

The calculation for i = 0 is similar. ■

Recall from Section 1.2 that for lN = 1
5
logr−1N ,

ΓN = {x ∈ VN : tx(BlN (x)) = 0},

Γ′
N = {x ∈ VN : tx(BlN (x)) = 1},

VN = ΓN ∪ Γ′
N .

We now define a group of walk probabilities that are averages over only sites in ΓN :

pN,e2 =
1

|ΓN |
∑
x∈ΓN

∑
y

qN(x, y)P (τN(x, y) > sN),

pN,12 (l, k) =
1

|ΓN |
∑
x∈ΓN

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > sN , σ
N(A) ≤ sN),

pN,02 (l, k) =
1

|ΓN |
∑
x∈ΓN

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > sN , σ
N(B) ≤ sN).

Eventually, we will see that the above converge to probabilities on the infinite tree, as

GN are good graphs which means that with high probability there is locally a finite tree
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at most of the sites. The next lemma shows that pN,e2 and pN,i2 (l, k) are close to pN,e1 and

pN,i1 (l, k), respectively.

Lemma 5.4.

(a) |pN,e1 − pN,e2 | ≤ 2(r2N−2/5).

(b) |pN,i1 (l, k)− pN,i2 (l, k)| ≤ 2CR(r
2N−2/5), i = 0, 1.

Proof. For (a), by (1.7) we have

|pN,e1 − pN,e2 | ≤
∣∣∣∣ 1N − 1

|ΓN |

∣∣∣∣ · ∑
x∈ΓN

P (τN(x, y) > sN) +
1

N

∑
x∈Γ′

N

P (τN(x, y) > sN)

≤ |ΓN | ·
∣∣∣∣ 1N − 1

|ΓN |

∣∣∣∣+ |Γ′
N |
N

=
2|Γ′

N |
N

≤ 2(r2N−2/5).

For (b) for i = 1, similarly we have that

|pN,11 (l, k)− pN,12 (l, k)|

≤
∣∣∣∣ 1N − 1

|ΓN |

∣∣∣∣ ∑
x∈ΓN

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > sN , σ
N(A) ≤ sN)

+
1

N

∑
x∈Γ′

N

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > sN , σ
N(A) ≤ sN)

≤ CR

Å
|ΓN | ·

∣∣∣∣ 1N − 1

|ΓN |

∣∣∣∣+ |Γ′
N |
N

ã
≤ 2CR(r

2N−2/5)

and for i = 0 the calculation is similar. ■

We need to introduce a coupling between walks on VN and the infinite tree in prepara-

tion of proving Lemma 5.6 which gives the convergence to coalescing random walk proba-

bilities on the tree. Fix x ∈ ΓN . Recall that ρ ∈ V tr is the root of the infinite tree and the
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interaction range R > 0 is fixed and finite. Define the exit times

TN(x) = inf{t > 0 : ∃y ∈ BR(x), “BN,y
t /∈ B(1/2)lN (x)},

T tr = inf{t > 0 : ∃e ∈ BR(ρ), B
e
t /∈ B(1/2)lN (ρ)}.

Note that since x ∈ ΓN , then B(1/2)lN (x) is a finite tree as it is loop-free. Thus, we can

couple the coalescing walks started at sites in BR(x), “BN,BR(x)
t , and the walks started at

sites in BR(ρ), “BBR(ρ)
t up until TN(x) as follows: first, introduce a graph isomorphism ψ

such that BR(x) = ψ−1(BR(ρ)). Next, for y ∈ BR(x), define ‹BN,y
t as follows:‹BN,y

t =


ψ(“BN,y

t ), t < TN(x)“Bψ(“BN,y

TN (x)
)

t−TN (x)
, t ≥ TN(x).

(5.2)

This definition says the following: before exiting BR(ρ), the walk ‹BN,y
t ”duplicates” the

realization of “BN,y
t via the isomorphism ψ on the tree. At t = TN(x), the state of ‹BN,y

t is

ψ(“BN,y
TN (x)

). And it performs as an usual coalescing random walk after the exit time TN(x).

It is not hard to see that ‹BN,y
t has the same law as “BN,y

t for any y ∈ BR(x). Thus, later

when we compare the walk probabilities on GN with those on the infinite tree in the proof

of Lemma 5.6, we will keep using the notation “BN,y
t instead of ‹BN,y

t .

We now give a probability bound on TN(x) and T tr that will be used in the proof of

Lemma 5.6.

Lemma 5.5. P (TN(x) ≤ 2sN) ∨ P (T tr ≤ 2sN) ≤
2sN

(1/2)lN −R
.

Proof. Observe that

P (TN(x) ≤ 2sN) ≤
∑

y∈BR(x)

P (∃t ≤ 2sN , “BN,y
t /∈ B(1/2)lN (x)).

Notice that for y ∈ BR(x),

P (∃t ≤ 2sN , “BN,y
t /∈ B(1/2)lN (x))

= P (∃t ≤ 2sN , d(x, “BN,y
t ) ≥ (1/2)lN)

≤ P (∃t ≤ 2sN , d(x, “BN,y
t ) + d(x, y) ≥ (1/2)lN)
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≤ P (“BN,y
t makes at least [(1/2)lN −R] jumps by time 2sN)

≤ E(number of jumps made by “BN,y
2sN

)/((1/2)lN −R)

=
2sN

(1/2)lN −R
,

and similarly,

P (∃t ≤ 2sN , “Be
t /∈ B(1/2)lN (ρ)) ≤

2sN
(1/2)lN −R

.

■

Lemma 5.6 compares the probabilities on GN and the tree probabilities in the limit

N → ∞.

Lemma 5.6. There exists a sequence εN5.6 → 0 such that

(a) |pN,e2 − ptr,e| ≤ εN5.6.

(b) |pN,i2 (l, k)− ptr,i(l, k)| ≤ 2CR · εN5.6, i = 0, 1.

Proof. For part (a), define pN,esN
(x)

pN,esN
(x) =

∑
y

qN(x, y)P (τN(x, y) > sN)

=
∑
y

qN(x, y)P (τN(x, y) > sN , T
N(x) > 2sN)

+
∑
y

qN(x, y)P (τN(x, y) > sN , T
N(x) ≤ 2sN)

so that we can write

pN,e2 =
1

|ΓN |
∑
x∈ΓN

∑
y

pN,esN
(x).

By coupling the walks in GN started at sites in BR(x) and the walks in Gtr started at sites

in BR(ρ) as defined in (5.2),∑
y

qN(x, y)P (τN(x, y) > sN , T
N(x) > 2sN) (5.3)

=
∑
e

qtr(ρ, e)P (τ tr(ρ, e) > sN , T
tr > 2sN).
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Define

ptr,esN
=
∑
e

qtr(ρ, e)P (τ tr(ρ, e) > sN)

=
∑
e

qtr(ρ, e)P (τ tr(ρ, e) > sN , T
tr > 2sN)

+
∑
e

qtr(ρ, e)P (τ tr(ρ, e) > sN , T
tr ≤ 2sN).

