
Syracuse University Syracuse University

SURFACE at Syracuse University SURFACE at Syracuse University

Dissertations - ALL SURFACE at Syracuse University

5-14-2023

The biophysics of bacterial collective motion: Measuring The biophysics of bacterial collective motion: Measuring

responses to mechanical and genetic cues responses to mechanical and genetic cues

Merrill Einar Asp
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

Recommended Citation Recommended Citation
Asp, Merrill Einar, "The biophysics of bacterial collective motion: Measuring responses to mechanical and
genetic cues" (2023). Dissertations - ALL. 1681.
https://surface.syr.edu/etd/1681

This Dissertation is brought to you for free and open access by the SURFACE at Syracuse University at SURFACE at
Syracuse University. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of
SURFACE at Syracuse University. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1681?utm_source=surface.syr.edu%2Fetd%2F1681&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

Mechanobiology is an emerging field investigating mechanical signals as a necessary

component of cellular and developmental regulation. These mechanical signals play a well-

established role in the differentiation of animal cells, whereby cells with identical genes

specialize their function and create distinct tissues depending on the physical properties of

their environment, such as shear stiffness. These differences arise from the cell’s ability to use

those incoming signals to inform which genes it expresses and what molecular machinery it

builds and activates. Understanding the various missing factors that cause cells with specific

genes to express an emergent phenotype is termed the genotype-to-phenotype problem, and

mechanical signaling pathways present themselves as a significant piece of this puzzle. Despite

the strong evidence for mechanosensing in eukaryotes, the pathways by which prokaryotes

respond to mechanical stimuli are still largely unknown. Bacteria are among the simplest and

yet most abundant forms of life. Many of their survival strategies depend on multicellular

development and the coordinated formation of a colony into functional structures that may

also feature cellular differentiation. This dissertation employs bacteria as a model system to

investigate multiple biophysical questions of collective motion through novel experimental and

analytical techniques. This work addresses the understudied mechanical relationship between a

bacterial colony and the substrate it colonizes by asking “what is the effect of substrate

stiffness on colony growth?” This is done by measuring bacterial growth on hydrogel substrates

that decouple the effects of substrate stiffness from other material properties of the substrate

that vary with stiffness. We report a previously unobserved effect in which bacteria colonize

stiffer substrates faster than softer substrates, in opposition to previous studies done on agar,

where permeability, viscoelasticity, and other material properties vary with stiffness.

A second theme of this work probes the genetic inputs to the genotype-to-phenotype problem

in multicellular development. The bacterial species Myxococcus xanthus producing macroscopic

aggregates called fruiting bodies is used as a model organism for these studies. It has long been

conjectured that genes may stand in for each other functionally, allowing for development to

be more consistent and stable, but the extent of this redundancy has resisted measurement.

We approach the question “how does redundancy among related genes lead to robust

collective behavior?” by quantifying developmental phenotype in a large dataset of time lapse

microscopy videos that show development in many mutant strains. We observe that when

knocking out multiple genes that have a common origin (i.e. homologous genes), the resulting

phenotypes differ from wild-type in a similar way. These phenotype clusters also differ from

knockouts from other homologous gene families. These distinct phenotypic clusters provide

evidence for the existence of networks of redundant genes that are larger than could previously

be tested directly. Because of this robustness, the effects of individual gene mutations can be

hidden or damped. We thus develop our analytical techniques further to address the question

“how can subtle changes in phenotype be measured?” This involves quantifying the breadth of

variation observed in wild-type development and creating a statistical technique to distinguish

probabilistic distributions of phenotypic outcomes. We present a coherent method of

visualizing large phenotypic datasets that include multiple metrics that we use to distinguish

small developmental differences from wild-type, giving each mutant strain a phenotypic

fingerprint that can be used in future studies on gene annotation and environmental impacts

on phenotype.

THE BIOPHYSICS OF BACTERIAL COLLECTIVE MOTION:
MEASURING RESPONSES TO MECHANICAL AND GENETIC CUES

by

Merrill E. Asp

B.S., Brigham Young University, 2016

Dissertation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics.

Syracuse University

May 2023

Copyright © Merrill E. Asp, 2023

All Rights Reserved

vi

To my mother,

a steadfast source of love and support,

till pappa,

som alltid trodde på mig,

and to Chelsea,

my closest friend and constant companion.

vii

Acknowledgements

No Ph.D. candidate can complete their work without a network of resources and support. I

want to thank my advisor Alison Patteson for her patience and tireless support in guiding me

into the interdisciplinary world of biophysics and for her help with the work presented in this

dissertation. I also want to acknowledge the other examples of excellence in the many facets of

academia I have learned from, such as my committee members Roy Welch, Arvind Gopinath,

Lisa Manning, Teng Zhang, and Joey Paulsen. I want to thank my lab mates for working

alongside me to build the Patteson lab and for their feedback on this dissertation. I could not

have made the most of my Ph.D. without the thoughtfulness of mentors like Walter Freeman

and Jenny Ross, and the help of our office staff, especially Patty Whitmore, Yudaisy Salomón

Sargentón, Juliette Rawda, and Cassandra Ellis.

I would like to thank the Syracuse University Physics Department and BioInspired institute for

supporting my work and professional development, and the National Science Foundation for

providing the grant funding that supported my research.

I am indebted to my close friends, Ohana Benevides Rodrigues and Sarthak Gupta, for support,

collaboration, and many wonderful discussions as we worked through our time as Ph.D

candidates together.

viii

Table of Contents
List of Figures .. x

List of Tables .. xi

1. Introduction .. 1

1.1 Mechanobiology and the genotype-to-phenotype problem .. 1

1.2 Rheology and viscoelasticity .. 3

1.3 Bacteria as model systems ... 9

1.4 Bacterial motility, force generation, and force sensing .. 10

1.5 Biophysics of biofilms ... 13

1.6 Robustness in collective bacterial behavior .. 15

1.7 Primary Component Analysis (PCA) ... 17

1.8 Outline .. 21

2. Bacterial colony growth increases with substrate stiffness ... 22

2.1 Introduction .. 23

2.2 Results .. 25

2.3 Discussion ... 41

2.4 Methods .. 45

2.5 Supplementary Materials .. 50

3. Phenotypic similarity measures redundancy of genes ... 63

3.1 Introduction .. 63

3.2 Results .. 68

3.3 Discussion ... 79

3.4 Conclusions ... 84

3.5 Methods .. 85

3.6 Supplementary Materials .. 89

4. Phenotype probability distinguishes near-wild-type from wild-type behavior................................. 109

4.1 Introduction .. 109

4.2 Results .. 113

4.3 Discussion ... 122

4.4 Conclusions ... 128

4.5 Methods .. 128

4.6 Supplementary Materials .. 132

ix

5. Conclusion .. 138

Appendix A: Protocols .. 140

Appendix B: Python Code .. 150

References .. 211

Curriculum Vitae ... 227

x

List of Figures
Figure 1.1. Basic shear rheology using cylindrical sample geometry……………………….……………………………..4

Figure 1.2. Schematics of the Kelvin-Voigt and Maxwell viscoelastic models ……………..…………………………7

Figure 1.3. Schematic of biofilm components………………………………………………………………………………………..14

Figure 1.4. Dimensional reduction of a 2D dataset to one dimension using PCA……………………………………18

Figure 1.5. Dimensional reduction of a 3D dataset to two dimensions using PCA………………………………….19

Figure 2.1. Characterization of agar and polyacrylamide (PAA) substrates using a rheometer.. 26

Figure 2.2. Schematic diagram of the experimental setup used in Chapter 2. .. 29

Figure 2.3. Representative bright field images of Serratia marcescens colonies growing across a soft and

stiff PAA gel with boudnary position as a function of time. ... 30

Figure 2.4. Representative whole-colony pictures of Serratia marcescens grown on soft and stiff agar

and PAA substrates with boundary velocity data ... 32

Figure 2.5. Biofilm expansion rates on soft (G’=0.5 kPa) and stiff (G’=5 kPa) PAA gels for P. aeruginosa, P.

mirabilis, and M. xanthus bacteria species.. ... 35

Figure 2.6. Displacement fields and force fields generated by Serratia marcescens, showing increased

force generation on stiffer substrates .. 37

Figure 2.7. Schematic representation of poroelastic stresses associated with a growing biofilm front. .. 39

Supplementary Figure 2.8. Characterization of effective transport of a dye through PAA els. 51

Supplementary Figure 2.9. Rheological characterization of normal force relaxation in PAA gels. 56

Supplementary Figure 2.10. Automated biofilm boundary detection algorithm.. 57

Supplementary Figure 2.11. EPS fluorescent staining image indicating Serratia marcescens biofilm

development. .. 60

Supplementary Figure 2.12. Three-dimensional profile of representative bacterial colonies. 62

Figure 3.1. Schematic illustrating functional redundancy resulting in phenotypic similarity 66

Figure 3.2. Manual categorization of M. xanthus development. ... 71

Figure 3.3. Automated quantification of fruiting body formation phenotypes ... 73

Figure 3.4. PCA reveals typical phenotypic features for each homologous gene family.. 76

Supplementary Figure 3.5. Phenotypic clusters arise robustly from homologous gene families as

compared to random groupings of mutant strains.. .. 91

Supplementary Figure 3.6. Replicates of the same strain can vary in phenotype. 92

Supplementary Figure 3.7. Genetic similarity is not an effective predictor of phenotypic similarity within

a homologous gene family.. .. 95

Supplementary Figure 3.8. Quantitative comparison of phenotype cluster behaviors by gene family.. .. 97

Figure 4.1: Schematic of stochasticity inherent to multicellular behaviors in social bacteria. 112

Figure 4.2. High-throughput time series acquisition setup .. 113

Figure 4.3. Quantitative breadth of wild-type phenotype using PCA with representative time series ... 116

Figure 4.4. Deviation of near-wild-type mutant strains from wild-type behavior 121

Supplementary Figure 4.5. Standard statistical test (Kolmogorov-Smirnov on one metric) compared with

p-value calculated from changing distributions in PCA space .. 132

Supplementary Figure 4.6. Metric comparison for Mode 1 (red) and Mode 2 (blue) wild-type assays . 133

Supplementary Figure 4.7. Abnormal phenotypes expressed in wild-type ... 135

Supplementary Figure 4.8. Variation of phenotypic metrics across wild-type dataset 136

Supplementary Figure 4.9. Variation of wild-type videos based on date of inoculation 137

xi

List of Tables
Table 2.1. Effective pore size measurements of polyacrylamide gels .. 28

Supplementary Table 2.2. Summary of hydrogel compositions and their corresponding storage moduli

G’ ... 50

Supplementary Table 2.3. Summary of contact angle (mean ± standard deviation) of water on the

surface of PAA hydrogels. ... 50

Supplementary Table 2.4. Parameters used to estimate effective pore size of PAA gels. 55

Table 3.1. Makeup of primary components PC1 and PC2 by phenotypic feature in Chapter 3 75

Supplementary Table 3.2. A summary of the average replicate-to-replicate spread for each homologous

gene family in Chapter 3 ... 93

Supplementary Table 3.3. Enumeration of quantitative features used in the automated phenotype

analysis in Chapter 3 ... 100

Supplementary Table 3.4. List of strains used in Chapter 3... 101

Table 4.1. List of strains used in Chapter 4 ... 129

Supplementary Table 4.2. Numerical definition of primary components PC1 and PC2 in Chapter 4 133

Supplementary Table 4.3. Description of each of the ten developmental metrics used to quantify

aggregation phenotype in Chapter 4. ... 134

1

1. Introduction

1.1 Mechanobiology and the genotype-to-phenotype problem

Although every cell in a multicellular organism shares identical genes, different cells specialize

their behaviors and structure, and groups of cells can self-organize into distinct and diverse

tissues with a range of properties and functions [1]. The cell genome, the full sequence of DNA

base pairs stored in a cell, encodes all the proteins and molecular machinery a cell can

synthesize and express. Traditionally, the function of each gene is deduced by examining the

impact of the mutation of that gene on cell and tissue morphology and development. A

complete description of development was thus once thought to be found in studying the

genome with sufficient depth and rigor.

However, even when we know an organism’s full genome, it is often not sufficient to predict

cellular and developmental behaviors. This is referred to as the genotype-to-phenotype

problem. A phenotype is any observable characteristic of a living system, and it is clear that an

organism’s phenotype is a function of both its genome and its environment. Plants grow toward

light, fungi form spores when starved, and bacteria differentiate into multicellular biofilm

colonies when making contact with a surface. External physical and chemical environmental

cues shape developmental decisions.

Cells evolved in a physical world and have developed ways to sense and respond to

environmental cues to survive. Cells have built sensors that can detect two general types of

external signals: chemical, physical, or combination of the two. Chemical signal sensors are

typically protein receptors that impact intracellular signaling pathways by binding to specific

2

external chemical stimulants. A classic example is bacterial chemotaxis, in which cells show

directed motility toward or away from a chemical gradient. The responses of cells to chemical

signals are relatively well-characterized and understood through the lens of molecular

biochemistry and genetics. Compared to chemical signaling, the cellular response to physical

stimuli is far less studied [2]. The most described physical sensors detect mechanical features of

the extracellular environment and typically rely on coupled motion of a cellular organelle with

the environment. Cells translate these mechanical cues into biochemical signals to adapt their

behavior, a process known as mechanotransduction. Examples include deflection of primary

cilia in ear cells to hear sound [3] and membrane-based sensors that detect pressure gradients

across the cell membrane [4].

The field of mechanobiology has emerged in the last twenty years as evidence has grown of the

impact of mechanics on cell phenotype. This work has primarily focused on human cells and

animal models, which exhibit marked behavioral changes when grown in tissues of differing

stiffness values [5]. Tissue stiffness is a critical component of diagnosing diseases such as cancer

and fibrosis which cannot be explained in the traditional language of biochemistry. New work is

beginning to highlight how bacteria can also sense and respond to the mechanical features of

their environment, especially in the context of collective cell morphogenesis and development.

The work presented in this dissertation presents bacterial systems as an attractive model for

identifying fundamental mechanisms of mechanosensing, and it explores the applications of

bacterial multicellular development in addressing the genotype-to-phenotype problem. In

particular, we test the hypothesis that the physical properties of biofilm substrates affect

phenotype by designing developmental assays where the stiffness of the substrate is controlled

3

independently from its other material properties. We also investigate evidence for the

hypothesis that redundancy between collections of genes is a mechanism of developmental

robustness by designing analytical tools to quantify phenotypic similarity in large datasets.

Finally, this work is expanded to test the hypothesis that developmental dynamics can be used

to distinguish the subtle changes caused by single-gene mutations with statistical significance.

The work done in response to these questions represents a new approach to the genotype-to-

phenotype problem that emphasizes mechanobiology and can be used to measure the impact

of environmental and genetic changes across a wide variety of living systems.

1.2 Rheology and viscoelasticity

When a living system is interacting with its environment, we should consider what formal

definition of substrate mechanical properties is relevant to this interaction. The field of

rheology studies the flow and deformation of matter, and it supplies the concepts needed for

our current purposes. Macosko [6] is used as a reference text for definitions throughout this

section. When interactions vary with time, one useful definition is the dynamic shear storage

modulus, 𝐺′, where “storage” refers to the stored energy in the deformed substrate. Generally

speaking, 𝐺′ is a measure of substrate stiffness. We can think of stiffness as a measure of how

much force is required to deform a sample by a fixed amount – stiff materials require much

force per unit deformation, and soft materials require only a little force to cause the same

change in shape. In rheology, deformation is formalized with a dimensionless quantity called

“strain,” symbolized 𝛾, which is the ratio of the shear displacement and the height of the

sample. In turn, we measure the intensive quantity of “stress,” or force per unit area,

4

symbolized 𝜎, that is caused by this deformation. The shear stiffness 𝐺 is defined in the static,

equilibrium case as the ratio of stress to strain:

 𝐺 ≡ 𝜎/𝛾. (1.1)

The quantity 𝐺′ is called a “dynamic” storage modulus because it is measured under dynamic

shear of the sample. We now define it alongside a complementary quantity, the dynamic shear

loss modulus, 𝐺′′, which measures the loss or viscous dissipation of energy in the deformed

substrate. Specifically, a parallel plate rheometer is used to twist a cylindrical sample of

material back and forth at a fixed frequency 𝜔, as shown in Figure 1.1.

Figure 1.1. Basic shear rheology using cylindrical sample geometry. (A) A rheometer consists of a fixed lower plate
and a rotating upper plate, with a sample sandwiched in between that has cross-sectional area 𝐴. The upper plate
can be driven to twist the sample back and forth at a specific frequency 𝜔. A force transducer measures the force
𝐹 needed to induce this twisting, which can be used to calculate the material properties of the sample. (B) The
shear deformation caused by twisting the sample depends on 𝜃, the angular displacement of the top of the sample
relative to the bottom, and the radius 𝑟 and height ℎ of the sample. These values are combined into a
dimensionless strain 𝛾, which along with the stress 𝜎 define the shear moduli of the sample.

The deformation exerted by the rheometer is described as a sinusoidal axial shear strain on the

sample, and it is written with the equation

5

 𝛾(𝑡) = 𝛾0sin (𝜔𝑡). (1.2)

When deforming a material, there are two useful cases to consider for the material’s internal

stress response: the purely elastic case and the purely viscous case. In the purely elastic case,

the stress is precisely in-phase with the strain. That is, more deformation causes more internal

forces at each instant. In this case, the stress is also sinusoidal:

𝜎𝑒𝑙𝑎𝑠𝑡𝑖𝑐(𝑡) ∝ 𝑠𝑖𝑛(𝜔𝑡).

However, in the purely viscous case, the stress response depends on the strain rate according

to Newton’s law of viscosity. That is, only a change in deformation causes internal forces within

a fluid. This derivative induces a 90° phase separation between stress and strain:

𝜎𝑣𝑖𝑠𝑐𝑜𝑢𝑠(𝑡) ∝ 𝑐𝑜𝑠(𝜔𝑡).

The class of materials that fall in between these two idealized cases are often modelled as so-

called “linear viscoelastic materials” because of their dual elastic (or solid-like) and viscous (or

liquid-like) natures. This allows us to write the general stress response as a sum of two stress

responses

𝜎(𝑡) = 𝜎𝑒𝑙𝑎𝑠𝑡𝑖𝑐(𝑡) + 𝜎𝑣𝑖𝑠𝑐𝑜𝑢𝑠(𝑡).

When we divide this relation by the amplitude of the sinusoidal shear strain, we obtain the

definitions of 𝐺′ and 𝐺′′ comparable to equation (1.1) as

 𝜎(𝑡)

𝛾0
= 𝐺′sin(𝜔𝑡) + 𝐺′′cos(𝜔𝑡).

(1.3)

6

Adding the functions sin(𝜔𝑡) and cos(𝜔𝑡) with different positive weights will produce a new

sinusoidal function with a phase shift 𝛿 between 0 and 90°, depending on the magnitude of the

weights for each function. According to the trigonometric angle addition formula

 sin(𝜔𝑡 + 𝛿) = cos(𝛿)sin(𝜔𝑡) + sin(𝛿)cos(𝜔𝑡),

we see that 𝐺′ and 𝐺′′ relate to the phase shift 𝛿 in the strain function 𝜎(𝑡) as

tan(𝛿) = 𝐺′′/𝐺′.

As a rule of thumb, when tan(𝛿) ≥ 0.1, a solid material has enough viscous dissipation to be

considered “viscoelastic.” We note here that both 𝐺′ and 𝐺′′ can vary depending on the

frequency and amplitude of the strain being used to probe the sample. If a material under

dynamic shear is shown to have increasing 𝐺′ with increasing strain amplitude, the material is

said to exhibit “shear thickening,” a significant rheological characteristic, and one example of a

nonlinear elastic response. Shear thickening can be demonstrated by biofilms such as those

produced by Pseudomonas aeruginosa [7].

There are several basic rheological models that capture viscoelastic behavior. The Kelvin-Voigt

model is a simple, two-parameter model for viscoelastic solids. It is often schematically

represented as an idealized Hookean spring connected in parallel with an idealized Newtonian

dashpot, as shown in Figure 1.2A.

7

Figure 1.2. Basic viscoelastic model schematics. (A) Schematic of the Kelvin-Voigt model of a viscoelastic material
under shear. The model combines a Hookean spring with shear modulus 𝐺 in parallel with a Newtonian dashpot
with viscosity 𝜂. (B) Schematic of the Maxwell model of a viscoelastic material under shear. This model instead
combines the spring and dashpot in series, resulting in different model behaviors.

The spring (when considering shear deformation) has shear modulus 𝐺 = 𝜎𝑠/𝛾 in terms of the

stress on the spring 𝜎𝑠, and the dashpot has viscosity 𝜂, defined via 𝜎𝑑 = 𝜂�̇� in terms of the

stress on the dashpot 𝜎𝑑. Although this schematic is illustrated with axial compressive strain

instead of shear strain, the mathematical representation is equivalent for the cylindrical torsion

geometry we consider. Because the elements are connected in parallel, we have one common

strain 𝛾, and the overall stress 𝜎 = 𝜎𝑠 + 𝜎𝑑, since the two forces add at a point of common

cross-sectional area. This gives us the basic model equation

 𝜎 = 𝐺𝛾 + 𝜂�̇�. (1.4)

Under sinusoidal strain, we can combine equations (1.2), (1.3), and (1.4) to show

𝐺′ = 𝐺

𝐺′′ = 𝜂𝜔.

In this way, 𝐺′ is considered a measure of how “solid-like” a material is, and 𝐺′′ is considered a

measure of how “liquid-like” it is. We can also see how a Kelvin-Voigt material would respond

8

to a creep test — that is, a rheological test involving the application of a constant stress.

Assuming 𝜎 is a constant, we can solve equation (1.4) for 𝛾(𝑡) and show that

𝛾(𝑡) =
𝜎

𝐺
(1 − 𝑒

−
𝐺
𝜂

𝑡
).

That is, a Kelvin-Voigt material subjected to a constant stress starts from zero strain and

eventually saturates upwards to a maximum strain of 𝜎/𝐺 along an inverted exponential decay

curve. This is one reason the Kelvin-Voigt model is appropriate for viscoelastic solids, since

viscoelastic liquids would instead flow indefinitely under a constant stress.

Another simple viscoelastic model is the Maxwell model, which instead combines the Hookean

spring and Newtonian dashpot in series, as shown in Figure 1.2B. In this case, there is one

common stress 𝜎 between the two elements due to Newton’s third law of motion, setting

 𝜎 = 𝐺𝛾𝑠 = 𝜂�̇�𝑑, (1.5)

where the spring and dashpot have their own separate strains, 𝛾𝑠 and 𝛾𝑑 respectively. These

two strains sum to the overall strain of the material, giving 𝛾 = 𝛾𝑠 + 𝛾𝑑. We can then use

equation (1.5) to express the Maxwell model equation

 �̇�

𝐺
+

𝜎

𝜂
= �̇�.

(1.6)

When we submit this model equation to a creep test by setting 𝜎 equal to a constant, solving

equation (1.6) for 𝛾(𝑡) gives the result

𝛾(𝑡) =
𝜎

𝜂
𝑡.

9

This shows that the Maxwell model is appropriate for viscoelastic fluids that deform indefinitely

at a constant strain rate under the influence of a constant stress.

For either the Kelvin-Voigt or Maxwell models to capture nonlinear behavior, the model

parameters 𝐺 and 𝜂 must vary with the frequency and/or amplitude of the shear strain.

Other viscoelastic models with more elements, such as the Jeffreys [8] or Burger models [9],

have been used to model the viscoelasticity of bacterial biofilms. Other viscoelastic models,

such as the generalized Maxwell model, combine multiple relaxation times explicitly by

including many elements with a variety of fixed parameters [10]. Continuum models have also

been used to capture viscoelasticity [11].

1.3 Bacteria as model systems

The motivations for studying bacteria in and of themselves are manifold. Bacteria are

simultaneously one of the simplest and most abundant forms of life, entering every ecological

niche where life is found [12], flourishing in the oceans, forming communities with other

species, and coevolving with host organisms. This success, while being genetically much simpler

than other organisms, posits bacteria as a unique window into the principles that living systems

use to survive. The ubiquity of bacteria in natural and man-made environments, indeed even in

our own bodies, allows them to fulfill both useful and harmful roles with enormous impact on

daily life, with the biofuel industry, water treatment practices, antibiotic resistance and other

bacterial diseases, as just a few examples. Greater understanding and control of these roles

requires new studies into bacteria.

10

The perspective of physicists can provide new understanding at a pivotal time when novel

quantitative methods are being deployed to study the complexities of living systems [13–15].

The forces that mediate physical interactions between bacterial colonies and the substrates

they colonize are a promising object of study that is often not included in biophysical models.

Bacteria adhere to and colonize a staggering variety of environments, from mucus and the soft

tissues of the GI tract [16] to the hard keratinous shells of crustaceans [17], plastic waste [18],

and stainless steel [19]. A focus on the softer environments that mimic biological tissue is

especially relevant to understanding the role of bacteria in disease. For example, cystic fibrosis

is a condition in which the viscosity of mucus is increased. This change results in chronic

infections of Pseudomonas aeruginosa biofilms in the lungs of cystic fibrosis patients that are

extremely difficult to treat but that occur only rarely in people with normal mucus

viscosity [20].

Bacteria also provide insights into fundamental questions about living systems in general. They

present a model system that is amenable to environmental manipulation and genetic

manipulation using well-established techniques such as plasmid insertion [21]. The speed with

which bacteria reproduce also allows for many experimental replicates to be performed in a

short period of time. This provides enough data to resolve key effects from noisy biophysical

processes.

1.4 Bacterial motility, force generation, and force sensing

Bacteria have evolved a number of different structures and appendages that allow individual

cells to generate and sense forces. The classical flagellar motor, powered by proton motive

11

forces, is a bacterial analog of a mechanical motor, complete with rotor and stator components.

It turns helical flagella to allow swimming motility in liquid environments. Pioneering work with

E. coli bacteria that had their flagella tethered to a fixed substrate demonstrated that the

flagellar motor operates at near constant torque [22,23]. More recent work shows that stator

components are dynamically recruited to the flagellar motor in response to changes in

mechanical load [24]. Transmembrane ion channels are ion pumps powered by adenosine

triphosphate (ATP), an energy-storing molecule ubiquitous in living systems. These channels

were found to allow bacteria to adapt to changes in osmotic pressure by actively forcing ions

out of the cell. When a bacterium encounters an environment with very low salinity for

example, this reduction in cellular Na+ and Cl- ions can prevent the osmosis that would

otherwise swell the cell with water and cause it to burst [4]. Pili are an important bacterial

appendage for generating force and cell motility at a surface. Twitching motility is powered by

the extension and retraction of type IV pili, which can attach to a surface and pull cells along.

Active assembly and disassembly of pilin subunits is also likely powered by ATP [25]. Internal

cellular structures allow for gliding motility, a general term for smooth motility modes along

surfaces that vary from species to species and are the subject of ongoing research. In

Myxococcus xanthus, gliding motility involves the rotation of a cytoskeletal helix, which drives

individual cells forward almost like a corkscrew tank. There is evidence that proton motive

forces also power gliding motility [26].

Beyond individual cells, bacterial colonies collectively expand and adapt to environmental

stimuli. Swarming motility is powered by the interaction of flagellar activity between cells in a

dense swarm. This motility mode involves bacteria changing phenotype, becoming

12

hyperflagellated when conditions are right, such as when high concentrations of nutrients and

moisture are present [27]. Motility modes such as spreading and darting are powered by the

buildup of pressure from cell division and the manipulation of local surface properties by the

secretion of extracellular polymeric substances (EPS) and surfactants [28]. In many species, a

bacterial colony can also create a biofilm, a microenvironment created and inhabited by the

bacteria that is ubiquitous in nature. The EPS-composed matrix that houses the bacteria has

been shown to vary in stiffness and strength in differing environments [29]. When biofilms

grow in flowing liquid, characteristic streamers form, resilient filaments of bacteria and EPS that

adapt their material properties to have higher yield stress when flow is increased [7,30].

This evidence for bacterial response to mechanical signals raises the question as to what

mechanism underlies these effects. Type IV pili are one of the most useful vectors of

information for these signaling networks, bridging between a bacterium, its environment, and

its neighbors. Some known signaling pathways involve type IV pili, such as the Chp system,

which signals when a bacterium encounters a surface and begins the process of biofilm

formation [31]. Because pili are dynamically assembled and disassembled from pilin subunits,

the local density of those subunits inside the cell acts as a readout for how far the pilus is

extended, giving the cell access to information about its mechanical microenvironment. The

existence of other signaling pathways that can resolve more fine-grained mechanical

information or other mechanisms of adaptation to mechanical signals is an open topic of

research.

13

1.5 Biophysics of biofilms

To understand the growth and development of biofilms, we should consider the underlying

physical mechanisms by which biofilms expand. When a few cells are introduced to a solid

nutritive surface, the cells begin to multiply and divide as cellular behavior transitions from a

planktonic, free-swimming state to a biofilm-forming state. While the nutrients that allow for

cell division are necessary for a biofilm to grow, the proliferation of cells is not the only primary

driving factor in biofilm growth. Although colonies of some bacterial species do grow

exclusively by cell division (this passive motility mechanism – spreading – is explained in the

previous section), biofilms expand much faster through other means. Mature biofilms are

composed primarily of fluid, followed by extracellular matrix components excreted by the

bacteria, and the bacterial cells themselves take up the smallest fraction of volume. Depending

on environment, different factors can shape the developing biofilm morphology. In the case of

biofilms grown in fluid flow, whether through large pipes or in microfluidic channels, polymers

produced by the bacteria allow cells to adhere end-to-end, and as many thin filaments build up

on each other, they elongate along the direction of flow, and form so-called “streamers” [7,30].

In this work, we consider in more depth the growth of biofilms on a solid interface, where fluid

is available from the environment but is not being pushed by externally driven flow. In this case,

biofilm growth occurs when the production of extracellular polymeric substances (EPS) induces

an osmotic pressure gradient that causes the biofilm to swell with fluid and expand [32,33]. This

pressure is generated by the high concentration at which the molecules of EPS are produced.

Like water flowing spontaneously into a briny region enclosed by a permeable membrane,

diffusion of water into the biofilm is driven by the tendency at equilibrium for the

14

concentration of EPS molecules to be uniform everywhere [33–35]. The EPS molecules are

produced by the most metabolically active cells at the nutrient-rich edges of the colonized

region [36,37]. This is illustrated schematically in Figure 1.3.

Figure 1.3. Schematic of biofilm components. As a biofilm grows, its structure is defined by the network of
extracellular polymeric substances (EPS) produced by the bacteria. At the edges of the biofilm, metabolically active
bacteria synthesize available nutrients into EPS, producing these molecules at high enough concentrations to drive
fluid out of the substrate and into the biofilm via osmotic pressure. This osmotic pressure decreases as the biofilm
swells with fluid, driving its outward expansion.

Because nutrient uptake powers the production of new osmolytes, these nutrients become

locally depleted until the biofilm can colonize new, nutrient-rich locations. The concentration of

osmolytes powers the fluid flow that swells the biofilm, and as fluid flows into the biofilm, the

local osmotic pressure is decreased as the system attempts to reach equilibrium. This requires

continuous production of osmolytes to power continued expansion. The interplay between

these factors is captured by analytical models such as this one proposed by Mahadevan [37]

that predicts three different phases in biofilm development.

Other relevant physical factors have been considered in biophysical models and experimental

studies of biofilm expansion and development. For example, the surface tension of a substrate

can be influenced by surfactants produced by bacteria. Surfactant-deficient mutants of

15

Pseudomonas aeruginosa produce biofilms with less structure [38], which impedes the flow of

fluid within the biofilm and may inhibit their ability to colonize surfaces. Other examples

include surface friction reducing biofilm area and increasing the slope of the leading edge of the

colony [36], and increased bacterial adhesion causing cells to experience greater shear, which

then express more of the signaling protein cyclic-di-GMP that upregulates biofilm formation. An

overview of other relevant studies can be found in the introductory materials of [39]. Less

explored is the interaction between the biofilm and the substrate it grows on, especially when

that substrate is soft, although a body of literature in this line of questioning is beginning to

emerge [39–41], which we contribute to with this work.

1.6 Robustness in collective bacterial behavior

The ability of bacteria to coordinate as a colony in order to survive depends on a complex

network of chemical and mechanical signals sent between cells that regulate the expression of

genes to modulate individual cellular behavior. Despite the many potential failing points of such

an intricate network, these behaviors are consistently effective under a wide range of

conditions. Biofilms resist environmental shear, the influence of antibiotics, and the response of

immune systems. In Myxococcus xanthus, one mode of biofilm development is the fruiting

body, an aggregate of EPS and cells, some of which undergo programmed cell death, and some

of which differentiate into quiescent myxospores that can germinate and form a new colony

under suitable conditions [42]. Evolutionary pressure has given rise to these behaviors, but

what mechanisms bacteria employ for this robustness is an open question.

16

One hypothesis for this robustness that is addressed in Chapter 3 is the formation of redundant

gene networks. In this scenario, proteins that perform a specific cellular function, although

specialized, may be able to stand in for other proteins that are prevented from performing their

function. One way that this may occur is via the creation of homologous genes, which are

derived from identical copies of the same gene occasionally left behind by the apparatus of

DNA repair processes when DNA breakage occurs. These identical copies, when present for long

enough in the genome, can collect independent mutations over time, allowing them to

specialize their function, but possibly leaving other fundamental behaviors intact. This form of

redundancy therefore exists at the individual cellular level.

Another more general path to robustness is existence of multiple developmental paths by

which a desired outcome may be achieved. The methods presented in Chapter 4 provide

evidence that consistent fruiting body formation can be achieved with varying dynamics. This

form of developmental redundancy exists at the colony level.

In general, multicellular development is driven by stochastic processes at all scales, from gene

expression itself, to the cell-cell contacts that convey signaling information, to the mechanical

interactions of neighboring cells encountering each other and their substrate. The fact that

bacteria exhibit robust development in spite of this inherent stochasticity points to

fundamental principles that await discovery with the proper tools. The work presented in this

dissertation provides tools towards that purpose.

17

1.7 Primary Component Analysis (PCA)

One useful tool that can be used to decrease the complexity of high dimensional data while

preserving its structure is Primary Component Analysis (PCA) [43]. This is a deterministic

technique with no input parameters that is based on elementary linear algebra and statistics.

This method begins with an input dataset, where each datapoint 𝒙 is a vector in an 𝑁-

dimensional vector space. PCA first identifies among all the directions in this space the single

direction 𝒂 that has the most variance across the dataset. This is equivalent to fitting the data

to a line using the least squares method to minimize the error, where the line points along 𝒂.

This direction is called the first primary component, or PC1. The datapoints can be projected

onto this line to obtain a one-dimensional version of the data. The data is now distributed along

one axis, and the value of each datapoint along this axis is often referred to as the value of PC1.

This process is visually summarized in Figure 1.4.

18

Figure 1.4. Dimensional reduction of a 2D dataset to one dimension using PCA. (A) From an initial 2D dataset in x-y
space (blue points), PCA first identifies the direction 𝒂 that maximizes the variance across the dataset, i.e. where
the data is most widely distributed. The direction of maximum variance is called PC1, or the first primary
component. Then the data points are projected onto this line. (B) The direction PC1 defines a new axis, and the
value of the datapoints along this axis (which can be referred to as the values of PC1) constitutes the reduction of
the data from two dimensions (x and y) to one dimension (PC1).

A reduction to one dimension often discards too much information, so more primary

components can be identified. In the (𝑁 − 1)-dimensional subspace of all directions

perpendicular to PC1, the direction with the next most variance is called PC2. This process of

identifying primary components can be continued for as along as desired up to 𝑁 primary

components, with each additional primary component adding more of the total variance but

increasing the complexity of the reduced dataset, illustrated in Figure 1.5.

Because the overall structure of the data is changed in this process as little as possible, using

PCA to reduce a dataset to a visualizable number of dimensions such as two or three can also

have the effect of revealing correlations or clustering in multivariate data, important properties

19

of high-dimensional datasets that are often not immediately clear. The directions of the

primary components themselves also reveal which or which combination of the original 𝑁

dimensions contains the most variation and thus the most information across the dataset.

Figure 1.5. Dimensional reduction via Primary Component Analysis (PCA). An initial dataset (blue points) in x-y-z
space is projected onto a two dimensional plane. This plane is defined by two directions: PC1, or the first primary
component, is the direction of highest variance across the dataset, and PC2, or the second primary component, is
the direction of second highest variance and is perpendicular to PC1. This is the orthogonal projection that
preserves as much of the structure of the dataset as possible.

The primary components themselves are calculated as the eigenvectors of the covariance

matrix 𝑺 of the dataset, with the eigenvalues giving the variance of each. To demonstrate this,

we first consider the definition of variance, using the value of the datapoint 𝒙 projected onto

the unit vector 𝒂, that is 𝒂 ∙ 𝒙 = 𝑎𝑖𝑥𝑖 (using the Einstein summation convention):

 𝑣𝑎𝑟(𝑎𝑖𝑥𝑖) = 〈(𝑎𝑖𝑥𝑖)
2〉 − 〈𝑎𝑖𝑥𝑖〉2

 𝑣𝑎𝑟(𝑎𝑖𝑥𝑖) = 𝑎𝑖𝑎𝑗〈𝑥𝑖𝑥𝑗〉 − 𝑎𝑖𝑎𝑗〈𝑥𝑖〉〈𝑥𝑗〉

 𝑣𝑎𝑟(𝑎𝑖𝑥𝑖) = 𝑎𝑖𝑎𝑗𝑆𝑖𝑗 (1.6)

20

where the brackets 〈∙〉 denote an average across the datapoints, and we also obtain the

definition of the covariance matrix 𝑆𝑖𝑗 = 〈𝑥𝑖𝑥𝑗〉 − 〈𝑥𝑖〉〈𝑥𝑗〉. To maximize the variance, we

differentiate with respect to the direction 𝒂, using a Lagrange multiplier 𝜆 to constrain 𝒂 to be a

unit vector, that is

 𝑎𝑖𝑎𝑖 = 1. (1.7)

Doing this, we then obtain the condition

 𝜕𝑎𝑖
[𝑎𝑖𝑎𝑗𝑆𝑖𝑗 − 𝜆(𝑎𝑖𝑎𝑖 − 1)] = 0

 𝑆𝑖𝑗𝑎𝑗 − 𝜆𝑎𝑖 = 0

 𝑆𝑖𝑗𝑎𝑗 = 𝜆𝑎𝑖, (1.8)

showing that any direction 𝒂 that is a local extremum of variance is an eigenvector of 𝑺 with

eigenvalue 𝜆. We interpret the eigenvalue by combining equations (1.6), (1.7) and (1.8):

 𝑣𝑎𝑟(𝑎𝑖𝑥𝑖) = 𝑎𝑖𝑎𝑗𝑆𝑖𝑗

 𝑣𝑎𝑟(𝑎𝑖𝑥𝑖) = 𝑎𝑖𝜆𝑎𝑖 = 𝜆.

This shows that each primary component is an eigenvector of 𝑺, ordered by the variance given

by their respective eigenvalues. Since the covariance matrix is symmetric, these eigenvectors

are all perpendicular to each other.

Because the calculation of primary components involves foundational techniques of linear

algebra, implementations of PCA are found in the standard libraries of many programming

languages, such as MATLAB and Numpy for Python.

