
Syracuse University Syracuse University

SURFACE at Syracuse University SURFACE at Syracuse University

Dissertations - ALL SURFACE at Syracuse University

5-14-2023

Real-time Adaptive Detection and Recovery against Sensor Real-time Adaptive Detection and Recovery against Sensor

Attacks in Cyber-physical Systems Attacks in Cyber-physical Systems

Lin Zhang
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

Recommended Citation Recommended Citation
Zhang, Lin, "Real-time Adaptive Detection and Recovery against Sensor Attacks in Cyber-physical
Systems" (2023). Dissertations - ALL. 1704.
https://surface.syr.edu/etd/1704

This Dissertation is brought to you for free and open access by the SURFACE at Syracuse University at SURFACE at
Syracuse University. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of
SURFACE at Syracuse University. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1704?utm_source=surface.syr.edu%2Fetd%2F1704&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Cyber-physical systems (CPSs) utilize computation to control physical objects in real-

world environments, and an increasing number of CPS-based applications have been de-

signed for life-critical purposes. Sensor attacks, which manipulate sensor readings to de-

ceive CPSs into performing dangerous actions, can result in severe consequences. This

urgent need has motivated significant research into reactive defense. In this dissertation,

we present an adaptive detection method capable of identifying sensor attacks before the

system reaches unsafe states. Once the attacks are detected, a recovery approach that we

propose can guide the physical plant to a desired safe state before a safety deadline.

Existing detection approaches tend to minimize detection delay and false alarms simulta-

neously, despite a clear trade-off between these two metrics. We argue that attack detec-

tion should dynamically balance these metrics according to the physical system’s current

state. In line with this argument, we propose an adaptive sensor attack detection system

comprising three components: an adaptive detector, a detection deadline estimator, and

a data logger. This system can adapt the detection delay and thus false alarms in real-

time to meet a varying detection deadline, thereby improving usability. We implement our

detection system and validate it using multiple CPS simulators and a reduced-scale au-

tonomous vehicle testbed.

After identifying sensor attacks, it is essential to extend the benefits of attack detection.

In this dissertation, we investigate how to eliminate the impact of these attacks and pro-

pose novel real-time recovery methods for securing CPSs. Initially, we target sensor at-

tack recovery in linear CPSs. By employing formal methods, we are able to reconstruct

state estimates and calculate a conservative safety deadline. With these constraints, we

formulate the recovery problem as either a linear programming or a quadratic program-

ming problem. By solving this problem, we obtain a recovery control sequence that can

smoothly steer a physical system back to a target state set before a safe deadline and main-

tain the system state within the set once reached. Subsequently, to make recovery practi-

cal for complex CPSs, we adapt our recovery method for nonlinear systems and explore

the use of uncorrupted sensors to alleviate uncertainty accumulation. Ultimately, we im-

plement our approach and showcase its effectiveness and efficiency through an extensive

set of experiments. For linear CPSs, we evaluate the approach using 5 CPS simulators and

3 types of sensor attacks. For nonlinear CPSs, we assess our method on 3 nonlinear bench-

marks.

REAL-TIME ADAPTIVE DETECTION AND RECOVERY AGAINST

SENSOR ATTACKS IN CYBER-PHYSICAL SYSTEMS

by

Lin Zhang

B.E., Dalian University of Technology, 2015
M.S., Syracuse University, 2022

Dissertation
Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer and Information Science and Engineering.

Syracuse University
May 2023

Copyright © Lin Zhang 2023

All Rights Reserved

ACKNOWLEDGEMENT

First, I would like to express my deepest gratitude to my advisor, Prof. Fanxin Kong, for

his unwavering support, constructive feedback, and invaluable insights throughout my re-

search journey. He has guided me in developing new ideas, honing my academic tastes,

and cultivating the skills required to conduct high-quality research. I am deeply apprecia-

tive of the countless times he worked overnight to revise my papers and for providing me

with opportunities to collaborate with top researchers in my field. I consider myself truly

fortunate to have had the opportunity to learn from his expertise and wisdom and to have

grown under his supervision.

I would like to extend my heartfelt thanks to my dissertation committee members, Prof.

Amit K. Sanyal, Prof. Qinru Qiu, and Prof. M. Cenk Gursoy, for dedicating their time

to my dissertation, offering valuable comments, constructive suggestions, and engaging in

thoughtful discussions that have significantly enhanced my research.

I am grateful to my research collaborators and lab members, whose contributions have

been invaluable to my research and personal development. Prof. Insup Lee and Oleg Sokol-

sky provided crucial suggestions and insights for several research papers, while Prof. Xin

Chen offered extensive support in formal methods. Prof. Álvaro Cárdenas generously shared

his valuable experience within the security community. I also appreciate the assistance

of Pengyuan Lu, Kaustubh Sridhar, and Luis Burbano in writing and conducting exper-

iments for several research papers. My lab members, Mengyu Liu, Zifan Wang, Shixiong

Jiang, and Weizhe Xu, have also contributed significantly to my growth.

I would like to acknowledge the financial support from Prof. Kong’s startup funding, Syra-

cuse University fellowship, and the National Science Foundation, which have provided me

v

with the necessary financial resources and allowed me to focus on my research and present

my work at various conferences.

Special thanks to the department chair, Dr. Jae C. Oh, and the administrative and tech-

nical personnel of the Department of Electrical Engineering and Computer Science, espe-

cially Mrs. Cynthia Salanger, Mrs. Rebecca Noble, and Mrs. Cynthia Bromka-Skafidas,

for their assistance in addressing technical, procedural, and logistical matters.

I would like to express my deepest appreciation to my family, especially my parents, who

have respected my decision to study abroad and provided immense emotional support.

Their selfless love, constant encouragement, and unwavering support have been the driv-

ing forces behind my success in my PhD journey.

This dissertation stands as a testament to the support, guidance, and encouragement I

have received from all these remarkable individuals in my life. My sincerest thanks to each

and every one of you.

vi

TABLE OF CONTENTS

ABSTRACT . i

ACKNOWLEDGEMENT . v

LIST OF TABLES . ix

LIST OF ILLUSTRATIONS . xi

CHAPTER 1 : Introduction . 1

1.1 Real-time Adaptive Detection . 3

1.2 Real-time Attack Recovery . 4

1.3 Organization of Dissertation . 8

1.4 Previous Publications . 9

CHAPTER 2 : Related Work and Preliminaries 10

2.1 CPS Security and Current Research Focus 10

2.2 Sensor Attack Detection . 11

2.3 Sensor Attack Recovery . 12

2.4 Overview of Cyber-physical Systems . 13

2.5 Sensor Attacks in CPSs . 17

CHAPTER 3 : Real-time Adaptive Detection against Sensor Attacks . 22

3.1 Overview of the Attack-Detection Framework 22

3.2 Detection Deadline Estimation . 23

3.3 Adaptive Window Based Attack Detection 27

3.4 Data Logging Protocol . 31

vii

3.5 Evaluation . 33

3.6 Conclusion . 37

CHAPTER 4 : Real-time Sensor-attack Recovery in Linear CPSs 38

4.1 Design Overview of Recovery System . 38

4.2 LQR based Recovery Control Calculator . 42

4.3 Supporting Components for Recovery Control 49

4.4 Evaluation . 56

4.5 Conclusion . 65

CHAPTER 5 : Real-time Sensor-attack Recovery in Complex CPSs . . . 67

5.1 System Overview of Recovery System . 67

5.2 Adaptive Recovery Sequence Generator . 73

5.3 Supportive Components . 77

5.4 Evaluation . 83

5.5 Conclusion . 93

CHAPTER 6 : Summary . 94

6.1 Conclusions . 94

6.2 Future Work . 96

APPENDICES . 97

BIBLIOGRAPHY . 107

VITA . 114

viii

LIST OF TABLES

TABLE 1 Notations and symbols used in this dissertation. 15

TABLE 2 Simulation settings. No.: simulator number, δ: control step size (in

seconds), PID: PID control parameters, U: control input range, ϵ:

uncertainty bound, S: safe state set, τ : detection threshold. 33

TABLE 3 Comparison of detection false positives and deadline misses with

adaptive window size vs. a fixed window size. #FP: number of sim-

ulations whose false positive rate exceeds a threshold, #DM: num-

ber of simulations who miss deadline. 36

TABLE 4 Simulation Scenarios. (Time unit: second) Cyber-physical System

Properties - δ: control stepsize, XS: safe state set, U : control input

limits, PID: PID parameters of original controller. Recovery-related

Parameters - ta: attack launched time, tf : attack detected time,

XT : target state set, Qi: state cost corresponding to the ith state

(other costs set to 1), R: control input cost. 58

TABLE 5 Attack Scenarios. Bias attack: add a certain value to or subtract it

from sensor data. Replay attack: send historical data from a cer-

tain time interval. Delay attack: delay data sent to the controller

for a certain time. 59

ix

TABLE 6 time cost of computing the recovery controls. the time unit is mil-

lisecond. legends: TLP : time cost of Linear-Programming (LP)

method, %LP : ratio of TLP to control stepsize, Tsolver: time cost

of LQR-based method using ECOS solver, %solver: ratio of Tsolver

to control stepsize, TADMM : time cost of LQR-based method using

ADMM algorithm with OSQP solver, %ADMM : ratio of TADMM to

control stepsize . 63

TABLE 7 The impact of load disturbance on quadrotor simulator under bias

attack. legends: vmax: the maximum load disturbance in each con-

trol step, D: recovery length (D = td−tr), N : total recovery control

length (N = tm − tr), Tsolving: the solving time of OSQP solver in

millisecond. 65

TABLE 8 Settings used in each benchmark. 88

x

LIST OF ILLUSTRATIONS

FIGURE 1 Attack Detection and Recovery Demonstration on a Vehicle 2

FIGURE 2 Abstract of CPS Architecture . 17

FIGURE 3 An Execution of the CPS example 18

FIGURE 4 The CPS example under a sensor attack 19

FIGURE 5 Design overview of the real-time adaptive sensor attack detection

system. 23

FIGURE 6 Searching Process for the Detection Deadline td. 26

FIGURE 7 Decreasing the Detection Window Size 29

FIGURE 8 Increasing the Detection Window Size 30

FIGURE 9 Illustration of the Data Logger. 31

FIGURE 10 Comparison of detection results between adaptive window size

and fixed window size for vehicle turning and RLC circuit under

three attack scenarios. Blue solid line: actual system state, Grey

dashed line: reference state, Red dotted vertical line: attack start

time, Blue dotted vertical line: detection deadline, Orange circle

marker: alert raised by adaptive detector, Purple square marker:

alert raised by detector with fixed window size, Diff.:Difference,

Volt.:Voltage. 32

FIGURE 11 The number of false positive and false negative experiments changes

with different window sizes. 33

FIGURE 12 Attack detection in vehicle testbed. 35

FIGURE 13 The Framework of Real-Time Attack-Recovery. 39

FIGURE 14 Recovering a system under an sensor attack. 41

xi

FIGURE 15 High-level description of our approach to find a recovery control . . 43

FIGURE 16 Illustration of the Sliding Window Based Checkpointing Protocol. . 51

FIGURE 17 Start state estimation. Line segments: overapproximations of the

reachable set at the time t = tw + δ, tw + 2δ, The exact system

execution which is denoted by the red dotted curve is guaranteed

to be contained in the overapproximations at discrete times. 53

FIGURE 18 Deadline estimation. Line segments: overapproximations of the

reachable set at the time t = tw + δ, tw + 2δ, The deadline is

computed as td = tr + 3δ. 53

FIGURE 19 Comparison of the system executions under three situations for

each attack scenario. RED = No recovery. YELLOW = Non-real-

time recovery (previous work [4]). BLUE = Linear-Programming

recovery (previous work [15]). GREEN = LQR-based recovery

(our proposal). Dotted Black Line = Reference state. 61

FIGURE 20 The recovery of vertical position z of quadrotor under bias attacks

with vmax = 5 × 10−4. The solid blue line represents real system

states; the orange solid line shows the desired recovery states pre-

dicted by recovery controller; black dashed line is the reference or

target states; red solid line marks the boundary of target state set. 66

FIGURE 21 Real-time Data Predictive Recovery Overview 68

FIGURE 22 Illustration of Recovery Timeline 68

FIGURE 23 Illustration of Extended Model Predictive Recovery. i○ denotes

solving the ith optimization problem, and i denotes implementing

the recovery control inputs computed from ith optimization prob-

lem. 75

xii

FIGURE 24 A fragment of successive calculation of reachable states using the

state predictor . 78

FIGURE 25 Illustration of the use of Flow*. 79

FIGURE 26 Numerical and High-Fidelity CPS Simulators 84

FIGURE 27 Performance of our method (MPC recovery control) compared to

the baselines (no recovery, LP recovery control, LQR recovery con-

trol, and Software Sensor Recovery or SSR) on three benchmarks:

continuous stirred tank reactor (CSTR) control [left], quadrotor

altitude control [middle], naval vessel control [right]. 84

FIGURE 28 Sensitivity analysis to bias values of {−25,−30,−35} on the CSTR

benchmark. 85

FIGURE 29 Sensitivity analysis to detection delay values of {0.5, 1.0, 1.4} on

the CSTR benchmark. 85

FIGURE 30 Sensitivity analysis to noise with upper bounds of {0.4, 0.1, 0.6} on

the CSTR benchmark. 86

FIGURE 31 Sensitivity analysis of recovery with an observer to increasing

noise with upper bounds of {0.05, 0.1, 0.25} ×10−3 on the Quadro-

tor benchmark. 86

FIGURE 32 Computational overhead (in seconds) for all methods on the Quadro-

tor benchmark. For both LP and LQR, the outlier point on top

represents the overhead in formulating and solving the problem at

time step tf . 93

FIGURE 33 Design Overview of Simulation and Security Toolbox 98

FIGURE 34 Attack Recovery Performance for Baselines 101

FIGURE 35 Attack Recovery Performance for Baselines 101

FIGURE 36 Robotic Vehicle Testbed . 103

xiii

FIGURE 37 Hardware Architecture of Robotic Vehicle Testbed 104

FIGURE 38 Real-time Attack Recovery Implementation on Robotic Vehicle

Testbed . 104

FIGURE 39 Recovery demonstration from our testbed. 104

xiv

1CHAPTER 1

Introduction

Cyber-physical systems (CPSs) integrate computational resources and physical processes

to form a cohesive whole with sensing and actuation components. These systems have be-

come increasingly prevalent in various domains, including transportation, energy, health-

care, supply chain, industrial manufacturing, and agriculture. As a result, they now un-

derpin critical infrastructure and pervade everyday life. For instance, tall buildings employ

structural vibration control systems to counteract wind-induced vibrations [1], while Ama-

zon is on the verge of using drones for package delivery within one hour [2]. Many CPS

applications are safety-critical, and their failure can lead to significant consequences, rang-

ing from economic losses and societal disruption to personal injury.

The safety-critical nature of CPSs necessitates a thorough understanding of their security

vulnerabilities. The tight integration of computational and physical components exposes

CPSs to various types of attacks. One significant security risk involves sensor attacks,

which manipulate sensor data to affect the physical system adversely. When a controller

receives malicious sensor data, it generates corrupted state estimates that may push the

system into unsafe physical states. Sensor attacks can originate from cyber attack surfaces,

such as compromised control software or communication networks between sensors and the

controller [3], [4]. However, an emerging threat known as transduction attacks poses a dis-

tinct challenge. These attacks non-invasively manipulate sensor readings by altering phys-

ical properties, allowing the injection of malicious signals [5], [6]. For example, attackers

can generate ultrasonic waves to corrupt IMU sensor data [7], spoof GPS signals to mis-

direct autonomous vehicles [8], or remotely tamper with LiDAR sensors to make vehicles

perceive nonexistent objects [9]. Since sensor attacks directly impact physical states, rely-

2

Figure 1: Attack Detection and Recovery Demonstration on a Vehicle

ing solely on cybersecurity measures is insufficient to protect CPSs against these threats

[4], [5], [10]. Moreover, as CPSs become more autonomous, the effectiveness of such at-

tacks is likely to increase [11]–[13].

The pressing need to counter sensor attacks has led to the development of both proac-

tive and reactive defense strategies [14]. Proactive defenses involve security-hardening de-

signs implemented within the CPS prior to any attack. One such example is sensor fusion,

which combines data from multiple sensors to reduce the influence of uncertain readings

and provide security guarantees [8]. However, when proactive defenses are breached, reac-

tive defenses become essential to protect the CPS. Reactive defenses are activated upon

detecting an attack, functioning online to minimize its impact [15]. This paper concen-

trates on reactive defense mechanisms, particularly sensor attack detection and recovery

strategies. As an example, Figure 1 demonstrates a detection and recovery process for an

autonomous vehicle subjected to a GPS spoofing attack. The attack causes the vehicle to

deviate from the center of its lane and even veer into the oncoming lane. Reactive defenses

must identify the attack before the car enters the oncoming lane and steer the vehicle back

to its own lane, as depicted by the green recovery trajectory. This highlights the impor-

tance of timely and effective reactive defense mechanisms in ensuring the safety of CPSs

and their applications.

3
1.1. Real-time Adaptive Detection

Sensor attack detection aims to identify attacks by discerning differences between observed

sensor measurements and predicted values [5], [16]–[18]. Existing works attempt to min-

imize detection delay while maximizing usability. Detection delay refers to the time be-

tween an attack’s onset and its detection, while usability corresponds to the false alarm

rate; a lower rate indicates better usability. Achieving both goals simultaneously is chal-

lenging due to the inherent trade-off between these two metrics, as greater usability often

results in longer detection delays [19], [20]. We argue that attack detection should priori-

tize different metrics depending on the CPS’s current state. For instance, when a physical

system’s state is near the unsafe region, lowering the detection delay takes precedence over

reducing false alarms, and vice versa.

Implementing this adaptability in attack detection presents several challenges. First, in

safety-critical CPSs, timing is crucial. Detection after consequences occur is equally dam-

aging, as illustrated by the futility of detecting an attack post-car accident. This time con-

straint, known as the detection deadline, must be met for effective detection. Second, on-

line calculating a detection deadline is not trivial, which varies as the physical system state

evolves. The overhead must be low, or the calculated deadline may become outdated. Ad-

ditionally, a detector with fixed or unpredictable detection delay is incompatible with the

varying deadline. Third, although the detection delay should not exceed the deadline, a

shorter detection delay is not always advantageous. For example, a detector that raises an

alert every control period can discover attacks immediately, offering the shortest detection

delay. However, this results in an unmanageable number of false alarms and therefore un-

acceptable usability. Conversely, a detector that waits for multiple control periods before

raising an alert increases the detection delay.

4To address these challenges, we propose a real-time adaptive attack detection system ca-

pable of dynamically adjusting detection delay and false alarms based on the system’s

varying state. Our detection system elaborates in Chapter 3 in detail. It exhibits shorter

detection delays and more false alarms when the detection deadline is stringent, and vice

versa. The system comprises three major components (as shown in Fig. 5), with the tech-

nical contributions for each component as follows:

• Detection Deadline Estimator: We develop a reachability-based technique for conserva-

tively estimating the detection deadline in real-time. This method assesses system vulnera-

bility by computing the reachable set of future potential system behaviors.

• Adaptive Detector: We create a window-based detection algorithm that dynamically

adapts its detection delay according to the deadline, ensuring no data points are missed

during the adaptation process.

• Data Logger: We design a sliding-window based data logging protocol, maintaining suf-

ficient trustworthy data for deadline estimation and attack detection even when the detec-

tion delay varies

We implement our detection system and evaluate its performance using multiple CPS sim-

ulators and a reduced-scale autonomous vehicle testbed. The results demonstrate the effi-

ciency and effectiveness of our proposed detection system.

1.2. Real-time Attack Recovery

Despite the extensive volume of research on attack detection, a critical question remains

largely unaddressed: what should be done after detecting an attack? A recent survey sum-

marizing 32 CPS security papers also raises this question, emphasizing the need for future

work on attack response [21]. It is crucial to capitalize on the benefits of attack detection,

halt the ongoing deviation, and eliminate the negative impacts caused by the attack on

5the system [20], [22]. Several other surveys on CPS attack detection, such as [20], [23], also

highlight the lack of research on attack response strategies. Furthermore, detection delays

exist before attacks are identified, during which the physical system may have already sig-

nificantly deviated from the desired state. The deviations resulting from sensor attacks

pose severe consequences for CPSs. Therefore, attack recovery approaches are needed to

mitigate these negative impacts and correct the deviations in physical states [20], [22].

Existing approaches are insufficient to address the real-time recovery problem. First, a

common method for responding to detected attacks involves isolating compromised sen-

sors, deriving state estimates from virtual sensors, and continuing to use the original con-

troller to manage the system [4], [24]–[28]. However, this method faces two significant is-

sues. One is that the original controller implements a mild policy, which may not be fast

enough to restore the system before the safety deadline. For instance, a car’s physical

state must be recovered before colliding with an obstacle, and a UAV must be stabilized

before crashing into the ground. The other issue is that the original controller may not be

sufficiently robust to avoid unsafe states during recovery. Second, in the control domain,

robust control techniques primarily focus on tolerating bounded disturbances or errors

[29]. As such, they are ill-equipped to handle sensor attacks, where sensor readings may

be arbitrarily manipulated by attackers [22], [30]. Moreover, control methods with static

policies are unsuitable for the real-time recovery problem due to the need to accommodate

varying safety deadlines.

1.2.1. Real-time Sensor-attack Recovery in Linear CPSs

To address the limitations of previous studies, we propose several real-time recovery meth-

ods against sensor attacks in linear CPSs. Our recovery system can safely and smoothly

recover a CPS before the recovery deadline and maintain the system in a target state set

once it is reached. More detailed designs can be found in Chapter 4. The attack recovery

6system consists of:

• Recovery Controller: The core component of the recovery controller is a control calcula-

tor based on optimization problems with safety and timing constraints. The optimization

can be a linear-programming problem (LP) or a quadratic-programing problem based on

a Linear-Quadratic Regulator (LQR). The time horizon of optimization is set as a safety

deadline plus a conservatively estimated time that the system is maintained in the tar-

get set (named maintainable time) when under attack. Once the optimization problem is

solved, we obtain the recovery control sequence.

• Supporting Components: The recovery controller also includes a checkpointer, a state

reconstructor, and a deadline estimator. First, we propose a sliding-window-based check-

pointing protocol that considers a varying detection delay, removes false data, and retains

sufficient trustworthy data for attack recovery computations. Second, as the sensor infor-

mation is no longer trustworthy during an attack, we present a state reconstruction ap-

proach that considers computational overhead and uses the checkpointed data to estimate

the system state when the recovery sequence begins to be applied. Third, to determine

an appropriate length for the recovery control sequence, we develop a reachability-based

approach to calculate a safety deadline and an approach to conservatively estimate the

maintainable time.

• We implement our framework and evaluate its performance using five CPS simulators

under three sensor attack scenarios. The results demonstrate the efficiency and efficacy of

our design and techniques.