By (5.3),

|pN,esN
(x)− ptr,esN

| ≤
∑
y

qN(x, y)P (TN(x) ≤ 2sN) +
∑
e

qtr(ρ, e)P (T tr ≤ 2sN)

= P (TN(x) ≤ 2sN) + P (T tr ≤ 2sN)

so that Lemma 5.5 implies

|pN,esN
(x)− ptr,esN

| ≤ 4sN
(1/2)lN −R

for all x ∈ ΓN . (5.4)

Since

|ptr,esN
− ptr,e| ≤

∑
e

qtr(ρ, e)|P (τ tr(ρ, e) > sN)− P (τ tr(ρ, e) = ∞)|

=
∑
e

qtr(ρ, e)P (τ tr(ρ, e) ∈ (sN ,∞))

≤
[

max
a,b∈BR(ρ)

P (τ tr(a, b) ∈ (sN ,∞))
]∑

e

qtr(ρ, e)

= max
a,b∈BR(ρ)

P (τ tr(a, b) ∈ (sN ,∞)). (5.5)

Note that walks on the infinite tree are transient, then for any a, b ∈ BR(ρ),

P (τ tr(a, b) ∈ (sN ,∞)) → 0 as sN → ∞. (5.6)

Therefore, we can define

εN5.6 =
4sN

(1/2)lN − 2R
+ max

a,b∈BR(ρ)
P (τ tr(a, b) ∈ (sN ,∞))

and εN5.6 → 0 because sN ≪ logN and sN → ∞. Therefore, combining (5.4) and (5.5) , we
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have

|pN,e2 − ptr,e| ≤
∣∣∣∣ 1

|ΓN |
∑
x∈ΓN

(pN,esN
(x)− ptr,esN

)

∣∣∣∣+ |ptr,esN
− ptr,e|

≤
Å

1

|ΓN |
∑
x∈ΓN

|pN,esN
(x)− ptr,esN

|
ã
+ |ptr,esN

− ptr,e|

≤ εN5.6.

For part (b) for i = 1 and x ∈ ΓN , define

aN(x) =
∑

A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > sN , σ
N(A) ≤ sN , T

N(x) > 2sN),

bN(x) =
∑

A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > sN , σ
N(A) ≤ sN , T

N(x) ≤ 2sN).

Write pN,1sN
(x) as

pN,1sN
(x) =

∑
A∈Sl,k(x)

B=Nl(x)∩Ac

P (τN(A,B) > sN , σ
N(A) ≤ sN)

= aN(x) + bN(x).

Similarly, define

atrN =
∑

A∈Sk,l(ρ)

B=Nl(ρ)∩Ac

P (τ tr(A,B) > sN , σ
tr(A) ≤ sN , T

tr > 2sN),

btrN =
∑

A∈Sk,l(ρ)

B=Nl(ρ)∩Ac

P (τ tr(A,B) > sN , σ
tr(A) ≤ sN , T

tr ≤ 2sN)

and write ptr,1sN
as

ptr,1sN
=

∑
A∈Sk,l(ρ)

B=Nl(ρ)∩Ac

P (τ tr(A,B) > sN , σ
tr(A) ≤ sN)

= atrN + btrN .

Note that the value of atrN and btrN does not depend on ρ.
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By definition we have

pN,12 (l, k) =
1

|ΓN |
∑
x∈ΓN

pN,1sN
(x) =

1

|ΓN |
∑
x∈ΓN

(aN(x) + bN(x)).

Decompose aN(x) by

aN(x) =
∑

A∈Sl,k(x)

B=Nl(x)∩Ac

∑
a∈A
b∈B

∑
a′,a′′∈A

P (τN(A,B) = τN(A,B), σN(A) = τN(a′, a′′), (5.7)

τN(A,B) > sN , τ
N(a′, a′′) ≤ sN , T

N(x) > 2sN).

By the coupling (5.2) between the walks on GN started at sites in BR(x) and the walks in

Gtr started at sites in BR(ρ), the right side of (5.7) is equal to∑
A∈Sk,l(ρ)

B=Nl(ρ)∩Ac

∑
a∈A
b∈B

∑
a′,a′′∈A

P (τ tr(A,B) = τ tr(a, b), σtr(A) = τ tr(a′, a′′),

τ tr(a, b) > sN , τ
tr(a′, a′′) ≤ sN , T

tr > 2sN)

=
∑

A∈Sk,l(ρ)

B=Nl(ρ)∩Ac

P (τ tr(A,B) > sN , σ
tr(A) ≤ sN , T

tr > 2sN),

hence for every x ∈ ΓN ,

aN(x) = atrN .

This implies

ptr,1sN
= atrN + btrN = aN(x) + btrN = [pN,1sN

(x)− bN(x)] + btrN

and we have

|pN,1sN
(x)− ptr,1sN

| ≤ bN(x) + btrN

≤
∑

A∈Sk,l(ρ)

B=Nl(ρ)∩Ac

P (T tr ≤ 2sN) +
∑

A∈Sl,k(x)

B=Nl(x)∩Ac

P (TN(x) ≤ 2sN)

≤ 2CR · 2sN
(1/2)lN −R

. (5.8)



60

Moreover, we have that

|ptr,1sN
− ptr,1(l, k)|

≤
∑

A∈Sk,l(ρ)

B=Nl(ρ)∩Ac

|P (τ tr(A,B) > sN , σ
tr(A) ≤ sN)− P (τ tr(A,B) = ∞, σtr(A) <∞)|

≤
∑

A∈Sk,l(ρ)

B=Nl(ρ)∩Ac

P (τ tr(A,B) ∈ (sN ,∞)) + P (σtr(A) ∈ (sN ,∞))

≤
∑

A∈Sk,l(ρ)

B=Nl(ρ)∩Ac

ï∑
a∈A
b∈B

P (τ tr(a, b) ∈ (sN ,∞)) +
∑

a′,a′′∈A

P (τ tr(a′, a′′) ∈ (sN ,∞))

ò
≤ 2CR · max

a,b∈BR(ρ)
P (τ tr(a, b) ∈ (sN ,∞)). (5.9)

Therefore, combining (5.8) and (5.9),

|pN,12 (l, k)− ptr,1(l, k)| ≤
∣∣∣∣ 1

|ΓN |
∑
x∈ΓN

pN,1sN
(x)− ptr,1sN

∣∣∣∣+ |ptr,1sN
− ptr,1(l, k)|

≤
Å

1

|ΓN |
∑
x∈ΓN

|pN,1sN
(x)− ptr,1sN

|
ã
+ |ptr,1sN

− ptr,1(l, k)|

≤ 2CR ·
Å

2sN
(1/2)lN −R

+ max
a,b∈BR(ρ)

P (τ tr(a, b) ∈ (sN ,∞))

ã
≤ 2CR · εN5.6.