21

1.8 Outline

This body of work explores the biophysical questions of collective bacterial motion by

presenting new experimental evidence and analytical techniques. Chapter 2 features an

experimental study of biofilms produced by multiple bacterial species that reveals a previously

unobserved effect wherein bacteria can generate greater forces and colonize stiffer substrates

more quickly than softer substrates in a particular window of stiffnesses that are relevant to

biofilm formation on biological tissues. Chapter 3 begins the focus on a particular organism,

Myxococcus xanthus, and displays a technique for quantitative phenotyping of a characteristic

multicellular developmental behavior expressed by this species. This technique is used to test

long-standing hypotheses in prokaryotic genetics and measure the breadth of networks of

redundant genes. Chapter 4 develops these analysis techniques further and also presents a

high-throughput experimental system for future experiments, including a measure of the

variation of wild-type developmental phenotypes, and validation with subtle mutant

phenotypes that are difficult to measure with standard statistical techniques. In the concluding

chapter we recapitulate the findings presented thus far and survey possible future experiments.

22

2. Bacterial colony growth increases with substrate stiffness

This chapter is based on the article “Spreading rates of bacterial colonies depend on substrate

stiffness and permeability” previously published in 2022 in PNAS Nexus and coauthored by

myself, Alison Patteson, Minh Tri Ho Thanh, Arvind Gopinath, Danielle Germann, Robert Carroll,

Alana Franceski, and Roy Welch. The experiments were designed by Alison Patteson and myself.

I performed the experimental work and analysis. The manuscript was written by Alison

Patteson, Minh Tri Ho Thanh, who contributed to the section on traction force microscopy,

Arvind Gopinath, who contributed analysis of gel permeability, and myself. Minh Tri Ho Thanh

and Danielle Germann contributed to traction force microscopy experiments and analysis. Alana

Franceski and Roy Welch assisted in experimental work with M. xanthus. Robert Carroll

contributed rheological characterization of the polyacrylamide hydrogels and agar.

23

2.1 Introduction

Biofilm formation is an important process in the bacterial lifecycle. Biofilms are multi-cellular

communities of bacteria commonly attached to an external surface [44,45]. Emerging evidence

indicates that bacteria sense and respond to variations in the mechanical properties of the

surrounding environment, resulting in changes to cell physiology and biofilm morphology [46–

49]. When a bacterium makes contact with a surface, it initiates a program of gene expression

that promotes colonization and secretion of extracellular polymeric substances that self-

encapsulate the cells and gives the biofilm its structure [50,51]. The biofilm thus consists of

both cells and EPS components, growing as a result of both cell division and EPS

deposition [38]. Colony growth is aided by the production of surfactants [38] and EPS-

generated osmotic pressure gradients, which facilitate nutrient uptake from the

substrate [32,33]. Thus, the physical properties of the underlying substrate have the potential

to disrupt structural and functional aspects of cell attachment and function that contribute to

biofilm phenotypes.

The vast majority of biofilm experiments are conducted on the surface of an agar gel. Agar was

introduced in 1882 by Angelina Fanny Hesse and gained popularity through Robert Koch [52]

because it is inert to bacteria degradation. However, agar is isolated from marine algae and is

an undefined media, as its chemical composition is not entirely known [53]. Agar variability

from the isolation process makes it difficult to define and reproduce its chemical and physical

properties [54,55].

A common feature of these studies is that biofilm expansion decreases with increasing agar

concentration [33,49,56,57]. Increasing agar concentration increases agar network stiffness but

24

also impacts other properties of the gel, such as the hydrogel pore size [33]. Agar is typically

prepared in the range 0.5% - 2% agar in a nutrient-rich media, forming a hydrogel comprised of

a porous solid network and the nutrient-rich interstitial fluid that permeates through the

network. On stiff agar, the pore size is smaller and the rate of nutrient transport through the

substrate and to the biofilm decreases [33,37]. A number of studies have attributed this

inhibited biofilm growth on stiff agar to lack of nutrients rather than stiffness per se [33,37]. On

the other hand, there are studies indicating substrate stiffness can separately modify biofilm

shape and expansion by mediating adhesion [39,58] and frictional forces between the biofilm

and the substrate [36]. The extent to which biofilm growth depends on the combined effects of

substrate stiffness and nutrient availability is thus an open question, and current bacteria

culture substrates largely cannot separate the effects of these two properties on biofilm

growth.

Here we report the development of polyacrylamide (PAA) hydrogels with tunable matrix

stiffness and matrix porosity to determine their integrated effects on biofilm growth. We

identify a new regime in the limit of purely elastic substrates in which bacteria colonies spread

out faster on stiffer substrates compared to softer ones, which is opposite of conventional agar.

Our study focuses on the bacterium Serratia marcescens, which is a common model organism

for collective motion and behavior [48,59–61], but we also show that Pseudomonas aeruginosa,

Proteus mirabilis, and Myxococcus xanthus expand faster on stiffer substrates than soft ones. A

major advantage of polyacrylamide gels is that unlike agar they linearly deform in response to a

wide range of stress, which enables facile definable force calculations. Using traction force

microscopy-based techniques, we show that bacteria colonies generate transient surface forces

25

correlated over length scales much larger than a single bacterium and that the magnitude of

these forces increases with increasing substrate stiffness. Our results are consistent with a

model in which biofilm development is impacted by osmotic pressure gradients between the

biofilm and the substrate and the substrate’s poroelastic response.

2.2 Results

Design and characterization of polyacrylamide hydrogels

In this study, we used both polyacrylamide gels and conventional agar as a point of comparison.

To characterize the mechanical properties of the gels, we measured under shear their elastic

storage modulus G′, which quantifies their resistance to shear deformations, and their viscous

loss modulus G′′, which quantifies viscous energy dissipation, with an oscillatory rheometer. As

shown in Fig. 2.1a, agar exhibits non-linear shear softening; its shear modulus decreases from

approximately 10 to 1 kPa as shear strain rises from 2 to 50%. The mechanical response of PAA

to shear strain differs from agar. As shown in Fig. 2.1b, polyacrylamide gels form linearly elastic

gels, with near constant G’ over the applied strain range.

26

Figure 2.1. Substrate characterization using a stress-controlled rheometer. The shear storage modulus G’ and loss
modulus G’’ as a function of shear strain for both (a) agar and (b) polyacrylamide gels. PAA gels are prepared by
either (c) increasing PAA concentration or (d) chemical crosslinker bis-acrylamide. (e) Schematic representation
illustrating the effects of increasing PAA polymer concentration vs chemical crosslinker on fluid permeability in the

network. Error bars denote standard error from 3+ independent trials per condition.

The shear modulus G’ sets the extent to which a material deforms under an applied shear

stress. The non-linear shear softening is a property of complex materials and demonstrates that

27

agar is softer when probed at higher deformations compared to small ones. If biofilms deform

their substrate at magnitudes that vary over time or under different experimental conditions,

then the shear modulus of the agar substrate will vary in response to the applied deformation

and the biofilm would experience a different mechanical resistance from the substrate.

Agar also exhibits significant viscoelasticity, with a viscous loss modulus G’’ of 10%-50% of the

storage modulus G’ at least for small strain values (2-5%) at a frequency of 1 Hz. This data

suggests that as a substrate for biofilm growth, agar dissipates energy and relaxes applied

stresses that might be relevant to outward growth of the colony. PAA gels, in contrast, exhibit

negligible viscous dissipation, consistent with prior work [62–64].

Unlike agar and most other bacterial growth substrates, the shear (elastic) moduli of PAA gels

can be tuned by either crosslinker concentration or polymer concentration, which allows

tunable control of matrix stiffness and matrix pore size [65]. In order to distinguish between the

effects of substrate stiffness and substrate permeability on biofilm growth, we thus designed

PAA gels (Supp. Table 2.2) with shear moduli G’ ranging from 100-10,000 Pa by varying either

the amount of acrylamide or the amount of the chemical crosslinker bis (Fig. 2.1c&d). These

two parameters, acrylamide concentration and crosslinker concentration, have two different

effects on network permeability (Fig. 2.1e) (28). Increasing the concentration of acrylamide

monomer results in a denser, stiffer polyacrylamide network with a smaller pore size and thus

lower permeability. Increasing the concentration of crosslinker links together the same density

of polyacrylamide polymers at a greater number of sites, increasing the network stiffness

without significantly changing pore size. These effects are illustrated schematically in Fig. 2.1e.

We confirmed these expectations using effective diffusion and force indentation experiments

28

to estimate the effective pore sizes of the polyacrylamide gels (Table 2.1, Supp. Fig. 2.8&9).

Here, we note here that diffusion of nutrients through the network depends on both molecular

diffusion and poroelastic transport of solvent as gels swell or deswell. We refer to nutrient

transport and diffusivity in terms of effective diffusivities that combine the effects of both. The

effectivity diffusivities measured here range from approximately 70-175 μm²/s, which is

consistent with prior literature values for PAA gels [66] accounting for differences in the shear

modulus G’ of the gels [67].

% PAA % Bis Effective Diffusivity
(μm2/s)

Pore size (nm)

3 0.15 170±22 22 ± 5.6

12 0.15 80±20 0.85 ± 0.1

8 0.085 75±10 1.5 ± 0.1

8 0.45 70±10 0.9 ± 0.2

Table 2.1. Effective pore size measurements of polyacrylamide gels (Details in Supplementary Materials).

Substrate stiffness increases biofilm expansion rates

Our experimental protocol consists of directly observing the growth of Serratia marcescens

colonies on the surface of hydrogel substrates with time-lapse microscopy (Methods). Before

inoculation, the PAA gels are soaked multiple times in LB nutrient-rich broth. We deposit a

small inoculum of bacteria on the gel surfaces and track x-y positions of the resulting biofilm

boundary as it expands over 15-hour time periods, relevant to prior literature reports [36,68]

(Fig. 2.2). The biofilm boundary is tracked by a custom semi-automated Python script we

developed for these videos (Methods, Supp. Fig. 2.10).

29

Figure 2.2. (a) Schematic diagram of the experimental setup. Aliquots of Serratia marcescens were placed on
polyacrylamide (PAA) substrates that were 0.8 mm in height. The substates were maintained at 37 °C in a humid
stage top incubator. (b) Visualization of the growing biofilm boundary overlaid on a sample image of the biofilm.
Images were acquired at 10-minute increments, and boundaries shown here are displayed at 20-minute
increments. (c) Color image of full bacterial colony after 15 hours of growth. Scale bars, 1mm.

Representative biofilm time lapse images on a soft (G’ = 0.9 kPa) and a stiff (G’ = 3 kPa) PAA gel

are shown in Fig. 2.3, with videos available as supplementary materials (Video S2&S3

respectively). There are notable differences in colony morphology and the collective cell

migration speed between the two gel types. While the biofilm surface expansion speed

encompasses the collective effects of rates of EPS production, cell division, and cell surface

motility, the colony expansion rate is faster on the stiffer PAA gel compared to the softer one,

opposite of the behavior on conventional agar substrates.

30

Figure 2.3. Representative bright field images of Serratia marcescens colonies growing across a soft (a-c) (SI Video
1) and stiff (e-g) (SI Video 2) PAA gel. Variations in gray intensity correlate with the amount of transmitted light
though the biofilm, which depends upon both colony density and height. Both the biofilm structure and expansion
rate (d) depend on substrate stiffness. Scale bar, 1 mm. Soft gel: G’=0.9 kPa, 4% PAA, 0.15% bis-crosslinker. Stiff
gel: G’=3 kPa, 6% PAA, 0.15% bis-crosslinker.

A central feature of biofilm formation is the production of extracellular polymeric substances

(EPS), which adheres cells to each other and external surfaces. EPS production allows for

vertical growth of the colony [69] and also mediates osmotic spreading of the colony

edge [32,37]. To determine whether the bacteria colonies were producing EPS, we stained the

colonies with a fluorescent biofilm matrix stain and found EPS deposition throughout the

colony (Supp. Fig. 2.11). We also observed wrinkles and surface corrugations on the colony

surface, characteristic of EPS production and biofilm formation. To visualize the 3D colony

structure, we used a white-light interferometer to map the 3D colony verticalization (Supp. Fig.

2.12). The colonies on soft substrates were more vertical than colonies on stiff substrates, with

colony heights of approximately 25 μm on soft substrates compared to 5 μm on stiff substrates.

Compared to 3D imaging methods such as confocal microscopy or white light interferometry,

31

wide-field imaging of the colonies can be gathered in larger numbers with an automated multi-

point microscope. Thus, here, we focus on the 2D colony expansion rates as a high throughput

metric to screen the effects of substrate stiffness on colony surface dispersal.

This phenomenon is highlighted in Figure 2.4, which shows snapshots of whole biofilm colonies

on PAA gels and agar substrates taken several hours after inoculation. We note that the

reduced biofilm growth on stiff agar substrates compared to soft agar is a common feature of

many different bacteria species, such as Vibrio cholerae, Proteus mirabilis, Myxococcus xanthus,

and Salmonella enterica [33,49,56,57]. This inhibited biofilm growth on agar has been

attributed to the reduction in substrate permeability found in more concentrated agar

substrates, which limits the transport of fluid and nutrients from the substrate into the

biofilm [33]. Another physical factor contributing to biofilm expansion rates is the surface

tension between the biofilm and the surface, where decreasing surface tension increases

biofilm expansion, by allowing the leading edge to propagate and advance faster [70].

Therefore, we measured the surface tension between a fluid droplet and the hydrogel surfaces

with a contact angle goniometer (Supp. Table 2.3). We found that the contact angle increased

from 15° ± 2° to 23.5° ± 1° for 4% and 8% PAA, respectively, suggesting that the effects of

surface tension would lead to increased biofilm expansion on softer PAA gels. The strong

increase in biofilm expansion on more concentrated PAA gels is thus unexpected from the

effects of the hydrogel itself on surface tension (Fig. 2.3&4). We note that the colony expansion

rates here are significantly slower than swarming expansion rates and no vortical collective

flows are observed, which indicate that the colony is in a biofilm state in contrast to a swarming

32

state [37,71]. Cell motility, however, likely does contribute to the expansion process, as some

subfraction of cells in a biofilm maintain a motile state [72].

Figure 2.4. (a) Representative whole-colony pictures of Serratia marcescens grown on soft and stiff agar and PAA
substrates. While colonies size decreases on stiffer agar substrates, the opposite occurs on purely elastic PAA
substrates. The biofilms are manually traced and pseudo-colored pink to enhance imaging contrast. Scale bar, 5
mm. (b&c) Biofilm expansion velocity as a function of substrate stiffness (G’) for Serratia marcescens colonies
grown on (b) PAA and (c) agar substrates, measured approximately two hours post inoculation. The varying PAA
data is gathered at 0.15% Bis; the varying bis data, at 8% PAA. A full list of the hydrogel compositions are
presented in Supp. Table 2.3. Data points represent n ≥ 8 measurements taken in N = 3 independent trials.
Estimates of the apparent pore size for gels comprised of (d) varying PAA and (e) varying bis-crosslinker
concentration (SI). The soft varying PAA gels have the largest pore size.

To quantify the above observations, we calculate the initial biofilm expansion rates by

calculating the boundary velocities from the tracking data. The biofilm velocity is defined here

as the average radial displacement of the biofilm boundary over a time interval of Δt = 20 min.

Here, we use the biofilm boundary velocity as a metric of wild-type collective expansion, not a

direct measure of single cell surface motility or bacteria doubling time.

Figure 2.4 shows the initial colony expansion velocities on PAA and agar substrates when radial

expansion of the biofilms are first beginning to be observed, approximately two hours post

inoculation.

33

Figure 2.4A shows the surface expansion rate for polyacrylamide hydrogels of increasing PAA

concentration. We find that there is a significant increase in colony expansion rate with

increasing substrate stiffness, particularly for substrate stiffness G’ < 5 kPa. For substrate

stiffness greater than 5 kPa, the colony velocity seems to saturate with substrate stiffness and

then begins to slowly decline on PAA gels (Fig. 2.4a). These results are strikingly similar for PAA

gels with the same range of substrate stiffness but prepared by increasing bis-crosslinker (Fig.

2.4B). We note that Fig. 2.4b serves as a control. Unlike increases in PAA, increasing the bis

crosslinker does not significantly modify the network pore size, indicating a distinct effect of

substrate stiffness on colony expansion. These results are entirely different from biofilm growth

on agar substrates: the colony velocity decreases dramatically with increased agar

concentration (Fig. 2.4c), even for substrate stiffness less than 5 kPa.

We note that we do observe differences between hydrogels prepared by varying PAA and

varying bis of the same hydrogel stiffness G’. These differences are most evident for soft gels,

where G’ < 5 kPa (Fig. 2.4a&b): colonies on the varying PAA gels expand more quickly than

colonies on the varying bis gels (p < 0.01 for G’ ≈ 3kPa). In this regime, the varying PAA gels

have larger pore sizes (22 nm) than the varying bis gels (1.5 nm) (Table 2.1, Supp. Table 2.4).

This result is thus consistent with the idea that larger network pore sizes increase colony

expansion rate, allowing more nutrient-rich fluid to flow from the substrate into the colony. For

G’ < 5 kPa, the expansion rates saturate to approximately the same magnitude, 0.3 mm/hr, for

each case.

Taking into account the diverse bacterial strains that colonize agar, we selected three additional

bacterial species to test on PAA gels: Pseudomonas aeruginosa, Proteus mirabilis, and

34

Myxococcus xanthus (Methods). Given the strong effect of substrate stiffness on Serratia

marcescens surface expansion (Fig. 2.4), we selected a soft (G’ ≈ 0.5 kPa) and stiff (G’ ≈ 5 kPa)

PAA gel to culture these three species (Fig. 2.5). In each case, we found that biofilm expansion

was faster on stiffer PAA than softer PAA (Methods). Pseudomonas aeruginosa and Proteus

mirabilis are both gram-negative bacteria known to cause disease in humans. Here, we use

Pseudomonas aeruginosa Xen05, which is derived from a human septicemia isolate, and

Proteus mirabilis BB2000. Proteus mirabilis are well-known for their ability to swarm, a flagella-

based rapid surface motility mode, which they are capable of doing over a striking range of

surfaces [73]. Myxococcus xanthus, a member of the δ-Proteobacteria, displays a wide range of

multicellular emergent behaviors [42,74]. M. xanthus have two well-characterized motility

modes, social (S)-motility powered by type IV pili [75] and adventurous (A)-motility, powered by

an inner membrane motor that applies force to the substrate at adhesions [26,76]; they do not

have flagella. While M. xanthus is well-known for its display of dynamic fruiting body formation

when starved [42,74], here we focus on its collective biofilm expansion in growth media. Given

the different motility modes of three different bacteria species, our results suggest that for

polyacrylamide hydrogels increasing biofilm expansion rates on substrates with increasing

stiffness is a more general phenomenon and is not unique to Serratia marcescens.

35

Figure 2.5. Biofilm expansion rates on soft (G’=0.5 kPa) and stiff (G’=5 kPa) PAA gels for P. aeruginosa, P. mirabilis,
and M. xanthus bacteria species. Data reflects n ≥ 8 measurements over N = 2 independent trials. Error bars
denote standard error.

Biofilm force generation and associated substrate deformations

The observed increase in biofilm edge velocity with substrate stiffness might be surprising given

that biofilm expansion rates decrease on substrates of increasing agar concentration. Increasing

agar concentration has the combined effect of increasing substrate stiffness, the viscous loss

modulus G’’, and decreasing substrate permeability, which hinders the flow of nutrients to the

biofilm. Thus, the effects of stiffness cannot be unambiguously related to colony expansion

rates.

What may cause substrate elasticity to increase biofilm expansion rates on polyacrylamide

gels? To better understand the observed enhancement in biofilm expansion with increasing

substrate stiffness, we performed experiments in which biofilm-generated substrate

displacements could be directly visualized via traction force microscopy-based techniques (Fig.

36

2.6). PAA deforms in proportion to applied forces and recovers completely and instantaneously

on the release of the force. The displacements of PAA substrates are thus related to the surface

stress, and the surface stress can be reconstructed from the displacement fields based on the

theory of linear elastostatics [77–79]. However, if the substrate is non-linear or viscoelastic

(such as agar), then the relationship between stress and strain is much more complicated and

time-dependent, and the substrate stress cannot be directly reconstructed from the substrate

displacements.

37

Figure 2.6. Serratia marcescens generate more force on stiffer substrates. (a) Schematic of the beads’
displacement underneath the biofilm during expansion. (b) Instantaneous displacement field (blue arrows) and (c)
stress map of two consecutive frames during biofilm expansion. There exists a small but significant contraction
towards the edge of the biofilm in the direction of the expansion. Scale bar, 200 µm. (d) Box-and-whisker plots of
total accumulated traction stress applied by S. marcescens on soft and stiff polyacrylamide gels over three hours.
Data obtained from a minimum of 7 samples from at least 2 independent trials per condition.

38

To determine whether substrate stiffness impacted the colony’s ability to generate surface

forces, we used traction force microscopy (TFM) based techniques to measure the surface

stress exerted on the substrate by the expanding biofilms (Fig. 2.6&7). To visualize the

deformations of the substrate displacement, the polyacrylamide gels were embedded with 4.8

μm fluorescence beads, which were tracked over time. Using this technique, we observed two

main types of substrate displacement. The first type occurred in the vicinity of the expanding

edge of the colony as transient localized hot spots on the scale of 20 μm, much larger than an

individual bacterium (Fig. 2.6c&d). These localized regions were reminiscent of traction

hotspots observed generated by collective motion Myxococcus xanthus cells [80]. Here, these

transient localized pulses were more evident on soft substrates (G’ = 0.5kPa) for Serratia

marcescens colonies than on stiff ones (G’ = 5 kPa). In addition to these hot spots, we observed

a slower – but more consistent – inward motion of the beads toward the center of the colony

(Fig. 2.6d&f, Fig. 2.7), consistent with the build-up of a bulk inward contractile force [63]. In

some of the TFM-based experiments, the fluorescence beads are applied only to the surface of

the gel to more precisely track motion only at the surface of the gel. The fluorescence particles

typically remained in focus throughout the entire experiment, suggesting minimal z-

displacements. Assuming perfect focus at the start of the experiment, then the particles are

displaced from center focus to half the depth of field, or 4.5 µm (0.5 x 8.5 µm) for the 10x

objective used in these experiments, which is consistent with vertical substrate deformations

on the order of 1-10 μm observed for Vibrio cholerae and Pseudomonas aeruginosa

biofilms [81].

39

Figure 2.7. Schematic representation of poroelastic stresses associated with a growing biofilm front.

To estimate the surface forces exerted by the colony on the substrate, the surface stress was

reconstructed from the tracer displacement maps via the finite element method [82–84]

(Methods). The surface stress increased over time, and – surprisingly - the surface stress was

10-fold higher for colonies on stiff substrates compared to soft ones (Fig. 2.6d): the average

surface stress was approximately 500 Pa on the stiff gel compared to 40 Pa on the soft gel (3 hr

time point). Typical surface strains ϵ also increased for biofilms on stiff substrates compared to

soft ones, with surface strains at approximately 2% on stiff substrates compared to 0.5% on soft

substrates (Methods). The large difference in bacteria force generation on soft versus stiff

substrates indicates a strong role of substrate stiffness on biofilm expansion and biofilm force

generation.

40

To interpret these results (Fig. 2.4, 2.6, and 2.7), we suggest a minimal model that treats

substrate deformations as a signature of poroelastic stresses in the network driven by osmotic

pressure differences across the growing biofilm front. In this picture, the hydrogel substrate

behaves as a poroelastic material permeated by nutrient fluid that can move relative to this

network. Biofilm growth proceeds as bacteria divide and begin to excrete extracellular

polymers. Before these polymers assemble into the extracellular matrix network, they act as

osmolytes that set up an osmotic pressure difference between the biofilm and the

substrate [32,37,56]. Gradients in osmotic pressure draw up fluid and nutrients into the biofilm,

which allows the biofilm front to grow and expand. Osmotic spreading of biofilms was first

observed for bacteria on agar substrates [32,33]. As seen on agar, decreasing network pore size

reduces fluid permeability and diminishes colony expansion. The detailed 3D flows on agar have

not been fully resolved, and we note that on viscoelastic substrates, such as agar,

understanding the flows and stresses in the network are complicated by the non-linear

mechanics and viscous dissipation that alleviate stresses over time.

Here we use polyacrylamide gels without viscous dissipation and tunable pore sizes to quantify

biofilm expansion rates. Our results suggest that the larger stresses induced on stiffer

substrates provides higher nutrient fluid flows that induces higher rates of biofilm growth.

Motivated by our findings and the results of others [37,81], we propose that this fluid flow sets

up transient stresses in the substrate network, which could drive substrate displacements in

regions surrounding the biofilm. In a poroelastic material, fluid flows and network deformations

are coupled. This is shown schematically in Fig. 2.6b, in which vertical indentations of the

substrate are exaggerated to illustrate the effect of the colony osmotic pressure on the

41

substrate. Based on our experimental observations (Fig. 2.4&6), we infer that stiffer substrate

networks more efficiently couple with fluid flows, increasing transmission of forces through the

network and driving enhanced transport of the fluid through the network. This is shown

schematically in Figure 2.7. On soft substrates, in contrast, local strains decay faster, resulting in

reduced propagation and transmission of stress. The flow of fluid to relax the applied stress is

thus localized to smaller regions resulting in reduced fluid and nutrient flux. In this way,

substrate network stiffness may act to increase initial biofilm growth rates. If the substrate is

viscoelastic, such as agar, then viscous stress dissipation might further reduce flow. Taken

together, our experiments highlight complementary roles played by fluid flows and network

strength properties of substrates on which biofilms growth. For growing Serratia marcescens

colonies, increased substrate stiffness enhances biofilm growth rates.

2.3 Discussion

Bacteria are capable of transducing mechanical signals from their environment and responding

to those cues [40,85,86], but the precise mechanisms remain largely unclear. In this article, we

investigated the effects of substrate material properties on the biofilm expansion of Serratia

marcescens. Using polyacrylamide hydrogels of varying composition, we found that substrate

stiffness and porosity tune the spread of growing biofilm colonies. Our results indicated that

increasing substrate stiffness enhances biofilm expansion rates in the limit of purely elastic

substrates, unlike conventional agar substrates.

Taken together, our results suggest that substrate stiffness and substrate pore size have two

different effects on colony expansion. Increasing pore size enhances biofilm expansion (Fig.

42

2.4). This result is largely expected as a larger network pore sizes allow for enhanced diffusion

and flow of nutrients from the substrate into the biofilm. An unexpected finding here is that

substrate stiffness can have as big an impact on biofilm expansion rates as network pore size,

and increasing substrate stiffness increases colony expansion (Fig. 2.4), even when network

pore size is controlled and accounted for.

In the case of agar, substrate stiffness and pore size are coupled. Decreasing pore size and

permeability of the network may be the limiting factor in growth, as the biofilms have limited

access to nutrients. Another factor on agar substrates is its nontrivial mechanical

properties [87]. Agar has a viscous loss modulus that is as large as 50% its elastic storage

modulus (Fig. 2.1). Thus, agar behaves as a viscoelastic solid and will dissipate applied stress

over timescales of minutes relevant to biofilm growth. Since our data suggests that poroelastic

stress in the network promotes fluid flows that deliver nutrients to the biofilm, the effect of

viscous dissipation in agar substrates might further limit biofilm growth.

Our interpretation of colony surface expansion data makes a number of assumptions and

simplifications. Here, we measure the expansion rate of the biofilm as an important metric of

cooperative surface dispersal. We do not ascertain to which degree expansion of the colony

arises from increases in cell motility, cell division rates, EPS production, surfactants, or the

amount of nutrient availability in the substrate. We do not measure specific genes transcribed

during initial cell attachment that are required for biofilm differentiation [88]. Biofilms are

known to preferentially form under conditions of external fluid shear flows [89], where there

may also be continual renewal of nutrients [90]. Biofilms grown under shear conditions are

known to express global gene expression profiles that differ from planktonic bacteria and

43

colonies grown under agar [90]; however, the production of EPS in our colonies (Supp. Fig. 2.11)

indicates some of the bacterial cells show some characteristics of biofilm growth.

An emerging number of studies indicate that bacteria sense surfaces by translating mechanical

cues presented by the surrounding environment into biochemical signals through

mechanosensitive signaling pathways [31,85,86]. At the scale of an individual bacterium, there

are now several molecular machines identified that can read-out mechanical signals, such as

the bacteria flagella [91–93], pili [31,85], and cell envelope ion-channels [94–96]. These signals

allow bacteria to modulate gene expression, cellular differentiation, and virulence factors [85]

in response to physical changes in their environment. An advantage of polyacrylamide gels is

that we can comprise gels of increasing stiffness with minimal changes in the surface network

by modulating the cross-linker density instead of the monomeric acrylamide. It has been

hypothesized that biofilm activation might be faster on stiffer substrates, because bacteria

make contact with the substrate network through force-sensitive appendages, such as flagella

or pili, at a higher frequency, increasing the possible input for cells to differentiate into a biofilm

state. In contrast to the view, here we find that enhanced surface dispersal of EPS-producing

colonies occurs even under cases when the surface network is relatively unchanged (Fig. 2.4b).

Our results are consistent with a model of bacteria colony expansion driven by osmotic

swelling [32,33] and the poroelastic response of the underlying substrate. Here, we propose

that in the context of bacteria colonies one source of surface stress is osmotic pressures that

drive swelling and deswelling deformations of the gel substrate. Interestingly, swelling and

deswelling deformations have also been recognized in traction force-based experiments in

epithelial cell sheet systems [97]. Bacteria colonies are thought to exert different types of

44

surfaces stresses, including osmotic stress [32,33] but also friction [36] and internal contractile

forces [81]. Our TFM based measurements represents a superposition of these effects, and

there is currently no obvious way to decouple the stress from these different sources

experimentally. As shown in Fig. 2.6, the substrate displacement maps measured here are

consistent with localized transient osmotic pressures at the expanding colony edge and a long

time global contractile force.

Here we demonstrate that Serratia marcescens colonies are capable of responding to changes

in substrate stiffness by modulating the amount of surface stress that they exert on their

substrates, enhancing the applied stress with increasing substrate stiffness (Fig. 2.6&7). One

possible reason is an increased activation in biofilm formation genes that increases rates of EPS

production, which form a filamentous network that is better able to transmit forces within the

colony and to the surface. We also find a correlation between the colony substrate stress and

colony expansion: colony expansion is faster when the colony stress is high. Both colony

expansion rates and colony stress increase with substrate stress, but precisely how colony

stress and substrate stiffness modulate expansion rates is not yet clear.

There are number of human infections involving biofilms [45,88]. Biofilms are implicated in

cystic fibrosis, gingival disease, pneumonia, urinary tract infections, ear infections, and implant

infections [45,88]. Serratia marcescens used in this study is an opportunistic bacterium

implicated in a range of infections, including urinary and respiratory infections [98]. While the

genes required for biofilm formation have been extensively studied from the point of view of

45

the microbe, there is much less known regarding the requirements for bacteria to infect the

soft tissue of their host. A number of recent studies have illuminated the role of substrate

stiffness on cell attachment [39,58] and growth and have demonstrated that bacteria can exert

direct forces that remodel and disrupt host tissue [81]. Human tissues that bacteria infect vary

in shear stiffness, ranging from 10-100 Pa for mucus and 10 kPa for lung to 100-1000 kPa for

skin and gut [99–101]. Inflammation and disease can further alter host tissue stiffness [101–

103]. Our work here shows that the mechanical properties of extracellular environment impact

colony expansion, which has important implications for understanding the infection of soft

tissues in vivo.

Our results provide compelling evidence that biofilms can respond to the mechanical properties

of their environment beyond single cells and at the collective cell level. Our results suggest new

models of biofilm growth that explicitly account for the effects of substrate stiffness and

poroelastic substrate remodeling. Much more work is needed of course, and in this regard we

note that the polyacrylamide gels presented here can be adapted to investigate the effect of

specific adhesion factor presented on the surface or to systemically introduce substrate

viscoelasticity [62,104]. Polyacrylamide hydrogels offer a conceptually simple platform for

studying how substrate stiffness impacts bacteria surface dispersal and guiding our

understanding of collective colony growth.

2.4 Methods

Cell culture: There were four strains of bacteria used in this study: Serratia marcescens (274

ATCC), Pseudomonas aeruginosa (Xen05), Proteus Mirabilis (BB2000), and Myxococcus xanthus

46

(DK1622). With the exception of M. xanthus, bacteria cells were inoculated and grown in LB

medium with shaking at 37 °C overnight. M. xanthus was inoculated and grown in CTTYE

medium. The cell density was measured at OD600 using 1-cm cuvettes (Globe Scientific 112137)

and a spectrophotometer (Thermo Fisher Scientific Genesys 50). Cell suspensions were then

diluted to 0.6 at OD600 in cell medium. For all bacterial strains, 5 μL of inoculum was spotted on

growth substrates (agar or PAA gels of varying stiffness). Cultures were then maintained at 37°C

(or 30°C for M. xanthus) for up to 15 hours. Pseudomonas aeruginosa Xen05 was kindly

provided by Dr. Robert Bucki (Medical University of Białystok), and Proteus Mirabilis (BB2000)

by Dr. Karine Gibbs (Harvard University).

Gel preparation: To prepare hydrogels of varying stiffness, polyacrylamide gels were prepared

as described previously [105,106]. Briefly, polyacrylamide gels were prepared by mixing

together acrylamide, bis-acrylamide, and distilled water at various ratios. Polymerization was

initiated by the addition of 0.5 μL electrophoresis grade tetramethylethylenediamine (TEMED)

followed by 1.5 μL of 2% ammonium per-sulfate (APS) per 200 μL of final gel solution. 200 μL of

the solution were then pipetted between two glass coverslips, one treated with glutaraldehyde

(bottom) and the other SurfaSil-treated (top) and allowed to polymerize for 20 minutes. Then,

the top cover slip was removed from the gels, and the final dimensions of the hydrogel formed

a disc, 18 mm in diameter and 0.8mm in height. For TFM experiments, fluorescent beads

(4.8μm diameter Fluroro-Max polymer microspheres) were embedded in the gels by using a

1:20 dilution of the bead solution in distilled water. The dilution was performed after

centrifuging the bead solution and replacing the supernatant surfactant with distilled water. For

47

a complete list of the gel formulations used in this manuscript, please see Supp. Table 2.2 in the

Supplementary Materials.

Rheological characterization: Rheology measurements were performed on a Malvern

Panalytical Kinexus Ultra+ rheometer equipped with a 20 mm diameter plate. The elastic gel

solutions were polymerized at room temperatures between the rheometer plates at a gap

height of 1 mm (30 minutes). The shear modulus was then measured as a function of shear

strain from 2-50% at a frequency of 1 rad/sec. For agar, G’ was chosen as the shear stiffness in

the limit of 0% shear strain.

Substrate preparation and inoculation: To prepare PAA substrates for inoculation, we followed

a protocol previously described by Tuson et al [107]. The PAA gels were washed three times

(two ten-minute washes and one overnight wash) in phosphate-buffered saline (or TPM buffer

for M. xanthus). The washes were then repeated with LB medium (or CTTYE medium for M.

xanthus). Before inoculation, the substrates were removed from growth medium, allowed to

dry for 20 minutes at room temperature, and then treated with UV sterilization for an

additional 20 minutes. The prepared bacterial solution was inoculated onto the center of each

gel in a 5 μL droplet. After placing the droplets, 2 μL of liquid was removed from each droplet

with a pipette to bring bacteria in closer contact with the gel surface.

48

Imaging: Time-lapse imaging was performed with a Nikon Ti-E inverted microscope equipped

with a 4X objective. The cultures were maintained at 37°C (or 30°C for M. xanthus) using a

Tokai-Hit stage top incubator. Images were taken every 10 minutes for 15 hours using a

motorized stage to capture growth at four positions along the edge of each biofilm. After the 15

hours had elapsed, full colony images were taken with a MotiCam camera or using NIS

Elements software to automatically stitch together multiple images taken with a 2X objective.

Motility measurements: Time lapse images were loaded in custom Python scripts that allowed

manual supervision of automated boundary detection (Video S1). The boundaries were fit to

circular arcs, and the average length of multiple radial lines connecting subsequent arcs

determined the biofilm velocity. (Fig. 2.2b) Velocities are measured over 20-minute time

increments. The colony expansion rate was measured at four different imaging windows along

the periphery of each colony, and the mean expansion rate was computed for each colony.

Velocities were measured at the earliest time at which expansion was present across gel

conditions, which varied by species. For the data reported in Fig. 2.4 (S. marcescens), velocities

were measured after two hours of growth. For the data reported in Fig. 2.5, velocities were

measured at six hours for P. aeruginosa, three hours for P. mirabilis, and ten hours for M.

xanthus. Colony expansion rate data presented in Fig. 2.4&5 are computed from the mean of 3-

6 independent bacteria colonies per condition. Each experiment condition was verified from at

least two separate inoculations of the bacterial stock on different days. Error bars denote the

standard errors of the mean.

49

Traction force microscopy based methods: For TFM, bacteria were placed on PAA gels with

embedded 4.8 μm fluorescent beads. Deformation of the PAA gel was captured by time-lapse

imaging of the fluorescent beads during biofilm growth. The displacement field on the PAA gel

generated by biofilm traction was calculated by correlating time-lapse fluorescence images

relative to the first frame of the sequence with particle imaging velocimetry (PIV) [108]. The

displacement field is then corrected for stage drift by subtracting the displacement field

generated from the fluorescent beads’ images of the stress-free region of the PAA gel (far from

the biofilm). The stresses that the biofilm exerts on the substrate can then be reconstructed

from this deformation field using the finite element method (FEM) [82–84]. In brief, the gel was

modeled as a 3D block with a thickness of 1mm. The biofilm and PAA gel were meshed with

four-noded tetrahedral 3D solid elements using a meshing algorithm. Forces with the same

magnitude but opposing direction to the local stresses were applied to each node. Internal

strains and stresses were then computed based on the geometry and elastic properties of the

gel. The stress calculated is measured relative to the (prestressed) first frame of the imaging

sequence (accumulated stress). The computation routine was performed using MATLAB and

ANSYS Mechanical APDL. For instantaneous stresses, the displacement field is generated by

comparing two consecutive frames of the captured fluorescent beads images. Subsequent

analysis follows the same protocol described for accumulated stress above. Surface shear strain

ϵ was estimated using the relation τ=Gϵ, where τ is the surface stress given by TFM and G is the

shear modulus measured from rheology.

50

2.5 Supplementary Materials

% PAA % Bis G’ (kPa)

3 0.15 0.14 ± 0.02

3.5 0.15 (0.5)

4 0.15 0.94 ± 0.09

6 0.15 2.72 ± 0.13

8 0.15 5.34 ± 0.35

10 0.15 (10)

12 0.15 12.0 ± 0.93

8 0.02 0.68 ± 0.14

8 0.05 1.62 ± 0.31

8 0.085 (3.5)

8 0.2 6.02 ± 0.59

8 0.3 8.82 ± 1.09

8 0.45 (10)

8 0.6 11.8 ± 0.42
Supplementary Table 2.2. Summary of hydrogel compositions and their corresponding storage modulus G’.
Reported values are mean ± standard deviation, as measured by Malvern Panalytical Kinexus Ultra+ stress-
controlled rheometer (details in Methods section). Values in parentheses are estimated based on linear fits
between experimental points from Figure 2.2c and 2.2d as appropriate.

n ≥ 3 measurements

Supplementary Table 2.3. Summary of contact angle (mean ± standard deviation) of water on the surface of PAA
hydrogels. These measurements were made using a contact angle goniometer.