1.2.2. Real-time Sensor-attack Recovery in Complex CPSs

Existing attack recovery methods for cyber-physical systems (CPSs) face significant chal-

lenges when applied to real-world scenarios, since real CPSs are often complex and nonlin-

7ear. Nonlinear differential equations often lack analytical solutions, so exact reachability

computation for nonlinear systems can be both challenging and computationally inten-

sive [31]. Although some methods simplify the problem by working on linear models ob-

tained through system linearization or identification, the linear approximation is only ac-

curate within a small range around the equilibrium point. Outside this range, large mod-

eling errors occur, rendering these methods incapable of finding an effective recovery so-

lution. Moreover, uncertainties such as noise and external disturbances accumulate over

time due to the lack of feedback from physical sensors after an attack is detected. Existing

methods assume all sensors are compromised, ceasing to receive any feedback, which pre-

vents the rejection of accumulating uncertainties and hinders the effectiveness of recovery.

To address these challenges, we propose a novel real-time recovery method against sensor

attacks specifically tailored for nonlinear CPSs, shown in Chapter 5. Our contributions

can be summarized as follows:

• For nonlinear CPSs, we propose an attack recovery system consisting of four compo-

nents. The state predictor conducts nonlinear reachability analyses, enabling the recon-

struction of the initial state set for recovery. Subsequently, the time oracle calculates an

online safety deadline, beyond which the system states may become unsafe under current

control inputs. During recovery, the model adaptor continually approximates the nonlinear

system as linear discrete-time models, facilitating the generator to efficiently obtain a re-

covery control sequence to guide the CPS toward a target state before the safety deadline.

• Our proposed method optimizes the use of uncompromised sensor data to mitigate un-

certainty accumulation. By incorporating accurate sensor measurements as feedback at

each activation, the recovery control sequence generator prevents uncertainty growth in

uncorrupted dimensions. Furthermore, leveraging reliable sensor measurements during

state reconstruction further alleviates the impact of uncertainties.

8• The proposed method boasts low computational overhead. First, the state predictor uti-

lizes Flow*, which employs Taylor models as over-approximate representations for non-

linear ODE solutions, thus, significantly enhancing the efficiency of reachability analysis.

Second, the model adaptor transforms nonlinear and even nonconvex dynamics into linear

discrete-time models. As a result, the recovery controller solves optimization problems for

linear systems rather than nonlinear ones, reducing computational overhead. Additionally,

the linear approximation is continuously updated with current state estimates and control

inputs during recovery, ensuring accuracy within a small range.

• The proposed method checks the system safety before implementing the recovery control

sequence. The state predictor performs the safety checking through reachability analysis

for the nonlinear system to guarantee a safe recovery. There is a small probability that the

recovery control fails to pass the check; then a fail-safe method takes over.

• Our method verifies system safety before implementing the recovery control sequence.

The state predictor performs safety checking via reachability analysis for the nonlinear sys-

tem, guaranteeing safe recovery.

1.3. Organization of Dissertation

The remainder of the dissertation is structured as follows: Chapter 2 provides an overview

of the background knowledge related to cyber-physical systems, sensor attacks, and the

existing work on attack detection and recovery. Chapter 3 introduces an adaptive sensor

attack detection system, which can adjust detection delay and false alarms in real-time

to meet varying detection deadlines and improve usability. Chapter 4 presents a formal

method-based approach for online computation of a recovery control sequence that guides

a linear system under an ongoing sensor attack from its current state to a target state

while ensuring no unsafe state is reachable along the way. Chapter 5 proposes a real-time

9recovery system for nonlinear CPSs and explores the utilization of uncompromised sen-

sor data to enhance recovery. Finally, Chapter 6 concludes the dissertation and highlights

promising directions for future research.

1.4. Previous Publications

This dissertation incorporates a collection of my prior work published in peer-reviewed

conferences. Chapter 3’s adaptive sensor attack detection work has been published in the

59th ACM/IEEE Design Automation Conference (DAC 2022)[32]. The real-time sensor at-

tack recovery for linear CPSs in Chapter4 consists of work published in the proceedings

of the 2020 IEEE Real-Time Systems Symposium (RTSS 2020)[15] and the 2021 ACM

SIGBED International Conference on Embedded Software (EMSOFT 2021)[33]. The real-

time sensor attack recovery for complex CPSs in Chapter 5 is based on work published in

the proceedings of the 29th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS 2023). In addition, the simulation and security toolbox for CPSs in the

appendix are demonstrated in RTAS 2023 Brief Presentation. Any views or opinions ex-

pressed in the reused material are those of the authors and do not necessarily reflect those

of IEEE or ACM.

10CHAPTER 2

Related Work and Preliminaries

This chapter begins by summarizing the related work and then proceeds to introduce the

background and corresponding preliminaries.

2.1. CPS Security and Current Research Focus

Before security emerged as a concern, control systems focused on addressing faults. Fault

Detection, Isolation, and Reconfiguration (FDIR) [34] is an area of control that detects

anomalies using either a model-based detection system or a purely data-driven system,

a process also referred to as Bad Data Detection. Isolation involves identifying the de-

vice responsible for the anomaly, while reconfiguration entails recovering from the fault.

While FDIR systems excel at detecting and eliminating faults caused by natural occur-

rences or accidents, they fall short in providing security against faults deliberately created

by a strategic adversary. This is mainly due to these protection systems generally assum-

ing independent, non-malicious failures. In the realm of security, incorrect model assump-

tions are the easiest way for an adversary to bypass protections [35]. For instance, FDIR

systems have been circumvented in the power grid [36] and chemical processes [22]. Con-

sequently, overcoming these limitations requires the development of more robust defense

methods against CPS attacks.

This need has inspired numerous research efforts on defending against sensor attacks. These

works generally fall into two categories: proactive and reactive defenses. In the first cat-

egory, a significant area of focus is tolerating sensor attacks through sensor redundancy,

preventing corrupted sensors from impacting the physical system. Sensor redundancy in-

volves both homogeneous sensors (e.g., multiple encoders measuring vehicle speed) and

11heterogeneous sensors capable of measuring the same physical parameter (e.g., encoders

and GPS sensors, where speed can also be calculated using GPS information). The value

input into the controller is produced by fusing readings from redundant sensors. Existing

works typically assume that there is at least triple modular redundancy and that less than

half of the redundant sensors can be compromised [10], [37], [38]. Provided these assump-

tions hold true, the corrupted sensors can be tolerated, and the fused sensor data is con-

sidered trustworthy. In the second category, the goal is to detect sensor attacks before the

system becomes unsafe and recover the physical state to a desired state. These approaches

will be detailed further in the following two sections.

2.2. Sensor Attack Detection

One area that has attracted significant attention is the utilization of physical invariants

to detect sensor attacks. A physical invariant is defined as an invariant governed by spe-

cific physical laws. There are two types of physical invariants commonly employed in the

literature. The first type relies on a system model to capture the physical system’s dy-

namics [5], [16], [20]. For instance, a set of differential equations [39] or a machine learning

model can be used to describe the motion of a quadcopter. The second type of physical

invariant involves sensor correlation, where multiple (heterogeneous) sensors respond cor-

relatively to the same physical aspect simultaneously [17], [18], [40]. For example, pressing

the accelerator will increase engine RPM and vehicle speed, as well as affect GPS readings.

Attack detection usually consists of two phases. The offline learning phase aims to extract

the physical invariant of a system. The online detection phase involves monitoring sensor

(and actuation) values from physical observations and identifying anomalies between these

values and the expected ones provided by the physical invariant.

12
2.3. Sensor Attack Recovery

Researchers place great expectations on attack recovery techniques to build upon the ben-

efits of attack detection. CPS recovery is an emerging field that specifically investigates

how to correct a CPS’s behavior in the face of adversarial attacks.

One potential response to a detected attack is to restart the CPS. However, a physical sys-

tem may require a significant amount of time to shut down and reboot [3], [15], [41]. Dur-

ing this time, the CPS is taken offline, and serious consequences may occur. Therefore, a

better method should respond to detected attacks in an online manner. For instance, when

dealing with sensor attacks, it may be more appropriate to restart only the affected sen-

sors instead of the entire CPS. During the sensor reboot time, a recovery method is needed

to prevent the system from further drifting and guide it towards a safe state. Moreover,

as mentioned, the online recovery needs to meet timing constraints. In other words, this

paper pursues real-time attack recovery that brings a CPS back to a safe state before the

safety deadline. In the following, we will discuss two major groups of related work from

two different research communities, respectively, and explain why they are inapplicable or

inadequate to address this recovery problem.

The first group of related work comprises studies from the cybersecurity community. As

mentioned earlier, a commonly used attack response approach is to obtain state estimates

for the corrupted sensors and continue to use the original controller to restore the physical

system [4], [24]–[28]. In reality, this approach merely performs state prediction using a pre-

known or learned system model, which is only one component of the recovery framework

in Chapter 4. Notably, several essential aspects of recovering a CPS under attack are over-

looked in these existing works. First, they do not consider the timing constraint, i.e., the

safety deadline, and thus cannot guarantee a timely recovery. Second, they still rely on the

13original controller, which does not ensure that no unsafe states will be encountered during

the recovery.

The second group of related work includes studies from the control community. First, con-

ventional robust control approaches are adept at tolerating disturbances and modeling er-

rors that can be bounded [29], [42]. However, they are inadequate to defend against sen-

sor attacks because the impacts caused by such attacks are difficult to bound, as attackers

may arbitrarily manipulate sensor readings [22], [30], [35], [36]. Similarly, Kalman filter-

based approaches are also insufficient to handle these malicious sensor attacks [43], [44].

Furthermore, the timing constraint, i.e., the safety deadline, is not considered by these ap-

proaches. Second, concerning the hierarchical control architecture, also called the multi-

mode architecture at times, the control policy for each mode is usually static. Using static

control policies is not suitable for the recovery problem here because, as mentioned ear-

lier, the safety deadline varies at runtime, and it is infeasible to determine the deadline

beforehand. To handle the varying deadline, we need a dynamic control policy that can

generate recovery control to adapt to different deadlines on the fly. Lastly, on a conceptual

level, our recovery problem differs from event-driven control. Although the event of attack

detection triggers the recovery controller, the recovery control is time-driven because the

generated control actions are still applied periodically [45], [46].

2.4. Overview of Cyber-physical Systems

This section shows the system model. Table 1 summarizes the notations and symbols used

in this paper. In general, a typical CPS architecture is shown in Figure 2, including a

physical process, controller, sensors, and actuators. The controller controls the physical

process to maintain the reference (also known as target or desired) states in a periodic and

close-loop manner. At each tth control step, sensors measure the state of the physical sys-

tem and send them to the controller. Based on the sensor measurements, the controller

14obtains the state estimate x (t) of the physical system and generates control inputs u(t)

according to its control algorithm. The control inputs are then sent to actuators who ap-

ply u(t) to supervise the physical system at a desired (or reference) state. The state of a

physical system or the system state x (t) ∈ Rn is a vector of size n that represents the

number of dimensions of the system state (e.g., velocity, electric current, pressure, etc.).

The control inputs u(t) ∈ U is a vector of size m that represents the number of dimen-

sions of the control input (e.g. steering angle, applied voltage, etc.). U is the control input

range that is usually limited by the actuator’s capability or physical properties, and for

instance, the maximum voltage applied on a DC motor is limited by the capacity of the

power source. Example 2.4.1 demonstrates the execution of a CPS, DC motor. Moreover,

the symbol x (t) denotes the state estimate, while x̄ (t) is the real (true) state of the plant.

The symbol u(t) denotes the control input computed by the controller, while ū(t) is the

real input to the plant. For easy presentation of equations, we sometimes use xt or ut to

denote x(t) or u(t), respectively.

It is important to note that feedback control systems are related concepts to CPS. Feed-

back control systems use a closed-loop design to regulate the behavior of a process or sys-

tem. However, CPS have a broader scope, as they integrate computational, physical, and

networking components. The implementation of each component in real CPS may be com-

plex. For example, there may exist a supervisory and/or configuration device communicat-

ing with the controller to monitor the system or change the controller settings. Also, the

communication channel between these components can be wireless and separate from each

other geographically. For conciseness, this thesis abstracts the main components of CPSs

in Figure 2 to avoid splitting hairs, which is adequate to understand how they work.

The dynamics of a physical system obey physics laws and can be modeled by a set of dif-

ferential or difference equations. The linear time-invariant systems can be modeled as a

15

Table 1: Notations and symbols used in this dissertation.

Notation Description
δ length of one control step / control interval
x t state estimate at time t
u t control input to be implemented at time t
Xt overapproximation of x t
T target state set ⊂ Rn

F unsafe state set ⊂ Rn, F ∩ T = ∅
x̄ t real/true/actual system state at time t
tw the time when the last trustworthy state is cached
ta unknown time when the sensor attack starts
tf the time when the sensor attack is detected
tr the time when the first recovery control is implemented
td safety deadline, by which the system is in target set
tm maintainable time, such that the system is maintained in target

set in [td, tm]
D recovery length, D = td − tr
M maintenance length, M = tm − td
N total recovery control length, N = tm − tr
T number of control steps within which one optimization computa-

tion is guaranteed to finish
v t the uncertainty at time t
vmax the maximum value of the uncertainty
n the dimension of system state vector
m the dimension of control input vector
J the objective function of optimization problem
Q the state cost
Qf the final state cost
R the control input cost
⊕ Minkowski sum, i.e., X ⊕ Y = {x+ y |x ∈ X, y ∈ Y }
⊖ Minkowski difference, i.e., X ⊖ Y =

⋂
y∈Y {x− y |x ∈ X}

16state-space form of Equation (2.1),

x t+1 = Ax t +Bu t + v t, (2.1)

where x t ∈ Rn denotes the plant’s state vector at time t, u t ∈ Rm is the control input

vector, v t ∈ Rn is the uncertainty vector, and A, B have suitable dimensions, indicat-

ing how future states evolve from the current state and control input. We assume that the

uncertainty v t at any time is constrained by a bounded range V , and use vmax to denote

its magnitude supv∈V ∥v∥ where ∥ · ∥ is the Euclidean norm. The LTI model has been

widely used in both control and security communities [4], [15], [16], [42]. Given the current

system state and control input, we can predict next system state from the system model,

which represents the system’s behavior.

Similarly, we can model a continuous nonlinear system using an ordinary differential equa-

tion in the form of Equation (2.2).

ẋ = f(x ,u) + d (2.2)

where d is the disturbance term due to uncertainties.

Observability refers to the ability to estimate the internal state of a system using its con-

trol inputs and sensor measurements over time [47]. For concise presentation, we assume

that the system states are fully observable, i.e., they can be directly determined from sen-

sor measurements, or x = y . However, in more general cases, the state estimates x need

to be calculated from sensor measurements y by an observer, given an output equation

y = h(x) + v , where v is the sensor noise.

Example 2.4.1. DC motors are extensively used as actuators in electric vehicles and

17

Figure 2: Abstract of CPS Architecture

prototype autonomous cars. A DC motor is equipped with torque converter, transmission,

shaft, and wheels, and provides rotary motion. The following ODE models the behavior of

a DC motor:  ẋ1

ẋ2

 =

 − b
J

KT
J

−Ke
L
−R
L


 x1

x2

+

 0

1
L

u
such that x1 denotes the angular velocity of the motor and x2 denotes the armature cur-

rent. The control input is denoted by u which is the voltage applied to the motor, it is up-

dated every 0.02 seconds based on the current value of x1 by a proportional–integral–derivative

(PID) control scheme whose goal is to maintain the angular velocity along a specific (refer-

ence) value which could be different in different time periods. Fig. 3 illustrates an execu-

tion of the DC motor from the initial state x1 = 0, x2 = 0, where the parameters are set as

R = 1, L = 0.5, KT = 0.01, b = 0.1, J = 0.01, and Ke = 0.01. The blue dashed line in the

figure shows the reference values for x1.

2.5. Sensor Attacks in CPSs

In this section, we present the threat model under consideration. Sensors in CPSs can pro-

vide data for the controller to perceive the surrounding environment and monitor the sys-

18

Figure 3: An Execution of the CPS example

tem state, which helps with decision-making and control processes. Sensor attacks, which

alter sensor measurements, become a serious and particular threat for CPSs.

2.5.1. Devastating Effects of Sensor Attacks

Sensor attacks alter sensor data and lead to corrupted state estimations, which can not

reflect the actual system state, i.e., x ̸= x̄ . Based on the corrupted state estimation, the

controller generates an improper control input sent to the actuator. Then, the actuator

implements this corrupted control input to deviate the system states from the reference

state, and even reach the unsafe states. Note that attackers can predictably manipulate

the system states according to their needs by controlling the intensity of the sensor attack.

For example, a plant is required to operate at 200 ± 5◦F, and a temperature above 240◦F

will cause an explosion. Once the attacker subtracts 40◦F from the temperature sensor

measurement, the controller will assume that the plant temperature is 160◦F and does not

reach the reference temperature of 200◦F. As a result, the controller will increase the con-

trol input to follow the reference temperature until the actual temperature becomes 240◦

F, which can cause an explosion. In this case, the attacker can predictably control the

temperature according to their goal with the help of the feedback control mechanism. In

19

Figure 4: The CPS example under a sensor attack

addition, Example 2.5.1 demonstrates another sensor attack case in the above DC motor

system, and we plotted the system state under the sensor attack.

Example 2.5.1. We show an example of modification attack in Figure 4. Starting from

the time t = 5, the sensor data sent to the controller is modified by an attacker that adds a

bias of 5 rad/s to x1. Then after a small time period, the PID controller cannot maintain

the motor angular velocity near the reference value, which is 4 rad/s.

2.5.2. Categories of Sensor Attacks

The system state is estimated from sensor measurements. Thus, an attacker can manip-

ulate sensor measurements to compromise state estimates. An attacker can compromise

state estimates by corrupting the integrity (e.g. transduction attacks) or availability (e.g.

DoS attacks) of sensors. These attacks result in misleading control inputs that drive the

physical system to undesired states and even cause serious consequences.

• Compromising Integrity of Sensor Data. The attack scenarios under this category are

bias and reply attacks. (i) Bias attacks. This kind of attack modifies sensor data by adding

or subtracting certain values. The difference between state estimate x̄ t and system state

20x t denoted by vector e t ∈ Rn. Usually, we cannot know the number of the system state

that can be compromised in advance. The state estimate can be partially or fully affected,

i.e., the number of non-zero dimensions of e t or l0 norm of e t is 0 < ||e t||0 < n, or ||e t||0 =

n. (ii) Replay attacks. This kind of attack sends historical sensor data instead of current

ones to the controller. That is, x (t) = x̄ (t− s) starting from the attack for some s > 0.

• Compromising Availability of Sensor Data. The attack scenario we consider here is delay

attack. This kind of attack intentionally delays the data sent to the controller, i.e., x (t) =

x̄ (t0) for a time period of d where t0 is the start time of the attack, and then x (t) = x̄ (t−

d) for t ≥ t0 + d. Note that the Denial-of-Service (DoS) attack can also be seen as delay

attacks with infinite time delay.

In these attack scenarios, the data observed by the controller may not be consistent with

the actual system state, i.e., x (t) ̸= x̄ (t). As a result, the controller may generate an in-

appropriate control input based on a corrupted state estimate. In this way, the controller

might steer the system to unsafe states with misleading sensor data.

2.5.3. Growing Severity of Sensor Attacks

Sensor attacks are widely recognized as critical threats in CPSs for the following reasons.

First, sensor attack surfaces are increasingly expanding as CPSs become more and more

complex and open. For instance, there are more than 100 sensors in some modern vehicles,

and the number is growing with time. To achieve high-level driving automation, vehicles

rely on not only more complicated sensors, such as cameras, LiDAR, and IMU sensors,

but also on traffic data through vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I),

and vehicle-to-everything (V2X) communication [48]. Security concerns are growing with

increasingly open architecture and high autonomy. Second, attackers can launch sensor at-

tacks without expensive equipment or solid domain knowledge. For example, attackers are

able to pretend to be road workers and install dirty road patches to compromise the lane

21keeping system, causing the vehicle to leave the road [49]. Another example is that an at-

tacker without prior-knowledge of perception algorithms can project pure light onto the

stereo cameras to inject a fake obstacle depth [50]. Third, traditional defense mechanisms

for cyber systems are inadequate to identify and respond to sensor attacks. Attackers can

non-invasively manipulate physical properties in the environment to corrupt sensor data,

also known as transduction attacks. For example, an attacker, without physical or cyber

access to GPS sensors, can use a radio transmitter broadcasting fake GPS signals to steer

a yacht off course [51]. Since all components of CPSs are intact, traditional mechanisms

are unable to respond to such attacks. Fourth, a physical system might already have con-

siderably deviated from the desired state before attacks are detected. This is because there

is a detection delay from the onset of an attack to its detection. During the time interval,

the deviation caused by the above sensor attacks is a devastating repercussion for CPSs.

22CHAPTER 3

Real-time Adaptive Detection against Sensor Attacks

In this chapter, we introduce a real-time adaptive sensor attack detection system that dy-

namically balances usability and safety, depending on the current state estimate of the

cyber-physical system (CPS).

3.1. Overview of the Attack-Detection Framework

Our adaptive sensor attack detection framework is illustrated in Figure 5. It consists of

three components in the shaded box: (1) Adaptive Detector, (2) Detection Deadline Esti-

mator, and (3) Data Logger. The following briefly introduces these components and their

detailed design will be presented in Sections 3.2, 3.4 and 3.3, respectively.

First, the Detection Deadline Estimator conservatively calculates the detection deadline,

after which the physical system may reach unsafe states. Thus, the attack detector should

find attacks before the deadline. Note that the detection deadline may vary over time as

the system state changes and thus the Adaptive Detector needs to adapt the detection de-

lay accordingly. Second, the Data Logger logs state estimates and residuals. At every con-

trol period, it predicts expected state and calculates the residual (or difference) between

the predicted value and the observed value. It records enough data points for the Adaptive

Detector to calculate the cumulative residual, even when the detection delay varies. Third,

based on their outputs, the Adaptive Detector will track the cumulative residual. When

the average residual in the detection window becomes larger than a predefined threshold,

the detector will raise an alarm to signal the detection of an attack. Importantly, the de-

tector can dynamically adapt its detection delay to meet the detection deadline.

23

Actuator Physical System Sensor

Adaptive Detector

Detection Deadline
Estimator

Data Logger

Controller

Figure 5: Design overview of the real-time adaptive sensor attack detection system.

3.2. Detection Deadline Estimation

This section presents the design of Detection Deadline Estimator. We use reachability

analysis to conservatively estimate the detection deadline. The following first defines the

safety analysis problem, then presents how to approximate the reachable set, and finally

shows how to calculate the deadline using the support function.

3.2.1. Safety Analysis

When applying a sequence of control inputs u0, . . . ,uT−1 ∈ U to a physical system, the

system state evolves according to its dynamics ψ, i.e., x t+1 = ψ(x t,u t). The sequence of

evolving states is called State Trajectory ξ, where ξi denotes the i-th state in the trajec-

tory. By applying all possible control sequences within T control steps, we can have all

possible state trajectories Ξ(x 0, T) as Ξ(x 0, T) = {ξ : ξ0 = x 0, ξt+1 = ψ(ξt,u t)}, where

u t ∈ U , t ∈ {0, . . . , T − 1}, and x 0 is an initial state. Then, the reachable set R includes

all possible system states in Ξ(x 0, T).