The proof for i = 0 is similar. ■

Proof of Proposition 5.1. Combining Lemma 5.3, 5.4 and 5.6, we have

|pN,e − ptr,e| ≤ |pN,e − pN,e1 |+ |pN,e1 − pN,e2 |+ |pN,e2 − ptr,e|

≤ εN5.2 + 2(r2N−2/5) + εN5.6,

and for i = 0, 1,

|pN,i − ptr,i(l, k)| ≤ |pN,i − pN,i1 (l, k)|+ |pN,i1 (l, k)− pN,i2 (l, k)|+ |pN,i2 (l, k)− ptr,i(l, k)|

≤ 2CR(ε
N
5.2 + r2N−2/5 + εN5.6).

This completes the proof. ■
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Chapter 6

Tightness; identification of the weak

limit

In this chapter, we complete the proof of Theorem 1.2 by proving Proposition 6.1 and 6.2.

Identification of the limit is done in Lemma 6.7 which shows that mean-field simplification

occurs. Note that this result was based on Proposition 4.3 which relies on estimation using

duality for the voter model only.

Recall that a family of laws on D([0,∞),R+) is called C-tight if it is tight and every

limit point is supported by C([0,∞),R+). The drift θ and branching rate β defined in Sec-

tion 1.3 are

θ =
R∑
l=1

NR∑
k=1

(θ1(l, k)ptr,1(l, k)− θ0(l, k)ptr,0(l, k)),

β = 2ptr,e.

Recall that GN is a sequence of good graphs, and PN is the law of ZN
· defined in Section

1.3.

Proposition 6.1. {PN , N ∈ N} is C-tight.

Proposition 6.2. If P ∗ is any weak limit point of {PN}, then P ∗ = P β,θ.
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Note that the laws {PN} in the two propositions above is defined over fixed sequence

of good graphs.

We first give some preliminary results. Recall from Chapter 3 that

dN,1l,k (ξ) =
∑
x

ξ̂(x)1{n1
l (x,ξ)=k},

dN,0l,k (ξ) =
∑
x

ξ(x)1{n0
l (x,ξ)=k},

and mN
1 (ξ) and m

N
2 (ξ) are written as

mN
1 (ξ) = dN,1(ξ)− dN,0(ξ)

=
R∑
l=1

NR∑
k=1

(θN,1(l, k)dN,1l,k (ξ)− θN,0(l, k)dN,0l,k (ξ)),

mN
2 (ξ) = τNvN(ξ) + [dN,1(ξ) + dN,0(ξ)]

= τNvN(ξ) +
R∑
l=1

NR∑
k=1

(θN,1(l, k)dN,1l,k (ξ) + θN,0(l, k)dN,0l,k (ξ)).

The bias parameter b and the constant K defined in Chapter 3 are

b = sup
N

R∑
l=1

NR∑
k=1

(θN,0(l, k) + θN,1(l, k)),

K = 1 +R ·NR.

Lemma 6.3. There is a constant C6.3 such that for ξ ∈ {0, 1}VN ,

(a) |mN
1 (ξ)| ≤ C6.3|ξ|.

(b) |mN
2 (ξ)| ≤ (2τN + C6.3)|ξ|.

Proof. By Lemma 3.5, we have

|mN
1 (ξ)| = |dN,1(ξ)− dN,0(ξ)|

≤ sup
N,l,k

(θN,1(l, k) + θN,0(l, k)) ·
R∑
l=1

NR∑
k=1

(|dN,1l,k (ξ)|+ |dN,0l,k (ξ)|).
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By Lemma 3.5(b), dN,il,k (ξ) ≤ C3.5 · |ξ| for i = 0, 1. Together with (P2), we have that

|mN
1 (ξ)| ≤ b ·

ï R∑
l=1

NR∑
k=1

(|dN,1l,k (ξ)|+ |dN,0l,k (ξ)|)
ò

≤ 2bKC3.5 · |ξ|. (6.1)

Similarly, we have that by Lemma 3.5 (a) and (b),

|mN
2 (ξ)| ≤ τN |vN(ξ)|+ |dN,0(ξ)|+ |dN,1(ξ)|

≤ (2τN + 2bKC3.5)|ξ|

hence one can choose C6.3 = 2bKC3.5. ■

Recall that

DN
t =

1

τN

∫ t

0

mN
1 (ξ

N
s ) ds,

⟨MN⟩t =
1

τ 2N

∫ t

0

mN
2 (ξ

N
s ) ds.

The next lemma gives bound on DN
· and ⟨MN⟩·.

Lemma 6.4. Let K > 0, T > 0 be fixed. There is a constant C6.4(K,T ) such that for

supN Z
N
0 ≤ K and for any s ≤ T ,

1

τN
EξN0 |mN

1 (ξ
N
s )| ≤ C6.4(K,T ),

1

τ 2N
EξN0 |mN

2 (ξ
N
s )| ≤ C6.4(K,T ).

Proof. By Lemma 6.3 and Corollary 3.2 (a), we have

1

τN
EξN0 |mN

1 (ξ
N
s )| ≤ C6.3 · EξN0 [ZN

s ] ≤ C6.3 ·Ke(bK)T

and similarly

1

τ 2N
EξN0 |mN

2 (ξ
N
s )| ≤

2τN + C6.3

τN
· EξN0 [ZN

s ] ≤ 3Ke(bK)T .

Consequently, we could choose C6.4(K,T ) = (C6.3 ∨ 3)Ke(bK)T and this completes the

proof. ■
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Denote T N
T = {all stopping times bounded by T that are relative to FN

· }. We will

show that DN
· and MN

· satisfy Aldou’s criterion for tightness in Lemma 6.5 - 6.6. The

bounds in Proposition 3.1 will be used in the proof of Lemma 6.5.

Lemma 6.5. Assume that supN Z
N
0 ≤ K. For every ε > 0, T > 0,

sup
N

sup
S1,S2∈T N

T
S1≤S2≤S1+δ

P ξN0 (|DN
S2

−DN
S1
| > ε) → 0, (6.2)

sup
N

sup
S1,S2∈T N

T
S1≤S2≤S1+δ

P ξN0 (|⟨MN⟩S2 − ⟨MN⟩S1| > ε) → 0 (6.3)

as δ ↓ 0.

Proof. Fix T > 0 and δ > 0. Let S1, S2 ∈ T N
T such that S1 ≤ S2 ≤ S1 + δ. We first prove

(6.2). Apply Lemma 6.3(a) and we have

|DN
S2

−DN
S1
| =

∣∣∣∣ ∫ S2

S1

1

τN
mN

1 (ξ
N
s ) ds

∣∣∣∣
≤ 1

τN

∫ S1+δ

S1

|mN
1 (ξ

N
s )| ds

≤ C6.3 ·
1

τN

∫ S1+δ

S1

|ξNs | ds. (6.4)

Recall that ξN,bs is the biased voter model defined in Chapter 3. Define

ZN,b
s =

|ξN,bs |
τN

.

