
Syracuse University Syracuse University 

SURFACE at Syracuse University SURFACE at Syracuse University 

Dissertations - ALL SURFACE at Syracuse University 

5-14-2023 

On homogeneous closed gradient Laplacian solitons and the On homogeneous closed gradient Laplacian solitons and the 

modified conformal Hessian modified conformal Hessian 

Nicholas Ng 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/etd 

Recommended Citation Recommended Citation 
Ng, Nicholas, "On homogeneous closed gradient Laplacian solitons and the modified conformal Hessian" 
(2023). Dissertations - ALL. 1682. 
https://surface.syr.edu/etd/1682 

This Dissertation is brought to you for free and open access by the SURFACE at Syracuse University at SURFACE at 
Syracuse University. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of 
SURFACE at Syracuse University. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1682?utm_source=surface.syr.edu%2Fetd%2F1682&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Abstract

Laplacian solitons are self-similar solutions to a geometric flow of G2-structures ϕ ∈ Ω3(M)

on smooth 7-manifolds M called the Laplacian flow. Recently, Laplacian solitons on homo-

geneous spaces have received increased interest and many new examples have been found by

Fernandez-Raffero, Lauret-Nicolini, and others (see, e.g., [FR20, Lau17a, Lau17b, LN20, Nic18],

and [Nic22]). Though there has been recent work on gradient Laplacian solitons in the nonho-

mogeneous setting due to Haskins and his collaborators (see, e.g., [HN21, HKP22]), very little is

known about gradient solitons of a closed Laplacian flow on homogeneous spaces.

In this thesis, we investigate homogeneous closed gradient Laplacian solitons. We prove a

Structure Theorem for homogeneous closed gradient Laplacian solitons. We then use the Structure

Theorem to “eliminate” closed gradient Laplacian solitons. That is, we use the Structure Theorem

to show that some closed Laplacian solitons or closed G2-structures cannot be made gradient. We

also use the Structure Theorem to obtain the structure of almost abelian solvmanifolds admitting

closed gradient Laplacian solitons.

We then study weighted sectional curvature of Riemannian manifolds with density. In particu-

lar, we study how weighted sectional curvature bounds give us control over the modified conformal

hessian. We use this to prove an inequality resembling the law of cosines, which we call a “warped

law of cosines”.
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1 | Introduction

A major theme in mathematics is classifying mathematical objects. That is, given a mathematical

object, it is of interest to know how to classify them from the properties they possess. Results of

this type are called classification theorems. An example of a classification theorem from plane

geometry is that two circles are congruent if and only if they have the same radius. Another

example is the uniformization theorem for compact surfaces, which roughly states that depending

on the sign of the Gaussian curvature K, that every compact surface is either “bowl-shaped”,

“saddle-like”, or “flat”. This is, roughly speaking, a classification of compact surfaces. Yet another

classification is that every compact orientable surface, i.e., every surface that is connected and

“closes up” (does not extend infinitely in any direction), is diffeomorphic to a genus g surface,

where g can be thought of as the number of “holes” in the surface (e.g., the outside of a donut is

a genus 1 surface). In higher dimensions, classification of objects analogous to surfaces require

more sophisticated tools, e.g., more general notions of curvature, to obtain.

Riemannian geometry is the study of Riemannian manifolds M, which we can think of as

“higher dimensional smooth surfaces”, with a “smooth” Riemannian metric g, a “ruler” for which

at each point of the manifold allows us to measure angles, lengths, area, and volume. That the

metric is “smooth” means that small changes in the points on which we take these measurements

affects small changes in those measurements. Any Riemannian metric yields a generalized no-

tion of the “derivative” of vector fields on a manifold called the Levi-Civita connection ∇. This

in turn gives us a notion of curvature of Riemannian manifolds, which plays an important role in

Riemannian geometry. A well known classification is that Riemannian manifolds with constant
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sectional curvature, a generalization of constant Gaussian curvature, are either sphere-like, flat, or

hyperbolic (see Fact 1.2.5). Another important classification theorem is Thurston’s geometrization

conjecture, which states that a closed (i.e., compact without boundary) 3-manifold can be decom-

posed into two parts, each of which can be classified as one of eight possible geometric structures.

This result is often thought of as the 3-manifold analog of the uniformization theorem for surfaces

(2-manifolds). Classification theorems in higher dimensions are much harder to obtain. One way

to approach them is by studying geometric and topological consequences of Riemannian mani-

folds admitting certain structures. A prominently studied structure is the metric g as it determines

the curvature of a manifold. By studying how Riemannian metrics g(t) evolve over time t, one

can glean information about the manifold it is defined on and how it evolves. An equation that

describes how the metric evolves is an instance of the more general concept of geometric flows.

A geometric flow is a partial differential equation describing how a geometric structure (e.g.,

a metric γ = g) evolves in time. One line of inquiry is to study which manifolds equipped with

a geometric structure behave in the manner described by a given flow. A manifold along with a

geometric structure that behaves in the manner described by a given flow (i.e., satisfies a geometric

flow) is called a solution to the flow. A self-similar solution, i.e., a solution that changes in time

only by diffeomorphism or scaling, is called a geometric soliton (or soliton geometric structure).

Solitons are important in the study of geometric flows as they model singularities of the flow; we

can think of solitons as “fixed points” or equilibrium solutions to a differential equation. Moreover,

solitons can often tell us how solutions close to them behave in time. An example of a well-studied

geometric flow is the Ricci flow. In this setting the geometric structure is the Riemannian metric g

and the flow describes that the metric evolves in a manner proportional to the (Ricci) curvature of

the manifold. Self-similar solutions to the Ricci flow are called Ricci solitons. A famous example

of how flows can help in classifying manifolds is Perelman’s use of the Ricci flow in his proof of

Thurston’s geometrization conjecture (see [MT07]).

In addition to helping with classifying manifolds, curvature can often give us information about

their overall topology. A fundamental example of this is the Gauss-Bonnet theorem, which states
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that a compact Riemannian 2-manifold M must satisfy the equation

∫
M

KdA = 2πχ(M),

where χ(M) is the Euler characteristic. Note that the local geometric property of (Gaussian) cur-

vature K can give us information about the global topological invariant of the manifold χ(M) via

the preceding equation. Thus results like these are often referred to as “local-to-global” results.

The Bonnet-Myers theorem is another example of a “local-to-global” theorem (see Fact 1.2.6). In

2015, Wylie introduced the notion of weighted sectional curvature, a generalization of sectional

curvature, for manifolds with density. Wylie and his collaborators have since generalized many

classical “local-to-global” results with sectional curvature hypotheses to the weighted sectional

curvature setting.

This thesis consists of two parts. The first part concerns the solitons of the natural geometric

flow of G2-structures ϕ called the Laplacian flow, which was originally introduced by Bryant and

his collaborators in 1992 to aid in obtaining metrics with holonomy in G2. More precisely, we study

the gradient solitons of this flow on homogeneous 7-manifolds M and obtain a structure theorem

for them, i.e., a classification of the possible structures of M admitting such gradient solitons. The

second part of this thesis concerns manifolds with density. More specifically, we study how the

local geometric property of weighted sectional curvature affects the hessian of modified distance

functions on manifolds with density.

1.1 Summary of results

The first two chapters cover background needed for the results of this thesis. The rest of Chapter

1 is a brief (informal) review of basic Riemannian geometry. Chapter 2 covers some foundational

material on G2-structures and the Laplacian flow.

We prove the main result of this thesis, the Structure Theorem for homogeneous closed gradi-

ent Laplacian solitons, in Chapter 3. We define the notion of an “orthogonally nice basis”, i.e., we
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say that a basis (ei)i for a Lie algebra g is orthogonally nice if [ei,e j] = cek and ei,e j ⊥ ek. The

motivation for this definition is due to it being a sufficient condition for diagonally trivial deriva-

tives, i.e., ∇eiei = 0 for all i, provided (ei)i is orthonormal. We also obtain a “Key Lemma”, that

gϕ(Ricϕ(∇ f ), ·) =−2−1 divτ2
ϕ(·) on homogeneous spaces, which has been very useful. We obtain

a few corollaries of the Structure Theorem using these observations.

We then use the Structure Theorem to “eliminate” gradient Laplacian solitons. More specifi-

cally, in Chapter 4, we show that the Laplacian solitons on nilpotent Lie groups found by Nicolini

in [Nic18] are not gradient up to homothetic G2-structures except for N1, where f must be a Gaus-

sian. We also show that the closed G2-structure ϕ12 on N12 constructed in [FFM16] cannot be a

gradient soliton. In eliminating gradient solitons, we observe a distinguishing feature of Laplacian

solitons which is that the corresponding G-invariant symmetric 2-tensor q = q(τ2
ϕ) is not always

divergence-free whereas they are always divergence-free for Ricci and Bach solitons. A related

question of whether product metrics N ×Rk admit closed G2-structures is studied in the last sec-

tion of Chapter 4. The takeaway from this section is that to find closed G2-structures on product

metrics N×Rk, one should consider dimN ≥ 4. We further use the Structure Theorem to show that

closed non-torsion-free gradient Laplacian solitons on almost abelian solvmanifolds are isometric

to products N ×Rk with f constant on N in Chapter 5. We generalize matrix formulas of Arroyo

and Lauret (see [Arr13] and [Lau17a]) from the almost abelian case to the non-almost abelian case

in the process of obtaining these results.

In Chapter 6, we study weighted sectional curvature of Riemannian manifolds (M,g) with

density ϕ introduced by Wylie in [Wyl15]. Let g̃ = e−2ϕg be a conformal metric and Hessg̃ denote

the Hessian in g̃. Kennard-Wylie-Yeroshkin in [KWY19] studied a lower ordered perturbation of

Hessg̃ u called the modified conformal hessian of smooth (often distance) function u, which we

denote by MCHessu. We show that assumptions of nonnegative weighted sectional curvature and

bounded density ϕ yields upper bounds on MCHessu, where u is a modified distance function.

We then use these bounds to obtain inequalities resembling the law of cosines, which we call a

“warped law of cosines”.
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1.2 Basic Riemannian geometry

This section is a brief review of some basic Riemannian geometry needed for this thesis. We

discuss Riemannian manifolds, the Levi-Civita connection, notions of curvature, and homogeneous

spaces. We also review basic properties and identities involving the Hodge star operator which is

needed for Chapter 5. For detailed definitions, explanations, and proofs of these concepts, we refer

the reader to [Lee18, Pet16], and [dC92].

1.2.1 Riemannian manifolds and curvature

Recall that a smooth manifold, roughly speaking, is a space that “locally” looks like Euclidean

space Rn. A Riemannian manifold, denoted (M,g), is a smooth manifold M with a smoothly

varying inner product gp = ⟨·, ·⟩p : TpM×TpM → R called a Riemannian metric; TpM denotes the

tangent space to M at p. As noted in the introduction, a Riemannian metric g can be thought of as

a “ruler” that allows us to measure geometric quantities at each point p ∈ M. In particular, g allows

us to measure lengths of vectors Xp ∈ TpM and the angles between them at each point p ∈ M. Since

g varies smoothly from point to point, the measurements of these quantities also varies smoothly.

A vector field X on a manifold M is an assignment of a vector to each point p ∈ M and a

smooth vector field is one for which small changes in the points of M affects small changes in the

assignment of vectors. In order to compute changes in vector fields on a Riemannian manifold,

one generalizes the notion of the directional derivative of functions between Euclidean spaces to a

geometric object called an affine connection, denoted ∇.

Definition 1.2.1. Let X(M) is the space of all smooth vector fields on M. An affine connection (or

covariant derivative) is a map ∇ : X(M)×X(M)→ X(M) given by (X ,Y ) 7→ ∇XY such that

1. For any f1, f2 ∈C∞(M) and X1,X2 ∈ X(M), ∇ f1X1+ f2X2Y = f1∇X1Y + f2∇X2Y.

2. For any a1,a2 ∈ R and Y1,Y2 ∈ X(M), ∇X(a1Y1 +a2Y2) = a1∇XY1 +a2∇XY2.

3. (Leibniz rule) For any f ∈C∞(M), ∇X( fY ) = f ∇XY +X( f )Y .
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We can think of ∇XY as the derivative of vector field Y in the direction X , or equivalently, the

directional derivative of Y along X . An affine connection ∇ on a manifold allows us to study

generalized notions of “straight lines” called geodesics (i.e., smooth curves on M that are locally

length-minimizing with zero acceleration) and parallelism, e.g., parallel vector fields and parallel

transports.

Given a Riemannian metric g on M, there is a “nice” choice of connection called the Levi-Civita connection

chosen to satisfy “nice” properties.

Theorem 1.2.2 (Fundamental theorem of Riemannian geometry). Let (M,g) be a Riemannian

manifold. The Levi-Civita connection ∇ = ∇g is the unique affine connection that is

1. metric (i.e., compatible with the metric g): DX g(Y,Z) = g(∇XY,Z) + g(Y,∇X Z) for any

vectors X ,Y,Z ∈ T M; and

2. torsion-free (or symmetric): [X ,Y ] = ∇XY −∇Y X, where [X ,Y ] is the Lie bracket of two

vectors X ,Y ∈ T M.

The Levi-Civita connection ∇ (or covariant derivative) allows us to define curvature of Riemannian

manifolds. Moreover, it is desirable that the notion of curvature is a local isometry invariant, i.e.,

smooth maps between Riemannian manifolds that preserves distances also preserves curvature. As

will be seen below, since curvature is defined in terms of the Levi-Civita connection which is a

local isometry invariant, it follows that curvature is also a local isometry invariant. From this point

forward, ∇ denotes the Levi-Civita connection corresponding to the metric g.

We first recall that the curvature κ for a smooth curve γ on a plane corresponds to the size of

an approximating osculating or “kissing” or “touching (at one point p ∈ γ)” circle to the curve via

κp =
1
rp
.

The main idea is that the bigger the curvature, the smaller the osculating circle (the smaller the

radius rp) and the smaller the curvature, the bigger the osculating circle (the bigger the radius rp).
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Another way to think about curvature is that it is a quantity computed at a point of the curve γ

that tells us how far away the curve is from being flat (a straight line) at that point. Equivalently,

curvature is a measure that tells us how non-flat a curve is at that point. It turns out that these

ideas carry over to curvature of Riemannian manifolds. Roughly speaking, we have that the larger

the curvature, the smaller the manifold and the smaller the curvature, the larger the manifold.

Furthermore, the curvature of a Riemannian manifold at a point tells us how far away it is from

being Euclidean space Rn, a flat space. Equivalently, curvature tells us how non-flat a manifold is.

We now introduce the notion of curvature for Riemannian manifolds.

Definition 1.2.3. Let (M,g) be a Riemannian manifold. The map R : X(M)×X(M)×X(M) →

X(M) defined by

R(X ,Y )Z = ∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z

is called the Riemann curvature endomorphism or (1,3)-curvature tensor. [Note: R is a (1,3)-

tensor field as it is multilinear over C∞(M).]

The (1,3)-curvature tensor R is the building block that gives us the following notions of curva-

ture of Riemannian manifolds:

• The (0,4)-Riemann curvature tensor Rm is given by

Rm(X ,Y,Z,W ) = g(R(X ,Y )Z,W ).

• Sectional curvature sec of a pair of vectors (U,V ) is

sec(U,V ) =
g(R(V,U)U,V )

g(U,U)g(V,V )−g(U,V )2 .

Note that sec depends only on the plane Π = span{U,V}. Sectional curvature is often re-

ferred to as just curvature as it tells us how much a surface “curves”. As noted in the intro-

duction, sectional curvature is a generalization of Gaussian curvature of surfaces (i.e., they



8

are equal when n = 2). Recall that Gaussian curvature describes how a normal vector N to a

surface changes or “turns” as we move in different directions on the surface. The larger the

Gaussian curvature, the faster N turns and the smaller the Gaussian curvature, the slower N

turns. In higher dimensions, the larger sec is, the more curved (less flat) the space is and the

smaller sec is, the less curved (more flat) the space is.

• Ricci curvature Ric is a symmetric bilinear form given by

Ric(U,V ) = tr(X 7→ R(X ,U)V ) =
n

∑
i=1

g(R(U,Ei)Ei,V ),

where (Ei)
n
i=1 is an orthonormal basis for TpM. It can also be defined as a symmetric (1,1)-

tensor Ric(U) = ∑i R(U,Ei)Ei. The Ricci curvature is related to the sectional curvature by

Ric(U,U) = ∑
n
i=2 sec(U,Ei), where {U,E2, ...,En} is the completion of U to an orthonormal

basis for TpM. We can think of Ricci curvature as the average of sectional curvatures.

Remark 1.2.4. Einstein metrics are metrics g such that Ric = λg for some constant λ . These

metrics play an important role in Riemannian geometry.

• Scalar curvature scal is the function scal : M → R given by the trace of the Ricci curvature

scal = trRic =
n

∑
j=1

g(Ric(E j),E j),

where (E j)
n
j=1 is an orthonormal basis for TpM. We can think of scalar curvature as the

average of Ricci curvatures.

We will be interested in deducing geometric and topological information and consequences

from sectional, Ricci, or scalar curvature bounds. For example, we have the following classical

results.

Fact 1.2.5 (Classification theorem for constant sec manifolds). If M is a complete Riemannian

manifold with constant sectional curvature, then M is a quotient of either a Euclidean space Rn, a

round sphere Sn, or hypoerbolic space Hn.
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bound on secg is the strongest assumption

bound on Ricg is a weaker assumption

bound on scalg is the weakest assumption

relax assumption

relax assumption

Figure 1.1: Curvature bound assumptions.

Fact 1.2.6 (Bonnet-Myers theorem). If M is a complete Riemannian manifold and all Ric are

bounded below by a positive constant, then M is compact and the fundamental group of M is finite.

Other important consequences coming from hypotheses on curvature are estimates on geometric

quantities, e.g., estimates on the diameter of a manifold, or comparisons of geometric quantities,

e.g., comparisons between volumes of manifolds. The study of such results is called comparison

geometry. Lee’s and Petersen’s texts [Lee18] and [Pet16] contain many of these classical compar-

ison results in Riemannian geometry. For more details on curvature tensors, we refer the reader to

[[Lee18], Chapter 7] and [[Pet16], Chapter 3]. For a review of tensors and tensor fields, we refer

the reader to [[Lee13], Chapter 12]. We close this section with the following diagram on curvature

bound assumptions.

1.2.2 Homogeneous spaces

In this subsection we review some definitions and properties of smooth G-spaces, homogeneous G-

spaces, and homogeneoeus manifolds. We include definitions and relevant facts needed to discuss

these spaces for completeness.

First, recall that an isometry is a diffeomorphism f : (M,g)→ (M̃, g̃) such that

f ∗g̃ = g.
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In other words, f is an isometry if it is a smooth bijection and each d fp : TpM → Tϕ(p)M is a linear

isometry, i.e.,

gp(U,V ) = g̃ f (p)(d fp(U),d fp(V )), ∀ U,V ∈ TpM.

It is easy to see that isometries are distance-preserving and angle-preserving maps. The space

of all isometries of M, denoted Iso(M,g) := {ϕ : M → M | ϕ is an isometry}, is a group under

composition called the isometry group of M.

A left action (or G-action) of a Lie group (G,◦) on M, denoted G↷M, is a map θ : G×M →M

defined by (g, p) 7→ g · p =: θg(p) = θ(g, p) such that

(a) g1 · (g2 · p) = (g1 ◦g2) · p; and

(b) e · p = p ∀ g1,g2 ∈ G, p ∈ M; e ∈ G is the identity and θg : M → M.

It is said to be continuous or smooth if the defining map θ is continuous or smooth.

We now define G-spaces and list basic properties regarding G-actions and G-spaces.

Definition 1.2.7 ((topological) G-space). A manifold M with a (continuous) G-action, denoted

(G,M,θ), is called a (topological) G-space. If M is smooth and the action is smooth, we call M a

smooth G-space.

1. For all g ∈ G, the map θg : M → M is a homeomorphism with inverse θ−1
g : M → M. In

particular, if the action is smooth, then θg is a diffeomorphism on M.

2. The orbit (space) of p ∈ M under the G-action is G · p := {g · p | g ∈ G} ≤ M. The quotient

M/G is the set of all orbits

M/G = {G · p | p ∈ M}= {[p] | p ∈ M}.

Note, M/G is the set of right cosets of G; these cosets viewed as elements of the quotient

M/G are equivalence classes [p] determined by equivalences p ∼ q if and only if there exists

a g ∈ G such that g · p = q. Also note that M/G is not necessarily a group as G may not be a

subset or subgroup of M. And even if it is, G is not assumed to be normal.
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3. The isotropy (stabilizer) subgroup of p ∈ M is Gp := {g ∈ G | g · p = p} ≤ G.

4. The action of G ↷ M is free if Gp = {e} ∀ p ∈ M.

5. A continuous action G ↷ M is said to be proper if G×M → M ×M defined by (g, p) 7→

(g · p, p) is a proper map, i.e., it is a map between topological spaces such that the preimage

of any compact subset in the codomain is compact in the domain. Below are two equivalent

characterizations of continuous proper actions.

(a) If (pi)i ⊂ M, (gi)i ⊂ G such that (pi)i and (gi · pi)i converge in M, then a subsequence

of (gi)i converges in G.

(b) For any compact K ⊂ M, the set GK = {g ∈ G | (g ·K)∩K ̸= /0} is compact.

6. The action G ↷ M is said to be transitive if for any p,q ∈ M, there exists a g ∈ G such that

g · p = q.

7. A map F : M → N between manifolds M and N is said to be equivariant if F(g · p) = g ·F(p)

for all g ∈ G and for all p ∈ M, i.e., if the following diagram commutes:

M N

M N

F

θg=g· ψg=g·

F

.

Note both M and N are G-spaces.

Definition 1.2.8 (Homogeneous G-space). A Homogeneous G-space (or Homogeneous space) is

a smooth manifold M endowed with a smooth transtive action by a Lie group.

Fact 1.2.9. By the Myers-Steenrod theorem, Iso(M,g) is a Lie group and acts smoothly on M. The

action Iso(M,g)×M → M is given by (ϕ, p) 7→ ϕ(p).

Definition 1.2.10 (Homogeneous manifold). We say that (M,g) is a homogeneous Riemannian

manifold if Iso(M,g) acts transitively on M, i.e., ∀ p,q ∈ M, there exists an isometry ϕ ∈ Iso(M,g)

s.t. ϕ(p) = q.
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The simplest examples of homogeneous spaces are Lie groups with left-invariant metrics. Re-

call that for a finite dimensional R-vector space V , GL(V ) is the Lie group of all invertible linear

maps from V to itself. For G ≤ GL(V ), an inner product ⟨·, ·⟩ : V ×V → R is G-invariant if

⟨gx,gy⟩ = ⟨x,y⟩ for all x,y ∈ V and for all g ∈ G. The following lemma gives a necessary and

sufficient condition for the existence of G-invariant inner products on V .

Lemma 1.2.11 ([Lee18], Lemma 3.13). Suppose V is a finite-dimensional R-vector space and

G ≤ GL(V ). Then there exists a G-invariant inner product on V if and only if G has compact

closure in GL(V ).

We now discuss what G-invariance means for a Riemannian metric g on M. We say that a metric

g is G-invariant if the inner product gp = ⟨·, ·⟩p : TpM×TpM →R at each p ∈ M is invariant under

the isotropy representation (at p) Θp : Gp → GL(TpM) defined by Θp(ϕ) = dϕp. That is,

gp(U,V ) = gϕ(p)(dϕp(U),dϕp(V )) = gp(dϕp(U),dϕp(V )), ∀U,V ∈ TpM; ∀ ϕ ∈ Gp.

Note ϕ(p) = p as ϕ ∈ Gp. Lemma 1.2.11 and the definition of G-invariant metrics gives the

following necessary and sufficient condition for G-invariant Riemannian metrics.

Theorem 1.2.12 ([Lee18], Theorem 3.17). Suppose G is a Lie group and M is a homogeneous G-

space. Fix p∈M and let Θp : Gp →GL(TpM) be the isotropy representation at p. Then there exists

a G-invariant Riemannian metric on M if and only if Θp(Gp) has compact closure in GL(TpM).

Corollary 1.2.13. If a Lie group G acts smoothly and transitively on a smooth manifold M with

compact isotropy subgroups Gp, then there exists a G-invariant Riemannian metric on M.

Remark 1.2.14. If G is a Lie group and M a homogeneous G-space that admits at least one G-

invariant metric, then for each p ∈ M, the map g 7→ gp gives a bijection between G-invariant

metrics on M and Θp(Gp)-invariant inner products on TpM (see [[Lee18], Exercise 3.19]).

The next theorem is an important characterization of homogeneous spaces. It is the main way

we will view homogeneous spaces throughout this thesis.
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Theorem 1.2.15. Let G be a Lie group. Let M be a homogeneous G-space and fix a p ∈ M. Then

isotropy group Gp is a closed subgroup of G and the map F : G/Gp → M defined by Gp ·g 7→ g · p

is an equivariant diffeomorphism. Thus we have the identification M ≡ G/Gp.

The takeaway for this subsection is that homogeneous Riemannian manifolds M are geomet-

rically the same at each point p ∈ M. In particular, the curvatures are the same at each point.

Prototypical examples of homogeneous manifolds are the constant sectional curvature spaces Rn,

Sn, and Hn. We will use that the scalar curvature scalg is constant on homogeneous spaces fre-

quently throughout this thesis.

1.2.3 Geometric flows

A geometric q-flow of a metric g is a partial differential equation given by


∂tg(t) = q

g(0) = g,

where q is some 2-tensor involving the curvature of the manifold and g is the initial metric at time

t = 0. This system describes that the metric evolves in accordance with the curvature and possibly

other tensors in q. By studying how metrics evolve in time under a given flow, one hopes to gain

insight on how the manifold and its geometric information obtained from metric, e.g., curvature,

evolves under the flow.

Recall that an important part of studying differential equations involves finding its fixed point

(or equilibrium) solutions and classifying them. In the context of a geometric flow, this amounts

to studying its solitons (or self-similar solutions), i.e., solutions that change in time only by dif-

feomorphism or scaling. In mathematical terms, the solitons of a q-flow, called q-solitons, are

metrics g such that g(t) = c(t) f (t)∗g where c(t) ∈R∗ and f (t) ∈ Diff(M). It is well known that an
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equivalent condition for metric g being a soliton is that it satisfies the q-soliton equation

1
2
LX g = cg+

1
2

q.

More generally, consider the geometric flow of geometric structures γ ,


∂tγ(t) = q(γ(t))

γ(0) = γ

,

where γ(t) is a one-parameter family of tensor fields and q(γ) is a tensor field of the same type

typically involving the curvature, a Laplacian, or gradient field of a geometric functional. The

solitons of this flow, called soliton geometric structures, are geometric structures γ such that the

solutions γ(t) = c(t) f (t)∗γ for c(t) ∈R∗ and f (t) ∈ Diff(M). This is equivalent to γ satisfying the

soliton equation

q(γ) = cγ +LX γ.

We refer to the triple (γ,X ,c) as the soliton (geometric structure) satisfying the soliton equation.

The conventions may vary, but depending on the sign of c (or −c), we say that the soliton is steady,

shrinking, or expanding if c = 0, c < 0, or c > 0, respectively. Furthermore, we say that a soliton

is gradient if X is a gradient field.

