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ABSTRACT

Voter model perturbations can be viewed as voter model (neutral competition) plus a

small perturbation rate. Cox [C17] showed that the biased voter model, viewed as a voter
model perturbation, converges to Feller’s branching diffusion under mild mixing condi-

tion. We extend this result to a general class of perturbation functions on the setting of r-
regular random graphs where the nearest-neighbor voting kernel has a strong mixing prop-
erty, and prove a low-density diffusive limit of which the convergence of biased voter model
is considered as a special case. The other special case considered is the ¢g-voter model whose
high-density ODE limit on torus for ¢ &~ 1 has been proved by Agarwal, Simper and Dur-
rett [ASD21]. We will introduce the low-density approach we use and show that a mean-

field simplification occurs.
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Chapter 1

Assumptions and main result

In [C17], Cox showed that rescaled density processes of biased voter models on large finite
sets converge to Feller’s branching diffusion, under the low initial density condition: the
initial number of particles has a smaller order than the size of the space. In their work,
the biased voter model is viewed as a voter model perturbation and voting kernels are as-

sumed to have minimum mixing property: no particular site can be visited significantly

N

meet> the expected meeting time of two walks starting

more often than others, and that ¢
from stationary, has a larger order than the separation time tﬁ,\gp. The time and mass scale
are assumed to be between tﬁp and tV__..

We extend the result in Cox [C17] to a class of generalized voter model perturbations
and prove a convergence for rescaled density processes to branching diffusion for the asymp-
totics on r-regular random graphs. The existence of the scale for getting this diffusive limit
is implied by that the mixing time ¢Y. has a smaller order than ¢Y_. on these graphs.
Walks with this property meet either quickly, or do not meet until they "realize” that the

space is finite. This property also implies that macroscopic independence will happen un-

der suitable large time scale depending on initial number of particles.

Our introduction is structured as follows. In Section 1.1, we give the definition of voter

model perturbations and state its generator. We define the rescaled density processes on r-



regular graphs and state the low initial density assumption and perturbation assumptions.
In Section 1.2, we define the collection of "good” r-regular graphs and show that with high
probability, a simple, connected r-regular random graphs is a good graph. In particular,
these graphs have strong bound on the transition probabilities. Our assumption on the

time scale will be that its order is between t. and tY We are able to relax the lower

maix meet*

bound ¢, used in [C17] to t};, as the mixing time for good r-regular random graphs is

sufficient for providing the control on the separation distance defined in (1.5). This fact

will be used frequently in later proofs.

We state the main result in Section 1.3 by using the martingale characterization of the
branching diffusion with a description of the limiting drift and branching term using coa-
lescing random walk probabilities. We will explain the implicit ”double-layer” randomness

in this result, and the fundamental reason for getting the branching limit.

We will describe two examples of the main result in Section 1.4. The first is the bi-
ased voter model considered in Cox [C17] and was first introduced by Williams and Bjerk-
nes [WB79] as a model of tumor growth. This model has been studied in many litera~
tures such as Durrett, Foo and Leder [DFL16] in which they studied the spatial Moran
model that is considered as a generalization of biased voter models, and Bramson, Grif-
feath [BG81] where they gave an estimation on the size of the cluster of the biased voter

model starting from a single particle on lattices.

The second example is the g-voter model which was introduced in Nettle [N99] as a
model of language change in social networks, and in Abraams and Strogatz [AS03] as a
model of language death. Under high initial density condition that initial number of parti-
cles is equal to the order of size of the space, Agarwal, Simper and Durrett [ASD21], the
first paper related to the study of this model in mathematics, proved an ODE limit on
torus under homogeneous mixing condition in Theorem 1.1 and 1.2 in their work. The
idea followed Cox, Durrett [CD16]: as shown in Theorem 6 in Section 7.2 of [CD16], the

reaction function in the limiting ODE is given by the expectation of perturbations un-



der voter stationarity. We will give the low density diffusive limit of the ¢-voter model for
q < 1 close to 1 as a corollary of our main result. The connection between our low den-
sity diffusive limit and the high density ODE limit is the following: when under low initial
density, the local density of 0 at a site is very close to 1. Thus, the limiting drift in the
low density diffusive limit is exactly equal to the derivative at 0 of the reaction function in
the high density ODE. For complete details, see Section 1.8 in Cox, Durrett and Perkins
[CDP13].

In Section 1.5, we make a comparison between the low density branching limit theorem
and the Wright-Fisher limit theorem for voter models that is proved in Chen, Choi and
Cox [CCC16] where a mean-field approximation for this model is used and t%__, serves as
the time scale. And finally, we give an outline of the low density approach we use in Sec-

tion 1.6.

1.1 Voter model perturbations

Let us begin with some definitions. Let Vyy be a set of N vertices and [N] = {1,.., N} be
a numbering on it. We will assume that Viy = [N]. Suppose that Gy is an r-regular graph
built on Vy with » > 3. Let d be the graph distance and denote y ~ x if d(x,y) = 1.

Define the nearest neighbor transition kernel ¢ by
¢ (z,y) = 1/1 1ynsy, @,y € V.

For € € {0,1}"~, define the local densities f = fN(z, &) by

S (,€) = Z ¢V (z,y) - Ligwy=iy, 1=0,1L

yeEVN

For 2 € Vy and [ € N, denote N;(z) = {y : d(x,y) = I} and define

(e, &)= Y Ye(y) =i}, i=0,1

yeN(z)

so that n}(z, &) is the count of type ¢ in the boundary of distance-I neighborhood of z in .



Let |A| denote the cardinality of subset A. To simplify the story, we consider only fi-
nite interaction range which is enough for exhibition of the phenomena. Let the interac-

tion range R > 1 be fixed. Define

Np =r(r—1)%"
so that for any x € Vv, Ny satisfies

max [Ni(@)] < Ni.

Let N7 be functions on {(I,k) : 1 <1l < R, 1 <k < Np} foreach N € Nand i =0, 1.

Define the perturbation functions

Ngr

M, &) =3 Y 0N L) iegmry, 0= 0,1

I=1 k=1
Let v — oo be a positive sequence. Define {}G N as the {0, 1}"~-valued Markov process

with rates that at each event time at site x, {(x) makes transitions

0— 1 atrate 7y fl + F},
(1.1)

1—0 atrate nfy + Fy'.

We will denote & () =1 —&(x) for convenience. Let £* be the configuration

), y#uz,

and define rate functions

& (@,€) = E(@) [ (2,6) + &(2) ¥ (., €),

~

cn(@,€) = E(@) Y (2,€) + (o) Iy (., 6).

We consider the asymptotic behavior of systems th N with time scale 7y. Let cy(z, &) be

the rate function of the spin-flip system zftG N that is defined as

en(@,§) = 7 - (@, §) + ey (w,€)



so that the generator Ly of €7V is

Laf(€) =) en(,O)(f(€) = f(£)

€V
for functions f: {0,1}'"» — R.
Consider the density processes
N l&™ 1 Gy
zZN = =— > &V(x), logN <71y < N.
™ ™~ zeVN

The following ”low initial density” assumption is in force:

&7

N

7y = — c € [0,00). (1.2)

This condition implies that there exist a constant C3 > 0 such that
7Y < Cy3, forall N. (1.3)

The fact (1.3) above will be applied frequently in later proofs.
The following perturbation assumptions will be assumed through out this work. For
1=0,1, NeN,1<I<Rand 1<k < Npg,
(P1) 6™, k) >0,
(P2)  0'(l,k) = dim oM (1, k) exists.

In particular, (P2) guarantees boundedness of the perturbation functions Fj(x,§).

1.2 Bound on transition probabilities

Denote By(z) = {y € Vy : d(z,y) < [} as the distance-l neighborhood of z. To have
a quantitative description of whether By(x) is locally a finite tree , we introduce the tree

excess defined in Section 2.2 of [LS10], denoted as tx(B;(x)):

tz(Bi(x)) = the maximum number of edges that can be deleted from the

induced subgraph on B;(z) while keeping it connected.



Heuristically, the tree excess represents how many loops are there in the neighborhood. In
particular, tx(B;(z)) = 1 means that Bj(z) contains one loop, and tz(B;(z)) = 0 means

that Bj(x) does not contain any loops, and hence is a finite tree.

Denote Iy = (1/5)log,_; N and define

I'y ={x € Gy : tz(B),(x)) = 0},
Iy ={z € Gy :tx(B(x)) =1}.
Let o be the constant in Theorem 6.3.2 of Durrett [D07] and let v = a2/2. The transition

function p (z,y) is defined as the probability kernel of continuous time random walk with

jump kernel ¢:
4k
Z k— z,y € Vy (1.4)
k=0

where ¢ is the k-th iteration of ¢”. This implies that the stationary distribution 7 of

pY is the uniform distribution on Vy. Define

P (z,y)
™ (z)

AY = max

xvyevN

P -y (15)

—1‘:N' max

557y€VN

We call G a good graph if it has the following properties:

(i) Gy is connected,

{a : ta(Byy (2)) # 0} < r*N*7,

(i

)

(ii) tx(By(x)) <1 for all x € Vy,
)
)

(iv) AN satisfies that
AN < Ne™ forallt > 0. (1.6)
In particular, (ii) and (iii) imply
Vn =TnyUTy and |Ty| < 2N/, (1.7)
and (iv) implies that for each x,y € Vy and ¢t > 0,

pr' (2, y) = 1/N| < e, (1.8)



Denote Gy (r) as the collection of all simple r-regular graphs on Vi, and endow Gy (r)

with uniform measure. Define the sequence of events
Exn ={G € Gn(r) : G is good}.

In the following definition and the next proposition, P denotes the uniform measure on
Gn (7). And we say that a sequence of events Ay C Gy (r) occurs with high probability,
which we will abbreviate as w.h.p., if

_ AN
|G ()]

P(Ay) —1 as N — 0.

Proposition 1.1. Let G be chosen uniformly at random from Gy(r). Then G € Ey

w.h.p.

See Section A.1 for the proof of this result.

1.3 Main result

We use the following martingale problem characterization of Feller’s branching diffusion.
An adapted a.s.-continuous non-negative real valued process Z; on a filtered probability
space (§2, F, (F:), P) is said to be a Feller’s branching diffusion with drift § and branching
rate 3 started at Z; if its law solves the martingale problem:

(MP)%OQ M, =Z,—Z,—0 /t Zsds is a continuous (F;)-martingale with predictable

0
square function (M), = 3 /t Zds.

Let Cy[0,00) be the space of continuously dizferentiable functions vanishing at infinity.

The generator L of the solution of the above martingale problem is given by

LF(2) = (0)(2) + (B2)5 £'(2)
for f € ([0, 00) such that f', f" € Cy0, 00).

Let G'" be the r-regular infinite tree with vertex set V. Introduce a system of coa-



lescing random walks {Ef, e € V'}. Each E\f has rate 1 with step distribution ¢" that is

given by
q"(e,€)=1/r Liney, e €V
For A C V' finite, define E\tA = {B\f,e € A}. For finite disjoint A, B C V', define the
stopping times
o (A) = inf{t > 0: ]/B;A| =1},

7"(A, B) = inf{t > 0: B*N B? + o).
Denote p as the root of the infinite tree. Introduce the ”escape probability”:

P = 4" (p,e)P(r" (p,e) = o0).

p!™¢ is the probability that a walk starting at p never returns to p after leaving. A good

reference for it is Spitzer [S64]. Next, define

Nilp) = fe € V' s d(p,e) = 1},
Silp) = {AC Nilp) : 4] = K},

Ni(p) = Ni(p) U {p}.

and define the coalescing random walk probabilities

P Lk) = ) P(E"(AB) =00, 0"(A) < x),
A8 k(p)
B=N;(p)NA®
tr,0 _ tr o tr
pPrLk)= ) P(r'"(AB) =0, 0" (B) < ).

AeSy k(p)
B=N;(p)nA¢

We will use the notation ay < by to mean that ay/by — 0as N — oo. Let PZ’B(;Q
be the law of the solution of (MP)@’O@ on C([0,00),RT). Denote PV as the law of Z¥. Our

main result is



Theorem 1.2. Assume (1.2), (P1)-(P2) and
log N < 7y < N. (1.9)

For any sequence of r-reqular graphs {Gyn} such that Gy € Ey for each N,

PN = py’
where
B=2p",
R Ng
0 = Z Z(@l(x, E)p!™ (1, k) — 6°(1, k)p!™O(1, k).
=1 k=1

Here = denotes weak convergence. The upper bound in (1.9) is the order of t¥__, of
good r-regular random graphs which comes from the result of Oliveira [O11] who showed
that tY_., is equal to O(N) for most graphs. This generalized the result in Cox [C89] who
showed that the order of voter model consensus time on torus for d > 3 is equal to the

size of the space. The lower bound comes from the main result of Lubetzky and Sly [LS10]

N

who proved that ¢, for good r-regular random graphs has order log N.