By the coupling (3.3), (6.4) is bounded by

C6.3 ·
1

τN

∫ S1+δ

S1

|ξN,bs | ds ≤ C6.3δ ·
(

sup
s≤T+1

ZN,b
s

)
Since |ξN,bs | is a submartingale, we can apply Doob’s inequality and together with Proposi-

tion 3.1(a),

P ξN0 (|DN
S2

−DN
S1
| > ε) ≤ P ξN0

Å
C6.3δ ·

(
sup
s≤T+1

ZN,b
s

)
> ε

ã
≤ (C6.3δ/ε) · EξN0

(
ZN,b
T+1

)
≤ δ · (C6.3K/ε)e

(bK)(T+1).
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The proof of (6.3) is similar. Apply Lemma 6.3(b) and by (3.3),

|⟨MN⟩S2 − ⟨MN⟩S1| =
∣∣∣∣ ∫ S2

S1

1

τ 2N
mN

2 (ξ
N
s ) ds

∣∣∣∣
≤ 1

τ 2N

∫ S1+δ

S1

|mN
2 (ξ

N
s )| ds

≤ (2τN + C6.3) ·
1

τ 2N

∫ S1+δ

S1

|ξNs | ds

≤ 3

∫ S1+δ

S1

ZN,b
s ds

≤ 3δ ·
(

sup
s≤T+1

ZN,b
s

)
.

And by Doob’s inequality and Proposition 3.1(a),

P ξN0 (|⟨MN⟩S2 − ⟨MN⟩S1| > ε) ≤ P ξN0

Å
3δ ·

(
sup
s≤T+1

ZN,b
s

)
> ε

ã
≤ (3δ/ε) · EξN0

(
ZN,b
T+1

)
≤ δ(3K/ε)e(bK)(T+1).

This completes the proof. ■

Lemma 6.6. For every T,K > 0,

sup
N

sup
ξN0 :ZN

0 ≤K
P ξN0

Å
sup
s≤T

|DN
s | > L

ã
→ 0, (6.5)

sup
N

sup
ξN0 :ZN

0 ≤K
P ξN0

Å
sup
s≤T

|⟨MN⟩s| > L

ã
→ 0 (6.6)

as L→ ∞.

Proof. We have that by Markov inequality and Lemma 6.4,

P ξN0

Å
sup
s≤T

|DN
s | > L

ã
≤ P ξN0

Å
1

τN

∫ T

0

|mN
1 (ξ

N
s )| ds > L

ã
≤ 1

L
· 1

τN

∫ T

0

EξN0 |mN
1 (ξ

N
s )| ds

≤ T · C6.4(K,T )

L
.

The proof for ⟨MN⟩ is similar.
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■

We now give the estimate on drift and quadratic variation which will be used to iden-

tify the weak limit.

Lemma 6.7. (L1-estimates) For any T ≥ 0,

EξN0

∣∣∣∣DN
T − θ

∫ T

0

ZN
t dt

∣∣∣∣→ 0, (6.7)

EξN0

∣∣∣∣⟨MN⟩T − β

∫ T

0

ZN
t dt

∣∣∣∣→ 0 (6.8)

as N → ∞.

Proof. We follow the idea of Proposition 5.1 in Cox [C17]. Fix T > 0 and suppose that

supN Z
N
0 ≤ K. Recall that the sequence δN → 0 satisfies logN ≪ δNτN ≪ τN ≪ N . For

convenience, denote

dNt =
1

τN
mN

1 (ξ
N
t )

and define

IN1 =

∫ 2δN

0

[dNt − θ · ZN
t ] dt,

IN2 =

∫ T

T−2δN

[dNt − θ · ZN
t ] dt,

IN3 =

∫ T−2δN

2δN

[dNt − θ · ZN
t ] dt.

Thus we have

DN
T − θ

∫ T

0

ZN
s ds = IN1 + IN3 + IN3 .

It is enough to show that EξN0 |INi | → 0 for i = 1, 2, 3 as N → ∞. By Lemma 6.4(a) and

Corollary 3.7(a) ,

EξN0 |IN1 | ≤
∫ 2δN

0

EξN0 |dNt − θ · ZN
s | dt

≤
∫ 2δN

0

[EξN0 |dNt |+ bEξN0 |ZN
s |] dt

≤ (2δN) ·
[
C6.4(K,T ) + b ·Ke(bK)T

]
→ 0 as δN → 0.
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And similarly,

EξN0 |IN2 | ≤ (2δN) ·
[
C6.4(K,T ) + b ·Ke(bK)T

]
→ 0

as δN → 0.

Next we bound IN3 . Since IN2 → 0 as δN → 0, for convenience we redefine IN3 as

IN3 =

∫ T

2δN

[dNt − θ · ZN
t ] dt.

Let (FN
t ) be the canonical filtration generated by (ξNt ). Define

hN1,t = dNt − E(dNt |FN
t−2δN

),

hN2,t = E(dNt |FN
t−2δN

)− θNZN
t−2δN

,

hN3,t = θNZN
t−2δN

− θZN
t .

Write

dNt − θ · ZN
t

=
[
dNt − E(dNt |FN

t−2δN
)
]
+
[
E(dNt |FN

t−2δN
)− θNZN

t−2δN

]
+
[
θNZN

t−2δN
− θZN

t

]
= hN1,t + hN2,t + hN3,t.

We first bound the intergal of hN2,t and h
N
3,t. For h

N
2,t, notice that by Markov property,

hN2,t = E
ξNt−2δN (dN2δN )− θNZN

t−2δN
.

By Proposition 4.1(a) and Corollary 3.2 (a)-(b),

EξN0

∣∣∣∣ ∫ T

2δN

hN2,t dt

∣∣∣∣ ≤ ∫ T

2δN

EξN0 |EξNt−2δN (dN2δN )− θNZN
t−2δN

| dt

≤ εN4.1 ·
∫ T

2δN

EξN0 [(1 + ZN
t−2δN

)2] dt

≤ εN4.1 · T
(
1 + 2Ke(bK)T +

[
K2 + 3KTe(bK)T

]
· e(2bK)T

)
. (6.9)

For hN3,t, we have

hN3,t = θN
[
ZN
t−2δN

− ZN
t

]
+ [θN − θ]ZN

t .
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Since ∫ T

2δN

[ZN
t−2δN

− ZN
t ] dt =

∫ T−2δN

0

ZN
t dt−

∫ T

2δN

ZN
t dt

=

∫ 2δN

0

ZN
t dt−

∫ T

T−2δN

ZN
t dt,

so that by Corollary 3.2 (a),

EξN0

∣∣∣∣ ∫ T

2δN

hN3,t dt

∣∣∣∣ ≤ b ·
ï∫ 2δN

0

EξN0 (ZN
t ) dt+

∫ T

T−2δN

EξN0 (ZN
t ) dt

ò
+ |θN − θ|

∫ T

2δN

EξN0 (ZN
t ) dt

≤
[
4bδN + |θN − θ| · T

]
·Ke(bK)T . (6.10)

Lastly to bound hN1,t, we prove the following two claims.