The Unsafe State Set F is a region within the state space, in which the physical system is

unsafe and may cause serious consequences. For example, the distance from a vehicle to an

obstacle is less than zero where the unsafe state includes all negative distance values. The

complementary set of F is the safe state set S. To keep the system safe, the reachable set

of a system from a certain initial state x 0 is required not to intersect with the unsafe state

24set, i.e., R ∩ F = ∅. Unfortunately, it is very expensive to compute the exact reachable

set. Instead, we usually compute an over-approximation of the reachable set, denoted by

R̄ and R̄ ⊇ R. If R̄ ∩ F = ∅, then we can guarantee that R ∩ F = ∅. Based on this, we

define conservatively safe as Definition 3.2.1.

Definition 3.2.1. The system is Conservatively Safe, if the over-approximation of the

reachable set does not intersect with the unsafe state set F , i.e., R̄ ∩ F = ∅.

3.2.2. Over-approximation of the Reachable Set

Given the system model by Eq. (2.1), a state trajectory is affected by both uncertainty

and control input. To calculate the reachable set, we need to over-approximate both parts [52].

The over-approximation uses the ball and box defined as follows.

Definition 3.2.2. A unit ball is the closed set of points whose k-norm distance is less

than or equal to 1 from a fixed central point. For n dimensions and any k > 1, the origin-

centered unit ball B(k) is defined as B(k) = {x ∈ Rn : ∥x∥k = (
∑n−1

i=0 |x(i)|k)
1
k ≤ 1}.

Definition 3.2.3. A box is a set that can be denoted by a product of intervals, i.e., [xl(1), x
u
(1)]×

· · · × [xl(n), x
u
(n)], where xl(i) and xu(i) are the lower and upper bounds of x’s the i-th dimen-

sion.

Especially, any 2-norm ball (Euclidean ball) can be scaled from a unit Euclidean ball. The

infinity-norm unit ball B(∞) is a box, i.e., B(∞) = {x ∈ Rn : ∥x∥∞ = max0≤i<n |x(i)| ≤ 1},

where x(i) is the i-th dimension of x . Hence, any box can be transformed from an infinity-

norm unit ball by scaling in each dimension.

Over-approximation of uncertainty

We assume that v t in Eq. (2.1) by is bounded an error ϵ > 0 at one control step . Thus,

it can be over-approximated by an origin-centered euclidean ball Bϵ with radius ϵ. That is,

25we have x t ∈ x̃ t ⊕ Bϵ, where x̃ t = Ax t−1 + Bu t−1 and ⊕ denotes the Minkowski sum. The

Minkowski sum is defined as X ⊕ Y = {x+ y|x ∈ X, y ∈ Y } for any set X and Y.

Over-approximation of control input set

Consider the control input set U = [u(1), ..., u(m)]. For the i-th dimension u(i), it has the

upper and lower bounds denoted as uu(i) and ul(i), respectively. Then, the control input set

can be over-approximated by a box BU with a center c, where c(i) = (uu(i) + ul(i))/2. This

box can be scaled from a unit infinity-norm ball B(∞) with a scaling factor γi in the i-th

dimension, where γi = (uu(i) − ul(i))/2. The box is expressed by the transformation of the

infinity-norm unit ball, given by BU = c + QB(∞), where Q = diag(γ1, · · · , γm), i.e., a

m×m matrix with {γ1, · · · , γm} in its diagonal.

Note that the uncertainty v t can be over-approximated by a Euclidean ball by nature. In

CPS, each actuator has its own control input range or interval. Thus, the control input set

can be expressed by a product of these intervals, which is then a box.

Over-approximation of the Reachable set

Given the over-approximated control input set BU , the over-approximated uncertainty Bϵ,

and an initial state x 0 according to the system model by Eq. (2.1), the system state x t

will be bounded by the over-approximation of reachable set R̄(x 0, t), given by Eq. (3.1).

x t ⊆ Atx̄ 0 ⊕
t−1⊕
j=0

AjBBU ⊕
t⊕

k=0

AkBϵ (3.1)

3.2.3. Deadline Searching Process

Selection on the initial state x 0

First, we calculate the reachable set from the latest trustworthy state estimation x̄ t−wc−1

that has just moved outside the detection window, i.e., x 0 = x̄ t−wc−1. It correctly reflects

26

Figure 6: Searching Process for the Detection Deadline td.

the physical state at that time, while state estimates within the detection window, i.e.,

{x̄ t−wc , ..., x̄ t}, are still questionable. The time point is t − wc − 1, where t and wc are the

current time and window size, as illustrated in Figure 9. (More details on data logging are

in Section 3.4.) Second, if we consider some noise in state estimates, we can use an ini-

tial state set containing x 0. The initial set can be bounded by a ball given bounded noise.

Then, we can apply the same reachability analysis as above, too.

Deadline searching process

Starting from x 0, we compute the reachable set at each subsequent step until there is an

intersection between the over-approximation of reachable set R̄(x 0, t) and the unsafe state

set F , or it exceeds the maximum deadline given beforehand (i.e, the maximum detection

window size as in Section 3.3.3). Let say we find the first intersection at the (td + 1)-th

step, the system is safe before this step according to the Definition 3.2.1, and thus td is

regarded as the detection deadline. The detector is expected to identify an attack within

the deadline.

Figure 6 depicts an example that illustrates the detection deadline search process for the

system state with two dimensions of x1 and x2. At td-th step, R̄(x 0, td) ∩ F = ∅, and at

(td + 1)-th step, R̄(x 0, td + 1) ∩ F ̸= ∅. Hence, the detection deadline is set to td.

273.2.4. Computing deadline using support function

According to Eq. (3.1), we can see that the over-approximation is difficult to compute

because of the operation of the Minkowski sum. We choose to use the support function

method [52] to derive a box over-approximation of the reachable set R̄(x 0, t). For a vector

l , the support function of a set S ⊆ Rn is defined as ρS(l) = supx∈S(l
Tx). Then, according

to the properties of support function, we can derive the support function of the reachable

set R̄(x 0, t) using Eq. (3.2).

ρR̄ = lT (Atx 0) +
t−1∑
i=0

ρBU ((A
iB)T l) +

t−1∑
i=0

ρAiBϵ(l) (3.2)

Based on Eq. (3.2), we can have the upper and lower bounds of R̄(x 0, t) in the i-th di-

mension, as shown in Eq. (3.3) and (3.4), respectively, where l is set to be a column vector

whose i-th entry is 1 and the others are 0.

lTAtx 0 +
t−1∑
i=0

lTAiBc +
t−1∑
i=0

∥(AiBQ)T l∥1 +
t−1∑
i=0

ϵ∥(Ai)T l∥2 (3.3)

lTAtx 0 +
t−1∑
i=0

lTAiBc −
t−1∑
i=0

∥(AiBQ)T l∥1 −
t−1∑
i=0

ϵ∥(Ai)T l∥2 (3.4)

Finally, by comparing the upper and lower bounds with the unsafe state set (i.e., a similar

search process as in Figure 6), we can know when the reachable set has an intersection

with the unsafe set, and thus determine the detection deadline.

3.3. Adaptive Window Based Attack Detection

This section presents the design of Adaptive Detector. We enhance window-based detec-

tion to accommodate varying window sizes. The following first gives the basic window-

based detection and then proposes protocols on adapting the window size or the detection

delay according to the deadline from Detection Deadline Estimator.

283.3.1. Basic Window Based Detection

This basic detection algorithm tracks the residual at each control step. The residual z t is

defined as the difference between the predicted state x̃ t and the state estimate x̄ t, where

x̃ t = Ax̄ t−1 +Bu t−1. Residuals will be provided by the Data Logger.

First, the algorithm will calculate the average residual in the detection window z avgt =

1
wc

∑
i∈[t−wc,t] |x̃ i − x̄ i|, where t is the current time and wc is the current detection window

size. Then, the algorithm will compare z avgt with a threshold τ . If z avgt ⪯ τ , no alarm

will be raised and the system is regarded as secure. Otherwise, an alarm will be raised to

signal the detection of an attack.

Note that there are two hyper-parameters in this algorithm - the threshold τ and the de-

tection window size. Because we focus on the timing aspect, dynamically adjusting the

threshold is not the focus of this paper. The focus is to adjust the detection window size

on the fly. To understand the rationale behind this, we need to elucidate the relationship

between the window size and the detection delay. Since data points that lay outside the

detection window are treated uncompromised, attacked data points are inside the window.

Thus, the window size bounds the detection delay, i.e., the maximum detection delay is

the window size. Further, with a longer detection delay, a detector tends to have lower

false alarm rates but may miss the detection deadline; and vice versa. This is clearly ob-

served in our experimental results in Section 3.5.

3.3.2. Detection Window Adjustment Protocol

Based on the rationale above, our protocol sets the window size as the detection deadline,

online calculated by Detection Deadline Estimator. If the deadline decreases, the protocol

will shrink the detection window to meet the timing constraint; otherwise, the protocol

will enlarge the detection window to reduce false alarms.

29

Figure 7: Decreasing the Detection Window Size

Decreasing the window size

Figure 7 shows the case that the detection window is decreasing. The size of the previ-

ous detection window is indicated as wp. The green dots represent the state estimates that

move outside the previous window, and their detection results are finalized and trusted to

be uncompromised. On the contrary, state estimates within the detection window may be

attacked, but not been detected yet. We need to ensure that these data points do not es-

cape detection when reducing the window size. Thus, the protocol performs the following

steps.

At the current time t, the detection window becomes wc, where wp > wc. First, we set

wc = td, and td is the detection deadline at the current time. Note that the data (marked

in grey) within previous detection window but outside current window (i.e., from t−wp−1

to t− wc − 1) are escaped from the current shorter detection window. Thus, before the de-

tection for current control step t, the complemental detection runs the detection algorithm

with window size wc from control step t−wp−1+wc to t−1, as shown in Figure 7. By do-

ing this, there will be no data that can escape from the current shorter detection window

without checking.

30

Figure 8: Increasing the Detection Window Size

Increasing the window size

Figure 8 illustrates the case that the detection window size is increasing, where the cur-

rent detection window wc is larger than the previous detection window wp. State estimates

marked in green have moved outside the previous detection window, and thus their de-

tection results are finalized. Note that part of these state estimates re-enter the detection

window at the current time, but no data points escape from the current longer detection

window wc. Thus, we can continue the window-based detection algorithm with a longer

detection window directly, and complemental detection is not needed in this case.

3.3.3. The Maximum Window Size and False Negatives

We predefine a maximum detection window size wm. At run time, the window size will be

adjusted in the range of [0, wm]. If the detection deadline td is greater than the maximum

window size wm, then the window size will be set as the maximum, i.e., wc = wm. Note

that as mentioned, this maximum size is also the termination condition for the deadline

searching process if no intersection with the unsafe set is found in the first wm steps.

To decide an appropriate maximum detection window size, we perform offline profiling.

The profiling establishes a relationship between false negatives/positives and the window

size. We will experiment with a long enough range of window size, and cut out the sub-

range with an acceptable false negative rate. This cutting line can be given by a specific

application. For example, as shown in Figure 11, to avoid false negative experiments (at-

tacks are not detected), the maximum window size can be set as 35 control steps; to tol-

31

Figure 9: Illustration of the Data Logger.

erate 3 false negative experiments out of 100, the maximum window size can be set as 40

control steps. More details are presented in Section 3.5.

Also, note that adjusting the detection window size makes sense only if attacks can be de-

tected by the window-based detection algorithm. For false negatives, regulating the thresh-

old τ in Section 3.3.1 is more desired, but this is not the focus of this paper. Instead, this

paper focuses on the timing aspect, i.e., the detection delay.

3.4. Data Logging Protocol

This section presents the design of the Data Logger. We adapt a sliding-window-based log-

ging protocol to record historical residuals and state estimates [15]. To keep sufficient data

for the other two components, the sliding-window size is set as that of the maximum de-

tection window (given in Section 3.3.3).

The sliding window moves forward as time passes. At each control step t, the protocol

buffers, holds, and releases certain data points. As shown in Figure 9, the workflow is as

follows.

Buffer. Using the current state estimate x̄ t, we first calculate the residual z t = |x̃ t − x̄ t|,

where x̃ t = Ax̄ t−1 + Bu t−1. Then, x̄ t and z t are buffered, as shown by the blue dots.

These data are within the current detection window wc, and whether they are intact is still

unknown as the detector is still checking them.

32

(a) Vehicle turning & bias attack (b) RLC Circuit & bias attack

(c) Vehicle turning & delay attack (d) RLC Circuit & delay attack

(e) Vehicle turning & replay attack (f) RLC Circuit & replay attack

Figure 10: Comparison of detection results between adaptive window size and fixed win-
dow size for vehicle turning and RLC circuit under three attack scenarios. Blue solid line:
actual system state, Grey dashed line: reference state, Red dotted vertical line: attack
start time, Blue dotted vertical line: detection deadline, Orange circle marker: alert raised
by adaptive detector, Purple square marker: alert raised by detector with fixed window
size, Diff.:Difference, Volt.:Voltage.

Hold. The data that has moved outside the current window is regarded trustworthy and

thus held, as shown by the green dots.

Release. The historical data before t − wm − 1 are outside the sliding window and no

longer need to be used, as shown by the grey dots. Thus, these data can be released to

save storage space.

33Table 2: Simulation settings. No.: simulator number, δ: control step size (in seconds),
PID: PID control parameters, U: control input range, ϵ: uncertainty bound, S: safe state
set, τ : detection threshold.

No. Simulator δ PID U ϵ S τ

1 Aircraft Pitch 0.02 14,0.8,5.7 [−7, 7] 7.8e−3 z ∈ [[−∞,−∞,−2.5], [∞,∞, 2.5]] [0.012, 0.012, 0.012]
2 Vehicle Turning 0.02 0.5,7,0 [−3, 3] 7.5e−2 z ∈ [−2, 2] [0.07]
3 Series RLC Cir-

cuit
0.02 5,5,0 [−5, 5] 1.7e−2 z ∈ [[−3.5,−5], [3.5, 5]] [0.04, 0.01]

4 DC Motor Posi-
tion

0.1 11,0,5 [−20, 20] 1.5e−1 z ∈ [[−4,−∞,−∞], [4,∞,∞]] [0.118, 0.118, 0.118]

5 Quadrotor 0.1 0.8,0,1 [−2, 2] 1.56e−15 z ∈ [−5, 5] [0.018, ..., 0.018]

Figure 11: The number of false positive and false negative experiments changes with differ-
ent window sizes.

3.5. Evaluation

3.5.1. Simulation Setting and Results

Settings

We develop a simulation tool that can load different system models to simulate different

physical systems. We consider 5 LTI models: aircraft pitch, vehicle turning, series RLC

circuit, DC motor position, and quadrotor, which are used in [15], [33], [53], [54]. The de-

tailed simulation setting is listed in Table 2.

We consider three sensor attack scenarios: bias, delay, and replay attack. Bias attack re-

places sensor data with arbitrary values. Delay attack delays sensor measurements sent to

the controller for a certain time period, so that the controller cannot update the current

state estimate in time. Replay attack replaces sensor data with previously recorded ones.

34The impact of different window size

The simulation is performed on the aircraft pitch simulator under a bias attack lasting 15

control stepsize (0.3s). We perform 100 experiments for each window size from 0 to 100. It

is counted as a false positive experiment if the false positive rate exceeds 10% and counted

as a false negative experiment if the attack is not detected. The number of false positive

and negative experiments is plotted in Figure 11. The result shows that the false posi-

tive number decreases and false negative number increases with increasing window size.

According to Section 3.3.3, we choose a maximum detection window whose false negative

number is acceptable for the application. Take aircraft pitch simulator as an example, we

choose the maximum window size as 40, and the corresponding false negative number is

only 3.

Results of the Adaptive Detector

We test our adaptive detection method under all 15 cases (i.e., all the combinations of 5

simulators and 3 attack scenarios). Figure 10 shows part of the results using vehicle turn-

ing and RLC circuit simulator under bias, delay, and replay attacks. In all figures, we can

see that our adaptive detector can raise alerts before the detection deadline, i.e., in-time

detection, while the detector with a fixed window size finds attacks after the deadline, i.e.,

untimely detection. Note that our adaptive detector may raise some false alarms before

real attacks are launched. This is because our adaptive detector chooses a smaller window

size to catch up with the detection deadline while increasing the false positives. Note that

this situation only occurs when the states are closer to the unsafe set. In practice, we con-

sider noise in our experiments, which is also one of the reasons for false positives.

Table 3 shows all false positive and deadline miss numbers out of 100 simulations for each

case. The results indicate that our adaptive detector tends to have larger false positive

numbers, but with minimal deadline misses. This is because our detector will choose a

35

(a) Vehicle Testbed (b) Attack Detection

Figure 12: Attack detection in vehicle testbed.

smaller detection window to catch the detection deadline when the state is close to unsafe

states. Note that our adaptive detector may miss the detection deadline in some cases, for

instance, just 3 out of 100 experiments for DC motor under delay attack, because those

attacks have a negligible effect on the physical system.

3.5.2. Testbed Configuration and Results

Testbed Configuration

We build a testbed (Figure 12a) on a scaled RC car runing a cruise control task with a

PID controller. The controller reads a magnetic rotation sensor AS5048A and computes

the speed data at 20Hz. We perform system identification and get system model as x t+1 =

Ax t + Bu t, y t = Cx t, where A = 8.435e−1, B = 7.7919e−4, C = 3.843402e2. The

vehicle runs in a straight line at a speed of 4m/s, and at the end of the 79th step, a bias

of +2.5m/s is added to the speed. The safe speed range is [2, 10], so safe state range is

[2/C, 10/C], i.e. [5.2e−3, 2.6e−2]. The threshold τ is set to 3.67e−3. The control input

range is u ∈ [0, 7.7].

Testbed Results

The testbest result is shown in Figure12b, where the y-axis is actual states x (equals to

y/C), and the x-axis is time. The purple horizontal line marks the boundary between safe

and unsafe states, and the detector should raise an alert before the states reach the unsafe

36

Table 3: Comparison of detection false positives and deadline misses with adaptive window
size vs. a fixed window size. #FP: number of simulations whose false positive rate exceeds
a threshold, #DM: number of simulations who miss deadline.

Simulator Attack Strategy #FP #DM

Aircraft Pitch

Bias Adaptive 73 0
Fixed 42 96

Delay Adaptive 3 0
Fixed 2 97

Replay Adaptive 34 0
Fixed 8 100

Vehicle Turning

Bias Adaptive 71 0
Fixed 5 34

Delay Adaptive 13 76
Fixed 0 100

Replay Adaptive 40 10
Fixed 3 36

Series RLC Circuit

Bias Adaptive 54 0
Fixed 44 65

Delay Adaptive 4 0
Fixed 3 73

Replay Adaptive 13 0
Fixed 5 92

DC Motor Position

Bias Adaptive 82 0
Fixed 47 59

Delay Adaptive 3 3
Fixed 3 89

Replay Adaptive 3 0
Fixed 3 46

Quadrotor

Bias Adaptive 73 7
Fixed 55 99

Delay Adaptive 6 0
Fixed 2 87

Replay Adaptive 6 0
Fixed 2 59

37region. The orange circle is the first alert raised by our proposed adaptive window-based

detection, while the purple square is the first one raised by a fixed window-based detection

(size=30). We can find our detector alert in the first step after the attack. However, the

fixed window-based detection alerts after the vehicle reaching the unsafe state, which may

already cause damages. Note that our adaptive detector detects the alert in the first step

because the estimator computes the tightest deadline and shrinks the window size, making

the average residual within the window larger than the threshold.

3.6. Conclusion

In this chapter, we propose a real-time adaptive sensor attack detection system that has

three key components. For Adaptive Detector, we develop a window-based detection algo-

rithm that can dynamically adapt the detection delay and thus false alarms to meet the

detection deadline and improve usability. For Detection Deadline Estimator, we develop

a reachability analysis based technique to conservatively estimate the detection deadline

at run time by computing the reachable set of future potential behaviors of systems. For

Data Logger, we adapt a sliding-window-based data logging protocol to keep trustworthy

data for deadline estimation and also sufficient data points for attack detection. Finally,

we implement our detection system in multiple CPS simulators and a reduced-scale au-

tonomous testbed to validate its efficiency and efficacy.

38CHAPTER 4

Real-time Sensor-attack Recovery in Linear CPSs

In this chapter, we propose a real-time attack recovery method for linear CPSs to mitigate

the negative impact caused by sensor attacks. This approach is designed to extend the

benefits of attack detection by restoring the affected physical system to a safe and desired

state within a safety deadline.

4.1. Design Overview of Recovery System

This work follows the novel real-time recovery framework is illustrated in Figure 13. The

framework has two operating modes: normal and recovery mode. The attack detector de-

termines whether the system is under attack. Once the detector identifies an attack, the

system will be switched from the normal mode to the recovery mode. As mentioned in

the introduction, the attack detection is outside the scope of our paper, and we assume

an existing detection method that works with our recovery, such as [5], [16], [17], [20], [55].

Although attack detection is a flourishing track in CPS security, how to extend its main

benefits and secure the system is still an open question. This paper aims to fill this gap.

Note that as mentioned above, the recovery problem studied in this paper is a reactive

procedure. We assume there is an attack detector already in place and the detector can

give us the time when an attack starts. Our goal is to take the alerts that are generated

by the detector and respond to them in order to recover the physical system.

Recovery Mode. Switching to the recovery mode, the recovery controller takes over the

system. The recovery controller consists of three components, as shown by the shaded

boxes in Figure 13: (i) recovery control calculator, (ii) state reconstructor, and (iii) dead-

line estimator. The following briefly describes these components, and we will provide their

39

Plant 𝒙ഥሺ𝑡ሻActuator Sensor

Recovery Controller

Original Controller

Attack
DetectorCheckpointer

𝒙ሺ𝑡ሻ

𝒙ሺ𝑡ሻ𝒖ሺ𝑡ሻ

𝒖ሺ𝑡ሻ

𝒖ഥሺ𝑡ሻ

Recovery Control Calculator

Deadline
Estimator

State
Reconstructor

Figure 13: The Framework of Real-Time Attack-Recovery.

detailed design in Sections 4.2 and 4.3.

• Recovery Control Calculator. It takes a substantial time for attack detectors to iden-

tify the attack after it is launched [4], [5], [20]. During this delay, the attack may drive the

system to an undesired state. Thus, this component can compute a Piece-Wise Constant

(PWC) control sequence that restores the system from a compromised state into a target

state set within a safety deadline and maintain the system in this set before the maintain-

able time. The control sequence starts from a time point that is close to when an attack

is detected. The initial states and two deadlines are obtained from the following two sup-

porting components.

• State Reconstructor. Due to a sensor attack, the state estimates may incorrectly reflect

the system state during the detection delay. Based on the trustworthy historical data from

the checkpointer, this component can reconstruct the state estimate when the recovery

control sequence is applied.

40• Deadline Estimator. This component estimates a safety deadline by which the system

should be recovered to a target state set. The deadline is a conservative estimation of the

lastest safe time after which the system may reach the unsafe state set and cause serious

consequences. Meanwhile, a maintainable time is also estimated, before which the system

state can be kept in the target state set.

Normal Mode. In the normal mode, the system runs the original controller, and system

states follow the reference or target states. We use a checkpointer to record historical data,

including state estimates x (t) and control inputs u(t). It uses a sliding window to com-

pensate for the maximum detection delay, during which the attack may corrupt the data

but not be detected. The data outside this window is trustworthy and are provided to re-

construct state estimates in the recovery mode.