As stated in the introduction, solitons can be thought of as fixed points (or equilibrium) solu-

tions to the flow. They model singularities of the flow and can often tell us how solutions close

to them behave under the flow. Moreover, given a geometric flow, it is often desirable to study

existence and uniqueness of solutions, as well as convergence of solutions to the given flow.

In this thesis, we study gradient solitons of a geometric flow of 3-forms called the Laplacian

flow introduced Chapter 2. The main idea in our approach is to use results known for q-flows to

study the solitons of the corresponding flow of metric g obtained from the flow of 3-forms.
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2 | Background

2.1 G2-geometry

2.1.1 The Hodge star operator

Let V be an n-dimensional vector space over R. Recall that an inner product on V is a map

⟨·, ·⟩ : V ×V → R such that for any u,v,w ∈V and a ∈ R, we have

1. ⟨u,v⟩= ⟨v,u⟩

2. ⟨au,v⟩= a⟨u,v⟩ and ⟨u+ v,w⟩= ⟨u,w⟩+ ⟨v,w⟩

3. ⟨u,u⟩ ≥ 0 and is 0 if and only if u = 0.

Let f : V →V ∗ be defined by u 7→ ⟨u, ·⟩ for any u ∈V . The natural (or induced) inner product on

V ∗ with respect to the inner product on V is

⟨u∗,v∗⟩=
〈

f−1(u∗), f−1(v∗)
〉
.

Then the space of alternating k-tensors on V , denoted by Λk(V ), has the natural inner product

given by

⟨u∗1 ∧·· ·∧u∗k ,v
∗
1 ∧·· ·∧ v∗k⟩= det

(〈
u∗i ,v

∗
j
〉)

,

where ui’s and v j’s are 1-forms.
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Let (ei)
n
i=1 be an oriented orthonormal basis for (V,⟨·, ·⟩) such that (ei)n

i=1 is the dual basis for

V ∗. Then the basis for Λk(V ∗) is {ei1 ∧·· ·∧eik | i1 < · · ·< ik} and is of dimension
(n

k

)
. The Hodge

star operator ∗ : Λk(V ∗)→ Λn−k(V ∗) is given by

ei1 ∧·· ·∧ eik 7→ e j1 ∧·· ·∧ e jn−k

such that ei1, ...,eik ,e j1 , ...,e jn−k is an oriented basis for V . We list some properties of ∗:

1. Let (ui)
n
i=1 be a basis for V . Then

∗1 = e1 ∧·· ·∧ en =
√

det
(〈

ui,u j
〉)

u1 ∧·· ·∧un

and

∗(e1 ∧·· ·∧ en) = 1.

2. ∗e j = (−1) j−1e1∧·· ·∧ ê j ∧·· ·∧en where ê j denotes that the e j factor in the wedge product

is left out.

3. ∗∗ : Λk(V ∗)→ Λk(V ∗) is ∗∗= (−1)k(n−k).

4. For n = 7, we have ei1 ∧ ·· · ∧ eik ∧ e j1 ∧ ·· · ∧ e j7−k = ±e1 ∧ ·· · ∧ e7 and ∗2 = ∗∗ = 1, the

identity map on k-forms.

5. For any u,v ∈ Λk(V ∗),

⟨u,v⟩= ∗(u∧∗v) = ∗(v∧∗u).

Let (M,g) be a an oriented Riemannian n-manifold and Ωk(M) be the space of all smooth

(or differential) k-forms. Recall that Ωk(M) is the smooth section of the bundle Λk(T ∗M), i.e., any

ω ∈Ωk(M) is a smooth map from M →Λk(T ∗M) such that ωp =ω(p)∈Λk(T ∗M) is an alternating

k-tensor for any point p ∈ M. One can define the Hodge star operator on smooth k-forms.
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Definition 2.1.1. The Hodge star operator on smooth k-forms ∗ : Ωk(M)→ Ωn−k(M) maps ω ∈

Ωk(M) to ∗ω ∈ Ωn−k(M) such that for any α ∈ Ωk(M), we have

α ∧∗ω = ⟨α,ω⟩g volg,

where volg is the volume form. Note that the Hodge star operator is determined by the metric and

orientation on M.

Let (ei)
n
i=1 be a local basis of T M. We have the following properties of the Hodge star operator

on k-forms that follow from its definition and preceding properties for alternating k-forms:

1. ∗1 = volg =
√

detge1 ∧·· ·∧ en

2. ∗volg = 1

3. α ∧∗β = β ∧∗α

4. For any α ∈ Ωk(M), ∗∗α = (−1)k(n−k)ω and ∗∗α = α when n = 7.

5. ⟨∗α,∗β ⟩= ⟨α,β ⟩ for any α,β ∈ Ωk(M), i.e., ∗ is a linear isometry.

Let d : Ωk−1(M)→ Ωk(M) be the differential (exterior derivative) of k-forms. The codifferen-

tial (or coderivative) is a map d∗ : Ωk(M)→ Ωk−1(M) defined by

d∗
α = (−1)n(k+1)+1 ∗d ∗α, α ∈ Ω

k(M).

The codifferential is sometimes denoted δ . When n = 7, we get d∗α = (−1)k ∗d ∗α .

Remark 2.1.2. For M closed (i.e., compact without boundary), one can define an L2 inner product

on Ωk(M) by (α,β ) =
∫

M α ∧∗β . It follows from Stoke’s Theorem that (α,dβ ) = (d∗α,β ) for

α ∈ Ωk(M) and β ∈ Ωk−1(M). Hence the codifferential d∗ is often referred to as the formal adjoint

of d.
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Definition 2.1.3. The Hodge-Laplacian operator on k-forms is the map ∆ : Ωk(M)→ Ωk(M) de-

fined by

∆ = dd∗+d∗d.

A useful property is that Hodge star operator commutes with the Hodge-Laplacian, i.e.,

∗∆ = ∆∗ .

This follows directly from definitions. When k = 0, ∆ = d∗d is the Laplace-Beltrami operator.

Proposition 2.1.4. For closed M, we have:

(i) (∆α,β ) = (α,∆β ), i.e., ∆ is symmetric with respect to the L2 inner product;

(ii) (∆α,α) = ∥d∗α∥2 +∥dα∥2 ≥ 0;

(iii) ∆α = 0 if and only if dα = 0 and d∗α = 0.

Proof. Item (i) follows from Remark 2.1.2, i.e., d∗ being the formal adjoint of d with respect to

the L2 inner product:

(∆α,β ) = ((dd∗+d∗d)α,β ) = (dd∗
α,β )+(d∗dα,β )

= (d∗
α,d∗

β )+(dα,dβ )

= (α,dd∗
β )+(α,d∗dβ ) = (α,(dd∗+d∗d)β ) = (α,∆β ).

Item (ii) follows immediately from substituting β =α in the above string to get (∆α,α)= (d∗α,d∗α)+

(dα,dα) = ∥d∗α∥2+∥dα∥2 ≥ 0. The forwards implication of (iii) follows from (ii) and the back-

wards implication follows from the definition of ∆α .

We say that a k-form α is harmonic if ∆α = 0. One can further study the space of harmonic k-

forms, H k(M), on closed manifolds and the Hodge Decomposition Theorem, which enables one

to compute cohomology groups with real coefficients and via Poincaré duality, compute homology
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groups and Betti numbers of closed manifolds. We refer the interested reader to [[Pet16], Chapter

9].

2.1.2 The Lie group G2

We first give some definitions needed to discuss the group G2.

Definition 2.1.5. A normed division algebra is an algebra A ∼= Rn over R with multiplicative

identity 1 ̸= 0 such that ∥ab∥ = ∥a∥∥b∥ for any a,b ∈ A; ∥a∥2 = ⟨a,a⟩ is the Euclidean norm on

Rn.

Definition 2.1.6. Let A be a normed division algebra over R such that ReA = ⟨1⟩ and ImA =

(ReA)⊥. A (2-fold) vector cross product on ImA induced by the algebraic structure on A is a

bilinear map × : A2 → A defined by a×b := Im(ab) for any a,b ∈ ImA. That is, the vector cross

product is the projection of ab, the product of a and b in the algebra, onto its imaginary part.

The vector cross product on ImA satisfies the following properties:

1. a×b =−b×a (i.e., × is skew-symmetric)

2. ⟨a×b,a⟩= 0 (i.e., a×b ⊥ a and a×b ⊥ b)

3. Re(ab) =−⟨a,b⟩1.

4. ∥a×b∥2 = ∥a∥2∥b∥2 −⟨a,b⟩2 = ∥a∧b∥2

5. a× (b× c) =−⟨a,b⟩c+ ⟨a,c⟩b− 1
2 [a,b,c] where [a,b,c] = (ab)c−a(bc) is the associator

of A.

We note that V∼= Rm equipped with a Euclidean inner product ⟨·, ·⟩ has a cross product if there is

a skew-symmetric bilinear map × : V2 →V such that for any a,b ∈V, properties (2) and (4) hold.

In 1898, Hurwitz showed that there are only four normed division algebras over R up to iso-

morphism. They are the real numbers, the complex numbers, the quaternions, and the octonions,
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denoted R, C ∼= R2, H ∼= R4, and O ∼= R8, respectively. There is a one-to-one correspondence

between normed division algebras and spaces admitting vector cross products (see [Kar20] for a

proof). Hence there are exactly four spaces up to isomorphism that admit vector cross products,

namely, ImR∼= {0}, ImC∼= R, ImH∼= R3, and ImO∼= R7.

We consider the octonion algebra O. Let g0 = ⟨·, ·⟩ be the restriction of the standard Euclidean

metric on O to ImO and let (ei)
7
i=1 be the standard orthonormal basis for ImO with respect to

g0. Let µ0 = e1 ∧ ·· ·∧ e7 be the standard volume form where (ei)7
i=1 is the basis for ( ImO)∗. We

denote the cross product on the imaginary part of the octionions ImO ∼= R7 by ×0. From this

setup, we can define a 3-form ϕ0 on ImO by

ϕ0(a,b,c) := ⟨a×0 b,c⟩= ⟨ab,c⟩ , ∀ a,b,c ∈ ImO.

By octonion multiplication, we can write

ϕ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245, (2.1)

where ei jk = ei∧e j ∧ek. This 3-form ϕ0 is referred to as the associative 3-form. Now the metric g0

and orientation from µ0 determines a unique Hodge star operator ∗ : Λk(ImO)∗ → Λ7−k(ImO)∗,

from which we obtain the coassociative 4-form ψ0 = ∗ϕ0. We call the tuple (g0,µ0,ϕ0,ψ0,×0)

the standard G2-package.

Definition 2.1.7. The group G2 is the subgroup of GL(7,R) that preserves the standard G2-package

(g0,µ0,ϕ0,ψ0,×0). This is equivalent to Bryant’s theorem, which states that G2 = {A ∈ GL(7,R) |

A∗ϕ0 = ϕ0}= Stab(ϕ0). [Formally, G2 is isomorphic to the stabilizer subgroup of ϕ0 in GL(7,R).]

Moreover, G2 ∼= Aut(O). The latter two statements are often taken as definitions of G2.

It is well known that G2 is a simply connected compact 14-dimensional simple Lie group and

is a subgroup of SO(7). In fact, G2 is one of the exceptional Riemannian holonomy groups in

Berger’s classification theorem (1955) with the other exceptional holonomy group being the Lie
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group Spin(7). Both of these groups are related to the stucture of the octonions O. These groups

are of interest as manifolds with holonomy G2 or Spin(7) are necessarily Ricci-flat. An important

fact is that the orbits of the GL(7,R)-action on ϕ are open in Λ3((R7)∗). This follows from the fact

that dim(GL(7,R)/Stab(ϕ)) = dimGL(7,R)−dimG2 = 49−14 = 35 =
(7

3

)
= dimΛ3((R7)∗).

Remark 2.1.8. There are many descriptions and properties of the Lie group G2 and its Lie algebra

g2 which we will not discuss in this thesis. We refer the reader to [Bry06, FG82, Kar09], and

[Kar20] for more details.

2.1.3 G2-structures

Given a non-degenerate 3-form ϕ ∈ Λ3(p∗) where p∼= R7 is any real 7-dimensional vector space,

we can associate a symmetric bilinear form bϕ and a volume form Ωϕ on p by

bϕ(X ,Y )Ωϕ =
1
6

ιX ϕ ∧ ιY ϕ ∧ϕ. (2.2)

It can be shown that for a non-vanishing volume form Ωϕ , bϕ is non-degenerate, and so is a metric.

Hitchin showed that there are exactly two open GL(p∗)-orbits in Λ3(p∗), namely, Λ3
+(p

∗) = {ϕ ∈

Λ3(p∗) | bϕ is positive definite} and Λ3
−(p

∗) = {ϕ ∈ Λ3(p∗) | bϕ is indefinite}. The convention is

to consider ϕ ∈ Λ3
+(p

∗) as such ϕ defines G2-structures. The use of the term “positive” in the

definitions to follow comes from the this choice of orbit Λ3
+(p

∗).

We say that ϕ ∈ Λ3(p∗) is a fixed positive 3-form if it can be written as in (2.1); it is often

denoted by ϕ0. A fixed positive 3-form is sometimes referred to as a model or fundamental 3-form.

The natural left GL(p)-action on 3-forms is given by h ·ψ = (h−1)∗ψ = ψ(h−1·,h−1·,h−1·). A

3-form ψ ∈ Λ3(p∗) is said to be positive if there is an h ∈ GL(p) such that h ·ϕ0 = ψ , i.e., ψ is

positive if it is in the GL(p)-orbit of ϕ0. By the discussion in the preceding section, any positive

3-form ψ induces a unique inner product and orientation via (2.2), which together determines a

unique Hodge star operator.

Definition 2.1.9. Let M be a smooth 7-manifold. A 3-form ϕ ∈ Ω3(M) is a G2-structure if at each
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point p ∈ M, ϕp is positive, i.e., there exists a basis (ei)
7
i=1 of TpM such that

ϕp = e127 + e347 + e567 + e135 − e146 − e236 − e245,

where ei jk = ei∧e j∧ek and (ei)i is the dual basis to (ei)i. Any such 3-form ϕ induces a Riemannian

metric gϕ and an orientation volϕ from (2.2), which in turn determines a Hodge star operator ∗ϕ :

Ωk(M)→Ω7−k(M). It is a well known fact that a smooth 7-manifold admits a G2-structure ϕ if and

only if it is orientable and spin, which is equivalent to the vanishing of the first two Stiefel-Whitney

classes (see [[Kar20], Proposition 4.18]). Moreover, M admitting a G2-structure ϕ is equivalent to

M having a subbundle of the GL(7,R)-frame bundle with structure group G2 ⊂ SO(7). In other

words, there exists local frames such that all transition functions are in G2. We write (M,ϕ) to

denote a smooth 7-manifold admitting G2-structure ϕ .

Let Ωk
ℓ denote the space of smooth k-forms with pointwise dimension ℓ. Fernández-Gray

showed in [FG82] that any G2-structure ϕ determines gϕ -orthogonal decompositions of k-forms

on M into irreducible G2-representations. There are the two decompositions

Ω
2(M) = Ω

2
7 ⊕Ω

2
14, Ω

3(M) = Ω
3
1 ⊕Ω

3
7 ⊕Ω

3
27,

where the summands are:

• Ω2
7 = {v⌟ϕ | v ∈ Γ(T M)}= {α ∈ Ω2(M) | ∗(α ∧ϕ) = 2α} ∼= Ω1

7 = T ∗M ∼= T M

• Ω2
14 = {α ∈Ω2(M) |α∧∗ϕ = 0}= {α ∈Ω2(M) | ∗(α∧ϕ)=−α};Λ2

14
∼= g2(ϕ)⊂ so(T M)∼=

Λ2(M)

• Ω3
1 = { f ϕ | f ∈C∞(M)}; Λ1

3
∼= Rϕ

• Ω3
7 = {v⌟∗ϕ | v ∈ Γ(T M)}= {∗(β ∧ϕ) | β ∈ T ∗M} ∼= Ω1

7 = T ∗M ∼= T M

• Ω3
27 = {γ ∈ Ω3(M) | γ ∧ϕ = 0,γ ∧∗ϕ = 0} ∼= S2

0(T
∗M), where S2

0(T
∗M) denotes the space

of traceless symmetric 2-tensors on M.
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These decompositions are obtained from the splitting of the bundles Λk(T ∗M). Decompositions

for Ω4 and Ω5 are obtained by taking the Hodge star of Ω3 and Ω2, respectively. Details regarding

the identifications (isomorphisms) listed above can be found in [Bry06,FG82,Kar09], and [Kar20].

Remark 2.1.10. The orientation convention and coefficients in conditions ∗(α∧ϕ)= 2α and ∗(α∧

ϕ) =−α for Ω2
7 and Ω2

14, respectively, may be different depending on the author.

The unique torsion forms τi ∈ Ωi(M), i = 0,1,2,3 of a G2-structure ϕ are the independent

components of the intrinsic torsion ∇ϕ . They can be defined as the unique i-forms such that

dϕ = τ0ψ +3τ1 ∧ϕ +∗τ3, dψ = 4τ1 ∧ψ + τ2 ∧ϕ.

These equations are obtained from the decompositions of Ω4 =Ω4
1⊕Ω4

7⊕Ω4
27 and Ω5 =Ω5

7⊕Ω5
14;

τ0ψ ∈ Ω4
1, 3τ1 ∧ϕ ∈ Ω4

7, and ∗τ3 ∈ Ω4
27; 4τ1 ∧ψ ∈ Ω5

7 and τ2 ∧ϕ ∈ Ω5
14.

Remark 2.1.11. The defining equations for τi and subsequent conventions in this thesis are con-

sistent with those of Bryant, Lauret, et al (see, e.g., [Lau17a]). The constant coefficients in the

defining equations for dϕ and dψ are chosen for convenience.

Remark 2.1.12. Note τ2 ∈ Ω2
14 and so the term τ2 ∧ϕ in dψ is equivalent to −∗ τ2 in Lauret’s

convention whereas in [Kar09], the term is +∗ τ2.

Torsion-free (or parallel) G2-structures, i.e., ϕ such that ∇ϕ = 0, have the property that its in-

duced metric gϕ has holonomy in G2. Existence of such metrics were suggested by Berger’s clas-

sification theorem in 1955 and first examples were constructed by Bryant-Salamon in the 1980s.

Metrics with holonomy in G2 are hard to find, yet are desirable as they are necessarily Ricci-

flat and are important in string theory. We note that many examples of such metrics have since

been constructed (see, e.g., references in [[Kar20], Section 6.2]). Smooth 7-manifolds admitting

torsion-free G2-structures are called G2-manifolds.

Theorem 2.1.13 ([FG82], Fernández-Gray). ϕ is torsion-free if and only if dϕ = 0 and d ∗ϕ = 0

(i.e., ϕ is both closed and coclosed).
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Remark 2.1.14. It is not hard to see from the defining equations for τi that ϕ is torsion-free if and

only if τi = 0 for all i = 0,1,2,3. That is, ϕ is torsion-free if and only if all torsion forms vanish.

There are 16 distinct classes of G2-structures (see [Kar20] for a table of the possible classes).

We consider the class of closed G2-structures in this thesis. We say that ϕ is a closed (or calibrated)

G2-structure if ϕp is positive for each p ∈ M and dϕ = 0. This class of G2-structures are of interest

as they are “close” to being torsion-free in the sense that τ2 is the only surviving torsion form.

Hence it is common to write τϕ or, simply, τ , as it is understood that they denote the surviving

torsion form determined by a closed G2-structure. There are many results on closed G2-structures.

We include some relevant properties regarding them below. For more on torsion forms and detailed

treatments of the following results, see [Bry06, FG82, Kar09, Kar20, Lau17a], and [LW17].

In order to discuss an important symmetric operator Qϕ associated with a closed G2-structure

ϕ , we need to discuss several maps and how they relate to each other. We follow the exposition in

[Lau17a]. Let θ : gl(p)→ End(Λ3p∗) be the representation

θ(A)ψ =−ψ(A·, ·, ·)−ψ(·,A·, ·)−ψ(·, ·,A·) A ∈ gl(p), ψ ∈ Λ
3p∗

obtained as the derivative of the natural left GL(p)-action on 3-forms:

(h,ψ) 7→ h ·ψ = (h−1)∗ψ = ψ(h−1·,h−1·,h−1·).

That is, θ(A)ψ = d
dt |0 etA ·ψ . For a fixed positive 3-form ϕ on p, we have that θ(gl(p))ϕ = Λ3p∗

since the orbit GL(p) ·ϕ is open in Λ3p∗. Note that g2(ϕ) = {A ∈ gl(p) | θ(A)ϕ = 0} ∼= g2 is

the Lie algebra of the stabilizer subgroup G2(ϕ) := GL(p)ϕ
∼= G2. Then we have G2(ϕ)-invariant

decompositions gl(p) = g2(ϕ)⊕ q(ϕ) and q(ϕ) = q1(ϕ)⊕ q7(ϕ)⊕ q27(ϕ), where q(ϕ) is the

orthogonal complement of g2(ϕ) in gl(p) with respect to ⟨·, ·⟩
ϕ

and q1(ϕ)⊕q7(ϕ)⊕q27(ϕ) is the

decomposition corresponding to the splitting of the bundle Λ3p∗ = Λ3
1 ⊕Λ3

7 ⊕Λ3
27 from which we

get the decomposition of Ω3(M) above. From the decomposition of gl(p) we get θ(q(ϕ))ϕ =

Λ3p∗. Thus for any ψ ∈ Λ3p∗, there is a unique operater Qψ ∈ q(ϕ) such that θ(Qψ)ϕ = ψ . The
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following is [[Lau17a], Proposition 2.2] along with the formula for the Ricci tensor Ricϕ coming

from gϕ .

Proposition 2.1.15. For any closed G2-structure ϕ , there is a unique symmetric operator Qϕ ∈

sym(T M) such that θ(Qϕ)ϕ = ∆ϕϕ and

Qϕ = Ricϕ −
1
12

tr(τ2
ϕ)I +

1
2

τ
2
ϕ , (2.3)

where Ricϕ is the Ricci operator of (M,gϕ) and τϕ ∈ so(T M) is the skew-symmetric operator

corresponding to the torsion 2-form τϕ = gϕ(τϕ ·, ·) for closed G2-structures. We also have

1. |τϕ |2 =−1
2 trτ2

ϕ ;

2. scalϕ =−1
2 |τϕ |2 = 1

4 trτ2
ϕ = 3

2 trQϕ ;

3. scalϕ ≤ 0 and is equal to 0 if and only if ϕ is torsion-free;

4. Ricϕ = 1
4 |τϕ |2g− 1

4 jϕ(dτϕ − 1
2 ∗(τϕ ∧τϕ)) where the surjective map jϕ : Λ3(T ∗M)→ S2(T ∗M)

is defined by jϕ(γ)(v,w) = ∗(v⌟ϕ ∧w⌟ϕ ∧ γ).

Proof. Since ∆ϕϕ ∈ Ω3, by the preceding discussion there is a unique operator Qϕ ∈ q(ϕ) ⊂

End(T M) such that θ(Qϕ)ϕ = ∆ϕϕ . That Qϕ ∈ sym(T M) follows from the fact that it coincides

with the symmetric 2-tensor −h from [LW17], i.e., −h= qϕ where qϕ := g(Qϕ ·, ·) is the symmetric

bilinear 2-form corresponding to Qϕ . The formula for Qϕ is obtained from the formula for −h (see

[[LW17], equation (3.4)]). The expression for scalar curvature, scalϕ = −1
2 |τϕ |2, from item (2)

is the statement of [[LW17], Corollary 2.5] where T = −1
2τϕ . We note this expression for scalar

curvature is also obtained in [Bry06]. Item (1) follows from [[LW17], Corollary 2.5]. The rest

of the identities in item (2) are obtained as follows. For the third identity in item (2), observe

−1
2 |τϕ |2 = −1

2(−
1
2 trτ2

ϕ) =
1
4 trτ2

ϕ , where we used (1) in the second equality. For the last identity

in item (2), observe that the trace of (2.3) is trQϕ = scalϕ − 7
12 trτ2

ϕ + 1
2 trτ2

ϕ = (1
4 −

7
12 +

1
2) trτ2

ϕ =

1
6 trτ2

ϕ . Thus 3
2 trQϕ = 1

4 trτ2
ϕ . Item (3) follows from item (2) as |τϕ |2 = 0 if and only if τϕ = 0, i.e.,
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ϕ is torsion-free. Item (4) is derived in [Bry06] and its formula in local coordinates is [[LW17],

formula (2.26)].

Remark 2.1.16. The full torsion T ∈End(T M)∼=Ω2⊕S2 ∼=Ω2
7⊕Ω2

14⊕S2
0⊕C∞(M)g from [LW17]

is

T =
τ0

4
gϕ − τ

#
1⌟ϕ − 1

2
τ2 − jϕ(τ3),

where τ0
4 g ∈C∞(M)gϕ ,τ

#
1⌟ϕ ∈ Ω2

7,−
1
2τ2 ∈ Ω2

14, and jϕ(τ3) ∈ S2
0. When ϕ is closed, T =−1

2τ2 =

−1
2τϕ . For the derivation of T , we refer the reader to [[Kar09], Theorem 2.27]. We note that

the formulas for scalϕ and Ricϕ in Proposition 2.1.15 were obtained earlier by Cleyton-Ivanov in

[CI07] and Bryant in [Bry06].

We give a brief explanation of the map jϕ in the formula for the Ricci tensor Ricϕ and the full

torsion tensor T . We first introduce a map that is initimately related to jϕ and is important in the

theory. Let iϕ : S2(T ∗M)→ Λ3(T ∗M) be defined by

iϕ(α ◦β ) = α ∧∗(β ∧∗ϕ)+β ∧∗(α ∧∗ϕ),

where ◦ is the symmetric product of composable elements α and β ; S2(T ∗M) is the space of

symmetric bilinear 2-forms. In local coordinates, there are two conventions for iϕ :

1. iϕ(η) = 1
2η l

i ϕl jkdxi ∧dx j ∧dxk; in particular iϕ(gϕ) = 3ϕ ([Kar09, LW17]);

2. iϕ(η) = η l
i ϕl jkdxi ∧dx j ∧dxk; in particular iϕ(gϕ) = 6ϕ ([Bry06, Lau17a]).

The map iϕ is linear, injective, and isomorphic to its image iϕ(S2(T ∗M)) = Λ3
1 ⊕Λ3

27 with the

linear isomorphism given by

iϕ(A) =−2θ(A)ϕ, so that iϕ(Qψ) =−2θ(Qψ)ϕ =−2ψ.

In particular, iϕ(Qϕ) = −2θ(Qϕ)ϕ = −2∆ϕϕ , which is used in obtaining the Laplacian soliton

equation (2.8) (see Appendix B.3). [Note S2(T ∗M) has G2-irreducible decomposition S2(T ∗M) =



27

Rg ⊕ S2
0(T

∗M), where S2
0(T

∗M) is the space of all traceless symmetric bilinear 2-forms; and

S2
0(T

∗M)∼= Λ3
27 since iϕ(S2

0(T
∗M)) = Λ3

27 (see [Bry06]).]

Remark 2.1.17. Formally, Qϕ ∈ sym(T M), and so when we write iϕ(Qϕ), we mean evaluation of

iϕ at qϕ := gϕ(Qϕ ·, ·), the symmetric bilinear 2-form corresponding to Qϕ . The formulas for iϕ(A)

are as in [Bry06] and [Lau17a]. We note that iϕ(h) = θ(h)ϕ = ∆ϕϕ in [Kar09] and [LW17]; the

difference is due to the differing conventions in the factor of 1/2 in the definition of iϕ mentioned

above along with the fact that −h = qϕ .