% PAA % Bis Contact Angle

4 0.15 15° ± 2°
8 0.15 23.5° ± 1°

51

Supplementary Figure 2.8. Characterizing effective transport of a dye through polyacrylamide gels. (a&b) A drop
of green food-coloring dye spreads through a PAA gel, pictured at (a) initial and (b) final (60 min) time points. The
transport of the dye is due to fluxes arising as the gel changes state and swells or de-swells as well as due to
molecular transport. (c) The intensity profile of the diffusing dye is fit to an error function with a specific width w
(initial profile shown). (d) The slope of w² over time gives the effective (transport) diffusion constant D for the
hydrogel. (e&f) The effective diffusion constant for gels with varying (e) PAA concentration versus varying (f) bis
concentration. Results show that D decreases with increasing PAA concentration, but is approximately constant for
gels with increasing bis concentration. These data span the stiffness range used in this work. The formulation for
the gels shown in (e) and (f) are in order from left to right: 3% PAA, 0.15% Bis; 12% PAA, 0.15% Bis; 0.085%, 8%
PAA; and 0.45% Bis, 8% PAA.

Quantifying matrix permeability

To quantify the permeability of the gel networks, we used a simple dye diffusion experiment

(Supp. Fig. 2.8). Drops of green-food coloring dye were placed on the surface of the gels and

a)

e)

1 hr

c) d)

f)

b)

5 mm

G’ (kPa) G’ (kPa)

E
ff

e
c
ti
v
e

 d
if
fu

s
io

n

c
o

e
ff

ic
ie

n
t

(μ
m

2
/s

)

E
ff

e
c
ti
v
e

 d
if
fu

s
io

n

c
o

e
ff

ic
ie

n
t

(μ
m

2
/s

)
f)

P
ro

fi
le

 w
id

th
2

(μ
m

2
)

In
te

n
s
it
y
 p

ro
fi
le

 (
a

u
)

Radial distance, d (mm)

erf(d)

D

Varying bis

Varying

PAA

52

allowed to disperse through the gel over time. The evolution of the dye was tracked via images

taken 10 minutes apart (Supp. Fig. 2.8a&b). Here, the image intensity correlates with the

concentration of the dye. The intensity profile across the expanding edge of the droplet was

well-approximated by an error function. Thus, we fit the intensity profile curves to an error

function to obtain a profile width w over time (Supp. Fig. 2.8c&d). The width of the intensity

profile increased over time and the effective diffusion D of the dye through the gel could be

estimated by the slope of the w² over time (Supp. Fig. 2.8d). The diffusivity values measured in

our gels varies from approximately 50 to 150 μm2/s.

Here, the diffusion coefficient that we measure is an effective dispersion coefficient, which

combines these effects of molecular diffusion and characterizes the transport of solvent as the

gel swells. Our results suggest that a significant component of the transport is due to fluxes

arising from a redistribution of fluid in the gel as it swells.

Estimating effective matrix pore size

Our results suggest that the development of biofilms on soft, porous substrates depends on

both the elasticity of the gel and its permeability. The permeability of the substrate controls the

resistance to the flow of nutrient fluxes through the gel matrix. Next, we combined rheological

data and diffusion experiments to compute a network permeability k and estimate an effective

pore size 𝑟𝑝 of the networks relevant to osmotic-induced spreading of bacteria colonies.

Here, we assume that the polyacrylamide substrates act as poroelastic gels that can swell.

Poroelastic relaxations are associated with fluxes that aim to re-establish chemically

53

equilibrated states occur in a characteristic time p. During the deformation or stressing of

highly swollen polymer networks, mechanical deformation is coupled to the mass transport of

solvent through the network. Localized stresses such as those exerted by a large area of the

biofilm results in substrate deformation and causes a chemical potential gradient to develop

within the hydrogel close to the interface. Over time, the hydrogel establishes a new chemical

equilibrium via migration of liquid (here the nutrient solution) away or from the region under

deformation. Due to this process, the hydrogel undergoes a load relaxation that reflects the

time-scale to establish this new equilibrium p. The volume of the deformed region establishes

the volume of the nutrient that must migrate, the relaxation process depends on the area over

which the gel is deformed or chemical stressed are induced

To estimate the permeability k of a gel, we first note the equation relating the (poroelastic)

diffusivity 𝐷 to the shear modulus 𝐺, the Poisson ratio 𝜈, the permeability 𝑘, and the medium

viscosity 𝜂,

𝐷 =
2(1−𝜐)

(1−2𝜐)

𝐺𝑘

𝜂
 .

The diffusivity provides the length scale √𝐷𝑡 over which nutrient concentration is transported

due to fluid fluxes (local induced pressure gradients) in a time 𝑡 due to imposed deformations.

The Poisson ratio 𝜈 characterizes the ability of the gel to swell. The permeability, Poisson ratio

and the shear modulus depend on the degree of swelling of the gel.

The effective poroelastic diffusion coefficients for different PAA substrates 𝐷, are roughly

estimated by analyzing the radial spread of a small molecule dye (Supp. Fig. 2.8) that can be

transported by and move with fluid in the presence of fluxes, and the shear modulus G is

54

measured via oscillatory tests (Fig. 2.1). Previous studies reported an estimated Poisson ratio of

around 0.25-0.4 for PAA gels with concentrations of 5 wt% monomer when swollen

significantly, which we choose to measure here a compression experiment using the rheometer

(Supp. Fig. 2.9). Knowing 𝐷, 𝐺, 𝜐, and using the viscosity of the solvent permeating the gel

(approximating it to be that of water), we can compute the permeability 𝑘.

To calculate the Poisson ratio, we use a parallel-plate rheometer to apply a small uniaxial

compression. The gel thickness, H = 1.0 mm, is compressed by a vertical amount ≪ 𝐻. The top

plate of the rheometer is a flat disc of radius 𝑅 and the volume of the indented region is

𝜋𝑅2𝛿. The normal force on the top plate from the sample is measured over time (Supp. Fig.

2.10). Here the gel is unjacketed and kept in a medium that allows for motion of fluid through

the outer boundaries.

Upon compression, the normal force exhibits a steep instantaneous rise in value, which

subsequently relaxes over time. At short times, the gel behaves as an incompressible material

since the fluid does not have time to flow out of the region – this provides an instantaneous

load 𝐹0 that eventually relaxes to a long-time limiting value 𝐹∞. Ignoring the effects of

tortuosity and assuming that the final state of indentation allows the gel to relax to a Poisson

ratio that is its equilibrium value, we use the relationships [109–111]

𝐹0

𝐹∞
≈ 2(1 − 𝜈)

and

𝑟𝑝 ≈ 2 (
𝜂

2

𝐷(1−2𝜈)

𝐺(1−𝜈)
)

1

2
 .

55

Supp. Table 2.4 summarizes the elastic and transport coefficients measurements from this

work. Our estimated Poisson ratios are in the range of 0.43 to 0.49 (Supp. Table 2.4). Assuming

the viscosity of the fluid permeating the gel is close to that of water and ignoring the effects of

tortuosity within the gel, the estimated mean pore size is in the range of 0.8 to 22 nm (Supp.

Table 2.4), consistent with prior measurements. Note that the shear modulus does depend on

the confinement and the compression. For small compressions, we may approximate the shear

moduli by the uncompressed values.

% PAA % Bis G’ (kPa) Poisson Ratio Pore size (nm)

3 0.15 0.14 ± 0.02 0.43 ± 0.06 22 ± 5.6

12 0.15 12.0 ± 0.93 0.49 ± 0.01 0.85 ± 0.14

8 0.085 (3.5) 0.49 ± 0.01 1.5 ± 0.11

8 0.45 (10) 0.49 ± 0.01 0.9 ± 0.07

Supplementary Table 2.4. Parameters used to estimate effective pore size.

56

Supplementary Figure 2.9. Normal force relaxation of PAA gels. Representative normal force decay curves from
uniaxial compression of different PAA gel compositions. 5% uniaxial compression was applied to each gel and the
normal force decay was measured with a parallel plate rheometer equipped with a 20 mm plate. The Poisson ratio

𝜈 was then given by
𝐹0

𝐹∞
≈ 2(1 − 𝜈), where 𝐹0 is the initial jump in force when the compression is applied and 𝐹∞

is the final value of the force after three minutes of observation. We conducted three independent trials per
condition to compute a mean and standard deviation.

57

Supplementary Figure 2.10. Automated biofilm boundary detection algorithm. (a) An unprocessed biofilm image.
(b) Canny edge detection produces a binary image. (c) A circular kernel nine pixels wide smooths the boundaries
and closes broken lines. (d) The function cv2.findContours identifies the boundaries around contiguous regions,
each shown here in a different color. The segment with the longest edge-to-edge distance matches the biofilm
boundary but often includes erroneous features around the finite edges of the image. (e) Since the boundary
consistently intersects the edge of the picture, these erroneous features are easily removed by cutting the biofilm
boundary segment at the picture edges. (f) The coordinates identified with this method follow the biofilm
boundary with high precision. (g) Zoomed-in snapshot of boundary from (f).

Supervised biofilm boundary detection

The quantitative metric of biofilm growth used in this study is biofilm boundary velocity. To

calculate the boundary velocity from a sequence of time lapse images, image processing is used

first to automatically detect the coordinates of the biofilm boundary for each image. Then the

detected boundary is manually verified and, if necessary, corrected before being further

processed as explained in the Methods section.

The automatic boundary detection and manual correction steps were integrated into a single

Python script to increase efficiency and ease of use. Highly detailed edge boundary coordinates

can be extracted from many images in this way.

58

The Python implementation of the OpenCV library [112] is used to implement the steps of the

automatic boundary detection algorithm. Using the Anaconda distribution of Python, OpenCV

can be installed as pip install opencv-contrib-python, and then used in scripts with

import cv2. Loading images is accomplished with the PIMS package.

The automatic boundary detection algorithm consists of the following steps:

1. Canny edge detection (cv2.Canny)

This produces a binary image where edges are shown as white pixels, and the rest of

the image is black. Two parameters, a minimum and maximum gradient threshold

are the only inputs.

2. Morphological closing (cv2.morphologyEx)

This step closes the broken lines often produced by Canny edge detection by first

dilating white pixels (i.e. outlining white pixels in white by a specific thickness, or

kernel size), which bridges the gaps between nearby regions, and then eroding the

white pixels using the same kernel size to obtain the same edge thickness as before.

3. Closed contour identification (cv2.findContours)

This function identifies all the contiguous white regions in the image and returns the

contour boundary positions for each one. The contour with the longest edge-to-

edge distance consistently matches with the biofilm boundary (Supp. Fig. 2.10e).

4. Contour segmentation

This step removes the portions of the closed contour that lie on the image edge,

removing erroneous edge features and leaving line segments that extend from edge

to edge of the image (Supp. Fig. 2.10e).

59

5. Segment selection

Finally, the segment with the longest end-to-end distance is displayed as the

predicted biofilm boundary.

Occasionally, an imperfection in the gel surface can get identified as part of the biofilm

boundary. To address this issue, we developed a GUI that allows the user to click on a point on

the automatically identified boundary and manually draw a new segment portion that ends on

the boundary or the image edge. These manually drawn points replace the erroneously

identified points, and the coordinates of the resulting biofilm boundary are saved by the user

when all corrections are complete. A demo is shown in Video S1.

Taken together, this semi-automated boundary tracking code significantly reduces time spent in

analysis. A typical experimental trial generates 1,000-2,000 images (12 individual colonies in a

multi-well plate x 4 locations per colony x 3 frames/hr x 10 hours). Manual tracing of this many

boundaries, in ImageJ with a digital pad for example, would require multiple days to complete.

Using this code, 1000 individual images can be analyzed and verified for boundary identification

in about one hour. The full code is available via Github at https://github.com/masp01/SUBII-

Trace, along with sample biofilm images. Any data used in this study is available upon request.

The resolution of this technique depends on the closing kernel radius (step 2). Here, we used

4.5 pixels, or 14.5 µm with our 4x objective, which is larger than an individual cell but much

smaller than the length of boundaries (several mm).

https://github.com/masp01/SUBII-Trace
https://github.com/masp01/SUBII-Trace

60

Biofilm matrix fluorescent imaging

To determine whether the bacterial colonies are excreting EPS, after 15 to 24 hours of growth,

Serratia marcescens colonies were stained with Invitrogen Film Tracer SYPRO Ruby Biofilm

Matrix Stain (Thermo Fisher F10318) according to the manufacturer’s instructions. Supp. Fig.

2.11 shows a representative image of a biofilm with positive matrix staining. Adding the matrix

strain slightly disrupts the colony structure, resulting in a diluted mixture as seen in the image.

Supp. Figure 2.11. EPS fluorescent staining indicating biofilm development. The edge of the Serratia marcescens
colony after 15 hours of growth is present in the upper-left corner. Biofilm matrix stain was applied to the surface
of the biofilm, revealing regions of concentrated EPS that indicate biofilm development. Scale bar is 1 mm.

61

μm

(a)

μm

(b)

62

Supplementary Figure 2.12. Three-dimensional landscape of bacteria colonies. The 3D colony landscape was
mapped with a white light interferometer (Bruker CONTOURX-200). Representative interferometer images for
Serratia marcescens colonies on: (a) a soft, 500 Pa gel (3.5% PAA, 0.15% Bis) and (b) a stiff, 5 kPa gel (8% PAA,
0.15% Bis).

Captions for Supplementary Videos (available online)

Video S1: Demonstration of the GUI that implements the automated boundary detection

algorithm, allowing the user to quickly verify the boundary quality and make manual updates.

Video S2: Representative Serratia marcescens biofilm growing on a soft polyacrylamide

hydrogel (G' = 0.9 kPa). This video was taken with a 4X objective at 10 minutes/frame for 15

hours. Playback is at 4200 x real-time speed.

Video S3: Representative Serratia marcescens biofilm growing on a stiff polyacrylamide

hydrogel (G' = 3 kPa). This video was taken with a 4X objective at 10 minutes/frame for 15

hours. Playback is at 4200 x real-time speed.

Video S4: A Serratia marcescens biofilm growing on a soft polyacrylamide hydrogel (G’ = 0.9

kPa) with 4.8 µm diameter fluorescent beads embedded in the gel to display substrate

displacements. During the first loop, the biofilm is shown in brightfield. During the second loop,

only the fluorescent beads are shown. During the third loop, an outline indicating the biofilm

boundary is overlaid. This video was taken with a 10X objective at 10 minutes/frame for

approximately 1.5 hr. Playback is at 4200 x real-time speed.

https://academic.oup.com/pnasnexus/article/1/1/pgac025/6569128#supplementary-data

63

3. Phenotypic similarity measures redundancy of genes

This chapter is based on the article “Phenotypic similarity is a measure of functional redundancy

within homologous gene families,” posted as a preprint to bioRxiv in 2022, and coauthored by

myself, Jessica Comstock, Fatmagül Bahar, Isabella Lee, Alison Patteson, and Roy Welch. The

manuscript was written by Jessica Comstock and myself, with editorial work by Alison Patteson

and Roy Welch. The original experiments upon which my analysis was based were performed by

Fatmagül Bahar. Isabella Lee aided me in the development of the analysis code and manual

observation of time series data. Manual phenotype analysis was performed by Jessica

Comstock.

3.1 Introduction

A reverse genetics approach to characterizing a gene often begins by disrupting or deleting the

gene and observing the resulting phenotype. Differences between the mutant and wild-type

phenotypes can provide invaluable insights regarding gene function(s), but in practice many

single-gene knockouts, even those in genes predicted to be important based on previously

studied homologs, yield phenotypes that are relatively minor or indistinguishable from the wild-

type organism [113,114]. This robustness to the phenotypic impact of genetic mutation is an

important part of an organism’s phenotype and has implications for fitness. 

Robustness is commonly attributed, at least in part, to functional redundancy, or the tendency

for functionally similar genes to compensate for the role of a disrupted gene [115]. Functional

redundancy can arise through many mechanisms including duplication and divergence, where

reduced selective pressure can cause paralogs to accumulate mutations and take on new,

https://www.biorxiv.org/content/10.1101/2022.07.25.501402v1

64

slightly different functions over time [116,117], 2002). Paralogs that are maintained over long

timescales often retain some of their ancestral function in addition to their diverged

function [118,119], thus building in redundancy. Repeated gene duplication events can give rise

to large gene families wherein genes have a range of biochemically similar but specialized

functions. Though many homologs in a gene family may be capable of performing a similar

function, due to divergence it is difficult to predict which genes might be able to compensate

for the function of others. The most recent duplicates within a gene family are not always

capable of being functionally redundant while some older and more diverged paralogs

are [120]. Sequence similarity alone is not enough to predict functional redundancy, and the

extent to which duplicates contribute to robustness varies across organisms [121]. For these

reasons, it is unclear to what extent families of homologs are contributing to the functional

redundancy that gives rise to robustness in biological systems.  

Many studies attempting to elucidate functional redundancy in the genome involve the

creation of single and double knockouts of paralogs to probe for synthetic lethality [122–124].

While this method is effective in assessing functional redundancy in pairs of closely related

genes, it is limited in its power to explore larger networks of redundancy, as may exist in

expanded gene families. A double mutant that does not show a more significant phenotype

than each of the corresponding single mutants could imply either that the genes are non-

redundant, or that they are part of a larger redundancy network that has a strong buffering

capacity and therefore has decreased fragility in the face of genetic perturbation [125]. In this

way, phenotype is often the readout for assessing redundancy and robustness within biological

systems. The phenotypic impact of mutation reveals information about robustness, and we can

65

investigate the mechanisms that lead to robustness by considering gene sequence, so

understanding how redundancy affects robustness is a crucial genotype-to-phenotype

question.

Any given gene processes the flow of information from precursors, producing outputs that feed

into other networks or cellular functions. In a simple case of non-redundancy, a gene produces

one protein with a primary function, and when this gene is intact, expresses a wild-type

phenotype (Fig. 3.1A). A mutation in this gene would severely impact the fitness of the

organism. However, if a given gene is part of a network of structurally similar genes which each

have their own primary function but also retain some ancestral function, as in gene families

that arise from duplication, the impact of a mutation can be diffused through the other

members of its network, producing a relatively minor deviation in phenotype. Redundancy

networks (Fig. 3.1B), which we here define as the group of two or more genes whose products

can compensate for the loss of function of one another, allow for the rerouting of information

through alternative pathways so that the end result has a minimal impact on fitness. As shown

in Figure 3.1C, an additional byproduct of this buffering effect is that knocking out one member

of a redundancy network should produce a similar phenotype as knocking out any other

member of that group, because the entire set of genes is affected no matter which component

of the network is disrupted by mutation. In this way, phenotypic similarity may be an important

indicator of functional redundancy within homologous gene families and may provide insights

into the level of robustness in a genome. Further, because a gene’s redundancy network likely

overlaps significantly with its family of homologs due to the relationship between protein

66

structure and function (Fig. 3.1D), we predict that mutations in genes from within the same

gene family will be more phenotypically similar. 

Figure 3.1. Functional redundancy resulting in phenotypic similarity. (A) In a pathway with no redundancy, Gene A
contributes to Function A. Any mutation that renders Gene A nonfunctional would produce a severe phenotype or
lethality if Function A is essential. (B) Genes A, B, and C belong to the same redundancy network, meaning each
gene can compensate for the loss of function of one member of its network. In the scenario where all three genes
are functional and operating optimally, each gene contributes to its primary function (for example, Gene A is
responsible for most of the contribution to Function A), producing the wild-type phenotype. (C) When a mutation
occurs that renders Gene A nonfunctional (top), the input to Gene A gets rerouted through Genes B and C such
that Function A can still occur, but in a slightly reduced capacity (indicated by thickness of arrows compared to
panel B). Since Genes B and C are processing more input from A, Functions B and C are also affected and operate
at a reduced capacity. The slight reduction in function of all three network components produces a phenotype that
is relatively minor and may be indistinguishable from wild-type. A mutation in Gene C (bottom) would result in a
similar phenomenon, where the input that normally feeds into Gene C is processed by Genes A and B, resulting in
overall decreased output from each. In this model, a mutation in one member of a redundancy network affects the

67

output from all components regardless of which gene contains the mutation (indicated by the similar output arrow
size of top and bottom of panel C), and we predict that mutations in members of the same redundancy network
will produce similar phenotypes. (D) Though not every member of a gene family is functionally redundant, and
there may be redundant genes that do not belong to the same gene family, the relationship between structure and
function of proteins dictates that genes in the same redundancy network are likely to come from the same gene
family. If redundancy networks come primarily from the same gene family, and components of redundancy
networks show similar mutant phenotypes, then members of the same gene family would be more likely to
produce the same mutant phenotype. (E) Similarity of the protein sequences used in this study by
multidimensional scaling. Each point represents one gene, with a Gaussian kernel density estimate to guide the
eye. Proteins that are more similar in sequence, belonging to the same gene family, cluster together. Each gene
family forms a single cluster with the exception of the ABC Transporters, which form two major clusters due to the
different subunits. The highly conserved ATP-binding domains [126] separate very distinctly from the periplasmic
and substrate-binding domains. We predict that mutations in genes that belong to the same gene family will be
more phenotypically similar than they will be to mutant phenotypes in other paralogous gene families. Thus, we
expect phenotype to cluster by gene family.

To test this, we phenotypically characterized over 250 single-gene mutations in Myxococcus

xanthus, a soil bacterium with a large genome containing multiple homologous gene

families [127] and examined the relationship between gene family and phenotype. Under

nutrient stress, swarming cells of M. xanthus undergo development, aggregating into

multicellular fruiting bodies wherein populations of cells will differentiate into spores [128] (Fig.

3.2A). Since the ability of M. xanthus to form fruiting bodies and sporulate is directly tied to its

fitness, it is likely a robust biological process that involves many functionally redundant genes.

We generated a library of microscopic time-lapse movies (time series) showing the

development of 265 knockout strains of M. xanthus belonging to four different gene families

(102 ABC transporter genes, 45 NtrC-like activators, 80 One component signal transduction

genes, and 38 ECF sigma factors; see references [21,56,129] for previous work on some of these

genes in M. xanthus). We made qualitative observations of the ways in which resulting

phenotypes differed from wild-type and used these observations to inform a novel image

processing and phenotypic analysis pipeline that automates quantitative measurements of

phenotype that are explicitly defined. Although previous studies have used image processing to

extract phenotypic features of aggregate formation [130], this work has applied these tools to

68

the largest library of time series of which we are aware, necessitating a new pipeline and

analysis methods. Finally, we compared the similarity of phenotypes across gene families using

principal component analysis (PCA). We found that, just as mutant strains within a gene family

cluster by sequence similarity through multidimensional scaling (Fig. 3.1E), they also cluster by

gene family in the phenotypic feature space with a statistically significant sharpness (i.e. small

cluster size) and separation of clusters, indicating large networks of redundancy within these

gene families.

3.2 Results

Manual Characterization of Development Phenotypes

Under starvation, a swarm of M. xanthus cells will execute a developmental program during

which millions of rod-shaped cells coordinate their movements and self-organize into dome-

shaped multicellular aggregates. Some nascent aggregates destabilize and disperse, but most

persist and continue to grow; when the persisting aggregates become large enough, cells in the

middle of each differentiate to form a cluster of spores, at which point they are considered

mature fruiting bodies (Fig. 3.2A). Capturing this process with time-lapse brightfield microscopy

results in a time series of grayscale images where initial aggregates appear roughly circular with

irregular boundaries, somewhat darker than the background swarm. Later in the time series,

dispersing aggregates shrink and disappear, and the persisting ones grow and darken, with

boundaries that become stable and clearly defined (Fig. 3.2B). Image features such as these can

be leveraged to compare development phenotypes between wild-type and mutant M. xanthus

strains.

69

For this study we recorded 24-hour time series for wild-type and a set of 265 single gene

knockout mutant strains (Supp. Table 3.4), with an average of three replicates per strain. Due to

their important roles in signal transduction, transport, and transcriptional regulation, we

predict that genes within these families will be part of redundancy networks to ensure

robustness. We compared the mutant phenotypes to our wild-type strain with an emphasis on

aggregate composition and dynamics. Wild-type aggregation initiated at 9.2±1.6 hours and

formed uniformly dark circular aggregates with stable and clearly delineated boundaries within

24 hours (Fig. 3.2B). Mutant strains that consistently initiated aggregation either before or after

wild-type were designated “early” or “late”, respectively. Mutant strains that consistently

initiated aggregation at the same time as wild-type but had aggregates that failed to darken

and/or form clearly delineated boundaries were designated “immature” (Fig. 3.2C). Mutant

strains that initiated aggregation at the same time as wild-type but then all the aggregates

dispersed within 24 hours were designated “fall apart” (Fig. 3.2D). Mutant strains that initiated

aggregation at the same time as wild-type but then all the aggregates dispersed and then re-

aggregated within 24 hours were designated “aggregate-reaggregate” (Fig. 3.2D). Mutant

strains that consistently matched all aggregation criteria and were indistinguishable from wild-

type were designated “Like Wild-Type” (LWT). Finally, Mutant strains where the replicates

displayed different developmental classifications were designated “variable”.

Distribution of Manual Development Phenotypes within each Gene Family

70

Of the mutant strains characterized in this study, less than 10% failed to initiate aggregation at

all, and 62% consistently produced fruiting bodies that were qualitatively comparable to wild-

type by the end of the 24-hour window. An additional 20% of mutants were able to initiate

aggregation, but aggregates remained immature; some of these strains may have formed

mature aggregates if the time series extended longer than 24 hours.

We hypothesize that the relatively high success rate of aggregation in these mutants is due, at

least in part, to M. xanthus development being a robust phenotype. If redundancy networks are

contributing to functional redundancy to produce this robustness, then, according to the

hypothesis portrayed in Fig. 3.1, mutants within the same gene family will be more

phenotypically similar. As an initial test of our hypotheses, we sorted the mutant strains into

their gene families and visualized the proportional representation of our developmental

phenotype classifications (Fig. 3.2E). The distribution of some phenotypes did seem to favor

specific gene families. For example, LWT strains made up over half of the ABC Transporter

family, the early aggregating strains compose nearly half of the ECF sigma factor family, and

about one third of the One component family produce variable phenotypes in different

replicates.

The manual categorization of development phenotypes presented here serves two purposes.

First, it provides support for our hypothesis that M. xanthus development is as robust a

phenotype as we expected, making it a suitable phenotype for observing the extent of

functional redundancy networks in gene families. Second, though we do not claim these data

alone provide sufficient evidence for the existence of redundancy networks, as the data show

only the most obvious associations between gene family and phenotype, these qualitative

71

observations do provide information about the various ways in which phenotype can differ

during development. This was used to inform a more systematic, quantitative, and

multidimensional characterization pipeline to test our remaining hypothesis about phenotypic

similarity among families of paralogs: if redundancy networks contribute to robustness, and if

those networks are comprised primarily of genes within the same family, then a grouping of

mutant strains based on phenotypic features should also group the strains according to gene

family.

Figure 3.2. Manual categorization of M. xanthus development. (A) Upon sensing nutrient stress, vegetative M.
xanthus cells undergo a developmental process that culminates in spore-filled fruiting bodies. (B) Wild-type M.
xanthus cells on TPM agar begin to cluster into early aggregates after 9 hrs of starvation (blue arrow), and as more
cells join the premature aggregates over the course of 24 hours, the aggregates mature into fruiting bodies that
appear round and dark with conventional brightfield microscopy. Mutant strains that show initial aggregation
either before or after the average time for wild-type are assigned the early aggregation (orange arrow) and late

72

aggregation (yellow arrow) phenotypes, respectively. Scale bar 500 µm. (C) Like wild-type (LWT) mutants that
produced dark, circular fruiting bodies on a timeline similar to wild-type (left), non-aggregating mutants (center),
and mutants that produced immature aggregates (right). Scale bar 500 µm. (D) Some mutants formed initial
aggregates that eventually shrank and fell apart (top). Other mutants formed initial aggregates that fell apart
before re-aggregating into mature fruiting bodies (bottom). Scale bar 100 µm. (E) Distribution of development
classifications within each gene family.

Automated Characterization of Phenotypes

We developed and implemented an automated image processing pipeline in Python (see

Methods, SI). Using it, we were able to identify and track every aggregate in all the time series,

recording changes in aggregate number, position, size, shape, and gray value. In total, our

pipeline captured the developmental dynamics of more than 150,000 aggregates, both

dispersing and persisting. These data were analyzed to determine the timing and position of

significant changes in swarm dynamics, such as the initial onset of aggregation, the average

aggregate growth rate, and the rate of change in aggregate gray value; these quantitative

features serve as an unbiased and more accurate replacement for the manual phenotypes

“early”, “late”, “immature”, “LWT”, and “variable”.

We identified 18 quantitative features (Fig. 3.3) to represent and measure the variation

observed in the wild-type and mutant strains. For each time series, we calculated a list of these

18 numbers, mapping it to a single point in an 18-dimensional feature space. Distance between

points in this feature space is a measure of phenotypic dissimilarity. To reduce the complexity

of this data and visualize it, we used principal component analysis (PCA), a deterministic

method with no additional input parameters, to reduce the feature space to two dimensions,

PC1 and PC2. The distribution of points on a two-dimensional map of PC1 versus PC2 captures

the phenotypic features that vary the most across the dataset, while discarding those

combinations of features that vary less.

73

Figure 3.3. Automated quantification of fruiting body formation phenotypes. (A-C) Features related to global
fruiting body development (D-F) Features related to fruiting body fate (A) A representative curve showing total
fruiting body area over time in a 7.2 mm² field size. Images are shown of aggregation at start time, peak time, and
final time (24 hours), all measured as time elapsed since inoculation (t=0). The slope of the dotted line in (A) gives
the average growth rate, a key phenotypic feature. (B) Representative histograms from the same time series of
average fruiting body area at peak time and (C) final time. The mean and standard deviation of these distributions
are key phenotypic features. (D) Five representative time lapse images show fruiting body fate, either to persist or

74

disappear after 24 hours of development. (E) Area versus time curves for each identifiable fruiting body in the
same time series. For non-persistent fruiting bodies, the point of peak area is marked with a cyan circle. Two key
features are the fraction of total identifiable fruiting bodies that persist (in this case, 32%, or 42 of 132), and (F) the
standard deviation of the time at which non-persistent fruiting bodies peak in size (temporal coherence).
Developmental dynamics can distinguish between time series of different homologous groups, as illustrated in (G)
the curves for median total fruiting body area over time (quartiles bound the shaded regions, and outliers are
bounded by the dotted lines). These variations are captured by 18 phenotypic features, with quantitative
definitions given in Supp. Table 3.3.

The most significant phenotypic features are revealed by the makeup of the first two principal

components, PC1 and PC2 (Table 3.1). These two components together account for 43% of the

total variance. The constituent parts of both principal components represent a broad array of

many different features, with no single outstanding feature. However, there are significant

differences between PC1 and PC2. PC1 primarily represents growth rate, mean and standard

deviation in fruiting body area at peak time, and mean and standard deviation in fruiting body

area at final time. PC2, while sharing mean and standard deviation in area at peak time with

PC1, also represents features involved with timing, including growth time, peak time, and

temporal coherence. These developmental features with definitions are illustrated in Fig. 3.3.

Although PC2 shares some key features with PC1, its correlations are different. For example, a

high value in PC2 indicates high standard deviation in aggregate area and low growth rate,

whereas a high value in PC1 indicates high standard deviation in fruiting body area and high

growth rate.

75

Table 3.1. Makeup of PC1 and PC2 by phenotypic feature. Each primary component is a direction or vector in the
18-dimensional phenotype space, with its makeup shared to varying degree by each feature, with either a positive
(blue) or negative (red) correlation. PC1 captures the direction of greatest variance in the overall dataset, and PC2
is the direction perpendicular to PC1 that captures the next greatest amount of variance. The features most
strongly represented in each primary component are those that have the greatest potential to distinguish time
series phenotypically across the dataset. Each feature is numbered according to its prevalence in PC1.

Each of the four homologous gene families used in this study has a different number of genes,

and therefore each family is not represented by an equal number of mutant strains. This

presents a potential bias towards over-represented gene families if PCA were to be performed

on the entire dataset. To address this, we performed the PCA multiple times on random

samplings of the time series such that each gene family is always equally represented (see

Methods). We found that across all such samplings of the full dataset of over 1000 time series,

the gene families always form clusters in distinct parts of two-dimensional phenotype space

(Fig. 3.4), with clusters representing a different “typical” developmental phenotype for each

gene family. There was significant overlap between the clusters, so that the differences

between clusters only became apparent when using a sufficiently large sample size to visualize

76

an estimate of the probability density. The PCA analysis therefore agrees with the manually

derived developmental classifications presented in Fig. 3.2, in that mutant strains from each

gene family display a full spectrum of phenotypes, but there are specific phenotypes that each

family exhibits with higher frequency.

Figure 3.4. PCA reveals typical phenotypic features for each homologous family. (A) Each point represents a single
time series, placed by phenotype according to values of PC1 and PC2. Units for PC1 and PC2 are arbitrary, but (0,0)
represents average behavior. Behind points is displayed an estimation of the probability distribution function,
using Gaussian kernel density estimation. Higher probability is plotted with higher opacity, revealing phenotypic
clusters in each gene family. Outlined in red is a phenotypic zone containing only time series that exhibit little to no
aggregation, a severe phenotype. Outside the red zone are successful fruiting body formation time series. An
arrow points to a time series typical of the cluster, shown in: (B) The typical phenotype in each gene family cluster,
illustrated with three frames from a representative time series, taken at 4 hours, 8 hours, and 16 hours after
inoculation. Scale bars 100 μm. (C) Only the probability distribution estimates for each gene family are shown,
illustrating both separation and overlap in phenotypic behavior. The directions of seven key phenotypic features
are shown to indicate the coupled meaning of PC1 and PC2. Values of each feature increase in the direction of
each respective arrow, with the length of the arrow indicating how much motion in feature space is caused by a
fixed increase in the value of that feature, i.e. how significantly the feature is expressed by the two principal
components.

77

The phenotypic cluster of ABC transporter mutants and ECF sigma factor mutants each show a

distinct but consistently successful method of fruiting body formation, whereas One

component mutants tend to vary widely phenotypically or form immature aggregates, and a

plurality of NtrC-like mutants fail to form fruiting bodies entirely, as shown in the insets in Fig.

3.4B. Expanding on the comparison between the automated and manual phenotyping, we see

that the phenotypic PCA clusters are not only consistent with the results of Fig. 3.2, but may

also explain why a particular phenotype, such as “early aggregation” for the ECF sigma factor

mutants, is expressed more often than for other homologous groups: a set of redundant genes

robustly produces a minor mutant phenotype which shares multiple features in their

aggregation formation dynamics, among which is an early aggregation time. Variability in

phenotype can now also be measured by the spread of replicates in phenotype space, instead

of needing to be classed as a separate phenotype unto itself. Representative visualizations and

a basic measure of the spread of strain replicates are presented in Supp. Fig. 3.6.

There are two generic features of the way in which phenotype clusters form for each gene

family. First, the separation between clusters indicates that mutations in each homologous

group affect phenotype in a distinct way. Second, the size of each cluster’s individual peak

points to how often each similar phenotype is expressed within the homologous group. Clusters

in the PCA output were shown to be both separated and small with high statistical significance

(with p-values of 10-5 and 0.0083 respectively) when compared to random groupings of time

series instead of grouping by homologous group (Supp. Fig. 3.5).

By manually reviewing each time series that fell near a phenotypic cluster, we determined that

each represented a coherent overall phenotype with only a small number of outliers.

78

Significantly, a developmental phenotype that could be considered severe, little to no

aggregate formation, was shown to vary throughout the dataset, and the NtrC-like activators’

typical phenotype was shown to be a distinct form of failure to aggregate in which there was

still bacterial motility, but little to no departure from a uniform swarm layer. Details on each

typical phenotype and the metric values that distinguish them are available in the SI.

Our decision to characterize developmental phenotype via aggregate dynamics may have had a

negative impact on our ability to differentiate the severe phenotypes that exhibit little to no

aggregation. There is an identifiable phenotypic zone in the PCA output that represents little to

no aggregation, as outlined in red in Fig. 3.4A. However, even within this zone, different

behaviors are still distinguishable, and there is separation between homologous gene families.

This is shown by the NtrC-like activators and One component mutants tending to occupy

different phenotypic territory within the red outline. Differences in the dynamics of small,

transient aggregates still hold significance in identifying typical behaviors across gene families.

Our observation that PCA of phenotypic metrics recapitulates homologous families of mutant

strains indicates that phenotypic similarity and sequence identity are positively correlated

across a genome, but this correlation does not scale down to fine-grained genetic differences.

We observe that, within a homologous gene family, pairwise sequence similarity in this dataset

correlates only weakly with phenotypic similarity, and therefore it is not an effective predictor

of phenotype between pairs of genes within the same family (Supp. Fig. 3.6), consistent with

previous findings [121]. The phenotype clusters for each gene family are populated by

replicates of many mutant strains in that family, both the genetically similar and dissimilar. For

the ABC transporters, 56% of strains (20 of 36) have replicates within the phenotypic cluster.

79

This is also true for 24% (8 of 34) of NtrC-like activator strains, 39% (15 of 38) of ECF sigma

factor strains, and 64% (16 of 25) of One component strains. Fine-grained genetic similarity is

not necessary for redundancy to exist, and redundant gene networks may be quite large.

Taken together, Fig. 3.4 demonstrates that different homologous gene groups are likely to

contain redundant gene networks, which each produce a distinct minor mutant phenotype.

3.3 Discussion

Goldman et al proposed that the expansion of the M. xanthus genome due primarily to

duplication and divergence has led to an enrichment of some gene families, especially those

involved in cell signaling and transcriptional regulation, over others [127]. This asymmetry of

enrichment is notable because it implies a purpose for the expansion of specific gene families.

We propose at least part of that purpose is to create functional redundancy networks that act

as buffers to stabilize M. xanthus development (i.e. robustness). In this study we confirm that

M. xanthus development meets the criteria of a robust phenotype, by showing that more than

250 mutant strains with disruptions in genes that are part of four large homologous families

display severe developmental phenotypes very infrequently. We then provide support for our

hypotheses regarding the existence of redundancy networks by quantifying the phenotypes of

these mutant strains and observing that using PCA to map phenotypic feature space also

clusters the mutant strains according to the four homologous gene families.

Paralogs within a gene family may share similar molecular mechanisms, but they are expected

to have different biological functions. For example, the ABC transporters in M. xanthus all

perform active transport across membranes, but they are expected to transport different

80

substrates. This would mean that a disruption of any one ABC transporter would cause a

change in developmental phenotype specific to its substrate. There is no obvious reason why

mutant strains of the ABC transporters would display similar changes in phenotype unless there

is significant functional redundancy between transporters. There is also no obvious reason why

the phenotypic similarities would include a plurality of a large homologous gene family unless

the functional redundancy is widely distributed.

When a group of functionally redundant genes absorbs the effect of one member’s disruption

with low overall stress on the system, the impact on phenotype is more subtle. The ABC

Transporter and ECF sigma factor gene families exemplify this, as there are very few single gene

knockouts that result in severe phenotypes (Fig. 3.2E). The phenotypes of those genes cluster

sharply by homologous family in the PCA feature space (Fig. 3.4A), meaning that both gene

families display a typical phenotype that is different from the others. Plausible biological

explanations for this type of widely distributed functional redundancy can be made. Many ABC

Transporters, due to varying homology in periplasmic and substrate-binding domains across the

gene family, may be able to transport similar and/or overlapping substrates [131,132],

mitigating the effect of many of the mutations in this gene family and most often producing like

wild-type phenotypes. Similarly, robustness has been shown to be encoded in transcriptional

regulatory networks by alternative pathways [133], and though some studies suggest that

alternative sigma factors display minimal crosstalk [134], it is not unprecedented for there to be

overlap in the regulation of genes by multiple ECF sigma factors, creating networks of

integrated regulation [135–137]. Our data indicate that M. xanthus may use such networks of

crosstalk among ECF sigma factors to coordinate transcription in response to extracellular

81

signals, and that this may involve integration from many redundant or parallel pathways,

ultimately leading to earlier aggregation initiation time and faster fruiting body growth rate

than we see in wild-type for the majority of ECF sigma factor mutants.