Claim 1: For each t > 2δN , E
ξN0

[
hN1,t · hN1,s

]
= 0 if s < t− 2δN .

Proof of Claim 1. FN
s ⊆ FN

t−2δN
if s < t− 2δN , hence tower rule can be applied:

EξN0 (hN1,t|FN
s ) = EξN0 (dNt − EξN0 (dNt |FN

t−2δN
)|FN

s )

= EξN0 (dNt |FN
s )− EξN0

[
EξN0 (dNt |FN

t−2δN
)|FN

s

]
= EξN0 (dNt |FN

s )− EξN0 (dNt |FN
s ) = 0.

Therefore,

EξN0 [hN1,t · hN1,s] = EξN0

[
EξN0 (hN1,t · hN1,s|FN

s )
]

= EξN0

[
hN1,s · EξN0 (hN1,t|FN

s )
]
= 0.

□

Claim 2: There is a constant C(K,T ) such that EξN0 [(hN1,t)
2] ≤ C(K,T ) for every t ≤ T .

Proof of Claim 2. By applying conditional Jensen, we have

EξN0 [(hN1,t)
2] = EξN0

[
(dNt − EξN0 (dNt |FN

t−2δN
))2
]

≤ EξN0

[
(dNt )

2 + EξN0 ((dNt )
2|FN

t−2δN
)
]
+ 2EξN0 [|dNt | · |EξN0 (dNt |FN

t−2δN
)|]
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≤ 2EξN0 [(dNt )
2] + 2(EξN0 [(dNt )

2])1/2 · (EξN0 [(EξN0 ((dNt )
2|FN

t−2δN
)])1/2

= 4EξN0 [(dNt )
2].

By Lemma 6.3 and Lemma 3.2 (b),

4EξN0 [(dNt )
2] = 4EξN0

ï∣∣∣∣ 1τNmN
1 (ξ

N
t )

∣∣∣∣2ò
≤ 4C2

6.3E
ξN0 [(ZN

t )2]

≤ 4C2
6.3 ·

[
K2 + 3K · TeT (bK)

]
· e(2bK)T ≡ C(K,T ).

□

Let C(K,T ) be from Claim 2. Apply Claim 1 and Claim 2 and we get

EξN0

ïÅ∫ T

2δN

hN1,t dt

ã2ò
= EξN0

ï∫ T

2δN

∫ T

2δN

hN1,t · hN1,s ds dt
ò

≤
∫ T

2δN

∫ T

2δN

EξN0 (hN1,t · hN1,s) ds dt

= 2

∫ T

2δN

Å∫
{t−2δN≤s<t}

+

∫
{2δN<s<t−2δN}

ã
EξN0 (hN1,t · hN1,s) ds dt

= 2

∫ T

2δN

∫ t

t−2δN

EξN0 (hN1,t · hN1,s) ds dt

≤ 2

∫ T

2δN

∫ t

t−2δN

EξN0 [(hN1,t)
2]1/2 · EξN0 [(hN1,s)

2]1/2 ds dt

≤ δN · 2T · C(K,T ).

(6.11)

Consequently, combine (6.9), (6.10) and (6.11), so that

EξN0 |IN3 | ≤
3∑
i=1

EξN0

∣∣∣∣ ∫ T

2δN

hNi,t dt

∣∣∣∣
≤ εN4.1 · T

(
1 + 2Ke(bK)T +

[
K2 + 3KTe(bK)T

]
· e(2bK)T

)
+
[
4bδN + |θN − θ| · T

]
·Ke(bK)T

+
[
δN · 2T · C(K,T )

]1/2
→ 0, as N → ∞.
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Note that |θN − θ| → 0 by Proposition 5.1 and (P2).

For the proof of (6.8), define

JN1,T =

∫ T

0

ï
1

τN
vN(ξ

N
s )− βZN

s

ò
ds,

JN2,T =

∫ T

0

1

τ 2N
(dN,1(ξNs ) + dN,0(ξNs )) ds

so that we can write

⟨MN⟩T − β

∫ T

0

ZN
s ds = JN1,T + JN2,T .

The way of showing that

EξN0 |JN1,T | → 0 as N → ∞

is similar to the proof of (6.7). For showing that EξN0 |JN2,T | → 0, we can follow the proof in

(6.1) and apply Lemma 3.2(a) so that

EξN0 |JN2,T | ≤
2bKC3.5

τN
·
∫ T

0

EξN0 (ZN
s ) ds

≤ 2bKC3.5

τN
· T · [Ke(2bK)T ] → 0 as N → ∞.

■

The next lemma says that {MN
t , t ≤ T} is uniformly bounded in L2 which is implied

by its bounded fourth moment.

Lemma 6.8. Suppose that supN Z
N
0 ≤ K. Let T > 0. There is a constant C6.8(K,T ) such

that

sup
N
EξN0

Å
sup
t≤T

⟨MN⟩2t
ã
≤ C6.8(K,T ) · T 2. (6.12)

so that

sup
N
EξN0

Å
sup
t≤T

|MN
t |4
ã
<∞. (6.13)
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Proof. Fix T > 0. To see (6.12), we have that for any t ≤ T ,

EξN0 [⟨MN⟩2t ] = EξN0

ïÅ∫ t

0

1

τ 2N
mN

2 (ξ
N
s )ds

ã2ò
≤ T 2 · EξN0

ï
sup
s≤T

Å
1

τ 2N
mN

2 (ξ
N
s )

ã2ò
.

By Lemma 6.3(b) and the coupling (3.3), for large N we haveÅ
1

τ 2N
mN

2 (ξ
N
s )

ã2
≤ 9(ZN

s )2 ≤ 9(ZN,b
s )2.

Let C6.8(K,T ) = 9 · 4[K2 + 3K(T · eT (bK))] · e(2bK)T so that by Corollary 3.2 (b) and Doob’s

inequality,

EξN0

ï
sup
s≤T

Å
1

τ 2N
mN

2 (ξ
N
s )

ã2ò
≤ 9EξN0

ï
sup
s≤T

(ZN,b
s )2
ò
≤ 9 · 22EξN0 ((ZN,b

T )2) ≤ C6.8(K,T ).

This implies

sup
N
EξN0

Å
sup
t≤T

⟨MN⟩2t
ã
≤ T 2 · sup

N
EξN0

ï
sup
s≤T

Å
1

τ 2N
mN

2 (ξ
N
s )

ã2ò
≤ T 2 · C6.8(K,T ).

We now prove (6.13). The jumps of MN
· are bounded by

|MN
t −MN

t−| ≤ |ZN
t − ZN

t−|+ |DN
t −DN

t−|

=
1

τN

∣∣∣∣|ξNt | − |ξNt−|
∣∣∣∣ ≤ 1

τN
, P ξN0 -a.s. (6.14)

Denote

∆MN
T = MN

T −MN
T−,

(MN)∗T = sup
t≤T

|MN
t |,

(∆MN)∗T = sup
t≤T

|∆MN
t |.