As stated in Proposition 2.1.15, the map jϕ : Λ3(T ∗M)→ S2(T ∗M) is defined by

jϕ(γ)(v,w) = ∗(v⌟ϕ ∧w⌟ϕ ∧ γ).

Recall that Λ3(T ∗M) has G2-irreducible decomposition Λ3(T ∗M) = Λ3
1 ⊕Λ3

7 ⊕Λ3
27. The image

jϕ(Λ3
7) = 0 and so jϕ gives an isomorphism between Λ3

1 ⊕Λ3
27 and S2(T ∗M). Furthermore, jϕ is

related to iϕ by

jϕ(iϕ(h)) = 8h+4(trg(h))g ∀ h ∈ S2(T ∗M).

[In [Kar09] and [LW17], jϕ(iϕ(h)) = −4h − 2(trg(h))g.] The maps iϕ and jϕ are in a sense

“inverses” of one another and allow us to go from symmetric bilinear 2-forms to 3-forms and back

again.

Notation: For closed G2-structure ϕ , it is understood that ∗ = ∗ϕ , g = gϕ , and τ = τϕ unless

stated otherwise. We will write τϕ and gϕ to stress the torsion form and metric, respectively, are

determined by ϕ .

We now include a few well known facts regarding closed G2-structures and their proofs to

illustrate how these types of are arguments are made. Many foundational results require using the

conditions from the G2-irreducible decompositions of k-forms in which the relevant k-forms reside

along with fundamental identities involving ⌟,∗,d,ϕ , and ψ . These fundamental identities can be

found in the appendices of [Kar09] and [Kar20] as well as in the background section in [LW17].
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Fact 2.1.18. For closed G2-structures ϕ , the torsion 2-form τϕ satisfies

τϕ =−∗ϕ d ∗ϕ ϕ and ∆ϕϕ = dτϕ =−d ∗ϕ d ∗ϕ ϕ. (2.4)

Proof. Recall that the induced metric gϕ and orientation volϕ on M determines the unique Hodge

star operator ∗ϕ and the Hodge-Laplacian ∆ϕ = d∗d +dd∗. The defining equation for τϕ is dψ =

d ∗ϕ = 4τ1 ∧ψ + τϕ ∧ϕ . Since ϕ is closed, the only surviving torsion form is τϕ and so τ1 = 0,

from which we get dψ = τϕ ∧ϕ . Note τϕ ∈ Ω2
14 means that ∗(τϕ ∧ϕ) =−τϕ . Taking the Hodge

star of both sides and using ∗2 = id yields τϕ ∧ϕ = −∗ τϕ . Putting this together gives d ∗ϕ =

−∗ τϕ , from which it follows that τϕ =−∗d ∗ϕ by taking the Hodge star of both sides again and

multiplying through by −1. Since the dimension of M is n = 7, d∗ = (−1)7 ∗d∗=−∗d∗. We get

∆ϕϕ = (d∗d +d∗d)ϕ = d∗ dϕ︸︷︷︸
=0

+dd∗
ϕ =−d ∗d ∗ϕ = d(−∗d ∗ϕ) = dτϕ .

From this fact, we see that τϕ is determined by the closed G2-structure ϕ along with the structure

equations as it involves the exterior derivative d. Both of these are in turn obtained with respect to

an orthonormal basis (ei)i for TpM and its dual basis (ei)i for T ∗
p M.

In Riemmanian geometry, it is desirable to find Einstein metrics as they are “optimal” metrics

in the sense that they are the critical points for the total scalar curvature functional:

S (g) =
∫

M
scalg dVg.

In the context of 7-manifolds admitting closed G2-structures, one might ask what conditions on ϕ

gives rise to Einstein metrics. The following proposition gives a necessary and sufficient condition

for a closed G2-structure to induce an Einstein metric.
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Proposition 2.1.19 (Einstein condition). For ϕ a closed G2-structure, gϕ is Einstein if and only if

dτϕ =
3

14
|τϕ |2ϕ +

1
2
∗ (τϕ ∧ τϕ).

Proof. Applying iϕ to the expression of for Ricϕ from Proposition 2.1.15 (4), we get

dτϕ =
3

14
|τϕ |2ϕ +

1
2
∗ (τϕ ∧ τϕ)−

1
2

iϕ(Ric0
ϕ),

where Ric0
ϕ = Ricϕ −

scalϕ
7 gϕ is the traceless Ricci tensor. So if gϕ is Einstein, Ric0

ϕ = 0 and so

iϕ(Ric0
ϕ) = 0 as iϕ is linear. On the other hand, if the equation above holds, then iϕ(Ric0

ϕ) = 0.

But since iϕ is injective, Ric0
ϕ = 0 and so gϕ is Einstein.

The Einstein condition is used to obtain the following result in the compact case.

Theorem 2.1.20. On compact M, the induced metric gϕ from a closed G2-structure ϕ is Einstein

if and only if ϕ is torsion-free.

Bryant’s Proof. We use shorthand notation τ = τϕ and τn = τ ∧ ·· · ∧ τ n-times. First note that

since τ ∈ Ω2
14, we have τ ∧ϕ =−∗ τ . Then

τ ∧ τ ∧ϕ = τ ∧ (τ ∧ϕ) = τϕ ∧ (−∗ τ) =−⟨τ,τ⟩volϕ =−|τ|2 volϕ .

By Proposition 2.1.19, g is Einstein if and only if dτ = 3
14 |τ|

2ϕ + 1
2 ∗ (τ ∧ τ). Observe that

d(
1
3

τ
3) =

1
3
(dτ ∧ τ

2 + τ ∧dτ
2) =

1
3
(dτ ∧ τ

2 + τ ∧ (dτ ∧ τ − τ ∧dτ))

= τ
2 ∧dτ

= τ
2 ∧
(

3
14

|τ|2ϕ +
1
2
∗ (τ ∧ τ)

)
=

3
14

|τ|2(τ ∧ τ ∧ϕ)+
1
2
(τ ∧ τ)∧∗(τ ∧ τ)

=− 3
14

|τ|4 volϕ +
1
2
|τ ∧ τ|2 volϕ =

2
7
|τ|4 volϕ ,
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where we used τ ∧τ ∧ϕ =−|τ|2 volϕ obtained above and the identity |τ2|2 = |τ|4 for any τ ∈ Ω2
14

(see [Bry06]) in the last equality. Integrating both sides over compact M and applying Stoke’s

theorem yields

0 =
∫

M
d(

1
3

τ
3) =

2
7

∫
M
|τ|4 volϕ ,

which holds if and only if τ = 0.

So when M is compact, a closed G2-structure induces an Einstein metric if and only if it is also

coclosed. Fernández-Fino-Manero obtain a similar statement in the non-compact case when M is

a simply connected solvable Lie group with left-invariant closed G2-structure.

Theorem 2.1.21 ([FFM16], Fernández-Fino-Manero). A 7-dimensional simply connected solvable

Lie group cannot admit left-invariant closed G2-structures such that gϕ is Einstein unless ϕ is

torsion-free.

Proof. This is one of the main results of [FFM16].

Remark 2.1.22. We note that homogeneous Einstein torsion-free metrics are flat since by Proposi-

tion 2.1.15 ϕ is torsion-free if and only if scalϕ = 0 and so if Ricϕ = λg, then scalϕ = trRicϕ =

7λ = 0 if and only if λ = 0. Thus Ricϕ = 0, from which it follows that gϕ is flat as Ricci-flat

homogeneous spaces are flat by a result of Alekseevskiı̆-Kimel′fel′d in [AK75]. An open question

posed by Bryant is whether or not there exists not necessarily complete closed G2-structures ϕ

such that gϕ is Einstein and non-Ricci-flat (see [[Bry06], Remark 12]).

Bryant observed that in the compact case, the formula for dτϕ in the proof of Proposition 2.1.19

is a special case which can be obtained from a more general Ricci pinching condition [[Bry06],

Corollary 3]. From the Ricci pinching condition, Bryant obtains the following on compact mani-

folds.

Theorem 2.1.23 (Bryant). For ϕ a closed G2-structure on compact smooth 7-manifold M,

∫
M

scal2ϕ volϕ ≤ 3
∫

M
|Ricϕ |2 volϕ ,
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and equality holds if and only if dτϕ =
|τϕ |2

6 ϕ + 1
6 ∗ (τϕ ∧ τϕ).

Proof. We refer the reader to [[Bry06], Corollary 3 and Remark 13] for the proof.

Remark 2.1.24. This inequality does not hold in the non-compact homogeneous case. Lauret

exhibited some examples in [Lau17b].

Definition 2.1.25. A closed G2-structure is said to be extremely Ricci pinched (ERP) if dτϕ =

|τϕ |2
6 ϕ + 1

6 ∗ (τϕ ∧ τϕ). Bryant suggested that such G2-structures may be of interest as they are the

most “extremely Ricci pinched” a G2-structure can get on a compact manifold.

Remark 2.1.26. Closed G2-structures satisfying either the Einstein condition or the ERP condi-

tion are special cases of a general class of G2-structures called quadratic closed G2-structures,

i.e., closed G2-structures where dτϕ depends quadratically on τϕ . More concretely, a closed G2-

structure is λ -quadratic if dτ = 1
7 |τ|

2ϕ + λ (1
7 |τ|

2ϕ + ∗(τ ∧ τ)). Quadratic closed G2-structures

have recently been studied by authors like Ball, Lauret-Nicolini, Fino-Raffero, et al.

2.2 The Laplacian flow

2.2.1 The Laplacian flow and its solitons

Bryant introduced a natural geometric flow of G2-structures called the Laplacian flow given by


∂tϕ(t) = ∆ϕ(t)ϕ(t)

ϕ(0) = ϕ

,

where ϕ is the initial 3-form and ∆ϕ(t) = ∗ϕd ∗ϕ d −d ∗ϕ d∗ϕ is the Hodge Laplacian operator on

3-forms.

Fact 2.2.1. ϕ(t) is closed for all t.

Proof. Note ∂t(dϕ(t)) = d(∂tϕ(t)) = d(∆ϕϕ) = d(dτϕ) = 0 and so dϕ(t) does not change in t.

Since the initial G2-structure ϕ(0) = ϕ is closed, i.e., dϕ(0) = dϕ = 0, so is ϕ(t).
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Fact 2.2.2. The stationary points of the Laplacian flow are torsion-free G2-structures.

Proof. From (2.4), ∆ϕϕ = dτϕ ∈ Ω3(M) = Ω3
1 ⊕Ω3

7 ⊕Ω3
27 so we can write

∆ϕϕ = dτϕ = f ϕ +∗(β ∧ϕ)+ γ,

where f ϕ ∈ Ω3
1 for some f ∈C∞(M), ∗(β ∧ϕ)∈ Ω3

7 for some 1-form β ∈ T ∗M, and γ ∈ Ω3
27. Note

that

dτϕ ∧ϕ = ( f ϕ)∧ϕ +∗(β ∧ϕ)∧ϕ + γ ∧ϕ = ∗(β ∧ϕ)∧ϕ

since ( f ϕ)∧ϕ = f (ϕ ∧ϕ) = 0 as ϕ is a 3-form [ω ∧ω = 0 for any odd k-form ω] and γ ∧ϕ = 0

since γ ∈ Ω3
27. On the other hand

dτϕ ∧ϕ = dτϕ ∧ϕ +(−1)3
τϕ ∧dϕ = d(τϕ ∧ϕ) = d(d ∗ϕ) = 0,

where the second to last equality follows from the defining equation for torsion forms dψ = d∗ϕ =

τϕ ∧ϕ when ϕ is closed. Thus β = 0. By taking the inner product of ϕ with ∆ϕϕ (see details in

[[LW17], Section 2.2]), one gets f = |τϕ |2
7 and so

∆ϕϕ = dτϕ =
|τϕ |2

7
ϕ + γ.

It follows that ∂tϕ = ∆ϕϕ = dτϕ = 0 if and only if γ = 0 and τϕ = 0. In particular, ∆ϕϕ = 0 if and

only if τϕ = 0.

Remark 2.2.3. When M is compact, there is a unique solution ϕ(t) of closed G2-structures satisfy-

ing the Laplacian flow on some time interval 0 < T ≤ ∞ (see remarks of Bryant on the methods of

DeTurck and Hamilton in [Bry06]).

Since torsion-free G2-structures yield metrics with holonomy in G2, Bryant and his collabo-

rators investigated the conditions under which a closed G2-structure converges to a torsion-free

one under the flow, along with the possible obstructions to such convergence. More generally, it
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is of interest to study the long time behavior, long time existence, uniqueness, and convergence

of solutions to the closed Laplacian flow. Short-time existence and uniqueness of solutions to the

flow was proven by Bryant-Xu in [BX11]. Lotay-Wei obtained long-time existence criteria for

Laplacian flow solutions based on torsion estimates along the flow in [LW17]. Another reason to

study the Laplacian flow is due to its relationship with the volume functional. It is known that the

Laplacian flow is the upward gradient flow for Hitchin’s volume functional:

ϕ ∈ [ϕ0] 7→ vol(ϕ) = 7−1
∫

M
ϕ ∧∗ϕ.

This functional is monotonically increasing along the flow. Moreover, its critical points are torsion-

free G2-structures and are local maxima of vol(ϕ) in a fixed cohomology class [ϕ0]. Details re-

garding this functional can be found in [Hit00].

It is known that a Laplacian flow solution ϕ(t) starting at ϕ is self-similar, i.e.,

ϕ(t) = c(t) f (t)∗ϕ c(t) ∈ R∗, f (t) ∈ Diff(M)

if and only if

∆ϕϕ = λϕ +LX ϕ, λ ∈ R, X ∈ X(M). (2.5)

Hence any triple (ϕ,X ,λ ) satisfying (2.5), the Laplacian soliton equation, is a Laplacian soliton.

Laplacian solitons are said to be steady, shrinking, or expanding if λ = 0, λ < 0, or λ > 0, respec-

tively. A Laplacian soliton is gradient if X is a gradient field, i.e., X =∇ f for some smooth function

f : M →R. In the last decade, Laplacian solitons on homogeneous spaces have received increased

interest and many new examples have been found (see, e.g., [FR20,Lau17a,Lau17b,LN20,Nic18],

and [Nic22]). These solitons are of interest as they model singularities of the flow.
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In this thesis, we consider only Laplacian flows with closed initial G2-structure:


∂tϕ(t) = ∆ϕ(t)ϕ(t)

ϕ(0) = ϕ

dϕ = 0

.

In the notation of [LW17], the associated metric gϕ for a closed Laplacian soliton ϕ satisfies


∂tgϕ(t) = 2h(t)

gϕ(0) = gϕ

, (2.6)

where the 2-form h in local coordinates is

hi j =−Ri j −
1
3
|T |2gi j −2T k

i Tk j;

Ri j is the Ricci tensor; T =−1
2τϕ is the full torsion tensor for closed G2-structures.

Remark 2.2.4. The evolution of the metric gϕ from (2.6) can also be written

∂tg =−2Ricϕ +
|τϕ |2

6
g+

1
4

jϕ(t)(∗(τϕ ∧ τϕ)).

Note that this flow is a perturbation of the Ricci flow by “quadratic” torsion terms.

Lotay-Wei uses (2.5) and injectivity of iϕ to show that the associated metric must also satisfy

−Ri j −
1
3
|T |2gi j −2T k

i Tk j =
1
3

λgi j +
1
2
(LX g)i j,

or equivalently

h− 1
3

λg− 1
2
LX g = 0. (2.7)

We refer the reader to [[LW17], Proposition 9.4] or [[Kar09], Corollary 3.2] for more details.
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Remark 2.2.5. The evolution of the volume form is

∂t volϕ =
|τϕ |2

3
volϕ ,

which is pointwise non-decreasing along the Laplacian flow. We refer the reader to [Bry06,Kar09],

and [LW17] for a detailed study of these evolution equations and the evolution equations of torsion

forms τi.

We now discuss a few well known facts about Laplacian solitons and compare them to solitons

of the well studied Ricci flow. We first remark that Laplacian solitons of the form (ϕ,0,λ ) are

called eigenforms. From (2.5), we see that eigenforms ϕ satisfy ∆ϕϕ = λϕ and can be viewed

as the 3-form analogue of Einstein metrics g satisfying Ricg = λg. In this thesis, we will refer to

Laplacian solitons of the form (ϕ,X ,λ ) where X ̸= 0 as non-trivial solitons and solitons where

X = 0 as trivial solitons.

Lin showed in [Lin13] that there are no compact shrinking Laplacian solitons and that compact

steady Laplacian solitons are torsion-free. Furthermore, it is known that stationary points of the

Laplacian flow on compact manifolds are always torsion-free as harmonic forms, i.e., ϕ such that

∆ϕϕ = 0, are always closed and coclosed. Lotay-Wei show that this is true for any 7-manifold (not

necessarily compact). More precisely, Lotay-Wei showed that any Laplacian soliton of the form

(ϕ,0,λ ) is either expanding, i.e., λ > 0, or is torsion-free. Thus stationary points of the flow have

solitons of the form (ϕ,0,0) and by the preceding result ϕ must be torsion-free. Lotay-Wei also

obtained a non-existence result that there are no compact Laplacian solitons of the form (ϕ,0,λ )

unless ϕ is torsion-free. This together with Lin’s result shows that non-torsion-free compact Lapla-

cian solitons must be expanding and X ̸= 0.

Now recall the Ricci flow is given by


∂tg =−2Ricg

g(0) = g0,
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and Ricci solitons (g,X ,λ ) satisfy the Ricci soliton equation

Ricg+
1
2
LX g = λg.

By Lotay-Wei’s result, there are no compact Laplacian solitons of the form (ϕ,0,λ ) unless ϕ is

torsion-free while there exists compact Ricci solitons of the form (g,0,λ ), i.e., compact Einstein

metrics Ricg = λg, where the soliton can be steady, shrinking, or expanding. There are examples

of homogeneous Laplacian solitons on noncompact manifolds with λ > 0, λ = 0, and λ < 0

constructed by Fino-Raffero, Lauret-Nicolini, et al.

2.2.2 Gradient Laplacian solitons

We are primarily interested in equation (2.7) cast in the notation of Lauret’s papers [Lau17a] and

[Lau17b]. By reconciling differing conventions by Lotay-Wei and Lauret, one sees that the unique

symmetric operator Qϕ from (2.3) coincides with −h in (2.6). Setting qϕ := gϕ(Qϕ ·, ·) as in

Remark 2.1.17, we get qϕ =−h and so from (2.7), we obtain the following equation

1
2
LX gϕ =−qϕ − 1

3
λgϕ , λ ∈ R, X ∈ X(M). (2.8)

We also call (2.8) the Laplacian soliton equation (in terms of the induced metric gϕ ). Note that

(2.8) corresponds to a geometric q-flow of the metric gϕ with c = −(1/3)λ and q-soliton −2qϕ .

When X = ∇ f is a gradient field for some smooth function f : M → R, (2.8) becomes the closed

gradient Laplacian soliton equation

Hess f =−qϕ − 1
3

λgϕ (2.9)

and we call the triple (ϕ,∇ f ,λ ) satisfying (2.9) a closed gradient Laplacian soliton. The function

f is commonly referred to as the potential function. We elaborate on the derivation of (2.8) in

Appendix B.3.
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Remark 2.2.6. Petersen-Wylie showed that all homogeneous gradient Ricci solitons are rigid, i.e.,

isometric to a quotient of N ×Rk where N is Einstein and potential f = λ

2 |x|
2 on the Euclidean

factor. In other words, there are no non-trivial homogeneous gradient Ricci solitons aside from

ones that are rigid with f a Gaussian on the Euclidean factor. This also means that non-trivial

Ricci solitons that are not rigid must be non-gradient. For Laplacian solitons, there are non-trivial

gradient Laplacian solitons on homogeneous spaces, e.g., the solitons where potential f is either a

Gaussian or an affine function and ϕ is torsion-free (see, e.g., case (n1,ϕ1) in Chapter 4). For more

results on rigidity of gradient Ricci solitons, we refer the reader to [PW09a,PW09b], and [PW10].

Remark 2.2.7. It is well known that every compact Ricci soliton is gradient by a result of Perel’man

(see [MT07]). An open question is whether there exists compact Laplacian solitons that are gradi-

ent. In fact, the existence of non-trivial Laplacian solitons on compact manifolds is still open.

For more foundational material on G2-structures and the Laplacian flow, we refer the reader to

[Bry06,FG82,Kar09,Kar20], and [LW17]. We note that Haskins-Nordström investigate cohomogeneity-

one steady gradient Laplacian solitons with symmetry groups Sp(2) and SU(3) in [HN21]. Ex-

amples of gradient Laplacian solitons in the non-homogeneous setting are referenced in [HN21].

A recent preprint [HKP22] by Haskins-Kahn-Payne shows uniqueness of asymptotically conical

gradient Laplacian solitons. We also mention that Garrone in [Gar22] studies closed G2-structures

in the setting of isometric flow, where the critical points are G2-structures with divergence-free full

torsion tensor.

Remark 2.2.8. Henceforth, all G2-structures and (gradient) Laplacian solitons we consider are

assumed to be closed. So whenever we refer to (gradient) Laplacian solitons, we mean closed

(gradient) Laplacian solitons.

2.2.3 G2-structures on homogeneous spaces

When (M,ϕ) is homogeneous, M has a presentation M = G/K for some transitive Lie subgroup

G ⊆ Aut(M,ϕ) = { f ∈ Diff(M) | f ∗ϕ = ϕ} ⊂ Iso(M,ϕ) and isotropy subgroup K ⊂ G. In this

setting, we have the following.



38

(i) ϕ is a G-invariant G2-structure on M.

(ii) When g = k⊕ p is a reductive deomposition, i.e., Ad(K)p ⊂ p, we can identify p with TpM

such that any G-invariant G2-structure ϕ is determined by a fixed positive 3-form on p.

Remark 2.2.9. There is a one-to-one correspondence between left-invariant G2-structures on simply-

connected Lie groups and G2-structures on its associated Lie algebra (see, e.g., [Fre13] or [Lau17a]).

Thus it is common in the literature to identify Lie groups G=Gµ admitting a (closed) left-invariant

G2-structure (similarly, Laplacian, algebraic, or semi-algebraic soliton) ϕ with its corresponding

Lie algebra (g,µ = [·, ·]) admitting the fixed positive 3-form ϕ . We refer to both (G,ϕ) and (g,ϕ)

as G2-structures and further, as Laplacian solitons if ϕ satisfies (2.8) for some λ ∈ R.
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3 | The Structure Theorem

3.1 Structure theorem for homogeneous closed gradient Lapla-

cian solitons

Let (M,ϕ) be homogeneous, i.e., M = G/K for some transitive Lie subgroup G ⊆ Aut(M,ϕ) and

K an isotropy subgroup of G at some point of M. If (M,ϕ) admits a closed gradient Laplacian

soliton (ϕ,∇ f ,λ ), then the triple satisfies the gradient Laplacian soliton equation (2.9). To be

consistent with notation of [PW22], we set

q :=−qϕ − 1
3

λgϕ , (3.1)

where q is a G-invariant symmetric 2-tensor. Observe that the gradient Laplacian soliton equation

being satisfied by (ϕ,∇ f ,λ ) where ∇ f ̸= 0 is equivalent to there being a non-constant f ∈ F(q) =

{Hess f = q} as studied in [PW22]. Petersen-Wylie’s motivation for studying the solution space

F(q) is due to the equation Hess f = q arising naturally from gradient solitons for geometric flows

where the tensor q involves the curvature of the manifold. It is clear that q involves the curvature

of the manifold as qϕ does. We remark that if f is constant (or trivial), then X = ∇ f = 0 and so

such gradient solitons would correspond to eigenforms. We call gradient solitons where ∇ f ̸= 0

non-trivial gradient solitons and consider only non-trivial gradient solitons in this thesis. We now

state the main result of this section.

Theorem 3.1.1 (Structure Theorem). Let M be a 7-dimensional homogeneous space admitting a
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closed gradient Laplacian soliton (ϕ,∇ f ,λ ) where f is non-constant.

1. The square of the intrinsic torsion τ2
ϕ is divergence-free if and only if (M,gϕ) is isometric to

a product N ×Rk where f is constant on N.

2. If the square of the intrinsic torsion τ2
ϕ is not divergence-free, then either

(a) (M,gϕ) is a one-dimensional extension; gϕ = dr2 +gr; and f (x,y) = ar+b; or

(b) (M,gϕ) is isometric to a product N ×Rk where N is a one-dimensional extension and

f (x,y) = ar(x)+ v(y), where v is a function on Rk and r is a distance function on N.

To obtain the structure theorem for closed gradient Laplacian solitons on homogeneous spaces,

we recall [[PW22], Theorem 3.6] of Petersen-Wylie.

Theorem 3.1.2 (Structure Theorem of Petersen-Wylie). Let (M,g) be a G-homogeneous manifold

and let q be a G-invariant symmetric 2-tensor. If f ∈ F(q) is a non-constant function, then either

1. (M,g) is isometric to a product N ×Rk where f is constant on N

2. (M,g) is a 1-dimensional extension, g = dr2 +gr, and f (x,y) = ar+b,

3. (M,g) is isometric to a product N ×Rk where N is a 1-dimensional extension and f (x,y) =

ar(x)+ v(y), where v is a function on Rk and r is a distance function on N.

The three possible structures depend on the divergence of the G-invariant symmetric 2-tensor q.

That is, if q is divergence-free, then we are in case (1) of [[PW22], Theorem 1.1]. The converse

also holds: if the product N ×Rk has a non-constant function f ∈ F(q) that is constant on N,

then q is divergence-free. To see this, we use the Bochner formula div(∇∇ f ) = Ric(∇ f )+∇∆ f .

Since f is a function on the Euclidean factor only, ∇ f ∈ TpRk. It follows that ∇ f ∈ kerRic, hence

Ric(∇ f ) = 0. Moreover, ∆ f = tr∇∇ f = trHess f = trq is constant as M is homogeneous and

q is G-invariant. Thus divq = divHess f = div(∇∇ f ) = 0. If q is not divergence-free, then the

structure of M can be as in either case (2) or (3). So to apply Theorem 3.1.2, we must compute the

divergence of q =−qϕ − 1
3λgϕ .
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Proof of Theorem 3.1.1. Let (M,ϕ) be a closed homogeneous G2-structure. By Proposition 2.1.15,

scalϕ =−1
2
|τϕ |2 and |τϕ |2 =−1

2
trτ

2
ϕ .

Putting these two equations together yields

−1
3

scalϕ =− 1
12

trτ
2
ϕ .

The expression for Qϕ from (2.3) can be written

Qϕ = Ricϕ −
1
3

scalϕ I +
1
2

τ
2
ϕ . (3.2)

Taking the divergence gives

divQϕ =
1
2

divτ
2
ϕ , (3.3)

where we used the 2nd contracted Bianchi identity, divRicϕ = 1
2Dscalϕ , along with the fact that

scalϕ is constant on homogeneous spaces. Performing a type change of equation (3.1) to (1,1)-

tensors with respect to gϕ , we get Q =−Qϕ − 1
3λ I. Then divQ =−1

2 divτ2
ϕ , or equivalently,

divq =−1
2

divτ
2
ϕ , (3.4)

where τ2
ϕ = gϕ(τ

2
ϕ ·, ·). So to compute divq, it suffices to compute divτ2

ϕ .