Implicitly, there is a double-layer randomness in the law P": one comes from the ran-
dom graph Gy, and the other is from the voter model perturbation ¢V. Less formally, the
theorem above says that the rescaled density processes converge to Feller’s branching dif-
fusion with high probability. Therefore, Proposition 1.1 is essential for getting the theorem

above.

The key for obtaining the branching limit is low initial density. As the jump kernel
q'" defines transient walks, the low initial density assumption implies the following con-
sequence: as particles spread out quick and become far apart, only those at the boundary
can involve in the time evolution. The occurrence of a transition from 1 to 0 at a site de-
pends asymptotically on its local density of 0. Therefore, at the large time scale 7, this

proportion can be approximated by the "escape” probability. This makes transitions at a



10

site alike a branching mechanism.

1.4 Applications of Theorem 1.2

We describe two examples of Theorem 1.2. In each case we will see that the perturbation

conditions (P1)-(P2) hold.

Example 1.3.(Biased voter models). Suppose that by — b is a convergent non-negative
sequence. Cox [C17] considered the biased voter model which has transitions
0—1 atrate Ty fY 4+ by fi,
N
1 =0 atrate7nfy .

The perturbation assumption (P1) is satisfied by by > 0, and convergence of by implies

(P2). If by = 0 for all N, then 57 is the basic voter model and one has

If by — b > 0, then

tr.e tr,e
s ,bp >

2

PN = P

Example 1.4.(q-Voter models with ¢ < 1 close to 1). Let £&V () make transitions
i—1—1i atrate 7n-(f1,;)% i=0,1

We consider ¢ = qny < 1 close to 1. Note that these rates imply that interaction range
R =1 so that [ has only one value [ = 1. Thus, we will use n;(z,€) = |{y ~ = : {(y) = i}|

instead of the notation n}(x,¢) in the definition of perturbation functions.

Following Section 1.1 of Agarwal, Simper and Durrett [ASD21], we view 7V as a voter

model perturbation as follows. Let gy =1 — 0, dy € (0,1). For i = 0,1, we can write

(fiN)qN = fiN + ((fiN)qN - sz> = fz’N + (sz> ) ((fiN)iaN - 1)-
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This implies

(f) " —1

T L™ = e )

(1.10)

Define

P L
k T 1/7—N ’

It is clear that ¢l > 0 for all N € N and k = 1,..,7 so that (P1) is satisfied. Now (1.10)

can be written as

TNfiN + Z Civ : 1{714(1‘,5):]{3}7 1= O, 1.

k=1
Define
k
— log<£), k=1,..,r—1,
_J)r k
C —
0, k=r

Note that if oy = T]\_,l, then for each k = 1,..,7, ¢ — ¢, as N — oo: let u = k/r,

i
: ouN —1
lime) = u-lim
N N

This implies that ¢ satisfies (P2).

Define N(p) = {e € V" : e ~ p} as the nearest neighborhood of the root p on the

infinite tree, and N'(p) = N(p) U {p}.

Corollary 1.5. Let §y ~ Ty'. Suppose that @GN is the q-voter model defined in the exam-

ple above and assume (1.2). Iflog N < v < N, then PN = Pg(’)e as N — oo where
5 =2,

0=> cn- >, <P(T”(A, B) = 00, 0'"(A) < c0)

k=1 ACN(p), |Al=k

B=N(p)nA¢°
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— P(r"(A, B) = 00, ¢"(B) < oo))

1.5 Comparison with high density diffusive limit theo-
rem

Chen, Choi and Cox [CCC16] proved that density processes of voter models with high ini-
tial density on large finite sets converge to Wright-Fisher diffusion, under mild mixing con-
dition. Convergence to either Feller’s branching diffusion or Wright-Fisher diffusion reflects
that mean-field simplification occurs for the asymptotics. This is guaranteed by macro-
scopic independence between particles. We now discuss the effects of the choices for time
scale 7y and mass scale my according to different initial density. To get a clear picture

of the story, we will assume that models are defined on good r-regular random graphs Gy

which is a special case that satisfies the mixing conditions assumed in [CCC16] and [C17].

We will denote & as the rate 7y voter model on Vi in this section: that is &Y has rate
en(z, €) defined in Section 1.1 with ¢i(x,€) = 0. We will write the density process Z}¥
defined in that section as X;}¥ below:

XY =Y ) - S N @) ()

m
reVNn N reVN

where my — 0o is the mass scale and 7% is the uniform distribution on Vi
N(z) Loy eV
™ (x) = —, or x ,
N N

which is the stationary distribution of pY¥ defined in (1.4). Define
p(©) = X n @) (X @ n)E) )
x Y

= ZWN(-?S)QN(%,@/)&(%)E(Z/), ¢ e {0, 13",
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Let us recall a few definitions. The Feller’s branching diffusion Z; with zero drift is a

continuous martingale with quadratic variation

w»:alizw7

and Z; has generator

LI(:) = (830" (), = € [0,0).

The Wright-Fisher diffusion Y; is a continuous martingale that has quadratic variation

<nﬁiku4@m

and Y; has generator

1
Gf(z) = (z(1=2))5/"(2), for f € C*([0,1]).
where C?([0, 1]) denotes second order continuously differentiable functions on [0, 1].

Using the decomposition which we will introduce in Chapter 2, one obtains the quadratic

variation process for XV as

1 t
w%:—Amm@m&

Introduce

and let M, , be the first meeting time of two independent rate 1 random walks starting

from x,y € Vy respectively. Recall that ¢Y. is the mixing time that has order

tN

miz ~ 1og N as N — oo,
and tY¥__, is the expected meeting time of two independent walks starting from stationary

ty E(Myy) ~ N as N — oc.

meet ~
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The crucial fact is that if 7y ~ tY_, one gets the following exponential decay of the tail

meet)?

probability
P(Myy+ > 7nt) =~ constant - e~ for N large (1.11)
while if . < v <tV
P(Myy > Tnt) ~ constant independent of ¢ for N large. (1.12)

(1.11) is from Corollary 4.2 in [CCC16] and (1.12) is from Proposition 4.2 in [C17].

Under low initial density, 7y and my satisfy

trj:[ma: <7y =my K taneetv
|€ ‘ (1.13)
XN =200 5 2 €0,00).

Note that N/my — co. In fact, if £V is the voter model perturbation defined in (1.1) and,
in addition, its drift term is positive, then XV has exponential growth asymptotically and

hence is an unbounded process.

By the duality equation for voter models,

B (y(e)) = B &) By )& (Bhl): Muy: > 2try.

The time and mass scale in (1.13) imply the following two kernel properties: first, for any
r,y € Vi,
2m N
mnPiry (2,y) < — 0
This implies that with large probability walks do not hit &Y by time at the scale so that

P(B2tTN € 50 ; 2tTN ¢ &)~ P( 2tTf\] e &, ™V (x,y) > trw).

We will prove the fact above in Chapter 4. This implies

B (p10(§2t)> (50 (Bgtgv) Myy: > t1y).
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N

Secondly, as Ty > t,,.., then macroscopic independence is implied by the bound

INpL (z,y) — 1] < Ne ™) — 0 (1.14)
so that
B(& (Byin )i Moy > trw) = B(& (By)) - P(Muy: > trv).
Together with (1.12) leads to the mean-field simplification

t
(XMY, = 2P(Myy: > Tnt) / XY ds.
0

Note that on Gy, the limit of the probabilities P(Myy+ > 7yt) is exactly the escape prob-

ability p'™¢ defined in Section 1.3.

Under high initial density, the time and mass scale are

™N =My ~ tﬁeet?

|§N| (1.15)
XY =220 52 elo,1].

my

Under (1.15),
XN=VY as N — oo

according to the main result of [CCC16]. Note that X% is a bounded process.

For simplicity, let us assume my = 7y = N. For v € [0,1], let u, be the product

measure on {0, 1}V,
fa(6 =1 o0n A) =y
for A C Vy finite. The duality equation for voter models implies that for z,y € Vy,
P () = 1,64 (y) = 0) = u(l = w)P(Myy > try)
so that

E*(pN(EN) = ull — u)P(Myyr > try).
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Furthermore, the duality equation also implies
1 N
B (1= X)) = B Y @R W)
$7y
= u(l — U)P(MU,U/ > tTN).

As 7y = N > tIV. = a bound similar to (1.14) can be obtained. This implies that particles

must be separated apart by a macroscopic distance so that successive meetings are roughly

independent. Also, note the fact that

t

P(Myy > 1nt) e as N = oo

which can be implied by [O11], and (1.11) says that the meeting time My is almost ex-

ponential. In symbol, this mean that
t
(XN, ~ / XN - XNy ds.
0

For details of the last line, see Lemma 6.2 in [CCC16].

We make a final remark. The Wright-Fisher diffusion originally can be viewed as the
limiting average of allele densities. Thus, the macroscopic independence plays the ma-
jor role for obtaining this diffusive limit. For details regarding this point, see the proof of
(3.1), (6.6) and the discussion in Section 1 of Cox [C89] on Kingman’s coalescent lurking

behind under the large scale.

1.6 Outline

The low density approach we use is structured as follows. In Section 2 we obtain a semi-
martingale decomposition. In Section 3, we give an argument of a comparison with the
biased voter model and derive some bounds on Z». In Chapter 4, we provide some tech-
nical estimates of the drift term and branching rate using duality for voter models. Con-
vergence of these estimates to coalescing random walk probabilities on the infinite tree will

be proved in Chapter 5. Finally in Chapter 6 we establish tightness by verifying Aldou’s



criterion and identification of the limit is done by L!-estimation.

From now on, {Gy} is a sequence of good graphs. We will use the notation &

to denote the processes th N Until further notice, Z will denote Z .

zeVN

17
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Chapter 2

Semimartingale decomposition

Define

LYFE) =7n - > e, O(F(E) = £(£),

Lrf(&) = enl@, O (f(E) = £(£).
so that the generator Ly of &Y can bxe written as

Laf(€) = (L% + LY ().
For ¢ € {0,1}"¥, define
v () = Z(E( VY (2,6) + (@) £ (2, €)),
dNl (g Zg VEN (z,€),
dNO(E) =) () Y (x,€).

The next proposition provide the decomposition for |£Y].

Proposition 2.1. For allt > 0,

6" =g | + Dy + MY



where M} is a P&’ -martingale with quadratic variation

(MY, = / o (€Y) + ¥ (EN) 1 aVO(EN)] ds

and

Denote
my' (&) = d™ (&) — a™0(¢),
my (€) = Tvun (€) + [dVH(€) +d™(€)].

An immediate consequence of Proposition 2.1 is the decomposition of Z:

Corollary 2.2. Let M} = —M}N. Then MY is a martingale with quadratic variation
™

= [ mdie) as.

2
N

Moreover, define

1 t
D = [ () as.
TN 0

Then for all t > 0, ZN has the semimartingale decomposition
zN =78 + MY + DN,

To prove Proposition 2.1 we will need several preliminary results. In the next lemma
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we give some basic facts which will be frequently used in the proofs later. Define functions

fE&)=1lel, g =gl
Lemma 2.3.

(a) F(€%) — F(€) = E(x) — &().

(b) 9(€") — g(&) = 1+ 2[¢|(&(x) — &(x)).
() > " (@ ve@)Ey) = ¢V (@ y@)Ey).
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Proof. (a) is immediate by a simple calculation. For (b), we have

1= (Zew) + &) = lel + Ew) -~ £@)

yF
so that

9(€") — 9(6) = (16" — leN(I€"I + I¢)
= (€(x) — €@)2kE] + (€x) — £(2))
= 20¢](é(x) — (=) + 1.

And lastly, (c) is by symmetry of the kernel ¢" (z,y).

|
Lemma 2.4.
(a) Lyf(E) =
(b) Lxg(&) = Tvon(§).
Proof. For (a), by Lemma 2.3 (a), we have
Ly (€)= ZTwC?v(%é)(f(ﬁz) - f(6))
= erq 2, y)(E@)EY) + E@)EW)) - (Ex) — E())
- TN(Zq (2, 1) (E@E)EW) — E@)E@EW) (2.1)

S ACINGE y>—s<w>§<y>>).

~

By the fact that {(x)&(x) =0, (2.1) is equal to

v Y ¢ (5, y) E@)E(Y) — E@)EWY) =0
Y
where the last equality is by Lemma 2.3 (c).

For (b), by Lemma 2.3 (a) and (b)

Lyg(&) = vei(@,&)(9(6") — (&)
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= 3 ek )1+ 20el Ela) — £(2))

= | Y el ©) + 20l 3 e, O Ele) — )

= 7v ) Rlw, §) = Tvon(€) (2.2)
where (2.2) is by part (a). x |
Lemma 2.5.