(6.14) implies

|(∆MN)∗T | = sup
t≤T

|MN
t −MN

t−| ≤
1

τN
.
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Therefore, by Theorem A.3 with ϕ(x) = x4, there is a constant C = Cϕ such that

EξN0

Å
sup
t≤T

|MN
t |4
ã
≤ Cϕ

ï
EξN0 [⟨MN⟩2T ] + EξN0

Å[
(∆MN)∗T

]4ãò
≤ Cϕ

ï
T 2 · C6.8(K,T ) + 1

ò
<∞.

■

Proof of Proposition 6.1. It is enough to show that the quadruple (ZN
· ,DN

· , ⟨MN⟩·,MN
·)

is C-tight.

(i) DN
· and ⟨MN⟩· : By Lemma 6.5 and Lemma 6.6, assumptions of Theorem VI.4.5

in [JS87] are satisfied so that by this theorem, DN
· and ⟨MN⟩· are tight, and this

implies that they are in fact C-tight since both of them are integral.

(ii) MN
· : Since ⟨MN⟩· is C-tight, then by Theorem VI.4.13 in [JS87], MN

· is tight. By

Proposition VI.3.26 in [JS87] and (6.14), MN
· is C-tight.

(iii) ZN
· is C-tight by (i) and (ii) following Corollary 2.2. ■

Proof of Proposition 6.2. By Skorokhod’s Theorem, Proposition 6.1 implies that there is

a subsequence of laws PNk such that PNk ⇒ P in D([0,∞),R+) (choose a further subse-

quence, if needed) and we may assume that on a common probability space,

(ZNk
· ,DNk

· , ⟨MNk⟩·) → (Z·,D·,L·) a.s.

where Z·,D·, ⟨M⟩· are continuous.

Lemma 6.7 implies that for any ε > 0,

P ξN0

ï ∣∣∣∣DN
t − θ

∫ t

0

ZN
s ds

∣∣∣∣ > ε

ò
→ 0,

P ξN0

ï ∣∣∣∣⟨MN⟩t − β

∫ t

0

ZN
s ds

∣∣∣∣ > ε

ò
→ 0

as N → 0, by Chebychev’s inequality. By these probability estimates, it follows that

Dt = θ

∫ t

0

Zsds,

Lt = β

∫ t

0

Zsds.
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Proposition 2.1 implies that MNk
· = ZNk

· − DNk
· − ZN

0 . By ZNk
· → Z· a.s. and DNk

· → D·

a.s, we have MNk
· → M· a.s. and (Z·,M·,D·) satisfies

Zt = Z0 +Mt +Dt

= Z0 +Mt + θ

∫ t

0

Zsds.

Moreover, M· is continuous as MN
· is C-tight by Proposition 6.1.

Lastly, we show that L· is equal to ⟨M⟩·. By Lemma 6.8, the sequence of martingales

{(MNk
t )2 − ⟨MNk⟩t, t ≤ T}

is uniformly bounded in L2 for every T > 0. This implies that it is an uniformly integrable

family. Since for every T > 0 and t ≤ T ,

(MNk
t )2 − ⟨MNk⟩t → M2

t − Lt a.s., as Nk → ∞,

then it implies that {M2
t − Lt, t ≤ T} is an L2-martingale for every T > 0 and thus L· is

the quadratic variation of M·, in symbol,

⟨M⟩t = lim
k
⟨MNk⟩t = β

∫ t

0

Zsds.

■



74

Appendix

A.1 Proof of Proposition 1.1

Property (ii) and (iv) is implied by Lemma 2.1 in [LS10] and Theorem 6.3.2 in Durrett

[D07], respectively. Property (i) is implied by Theorem II.4.24 in [H17].

For (iii), we prove the following simple fact. For any binomial random variable X ∼

Bin(m, p) with m ∈ N and p ∈ (0, 1), P (X ≥ 1) can be bounded by

P (X ≥ 1) =
m∑
k=1

Ç
m

k

å
pk(1− p)m−k

=
m−1∑
k=0

Ç
m

k + 1

å
pk+1(1− p)m−(k+1)

=

Ç
m

1

å
p ·

m−1∑
k=0

Ç
m

1

å
pk(1− p)m−k−1

¡Ç
k + 1

k

å
≤
Ç
m

1

å
p. (A.1)

We note the fact in [LS10] that tx(BlN (x)) is stochastically bounded above by the bino-

mial random variable RlN ∼ Bin(r(r − 1)lN , r(r − 1)lN/N). Thus, by (A.1),

P (tx(BlN (x)) ̸= 0) ≤ P (RlN ≥ 1) ≤
Ç
r(r − 1)lN

1

å
r(r − 1)lN

N
≤ r2

N
·N2/5.

Define

Y (x) =


1, if tx(BlN (x)) ≥ 1

0, otherwise

, Y =
∑
x

Y (x).
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Notice that

EY =
∑
x

E(Y (x)) =
∑
x

P (tx(BlN (x)) ̸= 0) ≤ N ·
Å
r2

N
·N2/5

ã
= r2N2/5,

Thus by Markov’s inequality we have

P (Y ≥ r2N3/5) ≤ EY

r2N3/5
≤ N2/5

N3/5
→ 0.

■

A.2 An elementary lemma for submartingales

Let S be countable. Suppose that L is a Markov generator and let the process

(Xt, (Ft), (P
x)x∈S)

be defined by L. Let f be a bounded function in the domain of L so that Ef(Xt) <∞.

Lemma A.1. If Lf ≥ 0, then f(Xt) is a submartingale. In particular, if Lf = 0, then

f(Xt) is a martingale.

Proof. By Theorem I.5.2 in [L85],

Mt = f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds

is a PX0-martingale. For any h > 0, We have

Ex(f(Xt+h)− f(Xt)|Ft) = Ex(Mt+h −Mt|Ft) + Ex

Å∫ t+h

t

Lf(Xs)ds

∣∣∣∣Ft

ã
= Ex

Å∫ t+h

t

Lf(Xs)ds

∣∣∣∣Ft

ã
= EXt

Å∫ h

0

Lf(Xs)ds

ã
.

Since Lf ≥ 0, the last line is non-negative P x-a.s. for any x ∈ S. ■
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A.3 Meeting time lemma

The proof of Lemma 5.2 is based on the following frequently used result. The particular

proof we provide here is due to Le Gall. The idea is that the walks have to stay at a place

for a while before one of them leaves.