Suppose (ϕ,∇ f ,λ ) is a gradient Laplacian soliton where ∇ f ̸= 0. Then equation (2.9) is

satisfied and implies that there is a non-constant f ∈ {Hess f = q}. It is clear that q is a symmetric

2-tensor as both qϕ and (1/3)λgϕ are symmetric. That q is G-invariant follows from ϕ being

G-invariant. More precisely, for γ ∈ G, we have γ∗ϕ = ϕ and γ∗gϕ = gϕ . It follows from isometry

invariance of the Ricci tensor that γ∗Ric(gϕ) = Ric(γ∗gϕ) = Ric(gϕ) as γ ∈ G ⊂ Aut(M,ϕ) ⊂

Iso(M,gϕ). Moreover, since the torsion 2-form τϕ is determined by ϕ , γ∗τϕ = τγ∗ϕ = τϕ . Thus

q is G-invariant. Combining these observations with the preceding discussion, we apply Theorem
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3.1.2 to obtain the possible structures determined by whether τ2
ϕ is divergence-free or not.

3.2 Computing divτ2
ϕ

The following are several useful lemmas for computing divτ2
ϕ . We first state a lemma regarding

the divergence of general 2-tensors.

Lemma 3.2.1. Let (M,g) be a Riemannian manifold and (ei)i an orthonormal basis on TpM. For

any (0,2)-tensor of the form T (·, ·) = g(A·, ·), where A is its (1,1)-dual tensor with respect to g,

we have

(divT )(U) =
7

∑
i=1

g(∇ei(A(ei))−A(∇eiei),U). (3.5)

Proof. Observe that

(divT )(U) =
7

∑
i=1

(∇eiT )(ei,U)

=
7

∑
i=1

[(∇ei(T (ei,U))−T (∇eiei,U)−T (ei,∇eiU)]

=
7

∑
i=1

[(∇ei(g(A(ei),U))−g(A(∇eiei),U)−g(A(ei),∇eiU)]

=
7

∑
i=1

[g(∇ei(A(ei)),U)+g(A(ei),∇eiU)

−g(A(∇eiei),U)−g(A(ei),∇eiU)]

=
7

∑
i=1

g(∇ei(A(ei))−A(∇eiei),U).

We will refer to the sums ∑i g(∇ei(A(ei)), ·) and ∑i g(A(∇eiei), ·) from formula (3.5) as (3.5a) and

(3.5b), respectively.

Remark 3.2.2. Note divq is a (0,1)-tensor. When A is symmetric (hence T is symmetric) it is not

hard to show (∇eiT )(ei,U) = (∇eiT )(U,ei) for any vector U . Also, (3.5b)= 0 whenever ∇eiei = 0
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∀ i.

We make a definition that will be useful in proofs.

Definition 3.2.3. We say that a basis (ei)i for g is orthogonally nice if

[ei,e j] = cek & ei,e j ⊥ ek.

If (ei)i is an orthonormal basis, then this condition is equivalent to

[ei,e j] = cek & ei,e j ̸= ek.

The motivation for defining such a basis is due to it being a sufficient condition for diagonally

trivial derivatives, i.e.,

∇eiei = 0 ∀ i,

provided (ei)i is orthonormal (see Lemma 3.2.5 (4)).

Remark 3.2.4. Our definition of an “orthogonally nice” basis differs from the notion of a “nice”

basis as defined by Lauret-Will in [LW13]: a basis of a Lie algebra is nice if [ei,e j] is always

a scalar multiple of some element in the basis and [ei,e j], [er,es] can be a nonzero multiple of

the same ek only if {i, j}∩ {r,s} = /0. All of the bases (ei)i for (ni,ϕi) for i = 1, ...,7 are nice.

Moreover, they are orthogonally nice, hence the structure equations for ni yields diagonally trivial

derivatives. The characterization of nice bases is used by Lauret-Will as well as others referenced

in [LW13] to study nilsolitons on nilmanifolds and stably Ricci-diagonal metrics. A basis for a Lie

algebra is stably Ricci-diagonal if any diagonal left-invariant metric has diagonal Ricci tensor (see

[LW13] and [Kri21]). One relevant fact in the nilpotent case is the following: a basis of a nilpotent

Lie algebra is stably Ricci-diagonal if and only if it is nice [[LW13], Theorem 1.1]. We note that

some of the results to follow may hold with the hypotheses of nice bases on nilpotent Lie groups.

We also note that Krishnan studies nice bases and diagonality of the Ricci tensor in a more general

setting in [Kri21].
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Lemma 3.2.5 (Consequences of the Koszul Formula). For any orthonormal basis (ei)i,

1. g(∇eiei,e j) =−g([ei,e j],ei) = g([e j,ei],ei)

2. g(∇eie j,ek) =
1
2
[g([ei,e j],ek)−g([ei,ek],e j)−g([e j,ek],ei)]

3. ∑i g(∇eiei,e j) = tr(ade j)

4. If (ei)i is orthogonally nice, then ∇eiei = 0 ∀i.

Proof. (1) and (2) follow from the Koszul formula, (ei)i being an orthonormal basis, and skew-

symmetry of the Lie bracket. (3) follows from (1), ade j(ei) = [e j,ei], and the definition of trace.

(4) follows from (1) and (ei)i being orthogonally nice.

Proposition 3.2.6. Let (g, [·, ·]) be the Lie algebra of a Lie group G with closed G2-structure ϕ . If

τ2
ϕ is diagonal with respect to an orthogonally nice orthonormal basis (ei)i, then τ2

ϕ is divergence-

free, hence Qϕ is divergence-free. Moreover, if Ricϕ is also diagonal with respect to (ei)i, then Qϕ

is diagonal if and only if τ2
ϕ is.

Proof. Since (ei)i is an orthogonally nice orthonormal basis, by Lemma 3.2.5 (4) we have ∇eiei = 0

∀ i. So if τ2
ϕ is diagonal, then τ2

ϕ(ei) = aiei and we get

∇ei(τ
2
ϕ(ei)) = ∇ei(aiei) = ai∇eiei = 0 ∀ i.

Hence the sum (3.5a) = 0. Moreover, diagonally trivial derivatives implies the sum (3.5b) = 0.

Thus divτ2
ϕ = 0. The last statement follows easily from (3.2).

Remark 3.2.7. The converse of Proposition 3.2.6 is not true. In the case of n4, divτ2
ϕ4

= 0 while

τ2
ϕ4

is not diagonal (see Chapter 4).

We now state a key lemma used in the proof of the non-divergence-free cases of Theorem 4.1.1.

This key lemma is an instance of [[Gri21], Proposition 3.1]. We also include [[Gri21], Corollary

3.2] as it will be used to prove some cases of Theorem 4.1.1.
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Lemma 3.2.8 (Key Lemma). Let (M,ϕ) be a closed G2-structure. For any gradient Laplacian

soliton (ϕ,∇ f ,λ ), we have

g(Ric(∇ f ), ·) =−1
2

divτ
2
ϕ +∇ trqϕ . (3.6)

If in addition trqϕ is constant (e.g., when M is homogeneous) then

g(Ric(∇ f ), ·) =−1
2

divτ
2
ϕ . (3.7)

Proof. The gradient Laplacian soliton equation (2.9) type changed to (1,1)-tensors is

∇∇ f =−Qϕ − 1
3

λ I. (3.8)

Taking the divergence of (3.8) and using the Bochner formula, div∇∇ f = Ric(∇ f )+∇∆ f , yields

Ric(∇ f )+∇∆ f =−divQϕ . (3.9)

On the other hand, taking the trace of (3.8) yields

∆ f =− trQϕ − 7
3

λ . (3.10)

Substituting (3.10) into (3.9) yields

Ric(∇ f ) =−divQϕ +∇ trQϕ . (3.11)

Combining (3.3), divqϕ = 1
2 divτ2

ϕ , and 3.11 yields (3.6). If trqϕ is constant, ∇ trqϕ = 0 and we

get (3.7). The fact that trqϕ is constant on homogeneous spaces follows from observing that it is a

constant multiple of scalϕ , which is constant on homogeneous spaces (or one can simply note that

qϕ is G-invariant to get trqϕ = 0).
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Lemma 3.2.9 ([[Gri21], Corollary 3.2]). For any constant trace, divergence-free 2-tensor q, the

gradient solitons of its flow has the property that Ric(∇ f ) = 0.

Definition 3.2.10. A homogeneous G2-structure (M,ϕ) is Laplacian flow diagonal if the Aut(M,ϕ)-

invariant Laplacian flow solution ϕ(t) starting at ϕ satisfies the following property: at some p ∈M,

there is an orthonormal basis β with respect to ⟨·, ·⟩
ϕ

at TpM such that Qϕ(t) is diagonal with re-

spect to β for all t.

Remark 3.2.11. For homogeneous Laplacian solitons, (M = G/K,ϕ) being Laplacian flow diago-

nal is equivalent to it being an algebraic soliton (see [[Lau17a], Theorem 4.10]).

Corollary 3.2.12. Let G be a Lie group with closed G2-structure ϕ that is Laplacian flow diagonal

with respect to an orthogonally nice orthonormal basis (ei)i. Suppose Ricϕ is diagonal with respect

to (ei)i.

1. If (ϕ,∇ f ,λ ) is a gradient Laplacian soliton, then G must be a product metric Rk ×N with f

constant on N.

2. If in addition the kernel of the Ricci tensor is trivial, then ϕ is not a gradient soliton.

Proof. By the last statement of Proposition 3.2.6, τ2
ϕ is diagonal. Since (ei)i is an orthogonally

nice orthonormal basis, we get divτ2
ϕ = 0 by Proposition 3.2.6. Thus (1) follows from the Structure

Theorem. To show (2), note that the Key Lemma gives that Ricϕ(∇ f ) = 0. Since kerRicϕ = 0, it

must be that ∇ f = 0. Hence f is constant, a contradiction.

Remark 3.2.13. Corollary 3.2.12 can be useful in determining the structure of a homogeneous

closed gradient Laplacian soliton without having to compute divτ2
ϕ explicitly.
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3.3 Some related consequences of the gradient Laplacian soli-

ton equation

Definition 3.3.1. G2-structures (g1,ψ1) and (g2,ψ2) are said to be equivalent, denoted (g1,ψ1)≃

(g2,ψ2), if there is a Lie algebra isomorphism h : g1 → g2 such that h ·ψ1 = ψ2. Moreover, we say

that G2 structures are homothetic if there is a c ∈ R∗ such that (g1,ψ1)≃ (g2,cψ2).

We show that if two G2-structures on the same Lie algebra are equivalent or homothetic, then

one is a gradient Laplacian soliton if and only if the other is. This is needed for Theorem 4.1.1.

Proposition 3.3.2. If ψ1,ψ2 are positive and if either (g,ψ1) ≃ (g,ψ2) or (g,ψ1) ≃ (g,cψ2) for

some c ∈ R∗, then ψ1 is a gradient Laplacian soliton if and only if ψ2 is.

Proof. For any diffeomorphism ϕ ∈ Diff(M), tensor T , and vector field X , we have

ϕ
∗(LX T ) = Lϕ∗X(ϕ

∗T )

(see exercise 1.23 in [CLN06]). Also, if f : M → R, we have

ϕ
∗(∇g f ) = ∇

ϕ∗g( f ◦ϕ).

Suppose (g,ψ1) ≃ (g,ψ2) and ψ2 is a gradient Laplacian soliton, i.e., ∆ψ2ψ2 = λψ2 +L∇
gψ2 f ψ2

for some potential function f . Since (g,ψ1)≃ (g,ψ2), there is a Lie algebra isomorphism h : g→ g

in Aut(g) such that h ·ψ2 = ψ1 [Note: h ∈ Diff(g) as any linear isomorphism of vector spaces is

smooth]. We know for any geometric structure γ , h · γ = (h−1)∗γ . Moreover, [[Nic18], Lemma 2.2
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(ii)(a)] states that for any h ∈ Aut(g), ∆h·ψh ·ψ = h ·∆ψψ. Putting these together, we get

∆ψ1ψ1 = ∆h·ψ2(h ·ψ2) = h ·∆ψ2ψ2 = h · (λψ2 +L∇
gψ2 f ψ2)

= λ (h ·ψ2)+h · (L∇
gψ2 f ψ2) = λψ1 +(h−1)∗(L∇

gψ2 f ψ2)

= λψ1 +L(h−1)∗(∇gψ2 f )((h
−1)∗ψ2) = λψ1 +L

∇
(h−1)∗gψ2 ( f◦h−1)

(h ·ψ2)

= λψ1 +L∇
gψ1 ( f◦h−1)ψ1,

where in the last equality we used (h−1)∗gψ2 = h ·gψ2 = gh·ψ2 = gψ1 for any h ∈ GL(g). Thus ψ1 is

also a gradient Laplacian soliton. If instead ψ1 is a gradient Laplacian soliton, the same argument

with h−1 in place of h gives that ψ2 is also a gradient soliton.

Suppose (g,ψ1)≃ (g,cψ2) for some c ∈ R∗ and that ψ1 is a gradient Laplacian soliton. Since

(g,ψ1) ≃ (g,cψ2), there is some Lie algebra isomorphism h : g→ g in Aut(g) such that h ·ψ1 =

cψ2. By [[Nic18], Lemma 2.2 (ii)(b)], ∆cψcψ = c
1
3 ∆ψψ . Then

c
1
3 ∆ψ2ψ2 = ∆cψ2(cψ2) = ∆h·ψ1(h ·ψ1) = h · (∆ψ1ψ1) = h · (λψ1 +L∇

gψ1 f ψ1)

= λ (h ·ψ1)+(h−1)∗(L∇
gψ1 f ψ1) = cλψ2 +L(h−1)∗(∇gψ1 f )((h

−1)∗ψ1)

= cλψ2 +L
∇
(h−1)∗gψ1 ( f◦h−1)

(h ·ψ1) = cλψ2 +L
∇

c2/3gψ2 ( f◦h−1)
(cψ2)

= cλψ2 + cL∇
gψ2 ( f◦h−1)ψ2,

where we used [[Nic18], Lemma 2.1(iii)]

(h−1)∗gψ1 = h ·gψ1 = gh·ψ1 = gcψ2 = c2/3gψ2

in the second to last equality and ∇
c2/3gψ2 = ∇

gψ2 as c2/3 > 0 in the last. So

c
1
3 ∆ψ2ψ2 = cλψ2 + cL∇

gψ2 ( f◦h−1)ψ2



49

if and only if

∆ψ2ψ2 = c
2
3 λψ2 +L

∇
gψ2 (c

2
3 f◦h−1)

ψ2.

Thus (ψ2,∇
gψ2 c

2
3 ( f ◦h−1),c

2
3 λ ) is a gradient Laplacian soliton. Similar arguments show if ψ2 is

a gradient soliton, then so is ψ1.

We include for completeness some consequences of the gradient Laplacian soliton equation

(2.9) on closed G2-structures (see [Bry06,LW17], and [HN21] for more details). Note these results

are immediate consequences of formulas in Section 9 of [LW17].

Lemma 3.3.3. Let (M,ϕ) be a closed G2-structure. If (ϕ,∇ f ,λ ) is a gradient Laplacian soliton,

then

1. ∆ f =−7
3

λ − 2
3

scalϕ

2. ∇∆ f =−2
3

∇scalϕ

3. ∇ f⌟T = 0 where T =−1
2τϕ .

Proof. Taking the trace of (2.9) yields

∆ f =−scalϕ +
7
3

scalϕ −
1
2

trτ
2
ϕ − 7

3
λ .

By Proposition 2.1.15,

−1
2

trτ
2
ϕ = |τϕ |2 =−2scalϕ .

Substituting this back into the preceding equation and collecting the scalar curvature terms yields

(1). Taking the derivative of (1) yields (2). (3) follows from the discussion in Section 9 of [LW17].
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Corollary 3.3.4. If (ϕ,∇ f ,λ ) is a homogeneous closed gradient Laplacian soliton and τ2
ϕ is

divergence-free, then

1
2

DX∥∇ f∥2 =
1
3
(scalϕ −λ )g(∇ f ,X) ∀ X ∈ T M.

If in addition ∥∇ f∥ = constant, then λ = scalϕ . Since scalϕ ≤ 0 for closed G2-structures, the

soliton is either shrinking or steady.

Proof. The gradient Laplacian soliton equation (2.9) yields

Hess f (∇ f ,X) =−Ricϕ(∇ f ,X)− 1
2

τ
2
ϕ(∇ f ,X)+

1
3
(scalϕ −λ )g(∇ f ,X).

Since τ2
ϕ is divergence-free, by the Key Lemma we have Ricϕ(∇ f ) = −1

2 divτ2
ϕ = 0. By Lemma

3.3.3 (3), we have ∇ f⌟τϕ = 0 and so τ2
ϕ(∇ f ,X) = g(τ2

ϕ(∇ f ),X) = −g(τϕ(∇ f ),τϕ(X)) = 0. By

[[Pet16], Proposition 3.2.1 (3)], Hess f (∇ f ,X) = 1
2DX∥∇ f∥2 for all X ∈ T M. Putting these items

together in the soliton equation gives the desired formula. If ∥∇ f∥ = constant, then the left-hand

side of the formula is zero while the right-hand side is 1
3(scalϕ −λ )∥∇ f∥2. Since ∥∇ f∥2 > 0 as f

is non-constant, it follows that λ = scalϕ .

Remark 3.3.5. Without the homogeneous assumption, the formula in Corollary 3.3.4 is 2−1DX∥∇ f∥2 =

−g(∇ trqϕ ,X)+3−1(scalϕ −λ )g(∇ f ,X).
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4 | Eliminating Gradient Solitons

4.1 Eliminating gradient Laplacian solitons on nilpotent Lie

groups

A first application of the Structure Theorem for homogeneous closed gradient Laplacian solitons

is in “eliminating gradient solitons” as discussed in the introduction. We prove the following.

Theorem 4.1.1. The closed Laplacian solitons ϕi on Ni for i = 2,3,4,5,6,7 found by Nicolini in

[Nic18] are not gradient up to homethetic G2-structures. If N1 does admit a gradient Laplacian

soliton, then it must be a Gaussian.

Tables consisting of relevant data for each nilpotent Lie algebra (ni,ϕi) are provided. Note that

τϕi , hence τ2
ϕi

, are obtained with respect to bases and corresponding structure equations from the

tables in [Nic18]. We first compute the divergence of τ2
ϕi

. We then consider divergence-free and

non-divergence-free cases separately in the proof of Theorem 4.1.1. Lastly, we show the closed

G2-structure (n12,ϕ12) constructed in [FFM16] is not gradient.

Notation: N is as in the structure theorem while N with a subscript, Ni, denotes the nilpotent Lie

group with corresponding nilpotent Lie algebra ni.
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Table 4.1: (n2(1,1),ϕ2) & (n3(1,1− c,c),ϕ3)

(n2(1,1),ϕ2) (n3(1,1− c,c),ϕ3), 0 < c < 1/2

Ricϕi −Diag(1, 1
2 ,

1
2 ,0,−

1
2 ,−

1
2 ,0)

1
2

Diag(−2+2c− c2,−1− c2,−1+2−2c2,1,(−1+ c)2,c2,0)

τϕi −e35 + e26 −ce16 +(1− c)e25 − e34

τ2
ϕi

Diag(0,−1,−1,0,−1,−1,0) Diag(−c2,−(1− c)2,−1,−1,−(1− c)2,−c2,0)
Qϕi

1
3 Diag(−2,−2,−2,1,1,1,1) 1−c+c2

3 Diag(−2,−2,−2,1,1,1,1)
λi 5 5(1− c+ c2)

Table 4.2: (n4(
√

2,1,
√

2,1),ϕ4) & (n6(
√

2,
√

2,1,1),ϕ6)

(n4(
√

2,1,
√

2,1),ϕ4) (n6(
√

2,
√

2,1,1),ϕ6)

Ricϕi Diag(−2,−2, 1
2 ,−1,−1

2 ,
3
2 ,

1
2) Diag(−3,−1,−1, 1

2 ,
1
2 ,

1
2 ,

1
2)

τϕi −
√

2e34 +
√

2e16 − e56 + e37 −
√

2e34 +
√

2e25 − e56 + e47

τ2
ϕi



−2 0 0 0
√

2 0 0
0 0 0 0 0 0 0
0 0 −3 0 0 0 0
0 0 0 −2 0 0

√
2√

2 0 0 0 −1 0 0
0 0 0 0 0 −3 0
0 0 0

√
2 0 0 −1





0 0 0 0 0 0 0
0 −2 0 0 0 −

√
2 0

0 0 −2 0 0 0 −
√

2
0 0 0 −3 0 0 0
0 0 0 0 −3 0 0
0 −

√
2 0 0 0 −1 0

0 0 −
√

2 0 0 0 −1



Qϕi



−2 0 0 0
√

2
2 0 0

0 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 0

√
2

2√
2

2 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0

√
2

2 0 0 1





−2 0 0 0 −
√

2
2 0 0

0 −1 0 0 0 0 0
0 0 −1 0 0 0 −

√
2

2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −

√
2

2 0 0 0 1 0
0 0 −

√
2

2 0 0 0 1


λi 9 9
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Table 4.3: (n5(
√

2,1,1,
√

2),ϕ5) & (n7(−4,2,2,
√

6,
√

6),ϕ7)

(n5(
√

2,1,1,
√

2),ϕ5) (n7(−4,2,2,
√

6,
√

6),ϕ7)

Ricϕi Diag(−2,−2, 1
2 ,−

1
2 ,−1, 1

2 ,
3
2) Diag(−10,−10,3,11,−1,−1,−10)

τϕi τϕ5 =−e46 + e37 −
√

2e35 +
√

2e17 τϕ7 =−2e15 +2e26 −
√

6e36 +
√

6e45 −4e47,

τ2
ϕi



−2 0 −
√

2 0 0 0 0
0 0 0 0 0 0 0

−
√

2 0 −3 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −2 0

√
2

0 0 0 0 0 −1 0
0 0 0 0

√
2 0 −3





−4 0 0 2
√

6 0 0 0
0 −4 2

√
6 0 0 0 0

0 2
√

6 −6 0 0 0 0
2
√

6 0 0 −22 0 0 0
0 0 0 0 −10 0 4

√
6

0 0 0 0 0 −10 0
0 0 0 0 4

√
6 0 −16



Qϕi



−2 0 −
√

2
2 0 0 0 0

0 −1 0 0 0 0 0
−

√
2

2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 0

√
2

2
0 0 0 0 0 1 0
0 0 0 0

√
2

2 0 1





−4 0 0 0 −1 0 0
0 −4 0 0 0 1 0
0 0 9 0 0 −

√
6

2 0
0 0 0 17

√
6

2 0 −2
1 0 0 −

√
6

2 5 0 0
0 −1

√
6

2 0 0 5 0
0 0 0 2 0 0 −4
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4.1.1 Computing divτ2
ϕi

for (ni,ϕi), i = 1, ...,7

Proposition 4.1.2. Let (ni,ϕi), i = 1, ...,7 be the nilpotent Lie algebras admitting closed Lapla-

cian solitons ϕi found in [Nic18]. The square of the torsion 2-form τ2
ϕi

is divergence-free for

i = 1,2,3,4,6 and not divergence-free for i = 5,7.

Proof. The torsion 2-form τϕ1 = 0. More precisely, the exterior derivatives obtained from trivial

brackets are all 0, hence τϕ1 = −∗ d ∗ϕ1 = 0 regardless of what ϕ1 is. It follows that τ2
ϕ1

= 0,

hence its divergence is 0.

The torsion 2-forms τϕi for all other cases can be obtained via τϕi =−∗d ∗ϕi (see [Nic18]). We

obtain τ2
ϕi

from the skew-symmetric matrix representation of τϕi with respect to (e j) j. We claim

that when A = τ2
ϕi

, the sum (3.5b) = 0 for each i = 1, ...,7.

Proof (3.5b) = 0. Unimodular Lie groups can be characterized by the property that there is a basis

(X j) j such that tr(adX) =∑ j g(adX(X j),X j) = 0 for any X . As nilpotent Lie groups are unimodular,

it follows that adX is trace-free in all cases ni. Moreover, the Lie brackets for ni, i = 1, ...,7, are all
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orthogonally nice. Thus either of these two conditions imply the sum (3.5b) = ∑ j g(A(∇e je j), ·) =

0 whenever A is symmetric. To see this, first note by symmetry of A we have g(A(∇e je j), ·) =

g(∇e je j,A(·)) as A∗ = At = A over R. Then for any U = ∑k Ukek,

∑
j

g(∇e je j,A(U)) = ∑
j

g(∇e je j,A(∑
k

Ukek)) = ∑
j
∑
k

Ukg(∇e je j,A(ek))

= ∑
k

Uk

(
∑

j
g(∇e je j,A(ek))

)

= ∑
k

Uk

(
∑

j
g(∇e je j,∑

ℓ

aℓkek
ℓ)

)

= ∑
k

Uk

(
∑
ℓ

∑
j

aℓkg(∇e je j,ek
ℓ)

)
= ∑

k
Uk

∑
ℓ

aℓk tr(adek
ℓ
),

where the last expression is 0 as tr(adek
ℓ
) = 0 ∀ k, ℓ. On the other hand, whenever (e j) j is orthogo-

nally nice, ∇e je j = 0 for all j and so ∑ j g(A(∇e je j),U) = ∑ j g(∇e je j,A(U)) = 0.

It remains to compute the sum (3.5a) when A = τ2
ϕi

for i = 2, ...,7. Computing (3.5a) when A =

τ2
ϕi

amounts to computing the terms ∇e j(τ
2
ϕ(e j)). This depends on both the matrix representation

of τ2
ϕi

with respect to the bases (e j) j as well as the derivatives ∇e jek.

Since τ2
ϕ2

, τ2
ϕ3

are diagonal and the corresponding bases are orthogonally nice, by Proposition

3.2.6 both divτ2
ϕ2

= 0 and divτ2
ϕ3

= 0. We include computation of divτ2
ϕ5

. That divτ2
ϕi
= 0 for

i = 4,6 and divτ2
ϕ7
(U,V ) =−16

√
6g(e2,U) follows from similar computations as for divτ2

ϕ5
. We

include tables of derivatives for ni and computations of divτϕi in Appendix B.1.

Remark 4.1.3. The derivatives for each case ni are obtained from the Koszul formula and the struc-

ture equations as in the tables of [Nic18]. [[Nic18], Lemma 3.10] states that for n5(a,b,c,d),

where a,b,c,d are the structure constants, ϕ5 is closed if and only if a = d and b = c. The lemma

further states that if a2 = 2b2, then (n5(a,b,b,a),ϕ5) is a semi-algebraic soliton, hence is a Lapla-

cian soliton. We prove the result for (b = 1,a =
√

2) and note that it holds for general (a,b) where

a2 = 2b2 by scaling. We do the same for all other cases ni.