Discussion on the Proposed Framework

The framework has two controllers: the original controller already in the system and the

recovery controller proposed by this work. First, the recovery controller is an extension

to an existing system rather than a substitution, and the original plant dynamics and the

control algorithm remain unchanged.

Second, this framework can be seen as an extension of the simplex architecture [56]–[58],

which consists of a “complex” controller and a “safety” controller. Our framework extends

this architecture by adding the four new components, checkpointer, state reconstructor,

deadline estimator, and recovery control calculator, as shown in Figure 13.

Third, the proposed framework is different from event-driven control. In our framework,

although the recovery controller is triggered by an event of attack detection, the controller

is periodic or time-triggered, i.e., with equidistant sampling intervals. That is, the event

of the detection of an attack only makes the system switches from the original controller

41

Figure 14: Recovering a system under an sensor attack.

to the recovery controller, which is still time-triggered. By contrast, the sampling is event-

triggered in the regime of event-driven control [45], [46]. Hence, event-driven control is in-

applicable to our recovery problem.

Fourth, this framework handles multiple types of sensor attacks, which are illustrated in

section 2.5. By contrast, some works require the attack to belong to a particular class. For

example, some works from networked control systems (NCS) domain pay more attention

to the delay attack. They explore to stabilize NCS in the presence of network-induced de-

lay that is inherent to NCS [59], [60].

Recovery Control Sequence

We illustrate an example of the use of recovery control in Figure 14. The system works

normally from the start of the time t = 0. A sensor attack starts at the time t = ta and

is detected by the attack detector at the time t = tf . Here, we do not require a particular

value for tf but assume that during the time interval [ta, tf], although the system is drifted

by the attack, no unsafe state is reached. It can be fulfilled by a well-designed attack de-

tector. Our recovery framework takes over the control of the system at t = tf , it firstly

computes a recovery control sequence, and then applies it at the time t = tr. The value of

tr − tf is the maximum bound for the computational overhead of the recovery control and

42we assume that it can be conservatively estimated by offline-profiling. The framework is

required to obtain the recovery control before tr.

The recovery control is a piecewise constant sequence which should satisfy the following

properties. (i) It consists of two parts: the first D steps, D = td− tr, is the recovery period,

while the second part is the maintenance period which has M steps where M = tm−td. (ii)

The D control steps in the recovery period are guaranteed to steer the system to a state in

the target set without reaching any unsafe state. (iii) After the system is recovered, the M

control steps in the maintenance period can still keep the system in the target set till the

time t = tm. The reason to have the maintenance period is to allow the system to toler-

ate attacks after the recovery period [4]. For example, to have a time period for resetting

the attacked sensors to make them trustworthy again if possible. After the maintenance

period, the control of the system is given back to the original controller.

Solving a recovery problem on a system is to find a recovery control satisfying the above

properties. However, it requires to compute the key parameters including at least D, M ,

and the control inputs. Since all of the parameters are dependent, finding the best values

for them requires to solve a complex optimization problem and the high time cost does

not allow it to be used in an online mode. Hence, we use the 4-step approach presented

in Figure15 to find a sound recovery control sequence instead of the optimal one. In the

following sections, we firstly introduce the core part which is the Step 3 and 4 in the figure

and then present our methods for Step 1 and 2 using reachability computation.

4.2. LQR based Recovery Control Calculator

In this section, we present the design of the recovery control calculator. The component

computes a PWC control sequence for real-time recovering a CPS from a sensor attack

and based on a Linear Time-Invariant (LTI) model of its plant dynamics. First, we en-

43Step 1: Computing an overapproximation set Xr for the actual sys-
tem state at the time tr.

Step 2: Computing an estimation for td and an estimation for tm.

Step 3: Building the quadratic programming problem describing the
recovery control based on Xr, td and tm.

Step 4: Solving the above quadratic programming problem to find
the control sequence.

Figure 15: High-level description of our approach to find a recovery control

code the problem of finding such a sequence using a Linear-Quadratic Regulator (LQR)

with constraints. The result is guaranteed to safely recover the original system to a tar-

get set given the LTI model. In addition, the recovery trajectory is free of oscillations due

to the quadratic cost function of states and control inputs. Second, we present an Alter-

nating Direction Method of Multipliers (ADMM) based algorithm to solve the LQR-based

recovery problem. The algorithm decomposes a global problem over states and control in-

puts jointly into two small local subproblems over them separately, which are much easier

to handle. Compared to the global problem, the solving time of iterative subproblems is

reduced. Third, we also present the discussion on the soundness and completeness of the

result.

4.2.1. Recovery Problem Formulation

We consider an LTI system and the dynamics is given by Eq. (2.1). The Linear Quadratic

Regulator (LQR) [61] is a well-known optimal feedback controller in control community.

It describes the cost as two quadratic terms of states x and control input u , which jointly

considers the control performance and actuator effort.

As in Figure 14, the (absolute) safe deadline is td, estimated by the deadline estimator,

and there are D = td−tr control steps before this deadline. In order to stabilize the system

44states, M = tm − td control steps are added after td, and the physical states are restrained

within target set XT during the M control steps. We use LQR with discrete-time finite

horizon to formulate our problem. This recovery process is an optimization problem, and

we define the objective function as

J(x r, . . . , x l,ur, . . . ,u l−1) =
l−1∑
i=r

(
x Ti Qx i + uT

i Ru i

)
+ x Tl Qfx l (4.1)

where x i is the states of LTI system during recovery, u i is the input used in the i-th step

in the recovery control, optimization horizon N = D +M is the number of recovery steps

from t = tr to tm, and Q,Qf ∈ Rn×n, R ∈ Rm×m are semi-definite symmetric matri-

ces that define the state cost, final state cost, and input cost respectively. With properly

designed Q, Qf and R, minimizing J is to minimize the deviation of the states from the

target set as well as the size of control signals required within the horizon.

Note that, if we replace the objective function as a constant value, the optimization prob-

lem becomes a linear programming problem. This recovery method is also known Linear-

programming (LP) based recovery, which has lower computational overhead. However, the

recovery trajectory may oscillate since there is no state and control input cost.

To understand the formal definition of a recovery control, we first introduce the notations

⊕ and ⊖, respectively for Minkowski sum and difference, i.e.: X ⊕ Y = {x + y |x ∈ X, y ∈

Y }, X ⊖ Y =
⋂
y∈Y {x− y |x ∈ X}.

Given that the system state is x r at the time t = tr, we have an over-approximation set

Xr around x r, a safe set XS and a target set XT . A recovery control is a solution of the

45following constraint:

ϕ(x r, . . . , x l,ur, . . . ,u l−1) := (x r = center(Xr)) (4.2a)

∧
l∧
i=r

(x i ⊕ Bi ⊆ XS ⊖ Ai−rIR) (4.2b)

∧
l∧

i=d

(x i ⊕ Bi ⊆ XT ⊖ Ai−rIR) (4.2c)

∧
l−1∧
i=r

(u i ∈ U) ∧
l−1∧
i=r

(x i+1 = Ax i +Bui) (4.2d)

such that BV is a box around x i representing some uncertainty in evolution, and IR is an

box around x r containing Xr. Formally, Bi is an origin-centered box whose radius is vmax ·∑i−r−1
j=0 |A|j, and Xr ⊆ {x 0} ⊕ IR. For a later state x i, its over-approximation box should

be AiIR based on the dynamics, and we use this box as tolerance, i.e. if the state x i is

inside XS ⊖ Ai−rIR then we consider it safe, and inside XT ⊖ Ai−rIR then we consider it

hitting the target set.

Referring to Figure 14, the sub-constraint (4.2a) denotes that the first state at t = tr, x r

is the center of Xr. (4.2b) requires that the state x i is always inside the safe set XS, con-

sidering the accumulation of the uncertainty Bi. (4.2c) requires that the state x i is always

within target set after the deadline td, still considering the uncertainty. Finally, (4.2d) de-

fines the control input range and system dynamics, by which the evolution follows. The

correctness of the formulation is proved in [15].

Then an LQR recovery control can be obtained by solving the following problem:

min J(x r, . . . , x l,ur, . . . ,u l−1) s.t. ϕ(x r, . . . , x l,ur, . . . ,u l−1) (4.3)

464.2.2. ADMM algorithm

The alternating direction method of multipliers (ADMM) is an optimization algorithm

that decomposes a large global problem into small local subproblems and coordinates to

find the global solution [62], [63]. With ADMM, we can solve minimization problems with

separable objectives and constraints in the form of:

min f(x) + g(z)

s.t. x ∈ Cx, z ∈ Cz, Ax +Bz = c
(4.4)

with variables x ∈ Rn and z ∈ Rm, parameters A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp, and

convex functions f and g. We form the augmented Lagrangian function for (4.4) as

Lρ(x , z , y) = f(x) + g(z) + yT (Ax +Bz − c) + (ρ/2)∥Ax +Bz − c∥22 (4.5)

where ρ > 0 is the penalty parameter and y ∈ Rp is the Lagrangian multiplier.

ADMM solves problem using the following iterations:

x (k+1) := argmin
x∈Cx

Lρ
(
x , z (k), y (k)

)
(4.6a)

z (k+1) := argmin
z∈Cz

Lρ
(
x (k+1), z , y (k)

)
(4.6b)

y (k+1) := y (k) + ρ
(
Ax (k+1) +Bz (k+1) − c

)
(4.6c)

Each iteration includes an x -minimization step (4.6a), a z -minimization step (4.6b), and a

dual update step (4.6c). Since the objective function is separable, (4.5) can be minimized

over f and g separately in step (4.6a) and (4.6b). Usually, it is easier to solve these two

sub-problems than to solve the global problem directly, and the total solving time can be

reduced.

474.2.3. ADMM-Based Control Sequence Calculation

Our recovery problem (4.3) can be solved by ADMM method, because the optimization

variables x and u are decoupled and thus separable. To construct a separable objective

function and equality constraint, we define the following matrices:

Q̄ =



Q

Q

. . .

Q

Qf


, R̄ =



R

R

. . .

R


, Ā =



A −I

A −I
.

A −I


, B̄ =



B

B

. . .

B



Therefore, we obtain the matrix form of (4.1) as

J(x ,u) = x T Q̄x + uT R̄u (4.7)

where x = [x T0 x T1 · · · x TN]
T ∈ Rn(N+1), u = [uT

0 uT
1 · · · uT

N−1]
T ∈ RmN . The equality

constraint (4.2d) becomes Āx + B̄u = 0. Now, we can reformulate our problem in the form

of (4.4) for ADMM method. Formally:

min f(x) + g(u)

s.t. (4.2a)(4.2b)(4.2c),
N−1∧
i=0

(ui ∈ U), Āx + B̄u = 0
(4.8)

The objective function J(x ,u) can be split into f(x) + g(u), where f(x) = x T Q̄x and

g(u) = uT R̄u . Then, we find the augmented Lagrangian function for (4.8):

Lρ(x ,u ,λ) = f(x) + g(u) + λT (Āx + B̄u) +
ρ

2
∥Āx + B̄u∥22 (4.9)

Under this ADMM construct, for the (k+1)-th iteration, the x -minimizaion sub-problem

48is:

x (k+1) :=argmin
ψ

Lρ(x ,u (k),λ(k)), where ψ = (4.2a)(4.2b)(4.2c) (4.10)

the u-minimizaion sub-problem is:

u (k+1) := argmin
γ

Lρ(x (k+1),u ,λ(k)), where γ =
N−1∧
i=0

(ui ∈ U) (4.11)

and the dual update step uses the sub-problem results x k+1 and uk+1 to compute λk+1:

λ(k+1) := λ(k) + ρ(Āx (k+1) + B̄u (k+1)) (4.12)

Algorithm 1 shows the procedure to solve our recovery problem. First, at Line 1, we com-

pute the coefficients of the separable objective function and the equality constraints, i.e.

Q̄, R̄, Ā and B̄. Line 3-10 are the iterations of ADMM, which solve the two sub-problems

(4.10) and (4.11) and do the dual update. Within every iteration, a residual term r is

computed to estimate the convergence. When the ||r||22 is not greater than a tolerance ϵ,

the algorithm converges and halts. We output the final control sequence u .

Theorem 4.2.1. Starting from time t = tr, the control input sequence u obtained from our

LQR approach is able to recover the system to a state in the target set by the time t = td,

and keep the system inside the target set till the time t = tm.

Remark 4.2.1. Due to the formal modeling and methods used to find the recovery con-

trol, the obtained control sequence is guaranteed to recover the LTI dynamics if it is applied

at the time t = tr. Therefore, our LQR approach is sound. On the other hand, in order

to achieve good performance, conservative methods are used in overestimating the recov-

ery initial state and the deadlines, which will be described in detail in Section 4.3. It is

not guaranteed that our approach can always find a recovery control even there exists one.

49Algorithm 1: ADMM-based Control Input Calculation
Input: Q, Qf , R, ψ, γ, LTI model, N
/* Q: state cost matrix Qf: final state matrix R: input cost

matrix */
/* ψ: constrains on state x γ: constrain on control input u */
/* LTI model: state space model N: the number of recovery step */
Output: u
/* u ∈ Rm×N: control input in the last iteration */

1 Compute Q̄ and R̄ from Q and R, Compute Ā and B̄ from LTI model and N
2 Initiate proper u (0) and λ(0)

3 for k ← 0 to MAX_ITERS do
4 x (k+1) ← argmin

ψ
Lρ(x ,u (k),λ(k)) ▷ x -minimization

5 u (k+1) ← argmin
γ

Lρ(x (k+1),u ,λ(k)) ▷ u-minimization

6 r ← Āx (k+1) + B̄u (k+1) ▷ calculate residual
7 if ∥r∥22 ≤ ϵ then
8 break ▷ stop condition

9 else
10 λ(k+1) ← λ(k) + ρ r ▷ dual update

Hence, our approach is not complete.

Remark 4.2.2. The O(1
ϵ
) iteration complexity of ADMM algorithm is shown in [64],

where ϵ is the tolerance.

4.3. Supporting Components for Recovery Control

In this section, we give a detailed description for the design of other components in our

real-time attack-recovery framework. We first propose a sliding window based checkpoint-

ing protocol to obtain the nearest trustworthy sensor data, which can accommodate vary-

ing attack detection delays. Then, based on this, a conservative estimation of the start

state of recovery can be obtained using a reachability computation technique. Third, we

present a conservative deadline estimation method that uses a safety verification method.

Finally, we discuss a conservative way to cover the computation overhead of the three

50components in the recovery controller.

4.3.1. A Sliding Window Based Checkpointing Protocol

Attack detection usually comes with a substantial detection delay. Historical state esti-

mates and control inputs during the delay are not trustworthy, i.e., may incorrectly re-

flect the true physical states and actuation, as they may be already compromised due to

the attack. Thus using them can result in unsuccessful recovery. To address this issue, we

propose to develop a new sliding window based checkpointing protocol. This protocol will

provide trustworthy historical data for the components of the recovery controller.

The protocol proposed in the work [4] assumes a constant detection delay. However, as in-

dicated in the attack detection work [5], [19], [20], the detection delay of approaches based

on the cumulative sum of residuals (CUSUM) varies with factors such as attack scale and

a drift parameter. To address these limitations, the new protocol can be viewed as a gen-

eralization that is applicable to the methods with both constant and varying detection de-

lays.

This new protocol uses a nominal window to accommodate a varying attack detection de-

lay. The length of this window equals the maximum delay of a detection approach. For

example, the maximum delay can be analyzed by assuming the worst-case attack (e.g.,

a stealthy attack) given a drift parameter for CUSUM based detection [5], [20]. The real

delay of the detection of an attack can be less than the nominal window. As shown in Fig-

ure 16, the interval [t′a, tf] denotes the maximum delay and [ta, tf] is the true delay, where

ta and tf are the start and detection of an attack, respectively. The window slides forward

as the time ticks. The protocol records estimate x (t) and control input u(t) by the follow-

ing three steps: buffer, store, and delete.

• Buffer. Estimates and control inputs within the window, i.e., {(x (t′a),u(t′a)), . . . ,

51

x
t

…

buffereddeleted

nominal window

𝑡௔𝑡଴ᇱ 𝑡଴𝑡଴ᇱ െ 1

…… x

stored

𝑡଴ᇱ െ2𝑡଴ᇱ െ3

Figure 16: Illustration of the Sliding Window Based Checkpointing Protocol.

(x (t′a),u(t′a))} in [t′a, tf], are first buffered, because they may be already corrupted

and it is still in question whether they are correct. Note that the recovery controller

starts to run from the time tf when the attack is detected. Thus, these data cannot

be used for reconstructing x (tf).

• Store. Estimates and control inputs that have moved outside the window are consid-

ered to be trustworthy. Thus, (x (t′a − 1),u(t′a − 1)) is stored.

• Delete. The stored data that is no longer needed will be deleted, e.g., (x (t′a − 2),u(t′a − 2))

is discarded.

When the detector raises an alarm, it gives us the actual time ta when the attack started

(this can be done by finding the time of a breakpoint of the time series of the residuals [5],

[20]). Since ta ≥ t′a, the data in [t′a, ta] has already passed the detection and is also con-

sidered as trustworthy. Hence, the data point (x (ta − 1),u(ta − 1)) will be used to rebuild

x (tf), instead of that of t′a − 1. Using data closer to the time of the detection of an at-

tack can result in better reconstructed estimates. Further, it is worth noting that using

the maximum delay as the nominal window guarantees that there is always trustworthy

data for state reconstruction.

524.3.2. State Reconstruction

We present the method to construct an overapproximate estimation Xr for the initial sys-

tem state of recovery, that is the state at the time t = tr when the recovery control starts

to be applied. Given that xw is the latest trustworthy state recorded at the time t = tw

by our checkpointer, then the actual system state x (tr) can be overapproximated by the

result of the reachability computation from xw to the time t = tr − tw.

Given the LTI dynamics (2.1) and the latest trustworthy state xw recorded at the time tw,

we can obtain the state at time tw+1, i.e, xw+1 = Axw + Bu0 + v 0. The the state at time

tw+2 is xw+2 = Axw+1 + Bu1 + v 1 = A2xw + ABu0 + Bu1 + Av 0 + v 1. In the same way,

the state at the following control steps xw+3 · · · xa can also be derived. Thus, the system

reachable state at the time tf , which is the current time, can be overapproximated by the

range of the following linear expression:

Xa(v 0, . . . , vNa−1) = ANa xw +
Na−1∑
i=0

AiB u i +
Na−1∑
i=0

Ai v i

where Na = tf − tw, u0, . . . ,uNa−1 are the historical control inputs used in the past Na

steps respectively, i.e., from the time tw to tf , v 0, . . . , vNa−1 are the variables symbolically

represent the uncertainty in those steps. Since the uncertainty is not able to be recorded

precisely, we use variables constrained by their maximal interval range V to symbolically

represent them in the estimation of Xa. Then Xa is essentially a linear constraint over the

uncertainty variables.

We then extend the expression of Xa to obtain still a linear expression for overapproximat-

ing the reachable state at the recovery start time t = tr based on the fact that the control

53

Figure 17: Start state estimation. Line segments: overapproximations of the reachable set
at the time t = tw+ δ, tw+2δ, The exact system execution which is denoted by the red
dotted curve is guaranteed to be contained in the overapproximations at discrete times.

Figure 18: Deadline estimation. Line segments: overapproximations of the reachable set at
the time t = tw + δ, tw + 2δ, The deadline is computed as td = tr + 3δ.

input will be fixed at u(tf) after an attack is detected:

Xr(v 0, . . . , vNr−1) = ANr xw +
Na−1∑
i=0

AiB u i +
Nr−1∑
i=Na

AiB u(tf) +
Nr−1∑
i=0

Ai v i

where Nr = tr − tw, and v 0, . . . , vNr−1 are the variable representations for the uncertainty

from the time tw to tr. Xr is also derived through the evolution of the system states based

on the LTI dynamics (2.1). We may use the box (can be computed using support function

method in Section 3.2.4) as a conservative estimation for the start state in the recovery

problem. The main idea is illustrated in Fig. 17.

4.3.3. Deadline Estimation

We present our approaches to obtain the deadline td and tm.

54Estimation of td. The purpose of using td is to set up a deadline for recovering the sys-

tem. Since the computation of the optimal deadline requires to solve an optimization prob-

lem which is too costly, we use a heuristic to find a feasible control sequence for keeping

the system (2.1) safe from any state in Xr, and set td = tr + D where D is the length

of the control sequence. To do so, we assume that all of the control inputs used in the fu-

ture steps from the time tr are fixed at u(tf), i.e., we use the constant inputs at the time

tf from the time tr to estimate the system safety. Then we repeatedly verify the safety for

the reachable set overapproximation Xk:

Xk = Akx 0 +
k−1∑
i=0

AiB u(tf) +
k−1∑
i=0

Ai v i+Nr

x 0 = Xr(v 0, . . . , vNr−1), and v 0, . . . , vNr+k−1 ∈ V

(4.13)

at the time t = tr + k for k = 0, 1, 2, . . . until it has a nonempty intersection with the

unsafe set or D reaches the given maximum bound kmax. Then D is set to be k − 1, or

kmax if there is no unsafe intersection till the maximum bound. This deadline estimation

process is illustrate in Figure 18.

Estimation of tm. The purpose to use a maintenance deadline tm which is no earlier

than td is to make the recovery trajectories smoother than those without a maintenance

period [15]. Unlike the safe deadline td, a later tm might make the recovery problem harder

to solve since it requires the recovery control to keep the system in the target set for a

longer time. To obtain a reasonable estimate for tm, we consider using an approach which

is similar to the real-time monitoring technique described in [65]. We require that all of

the reachable state at the time from td + 1 to td +N which is tm should be able to be kept

55in the target set. Hence, the reachable set overapproximation

Xj = Ajx 0 +

j−1∑
i=0

AiB u i+Nr +

j−1∑
i=0

Ai v i+Nr

for all j = D + 1, . . . , N can be kept in the target set with at least one instantiation se-

quence of u0, . . . ,uN . In order to verify it, we may check whether Xj inevitably exceeds

the target set XT or not. That is, the containment Xj ⊆ XT is inevitably violated. To do

so, we check the emptiness of the intersection between the control envelope

Ej =

{
j−1∑
i=0

AiB u i+Nr |uNr , . . . ,uNr+j−1 ∈ U

}

which contains all possible control effect at the j-th step, and the Minkowski difference,

Dj = XT ⊖

{
Ajx 0 +

j−1∑
i=0

Ai v i+Nr | vNr , . . . , vNr+j−1 ∈ V

}

which is a constrained safe set by the accumulation of uncertainty. If the intersection is

empty, then there is no feasible control of the length j to keep the system safe, otherwise

there exists at least one.

Lemma 4.3.1 ([65]). If the intersection Ej ∩ Dj is nonempty then there exists a control

sequence to keep Xj in the target set.

Since a Minkowski difference is often hard to compute, we resort to a more efficient but

also conservative way to verify the emptiness of the intersection. We use the interval hull

of the second operand in the Minkowski difference, and the result D̂j is an underapprox-

imation of the actual difference. Therefore, we may conservatively check the emptiness

of Ej ∩ D̂j to verify whether a recovery control can maintain the system in the target

set. We may do so using linear programming. We repeatedly check the intersection for

56j = D + 1, . . . until we meet an empty intersection or j reaches a given maximum bound

jmax. In the first case, tm is set to be tr+j−1, and in the second case we set tm = tr+jmax.