(a) Ly f(€) = d¥H(&) — dVO(©).
(b) Lyg(&) = AN () +dV0(€) + 2[¢] - (@™ (&) — dVO(€)).
Proof. Direct calculations show that
Lif(&) = Zc&(sc, E(F(E) = £(£)
= Z FN(@,€) + &) - B (2,6) - (E(x) — ()
—Zf VY (x,€) Zé’ VEyY (,€)
= V! (€) = dV0()
and by Lemma 2.3 (b),
£) = ;c}“v(rc,ﬁ)(g(i‘”) —9(¢))
— %jc&(x,s)(l +2[¢](E(@) — &(2)))
= (@) + dV0(€) + 20¢| (a1 (€) — dM(9).
|

Proof of Proposition 2.1. Recall that f(£) = |¢], and g(§) = |£|*>. Define

MY = F(€N) — F(EY) - / L f(€N)ds

QY = g(e™) — g(&) /cNg
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By Theorem 1.5.2 in [L85], M} and QY are martingales. Combining Lemma 2.4 and 2.5,

MY equals to
MY =161 — 16— [ e - ave) ds
=& - lso'| = DY,
and QN equals to
QN = |EN 2 — (& — / o) + (@ (€Y) + AV (EN))
+20] (@™ (&) — d™O(e))] ds.
Apply Exercise 2.9.29 in [EK86] to M and QY so that one gets the martingale
Y = [ (€ + ) + a0 s

Now the integral part of the last line gives (M™),.

(2.3)
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Chapter 3

Comparison with biased voter model

In this chapter, we show that & is close to the voter model over a short time period. This

will be done by a comparison with the biased voter model §tN * which we define now.

For £ € {0,1}"~, recall the definition of local densities
S =2, 6) = ZQN(xyy)l{f(y):i}a i=0,1
Y
Define the bias parameter

b=sup» > (0N k) + 0™ (1, k).

For z € Vi, define
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Recall that n!(z, &) is the count in £ of type ¢ in N;(x):

ni(z,) = Y Héy) =i}, i=0,1 (3.1)

yeEN ()

and define the total count of type 1 in N (x)

The biased voter model & has the following dynamics: at = € Vi, &"(z) makes transi-
tions
0—1 atrate Tnfi¥ +b-ni(z,§),

1 —0 atrate 7y fg

so that the rate function for £V°(z) is
(@,€) = Tvek (2. 6) +E(x) - (b m(2,)).

We first provide the bounds on biased voter models in the next proposition.
Proposition 3.1.  Fort >0 and &' € {0,1}"~,
() B |6V <[] - .
() B (€57) < 168+ 16 2r + D) - 1600 00

Proof. We follow the idea of Corollary 2.1 in [C17]. Notice that

Zé?(ﬂ?)”l(xf > E(w

T yeN(z)

“Yew( X §<x>)

€N (y)
< K¢l (3.2)

By (3.2) and applying Proposition 2.1 to \gtN”’\ , we have

EFIE =161+ [ 030 BF @) m(e. ) ds
0 T
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t
<161+ o) [ BSIE ds
0
Thus, apply Grownwall’s inequality to the function f(s) = E% (JEN?]) and the proof of (a)
is complete.

For (b), using Theorem 1.5.2 in [L85] and Lemma 2.3(b), we get
B () = g5+ [ B o€
o B9 | S8 (e, &) - (1420 - @) - €% s
By (3.2), x

S &) (e,6) - (1+2)¢] - (Ela) - €(2)))

T

= (1+21€) Y mx, 9)8(@) < (1+2[¢]) - Klgl.
This implies
B9GP < 161+ [ 2rB® I + B9 [+ 20k - V] do
0
Rearrange the terms and apply part (a), we obtain

t t
B (|612) < €Y + (27w + bK) / ES|ENY ds 4 20K / ES (|eN02) ds
0

0

t
< {\55%2 + &2y +0K) - tet(b’c)} + 2bIC/ ES (1ENY)2) ds.
0

The result follows by applying Gronwall’s inequality to the function g(s) = ES (1€M4)2).
|

We now construct two couplings which make a comparison between particle systems.
The existence of both will be implied by Theorem III.1.5 in [L85].

We say that £ < nif {(z) < n(z) for every z € Vy. The first coupling is between the
voter model perturbation and biased voter model. To verify the assumptions of Theorem

I11.1.5, suppose that £ <n. If n(x) = £(z) = 0, then

en(@,€) = v fi' (2, €) + FY (x,€)
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R Ng
= f (2,€) ZZ O (1 )L g (0,0)=4)
=1 k=1

R Ngr
<TNf1 xn Zzl{nlxn
=1 k=1

< v fiV () + by (z,m) = R (z,m)

and similarly, if n(z) = £(z) = 1,
CN(J],f) = TNféV(ZL',f) + Fév<x’§)
> TNféV(%??) = C?V(xﬂ?)'

Thus by Theorem I11.1.5 in [L85], given that & = év’b, there is a common probability

space such that with probability 1,
N < forallt > 0. (3.3)

The coupling between the voter model and the biased voter model is constructed in a

similar way. Let ftN " be the voter model with generator £% and suppose that & < n. If

n(z) =¢&(x) =0,

TNf1N<‘T777) < TNle(xan) + bnl(l'ﬂl) = C?\7<$777)

TNféV(‘Tag) > TNféV(x777) = C?v(ﬂfﬂl)

Thus, the assumptions of Theorem II1.1.5 in [L85] are verified. Given that £ = ¢I, there

is a common probability space such that with probability 1
fiN’v < fth for all t > 0. (3.4)
By Corollary II1.1.7 in [L85], (3.3) and (3.4) imply

ES (h(e))) < BS (h(eM™)) (3.5)

ES (h(eN)) < ES (h(e)™)) (3.6)
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for any function h = h(&) such that h(§) < h(n) given that £ < 7.

Corollary 3.2.  For any & € {0,1}"~ and t > 0,

(a) BV IEY| < 6] - .

(6) ESIEY1] < (16717 + 16371 (2r + bK) - 1@ - 200,

Proof. Part (a) is immediate by (3.5) by taking h(§) = || so that
ES 16| < B |6V,

Similarly for part (b), take h(£) = |£|? and obtain

ES (|§V) < B9 (1€7).

Recall the definitions vy and d™*
ov(€) = Y (@) (@, + (@) £ (2, €)
V&) = @) PN (2, )

dV0(&) =) &)y (x,8).
The next proposition will be used in Corollary 3.7 to show that the voter model perturba-
tion is close to the voter model over a short time period.
Proposition 3.3. There exists a constant Cs3 such that for allt > 0,
(a) B Jo(&") = un(€))] < 42V (26Cs4) - 160 (€ = 1) + 1",
(b) B | (€)) — dV(EN)] < Coal2V (20Cs3)) - 16| (P = 1) + £ for i = 0,1,

To prepare for the proof, we first give some preliminary bounds. For x € Vy, £ €

{0,1}", A C Vy, define

x(x, & A) = Hf

acA



Lemma 3.4. For &,n € {0,1}Y~, and A, B C Vy disjoint,

x(2,& A)x(x, € B) — x(z,n, Ax(z, 5. B) < Y |£(y)

yeAUB
Proof. By twice using the fact that |[[z; — [Jwi] < > |z — wy| for z;, w; such that
|zi|, Jwi| <1 (Lemma 3.4.3 in [D19]), we have
|X(ZL‘, ga A)X(IE, gﬂ B) - X(xa UE A)X(.CE, ﬁv B)’
< Ix(w. & A) = x(@,n. A)| + (2. & B) = x(2.7, B)

<D l6@) = nla)| + D _IEB) ~ 7

acA beB

= ) ) -

yeAUB

For ¢ = 0,1, define df?fk’i
N, o~
dl,kl(f) = Zé(x)l{n}(m,ﬁ):k}a

d%o(g) = Zf(x)l{n?(az,é):k}a

then we can write d¥ as

() = S &) FY ()

_ %: £(x) < XR: f: ™1 k)l{n;@:,g)—k})

=1 k=1
R Npg
—ZZ&Nllk<Z§ )Lt (.6)= )
=1 k=1
R Ng
_ZZHNlldel )7
=1 k=1
R Ng
dNO(¢ Zg VEY (2,6) =D ) 0N k), (€).
=1 k=1

Lemma 3.5. For £ € {0,1}"7,

28



(a) vy (&) < 2[¢].
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(b) There is a constant Cs5 such that d%ﬁ(f) < Cs5 -], fori = 0,1 and1 <1 < R,

1< k< Ng.

Proof. Part (a) is by

= > " (@) E@)EW) + E@EW))

<Y d (@ y)E) + ) = 21,

For (b), for i = 1, by definition we have

so that we could choose C; 5
Similarly for ¢ = 0,

dNO

Zf L)L nl (@, 6)=k}
=3 3 X@.64) x(@EB)

x AESl’k(m)
B=N;(z)NA®

<> Y x@ 6 A

z  AeS;k(z)

<> Z (a) < K28 - |¢]

T ACN(z) aeN(z

= K2k,

Zf 1{”1 (@.8)=
:Z Z X($,£>A)X<x7£73)

x AGSUC(.'E)

B=N;(z)NA®
<> Z (z,€,B)
r BC/\/

<> > Zf(b)sm’%l-

T BCN(z) beB

Lemma 3.6. For anyn, £ € {0, 1}~ with € <n,

(3.7)

(3.8)



(a) lon (&) —on(n)] < 4(In = I€])-
() |dyy (€) = di ()| < Cas(lnl = [€]), i =

Proof. For (a), direct calculation with applying Lemma 3.4 gives

lun (§) — v (n)]

For (b), by Lemma 3.4 we have

[y (&) = dyy (m)]

<> D @& A)x(, € B) = x(x,m, A)x(x,7, B)|
T AES i(z)
BN ()nA°

<> D K-

T AESl k() yeAUB

B=N, (z)NA°
<SS K -l Y. L
T yeN(z) A€S) k(x)

B=N;(z)NA®
Since ¢ < 7, the last line is bounded by

25 D (ly) —€ly) = 25K (Inl — [€]).

T yeN(z)

The calculation for ¢ = 0 is similar.

Now we prove Proposition 3.3.

30

Proof of Proposition 3.3. We first bound the difference of the total masses. By Lemma 2.4
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(a) and Lemma A.1, |£V"] is a martingale and [£"?] is a submartingale. This implies

0 <ES | - Vg < (Efév &1 = 1 |) + ‘Eﬁév &= 1€, (3.9)
0 <ES | — B |6V = B9 16" — |&7)). (3.10)
Using Proposition 3.1(a),
ES G — 16 < 1€ 1(e® — 1), (3.11)
And by Proposition 2.1,
16~ 1631| = |9 012+ B 0D
N t N
= |e= o) < [ B as
0
To bound E&' |mY (&N)|, we have
R Np
my (O = Y Y (6% (L k) (€) — V0, k)diﬁ;"(&))'
=1 k=1
R Ng
<b- Y > (N O+ 1d @), (3.12)
I=1 k=1
Recall that K = 1+ R - Ng. By Lemma 3.5 (b), (3.12) is bounded by
R Ng
b-2C550¢]- Y > 1< 2K - Cs5l¢.
I=1 k=1
Define C33 = K - C3 5. Therefore, by Corollary 3.2(a),
t
2916 - 6] < s [ B9 e as
0
< (20C%53) - € [t (3.13)

We now prove part (a). By Lemma 3.6(a), the coupling (3.3) and (3.4), (3.9) and (3.10),

B Jun (&) — un (1))

< ES o (§) — on (€M) + B9 Jon (&) — on (§7)]

61— 1641

< 4(E§év

N
€M1 - 16™1] + B¢
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= 4B (167 6D + B (] — | )
<al2(B g™~ 16D) + [ 1671 - 165D
By (3.11) and (3.13), the last line is bounded by
420650 = 1) + (26Cs.5) |60 [t | < 4(2 v (2C5.5)) €01 (€O = 1) 4 200N ).
For (b), we have that for i =0, 1,
[d¥(EY) = aMHET)] < 1dVHEY) = aT (g + [aV(ET) = a(E™)]

R Ng

<3 () — S 4 ) - d ).

=1 k=1

By Lemma 3.6, the coupling result (3.9),

B A (EY) — di(EN)] < O BN - B 61

< cus (B8 - 1601) + | B9 - 18| s
and similarly by (3.4) and (3.10),
B (M) — a6 < s (B 16— 1)
< Cys [ B 1E) ~ 1651 (3.15)

Combining (3.14) and (3.15), applying (3.11) and (3.13) we have
BN (€Y — d™ (g™

N
E |8 - 1€5']

)

<K-Cys- (2 [E%V & - l&y I] +

< Cua- (2[B91671 - 1671 + | B9 161 - g

< Cys(2V (20C;55)) - €N |[( (bt 1)+te<b’<>t].
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Recall that

my (§) = d™(§) — d™(g),
my (§) = Tvun(§) + [d(€) + ™0 (E)].
Corollary 3.7. There is a constant Cs 7 such that for allt > 0,
(o) — B ¥ () =l (67)] < Cur - 23 (£ = 1) 4160 ).
() 2 B i (€) — md (€)= Coa (1 ) - 20 (e 1) 4-460).