Table of derivatives for n5(
√

2,1,1,
√

2)



55

∇eie j 1 2 3 4 5 6 7

1 0 −
√

2
2

e3

√
2

2
e2 −

1
2

e6 −1
2

e7 0
1
2

e3
1
2

e4

2

√
2

2
e3 0 −

√
2

2
e1 0 −

√
2

2
e7 0

√
2

2
e5

3

√
2

2
e2 +

1
2

e6 −
√

2
2

e1 0 0 0 −1
2

e1 0

4
1
2

e7 0 0 0 0 0 −1
2

e1

5 0

√
2

2
e7 0 0 0 0 −

√
2

2
e2

6
1
2

e3 0 −1
2

e1 0 0 0 0

7
1
2

e4

√
2

2
e5 0 −1

2
e1 −

√
2

2
e2 0 0

Case (n5,ϕ5). We compute each term of the sum (3.5a):

∇e1(τ
2
ϕ5
(e1)) = ∇e1(−2e1 −

√
2e3) =−

√
2(

√
2

2
e2 −

1
2

e6) =−e2 +

√
2

2
e6

∇e2(τ
2
ϕ5
(e2)) = ∇e2(0) = 0

∇e3(τ
2
ϕ5
(e3)) = ∇e3(−

√
2e1 −3e3) =−

√
2(

√
2

2
e2 +

1
2

e6) =−e2 −
√

2
2

e6

∇e4(τ
2
ϕ5
(e4)) = ∇e4(−e4) = 0

∇e5(τ
2
ϕ5
(e5)) = ∇e5(−2e5 +

√
2e7) =

√
2(−

√
2

2
e2) =−e2

∇e6(τ
2
ϕ5
(e6)) = ∇e6(−e6) = 0

∇e7(τ
2
ϕ5
(e7)) = ∇e7(

√
2e5 −3e7) =

√
2(−

√
2

2
e2) =−e2

Thus

divτ
2
ϕ5
(U,V ) =

7

∑
i=1

g(∇ei(τ
2
ϕ5
(ei)),U) = g(−4e2,U) =−4g(e2,U),

which is nonzero whenever the e2 component of U is nonzero.

Remark 4.1.4. Recall that the Ricci soliton equation is 1
2LX g =−Ricg+λg where the G-invariant

symmetric 2-tensor as in [PW22] is q = −Ricg+λg. On homogeneous spaces, q is always

divergence-free as divRicg = 1
2Dscalg = 0. Griffin in [Gri21] studies homogeneous Bach soli-

tons, which also have that the corresponding G-invariant symmetric 2-tensor q is divergence-free.

What makes homogeneous Laplacian solitons and the Laplacian flow interesting is the fact that it

is the first setting we have encountered in which the corresponding G-invariant symmetric 2-tensor

q = q(τ2
ϕ) is not always divergence-free, e.g., divτ2

ϕi
̸= 0 for i = 5,7 as in Proposition 4.1.2. Al-
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though we show these solitons are not gradient in the next section, the fact that their corresponding

q is not divergence-free leaves open the possibility that there may be gradient Laplacian solitons

with divτ2
ϕ ̸= 0.

4.1.2 Eliminating gradient solitons on (ni,ϕi), i = 1, ...,7

We now prove Theorem 4.1.1.

Divergence-free cases: divτ2
ϕi
= 0.

Proof of Theorem 4.1.1 Case (n1,ϕ1). The Lie brackets [·, ·] with respect to orthonormal basis

(ei)
7
i=1 for n1 are trivial, hence the covariant derivatives ∇eie j are trivial. So for some closed

G2-structure ϕ1, Ricϕ1 , τϕ1 , and scalϕ1 are 0. Since Ricϕ1 = 0 and N1 is homogeneous, it follows

the space is flat. Suppose (ϕ1,∇ f ,λ1) is a gradient Laplacian soliton. Since divτ2
ϕ1

= 0, the Struc-

ture Theorem yields N1 = N ×Rk where f is constant on N. Note ∇ f ∈ TpRk ⊆ ker(Ricϕ1) =

Span(ei)
7
i=1 = TpR7, i.e., ∇ f can be written as a linear combination of elements from (ei)

7
i=1 and

k ≤ 7. The gradient Laplacian soliton equation

Hess f =−1
3

λ1g

is diagonal with respect to basis (ei)
7
i=1 and so Hess f must also be diagonal, i.e., ∇i∇ j f = 0

whenever i ̸= j. Equating matrix entries, we get ∇i∇i f = −λ1

3
for each i and so the potential

function f must be of the form

f (x,y,z,s,u,v,w) =−λ1

6
(x2 + y2 + z2 + s2 +u2 + v2 +w2)

− (α1x+α2y+α3z+α4s+α5u+α6v+α7w)−β

which is a Gaussian soliton; (x,y,z,s,u,v,w) are coordinates with respect to (ei)
7
i=1.

Proof of Theorem 4.1.1 Case (n2(1,1),ϕ2). By Proposition 4.1.2 divτ2
ϕ2

= 0. If (ϕ2,∇ f ,λ2) is a
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gradient Laplacian soliton, then by the Structure Theorem N2 = N ×Rk where f is constant on N.

Note ∇ f ∈ TpRk ⊂ kerRicϕ2 = Span{e4,e7} and so k ≤ 2. In an appropriate basis B, Hess f
∣∣
N = 0

and so the restriction of the gradient Laplacian soliton equation to N with respect to B becomes

qϕ2

∣∣
N = −1

3λ2gN . But this means −2
3 = qϕ2

∣∣
N(e1,e1) = qϕ2

∣∣
N(e6,e6) =

1
3 , a contradiction. Thus

(ϕ2,X ,λ2) cannot be gradient Laplacian soliton.

Proof of Theorem 4.1.1 Case (n3(1,1− c,c),ϕ3). By Proposition 4.1.2 divτ2
ϕ3

= 0. If (ϕ3,∇ f ,λ3)

is a gradient Laplacian soliton, then by the Structure Theorem N3 = N×Rk where f is constant on

N. Note ∇ f ∈ TpRk ⊂ kerRicϕ3 = Span{e7} and so k = 1. In an appropriate basis B, Hess f
∣∣
N = 0

and so the restriction of the gradient Laplacian soliton equation to N with respect to B becomes

qϕ3

∣∣
N = −1

3λ3gN . But this means −2(1−c+c2)
3 = qϕ2

∣∣
N(e1,e1) = qϕ2

∣∣
N(e6,e6) =

1−c+c2

3 , a contra-

diction. Thus (ϕ3,X ,λ3) cannot be gradient Laplacian soliton.

Proof of Theorem 4.1.1 Case (n4(
√

2,1,
√

2,1),ϕ4). Suppose (ϕ4,∇ f ,λ4) is a gradient Laplacian

soliton. By Proposition 4.1.2 divτ2
ϕ4

= 0. In the context of a (−2qϕ4)-flow, we get −2qϕ4 is also

divergence-free. Furthermore, tr(−2qϕ4) is constant as N4 is homogeneous. We apply Lemma

3.2.9 to the (−2qϕ4)-flow to get the potential function f satisfies Ricϕ4(∇ f ) = 0. But Ricϕ4 has

trivial kernel and so ∇ f = 0. Thus f is constant, a contradiction. Therefore (n4,X ,λ4) cannot be a

gradient Laplacian soliton.

Proof of Theorem 4.1.1 Case (n6(
√

2,
√

2,1,1),ϕ6). Suppose (ϕ6,∇ f ,λ6) is a gradient Laplacian

soliton. By Proposition 4.1.2 divτ2
ϕ6

= 0. In the context of a (−2qϕ6)-flow, we get −2qϕ6 is also

divergence-free. Furthermore, tr(−2qϕ6) is constant as N6 is homogeneous. We apply Lemma

3.2.9 to the (−2qϕ6)-flow to get the potential function f satisfies Ricϕ6(∇ f ) = 0. But Ricϕ6 has

trivial kernel and so ∇ f = 0. Thus f is constant, a contradiction. Therefore (n6,X ,λ6) cannot be a

gradient Laplacian soliton.

Non-divergence-free cases: divτ2
ϕi
̸= 0.

Proof of Theorem 4.1.1 Case (n5,ϕ5). Suppose (ϕ5,∇ f ,λ5) is a gradient Laplacian soliton. By

Proposition 4.1.2 divτ2
ϕ5

̸= 0 and so by the Structure Theorem (N5,ϕ5) has either structure 2(a) or
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2(b). As Ricϕ5 has trivial kernel, N5 cannot split as a product and so the structure must be as in

2(a).

Suppose (N5,ϕ5) is a one-dimensional extension where f = ar + b. By the Key Lemma the

potential function f satisfies

g(Ric(∇ f ), ·) =−1
2

divτ
2
ϕ5
(·) = 2g(e2, ·),

where the last equality follows from divτ2
ϕ5
(·) =−4g(e2, ·) as computed in the proof of Proposition

4.1.2. Note Ricϕ5(∇ f ) = 2e2. Since Ricϕ5 is diagonal with respect to (ei)i with nonzero diagonal

entries, ∇ f = c2e2. Substituting Ricϕ5(∇ f ) = −2c2e2 in the Key Lemma yields c2 = −1, and so

∇ f =−e2. Since f = ar+b, it follows that e2 =±∇r.

Assume ∇r = e2. Applying the (1,1)-tensor version of the gradient Laplacian soliton equation

(2.9) to ∇r = e2 and noting that Hess f (∇r) = aHessr(∇r) = 0, we get

0 =−Ricϕ5(e2)−
1
2

τ
2
ϕ5
(e2)+

1
3
(scalϕ5 −λ5)I(e2). (4.1)

Since τ2
ϕ5
(e2) = 0, (4.1) becomes

Ricϕ5(e2) =−1
3
(scalϕ5 −λ5)I(e2).

Substituting scalϕ5 =−3 and λ5 = 9 yields

−2e2 = Ricϕ5(e2) =−4I(e2) =−4e2,

from which it follows that −2 = −4, a contradiction. By similar arguments, we arrive at a con-

tradiction when ∇r = −e2. [Note: There cannot be two distinct contraction constants satisfy-

ing the soliton equation for if (ϕ,X1,λ1) and (ϕ,X2,λ2) both satisfy (2.8) and λ1 ̸= λ2, then

LX gϕ = LX2−X1gϕ = 2(λ2 − λ1)gϕ = cgϕ for some nonzero constant c ∈ R and non-trivial vec-
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tor field X , which would imply the space is flat.]

Proof of Theorem 4.1.1 Case (n7,ϕ7). Suppose (ϕ7,∇ f ,λ7) is a gradient Laplacian soliton. By

Proposition 4.1.2 divτ2
ϕ7

̸= 0 and so by the Structure Theorem (N7,ϕ7) has either structure 2(a) or

2(b). As Ricϕ7 has trivial kernel, N7 cannot split as a product and so the structure must be as in

2(a).

Suppose (N7,ϕ7) is a one-dimensional extension where f = ar+ b. By the Key Lemma, the

potential function f satisfies

g(Ricϕ7(∇ f ), ·) =−1
2

divτ
2
ϕ7

=−1
2
(−16

√
6g(e2, ·)) = 8

√
6g(e2, ·),

where we used divτ2
ϕ7
(·) = −16

√
6g(e2, ·). Note Ricϕ7(∇ f ) = 8

√
6e2. Since Ricϕ7 is diagonal

with respect to (ei)i with all nonzero diagonal entries, it must be that ∇ f = c2e2. Solving

−10c2 = g(Ricϕ7(c2e2),e2) = g(Ricϕ7(∇ f ),e2) = 8
√

6

yields c2 = −4
√

6
5 , i.e., ∇ f = −4

√
6

5 e2. Since f = ar + b, we have a∇r = ∇ f = −4
√

6
5 e2 and so

taking the norms shows that a =±4
√

6
5 .

Assume a = 4
√

6
5 so that ∇r =−e2. Applying the (1,1)-tensor version of the gradient Laplacian

soliton equation (2.9) to ∇r =−e2 and noting that Hess f (∇r) = aHessr(∇r) = 0, we get

0 =−Ricϕ7(−e2)−
1
2

τ
2
ϕ7
(−e2)+

1
3
(scalϕ7 −λ7)I(−e2),

from which we get

Ricϕ7(e2) =−1
2

τ
2
ϕ7
(e2)+

1
3
(scalϕ7 −λ7)e2.

Substituting scalϕ7 =−18 and λ = 54 yields

−10e2 =−1
2
(−4e2 +2

√
6e3)−24e2,
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from which we get −10 =−22, a contradiction. By similar arguments, we arrive at a contradiction

when a =−4
√

6
5 .

Some final remarks on the Proof of Theorem 4.1.1. When f is constant, the possible gradient Lapla-

cian solitons are of the form (ϕ,0,λ ). In these cases, Hess f = 0 and the gradient soliton equation

of type (1,1) is equivalent to Qϕ = −3−1 Diag(λ , ...,λ ). None of the matrix expressions Qϕi for

i = 2, ...,7 satisfy this equality and thus such gradient Laplacian solitons cannot occur on ni for

i = 2, ...,7. For i = 1, Qϕ = 0 and so we must have λ = 0, i.e., the soliton is steady; ϕ is torsion-

free as n1 has trivial structure. Thus the only non-trivial gradient solitons on n1 are Guassian as

shown above. Lastly, the result is up to homothetic G2-structures by Proposition 3.3.2.

4.1.3 (n12,ϕ12)

Proposition 4.1.5. The closed G2-structure ϕ12 on N12 as constructed in [FFM16] is not gradient

up to homothetic G2-structures.

Proof. Let (ei)i be the basis with structure equations

n12 = (0,0,0,
3
6

e12,
1
4

e23 +

√
3

12
e13,−

√
3

12
e23 − 1

4
e13,

−
√

3
6

e34 +

√
3

12
e25 +

1
4

e26 +

√
3

12
e16 − 1

4
e15)

and closed G2 structure given by

ϕ12 =−e124 + e135 + e167 − e236 + e257 + e347 − e456

as in [FFM16]. This basis and its corresponding structure equations are obtained from the canon-

ical one for n12 (see [[FFM16], Theorem 3.1] or [[Nic18], Table 1]). The structure constants and

exterior derivatives are:

[e1,e2] =−
√

3
6

e4, [e2,e3] =
1
4

e5, [e1,e3] =−
√

3
12

e5, [e2,e3] =

√
3

12
e6,
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[e1,e3] =
1
4

e6, [e3,e4] =

√
3

6
e7, [e2,e5] =−

√
3

12
e7, [e2,e6] =−1

4
e7,

[e1,e6] =−
√

3
12

e7, [e1,e5] =
1
4

e7.

and

de1 = de2 = de3 = 0, de4 =

√
3

6
e12,de5 =−1

4
e23 +

√
3

12
e13,de6 =−

√
3

12
e23 − 1

4
e13

de7 =−
√

3
6

e34 +

√
3

12
e25 +

1
4

e26 +

√
3

12
e16 − 1

4
e15.

As shown in [FFM16], the basis is orthonormal with respect to the associated metric gϕ12 and

the Ricci tensor is given by

Ricϕ12 = Diag
(
−1

8
,−1

8
,−1

8
,0,0,0,

1
8

)
=−1

4
I +

1
8

D,

where D = Diag(1,1,1,2,2,2,3), i.e., gϕ12 is a nilsoliton. In [[FFM16], Section 4], it is shown

that n12 is Laplacian flow diagonal with respect to (ei)i and at t = 0, ϕ12(0) = ϕ12. In other

words Qϕ12(t) is diagonal along the Laplacian flow in the time interval stated in [FFM16]. In

particular, Qϕ12 is diagonal with respect to (ei)i at t = 0. Hence τ2
ϕ12

is diagonal by Proposition

3.2.6. The basis (ei)i is orthogonally nice. So if (ϕ12,∇ f ,λ12) is a gradient Laplacian soliton, then

by Corollary 3.2.12 (1) (N12,ϕ12) must be a product metric N ×Rk where f is constant on N. But

since kerRicϕ12 ̸= {0}, we cannot use Corollary 3.2.12 (2). We compute τ2
ϕ12

:
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ϕ12 =−e124 + e135 + e167 − e236 + e257 + e347 − e456

∗ϕ12 = e3567 − e2467 + e2345 + e1457 + e1346 + e1256 + e1237

d ∗ϕ12 =−1
2

e12347 − 1
2

e12456

∗d ∗ϕ12 =−1
2

e56 +
1
2

e37

τϕ12 =−∗d ∗ϕ12 =
1
2

e56 − 1
2

e37

Then

τ
2
ϕ12

= Diag
(

0,0,−1
4
,0,−1

4
,−1

4
,−1

4

)
.

Since f is a function on Rk, ∇ f ∈ TpRk. So Ricϕ12(∇ f ) = 0, i.e., ∇ f ∈ ker(Ricϕ12), which is

contained in Span{e4,e5,e6}. So k ≤ 3. We obtain

Qϕ12 =
1

24
Diag(−1,−1,−4,2,−1,−1,1)

with respect to (ei)i. Since f is constant on N, Hess f
∣∣
N = 0. The gradient Laplacian soliton

equation becomes qϕ12

∣∣
N =−1

3λ12gϕ12

∣∣
N . But this implies −1 = qϕ12

∣∣
N(e1,e1) = qϕ12

∣∣
N(e3,e3) =

−4, a contradiction.

4.2 Observations on product metrics N7−k ×Rk

We collect some immediate observations from the soliton equation in the product case, i.e., the case

when divτ2 = 0. Recall that for products, (T(p,q)(N7−k×Rk),g) = (TpN7−k⊕TqRk,g = gN +gRk).

Proposition 4.2.1. If (ϕ,∇ f ,λ ) is a homogeneous closed gradient Laplacian soliton with τ2

divergence-free, i.e., M = N7−k ×Rk, and f is a function only on Rk, we get the following:

1. 0 = (−RicgN −1
2τ2 + 1

3(scalϕ −λ )g)(Xi,X j) for any Xi,X j ∈ TpN.
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2. τ2(X ,Y ) = 0 for any X ∈ TpN and Y ∈ TqRk.

3. Hess f (Yi,Yj) = −1
2τ2(Yi,Yj)+

1
3(scalϕ −λ )g(Yi,Yj) for any Yi,Yj ∈ TqRk. If in addition τ2

is a multiple of the metric, then f is a Gaussian.

4. 2−1DX∥∇ f∥2 = cg(∇ f ,X) where c = 3−1(scalϕ −λ ) is constant. Hence f is an isoperimet-

ric function as ∥∇ f∥2 = φ( f ).

Proof. For (1), note that since f is constant on N, Hess f (Xi,X j) = 0 for any Xi,X j ∈ TpN. Fur-

thermore, since TqRk ⊂ kerRicϕ , Ricϕ(Xi,X j) = RicgN (Xi,X j) for any Xi,X j ∈ TpN. Putting this

together in equation (2.9) gives (1). For (2), note Hess f (X ,Y ) = g(∇X ∇ f ,Y ) = 0 since f is

constant on N and 1
3(scalϕ −λ )g(X ,Y ) = 0 since X ⊥ Y . Also, Ricϕ(X ,Y ) = g(Ricϕ(X),Y ) =

g(X ,Ricϕ(Y )) = 0 since Y ∈ TqRk ⊂ kerRicϕ . Putting this together in equation (2.9) yields

−1
2τ2(X ,Y ) = 0, from which we get τ2(X ,Y ) = 0. The equation in item (3) is a direct appli-

cation of (2.9) with Ricϕ(Yi,Yj) = 0 since Yi,Yj ∈ TqRk ⊂ kerRicϕ . If τ2 is a multiple of the metric,

i.e., τ2 = cg, then from the equation in item (3), we have

Hess f =−1
2

cg+
1
3
(scalϕ −λ )g = (−1

2
c+

1
3
(scalϕ −λ ))g = Kg

on Rk, where K = −1
2c+ 1

3(scalϕ −λ ) is constant. Thus f = K
2 |x|

2 on Rk, i.e., f is a Gaussian.

Item (4) is Corollary 3.3.4.

We make some further observations when f is a Gaussian.

Corollary 4.2.2. Suppose (ϕ,∇ f ,λ ) is a homogeneous closed gradient Laplacian soliton with τ2

divergence-free, i.e., M = N7−k ×Rk, and f is a Gaussian. Then

1. Hess f (Yi,Y j) = cg(Yi,Yj) where constant c = 3−1(scalϕ −λ ) for any Yi,Yj ∈ TqRk.

2. τ2(Yi,Y j) = 0 for any Yi,Yj ∈ TqRk.
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3. τ2(Xi,X j) = (−2RicgN +2cg)(Xi,X j) for any Xi,X j ∈ TpN and

τ
2 =

−2RicgN +2cI7−k

0k×k


with respect to basis (X1, ...,X7−k,Y1, ...,Yk).

4.

λ =−
(

2+ k
7− k

)
scalgN =−

(
2+ k
7− k

)
scalϕ .

Hence the gradient soliton is either steady or expanding; N7−k must have constant nonpositive

scalar curvature; and if ϕ is closed non-torsion-free, then N7−k must have constant negative scalar

curvature. It also follows from (3) and (4) that τ2 is determined by dimN and gN .

Proof. Since f is a Gaussian on the Euclidean factor only, we have Hess f (Yi,Yj) = cg(Yi,Y j) for

some constant c and Yi,Yj ∈ TqRk. Setting Yi = Yj = ∇ f and noting that ∇ f⌟τ = 0, by Proposition

4.2.1 (3) we get c∥∇ f∥2 = 3−1(scalϕ −λ )∥∇ f∥2. It follows that c = 3−1(scalϕ −λ ) since ∥∇ f∥>

0 as f is assumed to be non-constant. Using Proposition 4.2.1 (3) again yields τ2(Yi,Y j) = 0 for

any Yi,Yj ∈ TqRk. Furthermore, substituting c in Proposition 4.2.1 (1) yields

τ
2(Xi,X j) = (−2RicgN +2cg)(Xi,X j) ∀ Xi,X j ∈ TpN.

Thus τ2 has the matrix representation as in (3) with respect to the basis (X1, ...,X7−k,Y1, ...,Yk).

Taking the trace yields

trτ
2 =−2scalgN +

2
3
(7− k)(scalϕ +λ ).

Recall −1
2 trτ2 =−2scalϕ and so trτ2 = 4scalϕ . Putting this together with scalϕ = scalgN +scalgRk =

scalgN gives

4scalgN =−2scalgN +
2
3
(7− k)(scalgN −λ ),
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from which we get λ =−
(2+k

7−k

)
scalgN =−

(2+k
7−k

)
scalϕ . Since scalϕ ≤ 0 for closed G2-structures,

it follows that λ ≥ 0, i.e., the soliton is either steady or expanding. From the expression for λ , the

fact that scalϕ ≤ 0 also shows scalN ≤ 0.

Remark 4.2.3. The 0k×k block of τ2 in Corollary 4.2.2 (3) may be nonzero when f is not Gaussian.

We rule that τ2 cannot be a constant multiple of the metric. If so, then it would follow from

Proposition 4.2.1 (3) that f is a Gaussian on Rk and that gN is an Einstein metric. But if τ2 = cg,

for some nonzero c ∈R, then τ2(∇ f ,∇ f ) = c∥∇ f∥2. Since τ(∇ f ,∇ f ) = 0 by Lemma 3.3.3 (3), it

would follow that ∇ f = 0, a contradiction as we are considering non-trivial gradient solitons.

An open question remains whether there are any homogeneous closed gradient Laplacian soli-

tons on products other than the Gaussian. If such non-trivial examples do exist, it would be de-

sirable to obtain a classification of homogeneous closed gradient solitons on products. A more

fundamental question arises of whether there are homogeneous closed G2-structures on product

metrics N7−k ×Rk. [There are known examples outside the homogeneous setting (see [HN21] and

[HKP22]).] We investigate this question for our choice of model (fundamental) 3-form ϕ from

Chapter 2. The main observation is that to find closed G2-structures on product metrics N ×Rk,

one should consider dimN ≥ 4.

Case N1 ×R6: We assume (ei)
7
i=1 is an basis such that {e1} is the basis for TpN1 and such that the

3-form is the model form ϕ = e127+e347+e567+e135−e146−e236−e245 with respect (ei)i. Note

that on product N1×R6, the structure is given by dei = 0 for all i. It is easy to see that dϕ = 0 and

so N1 = S1 or R, i.e., the space is flat.

Case N2 ×R5: Let (ei)
7
i=1 be a basis for T(p,q)(N2 ×R5) where {e1,e2} and {e3,e4,e5,e6,e7} are

bases for TpN2 and TqR5, respectively. We have {e12} is a basis for Λ2(T ∗
p N2) and that the structure

is given by

de1 = ae12, de2 = be12, a,b ∈ R and dei = 0 ∀ i ̸= 1,2.
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Suppose the model 3-form ϕ is with respect to the basis (ei)i. Then

dϕ = ae1234 −ae1247 −be1236 −be1245 = 0

if and only if a = b = 0. Thus in order for ϕ to be closed in this basis, the space must be flat.

Case N3 ×R4: Let (ei)
7
i=1 be a basis for T(p,q)(N3 ×Rk) where {e1,e2,e3} and {e4,e5,e6,e7} are

bases for TpN3 and TqR4, respectively. We have {e12,e13,e23} is a basis for Λ2(T ∗
p N3) and that the

structure is given by 

de1 = a11e12 +a12e13 +a13e23

de2 = a21e12 +a22e13 +a23e23

de3 = a31e12 +a32e13 +a33e23

de4 = de5 = de6 = de7 = 0.

By straightforward computations,

dϕ = (−a12 −a23)e1237 +a31e1247 +a32e1347 +a33e2347

+(a11 −a33)e1235 −a11e1246 −a12e1346 −a13e2346

+(−a21 −a32)e1236 −a21e1245 −a22e1345 −a23e2345 = 0

if and only if ai j = 0 for all i, j = 1,2,3. We obtain again that in order for ϕ to be closed, the space

must be flat.

Case N4 ×R3: Let (ei)
7
i=1 be a basis for T(p,q)(N4 ×R3) where {e1,e2,e3,e4} and {e5,e6,e7} are

bases for TpN4 and TqR3, respectively. We have {e12,e13,e14,e23,e24,e34} is a basis for Λ2(T ∗
p N4)
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and that the structure is given by



de1 = a11e12 +a12e13 +a13e14 +a14e23 +a15e24 +a16e34

de2 = a21e12 +a22e13 +a23e14 +a24e23 +a25e24 +a26e34

de3 = a31e12 +a32e13 +a33e14 +a34e23 +a35e24 +a36e34

de4 = a41e12 +a42e13 +a43e14 +a44e23 +a45e24 +a46e34

de5 = de6 = de7 = 0.

Then by straightforward computations we get

dϕ = (−a13 −a25 +a31)e1247 +(−a12 −a24 −a41)e1237 +(a16 +a34 +a45)e2347

+(−a26 +a32 +a43)e1347 +(a11 −a34 −a42)e1235 +(−a13 −a36 −a22)e1345

+(−a15 −a24 +a46)e2345 +(−a35 −a21 −a43)e1245 +(−a11 +a45 −a33)e1246

+(−a12 +a46 +a23)e1346 +(−a14 +a25 +a36)e2346 +(a44 −a21 −a32)e1236 = 0,

which yields an undetermined system of 12 linear equations in 24 unknowns. We do not know if

N4 ×R3 can admit closed G2-structures.

Case N5 ×R2: A non-trivial example of a homogeneous product of the form N5 ×R2 admitting a

closed G2-structure is the space K7 = H(1,2)×R2 constructed in [Fer87] where

H(1,2) =




I2 X Z

0 1 y

0 0 1


∣∣∣∣∣X = (x1,x2)

t ,Z = (z1,z2)
t ,xi,z j,y ∈ R


is the generalized Heisenberg group. It is known that K7 is a connected nilpotent Lie group. We

show there is a Lie algebra isomorphism taking the dual basis ( f j) j to the basis (ei)i for (n2,ϕ2) in
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[Nic18]. We label the left-invariant 1-forms on K7:

f 1 = dx1, f 1 = dx2, f 3 = dy, f 4 = dz1 − x1dy, f 5 = dz2 − x2dy, f 6 = du1, f 7 = du2.