Remark 4.3.1. Solving the recovery control problem as a whole is difficult even the dy-

namics is linear, since we need to find all of the parameters such as control sequence length,

safe deadline and control inputs by solving a single optimization problem in order to strictly

keep their dependencies to obtain the optimal solution. To avoid the high computational

cost, we decompose the problem to first estimate the deadline td and the "latest" maintain-

able time tm, and then use them in the LP modeling of the recovery control problem. Al-

though our method is not complete, i.e., it may not find a feasible recovery control in some

cases, but the result is always sound, that is the control sequence found by our method is

guaranteed to steer the system to the target set at the time td and maintain it there till the

time tm.

4.4. Evaluation

We implement a prototype simulation tool in Python (in Appendix) to evaluate the effec-

tiveness of our LQR-based real-time recovery, based on 5 CPS simulators under 3 attack

scenarios. Then, we also compared the computational overhead between linear program-

ming recovery, LQR-based recovery, and LQR-based recovery with ADMM algorithm.

4.4.1. Simulation Settings

Simulation Scenarios

We consider the following CPS models: vehicle turning, series RLC circuit, DC motor po-

sition, aircraft pitch, and quadrotor. The LTI models for these systems are obtained by

linearization and discretization. All these simulators are LTI models, which are representa-

tive and used in both security and control works, such as [4], [16], [66]–[71].

Vehicle Turning. The following ODE models the turning of a vehicle, which changes the

57speed difference between two wheels to steer [4]. The state x denotes the speed difference

between two wheels, and control input u is the voltage difference applied to motors con-

trolling the two wheels.

ẋ = −25

3
x+ 5u

Series RLC Circuit. A basic RLC circuit contains a resistor, an inductor, and a capac-

itor connected in series. An adjustable voltage source is connected to form a closed loop

circuit. The system dynamics are modeled by the right equation such that state x1 de-

notes the voltage across the capacitor and state x2 denotes the electric current in the loop.

The control input u is considered the voltage of the voltage source.

 ẋ1

ẋ2

 =

 0 1
C

− 1
L
−R
L


 x1

x2

+

 0

1
L

u

DC Motor Position. The following ODE models the rotary position of a DC motor.

The state x1 denotes the rotation angle, x2 is the rotary angular velocity, and x3 is the

armature current. The control input u is considered the voltage applied to the motor.


ẋ1

ẋ2

ẋ3

 =


0 1 0

0 − b
J

K
J

0 −K
L
−R
L



x1

x2

x3

+


0

0

1
L

u

Aircraft Pitch. The following ODE describes the longitudinal dynamics of motion for

the aircraft. The x1 denotes the angle of attack, x2 denotes the pitch rate, and x3 denotes

58the pitch angle. The control input u is the elevator deflection angle.
ẋ1

ẋ2

ẋ3

 =


−0.313 56.7 0

−0.0139 −0.426 0

0 56.7 0




x1

x2

x3

+


0.232

0.0203

0

u

Quadrotor. A linear quadrotor model is described in [71]. The system consists of 12

state variables: [x, y, z]T and [ϕ, θ, ψ]T are linear and angular positions of the quadrotor

in the earth frame. [u, v, w]T and [p, q, r]T are the linear and angular velocities in the body

frame. The control input is denoted by u, in which ft is total thrust and [τx, τy, τz]
T are

the control torques caused by differences of rotor speeds.

Other simulation settings are listed in table 4. For example, we use a PI controller (KP =

5, KI = 5) to update the control input u of series RLC circuit every 0.02 seconds. The

attacks start at time ta = 3s, and are detected at time tf = 4.3s. The system is safe

when the capacitor voltage x1 is in [0,7], and the target set of this scenario is [2.9, 3.1].

The voltage of source can be adjusted between [-15, 15]. We concern the first state, so the

first diagonal element of Q is Qi, others are all 1. We choose control input cost as 0.1.

Table 4: Simulation Scenarios. (Time unit: second) Cyber-physical System Properties - δ:
control stepsize, XS: safe state set, U : control input limits, PID: PID parameters of origi-
nal controller. Recovery-related Parameters - ta: attack launched time, tf : attack detected
time, XT : target state set, Qi: state cost corresponding to the ith state (other costs set to
1), R: control input cost.

Simulation Cyber-physical System Properties Recovery-related Parameters
Scenarios δ XS U PID ta tf XT Qi R

Vehicle Turning 0.02 x ∈ [−2.7, 2.7] [−5, 5] 0.5, 7, 0 4 4.5 x ∈ [0.9, 1.1] Q1 = 10 5
Series RLC Circuit 0.02 x1 ∈ [0, 7] [−15, 15] 5, 5, 0 3 4.3 x1 ∈ [2.9, 3.1] Q1 = 1 0.1
DC Motor Position 0.1 x1 ∈ [−4, 4] [−20, 20] 11, 0, 5 6 9.9 x1 ∈ [−1.67,−1.47] Q1 = 10 0.01

Aircraft Pitch 0.02 x3 ∈ [0, 2] [−20, 20] 14, 0.8, 5.7 3 4.3 x3 ∈ [0.68, 0.72] Q3 = 1 1
Quadrotor 0.02 z ∈ [−1, 8] [−50, 50] 0.1, 0, 0.6 12 13.1 z ∈ [3.9, 4.1] Q9 = 1 1

59Attack Scenarios

We consider three attack scenarios mentioned in section 2.5, i.e. bias attacks, replay at-

tacks and delay attacks. These attack scenarios are combined with each simulation sce-

nario, which contributes to fifteen situations in total. We list the simulation parameters in

table 5. For each simulation scenario, we set up an attack parameter.

Table 5: Attack Scenarios. Bias attack: add a certain value to or subtract it from sensor
data. Replay attack: send historical data from a certain time interval. Delay attack: delay
data sent to the controller for a certain time.

Attack Vehicle Turning Series RLC Circuit DC Motor Position Aircraft Pitch Quadrotor
Bias x− 1.5 x1 − 2.5 x1 + 2 x3 + 0.3 z − 2

Replay [0s, 6s] [0s, 5s] [0s, 6s] [1s, 2s] [3s, 5s]
Delay 1s 1s 1s 1s 1s

4.4.2. Baselines

We compare our proposed method with three baselines:

No recovery: the system is attacked during running, and there is no recovery method

available. The sensor attack takes effect constantly, and the system state may reach the

unsafe set, which causes catastrophic consequences.

Non-real-time recovery: the system performs the recovery method in [4] after a sensor

attack is detected. This method cannot guarantee the system is recovered before a dead-

line.

Linear-programming (LP) recovery: This method is formulated as a linear program-

ming problem, i.e., the objective function is linear.

LQR-based recovery: the system run under the proposed real-time recovery method.

This paper formulates the recovery method as an LQR-based optimization problem.

604.4.3. Simulation Results

We compared our method with baselines from recovery effect and recovery overhead.

Recovery Effect

We plot the actual system states in Figure 19, which demonstrates the recovery effect

against three types of sensor attacks in five CPS simulations. The following observations

are obtained from these figures.

Recovery mechanism is needed during sensor attacks. The red lines represent the

baseline without recovery. The results in Figure 19(f)(i)(k)(l)(o) shows the system states

reach the unsafe set, which causes catastrophic consequences in CPS system. This indi-

cates that a recovery mechanism is needed to secure the CPS in presence of sensor attacks.

Non-real-time recovery cannot steer system state back to normal within a dead-

line. The yellow lines show the state recovered using non-real-time recovery method. From

Figure 19(a)(b)(c)(d) (f)(m)(n)(o), the recovery processes take a long time, and they failed

to pull the system states back to target set before the deadline. There is no guarantee on

deadline and safety.

LP recovery may make the system oscillate before the deadline. The blue lines

are powered by LP recovery method. They can recover the system within deadline, be-

cause this method formulates the safety deadline as a constraint. However, the recovery

trajectories are circuitous, shown in Figure 19(a)(b)(c)(e)(j)(k)(l)(m)(n), because of the

linear objective function.

LQR-based recovery can recover systems smoothly within the deadline. The

Green lines represent the recovery process of our LQR-based method. The proposed method

can recover the system within the deadline, and the recovery trajectories are straightfor-

61

(a) Vehicle turning & bias (b) Vehicle turning & delay (c) Vehicle turning & replay

(d) RLC Circuit & bias (e) RLC Circuit & delay (f) RLC Circuit & replay

6 7 8 9 10 11 12
4

2

0

2

Ro
ta

tio
n

An
gl

e

(g) DC Motor Position & bias
6 7 8 9 10 11 12

4

2

0

2

Ro
ta

tio
n

An
gl

e

(h) DC Motor Position & delay (i) DC Motor Pos. & replay

(j) Aircraft Pitch & bias (k) Aircraft Pitch & delay (l) Aircraft Pitch & replay

(m) Quadrotor & bias attack (n) Quadrotor & delay attack (o) Quadrotor & replay attack

Figure 19: Comparison of the system executions under three situations for each attack
scenario. RED = No recovery. YELLOW = Non-real-time recovery (previous work [4]).
BLUE = Linear-Programming recovery (previous work [15]). GREEN = LQR-based recov-
ery (our proposal). Dotted Black Line = Reference state.

ward. The quadratic objective function adds penalty on states and control inputs, thus,

play a key role in smooth trajectories. Moreover, our method makes the state maintain

within the target set for a while, which is helpful to return the system to original con-

troller or buy time to restart the original controller.

Overhead Analysis

We also analyze the time cost under three conditions. The time cost includes state esti-

mate reconstruction time, deadline estimation time, problem formulation time, and solv-

ing time. Note that the solving time is measured from the time solve function is called to

the time the result is returned. For linear programming recovery, we use PyGLPK solver

62with simplex method to generate the control input signals. For LQR-based recovery, we

first use CVXPY with ECOS solver [72], and then use OSQP solver osqp, a standard im-

plementation of ADMM algorithm, to accelerate the solving process. There are following

observations from Table 6.

We considered the larger overhead of LQR-based recovery in the framework.

The first two rows show the time cost of LP recovery method, and all recovery can be

done in one control stepsize. This work assumes that the recovery sequence can be applied

immediately after an attack is detected, but this may not be true for complex system. The

middle two rows are the time cost of our LQR-based recovery without ADMM algorithm,

and the cost is more than one stepsize for most scenarios. A larger overhead is because

we use a quadratic objective function instead of a linear one. However, we considered a

small computational time (tr − tf) to get the recovery sequence in our framework, shown

as Figure 14, and apply our recovery control sequence at time tr, which makes our method

practical.

ADMM algorithm accelerates our LQR-based recovery effectively. The last two

rows are the time cost of our method using ADMM algorithm. Compared to the middle

two rows, the result shows the overhead of ADMM algorithm is smaller for all benchmarks

and can effectively accelerate the computing. This is because the ADMM algorithm can

split a global optimization problem into two small subproblems, and solve them iteratively.

The speedup of ADMM is significant for small systems. The benchmarks with

fewer state variables, such as vehicle turning, RLC circuit, and DC motor position, run

much faster and are close to the overhead of linear programming recovery. The most com-

putational intensive operation in OSQP solver is factorizing the coefficient matrices, which

has polynomial time in the matrix dimensions. Thus, ADMM performs especially well for

small systems.

63Table 6: time cost of computing the recovery controls. the time unit is millisecond. leg-
ends: TLP : time cost of Linear-Programming (LP) method, %LP : ratio of TLP to con-
trol stepsize, Tsolver: time cost of LQR-based method using ECOS solver, %solver: ratio of
Tsolver to control stepsize, TADMM : time cost of LQR-based method using ADMM algo-
rithm with OSQP solver, %ADMM : ratio of TADMM to control stepsize

Vehicle turning RLC Circuit DC Motor Position
bias delay replay bias delay replay bias delay replay

TLP 0.83 1.04 1.03 1.31 2.51 1.17 3.92 3.48 1.80
%LP 4.15% 5.20% 5.15% 6.55% 12.55% 5.85% 3.92% 3.48% 1.80%
Tsolver 24.05 24.54 26.80 27.10 35.21 22.82 82.78 67.92 81.19
%solver 120.25% 122.70% 134.00% 135.50% 176.05% 114.10% 82.78% 67.92% 81.19%
TADMM 1.69 1.97 1.85 2.09 3.82 2.00 4.48 4.32 3.20
%ADMM 8.45% 9.85% 9.25% 10.45% 19.10% 10.00% 4.48% 4.32% 3.20%

Aircraft Pitch Quadrotor
bias delay replay bias delay replay

TLP 10.79 6.10 4.78 10.91 11.34 8.10
%LP 53.95% 30.50% 23.90% 54.55% 56.70% 40.50%
Tsolver 81.10 62.02 73.42 44.15 57.09 80.28
%solver 405.50% 310.10% 367.10% 220.75% 285.45% 401.40%
TADMM 27.37 22.80 19.76 38.52 25.18 35.17
%ADMM 136.85% 114.00% 98.80% 192.60% 125.90% 175.85%

The Impact of Load Disturbance

We take the quadrotor simulator under bias attacks as an example to demonstrate the im-

pact of load disturbance. In this experiment, the safe set is set to be z ∈ [−1, 5.7], and

other parameters remain the same as those in Table 4. In the Eq. (2.1), we consider that

the uncertainty v(t) includes both sensing noise and load disturbance, and is bounded by

vmax. We change the load disturbance by varying vmax in this experiment. We perform

multiple simulations with increasing vmax, and record the safe deadline and maintainable

time in Table 7. In the table, vmax denotes the maximum uncertainty/load disturbance

that at each control step; D means the recovery length, i.e., the number of control steps

from tr to td; N denotes total recovery control length, i.e., the number of control steps

from tr to tm; the safe deadline td and maintainable time tm are estimated using our dead-

line estimator illustrated in the Section 4.3.3. We also plot the quadrotor’s vertical posi-

tion z in Figure 20. In the figure, the blue solid line is the real states; the orange solid line

64is the desired recovery states predicted by the recovery controller; the red solid line indi-

cates the boundary of target state set. In the Figure 20a, the load disturbance begins from

time ta, and in the Figure 20b, the load disturbance begins from time tr. Based on the re-

sults, we have several observations as follows.

Larger load disturbance leads to earlier safe deadline and earlier maintainable

time. The load disturbance exists at each control step and is bounded by vmax. If vmax

is larger, the reachable set overapproximation Xk is bigger according to the Eq. (4.13).

Then, the reachable set is more likely to intersect with the unsafe state set, which leads to

a shorter recovery length N . Likewise, the constrained safe set with the accumulation of

uncertainty, i.e., Dj, is smaller, which results in an earlier maintainable time tm.

Larger total recovery control length N requires more computational overhead.

The state constraints, i.e., Eq. (4.2b) and Eq. (4.2c), cover all states in the recovery and

maintenance period. Thus, a larger N means more variables in the optimization problem,

which comes with more computational overhead. When vmax is smaller,the system state

can be maintained within the target set for a longer time once recovered into the set. We

may choose a smaller maintenance length to reduce the computational overhead according

to different application needs.

The system can still steer the system state back to the target state set and

maintain it in the set in presence of load disturbance. In the Figure 20a, the load

disturbance starts from time ta. At time tr, the reconstructed state is slightly different

from the real state because of the load disturbance. From td to tm, the real state (marked

in blue solid line) is within the target state set, although there exists difference between

predicted states and the real states. This is because we considered the accumulation of

load disturbance in our state constraint in the Eq. (4.2c). In the Figure 20b, the load dis-

turbance starts from time tr. At time tr, the reconstructed state is almost the same as the

65Table 7: The impact of load disturbance on quadrotor simulator under bias attack. leg-
ends: vmax: the maximum load disturbance in each control step, D: recovery length
(D = td − tr), N : total recovery control length (N = tm − tr), Tsolving: the solving time
of OSQP solver in millisecond.

vmax(×10−4) 1 2 3 4 5 6 7 8
D 18 18 18 18 17 17 17 17
N 209 122 82 59 43 31 23 16

Tsolving 251 130 103 61 57 40 23 N/A

real state. By comparing the two figures, we can see that the real state at time tm is closer

to the reference state in Figure 20b than the Figure 20a. The reason is that the load dis-

turbance in Figure 20b starts later than that in Figure 20a, and thus affects the recovery

for a shorter time. Further, as long as the load disturbance can be bounded to a certain

range, the system can still be recovered by our method.

Our recovery method is sound but not complete. The right most column in Table 7

shows a case that our optimization problem is infeasible, when the total recovery control

length N = 16 is less than the recovery length D = 17. This is because XT ⊖ AiIR in the

Eq. (4.2c) becomes empty because of the accumulation of load disturbance. Our method

cannot guarantee finding a recovery control sequence to steer the system back to target

state set under such a large load disturbance. Further, if our optimization is feasible, then

the solution can guarantee that the recovery process will be successful.

4.5. Conclusion

Two fundamental elements for the operation of safe and resilient cyber-physical systems

are attack detection and recovery. While the vast majority of existing works focus on at-

tack detection, while little attention has been paid to attack-recovery. In this chapter, we

study this problem and novel techniques on real-time recovery for securing CPS. These

techniques include i) an LQR based recovery control calculator that can smoothly and

safely recover the system before a safety deadline and maintain the recovered system for

66

(a) load disturbance starts from ta (b) load disturbance starts from tr

Figure 20: The recovery of vertical position z of quadrotor under bias attacks with vmax =
5 × 10−4. The solid blue line represents real system states; the orange solid line shows the
desired recovery states predicted by recovery controller; black dashed line is the reference
or target states; red solid line marks the boundary of target state set.

a certain amount of time, ii) a checkpointer that keeps enough trustworthy data for the

recovery computation, iii) a state reconstructor that rebuilds the current system state,

and iv) a deadline estimator that uses reachability analysis to conservatively compute a

safety deadline. Using multiple CPS simulators, we show that our methods can recover

the attacked-system in a timely and safe manner, outperforming previous related work in

terms of smoothness and maintainability.

67CHAPTER 5

Real-time Sensor-attack Recovery in Complex CPSs

In this chapter, we propose an online recovery system for nonlinear CPSs that strikes a

balance between efficiency and accuracy. Besides, the proposed method also leverages un-

corrupted sensor data to enhance recovery performance.

5.1. System Overview of Recovery System

This section summarizes the overview of system design, which will be discussed further in

Section 5.1.4, and give the problem statement and assumptions.

5.1.1. Problem Statement

We consider a nonlinear CPS described in Section 2.4 under the sensor attacks shown in

Section 2.5. The physical states deviate from the reference states under the influence of

such attacks. A recovery controller is triggered after the attack diagnosis identifies the

compromised sensors. The problem is to design a recovery controller that can smoothly

guide the nonlinear system’s physical states to a target set T before they reach the unsafe

state set F . Note that it should leverage uncompromised sensor data during recovery if

possible.

5.1.2. Recovery Controller Overview

Our real-time data predictive recovery system is shown in Figure 21. The target CPS is

in the bottom part of the figure, and our system extends the original system to secure the

system under sensor attacks. The paper focuses on the recovery controller shown in the

blue shaded box, which includes (i) adaptive recovery sequence generator, (ii) model adap-

tor, (iii) state predictor, and (iv) time oracle.

68

Figure 21: Real-time Data Predictive Recovery Overview

Figure 22: Illustration of Recovery Timeline

69When does the recovery controller take effect? The system runs in two possible

modes - normal mode and recovery mode. Figure 22 illustrates the timeline of how our

recovery system works. In normal mode, the system runs the original nominal controller,

and the system states follow the target states (also known as reference states) without at-

tacks. At an unknown time ta, a sensor attack is launched, so the actual system states be-

gin deviating from the target states. There is a detection delay (tf − ta) needed for the

attack diagnosis to identify the attack. At the time tf , the detector raises an alert indicat-

ing the attack, and the system switches from normal to recovery mode. In recovery mode,

our recovery controller is activated. Note that the recovery controller is designed to han-

dle attacked sensors, only running after detecting attacks.

How does the recovery controller work? The adaptive recovery sequence generator

draws upon the idea of model predictive control. It formulates the recovery problem as

an optimization problem with time and safety constraints, but only implements the first

several recovery control inputs and then optimizes again, repeatedly. Each optimization re-

quires the help of supporting components (Section 5.3) for updating the formulation: the

model adaptor provides the linear model working on current states, reducing the model-

ing error; the state predictor provides an accurate initial state for recovery, relieving the

uncertainty accumulation; the time oracle adjusts the optimization horizon and time con-

straints, making a recovery before the system states become unsafe. Note that, through

nonlinear reachability analysis, the initial state for recovery is obtained from a trustworthy

state provided by checkpointer, and no measurements from attacked sensors are used.

5.1.3. Assumptions

We list our assumptions in this subsection. Note that the assumptions about checkpointer,

attack diagnosis, and target set are fulfilled by the previous work, so they are outside the

scope of this paper.

70We assume that the system operates a closed-loop control process, and the plant can be

nonlinear. Moreover, the system is perturbed by noise. This assumption is detailed in Sec-

tion 2.4. Also, sensor attacks make the nominal controller generate inappropriate control

inputs that lead to the deviation from desired physical states, detailed in Section 2.5.

For the CPS components, we assume that there is a checkpointer that can record historical

data, including state estimations and control inputs. The data cover at least one time step

before the attack occurs. Such a checkpointer has been described in detail in [4], [15], [33],

[73]. Under the assumption of fully observable states at the end of Section 2.4, this check-

pointer caches the physical state x t at every time step. In a general case, it records sensor

measurement y .

Also, we assume a detection/diagnosis module that is able to correctly locate the cor-

rupted component before the system is driven into an undesirable unsafe state. In our re-

covery system, it can identify which sensors are compromised. The attack diagnosis works

give several solutions, such as the sensor attack detectors proposed by [16], [74]. Note

our method also applies when all sensors are compromised. Uncompromised sensors, if

any, help improve recovery performance.

Furthermore, we assume that the recovery target state set is within the control invariant

set of the original nominal controller, so that the nominal controller can take over when

it is available after recovery. The control invariant set can be computed through [75]. We

assume that the recovery control sequence can be implemented to actuators, or we need a

redundant actuator in the systems.

5.1.4. Data Predictive Recovery Algorithm

The blue shaded box in Figure 21 illustrates the data predictive recovery controller. The

controller consists of four components that cooperate with each other. The adaptive recov-

71ery sequence generator (Section 5.2), the core component, generates the recovery control

sequence and guides the physical state of the CPS back to a target state. It formulates

and solves an optimization problem opti with safety and time constraints in every T con-

trol steps. During recovery, its input, an initial reachable set X0 and a horizon N , comes

from the state predictor (Section 5.3.1) and the time oracle (Section 5.3.3), respectively. In

addition, the model adapter (Section 5.3.2) updates the linear approximation of the non-

linear dynamics before formulating each optimization problem.