2
N
Proof. For (a), apply Proposition 3.3 (b) we have
1 o .
—E% [m{ (&) —m? (&)
™
1 v v
< (B 1) - AV + B ) — (e
< 2C55(2V 2bC55) - ZV | (ePOt — 1) 4 e (3.16)
And for (b), let N be large. Apply both (a) and (b) of Proposition 3.3 and obtain
1 v
— B m (") - md (&)
N

1 v v
= T—2<TN B o (€Y) = on(§7)] 4+ B [N EY) — dH ™)
N

+ B[V — 0]

N
<L [TN A2V (20C55)) + 2C55(2 V (2503,3))} & [<e<b’<>f 1)+ téb’ﬂ
N TN
2033 CoN |kt (bt
< 4+ = (2V (26C53)) - Z | (e 1) + te (3.17)
N
< (4+2Cs3) - (2V (20Cs3)) - [1 + Ti} -z [(e@’cﬁ — 1) + e (3.18)
N

The proof for the corollary is completed by taking

Cyn — [(203_3) V(4 203,3))] 2V 2bCs).
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Chapter 4

Estimation by the voter model

Given the results in the previous chapter, the main work in this chapter will be in proving
Proposition 4.1 to obtain the estimate of the drift term and branching rate of the voter
perturbation. We shall see that this estimation is almost trivial by the comparison bound

in Chapter 3 and Proposition 4.2 which gives estimates for the voter model.

The key of this estimation is that we choose a correct time scale ¢y for averaging the
macroscopic density of 1’s. In particular, this time scale should provide sufficient mixing
condition so that uniformity of local densities can be established, meanwhile it keeps the
motion of particles at time points of the scale relatively (comparing to 7y) local so that if

two particles coalesce, then they must meet early. Recall from (1.9) that
log N < 7v < N.
We choose ¢y such that
ty =0nyTn where 6y — 0 and ty > logN.

This definition gives the following consequences:

t
250 as N — oo, (4.1)
™
1
Ne 7 < N for large N, (4.2)
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and by (1.8)

1 1
P (z,y) — N < N for large N. (4.3)

max
z,yeVN

We will see later in the proofs that several error terms along the estimation are defined

according to the consequences above.

Recall that & is the voter model with rates ¢%. Define

1

VN = B (ry - un(67Y))
™~

= % > ES[E @) Y @, ) + € @) (0,6

= Y ) B [£ 06 )+ € @8 )]
— =3 Y ) B [ @6 )|

Recall the definitions

Ni(z) ={y € Vy 1 d(z,y) =},
Ni(z) = Ni(z) U {z},
Sir(x) = {A C M(x) : |A| = k},

X, & A) =[] ¢(a),

a€A

and define
VLR = }Efév (@HE™)
- ZE“ (8" (@) 1l (. 6¥) = 1)

—— 3 Y B ) @8 B),

T AESZ k ( )
B=Nj(z)nA°

1
VL k) = —ES (a0 (6)

N

:_ZE50< ) Hnf(e. &) = k})
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oY Y B E A w6 ),

z  AeSk(z)
B=N;(z)NA®

Let {ENQC : x € Vy} be a family of rate 1 coalescing random walks on Gy with step
distribution ¢" such that Eév " = z. For A C Vy, define EN’A = {EN“ :x € A}. The

duality equation for voter models is
PN = 1on A) = P(BY* e &)) for AC V. (4.4)

See [HL75] for more details about the duality equation above. Note that any A C Vi is

finite since Vi is finite. By (4.4), VQJ(;Z’V”, VQI;J’VI(Z, k) and VQJ(;[I’VO(Z, k) can be written as

BN,z
25N:_Zq ‘Ty BQtN ¢£(]]v7 2tN€£O)
N,1 N,A ON,B N
VZJN l k Z Z P<thN - 5(1)\{7 B2tN - 50 )7
z AESlk(Z‘)
B=N;(z)NA°
N,0 BN,A ~ N T71N.B
V26N l k Z Z P<thN gé(ﬁ BQtN C (])V)
z AESlk((L’)
B=N,(z)nA®

Define the first meeting times
™ (z,y) =inf{t >0: EN’x = /BZN’y},
(A, B) =inf{t > 0: BM N BN + &},

and let oV(A) denote the time at which walks starting from sites in A have coalesced into

a single particle,
oN(A) = inf{t > 0: |BM| = 1}.
Define the coalescing walk probabilities on Gy

1
pN’6 :N zzqu(x,y)P(TN(x,y) > tN)v

_%Z ST PEV(AB) > ty, o (A) < t),

x  AeS;i(x)
B=N;(z)NA®
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Z%Z S P(N(AB) > ty, oN(B) < t).

x AES[JC(I)
B=N;(z)nA

The main result of this chapter is

Proposition 4.1. There is a sequence Y, — 0 as N — oo such that

(a) E o [ml (5251\,)] - QNZN <€y 1(1 + ZN)

Eﬁ’v[ NEN ) = BNZY| <N (1 + ZN)?

where

:iz 0N1 l /{ Nl(l,/{)—QN’O(l,k)pN’O(l,k))7 (4.5)

I=1 k=1
BN = 2pMe. (4.6)
We need to first prove the follow two propositions for the voter model.
Proposition 4.2. There is a sequence €)'y — 0 as N — oo such that
(a) |-

Ego [mi (€asy)] — 0~ 25| < edla(1+(20)7),

N v
L By (Eos)] — BN ZY| < el (1+ 20+ (Z0)%).

where O~ and BN are as in (4.5) and (4.6).

Proposition 4.3. There are sequences ¥V, eV — 0 such that

(a) ’V;ng — 2pMe. Zév‘ < gV [1 + (ZéV)Q].

(b) )V;gj(z,k)—pfvﬂ(z,k)-zév‘ < i [1+(Z(§V)2], fori=0,1,1<I<Rand1<k< Ng.

We first give some preliminary results. Let {Biv " . x € Vy} be a family of rate 1 in-

dependent walks with step distribution ¢ such that Bév " = x so that B,fv * has transition
function p¥ as defined in (1.4). Lemma 4.4 gives bounds on probabilities of independent
walks, and Lemma 4.5 gives a bound on meeting time probabilities.
Lemma 4.4. For any x,y € Vi, x # vy,

N,x N 2|§(Z]V| 1
(a) P(B, ego)g—N , fort > —log N.
g



N,z N _|§_(])V|
(1) |P(BY € &)~ 12

Proof. For (a), by (1.8) we have

< || - e, for all t > 0.

1
piv(fb”,y) < N +e 7, forallt>0.

1
Thus if t > —log NV,
v

2
( ,Y) < N for all z,y € V.

This implies

P(B* € &) Zpt (2, w)& (w) < 1&] - N

For (b),

P(BM* € &)) ‘

)(pi (x,w) — 1/N)
<Z€o )Ipy (v, w) = 1/N|

<& e

where the last inequality is by (1.8).

2¢3(1 + ty)
—
Proof. For t € (ty,2ty] and large N, by (4.3) we have

Lemma 4.5. P(t"(x,y) € (ty,2ty]) <

P(B"" = B") = Zpt z,2)p (y, 2 S—Zpt Y,z

Then by Lemma A.2,

2ty +1
P(r"(x,y) € (tn, 2ty]) < € / P(BN* = BM) dt

tn
< 262(tN + 1) .
- N

We now prove Proposition 4.3(a).

38
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Proof of Proposition 4.3 (a). We can write the probability P(§é¥£ ¢ &, BYY ¢ &) as a

2t N

sum of three terms:

P(Byr ¢ &, Byt egl) (4.8)
- [P(EM ¢¢), BYy )~ P(rV(e,y) > 2w, BY e &) (4.9)

+ {P( (x y) > 2ty, BQtN € 50 )— P(T (J; y) > tn, BQtN €& )} (4.10)
+P(T (x,y) > ty, thN = 50 ). (4.11)

To bound (4.9), we have

PBYT ¢ €, Byv e ed) — P(rV(x,y) > 2ty, Byl e &)
:P(TN<w7y)>2tN’ Bﬁﬁefév)—P(BgﬁgéféV, 2tN€€0)

_P(B 650> 2tN e g, ™(z,y) > 2ty)

< P(B e &, 2tN &) (4.12)
< 4’]%;2|2. (4.13)

Note that (4.12) is implied by the fact that coalescing walks are independent until their
first meeting. And (4.13) is by Lemma 4.4(a).

To bound (4.10), notice that

P(rN(z,y) > 2ty, Byt € &) — P(rV(z,y) > ty, Byl € &))
= P(TN(CL’,y) S (thth]v BQtN S 50 )

< P(mN(z,y) € (tn, 2ty])

< 262(1 —|— tN).

< ~ (4.14)

and (4.14) is by Lemma 4.5.
Lastly, to estimate (4.11), use the Markov property and Lemma 4.4(b) to obtain

I60']
N

P(TN(x,y) > ty, BQtN € fo ) — P(TN(x,y) > ty)
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> (P (y) > t, B = w)- (B, € &)

—mebmﬁwz>§m

R N
<Z Nz, y) >tN,B,%y:w)-‘P(BgV€§éV)—’£—](\)[’
weVn
<1 |g e, (4.15)

Therefore, since we can write p™V:¢ - ZV as

Ne N _ 1 N N .’£_(J1V|
PN Z) = qu (z,9) | P(T (@, y) > ty) - = |

then (4.13), (4.14) and (4.15) together imply

‘/21(;/;_2 Ne . zN

N
S—quﬂ<@W%,m€M Sl P @ > )

IN (G | 20 n) oy
(AL 220t e

4 2e2(1 +t
SQ( TN (ZNy2 +M
N T™N

<

TN

+Ci3- NG_WN)
4 2e2(1 +t

SQ( TN(ZN) +M+01_3-N_1)
N TN

where the last line is by (4.2). Take

4 2e2(1+t

TN, alths N>+C1.3'N_1>

N ™

and ¥ — 0 by (4.1) and (4.2). [

eV = 2max<

For Proposition 4.3(b), we will prove case ¢ = 1 and the proof of i = 0 is exactly simi-

lar. This will be done in three steps, as summarized in Lemma 4.6 - 4.9. Recall that

N@)={y:1<d(z,y) <R}, N(z)=N(z)U{z}
Ni(w) = M) U {a},
Sie(x) ={A C Ni(z) : |A] = K},
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Let Cr = K% - 2X. The following simple fact will be used frequently in later proofs:

>, lAIBl< Y KP<Cr (4.16)
AeSl’k(x) AESl’k(x)
B=N(z)NA® B=N(z)NA°

Fix 1<I<Rand1<k< Ngandlet A, B € S;;(x). In the figure of each of the following

three steps, the time goes up.

Step 1. Define events

En(A,B) = {Byy;! € &', B/ n&' # 2, 7V(A,B) > 2},

El?(A>B) = {Eé\tg\ij C 56\7’ TN(Aa B) > 2tN}

~ N N ~ N
ceg CEN SRR S &’ < &

A B A B A B

Figure 4.1: Event in the definition of ‘/'2](;[1;1, E11(A, B) and Ey5(A, B) from left to right.

The relation between Fi;(A, B) and E12(A, B) is
(Bt c &, Boy? C &Y UEL(A,B) = Epp(A, B).
Let

1 )
&y = EZ Y P(Ey(AB), j=12

z  AeS) i(x)

B=N(z)NA®

Thus, V;g;vl(l, k) = E12 — £11. Lemma 4.6 below shows that &7 is negligible.

Lemma 4.6. &; < 403% (22
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Proof. By Lemma 4.4(a) and using independence between walks,

P(En(A,B)) = P(By 2 e, ByPnel # o, 7™V(A,B) > 2ty)

< Y PBylee ByPeg) V(A B) > 2ty)

a€AbeEB
S Z P(Bgt]\] S 5(])\[7 Bgt]\r S g(])V)
acAbeB
4161
< |A||B| N (4.17)
Therefore,
L 41g?
&n < e ]\?2 Z Z Al B
N x AESlﬂk(CIZ)
B=N,(z)NA¢
L4 TN N2
< —. -NCr =4Cr— - (7, )
< g NCr=4Chp (%)) (4.18)
where the last inequality is by (4.16). [ |

Step 2. Define

Es(A, B) = {By &, w™(A, B) € (tw, 2tn]},

Esn(A,B) = (Bt C &, v™(A,B) > tn}.