In contrast, NtrC-like activator mutants show more severe phenotypes and cluster in a region

where strains do not form fruiting bodies (Fig. 3.4). Though it could be argued that a non-

aggregating strain indicates a lack of redundancy for the mutated gene, this seems unlikely

given that the NtrC-like activators fail to produce aggregates in a way that is distinct from non-

aggregating mutants in other gene families (Fig. 3.4A—region outlined in red). This again points

to the idea of networks of redundancy, but highlights that there can be a cost to redundancy in

some situations. Extensive research has shown that kinase-response regulator pairs tend to be

very insulated with limited crosstalk, and that this feature rapidly evolves in newly-duplicated

two-component systems [138,139]. NtrC-like activators and other bacterial DNA-binding

response regulators have high affinity interactions with their cognate kinases, and crosstalk

generally increases noise and decreases the overall response of the system to the incoming

signal [140]. The specificity of response regulators for phosphorylation by their cognate kinases

is governed primarily by molecular recognition, though these proteins can be very sequence

similar, and by maintaining a relatively high abundance of response regulator relative to its

cognate kinase within a cell to prevent unwanted phosphorylation [138,141,142]. Taken

together, this indicates that mutations to response regulators, like those that we have

introduced in the NtrC-like proteins in this study, might lead to a situation where there is a high

concentration of phosphorylated kinase in the absence of its highest affinity interaction

partner, allowing the cognate kinase to phosphorylate structurally similar non-target response

82

regulators and inappropriately initiate those signaling cascades. This model would explain why

so many of the NtrC-like activator mutations produced severe phenotypes that fail to form

fruiting bodies in the same way and highlights that redundancy due to gene duplication can

have negative consequences without proper insulation.

Rarely is a typical phenotype expressed a majority of the time within knockouts of homologous

group – instead, the typical phenotype represents the plurality behavior. Replicates even of the

same strain are seen to straddle multiple zones in the PCA feature space. This is particularly

evident in the One component gene family, which was observed to have the greatest variation

in phenotype from replicate to replicate (Supp. Fig. 3.6). The same mutant strain, for example,

can yield a phenotype indistinguishable from wild-type in one replicate, and make immature

aggregates or fail to aggregate entirely in other replicates. This variability might indicate that

the impact of mutation on these functional networks increases sensitivity to stochastic

fluctuations within the cellular environment that contribute to a tendency toward one

phenotypic fate or another.

We do not propose that phenotypic similarity serves as a strong indicator of functional

redundancy. There are almost certainly insignificant associations in the PCA feature space. For

example, there are a small number of ABC transporter mutants positioned within the NtrC-like

activator cluster. We do not propose that these genes are functionally redundant with the

majority of NtrC-like activators, but we might suggest that they are less likely to be functionally

redundant with those in the ABC transporter cluster. It is also possible that any group of

completely unrelated genes could have some degree of functional redundancy, but this

represents a background level or lower threshold of observable redundancy. We have shown

83

that the redundancy we observe is significantly above that background by measuring the

phenotypic clustering of random groupings of genes from the various homologous groups. We

are sure there are many forms and many degrees of functional redundancy that are not

represented by this PCA, but it does reveal a widely distributed functional redundancy above a

background threshold.

Extensive progress has been made in recent years in looking at large-scale studies of digenic

and even trigenic interactions and redundancies that affect phenotypic robustness and

fitness [118,143]. Others have begun to disentangle the relationship between subsets of

multigene families and their roles in redundancy [144]. We add to this growing body of

literature by exploring functional redundancy in large, homologous gene families of M. xanthus.

We make no claims about functional redundancy between specific genes in M. xanthus. Rather,

we seek to define the scale and distributive nature of redundancy networks that include these

large gene families, demonstrating that redundancy networks are not necessarily limited to a

few of the closest paralogs; they may include dozens or hundreds of genes.

Instead of trying to quantify the direct effect of mutations on fitness by measuring a single

variable such as growth, we chose to measure multiple aspects of a complex development

process. While our method requires the collection of more data per strain than a synthetic

genetic array, for example, it has the ability to detect more subtle phenotypes that may not

have strong implications for fitness but can still inform studies of redundancy. Since many single

gene disruptions have such subtle phenotypes, and since we propose that extensive

redundancy networks protect an organism from the fitness costs of mutation, we chose

84

phenotypic similarity, rather than overall effect on fitness, to assess the extent of functional

redundancy within gene families.

Our results highlight the importance of considering the nature and extent of redundancy when

making claims regarding interactions between genotype and phenotype. Gene families can

have high degrees of functional entanglement that may mitigate the impact of mutation, so

that quantifying even minor deviations in phenotype may allow for the recognition of patterns;

if mutations within a redundancy network produce similar phenotypes, then subtle changes in

phenotype have the potential to inform annotation. For example, a gene of unknown function

displaying a subtle phenotype similar to that of genes of known function could provide

evidence that the unknown gene is part of a redundancy network. Our image analysis pipeline

can be extended to future studies of M. xanthus, even under differing experimental conditions,

for automated extraction of phenotypic features. Further, our dataset can be used to probe

whether there are patterns in amino acid sequence homology that lead to functional

redundancy by comparing the sequences of genes that are located within the family cluster on

the PCA to those that are located outside the cluster and are presumably non-redundant.

Underscoring all these results is the observation that without a sufficiently large collection of

mutants and replicates, functional redundancy does not present itself clearly enough to be

recognized.

3.4 Conclusions

This work provides evidence for the existence of large networks of redundant genes as a means

by which an organism such as Myxococcus xanthus can execute complex multicellular social

85

behaviors robust to perturbations to gene function. We observe subtle deviations in

phenotype, a distinct set for each homologous gene family, that present when knocking out any

one gene within these redundancy groups. These subtle deviations are measurable due to the

large number of time series included in our full dataset and the quantitative detail of the

extracted phenotypic information, which in combination necessitate the automated analysis

pipeline we have developed.

3.5 Methods

Strains and Culture Conditions

Myxococcus xanthus strain DK1622 was used as the wild-type for this study. All 265 mutant

strains in the ABC Transporter, ECF sigma factor, NtrC-like activator, and One Component Signal

Transduction System families (Supp. Table 3.4) were created using plasmid insertion via

homologous recombination as previously described [21,145] and modified by Yan et al [56].

Briefly, 400-600bp internal fragments of each gene were PCR amplified and ligated into

pCR®2.1-TOPO [Invitrogen]. The plasmids were amplified in E. coli before isolation and

electroporation into M. xanthus DK1622, where the plasmid incorporates into the M. xanthus

genome via the homologous region on the plasmid. PCR verification was used to confirm the

location of each insertion.

Cells were grown overnight in CTTYE (1% Casein Peptone (Remel, San Diego, CA, USA), 0.5%

Bacto Yeast Extract (BD Biosciences, Franklin Lakes, NJ, USA), 10 mM Tris (pH 8.0), 1 mM

KH(H2)PO4, 8 mM MgSO4) with vigorous shaking at 32°C. Cultures of mutant strains were

supplemented with 40µg/mL kanamycin. Cells were centrifuged to remove the nutrient broth,

86

washed in TPM buffer (10 mM Tris (pH 7.6), 1 mM KH(H2)PO4, 8 mM MgSO4), and resuspended

to a final concentration of 5x109 cells/mL. For development assays, approximately 2.5x107 cells

were spotted onto TPM agar slide complexes, as previously described [146].

Imaging

Development assays for wild-type and mutant strains were carried out on TPM starvation agar

slide complexes for 24 hours, with approximately three replicates per strain. Though it can take

multiple days for cells within fruiting bodies to fully differentiate into spores, we generated

time series of only the first 24 hours of development because wild-type cells show little to no

observable change in fruiting body morphology, count, or behavior following this period at the

magnification used. Time-lapse grayscale images were captured every 60 seconds under 4x

magnification with a Nikon Eclipse E-400 microscope [Nikon Instruments] and SPOT Insight

camera. ImageJ was used for processing the .TIFF images into time series for analysis.

Multidimensional scaling of gene sequence dissimilarity

Amino acid sequences for the four homologous families were retrieved from NCBI and

imported into the Multiple Sequence Alignment tool in Clustal Omega [147], generating a

percent identity matrix for all 265 proteins. This was then converted to a percent dissimilarity

matrix and used as the input for the Classical Multidimensional Scaling package in R to generate

plotting coordinates in two dimensions. Then Gaussian kernel density estimation was used to

plot an estimate of the probability distribution function (plotted with increased opacity to

represent higher probability) to guide the eye in identifying sub-clusters of similar genes within

each paralogous group.

87

Manual phenotyping

Manual preliminary phenotyping of the mutant strains in this study was performed using the

time series described above. We will refer to mature aggregates as fruiting bodies for simplicity,

though we did not test sporulation efficiency in this study. First, strains that failed to produce

fruiting bodies at all within 24 hours across all replicates were labeled “no aggregation”

mutants. Strains that formed initial aggregates that disassociated completely before the 24-

hour mark were labeled as “fall apart”. Some strains, labeled “aggregate-reaggregate”, formed

aggregates that initially fell apart, but new aggregates were formed that persisted and looked

similar to wild-type by the endpoint of the time series.

To qualitatively determine the start time of aggregation, the time series were observed in

sliding windows of 25 minutes to identify the window where initial aggregates were first

formed. The average start time of 22 wild-type replicates was used for comparison, and mutant

strains that had start times outside of one standard deviation of the mean of wild-type were

considered either “early” or “late” aggregation mutants.

Wild-type fruiting bodies at 24 hours appear almost black in color and are roughly circular in

brightfield images. Any strains that appeared to have these characteristics and initiated

aggregation within the same window as wild-type were classified like-wild-type (LWT). Strains

that initiated aggregation at a normal time but didn’t develop aggregates that were as dark in

gray value as wild-type were labeled as “immature aggregation” mutants. Finally, mutants that

did not display consistent phenotypes across replicates were classified as “variable”. A table of

all mutant strains used in the study, as well as their manually assigned phenotype, can be found

in Supp. Table 3.4.

88

Automated phenotyping

Phenotype was automatically quantified for the mutant strains in this study by running 144

individual .TIFF images (ten minutes between each frame over 24 hours of total development)

from each time series through a custom Python image processing and analysis pipeline to

identify in each frame which pixels could belong to a fruiting body, based on their gray value.

The information for the position and geometry of each aggregate was filtered to remove noise

and spurious aggregates. This information was then collected for the entire time series to track

individual fruiting bodies over time, revealing their fate and dynamics. This detailed data

summary for each time series then had a list of eighteen specific numbers extracted from it,

each of which captures one overall feature, such as average growth rate or the average size of

final fruiting bodies. The values of these eighteen metrics together (a phenotypic vector)

constitute the phenotype profile for that time series. The full details of the image processing

pipeline and all phenotypic metrics are available in the Supplementary Materials.

A selection of 133 mutant time series were chosen at random from each paralogous group so as

not to weigh any paralogous group more than the other. The phenotypic vector for each time

series was calculated, and the values of each metric were shifted by a constant amount and

scaled by a constant factor so that across the dataset, each metric had a mean of zero and a

variance of one. This ensured that one metric would not supersede the others simply due to the

magnitude of its units. PCA was performed on this normalized dataset to extract the two

combinations of metrics, PC1 and PC2, that captured the most variation across the dataset.

The phenotypic clusters were revealed by plotting each time series as a point in the PC1 vs. PC2

phenotype space and then estimating the probability density for each homologous group via

89

Gaussian kernel density estimation. Essentially, a Gaussian blur was applied to the points, and

areas of greater overlap were colored with higher opacity, as shown in Fig. 3.4. The width of the

smoothing kernel was chosen to be the smallest value that could preserve the shape of the

probability density for different equally sized subsamples from each homologous group.

The statistical test used to generate the p-values for average cluster separation and average

cluster size was a form of bootstrapping which started with the PC1 and PC2 coordinates of

each point shown in the data sample of Fig. 3.4. Each point was randomly reassigned one of

four arbitrary families in such a way that replicates of the same strain were all assigned the

same family. A new Gaussian kernel density estimation was performed to approximate the

probability density of each family in PCA phenotype space. The contour representing 75% of the

maximum value of the estimated probability distribution function was then extracted, with

cluster separation being the average across all pairings of families of the centroid-to-centroid

distance between contours, and cluster size quantified by the average across families of the

radius of gyration of each contour, i.e. the root mean square distance of each contour’s points

from its centroid. Each p-value was calculated as the fraction of the random groupings that had

a greater average separation or smaller average size than that of the original data grouped by

the actual gene families.

3.6 Supplementary Materials

Statistical testing and controls

The results presented in Fig. 3.4, namely the separation of phenotypic clusters for each

homologous gene family, were tested for statistical significance by recreating the estimated

90

probability density functions for random groupings instead of the actual gene family and

observing the resulting sharpness of and separation between peaks in each grouping’s

probability density function (see Methods). To illustrate the difference in phenotypic peak

between these random groupings and the actual gene family groupings expected to correspond

to redundant gene groups, we present the results of a representative random grouping in Supp.

Fig. 3.5.

91

Supplementary Figure 3.5. Phenotypic clusters arise robustly from homologous gene families as compared to
random groupings of mutant strains. (A) Reproduced from Figure 3.4, each of the four gene families produces a
distinct phenotypic cluster when plotting the estimated probability distribution function for that family (using
Gaussian kernel density estimation) in phenotype space. (B) A contour is shown for each gene family where the
estimated probability distribution function is at 75% of its maximum value, and the geometry of that contour is
used to quantify the width of the cluster and its separation from other clusters. (C) The same data used in Figure
3.4 was regrouped into four random groupings, and the PCA and probability density function estimates were
repeated, showing much more incoherent phenotype clusters. (D) The corresponding contours for the four
random groupings show less separation and less sharpness than phenotypic clusters based on homologous gene
groups. Both (C) and (D) come from one representative random grouping, many of which were made to calculate
the p-values for cluster separation and sharpness reported in Results.

Replicates of the same strain can vary in phenotype. Several plots showing phenotypic spread

for a few representative strains are included in Supp. Fig. 3.6.

92

Supplementary Figure 3.6. Replicates of the same strain can vary in phenotype. Reproduced for context from
Figure 3.4 are the phenotypic scatterplot resulting from the PCA (where each point is a time series, plotted nearby
other time series that are phenotypically similar) and the superimposed probability distribution functions for each
of the homologous gene families: ABC transporters in blue, NtrC-like activators in orange, ECF sigma factors in
green, and One component in pink. Each subplot includes all replicates of a few representative strains, where the
replicates of each strain are represented in a single color and drawn with a bounding polygon to aid the eye.
Replicate-to-replicate variation is larger or smaller depending on strain and to which homologous family the strain
belongs.

A metric for replicate-to-replicate phenotypic spread of a specific strain is the sample standard

deviation 𝑠 generalized to two dimensions

93

s  = √
1

n − 1
∑((xi − x̅)2 + (yi − y̅)2)

n

i=1

where 𝑛 is the number of replicate points, 𝑥𝑖 and 𝑦𝑖 are the coordinates of the 𝑖th replicate

point, and �̅� and �̅� are the means of each coordinate across the replicate points, i.e. the

centroid coordinates. In this case, the 𝑥 and 𝑦 coordinates are the value of PC1 and PC2

respectively.

Supp. Table 3.2 summarizes the mean replicate-to-replicate phenotype spread averaged over

strain for each gene family using the metric 𝑠, with errors given by the standard error of the

means.

Gene family Mean replicate-to-replicate spread 𝑠

ABC Transporters 1.42 ± 0.12

NtrC-like Activators 1.57 ± 0.14

ECF Sigma Factors 1.31 ± 0.09

One Component 1.94 ± 0.18

Supplementary Table 3.2. A summary of the average replicate-to-replicate spread for each homologous gene
family, with errors given by the standard error of the means. This spread is illustrated for some representative
strains in Supp. Fig. 3.6

This indicates a statistically significant difference for replicate-to-replicate phenotype spread

between One Component strains and ABC Transporter strains (p = 0.024), and between One

Component strains and ECF Sigma Factor strains (p = 0.004) according to a two-sided Welch’s t-

test.

Correlation of genetic differences with phenotypic differences

When comparing the genetic similarity and phenotypic similarity of the mutant strains used in

this study, little correlation was found, as illustrated in Supp. Fig. 3.7.

94

For each homologous gene group, all unique pairings of different strains were plotted using

genetic difference on the x-axis and phenotypic difference on the y-axis. Genetic difference was

quantified using Clustal Omega Multiple Sequence Alignment [147], and phenotypic difference

was calculated as the Euclidean distance between two 18-feature points, averaging the feature

values over all of the replicates for that strain. These plots show that close genetic similarity of

two mutant strains is not necessary for and in fact poorly predicts phenotypic similarity.

Instead, we infer that phenotypic similarity is roughly equivalent across all mutants in a group

of redundant genes.

95

Supplementary Figure 3.7. Genetic similarity is not an effective predictor of phenotypic similarity within a
homologous gene family. For each of the four gene families analyzed, each point represents a unique pairing of
two strains. Phenotypic dissimilarity is quantified by Euclidean distance in 18-dimensional feature space, where
feature values are represented by averages over all replicates for that strain. Genetic dissimilarity is quantified by
comparison of base pairs using Clustal Omega Multiple Sequence Alignment. Within each of the four gene families,
phenotypic dissimilarity and genetic dissimilarity to not correlate.

Description of typical phenotype for each homologous gene family

A manual review of time series near the phenotypic cluster for each respective gene family (Fig.

3.4) was performed to describe the typical behavior. This summary is with respect to only time

96

series that fell within the contour of 75% of the maximum of the probability distribution

function for each gene family.

Both the ABC transporter and ECF sigma factor mutants showed similar behaviors both with

rapid formation and darkening of aggregates. Their differences lie in the number of persistent

fruiting bodies and the rates of formation. Fruiting bodies of ECF sigma factor mutants form

faster than the those of ABC transporter mutants, captured by growth rate.

The time series in the ECF sigma factor cluster also have a higher fraction of their fruiting bodies

fail to persist. So, although they are fast to form, these aggregates have more of a tendency to

either be absorbed by their neighboring fruiting bodies or not survive at all.

Nearly all of the time series in the NtrC-like activator cluster fail to form fruiting bodies. While

the bacteria do move around and occasionally form aggregates, these never completely darken

or stabilize and most evaporate. This tendency to fail to aggregate is most directly captured

quantitatively in the small final number of persistent fruiting bodies and in the low growth rate

of these time series.

One component mutants near the phenotypic cluster were observed to have the ability to form

fruiting bodies but not darken significantly, remaining immature. They also appear to be less

circular than the fruiting bodies of ABC transporters or ECF sigma factor mutants. The One

component time series also showed signs of struggle when forming – they took much longer

than the other successfully aggregating gene families to form their persistent fruiting bodies.

The individual phenotypic features that support these observations are included in Supp. Fig.

3.8.

97

A B

C D

Supplementary Figure 3.8. Quantitative comparison of the behavior in phenotypic clusters for each gene family.
(A) Histogram of growth rates. ECF sigma factor mutants form aggregates faster than ABC transporter mutants. (B)
Histogram of fraction of fruiting bodies that fail to persist. ECF sigma factor mutants have more evaporating
fruiting bodies than ABC transporter mutants. (C) Histogram of growth rates between three gene families with
successful fruiting body formation. One component mutants form fruiting bodies the slowest of the three
displayed gene families. (D) Histogram of maturation rates (i.e. the maximum rate of darkening during fruiting
body maturation). One component mutants do not darken or mature at a rate much slower than ABC transporter
mutants or ECF sigma factor mutants.

Image processing

Custom Python code was written for this analysis, available on Github

(https://github.com/masp01/SU-myxo-aggregate-tracking). Using the Python implementation

https://github.com/masp01/SU-myxo-aggregate-tracking

98

of OpenCV [112], each raw frame is put through the following image processing steps to

identify the size, shape, and position of each fruiting body:

1. Non-local means denoising (cv2.fastNlMeansDenoising)

To remove background noise, a 7 pixel wide template window is moved over the

image to find regions that visually match (typically uniform, noisy regions). This

search is done within a 21 pixel distance of each patch of the image. The gray value

of each pixel is replaced with the average gray value of pixels in matching regions,

smoothing over noise while keeping boundaries distinct. The smoothing strength

was chosen at a constant value of 70 after manually testing parameter values for

many images. Template window and search sizes are standard and were not tuned.

2. Adaptive thresholding (cv2.adaptiveThreshold)

To identify locally dark regions that should belong to fruiting bodies, the gray value

of each pixel is compared to the average gray value of its neighbors within a block

101 pixels (145 µm) wide. 8-bit pixels (gray value from 0 – 255) that have a gray

value at least 20 below this local average are marked white. All other pixels are

marked black, creating a binary image. Parameters were chosen after manually

testing with many images and are robust enough to be used across the entire

dataset.

3. Morphological opening (cv2.morphologyEx)

A circular kernel 5 pixels (7.2 µm) wide is moved over the binary image. Any feature

covered entirely by the kernel is removed. This reduces single-pixel noise.

99

4. Contour identification (cv2.findContours)

Contiguous regions of white pixels are automatically identified in the binary image. A

list is compiled of the x,y coordinates of the pixels on the boundary of each such

region. This gives both a count of total candidate fruiting bodies and the geometry of

their boundary.

At this point, a list of features has been identified, some of which are genuine fruiting bodies,

and some of which are noise or spurious aggregates. The contour of each feature is measured

for the x,y coordinates of its center, its area A, perimeter P, and average gray value. The

circularity 4πA/P², is also calculated. It captures the elongation of the fruiting bodies and

ranges from 0 (completely flat) to 1 (perfectly circular).

Tracking fruiting bodies and filtering

Once all the frames of a time series have been processed, the Python package Trackpy [148] is

used to assign an ID to each feature that tracks it over time. It is at this point that filtering is

done to remove spurious features:

1. Minimum area filter

Features that are smaller than 576 µm² are ignored. This is the smallest fruiting body

size that is distinguishable from noise at 4X magnification

2. Maximum gray value filter

Features with an average gray value above 200 (max 255) are considered too bright

to be fruiting bodies and are ignored.

3. Formation time filter

Features that appear before 100 minutes have elapsed are incidental initial

100

aggregates, and not genuine fruiting bodies that have assembled over time. In no

time series did a new aggregate form in less than 100 minutes. These incidental

aggregates are tracked over time and ignored in all frames in which they appear.

4. Category filter

The area dynamics of each remaining fruiting body are considered to see if the

fruiting body persists to the end of the time series (persistors) or if it vanishes

smoothly (evaporators). Persistors with an average circularity below 0.5 are typically

noise and are ignored. Smoothly vanishing is defined as starting with an area less

than max area and then decreasing from maximum area by at least 25% by the final

frame of the time series. Evaporators with centers within (14.4 µm of the edge of

the frame or with an average circularity below 0.5 are considered noise and ignored.

Any feature that cannot be categorized as a persistor or evaporator is assumed to be

spurious or contain dynamics errors and is ignored.

Feature extraction

The data for each time series is then analyzed to measure the following quantitative features,

each a single number summarizing one aspect of the time series. Measurements are taken over

a 7.2 mm² field size.

Supplementary Table 3.3. Enumeration of all quantitative features used in the automated phenotype analysis

 Feature name Description Formula

1

Start time Elapsed time from inoculation to the beginning of
visible aggregation

When at least 10 fruiting
bodies grow larger than 1000
µm² in area

2 Peak time Elapsed time from inoculation to the peak of visible
aggregation

When total fruiting body area
reaches a maximum

3 Stability time Elapsed time from inoculation to overall aggregate
stability

When the number of fruiting
bodies changes by less than
three per hour (24 hours
maximum)

101

4 Growth time Duration of initial growth phase Peak time minus start time

5 Growth rate Average rate of total area increase during growth
phase

Change in total area divided by
change in time between start
time and peak time

6 Peak average area The average fruiting body area at peak time

7 Peak area std The standard deviation of fruiting body area at peak
time

8 Final average area The average fruiting body area at the moment 24
hours after inoculation

9 Final area std The standard deviation of fruiting body area 24
hours post-inoculation

10 Gray value % change Percent difference between minimum and maximum
average gray value (only for persistent fruiting
bodies)

11 Maturation rate Maximum slope of gray value vs. time curve for
persistent fruiting bodies

12 Temporal coherence How closely in time each evaporating fruiting body
reaches its maximum area before starting to shrink

The standard deviation of the
distribution of the time of
maximum area for
evaporators

13 Fraction of
evaporators

Total number of evaporators divided by total number
of evaporators plus persistors

14 Maximum number Total number of fruiting bodies at peak time

15 Average lifetime The elapsed time between an evaporator’s first and
final moment above the minimum area threshold,
averaged over all evaporators

16 Std lifetime Standard deviation of the elapsed times between
each evaporator’s first and final moment above the
minimum area threshold

17 Maximum average
area falloff

 Most negative slope of average
area vs. time curve

18 Maximum number
falloff

 Most negative slope of number
vs. time curve

Supplementary Table 3.4. List of strains used in this study, listed by MXAN number, followed by the manual
phenotype classification associated with Fig. 3.2, gene family, and citation for creation of the specific strain used.

Strain Phenotypic Classification Gene Family Strain Creation

DK1622 Wild-type N/A  

MXAN_0035 No aggregation ABC Transporter [56]

MXAN_0036 LWT ABC Transporter [56]

MXAN_0037 Late aggregation ABC Transporter [56]

MXAN_0069 Early aggregation One Component This study

MXAN_0079 Variable One Component [149]

MXAN_0090 Late aggregation One Component This study

102

MXAN_0107 Early aggregation ABC Transporter [56]

MXAN_0108 LWT ABC Transporter [56]

MXAN_0116 No aggregation NtrC-Like Activators This study

MXAN_0172 Fall apart NtrC-Like Activators [149]

MXAN_0180 LWT NtrC-Like Activators This study

MXAN_0203 Early aggregation ECF Sigma Factors This study

MXAN_0213 Variable One Component [149]

MXAN_0214 Variable One Component This study

MXAN_0233 Immature aggregates ECF Sigma Factors This study

MXAN_0250 Early aggregation ABC Transporter [56]

MXAN_0251 LWT ABC Transporter [56]

MXAN_0353 Early aggregation NtrC-Like Activators This study

MXAN_0387 Late aggregation One Component This study

MXAN_0445 Early aggregation One Component This study

MXAN_0502 Variable One Component [149]

MXAN_0553 LWT ABC Transporter [56]

MXAN_0554 LWT ABC Transporter [56]

MXAN_0556 LWT One Component This study

MXAN_0559 Variable ABC Transporter [56]

MXAN_0596 Immature aggregates ABC Transporter [56]

MXAN_0597 LWT ABC Transporter [56]

MXAN_0603 Late aggregation NtrC-Like Activators [149]

MXAN_0622 LWT ABC Transporter [56]

MXAN_0627 Early aggregation One Component This study

MXAN_0629 Immature aggregates ABC Transporter [56]

MXAN_0654 LWT One Component This study

MXAN_0665 Variable One Component [149]

MXAN_0681 Aggregate-reaggregate ECF Sigma Factors [149]

MXAN_0684 Late aggregation ABC Transporter [56]

MXAN_0685 No aggregation ABC Transporter [56]

MXAN_0686 LWT ABC Transporter [56]

MXAN_0687 Late aggregation ABC Transporter [56]

MXAN_0696 Early aggregation ABC Transporter [56]

MXAN_0707 Variable One Component This study

MXAN_0721 LWT ABC Transporter [56]

MXAN_0722 LWT ABC Transporter [56]

MXAN_0748 LWT One Component This study

MXAN_0751 LWT ABC Transporter [56]

MXAN_0770 LWT ABC Transporter [56]

MXAN_0771 LWT ABC Transporter [56]

MXAN_0772 LWT ABC Transporter [56]

103

MXAN_0832 Variable One Component This study

MXAN_0887 Immature aggregates One Component This study

MXAN_0907 Early aggregation NtrC-Like Activators This study

MXAN_0937 LWT NtrC-Like Activators This study

MXAN_0943 Variable One Component This study

MXAN_0947 LWT ECF Sigma Factors This study

MXAN_0966 Early aggregation ABC Transporter [56]

MXAN_0967 LWT ABC Transporter [56]

MXAN_0968 Late aggregation ABC Transporter [56]

MXAN_0995 LWT ABC Transporter [56]

MXAN_1078 Immature aggregates NtrC-Like Activators [149]

MXAN_1097 LWT ABC Transporter [56]

MXAN_1124 LWT ABC Transporter [56]

MXAN_1128 Variable NtrC-Like Activators [149]

MXAN_1137 Variable One Component This study

MXAN_1151 Variable ABC Transporter [56]

MXAN_1153 LWT ABC Transporter [56]

MXAN_1154 LWT ABC Transporter [56]

MXAN_1155 LWT ABC Transporter [56]

MXAN_1167 Late aggregation NtrC-Like Activators [149]

MXAN_1189 Early aggregation NtrC-Like Activators This study

MXAN_1210 Late aggregation ECF Sigma Factors This study

MXAN_1245 Immature aggregates NtrC-Like Activators [149]

MXAN_1262 LWT ABC Transporter [56]

MXAN_1286 Aggregate-reaggregate ABC Transporter [56]

MXAN_1319 LWT ABC Transporter [56]

MXAN_1320 Early aggregation ABC Transporter [56]

MXAN_1321 Early aggregation ABC Transporter [56]

MXAN_1345 LWT NtrC-Like Activators This study

MXAN_1376 Late aggregation ABC Transporter [56]

MXAN_1377 LWT ABC Transporter [56]

MXAN_1402 Variable One Component This study

MXAN_1510 LWT ECF Sigma Factors This study

MXAN_1514 Immature aggregates ECF Sigma Factors This study

MXAN_1547 LWT ABC Transporter [56]

MXAN_1548 LWT ABC Transporter [56]

MXAN_1565 Variable NtrC-Like Activators [149]

MXAN_1575 Variable One Component This study

MXAN_1597 LWT ABC Transporter [56]

MXAN_1598 Variable ABC Transporter [56]

MXAN_1604 Variable ABC Transporter [56]

104

MXAN_1605 Early aggregation ABC Transporter [56]

MXAN_1654 LWT One Component This study

MXAN_1661 Early aggregation ECF Sigma Factors This study

MXAN_1667 LWT One Component This study

MXAN_1677 Variable One Component This study

MXAN_1683 LWT One Component This study

MXAN_1695 Immature aggregates ABC Transporter [56]

MXAN_1711 No aggregation One Component This study

MXAN_1719 LWT One Component This study

MXAN_1726 Variable One Component This study

MXAN_1746 Variable One Component This study

MXAN_1757 Variable One Component This study

MXAN_2018 LWT ABC Transporter [56]

MXAN_2019 No aggregation ABC Transporter [56]

MXAN_2020 Immature aggregates ABC Transporter [56]

MXAN_2030 Early aggregation ECF Sigma Factors [149]

MXAN_2078 LWT ABC Transporter [56]

MXAN_2128 Immature aggregates One Component This study

MXAN_2145 Late aggregation One Component This study

MXAN_2159 Early aggregation NtrC-Like Activators This study

MXAN_2184 Aggregate-reaggregate ECF Sigma Factors This study

MXAN_2204 Immature aggregates ECF Sigma Factors This study

MXAN_2230 Late aggregation One Component This study

MXAN_2234 Immature aggregates One Component This study

MXAN_2249 Late aggregation ABC Transporter [56]

MXAN_2250 LWT ABC Transporter [56]

MXAN_2251 Early aggregation ABC Transporter [56]

MXAN_2268 LWT ABC Transporter [56]

MXAN_2395 Early aggregation ECF Sigma Factors This study

MXAN_2407 LWT ABC Transporter [56]

MXAN_2428 LWT ABC Transporter [56]

MXAN_2429 LWT ABC Transporter [56]

MXAN_2430 LWT ABC Transporter [56]

MXAN_2437 LWT ECF Sigma Factors This study

MXAN_2500 Early aggregation ECF Sigma Factors This study

MXAN_2501 Aggregate-reaggregate NtrC-Like Activators This study

MXAN_2516 Immature aggregates NtrC-Like Activators This study

MXAN_2654 Early aggregation ABC Transporter [56]

MXAN_2711 Variable One Component [149]

MXAN_2783 Early aggregation ABC Transporter [56]

MXAN_2794 Immature aggregates One Component This study

105

MXAN_2795 LWT ABC Transporter [56]

MXAN_2831 LWT ABC Transporter [56]

MXAN_2832 LWT ABC Transporter [56]

MXAN_2833 LWT ABC Transporter [56]

MXAN_2853 Early aggregation ABC Transporter [56]

MXAN_2896 LWT One Component This study

MXAN_2929 LWT ECF Sigma Factors This study

MXAN_2949 Aggregate-reaggregate ABC Transporter [56]

MXAN_2951 Early aggregation ABC Transporter [56]

MXAN_3095 Early aggregation NtrC-Like Activators This study

MXAN_3142 Immature aggregates One Component This study

MXAN_3151 Immature aggregates One Component This study

MXAN_3208 Immature aggregates ABC Transporter [56]

MXAN_3209 Early aggregation ABC Transporter [56]

MXAN_3214 Fall apart NtrC-Like Activators [149]

MXAN_3240 LWT One Component This study

MXAN_3256 No aggregation ABC Transporter [56]

MXAN_3257 No aggregation ABC Transporter [56]

MXAN_3258 No aggregation ABC Transporter [56]

MXAN_3333 Variable NtrC-Like Activators This study

MXAN_3339 LWT ABC Transporter [56]

MXAN_3381 Aggregate-reaggregate NtrC-Like Activators This study

MXAN_3418 LWT NtrC-Like Activators This study

MXAN_3426 Early aggregation ECF Sigma Factors This study

MXAN_3429 Early aggregation One Component This study

MXAN_3443 Immature aggregates One Component This study

MXAN_3648 Variable ABC Transporter [56]

MXAN_3650 LWT ABC Transporter [56]

MXAN_3686 Early aggregation ECF Sigma Factors This study

MXAN_3692 No aggregation NtrC-Like Activators This study

MXAN_3702 No aggregation One Component [149]

MXAN_3711 Immature aggregates One Component This study

MXAN_3717 No aggregation ABC Transporter [56]

MXAN_3718 Fall apart ABC Transporter [56]

MXAN_3773 LWT ABC Transporter [56]

MXAN_3811 LWT NtrC-Like Activators This study

MXAN_3908 LWT ABC Transporter [56]

MXAN_3909 Early aggregation ABC Transporter [56]

MXAN_3959 Early aggregation ECF Sigma Factors This study

MXAN_3986 LWT ABC Transporter [56]

MXAN_4042 Immature aggregates NtrC-Like Activators This study

106

MXAN_4060 LWT One Component This study

MXAN_4072 Late aggregation One Component This study

MXAN_4110 Late aggregation One Component This study

MXAN_4173 LWT ABC Transporter [56]

MXAN_4196 No aggregation NtrC-Like Activators [149]

MXAN_4199 LWT ABC Transporter [56]

MXAN_4240 LWT NtrC-Like Activators This study

MXAN_4247 Late aggregation One Component This study

MXAN_4252 Late aggregation NtrC-Like Activators This study

MXAN_4261 LWT NtrC-Like Activators This study

MXAN_4263 LWT One Component This study

MXAN_4309 Early aggregation ECF Sigma Factors This study

MXAN_4316 Early aggregation ECF Sigma Factors This study

MXAN_4339 LWT NtrC-Like Activators This study

MXAN_4356 LWT One Component This study

MXAN_4471 LWT One Component This study

MXAN_4523 LWT ABC Transporter [56]

MXAN_4580 Early aggregation NtrC-Like Activators This study

MXAN_4622 LWT ABC Transporter [56]

MXAN_4662 Immature aggregates ECF Sigma Factors This study

MXAN_4665 LWT ABC Transporter [56]

MXAN_4716 Fall apart ABC Transporter [56]

MXAN_4733 Early aggregation ECF Sigma Factors This study

MXAN_4749 LWT ABC Transporter [56]

MXAN_4750 LWT ABC Transporter [56]

MXAN_4785 Late aggregation NtrC-Like Activators This study

MXAN_4790 Variable ABC Transporter [56]

MXAN_4899 Fall apart NtrC-Like Activators This study

MXAN_4949 Early aggregation ECF Sigma Factors This study

MXAN_4977 Early aggregation NtrC-Like Activators This study

MXAN_4983 Variable NtrC-Like Activators This study

MXAN_4987 LWT ECF Sigma Factors This study

MXAN_5029 No aggregation One Component This study

MXAN_5041 Immature aggregates NtrC-Like Activators This study

MXAN_5048 Late aggregation NtrC-Like Activators This study

MXAN_5101 Early aggregation ECF Sigma Factors [149]

MXAN_5124 Fall apart NtrC-Like Activators [149]

MXAN_5128 LWT One Component This study

MXAN_5153 Early aggregation NtrC-Like Activators [149]

MXAN_5245 Late aggregation ECF Sigma Factors This study

MXAN_5263 No aggregation ECF Sigma Factors [149]

107

MXAN_5271 No aggregation One Component This study

MXAN_5276 LWT ABC Transporter [56]

MXAN_5305 LWT One Component This study

MXAN_5356 Early aggregation One Component This study

MXAN_5379 LWT ABC Transporter [56]

MXAN_5410 Early aggregation ECF Sigma Factors [149]

MXAN_5480 Early aggregation One Component This study

MXAN_5492 LWT One Component This study

MXAN_5503 LWT ABC Transporter [56]

MXAN_5506 Early aggregation ECF Sigma Factors This study

MXAN_5545 Variable One Component This study

MXAN_5547 LWT One Component This study

MXAN_5584 LWT ABC Transporter [56]

MXAN_5680 Variable NtrC-Like Activators [149]

MXAN_5731 Immature aggregates ECF Sigma Factors This study

MXAN_5777 Variable NtrC-Like Activators [149]

MXAN_5853 Variable NtrC-Like Activators This study

MXAN_5879 Fall apart NtrC-Like Activators [149]

MXAN_5894 Variable One Component [149]

MXAN_6000 Late aggregation ABC Transporter [56]

MXAN_6058 Variable ECF Sigma Factors This study

MXAN_6149 LWT One Component This study

MXAN_6157 LWT One Component This study

MXAN_6161 LWT One Component This study

MXAN_6167 Variable One Component This study

MXAN_6173 Early aggregation ECF Sigma Factors [149]

MXAN_6206 Variable One Component This study

MXAN_6251 Variable One Component This study

MXAN_6402 LWT ABC Transporter [56]

MXAN_6426 No aggregation NtrC-Like Activators [149]

MXAN_6461 Fall apart ECF Sigma Factors This study

MXAN_6468 Variable One Component This study

MXAN_6475 Early aggregation ABC Transporter [56]

MXAN_6479 LWT One Component This study

MXAN_6486 LWT One Component This study

MXAN_6518 Variable ABC Transporter [56]

MXAN_6549 Late aggregation One Component This study

MXAN_6551 LWT ABC Transporter [56]

MXAN_6646 LWT One Component This study

MXAN_6653 No aggregation One Component This study

MXAN_6759 Immature aggregates ECF Sigma Factors This study

108

MXAN_6833 Variable One Component This study

MXAN_6889 No aggregation One Component [149]

MXAN_6967 Late aggregation One Component This study

MXAN_7072 Variable One Component This study

MXAN_7078 LWT One Component This study

MXAN_7214 Early aggregation ECF Sigma Factors This study

MXAN_7289 Immature aggregates ECF Sigma Factors This study

MXAN_7312 LWT One Component This study

MXAN_7316 LWT One Component This study

MXAN_7322 Late aggregation One Component This study

MXAN_7326 LWT ECF Sigma Factors This study

MXAN_7440 No aggregation NtrC-Like Activators [149]

MXAN_7454 Early aggregation ECF Sigma Factors This study

109

4. Phenotype probability distinguishes near-wild-type from wild-type

behavior

This chapter contains work that has not yet been published, done in collaboration with Roy

Welch, Alison Patteson, and Eduardo Caro. The manuscript was written by myself and Eduardo

Caro. I was responsible for the analysis work, and Eduardo Caro performed the experiments. The

image acquisition system presented here employed microscopy hardware previously produced

by the Welch lab. I created the software that coordinates and controls the image acquisition

and managed the networking of the microscopes, and Eduardo Caro maintained and optimized

the microscopes.