Algorithm 2: Extended Data Predictive Recovery
Input: historical data from checkpointer, attack detection/ diagnosis result, nonlinear

system dynamics
Output: real-time control signal u t for 0 ≤ t ≤ tm

1 while t ≥ 0 do
2 if t < tf then
3 Run with normal control

4 else if t = tf then
5 td, tm ← time oracle ▷ deadline computing
6 Xtr ← state predictor ▷ state reconstruction
7 syst ← model adaptor ▷ model adaptation
8 opt0(syst, Xtr , tm − tr) ▷ first optimization
9 u t, . . . ,u tr−δ ← u t ▷ cached from nominal control

10 Run with u t ▷ implement control input

11 else if tf < t < tr then
12 Run with u tf+δ, . . . ,u tr−δ ▷ cached control

13 else if tr ≤ t ≤ tm then
14 if t = tr +KTδ with integer K ≥ 0 then
15 u t, . . . ,u t+(T−1)δ ← optK ▷ optimization result
16 Xt+Tδ ← state predictor ▷ reachability
17 syst ← model adaptor ▷ model adapt.
18 optK+1(syst, Xt+Tδ, tm − (t+ Tδ))

19 Run with u t ▷ implement control input

Algorithm 1 shows the real-time attack-recovery procedure, and the critical time is re-

flected in the timeline (Figure 22):

72(i) Lines 2-3: Before the attack is detected at tf , the system runs the original nominal con-

troller in normal mode. The state estimate may be corrupted by sensor attacks, while the

actual physical state may deviate from the desired state.

(ii) Lines 4-10: At detection time tf , the system switches from normal mode to recovery

mode, where the recovery controller takes over. Since the state estimate is compromised,

the state predictor (Section 5.3.1) performs a non-linear reachability analysis and recon-

structs the state estimate reachable set at tr from a trustworthy state at time tw provided

by checkpointer, meanwhile, it uses good sensor data from tw to tf to improve prediction

accuracy. Also, the algorithm calculates a safety deadline td and a maintainable time tm

using the time oracle (Section 5.3.3). Then, the model adaptor (Section 5.3.2) computes

an updated linear approximation around current states and control input from nonlinear

dynamics. Based on them, the adaptive recovery sequence generator (Section 5.2) formu-

lates the first optimization problem opt0 and begins to solve it. Since the result of opt0 is

not ready, it prepares the control sequence for the preparation period [tf , tr) using the last

cached control input u t from the nominal controller.

(iii) Lines 11-12: During period (tf , tr), the system runs with the prepared control se-

quence, meanwhile solving opt0.

(iv) Lines 13-19: From tr to tm, for every T control step, the state predictor predicts the

initial reachable set of the next optimization problem, i.e., Xt+Tδ. In this process, intact

sensor data, if any, can improve prediction accuracy. Also, the model adaptor updates the

linear approximation of dynamics. The recovery sequence generator starts to formulate

and solve a new optimization problem optK+1. Consequently, the recovery control sequence

from optK will be ready in T control steps, but only the first T control input will be im-

plemented. Note that finding a solution within δ is not necessary, since optimization runs

every T control step.

73
5.2. Adaptive Recovery Sequence Generator

Our core component, adaptive recovery sequence generator, aims to recover the physical

states into a target set T before they touch an unsafe set F . We consider continuous-

time and nonlinear systems in the form of Equation (2.2). To efficiently compute recovery

control inputs, we perform local linearization and discretization online using the model

adaptor (Section 5.3.2), and encode the linearized-discretized model into the optimization

problem. We use the subscript to represent variables at a certain time hereinafter. For ex-

ample, u t represents the control input at time t. Note that our approach also applies if we

consider a discrete model from the beginning.

5.2.1. Basic Data Predictive Recovery Formulation

After the attack diagnosis identifies the corrupted sensors, the generator formulates the

recovery problem as a quadratic programming problem with dynamics, time, and safety

constraints. By solving this problem, we get a recovery control sequence, but we only im-

plement the first control input and then repeat this process in subsequent steps. Each op-

timization problem updates the parameters, including the model from the model adaptor,

the initial state of recovery from the state predictor, and the deadline from the time ora-

cle.

The objective of these quadratic programming problems guides the state towards reference

state fast and smoothly:

J = (xN − x ∗)TQN(xN − x ∗)

+
N−1∑
k=0

(x k − x ∗)TQ(x k − x ∗) + uT
kRuk

(5.1)

where x i and u i are the system state and control input variables at ith control step; x ∗ is

74the reference state; Q,QN ∈ Rm×m,R ∈ Rn×n are semi-definite symmetric matrices that

represent the state, the final state, and the control input cost weight; N = D +M is the

optimization horizon length, where recovery time D = (td − t)/δ and maintainable time

M = (tm − t)/δ at the time t. A fast recovery steers states to the reference state fast,

and tends to achieve a small state penalty, represented by the first two terms; A smooth

recovery uses small control effort, and tends to achieve a small control penalty, represented

by the third term.

The constraints are formulated as follows.

x i+1 = Ax i +Bu i + c ∀i (5.2a)

u i ∈ U ∀i (5.2b)

Xi ∩ F = ∅ ∀i ∈ [0,M] (5.2c)

x i ∈ T ∀i ∈ [D,M] (5.2d)

Notice that Eq. (5.2a) is the discrete linearized dynamic constraint provided by the model

adapter as in Equation (5.6), with parameters A, B and c. It is used to predict the plant’s

future evolution; Eq. (5.2b) limits our control inputs according to the actuator’s capacity;

Eq. (5.2c) ensures that all recovery states are safe; Eq. (5.2d) makes sure that the system

state goes back into the target state set before the safe deadline td and maintains it in the

set for the rest of the optimization horizon until tm. Note that the optimization horizon is

receding over time, thus the computational overhead is also decreasing during the recovery.

However, there are some limitations in the standard data predictive recovery formulation:

(i) we did not consider the computational overhead of optimization problems. It usually

takes more than one control step to solve this problem. Thus, this recovery method may

not be applied to complex systems because the computational overhead is large. (ii) we

75

Figure 23: Illustration of Extended Model Predictive Recovery. i○ denotes solving the ith
optimization problem, and i denotes implementing the recovery control inputs computed
from ith optimization problem.

did not consider the uncertainty in the constraints in Eq. (5.2), such as linearization error

and estimation noises due to overapproximated reachable sets. Thus, some constraints are

not guaranteed to be met in real applications.

5.2.2. Extended Data Predictive Recovery Formulation

To overcome the limitations above, we extend the basic formulation by considering compu-

tational overhead and uncertainties, shown in Figure 23.

Considering that the computational overhead may be greater than the control sampling

time, the recovery sequence generator optimizes every T control steps instead of every

step. Note that the T control steps can cover computational overhead and can be deter-

mined in advance. At time tf , the attack diagnosis identifies the attack, and the generator

begins to formulate and solve the first optimization problem. Before time tr = tf + Tδ,

the generator can obtain the result of the first optimization problem. From time tr, while

it starts to implement the first T control inputs computed by the first optimization prob-

lem, it begins to formulate and solve the second optimization problem. Similarly, at time

76tr + Tδ, it implements the first T control inputs computed by the second optimization

problem and begins to formulate the third one. The recovery sequence generator repeats

this process until time tm in such a pipeline manner.

To formulate each optimization problem, the generator requires (i) the initial state x0 and

the uncertainty interval I0 provided by the state predictor. Since x0 contains good sensor

data, it can be seen as feedback, helping alleviate the accumulation of uncertainty in un-

compromised state dimensions. (ii) the system model provided by the model adaptor, i.e.

A, B, and c matrix. Since the linear model works well in a small state range, the model

adaptor keeps linearizing the nonlinear dynamics around current states. The time-variant

model helps to reduce modeling errors. (iii) safe deadline td provided by the time oracle.

The time oracle performs nonlinear reachability analysis to compute a conservative dead-

line by which the system may become unsafe. The deadline helps to guarantee the safety

of CPS. The detailed design of these supporting components is described in Section 5.3.

The constraints of the optimization problem are reformulated as follows.

x 0 ∈ X0 = x 0 ⊕ I0 from state predictor (5.3a)

x i+1 = Ax i +Bu i + c ∀i (5.3b)

u i ∈ U ∀i (5.3c)

x i ∩ (F ⊕AiI0) = ∅ ∀i ∈ [0,M] (5.3d)

x i ∈ T ⊖AiI0 ∀i ∈ [D,M] (5.3e)

where at Eq. (5.3a), x0 is the initial state of recovery with uncertainty interval I0 that

can be obtained from the state predictor; Eq. (5.3d) and (5.3e) consider the effect of un-

certainty I0, so the unsafe set is larger and the target set is smaller than those of the ba-

sic data predictive recovery. Here, ⊕ is the Minkowski sum defined as X ⊕ Y = {x +

77y |x ∈ X, y ∈ Y } for any set X and Y ; ⊖ is the Minkowski difference such that X ⊖ Y =⋂
y∈Y {x− y |x ∈ X}.

Furthermore, it is noted that the optimization horizon reduces T for every optimization

problem. For example, the horizon of the first optimization is (tm − tr)/δ, and the horizon

of the second becomes (tm − tr)/δ − T . The reducing horizon also leads to a reduction in

the number of optimization variables in optimization problems, so computational resources

are saved without hurting recovery performance. Note that we can still guarantee safe and

time constraints, although the optimization horizon is reduced.

5.3. Supportive Components

The formulation of optimization problems requires the parameters of the supporting com-

ponents, including the state predictor, the model adaptor, and the time oracle. This sub-

section introduces each component in detail.

5.3.1. State Predictor

The state predictor performs nonlinear reachability analysis to get the reachable set of

states based on historical data.

Input. It relies on (i) attack diagnosis result. The result indicates which sensors are com-

promised and which sensors are intact. (ii) historical states and control inputs from check-

point. The state at time tw is the trustworthy state, and is not affected by sensor attacks.

The intact states during sensor attack can also be used to relieve uncertainty accumula-

tion. The control inputs are used for reachability analysis. Since it does not use compro-

mised sensor data as input, the result is not affected by sensor attacks.

Overview. Figure 24 illustrates the process of successive calculation of reachable states.

The gray-shaded area highlights a fragment at time t. At time t, the reachable states (X ′
t,

marked in green) are obtained from the previous reachable analysis. Also, current state

78

Figure 24: A fragment of successive calculation of reachable states using the state predic-
tor

estimates are obtained from the system observer, but some state estimates are affected

by sensor attacks, marked in orange. We replace those compromised ones with the cor-

responding reachable states, forming sensor-adjusted reachable states Xt, which other

components require. From this set, we perform a nonlinear reachability analysis and get

the next reachable states. The state predictor repeats the above steps to calculate the

multiple-step reachable state. The sensor-adjusted reachable state Xt will be used as X0

in equation (5.3a). In this process, the state predictor uses good sensor measurements as

feedback, preventing uncertainty from exploding in the uncompromised dimension.

Reachability Analysis Given a historical state, we can use the Taylor model-based reach-

ability computation to obtain an overapproximate estimation of the state at a later time.

Taylor models are originally proposed as overapproximate representations for smooth func-

tions [76], and are later used in verified integration of nonlinear ODEs [77] and to compute

reachable set overapproximations for hybrid systems [78]–[80]. To do so, we may directly

use the state-of-the-art tool, Flow* [81]. Since we only use the tool to compute an interval

79

Figure 25: Illustration of the use of Flow*.

reachable set overapproximation, our framework does not need to handle Taylor models

from scratch. For example, it can compute a conservative estimation of the system state

at tf when an attack is detected, which is also known as state reconstruction. It takes the

ODE (2.2), the latest trustworthy state xw as the initial state and the historical control

sequence that is used from tw to tf , and computes an interval set (or box) X that is guar-

anteed to contain the system state at tf . Figure 25 illustrates the use of Flow*. The eval-

uation in [79] shows that Flow* achieves good accuracy and scalability for nonlinear reach-

ability analysis among baseline approaches VNODE-LP, dReach, and SpaceEx.

Considering Observer. As stated at the end of Section 2.4, this algorithm assumes that

states are fully observable for concision, since computing state estimates is not our main

contribution. However, for more general cases, the above state predictor can be extended

and work with existing nonlinear observers, which compute state estimates with good sen-

sor measurements. The observer operates in both normal and recovery modes. As shown

in Figure 22, the observer uses the original measurement function y = h(x) + v before

tw, since all sensor measurements are reliable. In contrast, the observer dynamic should be

adjusted in the presence of the attack to avoid the impact of attacks. After time tw, some

80sensor measurements could be compromised. The algorithm trims the original measure-

ment function to y ′ = h′(x) + v , excluding the compromised sensor measurements indi-

cated by the attack diagnosis. The observer, for example the extended Kalman filter, pre-

dicts state and covariance estimates with checkpointed previous estimates and control in-

put, and updates the estimates with good sensor measurements. In this way, the observer

obtains state estimate X ′′
t unaffected by attacks.

Since the observer requires a certain period for the state estimates to converge during the

start phase, we need to discuss the impact of convergence time on recovery timing. For

most cases, since the observer also runs in the normal mode, the trustworthy state esti-

mate xw calculated by the observer is converged. When the attack is detected at time tf ,

the observer needs to reconstruct the state estimates x f with the trimed measurement

function from converged xw. The computational overhead of the reconstruction may en-

large the preparation period from tf to tr (marked in orange in Figure 22), where tr is

when the first recovery control input is implemented. Moreover, it is undeniable that there

exists an extremely rare case that the system is attacked shortly after it starts operating,

and the trustworthy state estimate xw has not yet converged. In this case, the state esti-

mate reconstruction must wait for convergence, further extending the preparation period.

Tasks. There are four tasks for the state predictor:

(i) State reconstruction. At time tf , the system state estimates cannot reflect the ac-

tual system states because of sensor attacks. Thus, the predictor needs to reconstruct the

current state reachable set Xf from a trustworthy state xw provided by the checkpointer.

This process is demonstrated in the reachability analysis above. (Line 7 of Algorithm 2)

(ii) Initial state calculation. The optimization problems formulated by the adaptive

recovery sequence generator require an initial state of recovery. The state predictor can

81provide sensor-adjusted reachable states as the initial state set X0 = x 0 ⊕ I0, where x0 is

the center of reachable states, and I0 is the uncertainty interval. (Lines 7 and 17 of Algo-

rithm 2)

(iii) Helper function. The state predictor is called by the model adaptor and the time

oracle. The model adaptor needs to linearize and discretize the nonlinear system at cur-

rent states, which is provided by the state predictor. The time oracle performs reachability

analysis to find a safe deadline td, after which the system may touch the unsafe set.

(iv) Safety checker. Before implementing the recovery control input, we use the state

predictor to compute the reachable states. If there is no intersection between the reachable

states and unsafe set F , the recovery is safe.

5.3.2. Model Adaptor

Optimizing using the nonlinear dynamic is time-consuming, and can hardly be solved on-

line. To reduce time overhead, linearized models can be used to approximate the original

nonlinear system. However, a linearized model from a nonlinear system only works well

around the operation or equilibrium point. The state deviation from the point may cause

a large modeling error. Also, the recovery effectiveness depends on the model’s accuracy.

Therefore, the model adaptor keeps linearizing the nonlinear system during recovery to

obtain accurate linear models.

The following model adaptor has been widely used to linearize and discretize a nonlin-

ear continuous ODE to provide the dynamics constraint for each optimization problem,

which is later formalized as Eq. (5.3b). Given a continuous nonlinear system described as

Eq. (2.2) and denoted as φc, the adaptor calculates a linear approximation from its first

82order Taylor expansion around the point of interest x̄ t and ū t:

ẋ t = φc(x t,u t)

≈ φc(x̄ t, ū t) +
∂φc

∂x t
|x̄ t,ūt ·(x t − x̄ t) +

∂φc

∂u t

|x̄ t,ūt ·(u t − ū t)

= A′x t +B′u t + c′

(5.4)

where A′ = ∂φc

∂x t |x̄ t,ūt , B
′ = ∂φc

∂ut |x̄ t,ūt , and c′ = φc(x̄ t, ū t) − ∂φc

∂x t |x̄ t,ūt ·x̄ t −
∂φc

∂ut |x̄ t,ūt

·ū t. In the implementation, the point x̄ t is obtained from the center of the reachable set

at time t, calculated by the state predictor. The point ū t is the last control signal cached

by the checkpointer. Since discrete-time dynamics are required in optimization problems,

the model adaptor discretizes the linear approximation into a discrete-time equation with

a granular time step δ > 0. This discretization step is a direct result of integrating the

continuous time equation (5.4) and is given as follows.

x t+δ = eδA
′
x t + (A′)

−1
(eδA

′ − I)B′u t + δc′

≈ (I+ δA′)x t + δB′u t + δc′
(5.5)

where I is the identity matrix with proper dimensions, and δ is the sampling time or the

control interval. Thus, we approximate the nonlinear dynamics to the form of Equation (5.6),

where A = I+ δA′, B = δB′, and c = δc′.

x t+δ = Ax t +Bu t + c (5.6)

For example, on a simple control system ẋ t = x 2
t + u t with one-dimensional x t and u t, we

compute centers x̄ t and ū t from the state predictor and perform Taylor expansion around

83this point following Eq. (5.4).

ẋ t = x 2
t + u t ≈ x̄ t + ū t + 2x̄ t · (x t − x̄ t) + 1 · (u t − ū t)

= 2x̄ tx t + u t − 2x̄ 2
t + x̄ t

(5.7)

That is, A′ = 2x̄ t, B′ = 1 and c′ = −2x̄ 2
t + x̄ t. the discretization can be done by calling

Eq. (5.5) with some time step such as δ = 0.01.

5.3.3. Time Oracle

The time oracle provides the horizon of MPC problems by computing a conservative dead-

line td by which the system should be recovered and a maintainable deadline tm by which

the system states can be maintained in the target state set once they are recovered into

the set. This component is first used in [33] for linear systems, and this paper extends it

to nonlinear systems.

At the time tf , it leverages the state predictor and calculates the reachable state set of

each following control step as if the norminal controller was running. If the upper or lower

bound falls into the unsafe set, then there is a possibility that a severe consequence may

happen. Thus, we choose the last time step before unsafe as our safety deadline td. Note

that this analysis assumes that we do not take any recovery actions, so it is a conserva-

tive deadline. Then, it adds a constant maintenance period M to obtain the maintainable

deadline tm = td +M .

5.4. Evaluation

In this section, we validate our method using three nonlinear system simulators and high-

light its effectiveness with observations and result analysis.

84

(a) CSTR (b) Drone from AirSim (c) Vessel model 1:70 scale[82]

Figure 26: Numerical and High-Fidelity CPS Simulators

Figure 27: Performance of our method (MPC recovery control) compared to the baselines
(no recovery, LP recovery control, LQR recovery control, and Software Sensor Recovery or
SSR) on three benchmarks: continuous stirred tank reactor (CSTR) control [left], quadro-
tor altitude control [middle], naval vessel control [right].

5.4.1. Experiment Environment

We implement a nonlinear system simulation tool using Python (in Appendix). We write

these benchmarks’ ODE and sensor attack scenarios in a configuration file. Then, the tool

can run each configuration one by one. In this process, the necessary data, including sys-

tem states, sensor values, and control input, are recorded to plot the results. The experi-

ments are implemented on a 64-CPU server, where each one is an Intel(R) Xeon(R) Gold

6248R CPU @ 3.00GHz. The optimizations are solved by the cvxpy library with OSQP

solver. Pyinterval library is applied for the interval arithmetic of the MPC.

5.4.2. Non-linear systems benchmark

We consider three nonlinear system benchmarks: the continuously stirred tank reactor

(CSTR), the quadrotor, and the naval vessel. They are representative CPSs, used in many

works, from different domains. The CSTR benchmark study presents an interesting setup

85

Figure 28: Sensitivity analysis to bias values of {−25,−30,−35} on the CSTR benchmark.

Figure 29: Sensitivity analysis to detection delay values of {0.5, 1.0, 1.4} on the CSTR
benchmark.

for industrial sabotage, the vessel benchmark has very long control steps, and the quadro-

tor with its large number of states tests the scalability of each component in the proposed

recovery controller.

CSTR: In CSTR [83] dynamics, the exothermic reaction of the species A → B is con-

sidered with the concentration of A (CA) and the reactor temperature (T) as states. The

control input is given by the temperature of the cooling jacket (TC). The exact dynamics

given various system parameters (k0, Caf , q, V, E,R, ρ, Cp, Tf ,∆H,UA) is as follows,

V ĊA = q (Caf − CA)− k0 exp
(
−E
RT

)
V CA

ρCpV Ṫ = ρCpq (Tf − T) + ∆Hk0 exp

(
−E
RT

)
V CA + UA (TC − T)

(5.8)

We utilize a PID controller to stabilize the temperature T . Furthermore, we consider a

bias sensor attack scenario for CSTR where the temperature sensor values are compro-

mised like in [84], and the bias parameter is shown in TABLE 8.

Quadrotor: The quadrotor dynamics [69], [74], [85], [86] describe the evolution of its at-

86

Figure 30: Sensitivity analysis to noise with upper bounds of {0.4, 0.1, 0.6} on the CSTR
benchmark.

Figure 31: Sensitivity analysis of recovery with an observer to increasing noise with upper
bounds of {0.05, 0.1, 0.25} ×10−3 on the Quadrotor benchmark.

titude and position with 12 states: roll (ϕ), pitch (θ), yaw (ψ), roll rate (wθ), pitch rate

(wϕ), yaw rate (wψ), 3D positions and 3D velocities. The control input includes that for

thrust, roll, pitch, and yaw represented by Ut, Uθ, Uϕ, Uψ. Given inertias (Ix, Iy, Iz), mass

(m) and acceleration of gravity (g), it is given as,

ϕ̇ = wϕ, ẇϕ =
Uϕ
Ix

+ θ̇ψ̇
(
Iy−Iz
Ix

)
θ̇ = wθ, ẇθ =

Uθ
Iy

+ ϕ̇ψ̇
(
Iz−Ix
Iy

)
ψ̇ = wψ, ẇψ =

Uψ
Iz

+ ϕ̇θ̇
(
Ix−Iy
Iz

)
ẋ = vx, v̇x =

Ut
m
(cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) sin(ψ)

ẏ = vy, v̇y =
Ut
m
(cos(ϕ) sin(θ) sin(ψ)− sin(ϕ) cos(ψ))

ż = vz, v̇z =
Ut
m
cos(ϕ) cos(θ)− g

(5.9)

The state-space model is abstracted from a high-fidelity simulator AirSim that Microsoft

developed using the Unreal engine as shown in Figure 26b. A PID controller is used to

maintain the quadrotor at a certain height. Here, we consider the sensor bias attack sce-

87nario in which the attacker compromises height sensors resulting in incorrect feedback (see

[15], [33]).

Vessel: The vessel dynamics describe the generic ship with 3 DoF[82], [87]. The state-

space model is adapted from the lecture notes of Marine Cybernetics and the high-fidelity

simulator developed from NTNU AUR-lab which implements the Matlab scripts in the

VESSELS catalogue of the MSS toolbox. The simulator simulates the vessel shown in Fig-

ure 26c. The model implements the basic components of the ship such as engine, propeller,

rudder, etc., and considers the whole model as a system. There are 8 states in the system,

which are the east and north positions, yaw, their velocities, the angular shaft speed of the

propeller, and the current of the DC motor.

Two PID controllers are used to maintain the surge speed of the vessel and the yaw of the

vessel. Here, we consider the bias sensor attack scenario where the attacker compromises

speed sensor, resulting in over speeding.

5.4.3. Experiment Settings

All experiment settings are given in Table 8. We chose our CSTR settings, including ref-

erence, frequencies (dt, MPC frequency), delay, safe/target sets based on previous work in

[83]. We tuned a PID controller to stabilize the model within control limits determined by

the physical properties of the CSTR system [83]. For the quadrotor, we build on the set-

tings for the linearized model [33], while increasing the system frequency to 100Hz (dt=0.01s).