The structure on K7 is

d f 4 =− f 13, d f 5 =− f 23, and d f j = 0 ∀ j ̸= 4,5,

or equivalently, [ f1, f3] = f4, [ f2, f3] = f5, and [ fs, ft ] = 0 for all other s, t. The metric is given by

∑ j( f j)2. Let (ei)i be the basis for (n2,ϕ2) which has structure [e1,e2] = −e5 and [e1,e3] = −e6.

Then the Lie algebra isomorphism h : (n2,ϕ2)→ (K7,ϕK7) taking

e1 7→ f3,e2 7→ f1,e3 7→ f2,e4 7→ f7,e5 7→ f4,e6 7→ f5,e7 7→ f6

satisfies h ·ϕ2 = ϕK7 where ϕK7 = − f 147 + f 257 + f 156 + f 246 + f 345 + f 123 − f 367 is the closed

G2 structure on K7. We do not know whether K7 admits gradient Laplacian solitons.

Case N6 ×R: This is a special case of the construction of one-dimensional extensions discussed

in the next section (see Remark 5.2.2).
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5 | Almost abelian solvmanifolds admitting gra-

dient solitons

5.1 One-dimensional extensions

A G-homogeneous space (M = G/Gx,g) is a one-dimensional extension if there is a closed sub-

group H ⊂ G contaning Gx such that there is a surjective Lie group homomorphism G → (R,+)

with kernel H. The simplest case is when H is abelian. In this section, we study one-dimensional

extensions admitting closed G2-structures. We first recall the setup for one-dimensional extensions

in more detail.

Let H be a Lie group and (M = H/K,g) an H-homogeneous space. Let h and k be the Lie alge-

bras of H and K, respectively. The family of automorphisms {Φt}t ⊂ Aut(H) such that Φt(K) = K

induces a well defined family of diffeomorphisms {φt}t ⊂ Diff(H/K) given by

φt(hK) = Φt(h)K ∀ h ∈ H.

We fix an Ad(K)-invariant decomposition h = p⊕ k. We can identify p ≡ TxM via the orthogonal

projection h→ p.

Now suppose H is a Lie group with (N = H/K,h) a H-homogeneous space. Fix a deriva-

tion D ∈ Der(h) that preserves K, an isotropy subgroup at some point x ∈ N. To obtain a one-
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dimensional extension of (N,h), we consider the Lie algebra

g= h⊕D Rξ

with Lie bracket given by

adξ (X) = D(X) and adY (X) = adhY (X) ∀ X ,Y ∈ h.

Let G be the simply-connected Lie group with Lie algebra g. Then

(i) G ⊃ H, a codimension one normal subgroup of G as adξ (X) ∈ h for all X ∈ h;

(ii) G = H ⋉R;

(iii) any Ad(K)-invariant decomposition h = p⊕ k yields a corresponding Ad(K)-invariant de-

composition g= q⊕ k= (p⊕Rξ )⊕ k;

(iv) G-invariant metrics are identified with restrictions of Ad(K)-invariant inner products on g to

q.

The G-homoegeneous space (M = G/K,g) where the metric satisfies g
∣∣
p
= h, g(ξ ,X) = 0 for all

X ∈ p, and g(ξ ,ξ ) = 1 is the one-dimensional extension of (N,h). The one-dimensional extensions

obtained in this way are equivalent to the ones described at beginning of this section (see [PW22]).

The main result of this chapter is the following.

Theorem 5.1.1. If (ϕ,∇ f ,λ ) is a closed non-torsion-free gradient Laplacian soliton on Lie group

GD with Lie algebra g = h⊕D Re7 and h is a codimension-one abelian ideal, then it must be a

product N ×Rk and f is constant on N.

Proof Outline. Suppose GD admits a gradient Laplacian soliton (ϕ,∇ f ,λ ). If GD is not a product

metric N ×Rk with f constant on N, then by the Structure Theorem the potential function is either

of the form f = ar+b or f (x,y)= ar(x)+v(y) and either ∇r =±e7 or ∇r ̸=±e7. If ∇r =±e7, then
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by Theorem 5.3.4, the space is flat, contradicting ϕ being closed non-torsion-free. If ∇r ̸= ±e7,

then by Theorem 5.4.1, the space is also flat, contradicting ϕ being closed non-torsion-free. Thus

by the Structure Theorem, GD must be a product N ×Rk with f constant on N.

We now include some facts and set some notation needed for subsequent results of this chapter.

Connections between Ricci solitons and Einstein metrics on such homogeneous spaces have been

studied by He-Petersen-Wylie in [HPW15]. We will need [[HPW15], Lemma 2.9].

Lemma 5.1.2 ([HPW15], Lemma 2.9). The Ricci tensor of one-dimensional extensions (M,g) with

Lie algebra of the form g= h⊕D Rξ is given by

1. Ric(ξ ,ξ ) =− tr(S2)

2. Ric(X ,ξ ) =−div(S)

3. Ric(X ,X) = RicN(X ,X)− (trS)h(S(X),X)−h([S,A](X),X),

where S = (D+Dt)/2 and A = (D−Dt)/2, the symmetric and skew-symmetric parts of D, respec-

tively.

Recall that an almost-Hermitian structure on a complex vector space h is a pair (g,J) where J

is an almost-complex structure on h, i.e., J2 =−id, and g is a metric such that g(JX ,JY ) = g(X ,Y )

for any X ,Y ∈ h. An SU(n)-structure on a Lie algebra h of dimension 2n is a triple (g,J,Ψ)

such that (g,J) is an almost-Hermitian structure on h and Ψ = ρ++ iρ− is a complex volume

(n,0)-form such that (−1)n(n−1)/2 ( i
2

)n
Ψ∧Ψ = 1

n!ω
n, where Ψ is the conjugate of Ψ and ω is the

Kähler 2-form corresponding to (g,J). It is known that if h has an SU(3)-structure, then there is

an orthonormal basis {e1, ...,e6} for h such that the SU(3)-structure is characterized by the pair of

forms (ω,ρ+) ∈ Λ2h∗×Λ3h∗ where

ω = e12 + e34 + e56 and ρ
+ = e135 − e146 − e236 − e245.

We note that the complex volume (3,0)-form Ψ = ρ++ iρ− can be written as Ψ = (e1 + ie2)∧

(e3+ ie4)∧(e5+ ie6) and that its complex part is ρ− =−e246+e235+e145+e136. In fact, classes of
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SU(3)-structures can be defined in terms of (ω,ρ+,ρ−). We are interested in symplectic half-flat

SU(3)-structures, i.e., the class of SU(3)-structures where (ω,ρ+) are closed.

Now let g = h⊕D Re7 be the Lie algebra of Lie group M. If h has an SU(3)-structure, then

ϕ = ω ∧ e7 +ρ+ = e127 + e347 + e567 + e135 − e146 − e236 − e245 is a G2-structure on M. Manero

showed in [Man20] that h⊂ g admitting symplectic half-flat SU(3)-structure is equivalent to ϕ =

ω ∧e7+ρ+ being closed whenever D is the real representation of some A ∈ sl(3,C). [Manero uses

the classification of symplectic half-flat SU(3)-structures on solvable Lie algebra h to construct

new examples of closed G2-structures in [Man20]].

If in addition h is an abelian ideal, we call g almost abelian and M an almost abelian solvman-

ifold. The Lie algebras for almost abelian solvmanifolds are completely determined by derivation

D : h→ h defined by

D(ei) = ade7

∣∣
h
(ei) = [e7,ei

∣∣
h
].

[Note: D coincides with A in [Lau17a].] For almost abelian solvmanifolds, ϕ = ω ∧ e7 +ρ+ is

closed if and only if the derivation D is the real representation of some element A ∈ sl(3,C) (see

[Fre13] and [Lau17a]).

Notation: We write (GD,g) to denote the Lie group with Lie algebra g= h⊕D Rξ and µD = [·, ·]D

to denote the Lie bracket of g obtained from D. We write RicD and scalD for the Ricci and scalar

curvatures from the metric g, respectively, where g is the extension of the metric h on N. We also

write τD and QD for the torsion form and unique symmetric operator from 3.2 corresponding to

(GD,ϕ) when ϕ is closed.

We now collect some facts regarding dg : Λℓg∗ → Λℓ+1g∗ and dh : Λkh∗ → Λk+1h∗, the exterior

derivatives (Chevalley-Eilenberg differentials) on g and h, respectively, which will be used in later

computations. These facts are included or deduced from [[Lau17a], Lemma 5.12]. It is known that

if ω is an invariant k-form on a Lie group, then ω(X1, ...,Xk) is a constant. In particular, if γ is a

1-form, then by [[Lee13], Proposition 2.19]

dγ(X ,Y ) = Xγ(Y )−Y γ(X)− γ([X ,Y ]),
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and dγ(X ,Y ) = −γ([X ,Y ]) if γ is invariant. Let (ei)i be a basis of left-invariant vector fields and

(ei)i be its co-basis of left-invariant 1-forms. Since ei is an invariant 1-form,

dei(e j,ek) =−ei([e j,ek]).

Then the structure equations are

[e j,ek] = cℓjkeℓ,

where cℓjk are the structure constants. It follows that

dei =−ci
jke jk.

Also recall the map θ : gl(h)→ End(Λkh∗) is the representation obtained as the derivative of the

natural GL(h)-action h · γ = (h−1)∗γ:

θ(D)γ =−γ(D·, ..., ·)−·· ·− γ(·, ...,D·) ∀ γ ∈ Λ
kh∗.

Lemma 5.1.3. Given Lie algebra g = h⊕D Re7, where derivation D : h→ h defined by D(X) =

[e7,X ] for all X ∈ h determines the structure equations, the following holds:

(i) dge7 = 0.

(ii) dgγ = dhγ +(−1)k(θ(D)(γ))∧ e7 for any γ ∈ Λkh∗.

(iii) dg(γ ∧ e7) = dhγ ∧ e7 for any γ ∈ Λkh∗.

(iv) For ϕ = ω ∧ e7 +ρ+,

dgϕ = dhω ∧ e7 +(dhρ
+− (θ(D)ρ+)∧ e7).



74

Thus ϕ is closed if and only if

dhω = 0,dhρ
+ = 0, and θ(D)ρ+ = 0.

(v) θ(D)ρ+ = 0 if and only if θ(D)ρ− = 0, if and only if D ∈ sl(3,C).

(vi) If tr(D) = 0, then θ(D)∗h =−∗h θ(Dt) on Λh∗.

Proof. Statement (i) follows from the fact that [ei,e j] ∈ h for all i, j; (ii) follows from [[Lee13],

Proposition 2.19] and the fact that h is not assumed to be abelian, hence the term dhγ appears; (iii)

follows from (ii); (iv) follows from (i)-(iii). Statements (v) and (vi) are [[Lau17a], Lemma 5.12

(iv) and (v)].

Remark 5.1.4. Note the second term in (ii) is dAγ in [[Lau17a], Lemma 5.12 (ii)].

5.2 Matrix formulas for Qϕ and related operators

The rest of this chapter consists of observations culminating in the propositions used to prove

Theorem 5.1.1. We fix some notation for the statements to follow. We consider only Lie algebras

g = h⊕D Re7 where the derivation D : h → h given by D(X) = [e7,X ] for all X ∈ h is the real

representation of some A ∈ sl(3,C). Let S be the symmetrization of D, i.e., S = (D+Dt)/2. The

hypothesis that the simply-connected Lie group (GD,ϕ) is a closed G2-structure in the following

statements can be replaced by (h,ω,ρ+) being a symplectic half-flat SU(3)-structure by the result

of Manero. We first obtain general matrix formulas for the operators in 3.2 in the case of one-

dimensional extensions. These matrix formulas generalize matrix formulas in the almost abelian

case found in [Lau17a] to the not almost abelian case.

Proposition 5.2.1. Suppose GD has Lie algebra of the form g = h⊕D Re7 and admits closed G2-

structure ϕ . Then with respect to an orthornomal basis (ei)
7
i=1 where h= Span{e1, ...,e6}, we have

the following:
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1. τ2
D =

−(D+Dt)2 + J(D+Dt)B+BJ(D+Dt)+B2

0

 where B = ∗hdhρ−.

2. The matrix representation for RicD is

RicD =

RicH

0

+

1
2 [D,Dt ]

−1
4 tr((D+Dt)2)

−P,

where P =



0 · · · 0 div(S)(e1)

... . . . ...
...

0 · · · 0 div(S)(e6)

div(S)(e1) · · · div(S)(e6) 0


.

3. scalD = scalH − tr(S2).

4. QD =

QH

qe7

−P where

QH =RicH +
1
2
[D,Dt ]− 1

4
tr(D+Dt)(D+Dt)

+
1
2
[−(D+Dt)2 + J(D+Dt)B+BJ(D+Dt)+B2]

− 1
3
[scalH −(trS)2 − tr(S2)]I6×6,

and qe7 =−1
3 scalH +1

3(trS)2 − 2
3 tr(S2).

Proof. Recall there exists an orthonormal basis (ei)
7
i=1 such that h= Span(ei)

6
i=1 and ϕ = ω ∧e7+

ρ+. Since the structure is determined by D, we write τg = τD. We compute the intrinsic torsion

τg = −∗ dg ∗ϕ for closed G2-structure ϕ using linear algebra properties of ∗ on Λkg∗ and ∗h on

Λkh∗ from [[Lau17a], Lemma 5.11]. Taking the Hodge star of ϕ we get

∗ϕ = ∗(ω ∧ e7)+∗ρ
+ = (−1)2 ∗h ω +∗hρ

+∧ e7 =
1
2

ω ∧ω +ρ
−∧ e7,



76

where the first equality follows from [[Lau17a], Lemma 5.11 (i) and (ii)], while the second equality

follows from [[Lau17a], Lemma 5.11 (iii) and (iv)]. Taking the differential yields

dg(∗ϕ) = dg(
1
2

ω ∧ω)+dg(ρ−∧ e7) =
1
2

dg(ω ∧ω)+dhρ
−∧ e7

as ρ− ∈ Λ3h∗. The first term in the last expression is

1
2

dg(ω ∧ω) =
1
2
[dh(ω ∧ω)+(−1)4+1(θ(D)(ω ∧ω))∧ e7]

=
1
2
[(dhω ∧ω +(−1)2

ω ∧dhω)− (θ(D)(ω ∧ω))∧ e7]

=−1
2
(θ(D)(ω ∧ω))∧ e7

=−θ(D)(
1
2

ω ∧ω)∧ e7

=−θ(D)∗h ω ∧ e7

= ∗hθ(Dt)ω ∧ e7,

where we used dhω = 0 in the third equality, [[Lau17a], Lemma 5.11 (iii)] in the fifth, and

[[Lau17a], Lemma 5.1.2 (vi)] in the last as trD = 0. If dhρ−∧ e7 ̸= 0, we get

d ∗ϕ =−∗h θ(Dt)ω ∧ e7 +dhρ
−∧ e7.

Taking the Hodge star again gives

∗dg ∗ϕ = ∗(−∗h θ(Dt)ω ∧ e7 +dhρ
−∧ e7)

= (−1)4 ∗h (−∗h θ(Dt)ω)+(−1)4 ∗h dhρ
−

=−∗2
h θ(Dt)ω +∗hdhρ

−

=−(−1)2
θ(Dt)ω +∗hdhρ

−

=−θ(Dt)ω +∗hdhρ
−.
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where we used [[Lau17a], Lemma 5.11 (ii)] for the second equality and [[Lau17a], Lemma 5.11

(v)] for the second to last equality. Then

τD =−∗dg ∗ϕ = θ(Dt)ω −∗hdhρ
−.

Note, ρ− ∈ Λ3h∗ implies dhρ− ∈ Λ4h∗. Taking the Hodge star yields ∗hdhρ− ∈ Λ2h∗, i.e., ∗hdhρ−

is a 2-form on h∗ and thus can be written as a matrix with respect to 2-forms (ei j)i, j; i, j = 1, ...,6.

Set B := ∗hdhρ−. Then the matrix representation of the torsion 2-form is

τD =

−J(D+Dt)

0

−

B

0

 .

Taking the square of τD yields the matrix representation of τ2
D.

We use Lemma 5.1.2 to obtain RicD. Let gH denote the metric on H corresponding to h. By

Lemma 5.1.2 (1) with ξ = e7, we have

RicD(e7,e7) =− tr(S2).

Also, Lemma 5.1.2 (2) and symmetry of RicD yields

RicD(e7,ei) = RicD(ei,e7) =−div(S)(ei) ∀ i = 1, ...,6.

Note −[S,A] = [A,S] = 1
2 [D,Dt ]. Then for i, j = 1, ...,6, Lemma 5.1.2 (3) gives

RicD(ei,e j) =RicH(ei,e j)

− 1
4

tr(D+Dt)gH((D+Dt)(ei),e j)+gH(
1
2
[D,Dt ](ei),e j).

Putting these observations together and using the fact that trD = trDt = 0 yields the matrix repre-
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sentation of RicD.

The expression for scalD follows from taking the trace of RicD and the fact that tr[D,Dt ] = 0.

The matrix formula for QD follows from equation 3.2 and the preceding results.

Remark 5.2.2. A one-dimensional extension is a product metric if and only if the derivation D

is anti-symmetric. By the discussion preceding Proposition 5.2.1, a product metric N6 ×R has a

closed G2-structure if N6 admits an anti-symmetric derivation and a symplectic half-flat SU(3)-

structure. We do not know of any examples of symplectic half-flat SU(3) structures that admit an

anti-symmetric derivation. Moreover, in order for such a metric to be a closed gradient Laplacian

soliton, by Proposition 5.2.1, we see that RicN −1
2B2 must be a constant multiple of the metric gN .

5.3 Structure 2(b) with ∇r = e7

We first prove a proposition regarding closed gradient Laplacian solitons with potential function of

the form f = ar+b on Lie groups with Lie algebra h⊕D Re7, where h is a general Lie subalgebra

and ∇r = e7.

Proposition 5.3.1. Suppose GD has Lie algebra of the form g = h⊕D Re7 and admits closed G2-

structure ϕ . If

(ϕ = ω ∧ e7 +ρ
+,∇ f ,λ )

is a closed gradient Laplacian soliton where f (r) = ar+b and ∇r = e7, then

1. div(S)(X) = 0 ∀ X ∈ h.

2. div(S)(∇r) = div(S)(e7) = tr(S2).

3. λ = scalH +2tr(S2).

4. ∆ f =−2tr(JSB)− 1
2 trB2 −4tr(S2).
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Proof. By Proposition 5.2.1 (2) we have

RicD =

RicH

0

+

1
2 [D,Dt ]

−1
4 tr((D+Dt)2)

−P,

where P is the matrix with 0 entries for all (i, j) except for the (i,7),(7, i)-entries, where it is

div(S)(ei) for i = 1, ...,6. Since Hess f (∇r) = a∇∇r∇r = 0, the gradient Laplacian soliton equation

applied to ∇r = e7 becomes

0 =−RicD(e7)−
1
2

τ
2
D(e7)+

1
3
(scalD−λ )I(e7) (5.1)

By Lemma 5.1.2 (1) and equation (5.1), we get

−div(S)(ei) = RicD(e7,ei)

=−1
2

g(τ2
D(e7)︸ ︷︷ ︸
=0

,ei)+
1
3
(scalD−λ )g(e7,ei)︸ ︷︷ ︸

=0

= 0

for i = 1, ...,6. Thus

div(S)(X) = 0 ∀ X ∈ h.

Recall that by [[HPW15], Proposition 2.7], the shape operator T (X) = ∇
GD
X e7 is related to

symmetrization S by T =−S. So with e7 = ∇r, we have

S(X) =−T (X) =−∇X ∇r.

Then

div(S)(∇r) =−RicD(∇r,∇r)−D∇r(∆r) =−RicD(∇r,∇r) =−RicD(e7,e7) = tr(S2),

where the first equality follows from a Bochner formula (see Appendix B.4); the second equality
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follows from ∆r being constant on one-dimensional extensions; and the last equality follows from

Lemma 5.1.2 (1).

The expression for λ is obtained from solving for λ in equation (5.1) and using the expression

for scalD from Proposition 5.2.1 (3). Finally, ∆ f is obtained from taking the trace of the soliton

equation Hess f =−QD − (1/3)λ I and substituting the expression in (3) for λ .

Remark 5.3.2. Equation (5.1) in the proof of Proposition 5.3.1 requires that the gradient soliton has

potential function of the form f = ar+b and that ∇r = e7. In particular, the hypothesis ∇r = e7 is

needed to obtain the explicit expressions for λ and ∆ f in terms of S.

We obtain the following corollary.

Corollary 5.3.3. If h is an abelian ideal in addition to the hypotheses of Proposition 5.3.1, then

λ =−2scalD .

That is, such a gradient soliton must be expanding and is steady if and only if ϕ is torsion-free.

Moreover,

(i) ∆ f = 4scalD;

(ii) −1
2 divτ2

D(ei) =


0 i = 1, ...,6

− tr(S2) = scalD i = 7; (e7 = ∇r)
.

Proof. In the setting of almost abelian solvmanifolds admitting closed G2-structure ϕ , the terms

B, trD, trDt , trS,RicH ,scalH are all 0. The formulas for λ and ∆ f immediately follow from these

observations and Proposition 5.3.1. Since scalH = 0, scalD = − tr(S2). By the Key Lemma and

Lemma 5.1.2 (1) and Lemma 5.1.2 (2), we have

−1
2

divτ
2
D(ei) = RicD(∇r,ei) =−div(S)(ei),

which by Proposition 5.3.1 is 0 for i = 1, ...,6 and − tr(S2) for i = 7.
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Theorem 5.3.4. Let GD be a Lie group with Lie algebra of the form g = h⊕D Re7 where h is a

codimension-one abelian ideal. Suppose GD admits closed gradient Laplacian soliton

(ϕ = ω ∧ e7 +ρ
+,∇ f ,λ ).

Suppose the potential function is either of the form f = ar + b or f (x,y) = ar(x) + v(y) with

∇r = e7. Then GD is flat, ϕ is torsion-free, and the soliton is steady.

Proof. In the case of almost abelian solvmanifolds, by Proposition 5.2.1 we have

RicD =

1
2 [D,Dt ]

−1
4 tr(D+Dt)2

 and τ
2
D =

−(D+Dt)2

0

 .

[These matrix expressions also follow from results of Lauret (see [Arr13, Lau11], and [Lau17a]).]

Suppose (ϕ,∇ f ,λ ) is a gradient Laplacian soliton where the potential function is of the form

f = ar+b with ∇r = e7. Since h is abelian, Corollary 5.3.3 says that λ =−2scalD. Substituting

this expression for λ in the soliton equation gives

Hess f = aHessr =−RicD−1
2

τ
2
D + scalD I

=−

1
2 [D,Dt ]

scalD

− 1
2

−(D+Dt)2

0

+ scalD I7×7

Taking the trace yields

∆ f =−scalD+2tr(S2)+7scalD = 4scalD

where we used that tr[D,Dt ] = 0. By Proposition 5.2.1 (3), scalD =− tr(S2), and so

∆ f =−4tr(S2).
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Recall the shape operator T = ∇·e7 =−S and so

−S(X) = T (X) = ∇X e7 = ∇X ∇r =
1
a

∇X ∇ f =
1
a

Hess f (X).

Hence Hess f =−aS and taking the trace yields ∆ f =−a tr(S) = 0, where the last equality follows

from tr(D) = tr(Dt) = 0. Putting this together with the expression obtained for ∆ f above gives

tr(S2) = 0. Thus S = 0 and by Proposition 5.2.1 (3) we get scalD = 0.

Note S = 0 if and only if D =−Dt , i.e., D is antisymmetric. This together with tr(S2) = 0 gives

RicD = 0, i.e., the space is Ricci-flat. By a result of Alekseevskiı̆-Kimel′fel′d in [AK75], Ricci-flat

homogeneous spaces are flat, and so (GD,gϕ) is flat. Moreover, λ =−2scalD = 0, i.e., the soliton

is steady. Furthermore, since scalD = 0, ϕ is torsion-free.

In the case where the potential function is of the form f (x,y) = ar(x)+ v(y), recall that the

function v on the Euclidean factor is in {Hessv = 0}. Then Hess f = aHessr and so we can run

through the same arguments above to get that the space is flat, the soliton is steady, and ϕ is

torsion-free.

Remark 5.3.5. If we start with a flat space, we can choose potential function f = ar+b such that

the gradient Laplacian soliton equation is satisfied by taking r to be the coordinate of one of the

unit basis vectors, ∇r = ei, and λ = 0. One can also construct a Gaussian on flat space R7 (see,

e.g., the case n1 in Chapter 4).

5.4 Structure 2(b) when ∇r ̸=±e7

We now show that if an almost abelian solvmanifold has Lie algebra decompositions h⊕D Re7 =

h⊕D′ R∇r, with potential function f = ar+b where ∇r ̸=±e7, then the space is flat, ϕ is torsion-

free, and the soliton is steady. The idea for the proof is as follows. By using observations from

the two decompositions, properties of the Hessian, and the gradient soliton equation, we show that

the symmetrization of D is zero, i.e., we show that S = 0. The rest of the proof follows similar
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arguments as in the proof of Theorem 5.3.4.

Theorem 5.4.1. Let D and D′ be derivations of 6-dimensional subalgebras h and h′ of a 7-

dimensional Lie algebra (g, [·, ·]g) defined by D(X) = [e7,X ] and D′(Y ) = [∇r,Y ], respectively.

Suppose h is codimension-one abelian ideal. Let M be the Lie group corresponding to Lie algebra

g with decompositions

h⊕D Re7 = h′⊕D′ R∇r,

where ∇r ̸= ±e7. Suppose (M,gϕ) admits a closed gradient Laplacian soliton (ϕ,∇ f ,λ ) with

potential function either of the form f = ar+ b or f (x,y) = ar(x)+ v(y). Then (M,gϕ) must be

flat, ϕ is torsion-free, and the soliton is steady.

Proof. To prove this, we make several observations leading to tr(S2) = 0. For any two vectors

X ,Y ∈ g, we can write X = h1 +ae7 and Y = h2 +be7. In the case of decomposition h⊕D Re7, we

have

[X ,Y ] = [h1,h2]+a[h1,e7]+b[e7,h2]+ab[e7,e7]

= [h1,h2]−aD(h1)+bD(h2) ∈ h.

By similar arguments in the case of decomposition h′ ⊕D′ R∇r, we also get [X ,Y ] ∈ h′. Thus

[X ,Y ] ∈ h∩h′ ∀ X ,Y ∈ g. This shows that D : h→ h∩h′ ⊂ h and D′ : h′ → h∩h′. In particular,

[e7,∇r], [∇r,e7] ∈ h∩h′.

Note that

Hess f (e7,e7) = g(∇e7∇ f ,e7) = ag(∇e7∇r,e7)

= ag([e7,∇r]+∇∇re7,e7) =
∗ ag(∇∇re7,e7) =

a
2

D∇r∥e7∥2 = 0,

where equality ∗ follows from the fact that [e7,∇r]⊥ e7 as [e7,∇r]∈ h∩h′ ⊂ h. So Hess f (e7,e7) =
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0. Then from the soliton equation,

0 = Hess f (e7,e7) =−RicD(e7,e7)−
1
2

τ
2
D(e7,e7)+

1
3
(scalD−λ ).