4.1 Introduction

Multicellular development is a necessary part of the life cycle of many organisms, requiring

extensive coordination and response to stochastic events for a desired phenotype to

emerge [150–152]. Networks of intracellular and extracellular signals, gene expression, and the

physical principles that control them are highly interwoven and contain

redundancies [153,154]. The genotype-phenotype problem is the broad task of understanding

this web of phenotypic effect and genetic cause.

We use the bacteria Myxococcus xanthus as a model organism that exhibits a rudimentary but

robust form of development in the form of fruiting body aggregation, wherein cells in a low

nutrient environment spontaneously organize from a homogeneous, flat swarm into a discrete

number of mound-shaped aggregates harboring thousands of cells. In nature, these aggregates

mature into fruiting bodies, which contain metabolically quiescent myxospores that can reseed

110

a new, active colony once conditions improve [42]. This example of a collective behavior that

achieves a specific end (fruiting bodies) that are tied to communal survival is a promising object

of study for the genotype-phenotype problem. A complex regulatory system is necessary for

successful fruiting body development, including genes that regulate internal cell behaviors, as

well as those that control cell-to-cell signaling, such as the cell-membrane-associated C-signal

protein [155]. Using site directed mutagenesis, specific genes in the genome can be disrupted

and observed for changes in the process and results of fruiting body formation, i.e., phenotypic

changes [156]. The observations can then be contrasted with the genetically undisturbed “wild-

type” behavior to intuit the function of the disrupted gene. However, gene expression itself is

highly stochastic, particularly in timing. The protein a gene codes for can be produced in short,

irregular bursts instead of at a steady rate [150,157]. This stochasticity is a trait that organisms

like bacteria rely on for necessary biological processes such as sporulation [158].

Differentiating mutant behavior from wild-type is at the heart of the genotype phenotype

problem and biological research in gene annotation, the assignment of function to otherwise

unknown genes. Of the over seven thousand protein-coding genes identified in the genome of

wild-type M. xanthus strain DK1622, nearly 40% do not currently have a predicted

function [159]. A key factor needed to establish significance when observing mutant behavior is

a boundary defining what may be considered “near-wild-type” behavior. Biological systems

have inherent variation, so controlling genome and experimental conditions can only reduce

that variation to a baseline level. If genes can only be identified by catastrophic changes in

fruiting body formation, the knowledge of the associated gene function is severely limited. The

orchestration of many cells to form fruiting bodies requires interplay between many genetic

111

factors, most of which, on their own, have only a subtle effect or an effect with high variability

due to gene redundancy arising from gene duplication and other factors [113]. This causes

problems with some conventional analysis methods such as t-tests on one developmental

metric at a time. A random variable with high, unknown variance can be falsely selected by a t-

test as significant, and when the number of samples is small, low sensitivity means no effect is

captured with statistical significance [160]. This necessitates a method both for reliably

observing subtle changes in phenotype and quantifying how far the deviation is from wild-type

behavior.

Performing studies that embrace and scrutinize stochasticity is necessary for developing a

working understanding of complex, biophysical systems. Statistical techniques that are useful in

the face of highly stochastic events such as gene expression are a topic of active

interdisciplinary research [161], and the inherent ability of living systems to submit to statistical

study is an open epistemological question [162]. When a baseline level of variation can be

measured for a wild-type system, any differences distinct from that baseline are capable of

distinguishing mutant phenotypes. Many observations are needed to establish this baseline

with confidence. In this study, we present a high-throughput experimental setup for observing

many instances of cellular aggregation and an analysis pipeline that quantifies developmental

phenotype in order to distinguish mutant strain behavior from wild-type behavior with

statistical significance and assess the developmental impact of single gene mutations. The array

of centrally controlled microscopes built to fulfill the unique needs of a high-throughput system

for fruiting body aggregation assays, when combined with a novel statistical technique that

112

combines the effects of multiple quantitative markers of development, demonstrates a

statistically significant measurement of the subtle effects of single gene mutations.

Figure 4.1: Stochasticity is inherent to multicellular behaviors in social bacteria. (A) A bacterial colony undergoing
fruiting body development is exposed to stochastic noise on multiple scales. At the cellular level, gene expression
depends on thermally driven chemical events, and environmental factors such as variations in temperature and
humidity introduce further uncertainty. Thus both direct and indirect effects of genotype arrive at a final
phenotype, possibly via multiple developmental paths. (B) Images of final developmental phenotype for separate
aggregation assays at 24 hours post inoculation. Pictured are a range of outcomes from the wild-type M. xanthus
strain as well as the four mutant strains used in this study. Aggregates are visible as dark spots, seen from above.
Scale bar, 250 μm. (C) The average final area and final count of wild-type aggregates and those for four mutant
strains are reported with boxplots. Although there are some differences in these typical metrics of comparison,

113

there is considerable overlap between wild-type and each of the mutant strains. N > 500 measurements for wild-
type, taken over 25 different days; N = 15 measurements for each mutant strain, taken over 2 different days.

4.2 Results

An accurate measurement of the variation of wild-type behavior requires a large sample size to
accommodate the many developmental outcomes observed in M. xanthus fruiting body
development and estimate their probability. To accomplish this with enough simultaneously
running assays to measure the impact of day-to-day variation, we produced custom built
microscopes and a microscope control network to collect and organize developmental data.
Each fruiting body aggregation assay requires a sealed chamber with sufficient temperature,
oxygenation, and humidity for development to occur. Cells are inoculated from liquid culture
and sealed in each slide assembly, where the aggregates begin to form after about five hours.
After manual setup and focus, automated imaging proceeds for 24 hours, at which point most
aggregates are stable. The resulting time series images are organized on a central hub
computer from which image processing can begin.

Figure 4.2. High-throughput time series acquisition setup. (A) A single microscope, at 1.2 kg and 24x19x25 cm3,
with 3D-printed armature, 4X objective lens, light source, heated stage, camera, and Raspberry Pi microcomputer.
(B) Slide assembly for each developmental experiment. Sandwiched between a glass coverslip and a glass slide,
two silicone gaskets create a sealed enclosure containing a disk of non-nutritive agarose on which a colony of M.
xanthus has been inoculated. Aggregate development is imaged over a 24-hour period with one image taken each
minute. (C) Panoramic photograph of full image acquisition setup including 96 microscopes and central hub
computer. (D) Basic network architecture for centralized image storage and control of all 96 microscopes.

Using a dataset of over 500 wild-type aggregation time series acquired over 25 separate days,

we quantify the range of developmental phenotype by measuring ten quantitative metrics for

114

each video. We choose three metrics related to timing: start time, when aggregation begins;

peak time, when the area occupied by aggregates reaches its maximum; and stability time,

when the number of aggregates becomes stable. We also measure the mean and standard

deviation in average aggregate area at two time points: peak time, and 24 hours. We measure

the number of identifiable aggregates at both peak time and 24 hours. Finally, we measure the

fraction of aggregates that appear and then disperse before 24 hours elapse from inoculation.

Myxobacteria development, when observing fruiting body morphogenesis, is typically resolved

by 24 hours, especially in wild-type DK1622. After placement onto starvation media, the

movement of aggregates, their size, and distinctive morphology has usually been set by this

point, even though the internal myxospores are still maturing for an additional 3-5 days. For the

purposes of our study, we chose to limit our time lapses to 24 hours to highlight differences in

the dynamics of fruiting body aggregation. Phenotypic differences could yet be observed in

mutants that take longer than 24 hours using the methods established here. The specific

algorithms used to determine each phenotypic metric are detailed in the Supplementary

Materials (Supp. Table 4.3). These metrics are extracted with a custom Python image

processing algorithm that identifies and measures each aggregate, as described in Methods.

Values for these metrics across the wild-type dataset are shown in Figure 4.3A, with the

distributions illustrating averages and variation for each metric. Peak time, aggregate count at

peak time, and the fraction of aggregates that disperse exhibit bimodal distributions. Long-

tailed distributions, such as the standard deviation (σ) of area and aggregate count (both at

peak time and after 24 hours) indicate the presence of abnormal phenotypes with extreme

values in these metrics.

115

We next map the wild-type dataset in a visualizable way. Because we use ten phenotypic

metrics, each time series may be represented by a point in a 10-dimensional phenotype space,

where points closer together are more phenotypically similar than points far apart. To reduce

the number of dimensions but retain the structure of our dataset, we use principal component

analysis (PCA), to reduce the number of dimensions from ten to two. the resulting metrics from

each time series are mapped to a point in a 2D phenotype space. The two dimensions of this

space are called PC1 and PC2, the first and second principal components, respectively. PC1 and

PC2 are each a single numerical measure that is a mathematical composite of multiple

quantitative features, each weighted differently. Principal component analysis guarantees that

PC1 and PC2 are the metrics that display the most variation across the wild-type dataset as

compared to any other linearly independent combination of the input metrics. Between just

PC1 and PC2, the majority of the variance across the full dataset (56%) is accounted for. The

distribution of points in this map constitutes the wild-type phenotype profile.

116

Figure 4.3. Quantitative breadth of wild-type phenotype. (A) Histograms display the range of phenotypic metrics
across over 500 wild-type aggregate development time series. Bimodal shapes in peak time (when total aggregate
area is maximum), aggregate count at peak time, and fraction of aggregates that disperse reflect the two most
common groupings of metrics. Long-tailed distributions, such as standard dev. (σ) of area and aggregate count
(both at peak time and after 24 hours) indicate the presence of abnormal phenotypes. All y-axes display probability
density. (B) By using PCA to combine information from all ten metrics, each wild-type time series is plotted as a
single datapoint in a phenotypic feature space. PC1 primarily measures aggregate area, and PC2 correlates with
number and timing of aggregates. For example, while moving in the direction of the arrow labelled “Npeak,”
datapoints will have generally higher numbers of aggregates at peak time. Units of PC1 and PC2 are arbitrary,
although the origin at (0,0) represents average behavior across the full wild-type dataset. A contour is drawn
enclosing 90% of the datapoints, separating typical phenotypes from rare phenotypes. Within typical behavior, two

117

separate clusters, Mode 1 and Mode 2, contain 50% of the wild-type datapoints. (C) Curves displaying the total
number of aggregates over time (top) and mean area of aggregates over time (bottom) illustrate the
developmental differences and similarities between the two wild-type modes. The central line represents the
median at each time point, and the colored bands span the 25th to 75th percentiles at each time point, i.e. half the
data about the median. In Mode 1, a larger number of aggregates develop at an earlier time, most of which
disperse. The final number of aggregates is comparable for both modes. The rates of increase of mean area are
also similar across the two modes. (D&E) Two representative time series each for Mode 1 and Mode 2 phenotypes
at three relevant time points. Mode 1 displays many, dense aggregates that form early and then disperse. This
causes an early peak time. Mode 2 displays aggregates that form later, most of which persist through the 24 hours
of development, slowly growing in area and darkening. This causes a late peak time. Scale bar 100 μm.

The unique weighted combination of metrics that make up PC1 and PC2 indicate key metrics

that can distinguish behavior. The weights are bounded between -1 and 1, with larger absolute

values indicating more strongly weighted metrics. Both PC1 and PC2 contain a mix of all ten

metrics, with no one metric standing out in significance over the others, but rather groups of

metrics being more significant. In this study, the top weighted metrics of PC1 (with weights

given in parentheses) are number of aggregates at peak time (0.47), fraction of aggregates that

disperse (0.44), peak time (-0.43), and start time (-0.39). For PC2, the top metrics are mean area

at peak time (0.57), standard deviation in area at peak time (0.46), standard deviation in area at

24 hours (0.42), and mean area at 24 hours (0.40). The full list of weights is given in the

Supplementary Materials (Supp. Table 4.2). In summary, PC1 is primarily shared between timing

and the total number of fruiting bodies that form, in diametrical opposition. That is, when

aggregation starts and peaks at an earlier time, the number of fruiting bodies tends to be

larger, and vice-versa. PC2 is a variable independent from PC1 that mostly characterizes area.

Thus, large aggregates can present in large or small numbers, and do so early or late relative to

average wild-type behavior.

We observe two primary modes of aggregate formation, as shown by the two shaded regions in

Figure 4.3B. What we term “Mode 1” features aggregates that start forming and peak in total

118

aggregate area generally sooner than other wild-type assays. Mode 1 aggregates are generally

numerous, small, and dark at peak time, but a large fraction of them disappear before 24 hours

of development. These aggregates tend to be dynamic and lack a well-defined shape until after

peak time (Figure 4.3D). In contrast, Mode 2 aggregation is less mature early on, with either no

visible aggregates or aggregates with fewer layers of cells able to block light (Figure 4.3E). These

aggregates are more static and form with more well-defined shapes, and more of them tend to

persist through the 24 hours of development. Because these aggregates tend to persist once

they form, the time of peak total area is very late for Mode 2, when stable aggregates are still

growing slowly. Although there are fewer Mode 2 aggregates at peak time than most wild-type

assays, the mean number and size of these aggregates at 24 hours is equal to that of Mode 1, as

well as wild-type assays in general. Both modes demonstrate more consistently sized

aggregates than other wild-type assays, both at peak time and at 24 hours. Histograms of all ten

metrics for the two modes are presented in the Supplementary Materials (Supp. Fig. 4.6).

Exceptional phenotypes observed in our wild-type dataset include those that produce unusually

large fruiting bodies. These occur by a variety of mechanisms, such as large aggregates forming

either extremely early with defined shapes from initial formation or extremely late with shapes

that only appear visible towards the end of 24 hours (time series in Supplementary Materials,

Supp. Fig. 4.7). These abnormal behaviors present at the margins of PCA phenotype space

because they represent a confluence of multiple abnormal metrics, revealing more information

than standard statistical tests on one metric at a time.

119

Some rare behaviors observed include failure to aggregate, which occurred in about 2% of wild-

type assays, and failure for aggregates to stabilize after 24 hours, which occurred in about 17%

of wild-type assays.

We choose four mutant strains to compare with our nominal wild-type strain DK1622, each

with 60 to 80 replicates each collected over two to six separate days. These strains were chosen

to be developmentally similar to wild-type in order to test the sensitivity of our methods. In

preliminary experiments, all four strains produced a set of three replicates that were manually

identified as “near-wild-type” and displayed final aggregate size and number that could not be

distinguished from wild-type with a Student’s t-test. Three mutant strains contain insertions of

simple reporter genes, such as DK10546 producing GFP (See Methods for more details on each

strain). Analyzing these strains tests the assumption that introducing reporter genes into a

prokaryotic genome will not significantly impact cellular behavior or emergent phenotypes, an

important preliminary consideration before their use in other experiments. When more

replicates had been analyzed, standard statistical tests distinguish one strain, DK7517, as

distinct from wild-type because it produces smaller than average aggregates (Fig. 4.1). Because

the distribution of wild-type final mean areas is non-Gaussian as measured by a Shapiro-Wilk

normality test, the Kolmogorov-Smirnov test for distinguishing two distributions was chosen as

the standard test in favor of a Student’s t-test, which assumes normality of the underlying

distributions.

The developmental data for the additional replicates of the mutant strains are projected onto

the same PC1, PC2 axes that were defined for the wild-type data. This allows direct comparison

and visualization of multiple metrics simultaneously. The typical behavior and variability of each

120

mutant strain’s development is captured by two regions: a contour is drawn that captures 50%

of the datapoints, creating an effective median region in PCA space. We then choose a wider

contour that captures 90% of datapoints to serve as a boundary for abnormal phenotypes. By

comparing the distribution of the mutant strain points to that of wild-type, a p-value can be

calculated for the null hypothesis that the mutant datapoints are drawn from the wild-type

distribution. This p-value depends on the number of points found inside the 50% contour and

the number inside the 90% contour, and was calculated with bootstrapping, as described in

Methods. This is a nonparametric, data-driven statistical method that makes no assumptions

about the dataset a priori, allowing for multi-modal distributions which are likely to arise in

living systems. Validation can be confirmed on multiple subsamples to quantify the impact of

day-to-day variation on the p-value.

121

Figure 4.4. Deviation of near-wild-type mutant strains from wild-type behavior. (A) Each mutant development
time series is plotted as a single data point in phenotype space, as measured by the collective metrics PC1 and PC2.
For each respective strain, dashed contours enclose 90% of data points, and the shaded region(s) enclose 50% of
data points. The 90% and 50% contours for wild-type are shown for reference. The deviation of mutant phenotype
from wild-type is determined by the departure of the mutant distribution from the wild-type distribution.
Statistically significant departures from the wild-type distribution are measured for all four mutant strains, with p-
values calculated for subsamples of only 15 replicates each. These p-values are calculated from many random
samplings drawn from the wild-type dataset (Methods). Arrows point to time series shown in (B) Time series of
phenotypes expressed rarely in wild-type are shown at three relevant time points for each mutant strain. Scale bar
100 μm.

All four strains demonstrated subtle yet statistically significant departure from wild-type

behavior. Strains DK10546 and DK4322 in particular showed a preference for Mode 1 behavior,

with Mode 2 being rarely expressed, unlike in wild-type. Some mutant replicates that exhibited

rare behaviors are highlighted in Fig. 4.4B. Replicates of DK10546 displayed more extreme

versions of Mode 1 behavior, in which many small aggregates form early on, almost all of which

disperse by 24 hours. DK4322 replicates also displayed a more extreme version of Mode 1

behavior in which aggregates at peak time, although distinct, had very irregular shapes. The

122

final aggregates were slightly larger and more varied in area than typical wild-type assays. The

aggregates of some DK6665 replicates formed from sparse, small points that formed late and

grew steadily over the course of the 24 hours. This nucleation was seldom expressed in wild-

type. This strain also displayed difficulty in the dispersal of the random initial cell clumps that

are present at inoculation. In wild-type, these initial clumps nearly always disperse, and final

aggregate positions have no correlation with these initial clumps. Finally, the abnormal

behavior of DK7517 replicates, which involved late aggregates that never significantly

darkened, was also a noticeable deviation from even exceptional wild-type behavior. Among

the mutant strains, about 2% failed to aggregate (the same fraction as wild-type), and 30% to

45% of mutant assays failed to stabilize after 24 hours, a significant increase from the 17%

observed in wild-type.

4.3 Discussion

Each instance of fruiting body formation is the result of the combined effects of the genetic

background, environmental factors both controllable – such as temperature or substrate

stiffness – and uncontrollable – such as local pockets of varying initial cell density, or the

changes in gene expression that uniquely unfold for that specific population of cells. Genetic

changes may be better described by how they affect the odds of a multiplicity of outcomes. In

fact, we observe that most mutants behave like wild-type a majority of the time. This is a

significant reinterpretation of the meaning of the “phenotype” that results from a given

genotype, not as a guaranteed outcome, but as a reshuffling of likely outcomes. This

description is appropriate to the physics of living systems, which are tuned through evolution to

be poised at the center of a variety of behaviors, ready to adapt to rapid changes either in the

123

organism or its environment. Techniques in the biostatistics community are consistent with this

perspective, such as probabilistic latent variable models [163], which complement the analysis

presented in this study.

Essentially, the statistical method reported here characterizes phenotype in terms of abnormal

behavior, either locally – i.e. groupings of behavior that fall within the broad scope of wild-type,

but are still outside the norm – or globally – i.e. behaviors that are never expressed in the entire

wild-type profile. Because measures of mean behavior can fail to capture variations, such as a

shifting distribution that happens not to be skewed, the study of abnormalities is a fruitful

ground for distinguishing the effects of single-gene mutations, especially when enough

replicates can be performed to reliably observe abnormal behavior [164]. This perspective also

emphasizes the need to vet exceptional data to ensure that they represent genuine but rare

behavior and are not simply abnormal due to a failure of data processing, such as inconsistent

imaging conditions. Insofar as possible, the metrics chosen in this study were selected to

minimize dependence on imaging setup, and manual vetting was performed on points that fell

on the margins of PCA phenotype space.

The methods we report in this work are not unique to bacterial development. A similar analysis

could be performed for any stochastic system that can: 1) Have many comparable replicates

prepared, 2) Have multiple relevant metrics measured for each replicate. This method can thus

be compared to a similar general analysis framework, such as machine learning. Machine

learning is powerful in that metrics do not need to be chosen in advance. However, this comes

at the cost of the transparency in how categorization is accomplished, and the need for training

a model on input data categorized by some other method. It is often true that a system of

124

interest has several obvious aspects that are amenable to measurement with image processing.

In the case where the dynamics of the system are relevant, our method is also attractive to use

with time series image data, which in raw form can be multiple gigabytes in size and generally

difficult to work with on large scales. The initial choice of phenotypic metrics represents a large

simplification of the unprocessed image data that ensures phenotypic relevance is preserved

over image acquisition noise. The further reduction of the phenotypic dataset from ten to two

dimensions not only produces a phenotypic map that is sufficiently navigable to reveal overall

structure and guide investigation of individual datapoints, but also avoids a well-known

problem in data science associated with the so-called “curse of dimensionality.” This issue

occurs in high-dimensional datasets, where geometry tends to make the distance between

neighboring points similar to the distance across the dataset, making “similarity” in terms of

distance essentially meaningless [165].

Although 60 replicates or more were analyzed for each mutant strain in this study, a strain that

appears like wild-type to the eye can be distinguished from wild-type with fewer replicates. By

analyzing the distribution in PCA space of many subsamples of wild-type aggregation, we find

that only 15 replicates spread over two days are needed to establish departure from wild-type

behavior for each of the mutant strains above. Notably, for this same sample size, standard

statistical tests based on individual metrics (average aggregate area after 24 hours shown in

Supplementary Materials) can only distinguish one strain, DK7517, as distinct from wild-type,

and with less statistical power than the method used in this study. Because the distribution of

final mean areas is non-Gaussian as measured by a Shapiro-Wilk normality test, the

125

Kolmogorov-Smirnov test for distinguishing two distributions was chosen as the standard test in

favor of a Student’s t-test, which assumes normality of the underlying distributions.

Our results indicate that there are indirect effects on fruiting body formation dynamics in M.

xanthus due to the use of common reporters. Reporter genes are used as effective markers for

successful transfection and are used for quantitative assays, which require them to not obstruct

or alter the mechanism of study. GFP, a 28kDa green-fluorescent-protein, allows for the precise

visualization of proteins using UV light. Although small enough to diffuse from the cytosol into

the nucleus, there are inherent indirect costs to attaching these tags to a molecule of interest.

By inserting this extra DNA, another introduction of molecular noise via transcription and

translation steps is added during these biochemical reactions [166–168]. These non-target

effects can cause cellular differences in expression changes which contribute to the stochastic

variation we see in the overall cell population [169].

Another reporter gene, Tn5 lac, is a promoter-less trp-lac fusion that was designed to identify

strains that specifically increase beta-galactosidase expression at some point during M. xanthus

development as developmental markers. Transposons are a diverse class of mobile genetic

elements that can promote genetic rearrangements without a requirement for sequence

homology [170]. The Tn5 transposon was inserted so lac Z transcription occurred with

exogenous promoters and their promoter strength was quantified [171] to identify genes that

were expressed during M. xanthus fruiting body morphogenesis. By attaching to the promoter,

it was assumed that lacZ expression would occur in parallel with gene-specific myxospore

development without disrupting gene function. However, Tn5 transposon insertions can

promote adjacent deletions [172] which can then disrupt regulatory regions and lead to

126

changes in phenotype from differences in gene expression [173]. The ability to differentiate

these transposon insertion strains from wild-type emphasizes the need to assess the impact of

reporter genes, especially in biophysical studies that focus on developmental dynamics, where

differences may be easier to observe.

These results point to a method of gene annotation that is sufficiently sensitive to identify the

impact of single gene mutations that would otherwise be imperceptible. Each mutant strain

becomes associated with a signature distribution in a PCA space that can be generally defined

and used by any laboratory. Strains with sufficiently similar distributions can then be said to

share a function because they impact development in a demonstrably similar way. If the

signature distribution of well-understood genes is reported, newly characterized genes of

unknown function can be compared to those benchmark distributions. Notably, these

signatures are agnostic of any specific biological model, and are based only on visually

observable characteristics. Future work can process a library of single-gene knockout strains

with unknown function. Over time, this also develops an overall phenome with respect to

fruiting body development that is quantitative, and which creates a common language of

comparison for the function of many different genes. As more such experiments are done in

this framework, either through high-throughput imaging methods like those described here or

by the collective efforts of many researchers, developmental phenotypes that are uncommon

will be revealed. These unusual events serve to define a boundary on multicellular behavior and

can expose the regulatory mechanisms of fruiting body formation when stretched to their limits

by stochastic factors alone. These “exceptions” can teach us much about the “rule.”

127

Among these sources of behavioral change, we expect that small aspects of experimental

protocol will have subtle but measurable effects. Over the course of the experiments carried

out for this work, a new protocol variable was confirmed that is not normally controlled for in

M. xanthus culture, namely the age of the agar plate containing colonies to be harvested for

liquid bacterial culture. It is expected that reintroducing bacteria to liquid culture will “reset”

their metabolic state regardless of what state they were in before, but our analysis revealed

preliminary evidence that a colony will “remember” the age of the plate it was harvested from

and produce fewer fruiting bodies if the colony grew on the plate for at least three days

(Supplementary Materials, Supp. Fig. 4.8). Although the mechanism of this memory is unknown,

the effect has been consistent, and we expect that other such protocol variables exist that have

a measurable phenotypic impact.

The sensitivity of the methods presented here may also be used to measure phenotypic

response to changes in a variety of environmental variables. In a similar fashion to running

replicates of single-gene mutants, running replicates with differing substrates will reveal subtle

or overt changes in phenotype. This future work could address the missing environmental

information of the genotype-phenotype problem and expand the bounds of “wild-type

behavior” as a function of environmental conditions. The contour bounding abnormal wild-type

behavior encompasses exactly what has not yet been characterized to have a specific cause,

providing both a measure of ignorance of relevant physical and biological mechanisms, and a

way to characterize how much knowledge is gained when subregions can be assigned a root

cause, and thus separated from wild-type.

128

4.4 Conclusions

Overall, our work demonstrates that single gene disruptions can produce measurable changes

in M. xanthus aggregation development, even when introducing reporter genes widely

assumed to be benign with respect to impacting cellular behavior. These effects are subtle and

emphasize changes in dynamics over changes only in final developmental outcome, but they

can be reliably observed in samples of only 15 replicates. These methods provide a pattern for

characterizing development by mapping out phenotype in a clearly visualizable way that also

incorporates the many different quantitative aspects that can be measured in collective, living

systems. These tools can serve as a language of data presentation with applications in gene

annotation or investigations of the impact of environmental variables on the genotype-

phenotype problem.

4.5 Methods

Imaging setup

The setup can simultaneously collect time series images for 96 experiments using an array of

compact and identical microscopes controlled by a central computer. Each of the 96

microscopes is equipped with a single 4X objective lens, a Peltier device that maintains stage

and sample temperature, a red-light source, and a camera controlled by a Raspberry Pi, a

single-board minicomputer. The 3D-printed armature and assembly hardware serve to keep all

components firmly in place and provides a focus knob for higher image quality.

To ensure uniform control of all microscopes and central storage of their time series output,

each individual Raspberry Pi unit is networked via ethernet and two 64-port network switches

129

to a central hub computer. This computer runs Piserver software, which boots each Raspberry

Pi from a single operating system image, allowing software to be changed and updated for all

Raspberry Pi units simultaneously. Custom software written in Python provides a convenient

GUI to control image acquisition from each camera via SSH and organize output in a centralized

image storage location.

Cell culture

Long term stock cultures were recovered on nutrient rich CTTYE media agar (1% Casein Peptone

(Remel, San Diego, CA, USA), 0.5% Bacto Yeast Extract (BD Biosciences, Franklin Lakes, NJ, USA),

10 mM Tris (pH 8.0), 1 mM KH(H2)PO4 (pH 7.6), 8 mM MgSO4). Cells were harvested from the

plates and used to inoculate broth cultures in CTTYE with vigorous shaking at 32°C and grown to

an approximate density of 4x108 cells/mL (100 Klett or 0.7 A550).

Cells were centrifuged to remove the nutrient broth, washed in TPM buffer (10 mM Tris (pH

7.6), 1 mM KH(H2)PO4, 8 mM MgSO4), and resuspended to a final concentration of 4x109

cells/mL. For the development assay, approximately 4x107 cells (10µL aliquots) were spotted

onto a TPM agar slide, a nutrient limited medium, then incubated on the microscope stage at

32°C for 24 hours. TPM slides were prepared as previously described [146].

Table 4.1. The strains used in this study.

Strain Description

DK1622 The nominal wild-type strain was genetically modified from a naturally
occurring M. xanthus isolate [174]. This was done to establish a stable baseline
for fruiting body development assays, as strains isolated directly from soil have
a high rate of developmental failure in a laboratory setting.

DK10546 The free expressing GFP labeled strain is used to track motility and cell
dynamics during development. Used as an experimental control for
fluorescence microscopy, the construct was generated fusing a copy of the pilA

130

promoter to the coding sequence of GFP (pilAp-GFP), that was then re-inserted
into the M. xanthus chromosome [175]. This study showed an increased
likelihood of early aggregation with many dispersing aggregates over wild-type
for this strain.

DK6665 The Tn5 Ω6658 sasB7 mutant was generated from a mutation created in
suppressor developmental gene sasB [176]. Previous work observed no visible
phenotypic impact on the mutant as the strain can still proceed through
development via other regulatory channels. This study observed initial cell
clumps having an unusually high impact on final aggregates due to a lack of
dispersal of initial cell clumps relative to wild-type.

DK4322 The spiA::Tn5-lacZ strain, is a reporter fusion for the developmental gene spi
with lacZ for β-galactosidase assays. The spi gene has been shown to be
induced at 2 hrs into development and is developmentally regulated by C signal
pathways. In previous work, the transposon insertion was characterized as not
interfering with development or affect spore production [171]. This study
showed a higher likelihood of irregular aggregate shapes at early times for this
strain than wild-type.

DK7517 Generated via a Tn5-LacZ insertion into a TA synthesis gene, as a reporter gene
involved in toxin and antitoxin production also for β-galactosidase assays [177]
to isolate regulatory mutants. This reporter fusion was shown to be expressed
during vegetative growth while peaking during lag phase. In this study, late and
immature aggregates were more likely to develop in this strain than wild-type.

Image processing pipeline

Phenotype was automatically quantified for each fruiting body aggregation assay in this study

by running 144 individual .TIFF images (ten minutes between each frame over 24 hours of total

development) from each time series through a custom Python image processing and analysis

pipeline to identify in each frame which pixels could belong to a fruiting body, based on their

gray value. The information for the position and geometry of each aggregate was filtered to

remove noise and spurious aggregates. This detailed data summary for each time series then

had a list of ten specific numbers extracted from it, each of which captures one overall feature,

such as the time at which aggregation began or the average size of final fruiting bodies. The

values of these ten metrics together were then used in further analysis. The full details of the

131

image processing pipeline and all phenotypic metrics are available in the Supplementary

Materials (Supp. Table 4.3).

Statistical methods

To calculate p-values that test the null hypothesis of mutant development datapoints in PCA

space being drawn from the same distribution as the wild-type development datapoints, we

first generate the contours for the wild-type PCA data by starting with Gaussian kernel density

estimation (KDE) and using standard root-finding techniques to draw contours from the density

estimate that capture 50% and 90% of the PCA datapoints. An appropriate kernel size for the

KDE is validated by using 75% of the wild-type dataset, and ensuring that, across many

subsamples of the remaining 25% (verification data), the distribution of enclosed points is

centered on the appropriate percentage. When this distribution is skewed, it indicates

overfitting of the original contour. With these contours drawn, we then use a data-driven

statistical technique similar to bootstrapping. Given a sample size N, 10,000 samples of that size

are drawn from the wild-type dataset. Each subsample has a characteristic pair of numbers,

(n50, n90), which corresponds to the number of points in the sample that fall inside the 50% and

90% contours, respectively. Once the distribution of these pairs for wild-type data is known, n50

and n90 are calculated for a sample of mutant PCA datapoints of size N. The fraction of wild-

type videos that have both n50 and n90 greater than the mutant sample’s values of n50 and n90

gives the p-value, or the probability that a sample of wild-type data of size N would exhibit the

same distribution. Contours for mutant strains are shown for visualization only, and do not

figure into the calculation of the p-values.

132

4.6 Supplementary Materials

Supplementary Figure 4.5. Standard statistical test (Kolmogorov-Smirnov on one metric) compared with p-value
calculated from changing distributions in PCA space. (A) Each mutant development time series is plotted as a
single data point in phenotype space, as measured by the collective metrics PC1 and PC2. For each respective
strain, dashed contours enclose 90% of data points, and the shaded region(s) enclose 50% of data points. The 90%
and 50% contours for wild-type is shown for reference. The deviation of mutant phenotype from wild-type is
determined by the departure of the mutant distribution from the wild-type distribution. Statistically significant
departures from the wild-type distribution are measured for all four mutant strains, with p-values calculated for
subsamples of only 15 replicates each. These p-values are calculated from many random samplings drawn from the
wild-type dataset. (B) The same mutant strains are compared against wild-type using only a metric taken from the
last frame of development, final aggregate area. With subsamples of size N=15, a Kolmogorov-Smirnov test can
only distinguish between DK7517 and wild-type with statistical significance.

133

Supplementary Figure 4.6. Comparison of metrics for Mode 1 (red) and Mode 2 (blue) wild-type assays. Modes 1
and 2 are defined by the two regions of the contour bounding 50% of the total wild-type assay data in PCA space,
as shown in Fig. 4.3 of the main text. The medians of each histogram are indicated by the position of the square
marker at the top of each subplot.

A fruiting body aggregation assay performed in any lab can be compared to the results reported

in this work by calculating the values of PC1 and PC2 for that assay. First, scale each metric by

subtracting the mean WT value of that metric and dividing the result by the WT standard

deviation of that metric, according to the values reported in Table 4.1. This normalizes each

metric to have zero mean and unit variance. Then, each resulting scaled metric is multiplied by

an appropriate weight, either for PC1 or PC2. The weighted sum of the scaled metrics gives the

final value of PC1 or PC2 for that assay.

Supplementary Table 4.2. Numerical definition of PC1 and PC2 for reproducibility.

Metric Name Mean value
(WT dataset)

Standard dev.
(WT dataset)

Weight (PC1) Weight
(PC2)

Start time (min) 291 90.0 -0.387 0.047

Peak time (min) 843 454 -0.430 0.245

Stability time (min) 1008 486 0.183 0.038

Mean area at peak time (μm2) 5414 2063 -0.126 0.574

Std area at peak time (μm2) 4670 3525 0.188 0.465

Final mean area (μm2) 6617 1690 0.255 0.401

Final std area (μm2) 4244 1972 0.281 0.424

N at peak time* 113 75.6 0.468 -0.198

Final N* 61.7 27.8 0.149 0.062

Fraction lost 0.463 0.253 0.443 -0.083

*Number of aggregates is reported in a field size of area 5.0 mm2. Different field sizes should scale aggregate count

appropriately, assuming a constant density of aggregates per mm2.

134

Supplementary Table 4.3. Description of each of the ten developmental metrics used to quantify aggregation
phenotype.

Metric Name Description Formula

Start time The time elapsed between
inoculation and the beginning of
observable aggregation.

The earliest time at which at least
ten aggregates have reached an area
of at least 800 μm2

Peak time The time elapsed between
inoculation and the moment
aggregation reaches maximum
total area

The time at which the sum of the
areas of all aggregates in one frame
is at a maximum value across the
time series

Stability time The time elapsed between
inoculation and the moment the
number of aggregates becomes
stable

If stability is achieved within 24
hours, the time at which the rate of
change of number of aggregates falls
below and stays below 0.5 per
minute. Rate of change is calculated
with a Savitsky-Golay filter using a
window 31 minutes wide. Otherwise,
2000 minutes, to represent a later
eventual stability time.

Mean area at peak time The average area of all
aggregates at the moment of
peak time

Peak time is evaluated, and the
average area of each aggregate in
that one frame is calculated

Std area at peak time The standard deviation in the
area of all aggregates at the
moment of peak time

Peak time is evaluated, and the
sample standard deviation of each
aggregate area in that one frame is
calculated

Final mean area The average area of all
aggregates 24 hours after
inoculation

For the one frame showing 24 hours
after inoculation, the average area of
each aggregate is calculated

Final std area The standard deviation in the
area of all aggregates 24 hours
after inoculation

For the one frame showing 24 hours
after inoculation, the sample
standard deviation of each aggregate
area is calculated

N at peak time The number of aggregates at
peak time

Peak time is evaluated, and all
aggregates are counted in the 5.0
mm2 visible field in that one frame

Final N The number of aggregates 24
hours after inoculation

All aggregates in the 5.0 mm2 visible
field are counted in the one frame
showing 24 hours after inoculation

Fraction lost The fractional change in number
of aggregates from the moment
of maximum number to 24 hours
after inoculation.

For N_max the maximum number of
aggregates (smoothed by averaging
the three largest values) and N_24
the number of aggregates 24 hours
after inoculation, (N_max – N_final) /
N_max

135

Supplementary Figure 4.7. Abnormal phenotypes expressed in wild-type. (A) Wild-type phenotype profile,
showing the location in PCA space of four instances of illustrative, abnormal behavior in wild-type replicates. (B)
An extreme instance of Mode 2 behavior, especially due to late start time and the small number of final
aggregates. Successful aggregates that are less mature than these are expressed seldom in wild-type. (C&D) Time
series of abnormal behavior show the larger aggregates that form in the region with high PC2 values, but with
significant differences in timing and number depending on the value of PC1. (E) A representative time series of
failed aggregate formation. Bacterial activity is visible, but aggregates of any significant size or darkness do not
form after 24 hours. Scale bar 100 μm.

136

Supplementary Figure 4.8. Variation of metrics across wild-type dataset. This figure illustrates how PC1 and PC2
organize the variation of phenotypic metrics in PCA space. Of the ten metrics used in the PCA, eight display a
particular gradient direction. Only two, stability time and final number of aggregates, do not display a clear
gradient direction but vary in a more complex pattern. For instance, high stability time (i.e. those time series that
do not stabilize by 24 hours) and high final number of aggregates mostly present outside the regions of Mode 1
and Mode 2 (See Fig. 4.3 in the main text). Although not included in the PCA, the mean and standard deviation of
aggregate circularity at 24 hours is also reported, not showing any clear correlation with the other metrics.

137

Supplementary Figure 4.9. Variation of wild-type videos based on date of inoculation. Differences were observed
in the distribution of wild-type outcomes depending on the day the time lapse was started. This may represent an
effect of the length of time M. xanthus bacteria spend in a colony on agar before being transferred to liquid culture
and eventually inoculated on the non-nutritive agar used in fruiting body development assays. A shift from Mode 1
to Mode 2 being favored occurs when comparing Monday to Saturday development videos.