C N - N C N
2y —2 2N 5\0 2ty ——
tn tn
0 0 0
A B A B A B

Figure 4.2: F15(A, B), Es1(A, B), Eas(A, B) from left to right.
By the definition above, Elg(A7 B) U E21 (A, B) = EQQ(A, B) Let

1 )
Egj = EZ > P(Ey(AB)), j=12

x AESl,k(Z’)
B=N(z)NA®
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so that &5 = £ — &91. In Lemma 4.7 we show that & is negligible.

2€2<1 —|— tN)

Lemma 4.7. £, < Cph———=.
™~

Proof. By Lemma 4.5,
P(Es (A, B)) = P(Byyt C €, 7™V (A, B) € (tw, 2tn])
> P(V(a,b) € (tn, 2ty])

a€AbeEB
82(1 + tN)

2
< Al Bl

IN

Therefore, by (4.16)

1 262(1+tN)
521§7_—'TZ Z |Al| B

N x AESl’k($)
B=N(z)NA°
2e%(1 +t
< CRM.
N

Step 3. Define
Esi(A, B) = {By2 &), w™N(A, B) > ty, o™ (A) > 2ty ),
Ess(A,B) = {By2 C e, v™N(A,B) > tn, , o™ (A) € (tn, 2tn]},

Ess(A, B) = {Bat e &, 7V(A, B) > ty, oV (A) < ty}.

N
< cg eq

Z | 7

B A B

Figure 4.3: Illustration of Fay (A, B), E51(A, B), Es2(A, B) and Es3(A, B).
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The relation among the events above is

EQQ(A, B) = O Egj(A, B)

J=1

Let

]_ .
83]. — EZ Z P(Egj(A, B)), ] = ]-7273‘

x AESlyk(:B)
B=N;(z)nA®

so that Ey = E31 + E32 + E33. We will show that £, and &35 are negligible in Lemma 4.8,

and that &33 is close to p™V'1 (1, k) - Z) in Lemma 4.9.

Lemma 4.8.

(Cl) 531 < 403% : (ZéV)Z

2e2(1 +t
(b) Es» gCRM.
TN

Proof. For (a), apply Lemma 4.4(a) and we have

P(Esi(A, B)) = P(By 2 C &), w™N(A, B) > ty, o™ (A) > 2ty)
< PByl g, oV(A) > 2ty)
< > PByted), By, €€ ™ (a,d) > 2ty)
a,a’€A

4€N 2
<|ap2iel (4.19)

where (4.19) follows similarly as (4.17). Therefore,

1 4|€(J)V‘2 2 TN N\2
& < T2 Z Z A" < 4CRW (Zy)
N x AGSZJC(:L‘)
B=N;(z)NA®

where the last inequality is from (4.16).

For (b), apply Lemma 4.5 and we have

P(Esy(A,B)) = P(By2 C &, 7V(A, B) > tn, o™(A) € (tn,2t5])

< P(o™N(A) € (tn, 2ty])
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<>y P € (tn, 2tn])

a,a’€A
262(1 + tN)

<|AP—=

Thus, by (4.16),

1 14t 1+t
Ly < — - NZ > AP < cp 2Lt ) ( v,

™ T AES k(x)
B=N,(z)NA®

Recall that p™1(1, k) is defined as

PR =Y S PINAB) >y, oN(4) < 1),

x AESZJC(CE)
B=N;(z)NA®

and the definition of &3 is

Es3 = _Z > P(Es(AB))

r  AES i(x)
B=N,(z)NA®

where
Ess(A,B) = (Bt e e, V(A B) > ty, oV (A) < ty}.

Lemma 4.9. There is a constant Cyg such that |Ess — p™ (1, k) - Z(])V| < (Cye- N1
Proof. We will write EN’A = {a} as EN’A = a. We first decompose the probability P(Fs3(A, B))
using the Markov property at ¢y:
P(Es33(A, B))
= P(Byt e, ™V(A,B) > ty, oV(A) < ty)
= Y PBY'=d B’ =8B, ™N(AB)>ty, c¥(A) <ty) (4.20)

a'eVy
B'CVn,a'¢B’

- P(B} €€)).



Write P(B\t‘{v € &Y) in (4.20) as

—~, N —~, N
P8y, e ="y (pBy e ) - 21,

Hence P(FE33(A, B)) is equal to the sum of ¥;(A, B) and 35(A, B), defined as

N
LB = Y PEY = BN =B YA B) > b, 0¥ () S 1) 2
GIEVN
B'CVn,d'¢B’
N N |§(])V|
= P(r(A,B) > tx, 07 (A) < twv) - S
$(A4,B)= Y. PBY'=d, BN =B, V(A B) > ty, oV(4) <ty)
a'eVy
B'CVy,a'¢B’

(P e - ).

Therefore, £33 is the sum of 1 and Y5 which are defined as

Elz%z Z 21<AaB)

T AeS; i(z)
B=N;(z)nA®
1 @Z > P(rY(A,B) > ty, oV(A) <ty)
TN N -

x AESl’k($)

B=N;(z)NA®
=p" (k) - 24,

E2 = TLZ Z EQ(A,B)

x AESl,k(J})
B=N;(z)NA®

We sill see that X5 is negligible. Applying Lemma 4.4(b), ¥5(A, B) is bounded by

X2(4, B)|
< Y. PBY'=d, BY =B, 7Y(AB) > ty, o(4) <ty)
a’'eVy
B'CVy.d'¢B’
. P(E‘l/ c fN) — &
tN 0 N

tn tn

< S PBY=d, BYP =B, tV(A,B) > ty, oV (4) <ty)- (\gme—vtN)

a’EVN
BIQVN,Q/¢B/

46
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<1efggle™.
Consequently, by (4.2) and (1.3),

|22| < —Z Z |22(A, B)| S CR ' Zév . Ne_vtN S CR : 01.3 . N_l.

z  AES x(z)
B=N(z)NA®
Therefore,
Es5 — VU1 k) - Z)| = |2 < Cr-Crs- N7L
Thus, we can choose Cy 9 = C} 3 Ck. [ |

Proof of Proposition 4.3(b). Define

2e2(1 4+t
€N71 — max <8ORT_N’ 20RM + 04'9 . N_1>'
N TN

We have eM! — 0 since ty > log N. By combining the bounds in Lemma 4.6, 4.7, 4.8 and

4.9, we have

Vs (L&) = p™ M (1, R) - 2]
< Vi (1 k) = Exa| + [Era — Ena| + |E22 — Exs| + [Ess — P (1K) - 2]

=&+ En+ (E51+E32) + €33 — pN’l(la k) - Z(])V’
262(1 -+ tN)

N

< 801%% (Z25)? +2CR + Chy- N7}

< N1+ (20,
The proof for showing that
[Vasa (L k) = pY0(L K) - Z5'| < ™01+ (Z97)%)

is exactly similar, and one can choose €M to be equal to e™'!. [ |

Proof of Proposition 4.2. We have

R Ng

1
— B [mY ()] = > > (0N (1K) Vet (1 k) — 080 k) - Viy X1 k).

™
=1 k=1
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By Proposition 4.3,

L [ (€)) — 0¥ 2z
TN
R Npg
<IN LR - (Vag (k) = p™N (1L k) 2
=1 k=1
OV R)| - [Vay 2 (1, k) — o0, k) 25

< BIC(EM 4+ MY (1 + (2.
The proof for part (b) is similar. By definition,

1 .~ )
— B [ (€h52)

N
1 .~ 1 1 .~
- 13 Ny . ¢ N,1/¢Nw
TJ2\7E 0 [TNUN(€25N>:| + ~ ( 7_NE 0 [d (§26N)]]
1 v
+ B o] )
N
VN”+—§R3§RJ(9N1 1) | B a6
T 720N Lk \St
=1 k=1
1
N, By | B @) )
TN ’
R Ng
1
= Vil 2.0 (67101 VA1) 05001 VL) ).
=1 k=1

By Lemma 3.5(b) and the fact that |€""] is a martingale, for i = 0,1

VSR = | B @) < Cuse B (1) = Cuszy
Therefore,
B9 m (5] - A 2
< |vayy — 2z | + = ZZ (Va3 @l + VL, m) )
=1 k=1
<ehv. [1 +(ZN)? } + U CasZY.

™~
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Consequently, we could choose

eV, = max <blC(5N’1 + N0y N T Oy ).

Proof of Proposition 4.1. For (a), apply Corollary 3.7 (a) and Proposition 4.2 (a),

1
— B [mY ()] — 0N ZY
™~

1 N .
—E% [ (&50)] — 0N Z))
™~

<els(1+(Z0)%) + Caz - Zév<(e(b’c)(25m -1)+ (25N)e(b’c)(25N)>.

_|_LE'§(J)V
TN

<

my (635,) — my (§257)

Similarly for (b), apply Corollary 3.7 (b) and Proposition 4.2 (b),

1
— B [m (e )] — BN ZY
N

1 v
— B [md ()] - BNz
™N

N7
< my (§25,,) — M2 (E57)

_f_LE‘E(])V
TN

< efa14 2+ (2 + Can (14 2= ) - 2 (005 1)
+ (25N)e(b’c)(25N)).
Note that e®®)(20v) — 1 — 0 as 6y — 0. Since by (1.3), Z{¥ < O} 3, then we can choose
= max {21+ Ca), 205 ((006) — 1) 4 (27)e0) ) |

so that e}, — 0. |
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Chapter 5

Convergence of coalescing random

walk probabilities

In this chapter, we will show in Proposition 5.1 that the coalescing random walk proba-
bilities defined on Gy in the previous chapter converge and the limits as N — oo are the

corresponding coalescing walk probabilities on the infinite tree.

Recall the definitions
¢V (2,y) =1/r Ly, 2,y € Vy
and
q"(a,b) =1/r ligwy, abeV™.

The sequence ty satisfies log N < ty < 7y and the coalescing random walk probabilities

defined in Chapter 4 are

1
pN7e = N Z qN(.CE,y)P(’TN(Qf,y) > tN)a

I7y€VN

PR =5 Y PEYAB) > i, 0¥ (4) < t),

x AGSl,k(:E)
B=N;(z)NA®
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POl k) = %Z Y P(V(A B) > ty, oV(B) < ty).

x AES[JC(Z‘)
B=Nj(z)nA®

Recall that p € V' is the root of the tree, and the system of rate 1 coalescing walk system
is denoted as {Bf : e € V). For A, B C V' disjoint, the stopping times defined in

Section 1.3 are

o"(A) = inf{t > 0:|B =1},

(A, B) = inf{t > 0: EA N /B:B + o}
The coalescing walk probabilities on the infinite tree defined in Section 1.3 are

ptr,e _ qu(p, G)P(Ttr(p, 6) _ OO),

pri k)= ) P(r"(A,B) =0, 0 (A) < o),
A€S; i (p)

B=Ni(p)nA°

P k)= Y P(7"(A B) =00, 0" (B) < )
A€ES) 1 (p)
B=N(p)nA°

where S;x(p) = {A CNi(p) : |A| =k} for p e V.

We now state the main result of this chapter.
Proposition 5.1. As N — oo,
(a) p© — pe.
(b) pM (k) = p (L k), i = 0,1
We begin with proving Lemma 5.2-5.6 to prepare for the proof.

Lemma 5.2. For any sy — 00, sy < ty, there is a sequence ebo — 0 such that
P(tN(x,y) € (sn,tn]) <&y, forall m,y € Vy.
Proof. Let x,y € Vy be arbitrary. By Lemma A.2

tn+1
P (2, y) € (s, tn]) < €2 / P(BY* — BV ds. (5.1)

SN
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By (1.8),
P(BY* = BY") = 3 P(BY* = 5)P(BYY = 2)
<) (s - 5|+ )
— - S ) S Y N N
<e P+ =
Therefore,
tn+1 tn+1 1 t 1 1
/ P(BYN" = BNY) ds < / e+ —} ds < X il + —e 7N,
SN s N gl
Thus, choose €2, to be
tvn+1 1 _ )
N 2 N YSN
€rq9 = € ( + —e
5.2 N 5
and e, — 0 since ty < N and sy — oc. [

Let sy be a positive sequence such that sy — oo and sy < log N. Note that ty >

log N implies sy < ty. Now define
. 1
P = N > V(@) PN (z,y) > sw),
Ty

AR =S Y PEYAB) > sy, 0 (A) < sw),

x AESl’k(JJ)
B=N;(z)nA®

PO ) = %Z S P(Y(A,B) > sx, 0¥ (B) < sw).

x AGSlyk(Z)
B=N;(z)nA®

Recall that K =1+ R- Ny and Cr = 2FK2.
Lemma 5.3.

(a) |pr = pe| < &bl

(6) |py (L k) = p™(1, k)| < 2CRes, i = 0, 1.