Lemma A.2. Let P x1,x2 be the law of two independent rate 1 Markov chains X1
t , X

2
t with

starting points x1, x2, and let M be the first meeting time of the chains. Then for any x,

Ex,x

ï∫ 1

0

1{X1
s=X

2
s }ds

ò
≥ 1/e2, (A.2)

and for t1 < t2 and y1, y2,

P y1,y2P (M ∈ (t1, t2]) ≤ e2
∫ t2+1

t1

P y1,y2(X1
s = X2

s ) ds. (A.3)

Proof. Assume (A.2). Let FM be the σ-algebra generated by M . We have

Ey1,y2

ï∫ t2+1

t1

1{X1
s=X

2
s }ds

∣∣∣∣FM

ò
≥ 1{M∈(t1,t2]} · Ey1,y2

ï ∫ t2+1

t1

1{X1
s=X

2
s }ds

∣∣∣∣FM

ò
. (A.4)

Notice that the right side of (A.4) is bounded below by

1{M∈(t1,t2]} · Ey1,y2

ï∫ M+1

M

1{X1
s=X

2
s }ds

∣∣∣∣FM

ò
= 1{M∈(t1,t2]} · EX1

M ,X2
M

ï∫ 1

0

1{X1
s=X

2
s }ds

ò
by the strong Markov property. Therefore,∫ t2+1

t1

P y1,y2(X1
s = X2

s ) ds

= Ey1,y2

Å
Ey1,y2

ï∫ t2+1

t1

1{X1
s=X

2
s }ds

∣∣∣∣FM

òã
≥ Ey1,y2

Å
1{M∈(t1,t2]} · EX1

M ,X2
M

ï∫ 1

0

1{X1
s=X

2
s }ds

òã
=
∑
x

P (M ∈ (t1, t2], X
1
M = X2

M = x) · Ex,x

ï∫ 1

0

1{X1
s=X

2
s }ds

ò
≥ P (M ∈ (t1, t2]) ·

1

e2
.
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To see that (A.2) is true, define

Ti = inf{t > 0 : X i
t ̸= x}, i = 1, 2.

As X1
t and X2

t are independent rate 1, then T1 and T2 are independent rate 1 exponential

random variables. Since for any s ∈ [0, 1),

P x,x(X1
s = X2

s , T1 ∧ T2 > 1) = P x,x(X1
s = X2

s |T1 ∧ T2 > 1) · P x,x(T1 ∧ T2 > 1)

= 1 · P x,x(T1 ∧ T2 > 1).

This implies

Ex,x

ï ∫ 1

0

1{X1
s=X

2
s }ds

ò
≥
∫ 1

0

P x,x(X1
s = X2

s , T1 ∧ T2 > 1)ds

= P x,x(T1 ∧ T2 > 1)

= P x,x(T1 > 1, T2 > 1) = 1/e2.

■

A.4 A continuous version of Burkholder’s inequality

The next theorem states a continuous time version of Burkholder’s inequality (Theorem

21.1 in [B73]). We follow Burkholder’s proof in the original paper which adapted to this

continuous time version.

Suppose that Xt is an L
2-cadlag martingale with X0 = 0 and predictable square func-

tion ⟨X⟩t. Furthermore, assume ⟨X⟩t is continuous. Denote

∆Xt = Xt −Xt−,

X∗
t = sup

s≤t
|Xs|,

∆X∗
t = sup

s≤t
|∆Xs|.
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Let ϕ : [0,∞) → R, continuous and non-decreasing, satisfies ϕ(0) = 0 and the following

growth condition: let c = c6.1 > 0 be the constant of (6.1) in [B73] such that

ϕ(2x) ≤ cϕ(x) for all x > 0. (A.5)

Two immediate facts are implied. First, since ϕ ≥ 0 and is non-decreasing,

ϕ(a ∨ b) ≤ ϕ(a) + ϕ(b). (A.6)

Second, for non-negative integers k,

ϕ(2kx) ≤ ckϕ(x). (A.7)

Theorem A.3. There is a constant c = cϕ > 0 such that

Eϕ(X∗
t ) ≤ cϕ

ï
Eϕ(⟨X⟩1/2t ) + Eϕ(∆X∗

t )

ò
for any t > 0. (A.8)

We need the following two results to prove the theorem above.

Lemma A.4. (Lemma 7.1 in [B73]) Suppose that f and g are non-negative random vari-

ables and β > 1, δ > 0 and ε > 0 satisfy

P (g > βλ, f ≥ δλ) ≤ εP (g > λ) for all λ > 0.

Suppose γ = γ(β) > 0 and η = η(δ) > 0 satisfy

ϕ(βλ) ≤ γϕ(λ) and ϕ(δ−1λ) ≤ ηϕ(λ) for all λ > 0. (A.9)

If in addition γε < 1, then

Eϕ(g) ≤ γη

1− γε
Eϕ(f).

Suppose that β and δ are given. Let k be a positive integer satisfying 2k−1 < β ≤ 2k.

Then one could choose γ = ck6.1, and η can be chosen according to δ in the same way.
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Lemma A.5. Assume β > 1 and 0 ≤ δ < β − 1. Then for every T > 0,

P (X∗
T > βλ, ⟨X⟩1/2T ∨∆X∗

T ≤ δλ) ≤ δ2

(β − 1− δ)2
P (M∗

T > λ)

for all λ > 0.

Proof of Theorem A.3. In Lemma A.4, let β = 2. Then (A.5) is satisfied by taking γ =

c6.1. Choose 0 < δ < (1/4) ∧ γ−1 so that 4γδ < 1 and δ−1 > γ ∨ 4 = c6.1 ∨ 4. Thus, one

could take η = 2j∨2 where j satisfies 2j−1 < c6.1 ≤ 2j. Now let

g = X∗
T , f = ⟨X⟩1/2T ∨∆X∗

T ,

Note that δ < 1/2 so that 2δ < 1, thus

ε =
δ2

(β − 1− δ)2
=

δ2

(1− δ)2
< 4δ2.

It follows that γε < (4γδ)δ < δ < 1. By Lemma A.4 and (A.6),

Eϕ(X∗
T ) ≤

c6.1η

1− c6.1ε
Eϕ(⟨X⟩1/2T ∨∆X∗

T )

≤ c6.1η

1− c6.1ε

ï
Eϕ(⟨X⟩1/2T ) + Eϕ(∆X∗

T )

ò
.

Now we can choose

cϕ =
c6.1η

1− c6.1ε

and this completes the proof of Theorem A.3. ■

Suppose ϕ(x) = x4. Then ϕ(2x) = 16ϕ(x) so we can take c6.1 = 16 in (A.5). Now let

β = 2,

γ = c6.1 = 16,

δ = (1/2)γ−1 = 2−5

so that

γε =
γδ2

(β − 1− δ)2
= (1/2)

δ

(1− δ)2
=

2−6

(1− 2−5)2
=

16

312
.
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By (A.7), we can take η = c56.1 = 165 so that (A.9) is satisfied. Thus, we may take

cϕ =
γη

1− γε
=

166

1− 16/312
= (16)6

Å
961

945

ã
in (A.8).

To prove Lemma A.5, we will make use of the following result.

Lemma A.6. Let τ1, τ2 be stopping times such that τ1 ≤ τ2 a.s., and let

Ht = Xt∧τ1 −Xt∧τ2 .

Then Ht is an L2-martingale with predictable square function ⟨X⟩t∧τ1 − ⟨X⟩t∧τ2.