138

5. Conclusion

We have demonstrated that focusing on the mechanical relationship between bacterial

colonies and the substrates they colonize reveal novel effects by which bacteria increase the

forces they exert for colony expansion.

Future work can use techniques such as RNA sequencing to identify the genes that change

expression in response to substrate stiffness. This may reveal new signaling pathways that

cause the change in exerted force. Fluorescence microscopy techniques such as FRAP can now

be used to track the assembly and disassembly of pili in real time [41] to provide evidence for

the involvement of type IV pili in proposed pathways. Other experiments should test the

poroelastic mechanism proposed in Chapter 2, for example by introducing tracer particles into

the substrate fluid to track its flow. This would allow the measurement of the correlation

between substrate displacement and fluid flow. A detailed simulation of the biofilm and

substrate using finite element methods could validate whether this mechanism was sufficient

to explain the change in force with substrate stiffness. Additional factors that have a physical

effect should be screened, such as the production of surfactants by the bacteria that affect local

surface tension, the production of the osmolytes that induce fluid flow, and the amount of

viscoelasticity in the substrate, expanding beyond the purely elastic substrates used in this

work.

We have also developed new tools to approach the genotype-phenotype problem in bacterial

multicellular development and demonstrated their efficacy in providing quantitative evidence

139

for long-standing hypotheses such as the existence of networks of redundant genes, and in

distinguishing subtle phenotypic effects.

Future studies can use these tools to intuit the function of genes that have resisted

characterization by correlating their phenotypic fingerprint with that of genes with known

functions. The established library of single-gene knockouts in Myxococcus xanthus can be used

to compile the necessary repository of phenotypic fingerprints. These tools will also aid in

measuring the impact of the transduction of mechanical signals when fruiting body

development is observed in varying environmental conditions, such as on PAA or agar

substrates with varying stiffness. There is still much to uncover in the mechanical interactions

that connect genotype and phenotype.

140

Appendix A: Protocols

Preparation of coverslips for polyacrylamide gels

Adapted from Katrina Cruz, Janmey Lab (2017)

1. Solution preparation

a. Prepare a 10% SurfaSil solution in acetone in a small glass beaker (less than 5-10

ml).

2. Preparation of top coverslips (Coverslips that do not stick to gel)

a. Carefully add ~20 large glass coverslips to the beaker containing 10% SurfaSil.

b. Swirl for a few minutes.

c. Using tweezers, move the coverslips to a beaker containing a small amount of

acetone, swirl for a few seconds.

d. Using tweezers, move the coverslips to a beaker containing a small amount of

methanol, swirl for a few seconds.

e. Air dry the coverslips on kimwipes in the biological safety cabinet.

f. Store siliconized coverslips at room temperature.

h. Can Re-use coverslips (4 or 5 times) and then re-siliconize them

141

3. Preparation of bottom coverslips (Coverslips that do stick to gel)

a. Place small coverslips in coverslip racks.

b. Cover the coverslips with 0.1 M NaOH and incubate for 3 minutes. Decant and save

the NaOH

c. Working in the chemical hood, cover the coverslips with 3-APTMS, using the

smallest glass beakers that fit the coverslip racks to conserve 3-APTMS. Incubate for 3

minutes and then decant 3-APTMS for reuse or disposal.

d. Rinse the coverslips once with deionized water. Wash the coverslips with deionized

water three times for 10 minutes each wash.

e. Transfer racks w/ coverslips to new clean container

f. Cover coverslips completely with 0.5% glutaraldehyde solution (stored in 4°C fridge)

and incubate for 30 minutes in the chemical hood. Decant the glutaraldehyde for reuse.

g. Rinse the coverslips once with deionized water. Wash the coverslips with deionized

water three times, 10 minutes each wash.

h. Place coverslips individually on kimwipes to air dry.

i. Store in the desiccator under vacuum. Can store under vacuum for about one month

(especially when preparing stiffer, 30 kPa, gels; for softer gels that don’t swell as much

these coverslips may last longer)

142

Materials

Surfasil; Thermo Scientific TS42801 or TS-42800

(3-aminopropyl)trimethoxysilane (3-APTMS) 97%; Sigma-Aldritch 281778-500ML

Glutaraldehyde 50%; Fisher Scientific G151 1 (dilute to 0.5% with distilled water)

18 mm circular glass coverslips; Fisher Scientific 12-546-P

22 mm circular glass coverslips; Fisher Scientific 12-546-1P

143

Preparation of phosphate-buffered-saline (PBS)

Adapted from protocolsonline.com

For 1 liter of 1X PBS, prepare as follows:

(1) Start with 800 ml of distilled water:

(2) Add 8 g of NaCl.

(3) Add 0.2 g of KCl.

(4) Add 1.44 g of Na2HPO4. (2.72 g of Na2HPO4 x7H20)

(5) Add 0.24 g of KH2PO4.

(6) Adjust the pH to 7.4 with HCl.

(7) Add distilled water to a total volume of 1 liter.

Dispense the solution into aliquots and sterilize by autoclaving (20 min, 121°C, liquid cycle).

Store at room temperature.

http://www.protocolsonline.com/recipes/phosphate-buffered-saline-pbs/

144

Preparation of TPM Buffer

For 1L of TPM buffer, prepare as follows:

(1) Add ~800mL distilled water to a flask

(2) Add 10mL MgSO4

(3) Add 10mL Tris pH 7.6

(4) Add 1mL KPO4

(5) Bring up to 1L by adding distilled water

(6) Mix, titrate pH to ~7.6 and autoclave

Store at room temperature.

NOTE: pH of Tris used in CTTYE is 8.0 while for TPM it’s 7.6

145

Polyacrylamide gel synthesis protocol for bacteria

Varying PAA gel formulas (each for three 200 μL gels) with 5% extra volume for error

3.5% PAA
(0.15% Bis)

8% PAA
(0.15% Bis)

Distilled water 521

 Distilled water 451

Acrylamide 55.1

 Acrylamide 126.0

Bis-acrylamide 47.3

 Bis- acrylamide 47.3

TEMED 1.58

 TEMED 1.58

APS 4.73

 APS 4.73

Total 630 μL

 Total 630 μL

If making gels for traction force measurements, instead of distilled water, use a 20:1 dilution

of 2 μm diameter Fluoro-Max beads:

1. Prepare an appropriate volume of fully concentrated Fluoro-Max beads in a mini-

centrifuge tube

(For a target of 1000 μL of diluted bead solution, get 50 μL of fully concentrated beads)

2. Centrifuge at 5000 rpm for 1 minute or until the beads concentrate into a pellet

3. Keeping track of the volume, remove the supernatant (a surfactant that is harmful to

bacteria)

(For 50 μL of fully concentrated beads, about 40 μL of supernatant can be removed)

4. Replace the same volume of removed supernatant with distilled water. This produces a

fully concentrated bead solution suspended in mostly distilled water instead of

surfactant.

5. Add the appropriate volume of distilled water for a 20:1 dilution

(For a target of 1000 μL of diluted bead solution, add 950 μL of distilled water)

6. Using a pipette tip, gently mix the resulting dilution until homogeneous.

146

7. Store protected from light, i.e. wrapped in aluminum foil

Gel synthesis

1. Mix the distilled water, acrylamide, and bis-acrylamide in mini-centrifuge tubes

2. Add TEMED to solution, using the fume hood

3. Vortex solution to mix for about ten seconds

4. Lay out glutaraldehyde cover slips on a working surface (i.e. glass board) and have

SurfaSil cover slips ready

5. Add APS to solution and vortex for about 5 seconds (do this step and the following ones

quickly)

6. Pipette 200 μL gel solution onto the glutaraldehyde coverslips, then gently place SurfaSil

cover slips on top with tweezers

Tip: be careful to simply release the coverslips and not press downwards

7. Let polymerize for about 10 minutes, then rehydrate each gel by pipetting ~20 μL of

distilled water around the edge of the gel, capillary forces should suck it into the gel

8. After 20 minutes total of polymerization time, carefully remove the SurfaSil cover slip

and set it aside for reuse. Each gel should stay adhered to the glutaraldehyde cover slip.

9. Place gels in a well plate and immerse in PBS (or TPM for Myxococcus xanthus)

Gels can be stored immersed in PBS in well plates sealed with parafilm at 4°C for about one

week.

147

Gel washing process

Each polyacrylamide gel should be washed in an appropriate buffer (TPM for Myxococcus

xanthus, 1X PBS for other species) and then washed again in an appropriate nutrient medium

(CTTYE for Myxococcus xanthus, LB for other species) before inoculating them with bacteria.

1. Quick wash: Ensure gels are immersed in buffer. Use aspirator to remove buffer from

well plates, then immerse gels again with fresh buffer

2. 10-minute wash: Place well plates on the plate shaker for 10 minutes, then use aspirator

to remove buffer. Add fresh buffer again

3. Overnight wash: Seal well plates in parafilm and store at 4°C overnight

Repeat these steps the following day, using three washes in nutrient medium.

Now the gels can be used for the sterilization and inoculation protocol.

Materials

• Acrylamide (40% w/v); Fisher Scientific BP1402 1 – in 4°C fridge in aliquots

• Bis-acrylamide (2% w/v); Fisher Scientific BP1404 250 – in 4°C fridge in aliquots

• Ammonium persulfate (APS, 10% w/v); Fisher Scientific 45-000-225 – in -20°C freezer in

aliquots, single use

• Tetramethylethylenediamene (TEMED, 99%); Fisher Scientific AC138450500 – in fume

hood, must be handled inside fume hood

• SurfaSil treated cover slips – see cover slip protocol for polyacrylamide gels

• Glutaraldehyde treated cover slips – see cover slip protocol for polyacrylamide gels

148

Inoculating PAA gels with bacteria

Required materials: Active liquid bacteria culture begun the day before (within 18 to 24 hours),

PAA gels that have been undergoing an overnight wash in LB medium.

Ideally, all gel drying and sterilization should be performed in a biosafety cabinet.

Inoculation of bacteria can be performed outside the biosafety cabinet to prevent

contamination.

Turn on the microscope incubator to bring it up to temperature (37°C) and allow it to

equilibrate while you perform the following procedure.

1. Remove LB medium from well plate with an aspirator.

a. Then tilt the well plate so that any LB medium remaining on the gels pools

on one side of the gel surface, and gently remove the medium from each gel

surface. The gel surface should have as little visible liquid as possible, but be

careful not to scratch the gels too much.

2. Allow gels to dry, exposed to still air, for 20 minutes (i.e. lower the hood if using a

biosafety cabinet).

3. Using either UV from the biosafety cabinet or an external UV lamp, expose the gel

surfaces to UV sterilization for 20 minutes. The gel surfaces should now have no visible

liquid.

149

4. After thoroughly mixing liquid bacterial culture by repeatedly pipetting up and down,

dispense 5 μL in a single, small droplet in the middle of each gel.

Tip: Hold the micropipette above the gel surface, then dispense the 5 μL droplet, which should

still be stuck to the pipette tip. Then gently lower the pipette tip until it contacts the gel

surface.

5. From each liquid culture droplet, remove 2 μL to flatten the droplets.

The gels are now ready to begin imaging in an incubated chamber heated to 37°C.

150

Appendix B: Python Code

Script for combining automated boundary detection with manual validation

System-specific dependencies and other information can be found on Github at

https://github.com/masp01/SUBII-Trace

import numpy as np

from tkinter import filedialog

from tkinter import messagebox

from tkinter import *

from FindFeature import Boundaries

from ensureDataPath import ensureDataPath

import matplotlib.pyplot as plt

import os

class App:

 def __init__(self):

 # File access

 self.contourFile = 'trial{0}xy{1:02d}_{2:02d}.txt'

 self.paths = ensureDataPath().paths

 self.root = Tk() # application window

 self.i = 0 # frame index

 self.c = 0 # contour index

 self.j = 0 # segment index

 self.xmin = np.inf # display limits

 self.xmax = -1 # ''

 self.ymin = np.inf # ''

 self.ymax = -1 # ''

 self.drawState = False # is the user drawing points?

 self.drawnLine = None # matplotlib artist of user-drawn line

 self.drawnXs = [] # coordinates of user-drawn line

 self.drawnYs = [] # ''

https://github.com/masp01/SUBII-Trace

151

 # Calculate boundary predictions

 self.trial = 5 # default value

 self.xy = 28 # ''

 self.b = Boundaries(trial=self.trial, xy=self.xy, edgeMin=50, edgeMax=50,
boost=5)

 self.c = self.b.frames[self.i].c

 # Store user-drawn points

 self.boundaryLine = None

 self.boundaryXs = []

 self.boundaryYs = []

 self.insertionIndices = []

 # Disable some default hotkeys

 if 's' in plt.rcParams['keymap.save']:

 plt.rcParams['keymap.save'].remove('s')

 if 'f' in plt.rcParams['keymap.fullscreen']:

 plt.rcParams['keymap.fullscreen'].remove('f')

 if 'left' in plt.rcParams['keymap.back']:

 plt.rcParams['keymap.back'].remove('left')

 if 'right' in plt.rcParams['keymap.forward']:

 plt.rcParams['keymap.forward'].remove('right')

 # Create all frames

 TrialControls = Frame(self.root)

 ViewControls = Frame(self.root)

 EdgeControls = Frame(self.root)

 FrameControls = Frame(self.root)

 ContourControls = Frame(self.root)

 SegmentControls = Frame(self.root)

 # Organize frames vertically in order

 TrialControls.pack(padx=5, pady=5)

 ViewControls.pack(padx=5, pady=5)

152

 EdgeControls.pack(padx=5, pady=10)

 FrameControls.pack(padx=5)

 ContourControls.pack(padx=5)

 SegmentControls.pack(padx=5)

 # Window title

 self.root.title("")

 # Widgets in TrialControls

 Label(TrialControls, text='Trial').grid(row=0)

 self.trialEntry = Entry(TrialControls, width=5)

 self.trialEntry.insert(0, self.trial)

 self.trialEntry.grid(row=0, column=1)

 Label(TrialControls, text='xy').grid(row=0, column=2)

 self.xyEntry = Entry(TrialControls, width=5)

 self.xyEntry.insert(0, self.xy)

 self.xyEntry.grid(row=0, column=3)

 Button(TrialControls, text="Load", command=self.loadData).grid(row=0, column=4)

 # Widgets in EdgeControls

 Label(EdgeControls, text="edgeMin").grid(row=0)

 self.edgeMinEntry = Entry(EdgeControls, width=5)

 self.edgeMinEntry.insert(0, 50)

 self.edgeMinEntry.grid(row=0, column=1)

 Label(EdgeControls, text="edgeMax").grid(row=1)

 self.edgeMaxEntry = Entry(EdgeControls, width=5)

 self.edgeMaxEntry.insert(0, 50)

 self.edgeMaxEntry.grid(row=1, column=1)

 Button(EdgeControls, text="Redo Edges", command=self.redoEdges).grid(row=0,
column=2)

 Button(EdgeControls, text="Histogram", command=self.makeHistogram).grid(row=1,
column=2)

 # Widgets in ViewControls

 self.viewMode = StringVar()

 self.viewMode.set('img')

153

 Radiobutton(ViewControls, text="Image", variable=self.viewMode, value='img',
command=self.showFrame).pack()

 Radiobutton(ViewControls, text="Edges", variable=self.viewMode, value='edges',
command=self.showFrame).pack()

 Radiobutton(ViewControls, text="Fill", variable=self.viewMode, value='fill',
command=self.showFrame).pack()

 self.adaptZoom = IntVar()

 Checkbutton(ViewControls, text="Adapt Zoom", variable=self.adaptZoom,
command=self.showFullFrame).pack()

 # Widgets in FrameControls

 prevFrameButton = Button(FrameControls, text="<", command=lambda:
self.onClickFrame(-1))

 nextFrameButton = Button(FrameControls, text="Next Frame >", command=lambda:
self.onClickFrame(1))

 self.frameText = StringVar()

 self.frameText.set("{0}/{1}".format(self.i + 1, len(self.b.frames)))

 Label(FrameControls, textvariable=self.frameText).pack(side=BOTTOM)

 prevFrameButton.pack(side=LEFT)

 nextFrameButton.pack(side=LEFT)

 # Widgets in ContourControls

 prevContourButton = Button(ContourControls, text="<", command=lambda:
self.onClickContour(-1))

 nextContourButton = Button(ContourControls, text="Next Contour >",
command=lambda: self.onClickContour(1))

 self.contourText = StringVar()

 self.contourText.set("{0}/{1}".format(self.c + 1,
len(self.b.frames[self.i].contours)))

 Label(ContourControls, textvariable=self.contourText).pack(side=BOTTOM)

 prevContourButton.pack(side=LEFT)

 nextContourButton.pack(side=LEFT)

 # Widgets in SegmentControls

 prevSegmentButton = Button(SegmentControls, text="<", command=lambda:
self.onClickSegment(-1))

 nextSegmentButton = Button(SegmentControls, text="Next Segment >",
command=lambda: self.onClickSegment(1))

 self.segmentText = StringVar()

154

 self.segmentText.set("{0}/{1}".format(self.j + 1,
len(self.b.frames[self.i].segments)))

 Label(SegmentControls, textvariable=self.segmentText).pack(side=BOTTOM)

 nextSegmentButton.pack(side=RIGHT)

 prevSegmentButton.pack(side=RIGHT)

 self.fig, self.ax = plt.subplots()

 self.fig.canvas.manager.set_window_title('Biofilm Image')

 plt.axis('off')

 plt.tight_layout()

 displayData = getattr(self.b.frames[self.i], self.viewMode.get())

 self.im = self.ax.imshow(displayData, cmap='gray')

 self.showFrame()

 self.fig.canvas.mpl_connect('pick_event', self.onPickDataPoint) # Enable picking
data points

 self.fig.canvas.mpl_connect('button_press_event', self.onClick)

 self.fig.canvas.mpl_connect('button_release_event', self.onRelease)

 self.fig.canvas.mpl_connect('axes_leave_event', self.onLeaveAxes)

 self.fig.canvas.mpl_connect('key_press_event', self.onKey)

 plt.connect('motion_notify_event', self.drawPoints)

 plt.show()

 self.root.mainloop()

 def showFrame(self):

 # Get the coordinates of the predicted boundary

 xs, ys = self.b.frames[self.i].segments[self.j]

 self.boundaryXs = xs

 self.boundaryYs = ys

 # Set the display limits

 padding = 20

 xmin = min(xs) - padding

 self.xmin = min(xmin, self.xmin)

 self.xmin = max(0, self.xmin)

 xmax = max(xs) + padding

155

 self.xmax = max(xmax, self.xmax)

 self.xmax = min(self.b.frames[self.i].width - 1, self.xmax)

 ymin = min(ys) - padding

 self.ymin = min(ymin, self.ymin)

 self.ymin = max(0, self.ymin)

 ymax = max(ys) + padding

 self.ymax = max(ymax, self.ymax)

 self.ymax = min([self.b.frames[self.i].height - 1, self.ymax])

 # Display the frame and predicted boundary

 displayData = getattr(self.b.frames[self.i], self.viewMode.get())

 self.im.set_data(displayData)

 if self.boundaryLine is not None:

 self.boundaryLine.remove()

 self.boundaryLine = None

 self.boundaryLine, = self.ax.plot(xs, ys, linewidth=4, color='#1f77b460',
picker=5) # tolerance of 5 pixels for clicking data points

 if self.adaptZoom.get():

 plt.xlim(self.xmin, self.xmax)

 plt.ylim(self.ymax, self.ymin)

 self.fig.canvas.draw() # This line is necessary to update the figure

 def showFullFrame(self):

 # updates zoom level appropriately when changing

 # the Adapt Zoom checkbox

 if not self.adaptZoom.get():

 self.ax.clear()

 displayData = getattr(self.b.frames[self.i], self.viewMode.get())

 self.im = self.ax.imshow(displayData, cmap='gray')

 plt.axis('off')

 plt.tight_layout()

 self.showFrame()

 def rollback(self, prevTrial, prevXy):

 self.trial = prevTrial

156

 self.xy = prevXy

 self.trialEntry.delete(0, END)

 self.trialEntry.insert(0, '{}'.format(self.trial))

 self.xyEntry.delete(0, END)

 self.xyEntry.insert(0, '{}'.format(self.xy))

 def loadData(self):

 prevTrial = self.trial

 prevXy = self.xy

 # Check that the given trial and xy are valid numbers

 try:

 self.trial = int(self.trialEntry.get())

 self.xy = int(self.xyEntry.get())

 # Check that images exist for the given trial and xy

 try:

 self.redoEdges(showFrame=False)

 except IOError:

 print("No images found for this trial and xy.")

 self.rollback(prevTrial, prevXy)

 self.redoEdges(showFrame=False)

 except ValueError:

 self.rollback(prevTrial, prevXy)

 # Update image

 displayData = getattr(self.b.frames[self.i], self.viewMode.get())

 self.im = self.ax.imshow(displayData, cmap='gray')

 # Print a warning if contours have already been traced for this image

 if os.path.exists(self.paths.contours[self.trial].format(self.xy) +
self.contourFile.format(self.trial, self.xy, self.i+1)):

 print("This contour has already been traced. Saving will overwrite
previous data.")

 # Update frame label

 self.frameText.set("{0}/{1}".format(self.i + 1, len(self.b.frames)))

157

 # Reset display limits

 self.xmin, self.ymin = np.inf, np.inf

 self.xmax, self.ymax = -1, -1

 # Reset to check the first frame

 self.i = 0

 self.showFrame()

 def makeHistogram(self):

 # Display a histogram of the gray values of the current image

 # Most useful when zoomed into the biofilm boundary,

 # to estimate edgeMin and edgeMax values

 xlims = self.ax.get_xlim()

 ylims = self.ax.get_ylim()

 img = self.im.get_array()

 grayValues = img[int(min(ylims)):int(max(ylims)),
int(min(xlims)):int(max(xlims))].flatten()

 self.histFig = plt.figure('Gray Value Histogram')

 plt.hist(grayValues)

 self.histFig.canvas.draw()

 plt.show()

 def redoEdges(self, showFrame=True):

 self.b = Boundaries(trial=self.trial, xy=self.xy,
edgeMin=int(self.edgeMinEntry.get()), edgeMax=int(self.edgeMaxEntry.get()), boost=5)

 # Reset to check the first contour and segment

 self.c = self.b.frames[self.i].c

 self.j = 0

 # Update labels

 self.contourText.set("{0}/{1}".format(self.c + 1,
len(self.b.frames[self.i].contours)))

 self.segmentText.set("{0}/{1}".format(self.j + 1,
len(self.b.frames[self.i].segments)))

 if showFrame:

158

 self.showFrame()

 def onClick(self, event):

 if self.fig.canvas.manager.toolbar.mode == '':

 self.drawState = True

 self.drawPoints(event)

 def onLeaveAxes(self, event):

 if self.fig.canvas.manager.toolbar.mode != '':

 return

 if self.drawState:

 x = event.xdata

 y = event.ydata

 self.drawPoints(event)

 self.drawState = False

 if self.drawnLine is not None:

 self.drawnLine.remove()

 self.drawnLine = None

 self.fig.canvas.draw()

 if len(self.insertionIndices) == 1: # a new insertion was drawn from a
boundary point to the edge of the image

 i = self.insertionIndices[0]

 # determine which end of the boundary to change

 # and add the drawn points to the end of the boundary

 if i < int(np.floor(len(self.boundaryXs)/2)):

 keptBoundaryXs = self.boundaryXs[i:]

 keptBoundaryYs = self.boundaryYs[i:]

 self.boundaryXs = np.concatenate((self.drawnXs[::-1],
keptBoundaryXs))

 self.boundaryYs = np.concatenate((self.drawnYs[::-1],
keptBoundaryYs))

 else:

 keptBoundaryXs = self.boundaryXs[:i+1]

 keptBoundaryYs = self.boundaryYs[:i+1]

 self.boundaryXs = np.concatenate((keptBoundaryXs,
self.drawnXs))

159

 self.boundaryYs = np.concatenate((keptBoundaryYs,
self.drawnYs))

 # redraw the boundary

 self.boundaryLine.remove()

 self.boundaryLine, = self.ax.plot(self.boundaryXs,
self.boundaryYs, linewidth=4, color='#1f77b460', picker=5)

 self.fig.canvas.draw()

 def onRelease(self, event):

 if self.fig.canvas.manager.toolbar.mode != '':

 return

 self.drawPoints(event)

 self.drawState = False

 self.boundaryLine.pick(event) # run the picker

 if self.drawnLine is not None:

 self.drawnLine.remove()

 self.drawnLine = None

 #self.ax.plot(self.drawnXs, self.drawnYs, linewidth=4, color='#e4211c60')

 self.fig.canvas.draw()

 if len(self.insertionIndices) == 2: # a new insertion was drawn that touched the
boundary at two points

 firstBookend = np.array(range(min(self.insertionIndices) + 1))

 secondBookend = np.array(range(max(self.insertionIndices),
len(self.boundaryXs)))

 # check if points were drawn in the opposite direction of the boundary
points

 defaultDist = np.sqrt((self.drawnXs[0] - self.boundaryXs[firstBookend[-
1]])**2 + (self.drawnYs[0] - self.boundaryYs[firstBookend[-1]])**2)

 flippedDist = np.sqrt((self.drawnXs[0] -
self.boundaryXs[secondBookend[0]])**2 + (self.drawnYs[0] -
self.boundaryYs[secondBookend[0]])**2)

 if flippedDist < defaultDist:

 self.drawnXs = np.array(self.drawnXs)[::-1]

 self.drawnYs = np.array(self.drawnYs)[::-1]

 # insert the drawn points inbetween the remainder of the boundary

160

 self.boundaryXs = np.concatenate((self.boundaryXs[firstBookend],
self.drawnXs, self.boundaryXs[secondBookend]))

 self.boundaryYs = np.concatenate((self.boundaryYs[firstBookend],
self.drawnYs, self.boundaryYs[secondBookend]))

 self.boundaryLine.remove()

 self.boundaryLine, = self.ax.plot(self.boundaryXs, self.boundaryYs,
linewidth=4, color='#1f77b460', picker=5)

 self.fig.canvas.draw()

 # Reset drawn points

 self.insertionIndices = []

 self.drawnXs = []

 self.drawnYs = []

 def drawPoints(self, event):

 if self.drawState:

 self.drawnXs.append(event.xdata)

 self.drawnYs.append(event.ydata)

 if self.drawnLine is not None:

 self.ax.lines.remove(self.drawnLine)

 self.drawnLine = None

 self.drawnLine, = self.ax.plot(self.drawnXs, self.drawnYs, linewidth=4,
color='#e4211c30')

 self.fig.canvas.draw()

 def onKey(self, event):

 print(event.key)

 if event.key == 's':

 print('Got save event')

 filename = self.paths.contours[self.trial].format(self.xy) +
self.contourFile.format(self.trial, self.xy, self.i+1)

 if not os.path.exists(self.paths.contours[self.trial].format(self.xy)):

 os.makedirs(self.paths.contours[self.trial].format(self.xy))

 with open(filename, 'w') as txt_file:

 for i in range(len(self.boundaryXs)):

 txt_file.write(str(self.boundaryXs[i]) + '\t' +
str(self.boundaryYs[i]) + '\n')

161

 elif event.key == 'right':

 self.onClickFrame(1)

 elif event.key == 'left':

 self.onClickFrame(-1)

 elif event.key == 'f':

 self.onClickContour(1)

 def onPickDataPoint(self, event):

 line = event.artist

 xs = line.get_xdata()

 ys = line.get_ydata()

 indices = np.array(event.ind)

 ind = indices[int(np.floor(len(indices)/2))] # choose the index of the center
point

 self.insertionIndices.append(ind)

 #points = tuple(zip(xs[ind], ys[ind]))

 #print('onpick points: {0}'.format(points))

 def onClickFrame(self, step):

 # Move one frame

 self.i += step

 self.i %= len(self.b.frames) # loop back to the first frame

 # Reset to check the first contour and segment

 self.c = self.b.frames[self.i].c

 self.b.frames[self.i].segments =
self.b.frames[self.i].splitSegments(self.b.frames[self.i].contours[self.c])

 self.j = 0

 # Update labels

 self.frameText.set("{0}/{1}".format(self.i + 1, len(self.b.frames)))

 self.contourText.set("{0}/{1}".format(self.c + 1,
len(self.b.frames[self.i].contours)))

 self.segmentText.set("{0}/{1}".format(self.j + 1,
len(self.b.frames[self.i].segments)))

 # Reset the display limits when on the first frame

162

 if self.i == 0:

 self.xmin, self.ymin = np.inf, np.inf

 self.xmax, self.ymax = -1, -1

 # Print a warning if contours have already been traced for this image

 if os.path.exists(self.paths.contours[self.trial].format(self.xy) +
self.contourFile.format(self.trial, self.xy, self.i+1)):

 print("This contour has already been traced. Saving will overwrite
previous data.")

 # Show the frame and boundary

 self.showFrame()

 def onClickContour(self, step):

 # Move one contour

 self.c += step

 self.c %= len(self.b.frames[self.i].contours) # loop back to the first contour

 # Find the first contour that touches the image edges and split it into segments

 contourRange = np.array(range(len(self.b.frames[self.i].contours)))

 if step == 1:

 contourRange = np.concatenate((contourRange[self.c:],
contourRange[:self.c]))

 else:

 contourRange = np.concatenate((contourRange[self.c::-1],
contourRange[self.c+1:][::-1]))

 for thisC in contourRange:

 self.b.frames[self.i].segments =
self.b.frames[self.i].splitSegments(self.b.frames[self.i].contours[thisC])

 if len(self.b.frames[self.i].segments) > 0:

 self.c = thisC

 break

 # Warn the user if no such contour is found

 if len(self.b.frames[self.i].segments) == 0:

 print("No contours found that touch the edges")

163

 self.b.frames[self.i].segments =
[self.b.frames[self.i].contours[self.c]] # store contour coordinates anyway

 # Reset to check the first segment

 self.j = 0

 # Update labels

 self.contourText.set("{0}/{1}".format(self.c + 1,
len(self.b.frames[self.i].contours)))

 self.segmentText.set("{0}/{1}".format(self.j + 1,
len(self.b.frames[self.i].segments)))

 # Reset the display limits

 #self.xmin, self.ymin = np.inf, np.inf

 #self.xmax, self.ymax = -1, -1

 # Show the frame and boundary

 self.showFrame()

 def onClickSegment(self, step):

 # Move one segment

 self.j += step

 self.j %= len(self.b.frames[self.i].segments) # loop back to the first segment

 # Update segment label

 self.segmentText.set("{0}/{1}".format(self.j + 1,
len(self.b.frames[self.i].segments)))

 # Show the frame and boundary

 self.showFrame()

app = App()

164

Image processing and other tools for detection of M. xanthus aggregates

import numpy as np

import cv2

import os

import re

import pandas as pd

import time

import multiprocessing as mp

import matplotlib.pyplot as plt

import trackpy as tp

from data_paths import data_paths

from scipy.signal import savgol_filter

from scipy.spatial import ConvexHull, convex_hull_plot_2d

from scipy.optimize import minimize_scalar

from matplotlib.path import Path

import paramiko # pip install paramiko

from stat import S_ISDIR, S_ISREG

from datetime import datetime

def get_img(video_i, t):

 # Time t measured in minutes since inoculation

 dp = data_paths(video_i)

 img_path = dp.img_name.format(t+1) # Images start at #0001

 img = cv2.imread(img_path, 0)

 return img

particles is a list of trackpy id numbers to include in the overlay,

defaulting to all

def get_overlay_img(video_i, t, particles=None):

 dp = data_paths(video_i)

 img = get_img(video_i, t)

 img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGBA)

 if not os.path.exists(dp.contour_points_path.format(t)):

 return img

165

 contours = np.load(dp.contour_points_path.format(t), allow_pickle=True)

 if isinstance(particles, int):

 particles = [particles]

 df = get_df(video_i)

 # Remove spurious early aggregates

 early_p = np.unique(df[df.t < 100].particle.values)

 df = df[[p not in early_p for p in df.particle]]

 for i,contour in enumerate(contours):

 # Color based on particle id #

 if df is not None:

 p = df[(df.contour == i) & (df.t == t)].particle

 if len(p) == 0:

 continue

 else:

 p = int(p)

 c = np.array(plt.cm.tab10(p%10))*255

 else:

 c = np.array(plt.cm.tab10(i%10))*255

 if (particles is None) or (p in particles):

 img = cv2.drawContours(img, contours, i, c, 5)

 return img

def load_registry():

 registry = data_paths(0).registry

 return registry

def save_registry(r):

 r.to_csv(data_paths(0).registry_path)

def add_rows_to_registry(new_rows_df):

 # Ensure added rows have the appropriate columns

 r = load_registry()

 column_conditions = [col in new_rows_df.columns for col in r.columns]

 if not all(column_conditions):

 print('New rows added to the registry must have all of the following columns:')

166

 print(r.columns.values)

 return

 extra_columns = [col for col in new_rows_df.columns if col not in r.columns]

 if len(extra_columns) != 0:

 print('Columns not recognized:')

 print(extra_columns)

 return

 # Ensure no row corresponds to a video that is already in the registry

 failed_check = False

 for i in new_rows_df.index.values:

 run_num = new_rows_df.loc[i, 'run']

 scope_num = new_rows_df.loc[i, 'scope']

 registry_slice = r[(r.run == run_num) & (r.scope == scope_num)]

 if len(registry_slice) != 0:

 print('Run {} scope {} already exists in the registry.'.format(run_num,
scope_num))

 failed_check = True

 if failed_check:

 return

 # Append the new rows to the end of the registry

 new_r = pd.concat((r, new_rows_df))

 # Reindex the new rows

 new_r.index = np.arange(len(new_r))

 # Ensure no old videos were reindexed somehow

 if not all(new_r.loc[r.index, 'img_folder'] == r.img_folder):

 print('Reindexing failure. Try again or update registry manually.')

 # Save updated registry

 new_indices = [i for i in new_r.index.values if i not in r.index.values]

 print('New video indices added: {}'.format(new_indices))

 print('Saving new registry.')