Proof. For part (a), by Lemma 5.2 we have

e el o 1
" =V < 5 D a @ )| PV () > sn) = P (@) > ty)]
T,y
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:% ¢" (@, y)P(r" (@,y) € (sw, tw])
< (%ZQN(%?JO €52 = €522

For (b), we have that for i = 1,

|P(TV(A, B) > ty, o™ (A) <tyn)— P(tV(A,B) > sy, oV (A) < sy)|
< P(™™(A, B) € (sy,tx]) + P(a™(A) € (sy,tn])

< ZP(TN(A,B) € (sn,tn]) + Z P(r™(d',a") € (sn,tn])

acA a’,a"€A
beB

so that by Lemma 5.2,

1
I (k) — (LR < N > > (AIBI+|AP)E, < 2Cgked,.
T AeS;k(z)
B=N;(z)NA®

The calculation for ¢ = 0 is similar. [ |

Recall from Section 1.2 that for [y = %log,_1 N,

Iy ={z € Vy :tx(B,(x)) =0},
[y ={z € Vy : tz(B, (x)) = 1},

VN - FN U ng
We now define a group of walk probabilities that are averages over only sites in I'y:

Py = ﬁ S Y @) P (@, y) > sw),

z€l'n vy

1
PR =Er Y D PENAB) > s o (4) < ow)
N ze€l'n  A€S k()
B=N(z)nA®

YO, k) = ﬁ S S PEYAB) > s, 0¥ (B) < sw).

zel'y AESZJC(CE)
B=N;(z)NA®

Eventually, we will see that the above converge to probabilities on the infinite tree, as

Gy are good graphs which means that with high probability there is locally a finite tree
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at most of the sites. The next lemma shows that py® and py"' (I, k) are close to p,° and
p]lv’i (I, k), respectively.

Lemma 5.4.
(a) [ —p2 | < 2(r2N725).
(0) (1K) = 3 (L K)| < 2CR(r*N727), i =0, 1.

Proof. For (a), by (1.7) we have

1
|pN —p ]_’ — P(TN(xy ) > sn) Y) > Sn)
Vs |y ol 2 P

11|

<Tn| = — ——

_|N| N |FN|+

_ 2Ty
N

< 2(r’N-%5).
For (b) for ¢ = 1, similarly we have that

[y (1 k) — Nl(l,k)l

Y ) PEY(AB)> sy, oV(A) < sy)
zel'ny  AeS; k( )
B=N;(z)nNA

+_Z Z P(N(A,B) > sy, o™ (A) < sy)
zely  AeS; i(z)
B=N;(z)nA°

Loy |IVN|>
N |Iy|

< '—
N [Tyl

< OR<|FN| .

< 2CR(rPN )

and for 7 = 0 the calculation is similar. [ |

We need to introduce a coupling between walks on V) and the infinite tree in prepara-
tion of proving Lemma 5.6 which gives the convergence to coalescing random walk proba-

bilities on the tree. Fix 2z € I'y. Recall that p € V' is the root of the infinite tree and the
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interaction range R > 0 is fixed and finite. Define the exit times

TN(x) = inf{t > 0: Iy € Br(x), B ¢ Baay, (2)},

T =inf{t > 0: 3e € Bgr(p), By ¢ B2y (p)}-

Note that since x € 'y, then B9y, (2) is a finite tree as it is loop-free. Thus, we can
couple the coalescing walks started at sites in Bgr(z), EN’BR(w), and the walks started at
sites in Bg(p), B\tBR(p ) up until 7V (x) as follows: first, introduce a graph isomorphism
such that Br(z) = v~ (Bgr(p)). Next, for y € Bg(z), define BN as follows:

(BN, < TN(x)

.
(BN )

t—TN(z) >~

BN = (5.2)

t>TN(x).

This definition says the following: before exiting Br(p), the walk EN’y "duplicates” the
realization of EN’Z’ via the isomorphism 1 on the tree. At t = T (z), the state of EN’y is
zﬁ(B\JTV];?(x)). And it performs as an usual coalescing random walk after the exit time TV (z).
It is not hard to see that ,giv ¥ has the same law as /B;N’y for any y € Bg(z). Thus, later

when we compare the walk probabilities on Gy with those on the infinite tree in the proof

of Lemma 5.6, we will keep using the notation B."*¥ instead of B,

We now give a probability bound on TV (z) and T% that will be used in the proof of

Lemma 5.6.

28]\[

Lemma 5.5. P(T"(z) < 2sy)V P(T" < 2sy) < 1/2)ix — R’

Proof. Observe that

P(TV(z) <2sv) < Y P(3t <28y, B ¢ Bujyy(@)).
yEBR(z)

Notice that for y € Br(x),
P(3t < 25y, B ¢ Bujoyy (@)
= P(3t < 2sy, d(z, BMY) > (1/2)ly)

< P(3t < 2sy, d(z, BM) + d(z,y) > (1/2)l)
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< P(B\tN’y makes at least [(1/2)ly — R| jumps by time 2sy)

< E(number of jumps made by Eé\;jj)/((lﬂ)l]\/ —R)
- 28N
- (1/2)Ily — R’

and similarly,

28]\[

P(3t < 2sy, B ¢ B < N
( t_ SN7 t ¢ (1/2)lN(p)) = (1/2)ZN . R

Lemma 5.6 compares the probabilities on Gy and the tree probabilities in the limit

N — oo.

Lemma 5.6.  There exists a sequence elg — 0 such that

(a) |pé\/,e - tre| < 656
(b) PN (1, k) — p™i(l, k)| < 20k - N5, i = 0, 1.

Proof. For part (a), define p)¢(z)
P ( Zq (2, ) P(T™ (2, y) > sn)
= ZqN(a:,y)P(TN(x,y) > sy, TN (z) > 2sy)

+ Y (@ y) PV (z,y) > sy, TN (x) < 2sy)

so that we can write

By coupling the walks in G started at sites in Bg(z) and the walks in G started at sites

in Br(p) as defined in (5.2),
> (@ )PV (x,y) > sn, TV () > 25) (5.3)

= thr p;e "(p,e) > s, T > 2s).
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Define
Pl = Zq”’ p.e)P("(p,e) > s)
= Zq" p,e "(p,e) > sy, T" > 2sy)
+ th’“ p,€)P(r'" (p,€) > sy, T < 2sy).
By (5.3),
I (@) — plie| < Zq 2. y)P(TN(x) < 255) + )¢ (p.e) P(T" < 2sy)

= P(TV(z) < 2sy) + P(T™" < 2sy)

so that Lemma 5.5 implies

4SN

Ne(p) —pirel < N o all o € Ty 5.4

Since

P =" <D q"(p,e)|P(T7 (p.€) > sw) — P(r"(p, e) = o))

e

=" ¢"(p.e)P(r" (p,€) € (s,0))

e

< [a,brélg]ip)P(T”(a,b) € (SN,OO»] ze:qtr(/% e)

= max P(7"(a,b) € (sy,00)). (5.5)

a,be Br(p)

Note that walks on the infinite tree are transient, then for any a,b € Bg(p),
P(1"(a,b) € (sy,0)) = 0 as sy — 00. (5.6)
Therefore, we can define
el = __dsv + max P(7"(a,b) € (sy,00))
56 (1/2)[]\[ — 2R a,beBr(p) ’ N

and )y — 0 because sy < logy and sy — oco. Therefore, combining (5.4) and (5.5) , we
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have
|pé\7,e . tre| < ’ ’F Z (pé\]f\,]e( ) p?;ve) + |ptre _ptr,e|
zel'y
1
< N,e tr.e ) tre _ tre
< <_|FN| DN @) =P ) + [pl — o™
QTGFN
< 5?6.
For part (b) for i =1 and x € I'y, define
an(x)= Y P(rN(A,B) > sy, o™ (A) < sy, TV (z) > 2sy),
AES) k()
B=N;(z)NA®
by(z) = Z P(tN(A, B) > sy, oV (A) < sy, TN (2) < 2sy).
A€ES; k()
B=N;(z)NA®

Write piot(x) as

@)= Y PEN(AB)> sy, oN(A) < sy)
A€S) 1 (x)
B=N;(z)nA°

=an(z) + by (z).
Similarly, define

di= Y P(r(A,B) > sy, 0"(A) < sy, T > 2sy),
A€Sk1(p)
B=Ni(p)nA°®
b= Y P(E"(AB)>sy, 0"(A) <sy, T < 2sy)

A€Sk,1(p)
B=N;(p)nA°c

and write p!! a

pt = 3" P(r(A,B) > sy, 0(A) < sy)
A€Sk 1(p)
B=N;(p)nA°

= a’ + bY.

Note that the value of a¥; and b%; does not depend on p.
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By definition we have

P k) = ,F—1N| S pi) = ﬁ S (an(@) + by (2)).

zel'y

Decompose ay(x) by

an(z)= > > Y PENAB)=7V(AB), oN(A) =7"(d,d"), (5.7)

AESlﬂk(JZ) aeg a’,a"eA
B=Nj(z)nAc °€

™(A, B) > sy, ™V (d,a") < sy, TN (2) > 2sx).

By the coupling (5.2) between the walks on Gy started at sites in Bg(z) and the walks in
G'" started at sites in Bg(p), the right side of (5.7) is equal to

Z Z Z ™(A, B) = 1" (a,b), o (A) =7"(d,d"),

AeSy (p) acAad,a’€A
B=N;(p)nA®

™ (a,b) > sy, 7 (d’,a") < sy, T" > 2sy)

= Y P(r"(A B) > sy, o' (A) < sy, T > 2sy),
AeSy 1(p)
B=N(p)nA

hence for every x € I'y,

an(r) = a¥.

This implies
Py = ay +by = an(z) + 0% = [pg; (x) — by (@)] + b
and we have
[poy! () = P3| < () + b

< > PI"<2sy)+ Y. P(TN(x) < 2sy)

A€Sk,1(p) A€ i (x)
B=N,(p)nA® B=Ni(z)nNA
2
<20} - N (5.8)

(1/2)ly — R’
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Moreover, we have that

|pt7’1 tr,1<l7k)|

< ) |P("(AB) > sy, 0"(A) < sy) — P(r"(A, B) = o0, 0" (A) < 0|

A€ESk 1(p)
B=Ni(p)nA°
< Y P((AB) € (sn.09)) + P(0"(A) € (sx,00))
A€Sk,(p)
B=Ni(p)nA
< ) {ZP 7'"(a,b) € (sy,00)) + > P(r"(d’,a") € (sy,0))
A€eSy 1(p) acA a’,a"€eA
B=Ni(pnac 0B
<2Cgr- max P(t"(a,b) € (sn,00)). (5.9)
a,be Br(p)

Therefore, combining (5.8) and (5.9),

Ipy (1 k) — p™ (1 k)| < ’| T P AR Oy T R A (5]

.Z’EFN

1 T, T, T,
< (g 30 W) — ol ) + ol — 27 )
| N| zel'ny

28]\[ . >
<90, [N J—
= 20 ((1/2)51\7 "R wbeB (o) (77" (a,b) € (sn,00))

The proof for ¢ = 0 is similar. [ |

Proof of Proposition 5.1. Combining Lemma 5.3, 5.4 and 5.6, we have

N,e

|p _ptr,e’ < |pN,e _in,e| + |p]1\7,e _péV,el + ‘pé\ﬂe _ptr,e|

< el 4 2(r’ N5 4 b,

and for i = 0,1,

N — P LK) < PN = p (LK) + py (LK) — pa (L E)| + |y (L k) — pT(LL K

This completes the proof. [ |
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Chapter 6

Tightness; identification of the weak

limit

In this chapter, we complete the proof of Theorem 1.2 by proving Proposition 6.1 and 6.2.
Identification of the limit is done in Lemma 6.7 which shows that mean-field simplification
occurs. Note that this result was based on Proposition 4.3 which relies on estimation using
duality for the voter model only.

Recall that a family of laws on D([0,00), R") is called C-tight if it is tight and every
limit point is supported by C([0,00), RT). The drift # and branching rate 5 defined in Sec-

tion 1.3 are

R Ng

0 = Z Z(@l(x, B)p!™t (1, k) — 0°(1, k)p'™° (1, k),
=1 k=1

6 — 2ptre

Recall that Gy is a sequence of good graphs, and P¥ is the law of ZV defined in Section
1.3.

Proposition 6.1. {PY N € N} is C-tight.

Proposition 6.2. If P* is any weak limit point of {P"}, then P* = P59,
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Note that the laws {PY} in the two propositions above is defined over fixed sequence
of good graphs.

We first give some preliminary results. Recall from Chapter 3 that

Ho) = Zg(x)l{n;(x,g):k},
dy’(6) = D €@) L=y
and m¥ (&) and md' (€) are written as "”
my (§) = d™ (&) — a™0(¢)
Zf) O (1, R)dpy (€) = ONO(L k) (6)).