The lemma above in discrete time is an easy consequence of the fact that the sequence

1{τ ≥ n} is bounded and predictable for any stopping time τ , and hence a martingale

transformation by it is again a martingale.

For continuous time setting, we use Proposition II.2.2 in [IW81]: in their notation, the

stochastic integral

IX(ψ)(t) =

∫ t

0

ψ dXs

is defined for all processes ψ = ψ(ω, t) ∈ L2 where L2 is defined in (1.1) of Section II.1,

with respect to the right continuous martingale X that is square-integrable. Simply take

the constant function ψ = 1 so that Lemma A.6 follows (2.3) of Proposition II.2.2 in

[IW81]. ■

Proof of Lemma A.5. Let T > 0, β > 1 and 0 < δ < β − 1. For λ > 0, define

τ(a) = inf{t ≥ 0 : X∗
t > a}, for a > 0,

σ = inf{t ≥ 0 : ⟨X⟩1/2t ∨∆X∗
t > δλ},

Hλ
t = Xt∧τ(βλ)∧σ −Xt∧τ(λ)∧σ.

By Lemma A.6, Hλ
t is an L2-martingale with predictable square function

⟨Hλ⟩t = ⟨X⟩t∧τ(βλ)∧σ − ⟨X⟩t∧τ(λ)∧σ.
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Claim 1. P (X∗
T > βλ, ⟨X⟩1/2t ∨∆X∗

t ≤ δλ) ≤ P (τ(βλ) ≤ T, σ ≥ T ).

Proof. This follows directly from the definition of τ(·): Notice that

{X∗
T > βλ} ⊆ {τ(βλ) ≤ T},

{⟨X⟩1/2T ∨∆X∗
T ≤ δλ} ⊆ {σ ≥ T}.

Claim 2. P (τ(βλ) ≤ T, σ ≥ T ) ≤ P (H∗
T ≥ λ(β − 1− δ)).

Proof. On the event Γ = {τ(βλ) ≤ T, σ ≥ T},

Hλ
t = Xt∧τ(βλ) −Xt∧τ(λ)

and thus

|Hλ
t | ≥ |Xt∧τ(βλ)| − |Xt∧τ(λ)| ≥ |Xt∧τ(βλ)| − sup

t∈[0,T ]
|Xt∧τ(λ)|.

On Γ, τ(λ) ≤ T and ∆X∗
T ≤ δλ which implies

sup
t∈[0,T ]

|Xt∧τ(λ)| ≤ |Xτ(λ)| ≤ |Xτ(λ)−|+ |∆X∗
τ(λ)| ≤ λ+ δλ.

Similarly since τ(βλ) ≤ T on Γ,

sup
t∈[0,T ]

|Xt∧τ(βλ)| = |Xτ(βλ)| ≥ βλ.

Consequently,

|Hλ
t | ≥ λβ − (λ+ δλ) = λ(β − 1− δ).

Claim 3. P ((Hλ)∗T > λ(β − 1− δ)) ≤ 1

λ2(β − 1− δ)2
E(⟨Hλ⟩T ) .

Proof. Since Hλ
T is a martingale, then (Hλ

T )
2 is a submartingale and E[(Hλ

T )
2] = E(⟨Hλ⟩T ).

Thus, the above claim follows from Doob’s inequality (Theorem 1.4 in [CW90].)

Claim 4. E(⟨Hλ⟩T ) ≤ (δλ)2P (X∗
T > λ).

Proof. Since τ(λ) ≤ τ(βλ),

⟨Hλ⟩T = ⟨X⟩T∧τ(βλ)∧σ − ⟨X⟩T∧τ(λ)∧σ
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= (⟨X⟩T∧τ(βλ)∧σ − ⟨X⟩T∧τ(λ)∧σ) · (1{τ(λ)≤T} + 1{τ(λ)>T})

= (⟨X⟩T∧τ(βλ)∧σ − ⟨X⟩T∧τ(λ)∧σ) · 1{τ(λ)≤T}

≤ ⟨X⟩T∧τ(βλ)∧σ · 1{τ(λ)≤T}

≤ ⟨X⟩T∧τ(βλ)∧σ · 1{X∗
T≥λ}

≤ (δλ)2 · 1{X∗
T≥λ}

where the last inequality follows from the assumed continuity of ⟨X⟩t. Consequently,

E(⟨Hλ⟩T ) ≤ δ2λ2 · P (X∗
T ≥ λ).

Since λ was arbitrary, this completes the proof of Lemma A.5. ■
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matematiky, Vol. 94 , No. 1, 84–90.

[JS87] Jacod, J., Shiryaev, A. N. (1987) Limit Theorems for Stochastic Processes.

Springer, New York.

[L85] Liggett, T. M. (1985) Interacting Particle Systems. Springer, New York.



85

[L99] Liggett, T. M. (1999) Stochastic Interacting Systems: Contact, Voter and Exclu-

sion Processes. Grundlehren der mathematischen Wissenschaften (GL, volume

324).

[LS10] Lubetzky, E., Sly, A. (2010) Cutoff phenomena for random walks on random regu-

lar graphs. Duke Mathematical Journal.

[N99] Nettle, D. (1999) Using Social Impact Theory to simulate language change. Lin-

gua, Vol. 108, Issues 2–3, 95-117.

[O11] Oliveira, R. I.(2011) Mean field conditions for coalescing random walks. Ann.

Probab. 41(5): 3420-3461.

[P88a] Perkins, E. A. (1988) A Space-Time Property of a Class of Measure-Valued

Branching Diffusions. Trans. Amer. Math. Soc. Vol.305, No. 2 pp. 743-795.

[S64] Spitzer, F. (1976) Principles of Random Walk. 1st ed. Springer New York, NY.

[S71] Spitzer, F. (1971) Random Fields and Interacting Particle Systems. Mathematical

Association of America.

[SV79] Stroock, D. W., Varadhan, S. R. (1979) Multidimensional Diffusion Processes.

Springer-Verlag Berlin Heidelberg.

[WB79] Williams, T., Bjerknes, R. (1972) Stochastic model for abnormal clone spread

through epithelial basal layer. Nature 236, 19-21.



86

Vita

Name

Tianyue Wu

Education

B.S., Mathematics, University of Washington - Seattle, May 2016.

M.S., Applied Statistics, Syracuse University, May 2019.


	Rescaled Density Processes of Voter Model Perturbations on r-Regular Random Graphs converge to Feller’s Branching Diffusion
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Notation
	Assumptions and main result
	Voter model perturbations
	Bound on transition probabilities
	Main result
	Applications of Theorem 1.2
	Comparison with high density diffusive limit theorem
	Outline

	Semimartingale decomposition
	Comparison with biased voter model
	Estimation by the voter model
	Convergence of coalescing random walk probabilities
	Tightness; identification of the weak limit
	Appendix
	Proof of Proposition 1.1
	An elementary lemma for submartingales
	Meeting time lemma
	A continuous version of Burkholder's inequality

	Bibliography
	Vita