We tune a PID controller for this increased speed and broader control limits (as given in

Table 8’s second column). Finally, for the Naval Vessel, we adapt reference, frequency,

safe/target set settings from [82], and tune two PID controllers to stabilize the reference

speed. Our control limits are again chosen based on the actuator properties of the vessel

[82]. In all three benchmarks, we chose asymmetric positive noise to clearly observe the

performance of the recovery algorithms. Symmetric noises, on the other hand, have little

88impact on recovery, since the negative and positive noises offset each other. Our imple-

mentation can be found at https://github.com/CPSEC/nonlinear-recovery.

CSTR Quadrotor Naval Vessel
attacked state Temp. Altitude Speed
reference 300 K 5 m 0.55 m/s
dt 0.1 s 0.01 s 1 s
noise unif[0, 0.1] unif[0, 2e-4] unif[0, .015]
detetection delay 1 s 0.2 s 10 s
bias -30 K -1 m -0.5 m/s
safe set (250, 360) K (0, 200) m (0, 150) m/s
target set (299, 301) K (4.8, 5.2) m (0.5, 0.9) m/s
control limits (250, 350) K (-10,100) N [(0, 2), (-1, 1)]
MPC freq. 10 Hz 10 Hz 1 Hz

Orig Controller
P=0.50
I=1.33

D=-0.05

P=100
I=0

D=-19

P=0.45, 0.1
I=0.05, 0
D=0, -3.5

Table 8: Settings used in each benchmark.

5.4.4. Baselines

We compare the proposed data-predictive recovery method approach (mpc) with four

baselines. We also add an observer to our method and include it in the comparisons as

mpc_obs.

(i) no recovery (none). This baseline does not take any recovery countermeasures after

the detection of sensor attacks.

(ii) software-sensor-based recovery (ssr) [4], [26]. After the detection of sensor at-

tacks, the baseline replaces the corrupted physical sensor data with the software sensor

data predicted by the linear system model.

(iii) linear-programming-based recovery (lp) [15]. The baseline formulates the re-

covery problem as a linear programming optimization problem. By solving this problem,

it gets a recovery control sequence that can steer the system states back to the target set

https://github.com/CPSEC/nonlinear-recovery

89before a safe deadline.

(iv) linear-quadratic-regulator-based recovery (lqr) [33]. The baseline extends the

LP-based recovery by considering state and control input penalty in the objective, and

also can maintain the system states in the target set for a while.

Given that all of the above baselines are designed for linear systems. To apply them to our

nonlinear benchmarks, we obtain linear models by linearizing the nonlinear systems over

the equilibrium point or the operating point.

5.4.5. Recovery Effect

We compared the proposed method with four baselines for the three benchmarks. We plot

the actual system physical states in Figure 27, which shows the recovery process targeting

sensor attacks. The red line shows the physical states under attacks without any recovery.

The cyan, blue, and orange curves are actual physical states that use linear-programming-

based recovery, linear-quadratic-regulator-based recovery, and software-sensor-based recov-

ery benchmarks.

We can get the following observations from them: Without recovery, the system states

deviate from the target states, even reaching the unsafe states. When there is a

bias attack, i.e., adding a bias to sensor measurement, the controller computes an error

between state estimate and reference state. This error makes the controller generate a con-

trol input to eliminate this error, resulting in deviating from the reference state. For exam-

ple, in the CSTR benchmark, the red curve goes out of the figure, i.e., reaching the unsafe

set. For other benchmarks, although the system states do not reach the unsafe set with

any countermeasures, the performance of the CPSs is affected. The system states keep de-

viating from the target states. If we choose a larger bias, the system states may also reach

the unsafe set.

90The linear model based recovery method may fail to find a recovery control se-

quence. For lp and lqr baselines, we do not use the original deadline estimator, because

they often give a short deadline, resulting in failure to find a recovery control sequence.

The short deadline comes from the modeling error. When the error is large, the reachabil-

ity analysis may quickly touch the unsafe set and get a short deadline.

The proposed method steers the system states closest to the reference states.

For the CSTR benchmark, ssr and lp do not drive the system state to the target set before

the deadline. For the quadrotor benchmark, the lqr baseline does not drive the physical

states to the deadline eventually, and the final recovered states of the proposed method are

closer to the reference state than other baselines. This may be caused by uncertainty ac-

cumulation. The baseline methods assume that all sensors are not reliable, and do not get

any feedback from sensors. Thus, they cannot reject the external disturbance, and cause

an inaccurate recovery eventually.

5.4.6. Sensitivity Analysis.

In order to clearly show how different parameters affect the methods’ performance, it is

ideal to choose a benchmark that has small inertia. Therefore, we perform sensitivity anal-

yses on the CSTR benchmark, and observe changes to variation in attack intensity, detec-

tion delay, and noise intensity. We compare all methods by their ability to recover to the

target set without encountering the unsafe set within the deadline, their time of recovery,

and their maintainable time in the target set.

Impact of Attack Intensity. The experiment changes the value of bias added to the

sensor measurement, and the biases in the experiments are -25, -30, and -35K. There are

two main observations from Figure 28: First, the SSR baseline and the proposed method

performed well if the bias is set to -25. Both can drive the system to the target set and

maintain it before the deadline. The LQR and LP baseline cannot achieve it. Further-

91more, the proposed method can drive the system to the target set and maintain it even

when the bias is set to -30 and -35K since the proposed MPC-based method recovery takes

less time to recover the system to the target set. A lower attack bias situates the system

state closer to the target set at detection time. Yet, we see that methods using linearized

models struggle to overcome the accumulation of uncertainty even from a state with a

lower bias. SSR, enabled by a nonlinear model in state reconstruction, but with only a lin-

ear model during recovery is seen to recover with a large delay compared to our approach.

With higher bias, and hence a state further away from the target set at detection time, all

other methods struggle to recover and maintain in the target set.

Impact of Detection Delay. Figure 29 shows the recovery results under different detec-

tion delays. There are two main observations: First, both SSR and the proposed method

can drive the system to the target set and maintain it before the deadline if the detection

delay is 0.5s. LQR and LP cannot achieve recovery before the deadline. Secondly, the SSR

baseline cannot achieve recovery before the deadline if the detection delay increased to 1s

and 1.4s since there is less recovery time. A decrease in detection delay prevents the signif-

icant drift from the target state during attack time. Yet, again, only SSR is able to recover

but is unable to maintain in the target state without a controller that optimizes for main-

tain time. On the other hand, a longer detection delay pushes the system further away

from the target set and prevents any other method from recovering within the deadline.

Impact of Uncompromised Sensors. Across all three simulators in Figure 27 and anal-

yses in Figs. 28, 29, 28, our method leverages the uncompromised sensor information,

while LQR and LP cannot do so. Thus, LQR and LP consistently take longer to recover

(sometimes after the deadline), and are unable to maintain states in the target set even

with these requirements encoded in the optimization problem formulations.

Impact of an observer. We identify the impact of an observer on the quadrotor bench-

92mark (instead of the CSTR benchmark). The CSTR benchmark only has two directly

measured state elements. Hence, adding an observer does not create any measurable change.

On the other hand, the quadrotor sensors only measure four (out of twelve) elements of

the state – height, roll rate, pitch rate, and yaw rate. Height is obtained from an ultra-

sonic sensor below the quadrotor. The attitude rates are obtained from an onboard in-

ertial measurement unit. We use an extended Kalman filter (EKF) to estimate the full

state (with twelve elements). This additional observer step increases the computational

overhead minimally (see Figure 32). Moreover, as seen in the left plot of Figure 31, the

observer does not significantly affect recovery at lower noise thresholds. With increased

noise, as seen in the right plot of Figure 31, there is an increased deviation from the tracked

state after recovery. And hence, reduced maintainability in the recovered state. Thus, with

an increase in noise, while recovery to the desired region is not affected, maintainability

over a long horizon in the desired region may be affected.

Impact of Noise intensity. Two types of noise were implemented on the sensors, uni-

form noise, and white noise. The lower bound of these noises is 0, and we tested our method

with different levels of upper bounds for the noises. Figure 30 shows that the proposed

method can drive the system to the target set and maintain it when the noise upper bound

is set to 0.1 and 0.4. None of the baselines can achieve before the deadline except our pro-

posed method. If the noise upper bound is large, our proposed method recovers but finds

it hard to maintain the system in the target set since the uncompromised data (which we

leverage for improved state reconstruction) is itself too noisy. Other methods find it diffi-

cult to recover, let alone maintain in the target state for more than one step.

Computational overhead. Figure 32 shows the box plots of the computation overhead

for each step of the recovery on the time horizon. Our MPC-based recovery method has

the second largest overhead since more computation (than LP or LQR) is involved. But,

93

Figure 32: Computational overhead (in seconds) for all methods on the Quadrotor bench-
mark. For both LP and LQR, the outlier point on top represents the overhead in formulat-
ing and solving the problem at time step tf .

if the MPC frequency is reduced (i.e. if the frequency of linearization is reduced), then

our proposed method is applicable to real-time scenarios. On the other hand, our MPC

method outperforms the LP and LQR recovery results. Moreover, if the non-linear dynam-

ics (without linearization) were directly applied to the recovery problem, we would have

the best recovery result because of zero adaption error. But the nonlinear optimization

takes too long and cannot be applied to real-time scenarios. Therefore, from Figure 32,

there is a trade-off between usability and recovery performance; and our proposed method

delivers both.

5.5. Conclusion

In this chapter, we propose a novel framework for the recovery of nonlinear CPS when

faced with sensor attacks. Our framework solves an MPC problem formulated every few

time-steps to generate control inputs for recovery to a target set within a dynamically

computed recovery deadline (to remain in a safe set). It utilizes a model adaptor to lin-

earize and discretize nonlinear models for the MPC problem and computes both the dead-

line and initial MPC state based on nonlinear reachability analysis with Flow*. An evalu-

ation of the nonlinear system benchmarks alongside an analysis of recovery sensitivity to

our novel framework’s components demonstrate the effectiveness of our approach.

94CHAPTER 6

Summary

This chapter concludes the dissertation. Section 6.1 provides a summary of the contribu-

tions made by this dissertation, while Section 6.2 outlines existing challenges and suggests

several directions for future research.

6.1. Conclusions

Cyber-Physical Systems (CPS) combine computing and networking components with phys-

ical processes through sensing and actuation units. A significant security risk in these sys-

tems is sensor attacks, where attackers manipulate sensor measurements to force the phys-

ical system into unsafe states, leading to severe personal injuries, societal damage, and fi-

nancial losses. Traditional security approaches for IT systems are insufficient to address

threats related to physical states. Hence, the primary aim of this dissertation is to develop

innovative defense mechanisms that proactively and reliably protect CPSs against sensor

attacks. Specifically, we propose adaptive attack detection techniques for identifying sensor

attacks. To maximize the benefits of attack detection, we also introduce real-time recovery

methods, which enable CPSs to quickly return to a safe and desired physical state.

6.1.1. Real-time Adaptive Detection against Sensor Attack

In Chapter 3, we propose a real-time adaptive sensor attack detection system that dynam-

ically balances detection delay and false alarms based on the current state estimate. This

system consists of three key components: (i) The Adaptive Detector employs a window-

based detection algorithm that dynamically adapts detection delay and false alarms to

meet detection deadlines and improve usability. (ii) The Detection Deadline Estimator

utilizes a reachability analysis-based technique to conservatively estimate detection dead-

95lines at runtime by computing the reachable set of a system’s potential future behaviors.

(iii)The Data Logger implements a sliding-window-based data logging protocol to retain

trustworthy data for deadline estimation and maintain sufficient data points for attack de-

tection. Ultimately, we implement our detection system in multiple CPS simulators and a

reduced-scale autonomous testbed to validate its efficiency and effectiveness.

6.1.2. Real-time Sensor-attack Recovery in Linear CPSs

After detecting sensor attacks, CPSs must respond to these threats and mitigate their

adverse effects. Existing approaches either restart the system or replace corrupted sen-

sor data with predicted values, but these methods lack safety and timing guarantees. To

address this issue, in Chapter 4, we propose a real-time attack recovery method for lin-

ear CPSs that offers strong safety and timing guarantees using formal methods. Our ap-

proach develops a linear-programming-based or quadratic-programming-based recovery

controller that generates a recovery control sequence, smoothly guiding the physical sys-

tem under sensor attacks back to a target set before a safety deadline and maintaining its

position within the set. The method employs reachability analysis techniques to recon-

struct state estimates and compute a safety deadline, beyond which the system may enter

unsafe states. Through multiple CPS simulators, we demonstrate that our approach effec-

tively recovers attacked linear systems in a timely and safe manner.

6.1.3. Real-time Sensor-attack Recovery in Complex CPSs

In practical CPSs, plants are typically complex, with dynamics that are often nonlinear.

On the one hand, performing reachability analysis and optimization on nonlinear systems

directly is time-consuming. On the other hand, relying on a linearized model may result in

significant modeling errors and recovery failures, as such models only function well around

equilibrium points. In Chapter 5, we propose an innovative recovery system for nonlinear

CPSs that strikes a balance between efficiency and accuracy. Our system employs a state

96predictor that utilizes Flow*, a tool designed for rapid nonlinear reachability analysis. Ad-

ditionally, it continuously updates linear approximations based on the current state esti-

mate, ensuring high accuracy within a small range. The proposed method also leverages

uncorrupted sensor data to enhance recovery performance. Evaluations using nonlinear

system benchmarks, as well as an analysis of recovery sensitivity to various components of

our novel framework, demonstrate the effectiveness of our approach.

6.2. Future Work

There remain several challenges in defending CPSs. First, in order to ensure timing and

safety guarantees, this dissertation utilizes system models for detecting sensor attacks and

recovering CPSs. However, obtaining accurate system models is not always straightfor-

ward. To address this challenge, we plan to explore data-driven methods that do not re-

quire a system model in advance. Second, we assume that uncertainties, such as sensor

noise or process disturbances, are bounded. In real applications, however, this assumption

may not hold true. In future work, we aim to investigate how to ensure safety properties

in the presence of unbounded noise. Third, our attack recovery approach involves solv-

ing optimization problems with safety and timing guarantees, which may not always yield

valid solutions in rare cases. This means that our methods are sound but not complete.

We will further explore how to make the attack recovery approach more complete and ro-

bust for real-world applications.

97
APPENDIX A

Simulation and Security Toolbox for Cyber-Physical

Systems

Attack detectors aim at identifying attacks at the earliest time, and attack recovery meth-

ods try to eliminate the impact caused by these attacks and even steer the system’s phys-

ical states to a target set[32], [88]. However, there are few solutions that help to evalu-

ate the efficacy and efficiency of these security counter measurements due to the following

challenges: (i) tremendous efforts are required to collect benchmark plants, design con-

trollers, customize attacks, build defense approaches, and evaluate these approaches. (ii)

the existing solutions are difficult to add new features or integrate with existing simula-

tors. (iii) besides cyber states, the physical behavior of systems also requires to be simu-

lated.

To address these challenges, we develop a simulation and security toolbox with high ex-

tendibility and flexibility. One can easily switch between different experiment settings and

apply defense prototypes responding to different attacks. The source code is available at

https://github.com/lion-zhang/CPSim.

A.1. Security Toolbox Design

A.1.1. Toolbox Overview

The proposed toolbox includes a CPS simulator and a set of security tools. As shown in

Figure 33, the simulator mimics the behavior of a CPS: Sensors measure system states

and forward measurements to observers. Meanwhile, the measurements could suffer from

external uncertainties and attacks to meet experiment needs. On the basis of them, the

https://github.com/lion-zhang/CPSim

98

Figure 33: Design Overview of Simulation and Security Toolbox

observers are responsible for providing state estimates for the controllers. Then, the con-

trollers generate control input to be implemented in physical plants. Plant simulators up-

date system states according to system dynamics and control input. To secure CPS, var-

ious attack detectors and real-time attack recovery controllers are included to respond to

those attacks.

A.1.2. Component Implementations

This section elaborates on all components in the toolbox.

Plant Simulators: The toolbox provides some out-of-the-box CPS benchmarks from

different domains. Linear benchmarks are defined using state-space linear time-invariant

(LTI) models, including the F16 fighting falcon, serial RLC circuit, motor speed, etc. Non-

linear benchmarks are defined by order differential equations (ODEs), including continuous

stirred tank reactor, inverted pendulum, quadrotor, etc. It is simple to switch between all

99these benchmark plants with controllers by modifying the configuration file.

Controllers: The toolbox integrates common nominal controllers, such as PID, LQR, and

MPC controllers. It is convenient to complete various control tasks, such as cruise control

and lane keeping in an autonomous vehicle, using those nominal controllers with appropri-

ate parameters. In addition, the toolbox also supports real-time attack-recovery controllers,

which take over the system after identifying an attack. The controllers can generate a re-

covery control sequence that steers CPS’s physical states back to a target set after an at-

tack. The recovery controllers rely on the formal method component.

Observers: Some controllers rely on state estimates calculated from sensor measurements

by observers. The toolbox provides common observers, such as the Kalman filter for linear

systems and the extended Kalman filter for nonlinear systems. In most cases, we obtain

the ground-truth states from the simulators directly, and the observers then become op-

tional.

Online Reachability Analysis: Reachability analyses predict the system’s reachable

states, all possible physical states at subsequent control steps. If reachable states do not

intersect with an unsafe set, the safety property must be satisfied. The toolbox contains

efficient approaches to online reachability analysis. For linear systems, it leverages the

properties of a linear transformation of the zonotope and the support function method.

For nonlinear systems, it uses interval arithmetic. In addition, the toolbox supports other

formal representations, such as half-space and strip, to express unsafe and target state

sets. Moreover, it also supports operations on Gaussian distributions to deal with stochas-

tic systems.

Noise and Attacks: The toolbox simulates the ubiquitous noise or disturbance in real

systems. The uncertainty may follow bounded uniform distributions, unbounded Gaussian

100distributions, etc. Besides, the toolbox simulates attacks that compromise the integrity or

availability of sensor measurements, such as bias, replay, and delay attacks.

Supporting Components: The timer device simulates the system clock and activates

control steps. The logger checkpoints historical data, such as the state estimate, sensor

measurement, and control input, and prints the necessary debug information. The toolbox

also reserves the interface for different attack detectors, such as CUSUM, chi-square.

A.1.3. Requirements and Customizability

The toolbox is implemented in Python 3, and thus can be installed in various operating

systems with a Python environment. The main dependencies are scipy, numpy and cvxpy

packages. Moreover, it is convenient to carry out secondary development because of two

aspects:

(i) high extendibility. The toolbox is written in a modular fashion, and each component

is organized into a package. Thus, it is easy to extend its built-in functions or add new

features. For example, users can add a new CPS according to their needs by modifying the

system dynamics and controllers from the template file.

(ii) high flexibility. Besides numerical simulations, the toolbox can be easily deployed in

common high-fidelity simulators, such as AirSim and CARLA. Also, it can be integrated

into the Robot operating system (ROS), a set of open-source software libraries and tools

for building robot applications. Thus, the toolbox is effortlessly deployed in real robots or

CPS testbeds.

A.2. Toolbox Demonstration

To demonstrate the toolbox usage, we show a real-time attack recovery on CSTR numeri-

cal simulator and another one on SVL high-fidelity simulator.

101

(a) CSTR (b) Recovery Results

Figure 34: Attack Recovery Performance for Baselines

(a) Attacked (b) Recovering (c) Recovered

Figure 35: Attack Recovery Performance for Baselines

A.2.1. Working with a built-in numerical simulator

First, we aim to evaluate the recovery performance of different baseline recovery controllers.

We only require modifying the configuration file rather than writing simulation code. In

this file, we choose a benchmark plant, CSTR shown in Figure 34a, controlled by a PID

controller. Also, we define the bias sensor attack that subtracts 25K from the temperature

sensor feedback starting from the ninth second. The detector identifies the attack at the

10th second, and triggers the recovery controllers. Baseline recovery controllers include

(i) no recovery method (none), (ii) software-sensor-based recovery (ssr [4]), (iii) linear-

quadratic-regulator-based recovery (lqr [33]), and (vi) data-predictive recovery (mpc [89]).

Figure 34b plots the ground truth temperature from the simulator. From the curve, we

can intuitively analyze the recovery performance of each baseline recovery controller.

102A.2.2. Working with an external high-fidelity simulator

Then, we demonstrate how to use the toolbox to recover an autonomous vehicle in the

SVL simulator. The vehicle suffers from an IMU sensor attack, deviates from its own lane,

and even enters the oncoming lane, as shown in Figure 35a. To apply the lqr recovery con-

troller after detecting the attack, we need to integrate the toolbox with the SVL simulator.

Since there is a ROS bridge communicating with the simulator, we load the toolbox in a

ROS node, which is responsible for recovering the vehicle from the attack within a safety

deadline.

Figure 35b shows that vehicle returns to its lane during the recovery process. Figure 35c

shows that the recovery controller steers the vehicle to a safe region, the road shoulder, to

avoid a collision after recovery.

103
APPENDIX B

Robotic vehicle Testbed

Autonomous vehicles are a type of CPS that rely on sensor information to perform tasks

such as path tracking and lane keeping. We built scaled autonomous vehicles, measuring

24 cm in length and 19 cm in width, as testbeds (see Figure 36) to evaluate the proposed

attack detection and recovery methods.

B.1. Vehicle Architecture

Autonomous vehicles sense states and environments, make decisions, and control mobility.

Our robotic vehicle testbeds, whose hardware architecture is shown in Figure 37, simulate

these functions through the following stages:

(i) Perception: Our testbed is equipped with an Inertial Measurement Unit (IMU), Ultra-

wideband (UWB), and encoder sensors that measure attitude, position, and velocity, re-

spectively. We can also use cameras and LiDAR to collect additional environmental data.

However, these sensors are vulnerable to sensor attacks.

Figure 36: Robotic Vehicle Testbed

104

Figure 37: Hardware Architecture of Robotic Vehicle Testbed

Figure 38: Real-time Attack Recovery Implementation on Robotic Vehicle Testbed

(a) normal (b) attacked (c) recovering (d) recovered

Figure 39: Recovery demonstration from our testbed.

105(ii) Decision Making: A Raspberry Pi with Robot Operating System (ROS2) serves as the

main controller. It collects sensor data, estimates vehicle states, and generates control sig-

nals. The system uses different controllers for longitudinal and lateral control. For cruise

control, a PID controller stabilizes the testbed’s velocity based on encoder feedback. For

lane keeping, a Stanley Controller uses the front axle as its reference point, considering

both heading error and cross-track error. We can also deploy the proposed attack detec-

tion and recovery algorithms on this system.

(iii) Control: An STM32 microcontroller with FreeRTOS system receives control signals

from the Raspberry Pi through a Universal Asynchronous Receiver/Transmitter (UART)

protocol. Running a real-time operating system, it performs time-sensitive tasks such as

generating Pulse Width Modulation (PWM) signals to drive actuators.

(iv) Actuator: The actuator stage includes components such as motors and servos that

execute vehicle movements according to control signals.

B.2. Case Study

We implement the attack recovery method in Chapter 4 on the robotic vehicle testbed,

and the design is illustrated in Figure 38.