=1 k=1
my' (€) = Tvon (€) + [d™(€) + dVO(€)]
R Ng
= mvon(€) + D DOV LRGN E) + VLK) (©)).
I=1 k=1
The bias parameter b and the constant K defined in Chapter 3 are
R Ng
b= supzz OV ) + 0N (1L k),
=1 k=1
K=1+R-Npg.

Lemma 6.3. There is a constant Cg3 such that for & € {0,1}'V,

(a) Im7 (€)] < Coslé].
() 1m3' ()] < (27w + Co3) 8]

Proof. By Lemma 3.5, we have

my (&) = 1d™(€) — a™(¢)]
R Ng

< sup (0 (1 k) + 00 k) - > (1d O]+ 1dN ©))).

Nk I=1 k=1



By Lemma 3.5(b), d 7€) < s - |€] for i = 0,1. Together with (P2), we have that

ZZ &) +1diy ()l

=1 k=1

|m1 W<

< 20KCs5 - [€]. (6.1)

Similarly, we have that by Lemma 3.5 (a) and (b),

my (&) < mlun ()] + [d™(€)] + [ (6)]

< (27n + 26K C55) €]

hence one can choose Cg3 = 2bKCCY5 5.

Recall that

/ ml s 7

My = [ mde as.

™

The next lemma gives bound on DY and (M) ..

Lemma 6.4. Let K > 0, T > 0 be fized. There is a constant Cg4(K,T) such that for
supy Z < K and for any s < T,

1
— B |md (6N < Cou(K,T),
TN

1
— B m3 (€)] < Coa(K.T).
N

Proof. By Lemma 6.3 and Corollary 3.2 (a), we have

1
— B |m (€))] < Cos - BV [ZN) < Co - K eOT
TN
and similarly
%Eﬁév mY (V)] < TV Cos | g7V < 3pceor
TN ™~

Consequently, we could choose Cy4(K,T) = (Cgs V 3)Ke®)T and this completes the

proof.
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Denote T/ = {all stopping times bounded by T that are relative to F¥ }. We will
show that DY and M®. satisfy Aldou’s criterion for tightness in Lemma 6.5 - 6.6. The

bounds in Proposition 3.1 will be used in the proof of Lemma 6.5.

Lemma 6.5. Assume that supy Z¥ < K. For everye >0, T > 0,

sup  sup 1["55V(|Dév2 —DJ|>¢e) =0, (6.2)
N 81,8eTH
51<52<85146
sup  sup P&év(\(/\/lNﬁ2 — (MMg|>¢e) =0 (6.3)
N 81,8eTH
51<52<51+48

as 0 J 0.

Proof. Fix T'> 0 and § > 0. Let S}, Sy € T2 such that S; < Sy < S; + 5. We first prove
(6.2). Apply Lemma 6.3(a) and we have

S
21
|D?2—D£r=/g LN ey ds

1 TN

1 S1+4 NN
S - ‘ml (fs )’ ds
TN S1
S1+6
TN S1

Recall that £V? is the biased voter model defined in Chapter 3. Define

Zé\f,b — ’fg7b|

TN
By the coupling (3.3), (6.4) is bounded by
1 S1+6
Cos - — 1ENY] ds < C40 - ( sup z;va)
™ Js s<T+1

Since |€N?] is a submartingale, we can apply Doob’s inequality and together with Proposi-

tion 3.1(a),

P (DY — DY | > ¢) < P& (Cﬁ.ga- ( sup Zj“’) > e>

s<T+1

< (Coad/e) - B (231)

< 0 - (C&gK/E)G(bIC)(TJrl).



The proof of (6.3) is similar. Apply Lemma 6.3(b) and by (3.3),

So 1
/ LN (eN) ds
S

1 ™
1 S1+96 N
< — Imy (€2)] ds
™~ J S

[(MT)s, = (MT)s,| =

1 S14+96 N
<@+ )y [ I ds
N JS

1
S1+96
< 3/ ZNb ds
S

1

§35~< sup Zﬁ”’).

s<T+1

And by Doob’s inequality and Proposition 3.1(a),

P (MY, — (MY)s,| > ) < P9 (35 (sup ) > <)

s<T+1
< (30/e) - B9 (2)1,)

§(3K /e)ebOTH),

This completes the proof.

Lemma 6.6. For every T, K > 0,

sup sup Psév<sup|D£V| > L) — 0,

N ¢N.ZN<K s<T

sup sup Péév(sup|<MN>s| > L> — 0

N eN.ZN<K s<T

as L — oo.

Proof. We have that by Markov inequality and Lemma 6.4,

1 T
Pfév(supmm >L) < Pfév<—/ Im N (€M) ds>L>
s<T ™~ Jo
<3 [ RS e as
T-Cyu(K,T)
—

IN

The proof for (M) is similar.
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(6.5)

(6.6)
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[ |
We now give the estimate on drift and quadratic variation which will be used to iden-
tify the weak limit.
Lemma 6.7. (L'-estimates) For any T > 0,
N T
E% |DY — 9/ Ztth‘ — 0, (6.7)
0
N T
ES (MM — 5/ Ztth‘ -0 (6.8)
0

as N — 0.

Proof. We follow the idea of Proposition 5.1 in Cox [C17]. Fix T" > 0 and suppose that
Sup Zév < K. Recall that the sequence dy — 0 satisfies log N < dy7y < 77v < N. For

convenience, denote

1
Y = —my'(&")
™N

and define

20N

S G A:
0
T

B= [ ez
T—20N
T—26N

Igvz/ [dY —0-ZN] at.
25]\/

Thus we have
T
D]TV—Q/ ZNds=I' +I,) + I}
0

It is enough to show that Eﬁév|lfv| — 0 fori =1,2,3 as N — co. By Lemma 6.4(a) and

Corollary 3.7(a) ,
N 20N N
E% |J{V|g/ B \dN —6- 72N at
0
26N N N
< [ B a0 |2 at
0

< (20y) - [Coa(K T) + b+ Ke®T| 0 as oy =0,



And similarly,
E£(1)V|Iév| < (25N> : 06_4(K, T) +b- Ke(b’C)T] -0

as oy — 0.

Next we bound IY. Since I)Y — 0 as dy — 0, for convenience we redefine I as

T
Ig,V:/ [d) —0-zZN] at.
2

N

Let (F) be the canonical filtration generated by (). Define
hi\,[t = div - E(diV’FtJX%N)?
hé\,[t = E(div|]:tji25N) - QNZtAizaNa
hyy=0"2ZN 5, — 02}
Write
Yy —0-zN
= |dY — B | FY g5 | + | BN | FY g5) = 08 205, | + [0V 205, — 027
= hyy + by, + 3.
We first bound the intergal of A2, and h3',. For hJ,, notice that by Markov property,
hY, = ESon (d ) — 0N Z) o5
By Proposition 4.1(a) and Corollary 3.2 (a)-(b),

T T
£ / B, dt‘ < / ES | B aon (@ ) — 0N ZN 5 | dt
2 2

N

oN

T
<. / B (14 2 55 )?) dt
2

N
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< eV .T(l + 2K T 4 [KQ + 3KTe<b’C>T} -e(%’C)T). (6.9)

For hY,, we have

B, = 0N | 205, — 20| + 0¥ — 012
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Since

T T—26N T
/ (ZY 55, — Z] dt:/ zN dt—/ zZN dt
2 0 2

ON ON

28 T
= / ZN dt — / ZN dt,
0 T—26y
so that by Corollary 3.2 (a),

T 20N N T N
/ hy, dt‘ <b- [/ E% (ZN) dt+/ E% (ZN) dt]
2 0

N T—-26N

E&év

T
+1oN —6] [ ES(ZN) dt

20N

< [4b5N 10V — 0| T} L Ke®OT, (6.10)
Lastly to bound hft, we prove the following two claims.
Claim 1: For each ¢ > 24y, %' [hY, - h,| =0if s < ¢ - 20y,
Proof of Claim 1. FN C FN,s if s <t — 20y, hence tower rule can be applied:
B (| FLY) = B9 (dY — B (4| Fll 5, )| F)
= BV (Y |FY) — B | B (Y| F o, )| Y
= ES (dY|FY) = E% (4| FY) = 0.
Therefore,
ES Y, - hY ) = B [ ES (0, b ;:;V)}
= B [n, - B (|| = 0.
O
Claim 2: There is a constant C'(K,T") such that Eﬁév[(hftf] < C(K,T) for every t <T.
Proof of Claim 2. By applying conditional Jensen, we have
B (1)) = B |(@) — B9 (0| FY 5,))?]

N N & o
< B (@) + B9 (@17 o5, | + 289 (10| - |BD (@ | F Y51



< 2B [(dN)?] + 2(E% [(dN)?)? - (B (B ((dN)[FN 55,)]) 2

— 48 [(a))?).

By Lemma 6.3 and Lemma 3.2 (b),

< 4CEES ((2)))

<42, [K2 43K - TeTU”C)} LT = (K, T).

Let C(K,T) be from Claim 2. Apply Claim 1 and Claim 2 and we get

T 2
ES K / hY, dt) }
Wy
N T T
_ g [ / / WY BN ds dt}
2%y J26N5 '
T T N
< / / B (hyly - hy,) ds dt
26n J 26N ’ ’

T
2/ (/ +/ )Efév(hﬁ-hﬁ) ds dt
28N {t—26 N <s<t} {26y <s<t—26n} ' ’

T t
2 / / ES (B, - nY,) ds dt
20Ny Jt—20N
T ¢ N N
<2 / / EE[(h)2]12 . BS[(hY)2)V2 ds dt
20N Jt—20N ’ ’

< éy-2T-C(K,T).

Consequently, combine (6.9), (6.10) and (6.11), so that

T
/ h, dt‘
26N

< sfl . T(l + 2K T [K2 + 3KT6WC)T] . e(%’C)T)

3
Efé\’|_fé\’| < ZE&])V
i=1

+ [4b5N oY — |- T] L Ke®OT

1/2
+ [(SN-QT-C(K,T)] 0,  as N — oo.
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(6.11)
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Note that | — ] — 0 by Proposition 5.1 and (P2).

For the proof of (6.8), define

so that we can write

The way of showing that
ES|JN| =0 as N — oo

is similar to the proof of (6.7). For showing that E% |J)V.| — 0, we can follow the proof in

(6.1) and apply Lemma 3.2(a) so that

20KC! T
ES N, < KChs / ES (ZN) ds
’ TN 0

20KC5 5

N

< T [Ke®OT] 50 as N — oo.

The next lemma says that {MY ¢ < T} is uniformly bounded in L? which is implied

by its bounded fourth moment.

Lemma 6.8. Suppose that supy Z)¥ < K. Let T > 0. There is a constant Csg(K,T) such

that

sup Egév(sup <MN)5> < Css(K,T) -T2 (6.12)
N t<T
so that
sup Eéév<sup |/\/livl4> < 00. (6.13)
N

t<T
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Proof. Fix T > 0. To see (6.12), we have that for any t < T,

B9 [(MN)?] = E& [(/Ot %mév(fiv)ds)T

™
N 1 2
<7 5% [sup (L (@) |
s<T \Tn

By Lemma 6.3(b) and the coupling (3.3), for large N we have

2
(%m?(ff)) <9(zZN)? <9z
N

Let Cos(K,T) =9-4[K? + 3K (T - )] . )T o5 that by Corollary 3.2 (b) and Doob’s

inequality,

1 2
ES [sup (—gmév (& )) } < 9B [sup(Zé“’ﬂ <9-2°B9((27")°) < Cos(K, T).
s<T \Tn s<T

This implies

N N 1 2
sup B9 (sup(m™)?) < 72 sup Y | sup (m(€)) | <72 G, 1),
N N

t<T s<T \Tj

We now prove (6.13). The jumps of M¥ are bounded by
M = MY <2 - 2|+ D) = DY

1 N
& — 1€ ]| < . P% -as. (6.14)

1
=

Denote

AME = MY — ME_,
(M) = sup M),

t<T

(AMM)E = sup |AM§V|

<T
(6.14) implies

1
(AMM)7| = sup MY — MY | < —.
t<T ™N
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Therefore, by Theorem A.3 with ¢(z) = x*, there is a constant C' = Cj such that

s i) s e 9 ([sse ] )

t<T
< Cy {T2 Cos(K,T) + 1] < 0.
[
Proof of Proposition 6.1. Tt is enough to show that the quadruple (Z¥ DY (MN) MN)
is C-tight.
(i) DN and (M?Y). : By Lemma 6.5 and Lemma 6.6, assumptions of Theorem VI.4.5

in [JS87] are satisfied so that by this theorem, DY and (M) are tight, and this
implies that they are in fact C-tight since both of them are integral.
(i) MY : Since (MY). is C-tight, then by Theorem VI.4.13 in [JS87], MY is tight. By
Proposition V1.3.26 in [JS87] and (6.14), MY is C-tight.
(iii) ZN is C-tight by (i) and (ii) following Corollary 2.2. [ |
Proof of Proposition 6.2. By Skorokhod’s Theorem, Proposition 6.1 implies that there is
a subsequence of laws P such that PM = P in D(]|0,00),R*) (choose a further subse-

quence, if needed) and we may assume that on a common probability space,
(2N DNk (MN)) = (Z,D., L) as.

where Z.,D., (M). are continuous.