Since τ2
D(e7) = 0 by Proposition 5.2.1 (1), the preceding soliton equation holds if and only if

1
3
(scalD−λ ) = RicD(e7,e7) =− tr(S2). (5.2)

Moreover, since − tr(S2) =−1
4 tr(D+Dt)2 = scalD, we get

λ =−2scalD .

We claim e7 ∈ kerHessr. For i ̸= 7, we also have from the soliton equation that

aHessr(e7,ei) = Hess f (e7,ei) =−g(RicD(e7),ei)−
1
2

g(τ2
D(e7),ei)+g(

1
3
(scalD−λ )e7,ei)

= g(−(− tr(S2)e7)− tr(S2)e7,ei) = 0.

Thus e7 ∈ kerHessr and we have Span{e7,∇r} ⊂ kerHessr.

Recall h = Span{e1, ...,e6}. Consider h∩ Span{∇r,e7}, which is at least a one-dimensional

subspace containing ∇r, and suppose η is in this intersection. Then we can write η = α∇r+βe7

for some α,β ∈ R. If η = 0, since ∇r and e7 are both of unit length, we would get ∇r = ±e7,

contradicting our assumption. So η ̸= 0.

We claim that both D(η),Dt(η) are 0. To show this, we first show Dt(η) = 0. We then

show S(η) = 0, from which we get D(η) = 0. Since η ∈ h and D : h → h∩ h′, it follows that

D(η) ∈ h∩h′. By assumption, e7 ⊥ h and so e7 ⊥ h∩h′. Similarly, ∇r ⊥ h∩h′. Hence D(η)⊥ η .

More generally, D(v) ⊥ η for any v ∈ g. This means 0 = g(D(v),η) = g(v,Dt(η)) for any v ∈ g.

Thus Dt(η) = 0.

To show S(η) = 0, we need to following.
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1. ∇e7e7 = 0 since by Koszul formula g(∇e7e7,e j) = g([e j,e7],e7) = 0 for all j = 1, ...,6 as

[e j,e7] ∈ h for all j = 1, ...,6; clearly g(∇e7e7,e7) = 0.

2. We show ∇∇re7 = 0. Let X be any invariant vector field. Then

g(∇∇re7,X) = ∇∇r(g(e7,X)︸ ︷︷ ︸
constant

)−g(e7,∇∇rX)

=−g(e7,∇∇rX)

=−[g(e7, [∇r,X ]︸ ︷︷ ︸
∈h∩h′

)+g(e7,∇X ∇r)]

=−g(∇X ∇r,e7) =−g(∇e7∇r,X) = 0,

where the last equality follows from e7 ∈ kerHessr.

Now recall that the shape operator corresponding to decomposition h⊕D Re7 is

T (X) = ∇X e7 =−S(X) =−2−1(D+Dt)(X).

Then

−S(η) = T (η) = ∇ηe7 = ∇α∇r+βe7e7 = α∇∇re7 +β∇e7e7 = 0.

Thus S(η) = 0. This together with Dt(η) = 0 yields D(η) = 0.

The soliton equation applied to η is

Hess f (η ,η) =−RicD(η ,η)− 1
2

τ
2
D(η ,η)+

1
3
(scalD−λ )g(η ,η).

Since η ∈ h, the operators RicD and τ2
D applied η is equal to the restriction to their 6×6 diagonal

blocks applied to η . These blocks only involve D and Dt and since D(η) = Dt(η) = 0, these

operators applied to η are 0. So RicD(η ,η),τ2
D(η ,η) are both 0. As η ∈ Span{∇r,e7}⊂ kerHessr,

Hess f (η ,η) = 0. We get

0 =
1
3
(scalD−λ )g(η ,η).
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Since η ̸= 0, g(η ,η) = ∥η∥2 > 0. So for the equality to hold, we must have 1
3(scalD−λ ) = 0,

from which it follows that tr(S2) = 0 by 5.2. We can now apply the same arguments as in the proof

of Theorem 5.3.4 to conclude that the space is flat, ϕ is torsion-free, and the soliton is steady.
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6 | The modified conformal Hessian

6.1 Manifolds with density and weighted sectional curvature

Riemannian manifolds (M,g) with smooth density e− f were first studied by Lichnerowicz and fur-

ther developed by Bakry-Émery and others. These manifolds are also referred to as manifolds with

smooth measure µ , denoted (M,g,µ), since choosing a smooth measure µ is equivalent to choos-

ing a density function. Wylie in [Wyl15] introduced the notion of weighted sectional curvature for

Riemannian manfiolds (M,g) with density ϕ:

secϕ(U,V ) = sec(U,V )+Hessϕ(U,V )+dϕ(U)2 = g(R∇ϕ

(V,U)U,V ),

where ∇ϕ = ∇g,ϕ and R∇ϕ

are the weighted Levi-Civita connection (in metric g with density ϕ)

and weighted Riemann curvature tensor, respectively. They are given by

∇
ϕ

XY = ∇XY −dϕ(X)Y −dϕ(Y )X ,

where ∇ is the Levi-Civita connection coming from the fixed metric g and

R∇ϕ

(X ,Y )Z = ∇
ϕ

X ∇
ϕ

Y Z −∇
ϕ

Y ∇
ϕ

X Z −∇
ϕ

[X ,Y ]Z.

We note that the definition of weighted sectional curvature comes from its relationship with the 1-

Bakry-Émery Ricci tensor Ric1
f =Ric∇ϕ

. [In [KWY19], the corresponding measure µ = e−(n+1)ϕd volg;



88

we also write ∇ϕ = ∇g,ϕ = ∇g,µ .]

Comparison theory for Ricci curvature on manifolds with density are studied in [WY16] and

[Wyl16]. In particular, Wylie-Yeroshkin study manifolds with density starting with the general

torsion-free affine connection ∇α given by ∇α
XY = ∇XY −α(X)Y −α(Y )X where α is a 1-form.

The motivation for studying ∇α is due to the fact that it is projectively equivalent to ∇, i.e., ∇α

has the same geodesics as ∇ up to reparametrization. Comparison theory for sectional curvature

on manifolds with density is studied by Kennard-Wylie-Yeroshkin in [KWY19]. It turns out many

classical comparison results hold with weighted sectional and weighted Ricci curvature bounds.

We refer the reader to [KW17, KWY19, WY16, Wyl15], and [Wyl16] for details.

Given a manifold with density (M,g,ϕ), consider a conformal metric g̃ = e−2ϕg. It is well

known that for any smooth function u, Hessg̃ u and Hessg u are related via

Hessg̃ u = Hessg u+dϕ ⊗du+du⊗dϕ −g(∇ϕ,∇u)g. (6.1)

A nice property in the unweighted setting is that ∇r is in kerHessg r whenever r is some distance

function in metric g. However, Kennard-Wylie-Yeroshkin observed via (6.1) that this is not true

in the weighted setting, i.e., ∇r is not in kerHessg̃ r. To remedy this, Kennard-Wylie-Yeroshkin

considered the following lower order perturbation of Hessg̃ r,

Hessg̃ r−dϕ ⊗dr−dr⊗dϕ. (6.2)

for which ∇r is at least an eigenvector (∇u is a nullvector when u is a modified distance function).

Kennard-Wylie-Yeroshkin also observed that equation (6.2) for a general smooth function u has

nice convexity properties along geodesics, namely,

(Hessg̃ u−dϕ ⊗du−du⊗dϕ)(σ̃ ′, σ̃ ′) = u′′−2ϕ
′u′, (6.3)

where σ̃ is a g̃-geodesic; the prime notation denotes the derivative with respect to time parameter
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t. To see this, note that

Hessg̃ u(σ̃ ′, σ̃ ′) = g̃(∇̃σ̃ ′(t)∇̃u(σ̃(t)), σ̃ ′(t)) = Dt(g̃(∇̃u(σ̃(t)), σ̃ ′(t)))

=
d
dt

(
d
dt
(u◦ σ̃(t))

)
=

d2(u◦ σ̃(t))
dt2 =

d2u
dt2

where the second equality follows from product rule and the fact that σ̃ is a g̃-geodesic so that

∇̃σ̃ ′σ̃ ′ = 0. The last expression is shorthand notation for the second derivative of the composition

u◦ σ̃ : [0,∞)→ R with respect to t. We also have by chain rule that

du(σ̃ ′) = g(∇u(σ(t)), σ̃ ′(t)) =
d
dt
(u◦ σ̃(t)) =

du
dt

.

Similarly, dϕ(σ̃ ′) =
dϕ

dt
.

We now define the modified conformal Hessian and set notation for it.

Definition 6.1.1. Let (M,g,ϕ) be a manifold with density and let g̃= e−2ϕg be a conformal metric.

The modified conformal Hessian of a smooth function u on M is

MCHessu := Hessg̃ u−dϕ ⊗du−du⊗dϕ.

Remark 6.1.2. Many of the results in [KWY19] assume u is a modified distance function. In fact,

the results in subsequent sections assume u is the modified distance function u= h◦rp =
1
2r2

p where

rp : M → (0,∞) given by rp(x)= dg(x, p)= |xp|g is the distance function to p and h : [0,∞)→ [0,∞)

is defined by x 7→ 1
2

x2 so that h(0) = h′(0) = 0, and h′(r)> 0 for r > 0.

We list some key observations from [KWY19] and [Wyl15].

(a) For a distance function r in metric g, the orthogonal complement of ∇r is a well defined

conformal class as conformal change preserves angles and only scales ∇r.

(b) The weighted connection ∇ϕ is incompatible with g. Note that the two ways of expressing the
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Riemannian Hessian in terms of the Levi-Civita connection ∇ are equal:

Hessu(U,V ) = g(∇U ∇u,V ) = (∇U du)(V ).

Kennard-Wylie-Yeroshkin observed that when we replace the Levi-Civita connection ∇ with

the weighted connection ∇ϕ , the two expressions yield different tensors:

g(∇ϕ

U ∇u,V ) = g(∇U ∇u,V )−dϕ(∇u,V )−dϕ(∇u)g(U,V )

= Hessu(U,V )−dϕ(U)du(V )−dϕ(∇u)g(U,V );

(∇
ϕ

U du)(V ) = DU du(V )−du(∇ϕ

UV )

= DU du(V )−du(∇UV )+dϕ(U)du(V )+dϕ(V )du(U)

= Hessu(U,V )+dϕ(U)du(V )+dϕ(V )du(U).

(c) Conformal change from (g,ϕ) to (g̃,−ϕ) is an involution on the space of Riemannian metrics

with density that preserves positivity or negativity of secϕ .

(d) Let u be a distance function. Kennard-Wylie-Yeroshkin observed that weighted curvatures

should control the modified Hessian of distance functions from the formulas

Hessg̃ u(U,V ) = g(∇ϕ

U ∇u,V )

for U,V ⊥ ∇u and

∇
g̃,−ϕ
· (·) = Hessg̃ u−dϕ ⊗du−du⊗dϕ,

where ∇g̃,−ϕ is the weighted connection in the conformal metric g̃ and density ϕ .

An instance of observation (d) is [[KWY19], Theorem 3.3], which states that for a sim-

ply connected manifold with density (M,g,ϕ) with secϕ ≤ 0, the modified conformal Hessian
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MCHessup > 0 for all p ∈ M, where up is a modified distance function to p. We ask the following

related question.

Question. Given a Riemannian manifold with density (M,g,ϕ) with secϕ ≥ 0, what conditions are

necessary such that

MCHessu ≤ K

for some constant K? The hope is that in obtaining such conditions, we would have some control

over MCHessu, which may in turn give us a bound on the number of critical points of modified

distance functions to a point p ∈ M within some open ball centered at p in the weighted setting

(i.e., a version of Gromov’s critical point theorem also known as the “Baby Soul Theorem” in the

weighted setting). Proving this may also give us some insight on how to approach Toponogov’s

comparison theorem in the weighted setting (see [[Pet16], Theorem 12.2.2 and Lemma 12.4.2]).

We now include a few results from [KWY19] which will be used in the next section.

Proposition 6.1.3 ([KWY19], Proposition 3.2). Let u be a modified distance function. At points

where u is smooth,

Hessg̃ u−dϕ ⊗du−du⊗dϕ =

(
h′′−h′

∂ϕ

∂ r

)
dr⊗dr+h′(Hessg r−g(∇r,∇ϕ)gr),

where g̃ = e−2ϕg, ϕ ′ = ∂ϕ

∂ r , and gr is the metric on level sets of rp

We recall that the reparametrized distance defined in [KWY19] is

s(r) =
∫ r

0
e−2ϕ(t)dt, & s(p,q) = inf{s | γ(0) = p,γ(1) = q}.

This is needed for the following Hessian comparison in the weighted setting.

Theorem 6.1.4 ([KWY19], Theorem 4.16). Suppose that (M,g,ϕ) is a Riemannian manifold with

density. Let rp be the distance function to p in g. Let q be a point such that rp is smooth at q and

let Y ∈ TqM be a unit length vector such that Y ⊥ ∇r.
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1. If, for all unit vectors Y perpendicular to the minimizing geodesic from p to q, secϕ(Y,∇r)≥

κe−4ϕ , then

(Hessg r−dϕ(∇r)g)(Y,Y )≤ e−2ϕ(q) csκ(s(p,q))
snκ(s(p,q))

.

2. If, for all unit vectors Y perpendicular to the minimizing geodesic from p to q, secϕ(Y,∇r)≤

Ke−4ϕ , then

(Hessg r−dϕ(∇r)g)(Y,Y )≥ e−2ϕ(q) csK(s(p,q))
snK(s(p,q))

.

6.2 Modified conformal Hessian bounds

We obtain bounds on the modified conformal Hessian when secϕ ≥ 0.

Proposition 6.2.1 (MCHessu ≤ Kg). Let (M,g,ϕ) be a Riemannian manifold with density ϕ such

that a ≤ ϕ ≤ 0 and |∇ϕ| ≤ c
r

for some constant c > 0. Suppose secϕ ≥ 0 and u = h◦ rp =
1
2

r2
p as

in Remark 6.1.2. Then

MCHessu ≤ Kg

for some constant K.

Proof. By Proposition 6.1.3,

MCHessu = (h′′−h′ϕ ′)dr⊗dr+h′(Hessg r−g(∇r,∇ϕ)gr),

where ϕ ′ = ∂rϕ; the rest of the derivatives are taken with respect to r. We first set some termi-

nology: we refer to (h′′ − h′ϕ ′)dr ⊗ dr and h′(Hessg r − g(∇r,∇ϕ)gr) as the “radial term” and

“tangential term” of MCHessu, respectively.

Note |∇ϕ| ≤ c
r if and only if −c

r ≤ ϕ ′ ≤ c
r . In particular, −ϕ ′ ≤ c

r . This together with u =

h(r) = 1
2r2 yields

(h′′−h′ϕ ′) = 1− rϕ
′ ≤ 1+ r

(c
r

)
= 1+ c
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for some constant c > 0. Thus the radial term

(h′′−h′ϕ ′)dr⊗dr ≤ (1+ c)dr⊗dr.

We claim that

Hessg r−g(∇r,∇ϕ)gr ≤ e−2ϕ 1
r

gr, (6.4)

from which it follows that the tangential term

h′(Hessg r−g(∇r,∇ϕ)gr)≤ r
(

e−2ϕ 1
r

)
gr = e−2ϕgr

≤ (1+ c)e−2ϕgr ≤ (1+ c)e−2agr,

where we used c > 0 and ϕ ≥ a in the second to last and last inequality, respectively. Since

−2a≥−2ϕ ≥ 0 if and only if e−2a ≥ e−2ϕ ≥ 1, setting K :=max{1+c,e−2a(1+c)}= e−2a(1+c)

yields

MCHessu ≤ K(dr2 +gr) = Kg

as desired.

We prove inequality (6.4). First, recall the re-parametrized distance defined in [KWY19] is

s(r) =
∫ r

0
e−2ϕ(t)dt, & s(p,q) = inf{s | γ(0) = p,γ(1) = q}.

Since

t → csκ(t)
snκ(t)

is monotonically decreasing in t, we have

ϕ ≤ 0 =⇒ s(r) =
∫ r

0
e−2ϕ(t)dt ≥

∫ r

0
dt = rp(q) =⇒ csκ(s(p,q))

snκ(s(p,q))
≤

csκ(rp(q))
snκ(rp(q))

.

Since secϕ ≥ 0, we have secϕ(Y,∇r) ≥ 0 for orthogonal unit length vectors Y and ∇r in TqM,
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where q is some point for which rp is smooth. As Y ⊥ ∇r, we can view Y as belonging to TqH

where H = Hn−1 is a hypersurface contained in the level set of rp at q. Then by Theorem 6.1.4 (1)

with κ = 0 and the preceding inequality, we get

(Hessg r−g(∇r,∇ϕ)gr)(Y,Y ) = (Hessg r−g(∇r,∇ϕ)g)(Y,Y )

≤ e−2ϕ(q) cs0(s(p,q))
sn0(s(p,q))

≤ e−2ϕ(q) cs0(rp(q))
sn0(rp(q))

= e−2ϕ(q) 1
rp(q)

,

where sn0(r) = r and cs0(r) = sn′0(r) = 1. So

(Hessg r−g(∇r,∇ϕ)gr)(Y,Y )≤ e−2ϕ(q) 1
rp(q)

∀ Y ∈ TqH. (6.5)

We now show that (6.4) holds for any Y ∈ TqM. The shape operator S given by S(Y ) = ∇Y ∇r

and the identity operator I are both self-adjoint (1,1)-linear endomorphisms from TqM → TqM

with corresponding (0,2)-tensors Hessg r(·, ·) and g(I·, ·) = g(·, ·), respectively. Hence their sum

A := S− g(∇r,∇ϕ)I is also a self-adjoint (1,1)-linear endomorphism with corresponding (0,2)-

tensor Hessg r−g(∇r,∇ϕ)g. Let H = Hn−1 be the hypersurface contained in the level set of rp at

q. Note that the tangential term Hessg r− g(∇r,∇ϕ)gr does not depend on the radial component

of any vector, i.e., it does not depend on the component of a vector that is in the direction of

∇r. To see this, recall any vector field Y along integral curves for ∂r = ∇r can be written Y =

Y⊤+Y⊥ = (Y −g(Y,∂r)∂r)+g(Y,∂r)∂r. For each point on the integral curve, we have coordinate

basis {∂r} ∪ {∂i}i where {∂i}i is a coordinate basis for T H and H ⊂ r−1(t) is a hypersurface.

So in local coordinates, we can also write Y = Y r∂r +Y i∂i where Y r,Y i : M → R smooth. Since

Y⊥ = Y r∂r = g(Y,∂r)∂r,

Hessg(Y⊥,X) = Hessg r(Y r
∂r,X) = Y rg(∇∂r∂r︸ ︷︷ ︸

=0

,X) = 0

for any vector field X along the same curve. With this observation, for general vector fields Y along
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integral curve for ∂r, we have

(Hessg r−g(∇r,∇ϕ)gr)(Y,Y )

= Hessg r(Y⊤+Y⊥,Y⊤+Y⊥)−g(∇r,∇ϕ)gr(Y⊤+Y⊥,Y⊤+Y⊥)

= Hessg r(Y⊤,Y⊤)−g(∇r,∇ϕ)gr(Y⊤,Y⊤)

= (Hessg r−g(∇r,∇ϕ)gr)(Y⊤,Y⊤).

Thus for any vector Y ∈ TqM, we need only consider its tangential component Y⊤ ∈ TqH where

Y⊤ ⊥ ∇r. Also note g|H = gr. The restriction A
∣∣
TqH : TqH → TqH is a self-adjoint (1,1)-linear

endomorphism and so by the Spectral Theorem there exists an orthonormal eigenbasis (Ei)
n−1
i=1 for

TqH which diagonalizes A
∣∣
TqH . Since Ei ∈ TqH, Ei ⊥ ∇r and since (Ei)i is orthonormal, Ei is of

unit length in g ∀ i = 1, ...,n−1. By (6.5), we have

(Hessg r−g(∇r,∇ϕ)gr)(Ei,Ei)≤ e−2ϕ 1
r
= e−2ϕ 1

r
g(Ei,Ei) = e−2ϕ 1

r
gr(Ei,Ei) (6.6)

∀ i = 1, ...,n−1. Since (Ei)
n−1
i=1 is an eigenbasis for TqH, we have A

∣∣
TqH(Ei) = λiEi for λi ∈ R and

i = 1, ...,n−1. Then by 6.6, we get

λi = λig(Ei,Ei) = g(λiEi,Ei) = g(A
∣∣
TqH(Ei),Ei)≤ e−2ϕ 1

r

∀ i = 1, ...,n−1. To show (6.4) for any Y ∈ TqM, it suffices to show

(Hessg r−g(∇r,∇ϕ)gr)(Y⊤,Y⊤)≤ e−2ϕ 1
r

g(Y⊤,Y⊤) = e−2ϕ 1
r

gr(Y⊤,Y⊤).
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Since Y⊤ ∈ TqH and (Ei)
n−1
i=1 is an eigenbasis for TqH, we write Y⊤ = ∑i(Y⊤)iEi. Then

g(A(Y⊤),Y⊤) = g(A(∑
i
(Y⊤)iEi),∑

j
(Y⊤) je j)

= ∑
i

λi((Y⊤)i)2g(Ei,Ei)

≤ ∑
i

e−2ϕ 1
r
((Y⊤)i)2g(Ei,Ei)

= e−2ϕ 1
r

g(∑
i
(Y⊤)iEi,∑

j
(Y⊤) je j) = e−2ϕ 1

r
g(Y⊤,Y⊤) = e−2ϕ 1

r
gr(Y⊤,Y⊤).

Note that the second equality follows from (Ei)i being an orthonormal eigenbasis. Since the

expression on the left-hand side is equal to (Hessg r − g(∇r,∇ϕ)gr)(Y⊤,Y⊤), we get inequality

(6.4) for Y⊤ ∈ TqH, and hence for any Y ∈ TqM. Equivalently, we have shown that A ≤ B where

A = S |TqH −g(∇r,∇ϕ)In−1 and B = e−2ϕ 1
r In−1.

Remark 6.2.2. We can further show that (6.4) holds for any X ,Y ∈ TqM by similar arguments as in

the preceding string of inequalities.

Proposition 6.2.1 gave us MCHessu ≤ Kg when the density ϕ is bounded above by 0 and

bounded below by a. It turns out we can show MCHessu ≤ Kg̃ where the conformal metric

g̃ = e−2ϕg with only the upper bound of 0 on density ϕ .

Proposition 6.2.3 (MCHessu≤Kg̃). Let (M,g,ϕ) be a Riemannian manifold with density ϕ where

ϕ ≤ 0 and |∇ϕ| ≤ c
r

for some constant c > 0. Suppose secϕ ≥ 0 and u = h◦rp =
1
2

r2
p as in Remark

6.1.2. Then

MCHessu ≤ Kg̃

for some constant K.

Proof. As in the proof of Proposition 6.2.1, we have

(h′′−h′ϕ ′) = 1− rϕ
′ ≤ 1+ r

(c
r

)
= 1+ c
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for some constant c > 0. It follows that the radial term

(h′′−h′ϕ ′)dr⊗dr ≤ (1+ c)dr⊗dr = (1+ c)e2ϕe−2ϕdr⊗dr ≤ (1+ c)e−2ϕdr⊗dr,

where in the last inequality we used that ϕ ≤ 0 if and only if e2ϕ ≤ eϕ ≤ e0 = 1.

By the proof of Proposition 6.2.1, we saw that an application of Theorem 6.1.4 (1) with hy-

potheses secϕ ≥ 0 and ϕ ≤ 0 (for monotonicity) yields

(Hessg r−g(∇r,∇ϕ)gr)(Y,Y )≤ e−2ϕ 1
r

gr(Y,Y ) ∀ Y ∈ TqM.

Then

h′(Hessg r−g(∇r,∇ϕ)gr)(Y,Y )≤ e−2ϕgr(Y,Y )≤ (1+ c)e−2ϕgr(Y,Y ),

as h′ = r and c > 0. Putting this together with the inequality for the radial term, we get that for any

Y ∈ TqM

MCHessu(Y,Y ) = (h′′−h′ϕ ′)dr⊗dr+h′(Hessg r−g(∇r,∇ϕ)gr)

≤ ((1+ c)e−2ϕdr⊗dr)(Y,Y )+(1+ c)e−2ϕgr(Y,Y )

= (1+ c)e−2ϕg(Y,Y )

= (1+ c)g̃(Y,Y )

= Kg̃(Y,Y ),

where K = 1+ c.

Remark 6.2.4. We need the assumption ϕ ≥ a in Proposition 6.2.1 to get the bound e−2a for the

factor of e−2ϕ that appears after an application of Theorem 6.1.4 (1). For Proposition 6.2.3, we do

not need this assumption as the factor of e−2ϕ is the weight for the conformal metric g̃.
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q = σ̃(0)

p

σ̃(t)

σ̃

B̃

γ1

C

γ2

A

α

Figure 6.1: Mixed geodesic triangle.

6.3 A warped law of cosines

We now use the bounds obtained from the previous section to obtain inequalities resembling the

law of cosines, which we call a “warped law of cosines”.

Corollary 6.3.1 (Warped law of cosines). Let (M,g,ϕ) be a (complete) Riemannian manifold with

density ϕ such that a ≤ ϕ ≤ 0 and |∇ϕ| ≤ c
r

for some constant c > 0. Suppose secϕ ≥ 0 and

u = h◦ rp =
1
2

r2
p as in Propositions 6.2.1 and 6.2.3. Furthermore, suppose the following setup:

• let σ̃ be a (unit-speed) geodesic in metric g̃ starting at q = σ̃(0) with B̃ := Lg̃(σ̃);

• let γ1 : q → p be a (unit-speed) geodesic segment in metric g with C := |σ̃(0)p|g;

• and let γ2 be a (unit-speed) geodesic segment in metric g joining p and σ̃(t) for some t > 0

with A := |σ̃(t)p|g.

Note these three bullets gives a “mixed geodesic triangle” with sides of g-length C, g̃-length B̃,

and g-length A (see Figure 6.1). Then

A2 ≤C2 + k1B̃2 −2k2CB̃cosα,
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where α is the interior angle formed by γ1 and σ̃ at q = σ̃(0) opposite to γ2 of g-length A; k1 =

(1+ c)e−2a; k2 = e−a for 0 ≤ α < π/2; and k2 = e−2a for π/2 ≤ α ≤ π .

Proof. Note σ̃(0) = q, g̃(σ̃ ′, σ̃ ′) = |σ̃ ′|2g̃ = 1, and (σ̃ ′)⊤ ⊥ ∇r. Putting (6.3) and Proposition 6.2.3

together gives

u′′−2ϕ
′u′ =

d2u
dt2 −2

du
dt

dϕ

dt
≤ 1+ c,

where the shorthand notation emphasises that u = u◦ σ̃ and ϕ = ϕ ◦ σ̃ are functions from [0,∞)→

R. Multiplying both sides of the preceding inequality by e−2ϕ gives

e−2ϕ d2u
dt2 −2e−2ϕ du

dt
dϕ

dt
≤ (1+ c)e−2ϕ ⇐⇒

(
e−2ϕ du

dt

)′
≤ (1+ c)e−2ϕ .