B.2.1. System Model

Autonomous vehicles perform lateral control to track paths provided by path planning

modules. High-fidelity models of vehicle dynamics are complex, non-linear, and discon-

tinuous. However, to reduce computational complexity, path tracking controllers typically

consider a simplified lateral dynamics model of the vehicle [90], [91] (as shown in Equa-

tion (B.1)). This model approximates dynamic effects to improve tracking performance.

106

d
dt



y

ẏ

ψ

ψ̇


=



0 1 0 0

0
−(cf+cr)

mvx
0

(lrcr−lf cf)
mvx

− vx

0 0 0 1

0
lrcr−lf cf
Izvx

0
−(ℓ2f cf+ℓ2rcr)

Izvx





y

ẏ

ψ

ψ̇


+



0

cf
m

0

lf cf
Iz


δ (B.1)

Here, cf and cr represent cornering stiffness for the front and rear tires; lf and lr are the

distances from the front and rear tires to the vehicle’s center of gravity; Iz is the vehicle’s

moment of inertia; and vx is the longitudinal velocity. The system states are lateral dis-

tance from the path (y), lateral error rate (ẏ), yaw error (ψ), and yaw error rate (ψ̇). The

control input is the front wheel steering angle (δ).

B.2.2. Attack Scenario

To achieve path tracking, we implement the Stanley lateral controller from [91] in ROS.

The control law is expressed as δ(t) = ψ(t) + tan−1
(
ky(t)
vx(t)

)
. The yaw error (ψ) is ob-

tained from the IMU sensor, and the lateral distance from the path (y) is obtained from

the UWB sensor for indoor use. In the absence of sensor attacks, the controller can per-

form path tracking tasks with good performance.

The attacker launches an attack on the IMU sensor, reducing the value of ψ by 0.60 ra-

dians from the start of the attack, with a detection delay of 60 control steps. Figure39b

shows the attack result as detected by the detector. Subsequently, our proposed method

begins controlling the vehicle back to the safe zone, as shown in Figure39d.

107BIBLIOGRAPHY

[1] A. Zambrano, A. P. Betancur, L. Burbano, et al., “You make me tremble: A first
look at attacks against structural control systems,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021, pp. 1320–
1337.

[2] A. Staff, How amazon is building its drone delivery system, Aug. 2022. [Online].
Available: https ://www.aboutamazon.com/news/transportation/how- amazon-
is-building-its-drone-delivery-system.

[3] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems security—a survey,”
IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1802–1831, 2017.

[4] F. Kong, M. Xu, J. Weimer, O. Sokolsky, and I. Lee, “Cyber-physical system check-
pointing and recovery,” in 2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS), IEEE, 2018, pp. 22–31.

[5] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and Z. Lin, “Savior:
Securing autonomous vehicles with robust physical invariants,” in 29th USENIX Se-
curity Symposium (USENIX Security 20), 2020.

[6] C. Yan, H. Shin, C. Bolton, W. Xu, Y. Kim, and K. Fu, “Sok: A minimalist ap-
proach to formalizing analog sensor security,” in 2020 IEEE Symposium on Security
and Privacy (SP), 2020, pp. 480–495.

[7] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: Fabricating implicit con-
trol over actuation systems by spoofing inertial sensors,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1545–1562.

[8] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen, “Drift with devil: Security of multi-
sensor fusion based localization in high-level autonomous driving under gps spoof-
ing,” in Proceedings of the 29th USENIX Conference on Security Symposium, 2020,
pp. 931–948.

[9] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehi-
cles sensors: Experiments on camera and lidar,” Black Hat Europe, vol. 11, p. 2015,
2015.

[10] M. Pajic, J. Weimer, N. Bezzo, et al., “Robustness of attack-resilient state estima-
tors,” in ACM/IEEE 5th International Conference on Cyber-Physical Systems (IC-
CPS), IEEE Computer Society, 2014, pp. 163–174.

[11] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Unmanned air-
craft capture and control via gps spoofing,” Journal of Field Robotics, vol. 31, no. 4,
pp. 617–636, 2014.

[12] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On the require-
ments for successful gps spoofing attacks,” in Proceedings of the 18th ACM confer-
ence on Computer and communications security, 2011, pp. 75–86.

[13] J. Noh, Y. Kwon, Y. Son, et al., “Tractor beam: Safe-hijacking of consumer drones
with adaptive gps spoofing,” ACM Transactions on Privacy and Security (TOPS),
vol. 22, no. 2, pp. 1–26, 2019.

https://www.aboutamazon.com/news/transportation/how-amazon-is-building-its-drone-delivery-system
https://www.aboutamazon.com/news/transportation/how-amazon-is-building-its-drone-delivery-system

108[14] A. Cardenas, “Cyber-physical systems security knowledge area issue,” The Cyber Se-
curity Body Of Knowledge.[Online]. Available: https://www.cybok.org/media/
downloads/Cyber-Physical_Systems_Security_issue_1.0.pdf, no. 1.0,

[15] L. Zhang, X. Chen, F. Kong, and A. A. Cardenas, “Real-time recovery for cyber-
physical systems using linear approximations,” in 41st IEEE Real-Time Systems
Symposium (RTSS), IEEE, 2020.

[16] H. Choi, W.-C. Lee, Y. Aafer, et al., “Detecting attacks against robotic vehicles: A
control invariant approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 801–816.

[17] T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor redundancy
for automotive anomaly detection,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218557.

[18] R. Wang, F. Kong, H. Sudler, and X. Jiao, “Hdad: Hyperdimensional computing-
based anomaly detection for automotive sensor attacks,” in 27th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), Brief Industry Pa-
per Track, IEEE, 2021.

[19] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, et al., “Limiting the impact of stealthy
attacks on industrial control systems,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 1092–1105.

[20] J. Giraldo, D. Urbina, A. Cardenas, et al., “A survey of physics-based attack detec-
tion in cyber-physical systems,” ACM Computing Surveys (CSUR), vol. 51, no. 4,
pp. 1–36, 2018.

[21] J. Giraldo, E. Sarkar, A. A. Cardenas, M. Maniatakos, and M. Kantarcioglu, “Se-
curity and privacy in cyber-physical systems: A survey of surveys,” IEEE Design &
Test, vol. 34, no. 4, pp. 7–17, 2017.

[22] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry, “At-
tacks against process control systems: Risk assessment, detection, and response,” in
Proceedings of the 6th ACM symposium on information, computer and communica-
tions security, 2011, pp. 355–366.

[23] F. Akowuah and F. Kong, “Physical invariant based attack detection for autonomous
vehicles: Survey, vision, and challenges,” in 2021 Fourth International Conference on
Connected and Autonomous Driving (MetroCAD), IEEE, 2021, pp. 31–40.

[24] F. Akowuah, R. Prasad, C. O. Espinoza, and F. Kong, “Recovery-by-learning: Restor-
ing autonomous cyber-physical systems from sensor attacks,” in 2021 IEEE 27th In-
ternational Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA), IEEE, 2021, pp. 61–66.

[25] F. Fei, Z. Tu, D. Xu, and X. Deng, “Learn-to-recover: Retrofitting uavs with re-
inforcement learning-assisted flight control under cyber-physical attacks,” in 2020
IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020,
pp. 7358–7364.

https://doi.org/10.1109/DAC18072.2020.9218557

109[26] H. Choi, S. Kate, Y. Aafer, X. Zhang, and D. Xu, “Software-based realtime recovery
from sensor attacks on robotic vehicles,” in 23rd International Symposium on Re-
search in Attacks, Intrusions and Defenses (RAID 2020), 2020, pp. 349–364.

[27] R. Ma, S. Basumallik, S. Eftekharnejad, and F. Kong, “Recovery-based model pre-
dictive control for cascade mitigation under cyber-physical attacks,” in 2020 IEEE
Texas Power and Energy Conference (TPEC), IEEE, 2020, pp. 1–6.

[28] R. Ma, S. Basumallik, S. Eftekharnejad, and F. Kong, “A data-driven model pre-
dictive control for alleviating thermal overloads in presence of possible false data,”
IEEE Transactions on Industry Applications, 2021.

[29] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall Upper Saddle
River, NJ, 1998, vol. 104.

[30] M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and I. Lee, “Design and
implementation of attack-resilient cyberphysical systems: With a focus on attack-
resilient state estimators,” IEEE Control Systems Magazine, vol. 37, no. 2, pp. 66–
81, 2017.

[31] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala, “Automatic reacha-
bility analysis for nonlinear hybrid models with c2e2,” in Computer Aided Verifica-
tion: 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part I, Springer, 2016, pp. 531–538.

[32] L. Zhang, Z. Wang, M. Liu, and F. Kong, “Adaptive window-based sensor attack
detection for cyber-physical systems,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, pp. 919–924.

[33] L. Zhang, P. Lu, F. Kong, X. Chen, O. Sokolsky, and I. Lee, “Real-time attack-recovery
for cyber-physical systems using linear-quadratic regulator,” ACM Trans. Embed.
Comput. Syst., vol. 20, no. 5s, Sep. 2021, issn: 1539-9087. doi: 10 .1145/3477010.
[Online]. Available: https://doi.org/10.1145/3477010.

[34] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, isolation,
and reconfiguration methods,” IEEE transactions on control systems technology,
vol. 18, no. 3, pp. 636–653, 2009.

[35] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards survivable cyber-
physical systems,” in The 28th International Conference on Distributed Computing
Systems Workshops (ICDCSW), IEEE, 2008, pp. 495–500.

[36] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estima-
tion in electric power grids,” ACM Transactions on Information and System Security
(TISSEC), vol. 14, no. 1, p. 13, 2011.

[37] R. Ivanov, M. Pajic, and I. Lee, “Attack-resilient sensor fusion for safety-critical
cyber-physical systems,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 15, no. 1, pp. 1–24, 2016.

[38] P. Lu, L. Zhang, B. B. Park, and L. Feng, “Attack-resilient sensor fusion for cooper-
ative adaptive cruise control,” in 21st International Conference on Intelligent Trans-
portation Systems (ITSC), IEEE, 2018, pp. 3955–3960.

https://doi.org/10.1145/3477010
https://doi.org/10.1145/3477010

110[39] A. Chovancová, T. Fico, L. Chovanec, and P. Hubinsk, “Mathematical modelling
and parameter identification of quadrotor (a survey),” Procedia Engineering, vol. 96,
pp. 172–181, 2014.

[40] F. Akowuah and F. Kong, “Real-time adaptive sensor attack detection in autonomous
cyber-physical systems,” in 27th IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), IEEE, 2021.

[41] M. Wolf and D. Serpanos, “Safety and security in cyber-physical systems and internet-
of-things systems,” Proceedings of the IEEE, vol. 106, no. 1, pp. 9–20, 2017.

[42] M. Green and D. J. Limebeer, Linear robust control. Courier Corporation, 2012.
[43] G. Welch, G. Bishop, et al., “An introduction to the kalman filter,” 1995.
[44] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, “False data injection attacks against

state estimation in wireless sensor networks,” in 49th IEEE Conference on Decision
and Control (CDC), IEEE, 2010, pp. 5967–5972.

[45] W. Heemels, J. Sandee, and P. Van Den Bosch, “Analysis of event-driven controllers
for linear systems,” International journal of control, vol. 81, no. 4, pp. 571–590, 2008.

[46] J. Sandee, W. Heemels, and P. Van Den Bosch, “Event-driven control as an oppor-
tunity in the multidisciplinary development of embedded controllers,” in American
Control Conference, IEEE, 2005, pp. 1776–1781.

[47] J.-P. Gauthier and I. A. Kupka, “Observability and observers for nonlinear systems,”
SIAM journal on control and optimization, vol. 32, no. 4, pp. 975–994, 1994.

[48] M. M. Waldrop et al., “No drivers required,” Nature, vol. 518, no. 7537, p. 20, 2015.
[49] T. Sato, J. Shen, N. Wang, Y. Jia, X. Lin, and Q. A. Chen, “Dirty road can attack:

Security of deep learning based automated lane centering under physical-world at-
tack,” in 30th USENIX Security Symposium (USENIX Security 21), 2021, pp. 3309–
3326.

[50] C. Zhou, Q. Yan, Y. Shi, and L. Sun, “DoubleStar: Long-Range attack towards depth
estimation based obstacle avoidance in autonomous systems,” in 31st USENIX Secu-
rity Symposium (USENIX Security 22), Boston, MA: USENIX Association, Aug.
2022, pp. 1885–1902, isbn: 978-1-939133-31-1.

[51] A. H. Rutkin, Spoofers use fake gps signals to knock a yacht off course, MIT Tech-
nology Review, Online; accessed May 2020, 2013.

[52] C. Le Guernic, “Reachability Analysis of Hybrid Systems with Linear Continuous
Dynamics,” Theses, Université Joseph-Fourier - Grenoble I, Oct. 2009. [Online]. Avail-
able: https://tel.archives-ouvertes.fr/tel-00422569.

[53] F. Kong, O. Sokolsky, J. Weimer, and I. Lee, “State consistencies for cyber-physical
system recovery,” in Workshop on Cyber-Physical Systems Security and Resilience
(CPS-SR), 2019.

[54] F. Sabatino, “Quadrotor control: Modeling, nonlinearcontrol design, and simulation,”
M.S. thesis, KTH, Automatic Control, 2015, p. 61.

[55] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques for cyber-
physical systems,” ACM Computing Surveys (CSUR), vol. 46, no. 4, pp. 1–29, 2014.

https://tel.archives-ouvertes.fr/tel-00422569

111[56] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3a: Secure system
simplex architecture for enhanced security of cyber-physical systems,” arXiv preprint
arXiv:1202.5722, 2012.

[57] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. Kumar, “The simplex
reference model: Limiting fault-propagation due to unreliable components in cyber-
physical system architectures,” in 28th IEEE International Real-Time Systems Sym-
posium (RTSS), IEEE, 2007, pp. 400–412.

[58] X. Wang, N. Hovakimyan, and L. Sha, “L1simplex: Fault-tolerant control of cyber-
physical systems,” in 2013 ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), IEEE, 2013, pp. 41–50.

[59] M. S. Branicky, S. M. Phillips, and Wei Zhang, “Stability of networked control sys-
tems: Explicit analysis of delay,” in Proceedings of the 2000 American Control Con-
ference. ACC (IEEE Cat. No.00CH36334), vol. 4, 2000, 2352–2357 vol.4. doi: 10 .
1109/ACC.2000.878601.

[60] H. Gao, X. Meng, and T. Chen, “Stabilization of networked control systems with
a new delay characterization,” IEEE Transactions on Automatic Control, vol. 53,
no. 9, pp. 2142–2148, 2008. doi: 10.1109/TAC.2008.930190.

[61] H. Kwakernaak and R. Sivan, Linear optimal control systems. Wiley-interscience
New York, 1972, vol. 1.

[62] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via
the alternating direction method of multipliers. Now Publishers Inc, 2011.

[63] G. He, Z. Chai, X. Lu, F. Kong, and B. Sheng, “Admm-based decentralized electric
vehicle charging with trip duration limits,” in 2019 IEEE Real-Time Systems Sympo-
sium (RTSS), IEEE, 2019, pp. 107–119.

[64] B. He and X. Yuan, “On the O(1/n) convergence rate of the douglas–rachford al-
ternating direction method,” SIAM Journal on Numerical Analysis, vol. 50, no. 2,
pp. 700–709, 2012. doi: 10 . 1137/110836936. eprint: https : / /doi . org /10 . 1137/
110836936. [Online]. Available: https://doi.org/10.1137/110836936.

[65] X. Chen and S. Sankaranarayanan, “Model-predictive real-time monitoring of lin-
ear systems,” in IEEE Real-Time Systems Symposium (RTSS), IEEE Press, 2017,
pp. 297–306.

[66] K. J. Åström and R. M. Murray, Feedback systems: an introduction for scientists and
engineers. Princeton university press, 2010.

[67] K. Tan and Y. Li, “Performance-based control system design automation via evolu-
tionary computing,” Engineering Applications of Artificial Intelligence, vol. 14, no. 4,
pp. 473–486, 2001.

[68] B. Lu et al., “Linear parameter-varying control of an f-16 aircraft at high angle of
attack,” 2005.

[69] F. Sabatino, Quadrotor control: Modeling, nonlinear control design, and simulation,
2015.

https://doi.org/10.1109/ACC.2000.878601
https://doi.org/10.1109/ACC.2000.878601
https://doi.org/10.1109/TAC.2008.930190
https://doi.org/10.1137/110836936
https://doi.org/10.1137/110836936
https://doi.org/10.1137/110836936
https://doi.org/10.1137/110836936

112[70] J. Giraldo, A. Cardenas, and R. G. Sanfelice, “A moving target defense to detect
stealthy attacks in cyber-physical systems,” in 2019 American Control Conference
(ACC), 2019, pp. 391–396. doi: 10.23919/ACC.2019.8815274.

[71] F. Sabatino, “Quadrotor control: Modeling, nonlinear control design, and simula-
tion,” M.S. thesis, KTH Royal Institute of Technology, 2015.

[72] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for embedded sys-
tems,” in European Control Conference (ECC), 2013, pp. 3071–3076.

[73] K. Sridhar, R. Ivanov, V. Lesi, et al., “A framework for checkpointing and recovery
of hierarchical cyber-physical systems,” arXiv preprint arXiv:2205.08650, 2022.

[74] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and Z. Lin, “{Savior}:
Securing autonomous vehicles with robust physical invariants,” in 29th USENIX Se-
curity Symposium (USENIX Security 20), 2020, pp. 895–912.

[75] M. Fiacchini, T. Alamo, and E. Camacho, “On the computation of convex robust
control invariant sets for nonlinear systems,” Automatica, vol. 46, no. 8, pp. 1334–
1338, 2010, issn: 0005-1098. doi: https://doi.org/10.1016/j.automatica.2010.05.007.

[76] M. Berz, Modern Map Methods in Particle Beam Physics (Advances in Imaging and
Electron Physics). Academic Press, 1999, vol. 108.

[77] K. Makino and M. Berz, “Rigorous integration of flows and ODEs using Taylor mod-
els,” in Proceedings of the 2009 conference on Symbolic numeric computation (SNC’09),
ACM, 2009, pp. 79–84.

[78] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Taylor model flowpipe construc-
tion for non-linear hybrid systems,” in Proc. of RTSS’12, 2012, pp. 183–192.

[79] X. Chen, “Reachability analysis of non-linear hybrid systems using taylor models,”
Ph.D. dissertation, RWTH Aachen University, 2015.

[80] X. Chen and S. Sankaranarayanan, “Decomposed reachability analysis for nonlinear
systems,” in Proc. of RTSS’16, 2016, pp. 13–24.

[81] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-linear
hybrid systems,” in Proc. of CAV’13, ser. LNCS, vol. 8044, 2013, pp. 258–263.

[82] A. J. Sørensen, “Marine cybernetics, towards autonomous marine operations and
systems,” Department of Marine Technology, NTNU, 2018.

[83] J. D. Hedengren, “A nonlinear model library for dynamics and control,” Yeast, vol. 7,
p. 24, 2008.

[84] A. Golabi, A. Erradi, and A. Tantawy, “Towards automated hazard analysis for
cps security with application to cstr system,” Journal of Process Control, vol. 115,
pp. 100–111, 2022.

[85] R. Giorgiani do Nascimento, K. Fricke, and F. Viana, “Quadcopter control optimiza-
tion through machine learning,” in AIAA Scitech 2020 Forum, 2020, p. 1148.

[86] K. Sridhar and S. Sukumar, “Finite-time, event-triggered tracking control of quadro-
tors,” in 5th CEAS Specialist Conference on Guidance, Navigation & Control (Eu-
rGNC 19) Milano, Italy, 2019.

[87] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control. John Wi-
ley & Sons, 2011.

https://doi.org/10.23919/ACC.2019.8815274
https://doi.org/https://doi.org/10.1016/j.automatica.2010.05.007

113[88] M. Liu, L. Zhang, P. Lu, et al., “Fail-safe: Securing cyber-physical systems against
hidden sensor attacks,” in 2022 IEEE Real-Time Systems Symposium (RTSS), 2022,
pp. 240–252. doi: 10.1109/RTSS55097.2022.00029.

[89] L. Zhang, K. Sridhar, M. Liu, et al., “Real-time data-predictive attack-recovery for
complex cyber-physical systems,” in 2023 IEEE 29th Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2023.

[90] R. Rajamani, Vehicle Dynamics and Control (Mechanical Engineering Series). Springer
US, 2011, isbn: 9781461414339. [Online]. Available: https : / /books . google . com/
books?id=cZJFDox4KuUC.

[91] J. M. Snider et al., “Automatic steering methods for autonomous automobile path
tracking,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08, 2009.

https://doi.org/10.1109/RTSS55097.2022.00029
https://books.google.com/books?id=cZJFDox4KuUC
https://books.google.com/books?id=cZJFDox4KuUC

114
VITA

Lin Zhang was born in Liaoning, China. He enrolled at Dalian University of Technology in

2011 and graduated with a Bachelor of Engineering in Computer Science and Technology

in 2015. Throughout his undergraduate studies, Lin earned several accolades in academic

competitions related to electrical design and robotics. In 2015, Lin began his PhD studies

at the University of Chinese Academy of Sciences, concentrating on vulnerability analysis

for Internet of Things (IoT) infrastructures.

In 2019, Lin Zhang continued his PhD journey at Syracuse University under the guidance

of Prof. Fanxin Kong, with a research focus on cyber-physical systems (CPS) security. He

conducted extensive research in this domain, leading to the publication of numerous re-

search papers on attack detection and recovery for CPS in prestigious venues, including

RTSS, RTAS, EMSOFT, and DAC.

During his PhD, Lin received the Syracuse University fellowship and distinguished himself

in various competitions. Some of his notable achievements include winning the Best Scien-

tific Research Award at the ACM SIGBED Student Research Competition (SRC) in 2022,

becoming the recipient of the Pramod K. and Anju Varshney Endowed Graduate Scholar-

ship for the 2022-2023 academic year, securing first place in the Oral Presentation Com-

petition at the 2022 ECS Research Day of Syracuse University, and claiming the Overall

College Poster Prize at the 2020 ECS Research Day.

	Real-time Adaptive Detection and Recovery against Sensor Attacks in Cyber-physical Systems
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Real-time Adaptive Detection
	Real-time Attack Recovery
	Organization of Dissertation
	Previous Publications

	Related Work and Preliminaries
	CPS Security and Current Research Focus
	Sensor Attack Detection
	Sensor Attack Recovery
	Overview of Cyber-physical Systems
	Sensor Attacks in CPSs

	Real-time Adaptive Detection against Sensor Attacks
	Overview of the Attack-Detection Framework
	Detection Deadline Estimation
	Adaptive Window Based Attack Detection
	Data Logging Protocol
	Evaluation
	Conclusion

	Real-time Sensor-attack Recovery in Linear CPSs
	Design Overview of Recovery System
	LQR based Recovery Control Calculator
	Supporting Components for Recovery Control
	Evaluation
	Conclusion

	Real-time Sensor-attack Recovery in Complex CPSs
	System Overview of Recovery System
	Adaptive Recovery Sequence Generator
	Supportive Components
	Evaluation
	Conclusion

	Summary
	Conclusions
	Future Work

	APPENDICES
	Simulation and Security Toolbox for Cyber-Physical Systems
	Security Toolbox Design
	Toolbox Demonstration

	Robotic vehicle Testbed
	Vehicle Architecture
	Case Study

	BIBLIOGRAPHY
	VITA