Lemma 6.7 implies that for any € > 0,

t
PféVHDgV—e/ ZNds >€} -0,
0

t
Péév[ ‘(MN)t—B/ ZNds >€} — 0
0

as N — 0, by Chebychev’s inequality. By these probability estimates, it follows that

t
D, :9/ Z.ds,

0
t
Ct = ,8 ZSdS.
0
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Proposition 2.1 implies that MM = ZNe — DNe — ZN By 7Ne — 7 as. and DNv — D.

a.s, we have MM — M. a.s. and (Z., M., D.) satisfies
Zt — Z() + Mt + Dt
t
:Z0+Mt—|—(9/ ZSdS.
0

Moreover, M. is continuous as M?¥ is C-tight by Proposition 6.1.

Lastly, we show that L. is equal to (M).. By Lemma 6.8, the sequence of martingales
{(M{*)? — (M)t < T}

is uniformly bounded in L? for every T > 0. This implies that it is an uniformly integrable

family. Since for every T'> 0 and t < T,
(M2 — (MNEY, - M2 — L, as., as Ny, — o0,

then it implies that {M? — £;, ¢ < T} is an L*-martingale for every 7' > 0 and thus L. is

the quadratic variation of M., in symbol,

<M>t = 11]?1<MNk>t = ﬁ/ot ZSdS.



Appendix

A.1 Proof of Proposition 1.1

Property (ii) and (iv) is implied by Lemma 2.1 in [LS10] and Theorem 6.3.2 in Durrett
[D07], respectively. Property (i) is implied by Theorem 11.4.24 in [H17].

For (iii), we prove the following simple fact. For any binomial random variable X ~

Bin(m,p) with m € N and p € (0,1), P(X > 1) can be bounded by

We note the fact in [LS10] that tx(B;, (x)) is stochastically bounded above by the bino-
)

mial random variable R;, ~ Bin(r(r — 1) r(r — 1)v/N). Thus, by (A.1),

1 N N

P(te(Bi, (x) £ 0) < P(Ri, > 1) < (W - 1>ZN> rr =™ 1 e

Define
1, iftz(B,(x)) >1

Y(z) = L Y =) Y(2)

0, otherwise
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(1)19' Z (ﬂf p*(1 —p)m‘k‘l/(k_;l) < <ﬂf)p- (A1)
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Notice that

EY =) E(Y(z)) =) P(tz(B(x)) #0) < N - (% : N2/5> = r2N?/5,

Thus by Markov’s inequality we have

EY N?%/5

r2N3/5 = N3/5 — 0.

P(Y > r2N*%) <

A.2 An elementary lemma for submartingales

Let S be countable. Suppose that £ is a Markov generator and let the process

(Xta (ft)v (PI)xES)

be defined by L. Let f be a bounded function in the domain of £ so that Ef(X;) < co.

Lemma A.1. If Lf > 0, then f(X}) is a submartingale. In particular, if Lf = 0, then

f(Xy) is a martingale.

Proof. By Theorem 1.5.2 in [L.85],

M= 1060 = 700~ [ 27X s

is a PXo-martingale. For any h > 0, We have

)

B ()~ 105017) = 5t~ g7 + 5 ( [ 270008

_ EI</tt+h LF(X.)ds ]—"t>

— EXf</0h Lf(Xs)ds>.

Since Lf > 0, the last line is non-negative P*-a.s. for any x € S. |
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A.3 Meeting time lemma

The proof of Lemma 5.2 is based on the following frequently used result. The particular
proof we provide here is due to Le Gall. The idea is that the walks have to stay at a place

for a while before one of them leaves.

Lemma A.2. Let P™®2 be the law of two independent rate 1 Markov chains X}, X? with

starting points x1, xo, and let M be the first meeting time of the chains. Then for any x,

1
EI’I[/ 1{X51=X52}d8 > 1/62, (A2)
0

and for ty < ty and y1, ya,

to+1
pm,yzp(M c (tl,tz]) < 62/ PyL:y2 (Xsl = Xf) ds. (A.3)

t1

Proof. Assume (A.2). Let Fj; be the o-algebra generated by M. We have

to+1
Fyy2 [/ 1ix1=x2yds

t1

to+1
FM:| Z 1{M6(t1,t2]} . Eyl,yz |:/ 1{X31:X32}d3 fM:| (A4)

t1

Notice that the right side of (A.4) is bounded below by

1
7 M} = Lase(t - B0 [ / 1{X;X3}d5}

M+1
Line( i)y - BV {/ L=y ds
M 0

by the strong Markov property. Therefore,
to+1
/ Py (X = X2 ds

t1
to+1
= pyvy2 <Ey1’y2 [ / Lixi—xzyds

t1

7))

1
> pyiye <1{M€(t1,t2]} . Eleth?M {/ 1{X§:X§}d3}>
0

1
- ZP(]\/[ € (ti,ta], X3y = X3y =) - B {/ 1{X§:X§}d8}
" 0

1
> P(M € (th,ta)) - .
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To see that (A.2) is true, define
Ty=inf{t>0: X/ #x}, i=1,2.

As X/ and X? are independent rate 1, then 7} and Ty are independent rate 1 exponential
random variables. Since for any s € [0, 1),
P (X = X2, Ty ATy > 1) = PP*(X! = X2 W AT, > 1) - PP*(Ty ATy > 1)

=1- Px’x(Tl NTy > 1)
This implies
1 1
E5® |:/ 1{ngxg}d5:| > / Px’z(Xsl = st, T NTy > ].)dS
0 0

= Px’x(Tl /\T2 > 1)

=P (Ty > 1, Ty > 1) =1/

A.4 A continuous version of Burkholder’s inequality

The next theorem states a continuous time version of Burkholder’s inequality (Theorem
21.1 in [B73]). We follow Burkholder’s proof in the original paper which adapted to this
continuous time version.

Suppose that X; is an L?-cadlag martingale with X, = 0 and predictable square func-

tion (X);. Furthermore, assume (X), is continuous. Denote

AX =X, — X,
X/ =sup| Xy,
s<t

AX] = sup |AX,].

s<t
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Let ¢ : [0,00) — R, continuous and non-decreasing, satisfies ¢(0) = 0 and the following

growth condition: let ¢ = ¢ > 0 be the constant of (6.1) in [B73] such that

#(2x) < cp(x) for all x > 0. (A.5)

Two immediate facts are implied. First, since ¢ > 0 and is non-decreasing,
d(aVb) < pla)+ o(b). (A.6)
Second, for non-negative integers k,
6(2"2) < Fo(w). (A7)
Theorem A.3. There is a constant ¢ = c4 > 0 such that
EQ(X]) < ¢y E6((X){*) + EQ(AX])|  for any t > 0. (A.8)

We need the following two results to prove the theorem above.

Lemma A.4. (Lemma 7.1 in [B73]) Suppose that f and g are non-negative random vari-

ables and B> 1, 6 > 0 and € > 0 satisfy
P(g > B\, f >0\ <eP(g>A\) forall X > 0.
Suppose v = y(B) > 0 and n =n(d) > 0 satisfy
S(BA) < vo(A)  and  ¢(67'N) < np(A)  for all A > 0. (A.9)
If in addition ve < 1, then

ol
E¢lg) < 1— o

Eo(f).

Suppose that 8 and 6 are given. Let k be a positive integer satisfying 2871 < 3 < 2F.

Then one could choose v = ¢k |, and 1 can be chosen according to § in the same way.
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Lemma A.5. Assume f>1 and 0 <0 < B —1. Then for every T > 0,
52

% 1/2 * < - -
P<XT>5>H<X>T \/AXT—(;)‘) — (6_1_5)2

P(M7 > \)

for all X > 0.

Proof of Theorem A.3. In Lemma A.4, let § = 2. Then (A.5) is satisfied by taking v =
6.1 Choose 0 < 6 < (1/4) Ay 1 sothat 4y§ < 1 and 61 > vV 4 = ¢g1 V4. Thus, one

could take n = 279V2 where j satisfies 297! < ¢, < 2/. Now let
9=Xi. f=(X)/"vAX;,

Note that 6 < 1/2 so that 20 < 1, thus

5?2 5?2
€= = 5 < 462,

(B—=1-06)2 (1-9)
It follows that ve < (49d)d < § < 1. By Lemma A.4 and (A.6),

Ce.17]
1— Cg.1€
C6.17)
1-— Cg.1E€

Bo(X3) < Eo((X)* v AX;)

E¢((X)?) + Bo(AXE)|.

Now we can choose

Gl
Cy = T ez
— C6.1€

and this completes the proof of Theorem A.3. [

Suppose ¢(z) = z*. Then ¢(2x) = 16¢(x) so we can take cg; = 16 in (A.5). Now let

B =2,
v = c1 = 16,

d=(1/2y =27

so that

~§? 4] 276 16

R R (= ER (=t TEh
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By (A.7), we can take n = ¢ ; = 16° so that (A.9) is satisfied. Thus, we may take

n 165 6<961)
% =10 1=t~ 19 \og5

in (A.8).
To prove Lemma A.5, we will make use of the following result.

Lemma A.6. Let 1,7 be stopping times such that 7 < 75 a.s., and let
Ht - Xt/\’r1 - Xt/\Tg'

Then Hy is an L*-martingale with predictable square function (X )inr — (X)inr-

The lemma above in discrete time is an easy consequence of the fact that the sequence
1{r > n} is bounded and predictable for any stopping time 7, and hence a martingale

transformation by it is again a martingale.

For continuous time setting, we use Proposition I1.2.2 in [IW81]: in their notation, the

stochastic integral

P - | " dx.,

is defined for all processes ¢ = 9(w,t) € L£* where £? is defined in (1.1) of Section II.1,
with respect to the right continuous martingale X that is square-integrable. Simply take
the constant function v = 1 so that Lemma A.6 follows (2.3) of Proposition I1.2.2 in

[TW81]. m

Proof of Lemma A.5. Let T > 0,8 >1and 0 <é < — 1. For A > 0, define
7(a) =inf{t > 0: X; > a}, fora >0,
o=inf{t >0:(X))>VAX; > 6},
H) = Xipr(gnno — Xiar(\no-

By Lemma A.6, H} is an L?-martingale with predictable square function

(HN: = (X) ipr@rne — (XD inroyne:



Claim 1. P(X; > 8\ (X)I?VAX; < 60) < P(r(BA) < T,0 >T).

Proof. This follows directly from the definition of 7(-): Notice that

{X7 > BA} S {7(BN) <T7,

(X2 VAXE <M} C {o>T).

Claim 2. P(r(B\) < T,0 > T) < P(H: > MB — 1 — ).
Proof. On the event I' = {7(S\) < T,0 > T},
HY = Xipran) — Xinr(n)

and thus

|HM > | Xiaran | — [ Xeary] = 1 Xinrany | — S[up] | Xinr(n)-
te[0,T

On T, 7(\) < T and AX5 < d\ which implies
sup |Xt/\7'(>\)| S ’XT()\)l S |X7-()\)_| + |AX:()\)| S A + (5)\
te[0,T]
Similarly since 7(SA) < T on T,
sup | Xinr(an| = [Xr(an] = BA.
t€[0,T]

Consequently,

|HM > A3 — (A +6A) =B —1-9).

1

For—ap W)

Claim 3. P((H")5 > \B—1-14)) < N2

81

Proof. Since Hj is a martingale, then (H7)? is a submartingale and E[(H})?] = E({(H)7).

Thus, the above claim follows from Doob’s inequality (Theorem 1.4 in [CW90].)

Claim 4. E((H")7) < (6A\)?P(X; > \).

Proof. Since 7(A\) < 7(8A),

<H>\>T = <X>T/\7'(ﬁ)\)/\0' - <X>T/\7'(/\)/\U



= ((X)raranne = K rarone) - Lroy<ry + Liroysmy)

= (<X>T/\T(,B)\)/\J - <X>T/\T(/\)/\U) ’ 1{7()‘)§T}

IN

(XD raraane - Liro<Ty
< (X rarnne - Hxgay

< (0N Lixgay
where the last inequality follows from the assumed continuity of (X),. Consequently,
E({(HM7) < 82X\ P(X5 > \).

Since A\ was arbitrary, this completes the proof of Lemma A.5.
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