Integrating both sides over σ̃ amounts to integrating both sides over [0, t]. By the fundamental

theorem of calculus, we get

(
e−2ϕ du

dt

)
(σ̃(t))−

(
e−2ϕ du

dt

)
(σ̃(0)) =

∫ t

0

(
e−2ϕ du

dt

)′
dν

≤ (1+ c)
∫ t

0
e−2ϕdν

≤ (1+ c)e−2a
∫ t

0
dν

= (1+ c)e−2at,

where we used a ≤ ϕ if and only if e−2a ≥ e−2ϕ in the last inequality. Adding
(

e−2ϕ
du
dt

)
(σ̃(0))

to both sides and then multiplying through by e2ϕ(σ̃(t)) yields

du
dt

(σ̃(t))≤ e2ϕ(σ̃(t))
[
(1+ c)e−2at +

(
e−2ϕ du

dt

)
(σ̃(0))

]
≤ (1+ c)e−2at +

(
e−2ϕ du

dt

)
(σ̃(0)),
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where we used ϕ ≤ 0 if and only if e2ϕ ≤ 1 in the last inequality. Integrating over [0, t] again yields

u(σ̃(t))−u(σ̃(0))≤ (1+ c)e−2a t2

2
+

(
e−2ϕ du

dt

)
(σ̃(0))t,

from which we get

u(σ̃(t))≤ (1+ c)e−2a t2

2
+

(
e−2ϕ du

dt

)
(σ̃(0))t +u(σ̃(0)). (6.7)

We make some observations:

1.

e−2ϕ(σ̃(0))du
dt

(σ̃(0))≤ e−2ag(∇u(σ̃(0)), σ̃ ′(0))

= e−2ag(r(σ̃(0))∇r(σ̃(0)), σ̃ ′(0))

= e−2ar(σ̃(0))g(∇r(σ̃(0)), σ̃ ′(0))

= e−2a|σ̃(0)p|g|∇r(σ̃(0))|g|σ̃ ′(0)|g cos∠(∇r(σ̃(0)), σ̃ ′(0))

= e−2aCeϕ cos(π −α)

=−e−2aeϕC|σ̃ ′(0)|g̃ cosα

=−eϕe−2aC cosα,

where we used C = |σ̃(0)p|g, |∇r(σ̃(0))|g = 1, and

|σ̃ ′(0)|g = g(σ̃ ′(0), σ̃ ′(0))1/2 = eϕe−ϕg(σ̃ ′(0), σ̃ ′(0))1/2 = eϕ g̃(σ̃ ′(0), σ̃ ′(0))1/2 = eϕ

in the third to last equality. We find possible upper bounds for this expression. Note that

since e−2aC ≥ 0, the upper bounds are dependent on eϕ and the sign of cosα (hence on α).

There are two cases to consider.

(a) For 0 ≤ α < π/2, we have cosα > 0 if and only if e−2aC cosα ≥ 0. Note that since
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a ≤ ϕ ≤ 0 if and only if −1 ≥−ea ≥−eϕ , we get

−eϕe−2aC cosα ≤−eae−2aC cosα =−e−aC cosα.

(b) For π/2 ≤ α ≤ π , we have cosα ≤ 0 if and only if −e−2aC cosα ≥ 0. Since a ≤ ϕ ≤ 0

if and only if eϕ ≤ 1, we get

−eϕe−2aC cosα = eϕ(−e−2aC cosα)≤−e−2aC cosα.

2. t =
∫ t

0
|σ̃ ′(ν)|g̃dν = B̃

3. u(σ̃(t)) =
1
2

r(σ̃(t))2 =
1
2
|σ̃(t)p|2g =

1
2

A2

4. u(σ̃(0)) =
1
2

r(σ̃(0))2 =
1
2
|σ̃(0)p|2g =

1
2

C2.

Putting observations (1)-(4) and inequality (6.7) together, we get


A2

2
≤ (1+ c)e−2a B̃2

2
− e−aCB̃cosα +

C2

2
0 ≤ α < π

2

A2

2
≤ (1+ c)e−2a B̃2

2
− e−2aCB̃cosα +

C2

2
π

2 ≤ α ≤ π

Setting k1 = (1+ c)e−2a and then multiplying through by 2 gives


A2 ≤C2 + k1B̃2 −2e−aCB̃cosα 0 ≤ α < π

2

A2 ≤C2 + k1B̃2 −2e−2aCB̃cosα
π

2 ≤ α ≤ π.

We are currently working on answering the following question.

Question. [Weighted Gromov’s critical point estimate] Suppose the hypotheses of Corollary 6.3.1.

Is it true that for every p ∈ M the distance function rp(x) = |xp| has no critical points outside some

ball B(p,R)? Does M have the topology of a compact manifold with boundary?
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We hope to use Corollary 6.3.1 towards answering this question. So far we have not yet found an

application of it. In our attempts, some general questions arise that require further study.

1. What is the relationship between a g̃-geodesic σ̃ and a g-geodesic σ? More specifically,

what can we say about the angle between a g-geodesic segment σ and a g̃-geodesic segment

σ̃ where both segments share the same endpoints (e.g., starting at p and ending at y)?

2. Do critical points of a distance function in the metric g remain critical points of a distance

function in the conformal metric g̃ = e−2ϕg?

Regarding Question 1, we can at least say something about the g- and g̃-lengths of g̃-geodesic

σ̃ and g-geodesic σ .

Proposition 6.3.2. Let (M,g,ϕ) be a Riemannian manifold with density ϕ such that a ≤ ϕ ≤ 0.

Let g̃ = e−2ϕg be the conformal metric. Define

B̃ := Lg̃(σ̃) =
∫ b

a
g̃(σ̃ ′(s), σ̃ ′(s))1/2ds and B := Lg(σ̃) =

∫ b

a
g(σ̃ ′(s), σ̃ ′(s))1/2ds.

Then B ≤ B̃ ≤ e−aB.

Proof. We drop parameter s for convenience in notation. Note a ≤ ϕ ≤ 0 if and only if e−a ≥

e−ϕ ≥ 1. Since

Lg̃(σ̃) =
∫ b

a
g̃(σ̃ ′, σ̃ ′)1/2ds =

∫ b

a
e−ϕg(σ̃ ′, σ̃ ′)1/2ds,

we get

Lg(σ̃)≤ Lg̃(σ̃)≤ e−a
∫ b

a
g(σ̃ ′, σ̃ ′)1/2ds = e−aLg(σ̃).

That is B ≤ B̃ ≤ e−aB.

Remark 6.3.3. For a g-geodesic σ , setting A= Lg(σ) and Ã= Lg̃(σ) also gives similar inequalities:

eaÃ ≤ A ≤ Ã.
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A | Tables

This appendix consists of relevant data for Chapter 4. More specifically, we reproduce structure

equations for each of the seven nilpotent Lie groups from [Nic18] in Table A.1. Tables A.2 - A.7

are tables of derivatives obtained by the Koszul formula and structure equations of Table A.1.

We reiterate that the structure equations from [Nic18] were obtained from the list of twelve iso-

morphism classes of nilpotent Lie groups admitting G-invariant closed G2-structures from [CF11]

(see [CF11] for a list of canonical structure equations for ni for i = 1, ...,12). Nicolini constructed

ϕi for i = 1, ...,7 that were either algebraic or semi-algebraic solitons, hence Laplacian solitons by

the results of Lauret in [Lau17a]. To obtain the structure equations of Table A.1, one first obtains

the exterior derivatives on (ei)i from the general structure equations for each of the twelve isomor-

phism classes of nilpotent Lie groups from [CF11]. Then one uses the closed condition dϕi = 0 to

determine the appropriate coefficients. Note, the coefficients in the tables below were chosen for

convenience; the results of Chapter 4 hold in general by scaling.

Table A.1: Structure of (ni,ϕi)

(n1,ϕ1) [ei,e j] = 0 ∀ i, j
(n2(1,1),ϕ2) [e1,e2] =−e5, [e1,e3] =−e6

(n3(1,1− c,c),ϕ3) [e1,e2] =−e4, [e1,e3] = (c−1)e5, [e2,e3] = ce6; 0 < c < 1/2
(n4(

√
2,1,

√
2,1),ϕ4) [e1,e2] =−

√
2e3, [e1,e3] =−e6, [e2,e4] =−

√
2e6, [e1,e5] =−e7

(n5(
√

2,1,1,
√

2),ϕ5) [e1,e2] =−
√

2e3, [e1,e3] =−e6, [e1,e4] =−e7, [e2,e5] =−
√

2e7

(n6(
√

2,
√

2,1,1),ϕ6) [e1,e2] =−
√

2e4, [e1,e3] =−
√

2e5, [e1,e4] =−e6, [e1,e5] =−e7

(n7(−4,2,2,
√

6,
√

6),ϕ7) [e1,e2] = 4e4, [e1,e7] =−2e6, [e2,e7] =−2e5, [e5,e7] =−
√

6e3, [e6,e7] =−
√

6e4
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Table A.2: Derivatives for n2(1,1)

∇eie j 1 2 3 4 5 6 7

1 0 −1
2

e5 −1
2

e6 0
1
2

e2
1
2

e3 0

2
1
2

e5 0 0 0
1
2

e1 0 0

3
1
2

e6 0 0 0 0 −1
2

e1 0

4 0 0 0 0 0 0 0

5
1
2

e2
1
2

e1 0 0 0 0 0

6
1
2

e3 0 −1
2

e1 0 0 0 0

7 0 0 0 0 0 0 0

Table A.3: Derivatives for n3(1,1− c,c)

∇eie j 1 2 3 4 5 6 7

1 0 −1
2

e4
1
2
(c−1)e5

1
2

e2 −1
2
(c−1)e3 0 0

2
1
2

e4 0 −1
2

ce6 −1
2

e1 0
1
2

ce3 0

3 −1
2
(c−1)e5

1
2

ce6 0 0
1
2
(c−1)e1 −1

2
ce2 0

4
1
2

e2 −1
2

e1 0 0 0 0 0

5 −1
2
(c−1)e3 0

1
2
(c−1)e1 0 0 0 0

6 0
1
2

ce3 −1
2

ce2 0 0 0 0

7 0 0 0 0 0 0 0
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Table A.4: Derivatives for n4(
√

2,1,
√

2,1)

∇eie j 1 2 3 4 5 6 7

1 0 −
√

2
2

e3

√
2

2
e2 −

1
2

e6 0 −1
2

e7
1
2

e3
1
2

e5

2

√
2

2
e3 0 −

√
2

2
e1 −

√
2

2
e6 0

√
2

2
e4 0

3

√
2

2
e2 +

1
2

e6 −
√

2
2

e1 0 0 0 −1
2

e1 0

4 0

√
2

2
e6 0 0 0 −

√
2

2
e2 0

5
1
2

e7 0 0 0 0 0 −1
2

e1

6
1
2

e3

√
2

2
e4 −1

2
e1 −

√
2

2
e2 0 0 0

7
1
2

e5 0 0 0 −1
2

e1 0 0

Table A.5: Derivatives for n5(
√

2,1,1,
√

2)

∇eie j 1 2 3 4 5 6 7

1 0 −
√

2
2

e3

√
2

2
e2 −

1
2

e6 −1
2

e7 0
1
2

e3
1
2

e4

2

√
2

2
e3 0 −

√
2

2
e1 0 −

√
2

2
e7 0

√
2

2
e5

3

√
2

2
e2 +

1
2

e6 −
√

2
2

e1 0 0 0 −1
2

e1 0

4
1
2

e7 0 0 0 0 0 −1
2

e1

5 0

√
2

2
e7 0 0 0 0 −

√
2

2
e2

6
1
2

e3 0 −1
2

e1 0 0 0 0

7
1
2

e4

√
2

2
e5 0 −1

2
e1 −

√
2

2
e2 0 0
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Table A.6: Derivatives for n6(
√

2,
√

2,1,1)

∇eie j 1 2 3 4 5 6 7

1 0 −
√

2
2

e4 −
√

2
2

e5

√
2

2
e2 −

1
2

e6

√
2

2
e3 −

1
2

e7
1
2

e4
1
2

e5

2

√
2

2
e4 0 0 −

√
2

2
e1 0 0 0

3

√
2

2
e5 0 0 0 −

√
2

2
e1 0 0

4

√
2

2
e2 +

1
2

e6 −
√

2
2

e1 0 0 0 −1
2

e1 0

5

√
2

2
e3 +

1
2

e7 0 −
√

2
2

e1 0 0 0 −1
2

e1

6
1
2

e4 0 0 −1
2

e1 0 0 0

7
1
2

e5 0 0 0 −1
2

e1 0 0

Table A.7: Derivatives for n7(−4,2,2,
√

6,
√

6)

∇eie j 1 2 3 4 5 6 7
1 0 2e4 0 −2e2 0 e7 −e6
2 −2e4 0 0 2e1 e7 0 −e5

3 0 0 0 0

√
6

2
e7 0 −

√
6

2
e5

4 −2e2 2e1 0 0 0

√
6

2
e7 −

√
6

2
e6

5 0 e7

√
6

2
e7 0 0 0 −e2 −

√
6

2
e3

6 e7 0 0

√
6

2
e7 0 0 −e1 −

√
6

2
e4

7 e6 e5 −
√

6
2

e5 −
√

6
2

e6 −e2 +

√
6

2
e3 −e1 +

√
6

2
e4 0
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B | On computations

B.1 Computations for proof of Proposition 4.1.2

We include computations of divτ2
ϕi

for i = 4,6,7 which were left out of the proof of Proposition

4.1.2. As discussed in the proof of Proposition 4.1.2, (3.5b) = 0 for each of the nilpotent cases. We

compute (3.5a).

Case (n4(
√

2,1,
√

2,1),ϕ4).

∇e1(τ
2
ϕ4
(e1)) = ∇e1(−2e1 +

√
2e5) =−

√
2

2
e7

∇e2(τ
2
ϕ4
(e2)) = ∇e2(0) = 0

∇e3(τ
2
ϕ4
(e3)) = ∇e3(−3e3) = 0

∇e4(τ
2
ϕ4
(e4)) = ∇e4(−2e4 +

√
2e7) = 0

∇e5(τ
2
ϕ4
(e5)) = ∇e5(

√
2e1 − e5) =

√
2

2
e7

∇e6(τ
2
ϕ4
(e6)) = ∇e6(−3e6) = 0

∇e7(τ
2
ϕ4
(e7)) = ∇e7(

√
2e4 − e7) = 0.

Thus

(3.5a) =
7

∑
i=1

g(∇ei(τ
2
ϕ4
(ei)),U) =−

√
2

2
g(e7,U)+

√
2

2
g(e7,U) = 0,

from which it follows that divτ2
ϕ4

= 0.

Case (n6(
√

2,
√

2,1,1),ϕ6).

Using that τ2
ϕ6

was obtained with respect to basis (ei)i, we have

τ
2
ϕ6
(e1) = 0, τ

2
ϕ6
(e2) =−2e2 −

√
2e6, τ

2
ϕ6
(e3) =−2e3 −

√
2e7, τ

2
ϕ6
(e4) =−3e4
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τ
2
ϕ6
(e5) =−3e5, τ

2
ϕ6
(e6) =−

√
2e2 − e6, τ

2
ϕ6
(e7) =−

√
2e3 − e7.

We make the following observations:

1. τ2
ϕ6
(ei) is some linear combination of ek’s where k ∈ {2, ...,7} when i ̸= 1 and τ2

ϕ6
(e1) = 0

when i = 1.

2. From the previous item, ∇ei(τ
2
ϕ6
(ei)) is either 0 or a multiple of e1 when i = 2, ...,7 since the

entries in the bottom right 6× 6 block of Table A.6 consists of only 0 or a multiple of e1.

Also note ∇e1(τ
2
ϕ6
(e1)) = 0.

3. Then g(∇ei(τ
2
ϕ6
(ei)),e j) = 0 ∀ j = 2, ...,7 as the first component is either a multiple of e1 or

it is 0. It is clear from Table A.6 that g(∇e1(τ
2
ϕ6
(e1)),e j) = 0 ∀ j = 1, ...,7.

It follows from these observations that (3.5a) = 0 and thus divτ2
ϕ6

= 0.

Case (n7(−4,2,2,
√

6,
√

6),ϕ7). We compute each term of sum (3.5a):

∇e1(τ
2
ϕ7
(e1)) = ∇e1(−4e1 +2

√
6e4) = 2

√
6(−2e2) =−4

√
6e2

∇e2(τ
2
ϕ7
(e2)) = ∇e2(−4e2 +2

√
6e3) = 2

√
6(0) = 0

∇e3(τ
2
ϕ7
(e3)) = ∇e3(2

√
6e2 −6e3) = 2

√
6(0) = 0

∇e4(τ
2
ϕ7
(e4)) = ∇e4(2

√
6e1 −22e4) = 2

√
6(−2e2) =−4

√
6e2

∇e5(τ
2
ϕ7
(e5)) = ∇e5(−10e5 +4

√
6e7) = 4

√
6(−e2 −

√
6

2
e3) =−4

√
6e2 −2

√
6e3

∇e6(τ
2
ϕ7
(e6)) = ∇e6(−10e6) = 0

∇e7(τ
2
ϕ7
(e7)) = ∇e7(4

√
6e5 −16e7) = 4

√
6(−e2 +

√
6

2
e3) =−4

√
6e2 +2

√
6e3.

Thus

(3.5a) =
7

∑
i=1

g(∇ei(τ
2
ϕ7
(ei)),U) =−16

√
6g(e2,U),

from which it follows that divτ2
ϕ7

̸= 0.
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B.2 On computation of operators in equation 3.2

We include the list of closed G2-structures ϕi found by Nicolini in [Nic18] on nilpotent Lie algebras

ni for i = 1, ...,7.

1. ϕ1 can be any closed G2-structure on the trivial nilpotent Lie algebra n1;

2. ϕ2 = e147 + e267 + e357 + e123 + e156 + e245 − e346 ∈ Λ3n∗2;

3. ϕ3 = e123 + e145 + e167 + e246 − e257 − e347 − e356 ∈ Λ3n∗3;

4. ϕ4 =−e124 − e456 + e347 + e135 + e167 + e257 − e236 ∈ Λ3n∗4;

5. ϕ5 = e134 + e457 − e246 − e125 − e356 + e167 − e237 ∈ Λ3n∗5;

6. ϕ6 = e123 + e347 + e356 + e145 − e246 + e167 + e257 ∈ Λ3n∗6;

7. ϕ7 = e127 + e135 − e146 − e236 − e245 + e347 + e567 ∈ Λ3n∗7;

Given a G2-structure ϕ and structure equations, we discuss the computations required to obtain

relevant operators in 3.2 for the interested reader. We do this for the case of (n5,ϕ5). Let (ei)
7
i=1 be

an orthonormal basis for n5 = n5(a,b,c,d), the 7-dimensional nilpotent Lie algebra with structure

[e1,e2] =−ae3, [e1,e3] =−be6, [e1,e4] =−ce7, [e2,e5] =−de7, a,b,c,d ∈ R∗.

Consider the G2-structure ϕ5 = e134 + e457 − e246 − e125 − e356 + e167 − e237 ∈ Λ3n∗5. Using that

the exterior derivative (or differential) d : Ω1(M) → Λ2(M) of invariant 1-forms ω ∈ Λ1(M) is

dω =−ω([X ,Y ]), [e.g., de3 =−e3([e1,e2]) =−e3(−ae3) = a and so de3 = ae12 as dei =−ci
jke jk]

we get

de1 = de2 = de4 = de5 = 0, de3 = ae12, de6 = be13, de7 = ce14 +de25.
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It is common to write this structure as:

n5 = (0,0,ae12,0,0,be13,ce14 +de25).

By straightforward computations, one observes that dϕ5 = 0 if and only if a = d and b = c. Thus

n5 = n5(a,b,b,a). Nicolini observed that if a2 = 2b2, then (n5(a,b,b,a),ϕ5) is a semi-algebraic

soliton, hence a Laplacian soliton. The choice of b = 1, a =
√

2 yields (n5(
√

2,1,1,
√

2),ϕ5) and

structure

[e1,e2] =−
√

2e3, [e1,e3] =−e6, [e1,e4] =−e7, [e2,e5] =−
√

2e7.

It is from these structure equations that Table A.5 is obtained via Koszul formula. Then τϕ5 and

Ricϕ5 are obtained from computing

τϕ =−∗d ∗ϕ5 and Ricϕ5(e j) =
7

∑
i=1

R(e j,ei)ei ∀ j = 1, ...7,

respectively. We get

τϕ5 =−e46 + e37 −
√

2e35 +
√

2e17 and Ricϕ5 = Diag
(
−2,−2,

1
2
,−1

2
,−1,

1
2
,
3
2

)
.

Since τϕ5 = gϕ5(τϕ5·, ·) is a skew-symmetric 2-form, it has matrix representation:

τϕ5 =



0 0 0 0 0 0 −
√

2

0 0 0 0 0 0 0

0 0 0 0
√

2 0 −1

0 0 0 0 0 1 0

0 0 −
√

2 0 0 0 0

0 0 0 −1 0 0 0
√

2 0 1 0 0 0 0



,τ2
ϕ5

=



−2 0 −
√

2 0 0 0 0

0 0 0 0 0 0 0

−
√

2 0 −3 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −2 0
√

2

0 0 0 0 0 −1 0

0 0 0 0
√

2 0 −3



.
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Furthermore, scalϕ5 = trRicϕ5 =−3 and so by equation (3.2), we get

Qϕ5 =



−2 0 −
√

2
2 0 0 0 0

0 −1 0 0 0 0 0

−
√

2
2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −1 0
√

2
2

0 0 0 0 0 1 0

0 0 0 0
√

2
2 0 1



.

B.3 Derivation of equation 2.8

The purpose of this section is to derive the Laplacian soliton equation (2.8). The arguments below

are essentially the same arguments as in the proof of [[LW17], Proposition 9.4]. We include them

here to illustrate how one reconciles the differences in notation and convention between Lotay-Wei

and Lauret.

Proof of equation (2.8). The goal is to show that the Laplacian soliton equation ∆ϕϕ = λϕ+LX ϕ

is equivalent to

iϕ(−qϕ − 1
3

λgϕ − 1
2
LX gϕ) = 0,

from which equation (2.8) will follow by injectivity of iϕ . Note that from Lauret’s notation and

convention for the map iϕ , we have

iϕ(qϕ) =−2θ(Qϕ) =−2∆ϕϕ and iϕ(
1
3

λgϕ) = 2λϕ
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since iϕ(gϕ) = 6ϕ (see Subsection 2.1.3 for details). Now the Laplacian soliton equation is

∆ϕϕ = λϕ +LX ϕ ⇐⇒ 2∆ϕϕ = 2λϕ +2LX ϕ ⇐⇒ −iϕ(qϕ) = iϕ(
1
3

λgϕ)+2LX ϕ

⇐⇒ −iϕ(qϕ)− iϕ(
1
3

λgϕ)−2LX ϕ = 0.

So by linearity of iϕ , it remains to show iϕ(1
2LX gϕ) = 2LX ϕ . To do this, we see where iϕ was

used in Lotay-Wei’s arguments and scale these terms by a factor of 2. Since LX ϕ ∈Ω3
1⊕Ω3

7⊕Ω3
27,

we can write

LX ϕ = aϕ +W⌟ψ + iϕ(η). (B.1)

The term W⌟ψ ∈ Ω3
7 vanishes by the same arguments in proof of [[LW17], Proposition 9.4]. More

precisely, since aϕ ∈ Ω3
1 and the soliton equation λϕ +LX ϕ = ∆ϕϕ ∈ Ω3

1 ⊕Ω3
27, these together

tell us that LX ϕ has no Ω3
7 component and so W⌟ψ = 0.

We now follow through Lotay-Wei’s arguments in solving for a and η in (B.1). The computa-

tions for a are the same as they do not involve iϕ . Hence a = 3
7 div(X). To find η , Lotay-Wei found

two equivalent expressions for LX ϕ , set them equal to each other, and then solved for η . The two

expressions for LX ϕ are

• 4div(X)g+4(∇iX j −∇ jXi); and

• 12ag+8η ,

We check again whether or not the computations of these two terms involved iϕ . The compu-

tations for 12ag do not involve iϕ , but they do for 8η . Going back in Lotay-Wei’s computations,

we scale the terms involving iϕ(η) by 2. Thus in Lauret’s convention, the expression 12ag+8η is

instead 12ag+16η . The computations for 4div(X)g+4(∇iX j −∇ jXi) do not involve iϕ at all. We

set 4div(X)g+4(∇iX j −∇ jXi) equal to 12ag+16η and solve for η to get

η =−3
4

ag+
1
4

div(X)g+
1
4
(∇iX j −∇ jXi).
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We now substitute the expressions found for a and η back into the decomposition (B.1). Ob-

serve that

aϕ = iϕ(
1
6

ag) = iϕ(
1
6
(
3
7

div(X))g) = iϕ(
1

14
div(X)g)

and

iϕ(η) = iϕ(−
3
4
(
3
7

div(X))g+
1
4

div(X)g+
1
4
LX g)

= iϕ(−
1

14
div(X)g+

1
4
LX g).

Thus

LX ϕ = aϕ + iϕ(η) = iϕ(
1

14
div(X)g)+ iϕ(−

1
14

div(X)g+
1
4
LX g)

= iϕ(
1
4
LX g)

=
1
2

iϕ(
1
2
LX g),

which holds if and only if iϕ(1
2LX g) = 2LX ϕ as desired.

B.4 A Bochner formula

We include the proof of a Bochner formula with f = r used in part of the proof of Proposition 5.3.1

(2) for the interested reader. By [[HPW15], Proposition 2.7], the shape operator T (X) = ∇
GD
X e7 is
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related to symmetrization S by T =−S. With e7 = ∇r, we have S(X) =−T (X) =−∇X ∇r. Then

div(S)(X) = g((∇EiS)(Ei),X)

= g(∇Ei(S(Ei))−S(∇EiEi),X)

=−g(∇Ei(∇Ei∇r),X)+g(∇∇EiEi∇r,X)

=−∇Ei(g(∇Ei∇r,X))+g(∇Ei∇r,∇EiX)+g(∇X ∇r,∇EiEi)

=−∇Ei(Hessr(Ei,X))+Hessr(Ei,∇EiX)+Hessr(X ,∇EiEi).

Substituting X = ∇r, the first and third terms of the last expression are 0 as ∇∇r∇r = 0. Then

by symmetry of T , [[Pet16], Proposition 3.2.11 (2)], and the fact that covariant differentiation

commutes with type change, we have:

div(S)(∇r) = Hessr(Ei,∇Ei∇r) = g(∇Ei∇r,∇Ei∇r) = g(T (Ei),T (Ei))

= g(T 2(Ei),Ei) = Hessr2(Ei,Ei)

=−R(Ei,∇r,∇r,Ei)− (∇∇r Hessr)(Ei,Ei)

=−R(∇r,Ei,Ei,∇r)−g((∇∇rT )(Ei),Ei)

=−R(∇r,Ei,Ei,∇r)−g(∇∇r(T (Ei))−T (∇∇rEi),Ei)

=−RicD(∇r,∇r)−g(∇∇r(∇Ei∇r)−∇∇∇rEi∇r,Ei)

=−RicD(∇r,∇r)−g(∇2
∇r,Ei

∇r,Ei)

=−RicD(∇r,∇r)−D∇r div(∇r)

=−RicD(∇r,∇r)−D∇r(∆r)

=−RicD(∇r,∇r),

where the last equality follows from ∆r being constant on one-dimensional extensions. Thus

div(S)(∇r) = −RicD(∇r,∇r) = −RicD(e7,e7) = tr(S2) by Lemma 5.1.2 (1). The second to last

expression is the right-hand side of the Bochner formula div∇∇ f = Ric(∇ f )+∇∆ f with f = r.
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