167

 save_regsitry(new_r)

def update_processed_column():

 r = load_registry()

 n_processed_old = sum(r.processed)

 df_filenames = os.listdir(data_paths(0).video_df_folder)

 processed = [data_paths(i).videoname in df_filenames for i in r.index]

 n_difference = sum(processed) - n_processed_old

 print('{} new videos processed'.format(n_difference))

 r.processed = processed

 save_regsitry(r)

 print('Registry saved')

 return r

def ensure_final_slash(dir_path):

 if dir_path[-1] != '/':

 dir_path = dir_path + '/'

 return dir_path

from a given search location, recursively

search for all folders containing .tif files

def img_folders(search_path='.'):

 img_folders = []

 for root, dirs, files in os.walk(search_path):

 if any([file.endswith('.tif') for file in files]):

 img_folder = os.path.abspath(root)

 img_folders.append(img_folder)

 return img_folders

Given a video index, get the dataframe with aggregate information,

assuming the video has been processed

def get_df(video_i):

168

 dp = data_paths(video_i)

 if not os.path.exists(dp.video_df_path):

 print('File {} does not exist'.format(dp.video_df_path))

 return None

 return pd.read_csv(dp.video_df_path)

##############################

##############################

IMAGE PROCESSING FUNCTIONS #

##############################

##############################

extract x,y coordinates from a cv2 contour

def get_coordinates(contour):

 xs = [contour[i][0][0] for i in range(len(contour))]

 ys = [contour[i][0][1] for i in range(len(contour))]

 return xs,ys

Given a video dataframe, categorize the aggregates

def add_category_col(df):

 # Identify early (spurious) aggregates

 early_p = np.unique(df[df.t < 100].particle.values)

 # Identify persistent FBs

 persist_p = []

 for p,df_slice in df.groupby('particle'):

 if p in early_p:

 continue

 avgCirc = np.mean(df_slice.circularity)

 if avgCirc > 0.5:

 persist_p.append(p)

 # Identify evaporators

169

 evap_p=[]

 for p,df_slice in df.groupby('particle'):

 if p in early_p:

 continue

 a = df_slice.area.values

 xmin = min(df_slice.x.values)

 xmax = max(df_slice.x.values)

 ymin = min(df_slice.y.values)

 ymax = max(df_slice.y.values)

 notNearEdges = (xmin > 50) and (xmax < 2542) and (ymin > 50) and (ymax < 1894)

 avgCirc = np.mean(df_slice.circularity)

 if (a[-1] < 0.75*max(a)) and notNearEdges and (avgCirc > 0.5) and (a[0] < max(a))
and (p not in persist_p):

 evap_p.append(p)

 # Add category column

 category_col = ['other']*len(df)

 for i,this_row in enumerate(df.iloc):

 if this_row.particle in early_p:

 category_col[i] = 'early'

 elif this_row.particle in persist_p:

 category_col[i] = 'persistent'

 elif this_row.particle in evap_p:

 category_col[i] = 'evaporates'

 df['category'] = category_col

 return df

def find_contours(img):

 # Denoise

 denoised = cv2.fastNlMeansDenoising(img, None, 70, 9, 25)

 #######################

 # A) Create hull mask #

 #######################

170

 # A1) Low-pass adaptive thresholding -> binary image of dark regions

 thresh_dark = 255 - cv2.adaptiveThreshold(denoised, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 121, 20)

 # A2) Identify contours, keeping those that aren't contained in a larger contour

 contours,h = cv2.findContours(thresh_dark,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

 try:

 parent_info = np.array([i[-1] for i in h[0]])

 except TypeError:

 print('Could not process contour hierarchy')

 return None, None

 top_level_contours = [contours[i] for i in range(len(contours)) if parent_info[i] == -1]

 # A3) Remove small contours, to prep for morphological closing

 # Keep convex hulls of contours

 area_filtered_hulls = np.zeros(np.shape(img), np.uint8)

 thresh_dark_filtered = np.zeros(np.shape(img), np.uint8)

 for contour in top_level_contours:

 if cv2.contourArea(contour) > 1200: # Changed from 480 since previous algorithm

 convex_hull = cv2.convexHull(contour)

 area_filtered_hulls = cv2.drawContours(area_filtered_hulls, [convex_hull], -1,
255, -1)

 thresh_dark_filtered = cv2.drawContours(thresh_dark_filtered, [contour], -1, 255,
-1)

 # A4) Morphological closing

 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (21,21))

 closed = cv2.morphologyEx(area_filtered_hulls, cv2.MORPH_CLOSE, kernel)

 # A5) Find contours of closed regions,

 # keeping the convex hulls

 final_contours,h = cv2.findContours(closed,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)

 hull_mask = np.zeros(np.shape(img), np.uint8)

 for contour in final_contours:

 convex_hull = cv2.convexHull(contour)

171

 hull_mask = cv2.drawContours(hull_mask, [convex_hull], -1, 255, -1)

 ######################

 # B) Find highlights #

 ######################

 # B1) High-pass adaptive thresholding -> binary image of light regions

 thresh_light = 255 - cv2.adaptiveThreshold(255-denoised, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 31, 13)

 # B2) Keep only highlights that are inside aggregates by

 # filtering the high-pass binary image with the hull mask

 interior_highlights = cv2.bitwise_and(hull_mask, thresh_light)

 # B3) Dilate the interior highlights

 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (17,17))

 interior_highlights = cv2.morphologyEx(interior_highlights, cv2.MORPH_DILATE, kernel)

 ##

 # C) Combine highlights and dark regions #

 ##

 # C1) Combine interior highlights with low-pass binary image

 comb = cv2.bitwise_or(interior_highlights, thresh_dark_filtered)

 # C2) Morphologically close the combined aggregates

 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15,15))

 agg_mask = cv2.morphologyEx(comb, cv2.MORPH_CLOSE, kernel)

 # C3) Remove small aggregates using the hull mask

 agg_mask = cv2.bitwise_and(agg_mask, hull_mask)

 ######################################

 # D) Obtain final aggregate contours #

 ######################################

172

 all_contours,h = cv2.findContours(agg_mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

 if len(all_contours) == 0:

 # Error handling if no contours were found

 return [], thresh_dark

 else:

 parent_info = np.array([i[-1] for i in h[0]])

 # Keep contours that aren't contained in another contour (like dark spots)

 contours = [all_contours[i] for i in range(len(all_contours)) if parent_info[i] == -1]

 return contours, thresh_dark

def find_contours_dark_only(img, denoising_strength=70, kernel_size=5, threshold_offset=20):

 # Nonlinear means denoising (blur that maintains edges)

 denoised = cv2.fastNlMeansDenoising(img, None, denoising_strength, 7, 21)

 # Adaptive thresholding (makes binary image)\

thresh1=cv2.adaptiveThreshold(denoised,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,101,th
reshold_offset)

 # Morphological opening (denoises binary image)

 kernel =cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(kernel_size,kernel_size))

 opened=cv2.morphologyEx(255-thresh1,cv2.MORPH_OPEN,kernel)

 # Find contours

 contours,h = cv2.findContours(opened,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)

 # Minimum area filter (ADDED TO MATCH NEW ALGORITHM)

 contours = [contour for contour in contours if cv2.contourArea(contour) > 1200]

 return contours

def getCenterOfMassCoords(contour, axis):

 return np.mean([contour[i][0][axis] for i in range(len(contour))])

def getAvgGray_dark_only(img, contours, contour_i):

 mask = np.zeros(img.shape, np.uint8)

173

 cv2.drawContours(mask, contours, contour_i, 255, -1)

 return cv2.mean(img, mask)[0]

def getAvgGray(img, thresh_dark, contours, contour_i):

 mask = np.zeros(img.shape, np.uint8)

 mask = cv2.drawContours(mask, contours, contour_i, 255, -1)

 mask = cv2.bitwise_and(mask, thresh_dark) # Only count gray value of pixels that aren't
included in a highlight

 return cv2.mean(img, mask)[0]

Process the frame at time t (minutes from inoculation)

of the video with registry index number video_i

Saves the contour points and returns a dataframe for the processed image

If dark_only = True, this frame will be processed with the

old aggregate finding algorithm that assumes aggregates do not have

bright highlights

def process_frame(video_i, t, dark_only=False):

 # Prep output locations

 dp = data_paths(video_i)

 # Find image file for the chosen video and timepoint

 img = get_img(video_i, t)

 if img is None:

 print('Video {} has no image at time {}'.format(video_i, t))

 return

 # Process image to find aggregate contours

 # and regions where aggregates are dark

 if dark_only:

 contours = find_contours_dark_only(img)

 else:

 contours,thresh_dark = find_contours(img)

 if contours is None:

174

 print('Contour hierarchy could not be processed for video {} at time t={}
mins.'.format(video_i, t))

 return pd.DataFrame(columns=['t', 'x', 'y', 'area', 'perim', 'circularity'])

 # Extract data from contours

 all_ts = [t]*len(contours)

 all_cxs = [getCenterOfMassCoords(contour, 0) for contour in contours]

 all_cys = [getCenterOfMassCoords(contour, 1) for contour in contours]

 all_areas = [cv2.contourArea(contour) for contour in contours]

 all_perims = [cv2.arcLength(contour, True) for contour in contours]

 if dark_only:

 all_avggray = [getAvgGray_dark_only(img, contours, contour_i) for contour_i in
range(len(contours))]

 else:

 all_avggray = [getAvgGray(img, thresh_dark, contours, contour_i) for contour_i in
range(len(contours))]

 # Save contour points

 np.save(dp.contour_points_path.format(t), np.array(contours, dtype=object))

 # Make a dataframe for output

 frame_df = pd.DataFrame({

 't':all_ts,

 'x':all_cxs,

 'y':all_cys,

 'area':all_areas,

 'perim':all_perims,

 'grayValue':all_avggray

 })

 # Remove small aggregates

 frame_df = frame_df[frame_df.area > 480]

 # Calculate circularity column

 frame_df['circularity'] = 4*np.pi*frame_df.area.values / (frame_df.perim.values)**2

 # Add a column for contour number

 frame_df['contour'] = frame_df.index.values

175

 return frame_df

Process an entire video

If dark_only = True, this video will be processed with the

old aggregate finding algorithm that assumes aggregates do not have

bright highlights

def process_video(video_i, dark_only=False, t_range=None):

 # Default t_range if not specified

 if t_range is None:

 t_range = np.arange(0,1440+10,10)

 # Process frames in parallel (also saves contour points)

 worker_pool = mp.Pool()

 frame_dfs = worker_pool.starmap(process_frame, [(video_i,t,dark_only) for t in t_range])

 frame_dfs = [f for f in frame_dfs if f is not None]

 video_df = pd.concat(frame_dfs)

 video_df.index = np.arange(len(video_df))

 # Add tracking information

 tp.quiet() # Suppress unnecessary messages

 tracked_df = tp.link_df(video_df, 30, memory=70, t_column='t')

 # TODO: Add evaporator/persistor categories (may require handling mergers/separations?)

 # Save dataframe

 dp = data_paths(video_i)

 tracked_df.to_csv(dp.video_df_path, float_format='%.3f', index=False)

 print('Saved video dataframe to ' + dp.video_df_path)

Reprocess selected frames of a video

If dark_only = True, these frames will be processed with the

old aggregate finding algorithm that assumes aggregates do not have

bright highlights

176

def reprocess_video(video_i, dark_only=False, t_range=None):

 # Default t_range if not specified

 if t_range is None:

 t_range = np.arange(0,1440+10,10)

 # Load previous dataframe

 video_df = get_df(video_i)

 # Process frames in parallel (also saves contour points),

 # updating only the affected rows of the video dataframe

 worker_pool = mp.Pool()

 frame_dfs = worker_pool.starmap(process_frame, [(video_i,t,dark_only) for t in t_range])

 # Trim out non-existent frames

 processed_frames_i = [i for i in range(len(frame_dfs)) if frame_dfs[i] is not None]

 frame_dfs = np.array(frame_dfs)[processed_frames_i]

 t_range = np.array(t_range)[processed_frames_i]

 for i in range(len(t_range)):

 video_df = video_df.drop(index=video_df[video_df.t == t_range[i]].index.values)

 video_df = pd.concat((video_df, frame_dfs[i]))

 video_df.index = np.arange(len(video_df))

 video_df = video_df.sort_values('t')

 video_df.index = np.arange(len(video_df))

 # Add tracking information

 tp.quiet() # Suppress unnecessary messages

 tracked_df = tp.link_df(video_df, 30, memory=70, t_column='t')

 # TODO: Add evaporator/persistor categories (may require handling mergers/separations?)

 # Save dataframe

 dp = data_paths(video_i)

 tracked_df.to_csv(dp.video_df_path, float_format='%.3f', index=False)

 print('Updated video dataframe ' + dp.video_df_path)

######################

177

######################

ANALYSIS FUNCTIONS #

######################

######################

def accept_video_i(func):

 # If the user specifies a video index,

 # load the video df

 def wrapper(identifier, *args, **kwargs):

 if isinstance(identifier, int) or isinstance(identifier, np.int64):

 df = get_df(identifier)

 return func(df, *args, **kwargs)

 else:

 # otherwise assume the df was passed

 return func(identifier, *args, **kwargs)

 return wrapper

########################

From video dataframe #

########################

@accept_video_i

def get_start_time(df, n_threshold=10, area_threshold=800):

 # Return time when the number of fruiting bodies

 # above a certain size reaches a certain threshold

 def n_are_large(areas, threshold):

 return sum(np.array(areas) > threshold)

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 n_large = df_slice.groupby('t')['area'].agg(n_are_large, area_threshold)

178

 times_when_n_large_exceeds = n_large.index[n_large >= n_threshold]

 if len(times_when_n_large_exceeds) == 0:

 return 0

 return min(times_when_n_large_exceeds)

@accept_video_i

def get_peak_time(df):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 total_areas = df_slice.groupby('t')['area'].agg(np.sum)

 if len(total_areas) == 0:

 return 0

 times_at_max = total_areas.index[total_areas == max(total_areas)]

 return min(times_at_max)

@accept_video_i

def get_stability_time(df, window=31, threshold=0.5):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 n = df_slice.groupby('t')['area'].agg(len)

 if len(n) < window:

 return 2000

 n_deriv = savgol_filter(n.values, window, 3, deriv=1)

 all_stable_after_i = np.where([np.all(abs(n_deriv[i:]) <= threshold) for i in
range(len(n_deriv))])[0]

 if len(all_stable_after_i) == 0:

 return 2000 # A hypothetical eventual stability time?

 else:

 min_stable_after_i = min(all_stable_after_i)

 return n.index.values[min_stable_after_i]

179

@accept_video_i

def get_peaktime_area_mean(df):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 peak_time = get_peak_time(df)

 return np.mean(df_slice[df_slice.t == peak_time].area.values)

@accept_video_i

def get_peaktime_area_std(df):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 peak_time = get_peak_time(df)

 return np.std(df_slice[df_slice.t == peak_time].area.values)

@accept_video_i

def get_final_area_mean(df):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 mean_areas = df_slice.groupby('t')['area'].agg(np.mean)

 return mean_areas.values[-1]

@accept_video_i

def get_final_area_std(df):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 std_areas = df_slice.groupby('t')['area'].agg(np.std)

 return std_areas.values[-1]

180

@accept_video_i

def get_peaktime_n(df):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 if len(df_slice) == 0:

 return 0

 peak_time = get_peak_time(df)

 return len(df_slice[df_slice.t == peak_time])

@accept_video_i

def get_final_n(df):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 if len(df_slice) == 0:

 return 0

 return len(df_slice[df_slice.t == max(df_slice.t.values)])

@accept_video_i

def get_frac_lost(df):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 if len(df_slice) < 4:

 return 0

 ns = df_slice.groupby('t')['area'].agg(len) # count could use any column

 n_sort = np.sort(ns.values) # sort ascending

 n_max = np.mean(n_sort[-3:]) # smooth max n with three largest values

 n_final = ns.values[-1]

181

 if n_final >= n_max:

 return 0

 else:

 return (n_max - n_final)/n_max

@accept_video_i

def get_final_circ_mean(df):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 mean_circs = df_slice.groupby('t')['circularity'].agg(np.mean)

 return mean_circs.values[-1]

@accept_video_i

def get_final_circ_std(df):

 # Ignore aggregates that formed at 100 minutes after inoculation or earlier

 early_p = np.unique(df[df.t < 100].particle.values)

 df_slice = df[[p not in early_p for p in df.particle]]

 std_circs = df_slice.groupby('t')['circularity'].agg(np.std)

 return std_circs.values[-1]

#######################

Metrics from images #

#######################

def get_final_comp_size(i):

 dp = data_paths(0)

 cs_df = pd.read_csv(dp.img_metrics_compSize, index_col=0)

 return np.mean(cs_df.loc[i].comp_size.values[-10])

def get_max_comp_size(i):

 dp = data_paths(0)

 cs_df = pd.read_csv(dp.img_metrics_compSize, index_col=0)

182

 return max(cs_df.loc[i].comp_size.values)

def get_t_max_comp_size(i):

 dp = data_paths(0)

 cs_df = pd.read_csv(dp.img_metrics_compSize, index_col=0)

 this_df = cs_df.loc[i]

 max_slice = this_df[this_df.comp_size == max(this_df.comp_size)]

 if len(max_slice) == 0:

 return 0

 else:

 return min(max_slice.t.values)

def get_final_std_grayValue(i):

 dp = data_paths(0)

 sg_df = pd.read_csv(dp.img_metrics_std_grayValue, index_col=0)

 return np.mean(sg_df.loc[i].std_grayValue.values[-10])

def get_max_std_grayValue(i):

 dp = data_paths(0)

 sg_df = pd.read_csv(dp.img_metrics_std_grayValue, index_col=0)

 return max(sg_df.loc[i].std_grayValue.values)

######################

######################

PLOTTING FUNCTIONS #

######################

######################

Plot many images together as a mosaic,

specifying the video index to show

and the time to show.

Optionally, the video index and time can be

displayed on each image

183

def frame_mosaic(video_indices, ts=None, show_i=True, show_t=False, dpi=75):

 ncols = 6

 nrows = int(np.ceil(len(video_indices)/ncols))

 height,width = np.shape(get_img(0,0))

 fig,all_ax = plt.subplots(nrows,ncols,figsize=(20,20*height/width*nrows/ncols*1.025),
dpi=dpi)

 fig.subplots_adjust(hspace=0, wspace=0)

 # Default time

 if ts is None:

 ts = [1440]*len(video_indices)

 # Allow user to pick one timepoint for all images

 if isinstance(ts, int):

 ts = [ts]*len(video_indices)

 for i,ax in enumerate(all_ax.flatten()):

 if i < len(video_indices):

 img = get_img(video_indices[i], ts[i])

 ax.imshow(img, cmap='gray')

 label = ''

 if show_i:

 label = str(video_indices[i])

 if show_t:

 label += ', {} min'.format(ts[i])

 ax.annotate(label, (0,250), color='white')

 ax.axis('off')

Helper function for scatterplots:

Plot the polygon that bounds the x,y points

to emphasize the spread, especially alongside

other scatterplots

def plotHull(xs, ys, ax, *args, **kwargs):

 if args == ():

 args = 'o-' # default plot marker

 points = np.column_stack((xs, ys))

184

 if len(points) > 2:

 hull = ConvexHull(points)

 vertices_i = hull.vertices.copy()

 vertices_i = np.append(vertices_i, hull.vertices[0])

 ax.plot(np.array(xs)[vertices_i], np.array(ys)[vertices_i], *args, **kwargs)

 else:

 ax.plot(xs, ys, *args, **kwargs)

def get_points_inside(c, xs, ys):

 points_data = np.column_stack((xs,ys))

 all_points_inside_i = []

 for clevel in c.allsegs:

 n_points = 0

 for segment in clevel:

 cpath = Path(segment)

 points_inside_i = np.arange(len(xs))[cpath.contains_points(points_data)]

 all_points_inside_i.extend(points_inside_i)

 return np.array(xs)[all_points_inside_i], np.array(ys)[all_points_inside_i]

Helper function for finding contour

that contains a given fraction of

scatterplot points

def get_frac_points_inside(c, xs, ys):

 points_data = np.column_stack((xs,ys))

 frac_points = []

 for clevel in c.allsegs:

 n_points = 0

 for segment in clevel:

 cpath = Path(segment)

 points_inside = sum(cpath.contains_points(points_data))

 n_points += points_inside

 frac_points.append(n_points / len(points_data))

 return frac_points

Helper function for finding contour

185

that contains a given fraction of

scatterplot points

def incl_cost(ax, cloud, xs, ys, q, frac):

 c = ax.contour(cloud.T, [np.quantile(cloud.flatten(), q)], extent=(-10, 10, -10, 10))

 points_data = np.column_stack((xs,ys))

 for clevel in c.allsegs:

 n_points = 0

 for segment in clevel:

 cpath = Path(segment)

 points_inside = sum(cpath.contains_points(points_data))

 n_points += points_inside

 return (n_points/len(points_data) - frac)**2

Gaussian kernel density of 2D scatterplot

def densityMap(xs, ys, extent=(-10,10), nBins=500, kernelWidth=101):

 heatmap, xedges, yedges = np.histogram2d(xs, ys, bins=np.linspace(*extent, nBins))

 density = cv2.GaussianBlur(heatmap, (kernelWidth, kernelWidth), 0)

 return density

Returns xs and ys of desired contour.

NOTE: There may be multiple polygons, so plot this as

polys = get_frac_contour(ax, xs, ys, frac)

for poly in polys:

plot(*poly)

def get_frac_contour(ax, xs, ys, frac, extent=(-10,10), nBins=500, kernelWidth=101,
min_q=None, **kwargs):

 # Create density map of scatterplot points

 cloud = densityMap(xs, ys, extent, nBins, kernelWidth)

 # Solve for contour

 if min_q is None:

 min_q = sum(cloud.flatten() > 0)/len(cloud.flatten()) + 0.01

 sol = minimize_scalar(lambda q: incl_cost(ax, cloud, xs, ys, q, frac), bounds=(min_q, 1),
method='bounded')

186

 # Extract contour

 c = ax.contour(cloud.T, [np.quantile(cloud.flatten(), sol.x)], extent=(*extent, *extent))

 # Extract coordinates

 polys = [(cdata.T[0], cdata.T[1]) for cdata in c.allsegs[0]]

 return polys

########################

########################

HUB ACCESS FUNCTIONS #

########################

########################

def get_remote_scope_folders(sftp, remote_run_folder):

 scope_folders = []

 for entry in sftp.listdir_attr(remote_run_folder):

 mode = entry.st_mode

 if S_ISDIR(mode):

 if entry.filename.startswith('Scope'):

 scope_folders.append(entry.filename)

 return scope_folders

def get_t(filename):

 t = int(re.findall('_(\\d+).tif$', filename)[0]) - 1

 return t

def cpMovieFromHub(remote_scope_folder, local_dst_folder, remote_server='as-welchlab-
nat.syr.edu', username='', password=''):

 # Open SSH connection

 ssh = paramiko.SSHClient()

 ssh.load_host_keys(os.path.expanduser('~/.ssh/known_hosts'))

 ssh.connect(remote_server, username=username, password=password, allow_agent=False)

 sftp = ssh.open_sftp()

187

 # Get all image filenames in this remote scope folder

 img_filenames = sftp.listdir(remote_scope_folder)

 # If there are less than 100 images, warn the user

 if len(img_filenames) < 100:

 print('There are less than 100 images in {}'.format(remote_scope_folder))

 # Get subset of images with a 10 minute increment

 imgs_to_copy = [os.path.join(remote_scope_folder, f) for f in img_filenames if get_t(f)%10
== 0]

 # Copy those images to the destination folder

 for img_path in imgs_to_copy:

 img_filename = os.path.basename(img_path)

 sftp.get(img_path, os.path.join(local_dst_folder, img_filename))

 # Close SSH connection

 sftp.close()

 ssh.close()

def findRunFolder(sftp, run_num):

 dp = data_paths()

 run_folder = None

 for search_path in dp.hub_run_folder_locations:

 try:

 for entry in sftp.listdir_attr(search_path):

 mode = entry.st_mode

 if S_ISDIR(mode):

 if 'Run{:04d}'.format(run_num) in entry.filename:

 run_folder = os.path.join(search_path, entry.filename)

 except:

 continue

 if run_folder is None:

 print('No folder found for run {}'.format(run_num))

188

 return run_folder

Use this function to copy every tenth image from all videos in a given run

Note that it returns a dataframe that should be manually validated

and then added to the video registry with add_rows_to_registry()

def cpRunFromHub(run_num, local_dst_folder=None):

 dp = data_paths()

 # Default local destination directory

 if local_dst_folder is None:

 local_dst_folder = dp.new_img_parent

 # Get network hub info for remote connection

 remote_server = dp.hub_ip

 username = dp.hub_user

 password = dp.hub_pw

 # Open SSH connection

 ssh = paramiko.SSHClient()

 ssh.load_host_keys(os.path.expanduser('~/.ssh/known_hosts'))

 ssh.connect(remote_server, username=username, password=password, allow_agent=False)

 sftp = ssh.open_sftp()

 # Find images on the network hub

 remote_run_folder = findRunFolder(sftp, run_num)

 if remote_run_folder is None:

 return

 print('Copying videos from Run {}: {}'.format(run_num, remote_run_folder))

 scope_folders = get_remote_scope_folders(sftp, remote_run_folder)

 # Prep run folder in local destination

 new_run_folder = os.path.join(local_dst_folder, os.path.basename(remote_run_folder))

 if not os.path.exists(new_run_folder):

 os.mkdir(new_run_folder)

 # Get date when run was started

189

 m_time = sftp.stat(os.path.join(remote_run_folder, 'scopeInfo.txt')).st_mtime

 timestamp = datetime.fromtimestamp(m_time)

 date = "{dt.month}/{dt.day}/{dt.year}".format(dt = timestamp)

 # Prepare new rows to be added to the registry

 sftp.get(os.path.join(remote_run_folder, 'scopeInfo.txt'), os.path.join(new_run_folder,
'scopeInfo.txt'))

 scopeInfo = pd.read_csv(os.path.join(new_run_folder, 'scopeInfo.txt'), sep='\t')

 new_rows = pd.DataFrame({'run':run_num, 'scope':scopeInfo.scope,
'strain':scopeInfo.strain})

 new_rows['condition'] = '1%_TPM_agar'

 new_rows['date'] = date

 new_rows['error'] = 0

 new_rows['processed'] = False

 new_rows['img_folder'] = '' # to be populated

 # Copy images from the network hub with a time increment of 10 minutes

 for i,scope_folder in enumerate(scope_folders):

 print('Copying from folder {} of {}: {}'.format(i+1, len(scope_folders),
scope_folder), flush=True, end='\r')

 # Get all image filenames in this remote scope folder

 img_filenames = sftp.listdir(os.path.join(remote_run_folder, scope_folder))

 # If there are less than 100 images, skip this folder

 if len(img_filenames) < 100:

 continue

 # Prep scope folder in local destination

 new_scope_folder = os.path.join(new_run_folder, scope_folder)

 if not os.path.exists(new_scope_folder):

 os.mkdir(new_scope_folder)

 # Get subset of images with a 10 minute increment

 imgs_to_copy = [os.path.join(remote_run_folder, scope_folder, f) for f in
img_filenames if get_t(f)%10 == 0]

190

 # Copy those images to the destination folder

 for img_path in imgs_to_copy:

 img_filename = os.path.basename(img_path)

 sftp.get(img_path, os.path.join(new_scope_folder, img_filename))

 # Include local destination in rows to be added to registry

 scope_num = int(scope_folder[5:]) # Scope folder named as 'Scope44'

 new_row_i = new_rows[new_rows.scope == scope_num].index.values[0]

 new_rows.loc[i, 'img_folder'] = new_scope_folder

 # Close SSH connection

 sftp.close()

 ssh.close()

 # Return rows to be added to registry

 return new_rows

191

Tools for PCA analysis

"""

Calculate a new PCA from scratch:

run PCA_tools

sample = registry[...conditions...]

p = PCA_tools().new(sample) # Loads default metrics and scales them unsupervised

p.computePCA()

Save data:

p.save() # Prompts user for savepath

or

p.save('/user/home/myxo-tracking/PCA/tmp/')

Load previously calculated data:

data = PCA_tools().load() # Prompts user for loadpath

or

data = PCA_tools().load('/user/home/3d-scope-agg-tracking/PCA/PCA_all/')

Loading data also makes plotting functions available

If computing new default metrics:

p = PCA_tools()

p.new(filter_errors=False)

p.computeMetrics()

then place metrics_df.csv in the default parentPath

"""

import numpy as np

import agg_tools as tools

import pandas as pd

import os

from datetime import datetime

from sklearn.preprocessing import StandardScaler

192

from sklearn.decomposition import PCA

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

from matplotlib import colors

from matplotlib.patches import Patch

import cv2

from scipy.optimize import minimize_scalar

from matplotlib.path import Path

registry = tools.load_registry() # for convenience when using `run PCA_tools`

class PCA_tools:

 def __init__(self):

 # Filenames for all ouput

 # Keys are properties of the class

 self.output_filenames = {

 'registry_sample':'included_videos_unfiltered.csv',

 'filtered_registry_sample':'included_videos_filtered.csv',

 'metrics_df':'metrics_df.csv',

 'scaled_metrics_df':'scaled_metrics_df.csv',

 'principalDf':'PCA.csv',

 'pc_variance_ratios':'PC_variance.txt',

 'pc_metrics':'PC_metrics.txt',

 'nan_indices':'nan_indices.txt',

 'metrics_datetime':'when_metrics_calculated.txt'

 }

 self.metric_functions = {

 'start_time':tools.get_start_time,

 'peak_time':tools.get_peak_time,

 'stability_time':tools.get_stability_time,

 'peaktime_area_mean':tools.get_peaktime_area_mean,

 'peaktime_area_std':tools.get_peaktime_area_std,

 'final_area_mean':tools.get_final_area_mean,

 'final_area_std':tools.get_final_area_std,

193

 'peaktime_n':tools.get_peaktime_n,

 'final_n':tools.get_final_n,

 'frac_lost':tools.get_frac_lost

 }

 # Initialize

 self.metric_names = list(self.metric_functions.keys())

 self.parentPath = self.ensureFinalSlash(tools.data_paths(0).pca_folder) #
Directory for output folders, should also contain metrics_df.csv for default pre-calculated
metrics

 self.savepath = None

 self.registry_sample = None

 self.filtered_registry_sample = None

 self.metrics_df = None

 self.scaled_metrics_df = None

 self.principalDf = None

 self.nan_indices = None

 self.n_components = None

 self.metrics_datetime = None

 self.registry = tools.load_registry()

 # Prepares scaled metrics from registry sample

 # ready to run PCA

 def new(self, registry_sample=None, filter_errors=True, parentPath=None):

 # Default to using entire registry

 if registry_sample is None:

 registry_sample = self.registry

 # Clean up registry sample

 self.registry_sample, self.filtered_registry_sample =
self.prepRegistrySample(registry_sample, filter_errors)

 # Load default metrics

194

 self.metrics_df = self.loadDefaultMetrics(parentPath)

 if self.metrics_df is None:

 # Check if some default metrics are missing

 return self

 # Scale metrics (unsupervised)

 self.scaleMetrics() # Populates self.scaled_metrics_df and self.nan_indices

 return self

 def save(self, savepath=None):

 # Prompt user for savepath if one is not given or previously specified

 if savepath is None:

 if self.savepath is None:

 savepath = self.makeNewDir(self.parentPath)

 else:

 savepath = self.savepath

 # Prompt user if anything might be overwritten

 proceed, savepath = self.checkSaveConflicts(savepath)

 if not proceed:

 return

 # Save each output file

 self.registry_sample.to_csv(savepath + self.output_filenames['registry_sample'])

 self.filtered_registry_sample.to_csv(savepath +
self.output_filenames['filtered_registry_sample'])

 self.appendColumns(self.metrics_df).to_csv(savepath +
self.output_filenames['metrics_df'])

 self.appendColumns(self.scaled_metrics_df).to_csv(savepath +
self.output_filenames['scaled_metrics_df'])

 self.principalDf.to_csv(savepath + self.output_filenames['principalDf'])

 np.savetxt(savepath + self.output_filenames['pc_variance_ratios'],
self.pc_variance_ratios)

 np.savetxt(savepath + self.output_filenames['pc_metrics'], self.pc_metrics)

 np.savetxt(savepath + self.output_filenames['nan_indices'], self.nan_indices,
fmt='%d')

195

 with open(savepath + self.output_filenames['metrics_datetime'], 'w') as f:

 f.write(self.metrics_datetime)

 print('Output data saved to ' + savepath)

 self.savepath = savepath

 # Loads data saved at loadpath

 def load(self, loadpath=None):

 # Defaults to user prompt for loadpath

 if loadpath is None:

 loadpath = self.pickLoadpath(self.parentPath)

 # Check for each file in self.output_filenames

 for variable_name in self.output_filenames.keys():

 output_filename = self.output_filenames[variable_name]

 if os.path.exists(loadpath + output_filename):

 # Load in dataframes

 if output_filename.endswith('.csv'):

 df = pd.read_csv(loadpath + output_filename, index_col=0)

 if variable_name != 'principalDf':

 # Remove non-numeric columns that help human
readability

 df = df.drop('strain', axis=1)

 # Store data in memory

 setattr(self, variable_name, df)

 # Load in metrics_datetime

 elif variable_name == 'metrics_datetime':

 with open(loadpath + output_filename, 'r') as f:

 self.metrics_datetime = f.readline()[:-1]

 # Load in numeric txt files

 else:

 if os.stat(loadpath).st_size != 0: # suppress an annoying
warning about an empty file

 data = np.loadtxt(loadpath + output_filename)

 else:

 data = []

196

 # Store data in memory

 setattr(self, variable_name, data)

 else:

 print(loadpath + output_filename + ' missing')

 # Load the number of primary components

 self.n_components = sum(['pc' in colName for colName in
self.principalDf.columns])

 return self

 #################

 #################

 ### ###

 ### PCA CORE ###

 ### ###

 #################

 #################

 def computeMetric(self, video_i):

 # Calculate all metric values for this video

 metric_vector = [self.metric_functions[metric_name](video_i) for metric_name in
self.metric_names]

 return metric_vector

 def computeMetrics(self, video_indices=None):

 # Default to indices in the filtered_registry_sample

 if video_indices is None:

 video_indices = self.filtered_registry_sample.index

 # Calculate and store metrics for each video

 metric_vectors = []

 for i in video_indices:

 # Indicate which metric is being calculated (in case of warnings/errors)

 videoname = tools.data_paths(i).videoname

 print('{}: {}'.format(i, videoname))

197

 # Calculate all metric values for this video

 metric_vector = self.computeMetric(i)

 # Store metric values for this video

 metric_vectors.append(metric_vector)

 # Keep date and time for when metrics were calculated

 self.metrics_datetime = datetime.now().strftime("%Y-%m-%d, %H:%M:%S")

 # Compile all metric values into a dataframe by video index

 self.metrics_df = pd.DataFrame(data=metric_vectors, columns=self.metric_names)

 self.metrics_df.index = video_indices

 return self.metrics_df

 # Filter out metrics that are nan

 # Scale remaining metrics unsupervised,

 # i.e. mean -> 0, variance -> 1 for the given sample of metrics

 # Returns:

 # - dataframe of scaled metrics

 # - list of video indices with nan metrics

 def scaleMetrics(self, metrics_df=None):

 # Default to self.metrics_df

 if metrics_df is None:

 metrics_df = self.metrics_df

 # Remove vectors that have missing values

 metrics_df = self.filterNan(metrics_df, store_nan_indices=True)

 # Scale each metric to have mean 0 and variance 1

 scaled_metric_vectors = StandardScaler().fit_transform(metrics_df)

 # Compile all scaled metric values into a dataframe by video index

 self.scaled_metrics_df = pd.DataFrame(data=scaled_metric_vectors,
columns=self.metric_names)

198

 self.scaled_metrics_df.index = metrics_df.index

 return self.scaled_metrics_df, self.nan_indices

 def computePCA(self, input_data=None, n_components=6):

 self.n_components = n_components

 # Default to using the scaled metric vectors as input

 if input_data is None:

 if self.scaled_metrics_df is None:

 self.scaleMetrics()

 input_data = self.scaled_metrics_df

 # Report on how many videos of each strain are included in the PCA

 print(self.filtered_registry_sample.strain.value_counts())

 # Perform PCA

 pca = PCA(n_components=n_components)

 pc = pca.fit_transform(input_data)

 pca_out = pca.fit(input_data)

 # Save output:

 # - principal component values for each video

 # - explained variance of each PC

 # - metric makeup of each PC

 self.principalDf = pd.DataFrame(data = pc, columns = ['pc{}'.format(i+1) for i
in range(n_components)])

 self.principalDf.index = input_data.index

 self.principalDf = self.appendColumns(self.principalDf)

 self.pc_variance_ratios = pca_out.explained_variance_ratio_

 self.pc_metrics = pca_out.components_

 #self.covariance = pca_out.get_covariance()

 # Report on explained variance

199

 print('Explained variance:')

 print(self.pc_variance_ratios)

 print('{}% of total variance explained by the top {} primary
components'.format(int(100*sum(self.pc_variance_ratios)), n_components))

 ###########################

 ###########################

 ### ###

 ### PLOTTING FUNCTIONS ###

 ### ###

 ###########################

 ###########################

 # Scatterplot of all PCA points

 def plotPCA(self, x_axis='pc1', y_axis='pc2', data=None, fig=None, ax=None):

 # Make new plot window if one isn't supplied

 if (fig is None) or (ax is None):

 self.fig,self.ax = plt.subplots()

 else:

 self.fig = fig

 self.ax = ax

 # Use full principalDf if a slice isn't supplied

 if data is None:

 data = self.principalDf

 # Plot PCA output

 self.fig.canvas.manager.set_window_title("PCA Feature Space")

 self.ax.set_aspect('equal')

 for i in data.index:

 homolog_group = data.loc[i,'mutant']

 x,y = data.loc[i, x_axis], data.loc[i, y_axis]

 self.ax.scatter(x,y, color=self.h_colors[homolog_group])

 self.fig.tight_layout()

200

 plt.show()

 def densityMap(self, xs, ys, extent=(-6.5,6.5), nBins=20, kernelWidth=5):

 heatmap, xedges, yedges = np.histogram2d(xs, ys, bins=np.linspace(*extent,
nBins))

 density = cv2.GaussianBlur(heatmap, (kernelWidth, kernelWidth), 0)

 return density

 def plotDensity(self, mutant=None, scatter=True, scattersize=2, x_axis='pc1',
y_axis='pc2', data=None, fadeExp=2, darkenFactor=0.75, scatter_alpha=0.6, extent=(-6.5, 6.5),
nBins=20, kernelWidth=5, colorbar=True, fig=None, ax=None):

 # Make new plot window if one isn't supplied

 if (fig is None) or (ax is None):

 self.fig,self.ax = plt.subplots()

 else:

 self.fig = fig

 self.ax = ax

 # Use full principalDf if a slice isn't supplied

 if data is None:

 data = self.principalDf

 # Filter by mutant if supplied

 if mutant is not None:

 data = data[data.mutant == mutant]

 scatter_color = self.darken(self.h_colors[mutant], darkenFactor)

 fade_map = self.fade(self.h_colors[mutant], fadeExp)

 else:

 scatter_color = self.darken('C0', darkenFactor)

 fade_map = self.fade('C0', fadeExp)

 # Extract data

 xs,ys = data[x_axis], data[y_axis]

 # Make scatterplot, if desired

 if scatter:

201

 self.ax.scatter(xs, ys, scattersize, color=scatter_color,
alpha=scatter_alpha)

 # Plot density

 self.ax.set_xlim(*extent)

 self.ax.set_ylim(*extent)

 im = self.ax.imshow(self.densityMap(xs, ys, extent=extent, nBins=nBins,
kernelWidth=kernelWidth).T, extent=(*extent,*extent), origin='lower', cmap=fade_map)

 if colorbar:

 self.fig.colorbar(im)

 def plotPCmakeup(self, top_n_components=4, top_n_metrics=10, width_ratios=[1,5],
fig=None, ax=None):

 # Make new plot window if one isn't supplied

 if (fig is None) or (ax is None):

 self.fig,self.ax = plt.subplots(1,2, figsize=(8,4),
gridspec_kw={'width_ratios': width_ratios})

 else:

 self.fig = fig

 self.ax = ax

 # Calculate PCA if it has not been done yet

 if self.principalDf is None:

 self.computePCA()

 ###########################

 # Explained variance plot #

 ###########################

 # Colors for explained variance bars

 bar_colors = [plt.cm.Blues(i) for i in np.linspace(0.25, 1, self.n_components)]

 total_explained_variance = sum(self.pc_variance_ratios)

 # Bar for "other"

 self.ax[0].bar(0, 1-total_explained_variance, bottom=total_explained_variance,
fill=None, edgecolor='lightgray', hatch='//')

 # Stacked bars the explained variance of each PC

 for i in range(self.n_components):

202

 self.ax[0].bar(0, self.pc_variance_ratios[i],
bottom=sum(self.pc_variance_ratios[:i]), color=bar_colors[i], edgecolor='black')

 # Add text to label the variance bars

 i=0

 for bar in self.ax[0].patches:

 if i > 0:

 self.ax[0].text(

 # Center text

 bar.get_x() + bar.get_width() / 2,

 # Offset text vertically

 bar.get_height() + bar.get_y()-0.055,

 'PC{}'.format(i),

 ha='center',

 color='w',

 weight='bold',

 size=12

)

 i += 1

 # Style axes

 self.ax[0].axes.xaxis.set_visible(False)

 self.ax[0].set_xlim(-1,1)

 self.ax[0].set_yticks(np.arange(0, 1.1, 0.1))

 self.ax[0].set_ylabel('Cumulative variance')

 self.ax[0].set_title('Variance explained')

 ###

 # Primary component breakdown by metric #

 ###

 # Choose 18 distinct colors, with the 10 darkest colors the top metrics of PC1,

 # and the other 8 pastel

 init_colors = np.concatenate((plt.cm.tab10.colors, plt.cm.Pastel2.colors))[:18]

 pc1_sort = np.argsort(np.abs(self.pc_metrics[0]))[::-1]

 metric_colors = np.array([None]*18)

203

 for i in range(18):

 metric_colors[pc1_sort[i]] = init_colors[i]

 for i in range(top_n_components):

 pci_sort = np.argsort(np.abs(self.pc_metrics[i]))[::-1] # Sort
descending

 pci_sort_comp = self.pc_metrics[i][pci_sort]

 pci_sort_names = self.metric_names[pci_sort]

 bar_norm = sum(np.abs(pci_sort_comp))

 self.ax[1].bar('PC{}'.format(i+1),
sum(np.abs(pci_sort_comp)[top_n_metrics:])/bar_norm, fill=None, edgecolor='lightgray',
hatch='//')

 for j in range(top_n_metrics):

 bar,= self.ax[1].bar('PC{}'.format(i+1),
np.abs(pci_sort_comp[j])/bar_norm, bottom=sum(np.abs(pci_sort_comp)[(j+1):])/bar_norm,
color=metric_colors[pci_sort][j], edgecolor='black')

 if pci_sort_comp[j] < 0:

 self.ax[1].scatter(bar.get_x()+bar.get_width()/8,
bar.get_y()+bar.get_height()/2, color='black', zorder=3)

 self.ax[1].set_ylim(0, 1.1)

 self.ax[1].axes.yaxis.set_visible(False)

 # Shrink current axis by 20%

 box = self.ax[1].get_position()

 self.ax[1].set_position([box.x0, box.y0, box.width * 0.8, box.height])

 # Put a legend to the right of the current axis

 legend_elements = [Patch(facecolor=metric_colors[pc1_sort][i],
edgecolor='black', label=self.metric_names[pc1_sort][i]) for i in range(18)]

 self.ax[1].legend(loc='center left', bbox_to_anchor=(1, 0.5),
handles=legend_elements)

 self.ax[1].set_title('Top metrics of Principal Components\n(A dot indicates the
negative direction)')

 # Graphical helper functions

 def fade(self, color, exponent=1):

 if isinstance(color, str):

 color = colors.to_rgba(color)

 if len(color) == 3: # no alpha in specified color

204

 newColors = [(*color, a) for a in np.linspace(0,1,256)**exponent]

 elif len(color) == 4:

 r,g,b,a = color

 newColors = [(r,g,b,alpha) for alpha in np.linspace(0,1,256)**exponent]

 return colors.ListedColormap(newColors)

 def darken(self, color, factor=0.5):

 if isinstance(color, str):

 color = colors.to_rgba(color)

 if len(color) == 3: # no alpha in specified color

 r,g,b = color

 a = 1

 elif len(color) == 4:

 r,g,b,a = color

 return (r*factor, g*factor, b*factor, a)

 ##########################

 ##########################

 ### ###

 ### HELPER FUNCTIONS ###

 ### ###

 ##########################

 ##########################

 def loadDefaultMetrics(self, parentPath=None):

 # Prepare directory that contains precalculated metric vectors

 if parentPath is None:

 parentPath = self.parentPath

 parentPath = self.ensureFinalSlash(parentPath)

 # Ensure metrics_df.csv is in the parentPath

 default_metrics_path = parentPath + self.output_filenames['metrics_df']

 if not os.path.exists(default_metrics_path):

 print('Precalculated metrics at ' + default_metrics_path + ' do not
exist')

205

 return

 # Load default precalculated metric vectors

 self.metrics_df = pd.read_csv(default_metrics_path, index_col=0)

 self.metrics_df = self.metrics_df[self.metric_names]

 print('Loaded precalculated metrics')

 # Get datetime string for when these metrics were calculated

 timestamp = datetime.fromtimestamp(os.path.getmtime(default_metrics_path))

 self.metrics_datetime = timestamp.strftime("%Y-%m-%d, %H:%M:%S")

 # Restrict to videos for the given registry sample

 try:

 self.metrics_df =
self.metrics_df.loc[self.filtered_registry_sample.index]

 except KeyError:

 # The registry sample contains indices for videos with unprocessed
metrics

 print('\n***New metrics must be calculated***')

 print('\tp = PCA_tools()')

 print('\tp.new(filter_errors=False)')

 print('\tp.computeMetrics()')

 print('\n\tafter saving output, place metrics_df.csv in the default
parentPath: {}'.format(parentPath))

 return

 return self.metrics_df

 # Add strain and videoname columns to a dataframe

 # Requires df.index to be registry index values

 def appendColumns(self, df):

 new_df = df.copy()

 strains = [self.registry.loc[i,'strain'] for i in new_df.index]

 runs = [self.registry.loc[i,'run'] for i in new_df.index]

 scopes = [self.registry.loc[i,'scope'] for i in new_df.index]

 if 'strain' not in new_df.columns:

206

 new_df.insert(0, 'strain', strains)

 if 'scope' not in new_df.columns:

 new_df.insert(0, 'scope', scopes)

 if 'run' not in new_df.columns:

 new_df.insert(0, 'run', runs)

 return new_df

 # Prints a summary of processing errors

 def errorSummary(self, print_summary=True):

 errorString = ''

 for i in self.registry_sample[self.registry_sample.error == 1].index.values:

 run = registry.loc[i, 'run']

 scope = registry.loc[i, 'scope']

 errorString += 'Video {} (r{}s{}) had large intial clumps\n'.format(i,
run, scope)

 if self.nan_indices is not None:

 errorString += '\n\n{} videos removed due to missing metric values
(indices in self.nan_indices)'.format(len(self.nan_indices))

 if print_summary:

 print(errorString)

 else:

 return errorString

 # Returns whether to proceed with saving and where

 # based on whether conflicts exist

 # and if so what the user specifies

 def checkSaveConflicts(self, savepath):

 # Prompt user if anything will be overwritten

 conflictingFiles = [f for f in self.output_filenames.values() if
os.path.exists(savepath + f)]

 if len(conflictingFiles) == 0:

 proceed = True

 else:

 print('The following files will be overwritten in {}:'.format(savepath))

207

 for f in conflictingFiles:

 print('\t' + f)

 overwriteAnswer = '?'

 while overwriteAnswer not in ['y', 'n', '']:

 overwriteAnswer = input('Do you want to overwrite these files?
y/[n] ')

 # Give user the option to save in a new directory

 if overwriteAnswer != 'y':

 newDirAnswer = '?'

 while newDirAnswer not in ['y', 'n', '']:

 newDirAnswer = input('Do you want to save in a new
directory? [y]/n ')

 if newDirAnswer != 'n':

 savepath = self.makeNewDir(self.parentPath)

 proceed = True

 # Otherwise abort save

 else:

 proceed = False

 else:

 proceed = True

 return proceed, savepath

 def filterNan(self, df, store_nan_indices=False, return_nan_indices=False):

 # Remove vectors that have missing values

 filtered_df = df.dropna()

 kept_indices = filtered_df.index

 if len(df) != len(filtered_df):

 print('{} rows of {} removed due to missing values'.format(len(df)-
len(filtered_df), len(df)))

 # Store indices of which vectors were nan, if desired

 if store_nan_indices:

 self.nan_indices = [i for i in df.index if i not in kept_indices]

 # Return indices of which vectors were nan, if desired

208

 # Otherwise, just return the filtered dataframe

 if return_nan_indices:

 return nan_indices, filtered_df

 else:

 return filtered_df

 def makeNewDir(self, parentPath=None):

 # Prepare parent directory for new output folder

 if parentPath is None:

 parentPath = self.parentPath

 parentPath = self.ensureFinalSlash(parentPath)

 # Make folder for new output

 newDirSuccess = False

 while not newDirSuccess:

 # Prompt user for new output folder name

 newDirName = input('New output folder name? ')

 # Make the new folder if possible

 if not os.path.exists(parentPath + newDirName):

 try:

 os.mkdir(parentPath + newDirName)

 newDirSuccess = True

 print('Folder ' + parentPath + newDirName + ' created')

 except:

 print('Folder ' + parentPath + newDirName + ' could not be
created')

 else:

 # Allow an empty, preexisting folder to be used

 if len(os.listdir(parentPath + newDirName)) == 0:

 newDirSuccess = True

 else:

 print('Folder ' + parentPath + newDirName + ' already
exists and is not empty')

 return self.ensureFinalSlash(parentPath + newDirName)

209

 def pickLoadpath(self, parentPath=None):

 # Get a parentPath containing the available loadpath folders

 if parentPath is None:

 parentPath = self.parentPath

 parentPath = self.ensureFinalSlash(parentPath)

 # Get all folders in the parentPath

 allContents = os.listdir(parentPath)

 allFolders = [f for f in allContents if os.path.isdir(parentPath + f)]

 if len(allFolders) == 0:

 print('No folders in directory ' + parentPath)

 return

 # Prompt user to pick a folder

 print('Available folders:')

 for f in allFolders:

 print('\t'+f)

 folderPick = '?'

 while not os.path.exists(parentPath + folderPick):

 folderPick = input('')

 return self.ensureFinalSlash(parentPath + folderPick)

 def prepRegistrySample(self, registry_sample=None, filter_errors=True):

 # Default to using all videos if no registry sample is given

 if registry_sample is None:

 registry_sample = self.registry

 # Ignore videos that are unprocessed

 # If desired, also filter out videos with non-fatal errors

 if filter_errors:

 filtered_registry_sample = registry_sample[(registry_sample.processed ==
True) & (registry_sample.error == 0)]

 if len(filtered_registry_sample) != len(registry_sample):

210

 print('{} videos of {} with nonzero error codes ignored (summary
in self.errorSummary)'.format(len(registry_sample)-len(filtered_registry_sample),
len(registry_sample)))

 else:

 # An odd error code indicates a fatal error (missing data for the video)

 filtered_registry_sample = registry_sample[registry_sample.processed &
(registry_sample.error%2 == 0)]

 if len(filtered_registry_sample) != len(registry_sample):

 print('{} videos of {} with fatal error codes ignored (summary in
self.errorSummary)'.format(len(registry_sample)-len(filtered_registry_sample),
len(registry_sample)))

 return registry_sample, filtered_registry_sample

 def ensureFinalSlash(self, path):

 if path[-1] != '/':

 path += '/'

 return path

211

References

[1] A. Xavier da Silveira dos Santos and P. Liberali, From Single Cells to Tissue Self‐

organization, FEBS J. 286, 1495 (2019).

[2] P. A. Janmey and R. T. Miller, Mechanisms of Mechanical Signaling in Development and

Disease, J. Cell Sci. 124, 9 (2011).

[3] W. Zheng and J. R. Holt, The Mechanosensory Transduction Machinery in Inner Ear Hair

Cells, Annu. Rev. Biophys. 50, 31 (2021).

[4] B. Martinac, M. Buechner, A. H. Delcour, J. Adler, and C. Kung, Pressure-Sensitive Ion

Channel in Escherichia Coli., Proc. Natl. Acad. Sci. 84, 2297 (1987).

[5] K. R. Levental et al., Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin

Signaling, Cell 139, 891 (2009).

[6] C. W. Macosko, Rheology - Principles, Measurements and Applications (John Wiley &

Sons, 1994).

[7] P. Stoodley, R. Cargo, C. J. Rupp, S. Wilson, and I. Klapper, Biofilm Material Properties as

Related to Shear-Induced Deformation and Detachment Phenomena, J. Ind. Microbiol.

Biotechnol. 29, 361 (2002).

[8] L. Pavlovsky, J. G. Younger, and M. J. Solomon, In Situ Rheology of Staphylococcus

Epidermidis Bacterial Biofilms, Soft Matter 9, 122 (2013).

[9] B. W. Towler, A. Cunningham, P. Stoodley, and L. McKittrick, A Model of Fluid-Biofilm

Interaction Using a Burger Material Law, Biotechnol. Bioeng. 96, 259 (2007).

[10] S. Nguyen, M.-H. Vu, M. Vu, and T. Nguyen, Generalized Maxwell Model for Micro-

Cracked Viscoelastic Materials, Int. J. Damage Mech. 26, 697 (2017).

[11] T. Zhang, N. G. Cogan, and Q. Wang, Phase Field Models for Biofilms. I. Theory and One-

Dimensional Simulations, SIAM J. Appl. Math. 69, 641 (2008).

[12] M. C. Flannery, Bacteria Everywhere, Am. Biol. Teach. 72, 513 (2010).

212

[13] C. Wolgemuth, Does Cell Biology Need Physicists?, Physics (College. Park. Md). (2011).

[14] O. A. Igoshin et al., Biophysics at the Coffee Shop: Lessons Learned Working with George

Oster, Mol. Biol. Cell 30, 1882 (2019).

[15] J. Yang, P. E. Arratia, A. E. Patteson, and A. Gopinath, Quenching Active Swarms : Effects

of Light Exposure on Collective Motility in Swarming Serratia Marcescens, (2019).

[16] S. Macfarlane, H. Steed, and G. T. Macfarlane, Intestinal Bacteria and Inflammatory

Bowel Disease, Crit. Rev. Clin. Lab. Sci. 46, 25 (2009).

[17] T. Essock-Burns, A. Wepprich, A. Thompson, and D. Rittschof, Enzymes Manage Biofilms

on Crab Surfaces Aiding in Feeding and Antifouling, J. Exp. Mar. Bio. Ecol. 479, 106

(2016).

[18] X. pan Guo, X. li Sun, Y. ru Chen, L. Hou, M. Liu, and Y. Yang, Antibiotic Resistance Genes

in Biofilms on Plastic Wastes in an Estuarine Environment, Sci. Total Environ. 745, (2020).

[19] Y. Zhang, H. Ge, W. Lin, Y. Song, F. Ge, X. Huang, and X. Meng, Effect of Different

Disinfection Treatments on the Adhesion and Separation of Biofilm on Stainless Steel

Surface, Water Sci. Technol. 83, 877 (2021).

[20] J. B. Goldberg and G. B. Pier, The Role of the CFTR in Susceptibility to Pseudomonas

Aeruginosa Infections in Cystic Fibrosis, Trends Microbiol. 8, 514 (2000).

[21] N. B. Caberoy, R. D. Welch, J. S. Jakobsen, S. C. Slater, and A. G. Garza, Global Mutational

Analysis of NtrC-Like Activators in Myxococcus Xanthus : Identifying Activator Mutants

Defective for Motility and Fruiting Body Development, J. Bacteriol. 185, 6083 (2003).

[22] H. C. Berg and L. Turner, Torque Generated by the Flagellar Motor of Escherichia Coil,

Biophys. J. 65, 2201 (1993).

[23] M. Washizu, Y. Kurahashi, H. Iochi, O. Kurosawa, S. I. Aizawa, H. Hotani, S. Kudo, and Y.

Magariyama, Dielectrophoretic Measurement of Bacterial Motor Characteristics, IEEE

Trans. Ind. Appl. 29, 286 (1993).

213

[24] N. Wadhwa and H. C. Berg, Bacterial Motility: Machinery and Mechanisms, Nat. Rev.

Microbiol. 20, 161 (2022).

[25] B. Maier and G. C. L. Wong, How Bacteria Use Type IV Pili Machinery on Surfaces, Trends

in Microbiology.

[26] B. Nan and D. R. Zusman, Uncovering the Mystery of Gliding Motility in the Myxobacteria,

Annu. Rev. Genet. 45, 21 (2011).

[27] D. B. Kearns, A Field Guide to Bacterial Swarming Motility, Nat. Rev. Microbiol. 8, 634

(2010).

[28] E. J. G. Pollitt and S. P. Diggle, Defining Motility in the Staphylococci, Cell. Mol. Life Sci. 74,

2943 (2017).

[29] Q. Zhang, D. Nguyen, J. S. B. Tai, X. J. Xu, J. Nijjer, X. Huang, Y. Li, and J. Yan, Mechanical

Resilience of Biofilms toward Environmental Perturbations Mediated by Extracellular

Matrix, Adv. Funct. Mater. 32, 1 (2022).

[30] R. Rusconi, S. Lecuyer, L. Guglielmini, and H. A. Stone, Laminar Flow around Corners

Triggers the Formation of Biofilm Streamers, J. R. Soc. Interface 7, 1293 (2010).

[31] Y. F. Inclan, A. Persat, A. Greninger, J. Von Dollen, J. Johnson, N. Krogan, Z. Gitai, and J. N.

Engel, A Scaffold Protein Connects Type IV Pili with the Chp Chemosensory System to

Mediate Activation of Virulence Signaling in Pseudomonas Aeruginosa, Mol. Microbiol.

101, 590 (2016).

[32] A. Seminara, T. E. Angelini, J. N. Wilking, H. Vlamakis, S. Ebrahim, R. Kolter, D. A. Weitz,

and M. P. Brenner, Osmotic Spreading of Bacillus Subtilis Biofilms Driven by an

Extracellular Matrix, Proc. Natl. Acad. Sci. 109, 1116 (2012).

[33] J. Yan, C. D. Nadell, H. A. Stone, N. S. Wingreen, and B. L. Bassler, Extracellular-Matrix-

Mediated Osmotic Pressure Drives Vibrio Cholerae Biofilm Expansion and Cheater

Exclusion, Nat. Commun. 8, 327 (2017).

[34] J. N. Wilking, T. E. Angelini, A. Seminara, M. P. Brenner, and D. A. Weitz, Biofilms as

214

Complex Fluids, MRS Bull. 36, 385 (2011).

[35] T. Tanaka and D. J. Fillmore, Kinetics of Swelling of Gels, J. Chem. Phys. 70, 1214 (1979).

[36] C. Fei, S. Mao, J. Yan, R. Alert, H. A. Stone, B. L. Bassler, N. S. Wingreen, and A. Košmrlj,

Nonuniform Growth and Surface Friction Determine Bacterial Biofilm Morphology on Soft

Substrates, Proc. Natl. Acad. Sci. 117, 7622 (2020).

[37] S. Srinivasan, C. N. Kaplan, and L. Mahadevan, A Multiphase Theory for Spreading

Microbial Swarms and Films, Elife 8, (2019).

[38] M. E. Davey, N. C. Caiazza, and G. A. O’Toole, Rhamnolipid Surfactant Production Affects

Biofilm Architecture in Pseudomonas Aeruginosa PAO1, J. Bacteriol. 185, 1027 (2003).

[39] F. Song and D. Ren, Stiffness of Cross-Linked Poly(Dimethylsiloxane) Affects Bacterial

Adhesion and Antibiotic Susceptibility of Attached Cells, Langmuir 30, 10354 (2014).

[40] V. D. Gordon and L. Wang, Bacterial Mechanosensing:The Force Will Be with You, Always,

J. Cell Sci. 132, (2019).

[41] M. D. Koch, M. E. Black, E. Han, J. W. Shaevitz, and Z. Gitai, Pseudomonas Aeruginosa

Distinguishes Surfaces by Stiffness Using Retraction of Type IV Pili, 1 (2022).

[42] J. Muñoz-Dorado, F. J. Marcos-Torres, E. García-Bravo, A. Moraleda-Muñoz, and J. Pérez,

Myxobacteria: Moving, Killing, Feeding, and Surviving Together, Front. Microbiol. 7, 1

(2016).

[43] I. T. Jolliffe, Principal Component Analysis for Special Types of Data, in Principal

Component Analysis (Springer-Verlag, New York, 2002), pp. 338–372.

[44] J. William Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-

Scott, Microbial Biofilms, 1995.

[45] L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, Bacterial Biofilms: From the Natural

Environment to Infectious Diseases, Nat. Rev. Microbiol. 2, 95 (2004).

[46] R. M. Harshey, Bacterial Motility on a Surface: Many Ways to a Common Goal, Annu.

215

Rev. Microbiol. 57, 249 (2003).

[47] A. Doostmohammadi, S. P. Thampi, and J. M. Yeomans, Defect-Mediated Morphologies in

Growing Cell Colonies, Phys. Rev. Lett. 117, 1 (2016).

[48] A. Patteson, A. Gopinath, and P. E. Arratia, The Propagation of Active-Passive Interfaces

in Bacterial Swarms, Nat. Commun. (2018).

[49] K. Little, J. Austerman, J. Zheng, and K. A. Gibbs, Cell Shape and Population Migration Are

Distinct Steps of Proteus Mirabilis Swarming That Are Decoupled on High-Percentage

Agar, J. Bacteriol. 201, (2019).

[50] Y. Nakamura, N. N. Yamamoto, Y. Kino, N. N. Yamamoto, S. Kamei, H. Mori, K. Kurokawa,

and N. Nakashima, Establishment of a Multi-Species Biofilm Model and

Metatranscriptomic Analysis of Biofilm and Planktonic Cell Communities, Appl. Microbiol.

Biotechnol. 100, 7263 (2016).

[51] C. Prigent-Combaret, O. Vidal, C. Dorel, and P. Lejeune, Abiotic Surface Sensing and

Biofilm-Dependent Regulation of Gene Expression in Escherichia Coli, J. Bacteriol. 181,

5993 (1999).

[52] A. P. Hitchens and M. C. Leikind, The Introduction of Agar-Agar into Bacteriology, J.

Bacteriol. 37, 485 (1939).

[53] F. Pereira-Pacheco, D. Robledo, L. Rodríguez-Carvajal, and Y. Freile-Pelegrín, Optimization

of Native Agar Extraction from Hydropuntia Cornea from Yucatán, México, Bioresour.

Technol. 98, 1278 (2007).

[54] G. O. Phillips and P. A. Williams, Handbook of Hydrocolloids, 2nd ed. (Woodhead

Publishing Limited, 2009).

[55] A. J. Fulthorpe, The Variability in Gel-Producting Properties of Commercial Agar and Its

Influence on Bacterial Growth, J. Hyg. (Lond). 49, 127 (1951).

[56] J. Yan, M. D. Bradley, J. Friedman, and R. D. Welch, Phenotypic Profiling of ABC

Transporter Coding Genes in Myxococcus Xanthus, Front. Microbiol. 5, 1 (2014).

216

[57] K. K. Chelvam, L. C. Chai, and K. L. Thong, Variations in Motility and Biofilm Formation of

Salmonella Enterica Serovar Typhi, Gut Pathog. 6, 1 (2014).

[58] K. W. Kolewe, S. R. Peyton, and J. D. Schiffman, Fewer Bacteria Adhere to Softer

Hydrogels, ACS Appl. Mater. Interfaces 7, 19562 (2015).

[59] E. B. Steager, C. B. Kim, and M. J. Kim, Dynamics of Pattern Formation in Bacterial

Swarms, Phys. Fluids 20, (2008).

[60] R. Van Houdt, M. Givskov, and C. W. Michiels, Quorum Sensing in Serratia, FEMS

Microbiol. Rev. 31, 407 (2007).

[61] H. H. Tuson and D. B. Weibel, Bacteria-Surface Interactions, Soft Matter 9, 4368 (2013).

[62] E. E. Charrier, K. Pogoda, R. G. Wells, and P. A. Janmey, Control of Cell Morphology and

Differentiation by Substrates with Independently Tunable Elasticity and Viscous

Dissipation, Nat. Commun. 9, 449 (2018).

[63] C. A. Grattoni, H. H. Al-Sharji, C. Yang, A. H. Muggeridge, and R. W. Zimmerman, Rheology

and Permeability of Crosslinked Polyacrylamide Gel, J. Colloid Interface Sci. 240, 601

(2001).

[64] Y. Abidine, V. M. Laurent, R. Michel, A. Duperray, L. I. Palade, and C. Verdier, Physical

Properties of Polyacrylamide Gels Probed by AFM and Rheology, EPL (Europhysics Lett.

109, 38003 (2015).

[65] C. E. Kandow, P. C. Georges, P. A. Janmey, and K. A. Beningo, Polyacrylamide Hydrogels

for Cell Mechanics: Steps toward Optimization and Alternative Uses, Methods Cell Biol.

83, 29 (2007).

[66] Y. Hu, E. P. Chan, J. J. Vlassak, and Z. Suo, Poroelastic Relaxation Indentation of Thin

Layers of Gels, J. Appl. Phys. 110, 108 (2011).

[67] Q. M. Wang, A. C. Mohan, M. L. Oyen, and X. H. Zhao, Separating Viscoelasticity and

Poroelasticity of Gels with Different Length and Time Scales, Acta Mech. Sin. Xuebao 30,

20 (2014).

217

[68] J. Yan, C. Fei, S. Mao, A. Moreau, N. S. Wingreen, A. Košmrlj, H. A. Stone, and B. L.

Bassler, Mechanical Instability and Interfacial Energy Drive Biofilm Morphogenesis, Elife

8, 1 (2019).

[69] S. Kesel, B. Von Bronk, C. Falcón García, A. Götz, O. Lieleg, and M. Opitz, Matrix

Composition Determines the Dimensions of: Bacillus Subtilis NCIB 3610 Biofilm Colonies

Grown on LB Agar, RSC Adv. 7, 31886 (2017).

[70] A. Yang, W. S. Tang, T. Si, and J. X. Tang, Influence of Physical Effects on the Swarming

Motility of Pseudomonas Aeruginosa, Biophys. J. 112, 1462 (2017).

[71] A. Be’er and G. Ariel, A Statistical Physics View of Swarming Bacteria, Mov. Ecol. 7, 9

(2019).

[72] V. Gordon, L. Bakhtiari, and K. Kovach, From Molecules to Multispecies Ecosystems: The

Roles of Structure in Bacterial Biofilms, Phys. Biol. 16, 041001 (2019).

[73] D. Stickler and G. Hughes, Ability of Proteus Mirabilis to Swarm over Urethral Catheters,

Eur. J. Clin. Microbiol. Infect. Dis. 18, 206 (1999).

[74] G. Liu, A. Patch, F. Bahar, D. Yllanes, R. D. Welch, M. C. Marchetti, S. Thutupalli, and J. W.

Shaevitz, Self-Driven Phase Transitions Drive Myxococcus Xanthus Fruiting Body

Formation, Phys. Rev. Lett. 122, 248102 (2019).

[75] J. M. Skerker and H. C. Berg, Direct Observation of Extension and Retraction of Type IV

Pili, Proc. Natl. Acad. Sci. U. S. A. 98, 6901 (2001).

[76] M. Sun, M. Wartel, E. Cascales, J. W. Shaevitz, and T. Mignot, Motor-Driven Intracellular

Transport Powers Bacterial Gliding Motility, Proc. Natl. Acad. Sci. U. S. A. 108, 7559

(2011).

[77] L. D. Landau, L. P. Pitaevskii, and A. M. Kosevich, Theory of Elasticity, 3rd ed., Vol. 7

(Butterworth-Heineman, 2012).

[78] J. P. Butler, I. M. Tolić-Nørrelykke, B. Fabry, and J. J. Fredberg, Traction Fields, Moments,

and Strain Energy That Cells Exert on Their Surroundings, Am J Physiol Cell Physiol 282,

218

C595 (2002).

[79] U. S. Schwarz, N. Q. Balaban, D. Riveline, A. Bershadsky, B. Geiger, and S. A. Safran,

Calculation of Forces at Focal Adhesions from Elastic Substrate Data: The Effect of

Localized Force and the Need for Regularization, Biophys. J. 83, 1380 (2002).

[80] B. Sabass, M. D. Koch, G. Liu, H. A. Stone, and J. W. Shaevitz, Force Generation by Groups

of Migrating Bacteria, Proc. Natl. Acad. Sci. 114, 7266 (2017).

[81] A. Cont, T. Rossy, Z. Al-Mayyah, and A. Persat, Biofilms Deform Soft Surfaces and Disrupt

Epithelia, Elife 9, e56533 (2020).

[82] M. T. Ho Thanh, A. Grella, D. Kole, S. Ambady, and Q. Wen, Vimentin Intermediate

Filaments Modulate Cell Traction Force but Not Cell Sensitivity to Substrate Stiffness,

Cytoskeleton 1 (2021).

[83] R. Zielinski, C. Mihai, D. Kniss, and S. N. Ghadiali, Finite Element Analysis of Traction Force

Microscopy: Influence of Cell Mechanics, Adhesion, and Morphology, J. Biomech. Eng.

135, 1 (2013).

[84] Z. Yang, J. S. Lin, J. Chen, and J. H. C. Wang, Determining Substrate Displacement and Cell

Traction Fields-a New Approach, J. Theor. Biol. 242, 607 (2006).

[85] A. Persat, Y. F. Inclan, J. N. Engel, H. A. Stone, and Z. Gitai, Type IV Pili Mechanochemically

Regulate Virulence Factors in Pseudomonas Aeruginosa, Proc. Natl. Acad. Sci. 112, 7563

(2015).

[86] F. Song, H. Wang, K. Sauer, and D. Ren, Cyclic-Di-GMP and OprF Are Involved in the

Response of Pseudomonas Aeruginosa to Substrate Material Stiffness during Attachment

on Polydimethylsiloxane (PDMS), Front. Microbiol. 9, 110 (2018).

[87] V. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, Elastic and Viscoelastic

Characterization of Agar, J. Mech. Behav. Biomed. Mater. 7, 60 (2012).

[88] R. M. Donlan and J. W. Costerton, Biofilms: Survival Mechanisms of Clinically Relevant

Microorganisms, Clin. Microbiol. Rev. 15, 167 (2002).

219

[89] W. C. Characklis, Biofilms (Wiley, 1990).

[90] H. Mikkelsen, Z. Duck, K. S. Lilley, and M. Welch, Interrelationships between Colonies,

Biofilms, and Planktonic Cells of Pseudomonas Aeruginosa, J. Bacteriol. 189, 2411 (2007).

[91] A. E. Patteson, A. Gopinath, M. Goulian, and P. E. Arratia, Running and Tumbling with E.

Coli in Polymeric Solutions, Sci. Rep. 5, 15761 (2015).

[92] N. Wadhwa, R. Phillips, and H. C. Berg, Torque-Dependent Remodeling of the Bacterial

Flagellar Motor, Proc. Natl. Acad. Sci. 116, 11764 (2019).

[93] P. P. Lele, B. G. Hosu, and H. C. Berg, Dynamics of Mechanosensing in the Bacterial

Flagellar Motor, Proc. Natl. Acad. Sci. 110, 11839 (2013).

[94] A. K. Harapanahalli, J. A. Younes, E. Allan, H. C. van der Mei, and H. J. Busscher, Chemical

Signals and Mechanosensing in Bacterial Responses to Their Environment, PLoS Pathog

11, e1005057 (2015).

[95] J. H. Naismith and I. R. Booth, Bacterial Mechanosensitive Channels--MscS: Evolution’s

Solution to Creating Sensitivity in Function, Annu Rev Biophys 41, 157 (2012).

[96] E. Perozo, A. Kloda, D. M. Cortes, and B. Martinac, Physical Principles Underlying the

Transduction of Bilayer Deformation Forces during Mechanosensitive Channel Gating, Nat

Struct Biol 9, 696 (2002).

[97] L. Casares, R. Vincent, D. Zalvidea, N. Campillo, D. Navajas, M. Arroyo, and X. Trepat,

Hydraulic Fracture during Epithelial Stretching, Nat. Mater. 14, 343 (2015).

[98] A. Hejazi and F. R. Falkiner, Serratia Marcescens, 1997.

[99] C. F. Guimarães, L. Gasperini, A. P. Marques, and R. L. Reis, The Stiffness of Living Tissues

and Its Implications for Tissue Engineering, Nat. Rev. Mater. 5, 351 (2020).

[100] J. Irianto, C. R. Pfeifer, Y. Xia, and D. E. Discher, SnapShot: Mechanosensing Matrix, Cell

165, 1820 (2016).

[101] D. T. Butcher, T. Alliston, and V. M. Weaver, A Tense Situation: Forcing Tumour

220

Progression, Nat. Rev. Cancer 9, 108 (2009).

[102] R. G. Wells, Tissue Mechanics and Fibrosis, Biochim. Biophys. Acta - Mol. Basis Dis. 1832,

884 (2013).

[103] R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, High-Resolution

Tensor MR Elastography for Breast Tumour Detection, Phys. Med. Biol. 45, 1649 (2000).

[104] M. Swoger, S. Gupta, E. E. Charrier, M. Bates, H. Hehnly, and A. E. Patteson, Vimentin

Intermediate Filaments Mediate Cell Morphology on Viscoelastic Substrates, ACS Appl.

Bio Mater. 5, 552 (2022).

[105] T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V.

Weaver, and P. A. Janmey, Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal

Structure, and Adhesion, Cell Motil. Cytoskeleton 60, 24 (2005).

[106] A. E. Patteson et al., Loss of Vimentin Enhances Cell Motility through Small Confining

Spaces, Small 15, 1903180 (2019).

[107] H. H. Tuson, L. D. Renner, and D. B. Weibel, Polyacrylamide Hydrogels as Substrates for

Studying Bacteria, Chem. Commun. 48, 1595 (2012).

[108] N. Mori and K.-A. Chang, Introduction to MPIV.

[109] W. C. Lin, K. R. Shull, C. Y. Hui, and Y. Y. Lin, Contact Measurement of Internal Fluid Flow

within Poly(n- Isopropylacrylamide) Gels, J. Chem. Phys. 127, (2007).

[110] E. P. Chan, Y. Hu, P. M. Johnson, Z. Suo, and C. M. Stafford, Spherical Indentation Testing

of Poroelastic Relaxations in Thin Hydrogel Layers, Soft Matter 8, 1492 (2012).

[111] C. Y. Hui, Y. Y. Lin, F. U. C. Chuang, K. R. Shull, and W. C. Lin, A Contact Mechanics Method

for Characterizing the Elastic Properties and Permeability of Gels, J. Polym. Sci. Part B

Polym. Phys. 44, 359 (2006).

[112] G. Bradski, The OpenCV Library, Dr. Dobb’s J. Softw. Tools (2000).

[113] G. Diss, D. Ascencio, A. DeLuna, and C. R. Landry, Molecular Mechanisms of Paralogous

221

Compensation and the Robustness of Cellular Networks, J. Exp. Zool. Part B Mol. Dev.

Evol. 322, 488 (2014).

[114] G. Giaever et al., Functional Profiling of the Saccharomyces Cerevisiae Genome, Nature

418, 387 (2002).

[115] S. Ohno, The Creation of a New Gene from a Redundant Duplicate of an Old Gene, in

Evolution by Gene Duplication (Springer Berlin Heidelberg, Berlin, Heidelberg, 1970), pp.

71–82.

[116] B. Vandersluis, J. Bellay, G. Musso, M. Costanzo, B. Papp, F. J. Vizeacoumar, A.

Baryshnikova, B. Andrews, C. Boone, and C. L. Myers, Genetic Interactions Reveal the

Evolutionary Trajectories of Duplicate Genes, Mol. Syst. Biol. 6, 1 (2010).

[117] D. C. Krakauer and J. B. Plotkin, Redundancy, Antiredundancy, and the Robustness of

Genomes, Proc. Natl. Acad. Sci. 99, 1405 (2002).

[118] E. Kuzmin, M. Rahman, B. VanderSluis, M. Costanzo, C. L. Myers, B. J. Andrews, and C.

Boone, τ-SGA: Synthetic Genetic Array Analysis for Systematically Screening and

Quantifying Trigenic Interactions in Yeast, Nat. Protoc. 16, 1219 (2021).

[119] E. J. Dean, J. C. Davis, R. W. Davis, and D. A. Petrov, Pervasive and Persistent Redundancy

among Duplicated Genes in Yeast, PLoS Genet. 4, (2008).

[120] E. A. Baker, S. P. R. Gilbert, S. M. Shimeld, and A. Woollard, Extensive Non-Redundancy in

a Recently Duplicated Developmental Gene Family, BMC Ecol. Evol. 21, (2021).

[121] K. Hannay, E. M. Marcotte, and C. Vogel, Buffering by Gene Duplicates: An Analysis of

Molecular Correlates and Evolutionary Conservation, BMC Genomics 9, (2008).

[122] H. B. Thomaides, E. J. Davison, L. Burston, H. Johnson, D. R. Brown, A. C. Hunt, J.

Errington, and L. Czaplewski, Essential Bacterial Functions Encoded by Gene Pairs, J.

Bacteriol. 189, 591 (2007).

[123] G. C. diCenzo and T. M. Finan, Genetic Redundancy Is Prevalent within the 6.7 Mb

Sinorhizobium Meliloti Genome, Mol. Genet. Genomics 290, 1345 (2015).

222

[124] G. Butland et al., ESGA: E. Coli Synthetic Genetic Array Analysis, Nat. Methods 5, 789

(2008).

[125] J. Lehár, A. Krueger, G. Zimmermann, and A. Borisy, High‐order Combination Effects and

Biological Robustness, Mol. Syst. Biol. 4, 215 (2008).

[126] D. C. Rees, E. Johnson, and O. Lewinson, ABC Transporters: The Power to Change, Nat.

Rev. Mol. Cell Biol. 10, 218 (2009).

[127] B. S. Goldman et al., Evolution of Sensory Complexity Recorded in a Myxobacterial

Genome, Proc. Natl. Acad. Sci. 103, 15200 (2006).

[128] D. J. Bretl and J. R. Kirby, Molecular Mechanisms of Signaling in Myxococcus Xanthus

Development, J. Mol. Biol. 428, 3805 (2016).

[129] J. Abellón-Ruiz, D. Bernal-Bernal, M. Abellán, M. Fontes, S. Padmanabhan, F. J. Murillo,

and M. Elías-Arnanz, The CarD/CarG Regulatory Complex Is Required for the Action of

Several Members of the Large Set of Myxococcus Xanthus Extracytoplasmic Function σ

Factors, Environ. Microbiol. 16, 2475 (2014).

[130] C. Xie, H. Zhang, L. J. Shimkets, and O. A. Igoshin, Statistical Image Analysis Reveals

Features Affecting Fates of Myxococcus Xanthus Developmental Aggregates, Proc. Natl.

Acad. Sci. U. S. A. 108, 5915 (2011).

[131] C. Orelle, K. Mathieu, and J. M. Jault, Multidrug ABC Transporters in Bacteria, Res.

Microbiol. 170, 381 (2019).

[132] C. Durmort and J. S. Brown, Streptococcus Pneumoniae Lipoproteins and ABC

Transporters, in Streptococcus Pneumoniae: Molecular Mechanisms of Host-Pathogen

Interactions (Elsevier Inc., 2015), pp. 181–206.

[133] A. Wagner and J. Wright, Alternative Routes and Mutational Robustness in Complex

Regulatory Networks, BioSystems 88, 163 (2007).

[134] V. A. Rhodius et al., Design of Orthogonal Genetic Switches Based on a Crosstalk Map of

Σs, Anti-Σs, and Promoters, Mol. Syst. Biol. 9, (2013).

223

[135] T. Mascher, A. B. Hachmann, and J. D. Helmann, Regulatory Overlap and Functional

Redundancy among Bacillus Subtilis Extracytoplasmic Function σ Factors, J. Bacteriol.

189, 6919 (2007).

[136] Y. Luo and J. D. Helmann, Extracytoplasmic Function σ Factors with Overlapping Promoter

Specificity Regulate Sublancin Production in Bacillus Subtilis, J. Bacteriol. 191, 4951

(2009).

[137] M. Paget, Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and

Distribution, Biomolecules 5, 1245 (2015).

[138] E. J. Capra, B. S. Perchuk, J. M. Skerker, and M. T. Laub, Adaptive Mutations That Prevent

Crosstalk Enable the Expansion of Paralogous Signaling Protein Families, Cell 150, 222

(2012).

[139] M. T. Laub and M. Goulian, Specificity in Two-Component Signal Transduction Pathways,

Annual Review of Genetics.

[140] M. A. Rowland and E. J. Deeds, Crosstalk and the Evolution of Specificity in Two-

Component Signaling, Proc. Natl. Acad. Sci. U. S. A. 111, 5550 (2014).

[141] J. M. Skerker, B. S. Perchuk, A. Siryaporn, E. A. Lubin, O. Ashenberg, M. Goulian, and M. T.

Laub, Rewiring the Specificity of Two-Component Signal Transduction Systems, Cell 133,

1043 (2008).

[142] A. I. Podgornaia and M. T. Laub, Determinants of Specificity in Two-Component Signal

Transduction, Curr. Opin. Microbiol. 16, 156 (2013).

[143] A. Gagarinova, M. Babu, J. Greenblatt, and A. Emili, Mapping Bacterial Functional

Networks and Pathways in Escherichia Coli Using Synthetic Genetic Arrays, J. Vis. Exp.

(2012).

[144] J. A. Johnstun, V. Shankar, S. S. Mokashi, L. T. Sunkara, U. E. Ihearahu, R. L. Lyman, T. F. C.

Mackay, and R. R. H. Anholt, Functional Diversification, Redundancy, and Epistasis among

Paralogs of the Drosophila Melanogaster Obp50a-d Gene Cluster, Mol. Biol. Evol. 38,

224

2030 (2021).

[145] L. Plamann, Y. Li, B. Cantwell, and J. Mayor, The Myxococcus Xanthus AsgA Gene Encodes

a Novel Signal Transduction Protein Required for Multicellular Development, J. Bacteriol.

177, 2014 (1995).

[146] R. G. Taylor and R. D. Welch, Recording Multicellular Behavior in Myxococcus Xanthus

Biofilms Using Time-Lapse Microcinematography, J. Vis. Exp. (2010).

[147] F. Madeira, M. Pearce, A. R. N. Tivey, P. Basutkar, J. Lee, O. Edbali, N. Madhusoodanan, A.

Kolesnikov, and R. Lopez, Search and Sequence Analysis Tools Services from EMBL-EBI in

2022, Nucleic Acids Res. 1 (2022).

[148] D. B. Allan, T. Caswell, N. C. Keim, and C. M. van der Wel, Trackpy, Trackpy v0.4.2.

[149] L. J. Ritchie, E. R. Curtis, K. A. Murphy, and R. D. Welch, Profiling Myxococcus Xanthus

Swarming Phenotypes through Mutation and Environmental Variation, J. Bacteriol. 203,

(2021).

[150] M. Kærn, T. C. Elston, W. J. Blake, and J. J. Collins, Stochasticity in Gene Expression: From

Theories to Phenotypes, Nat. Rev. Genet. 6, 451 (2005).

[151] J. Paulsson, O. G. Berg, and M. Ehrenberg, Stochastic Focusing: Fluctuation-Enhanced

Sensitivity of Intracellular Regulation, Proc. Natl. Acad. Sci. 97, 7148 (2000).

[152] M. Thattai and A. van Oudenaarden, Stochastic Gene Expression in Fluctuating

Environments, Genetics 167, 523 (2004).

[153] J. L. Spudich and D. E. Koshland, Non-Genetic Individuality: Chance in the Single Cell,

Nature 262, 467 (1976).

[154] M. Thattai and A. van Oudenaarden, Intrinsic Noise in Gene Regulatory Networks, Proc.

Natl. Acad. Sci. 98, 8614 (2001).

[155] L. Jelsbak and L. Søgaard-Andersen, Pattern Formation: Fruiting Body Morphogenesis in

Myxococcus Xanthus, Curr. Opin. Microbiol. 3, 637 (2000).

225

[156] G. B. Ruvkun and F. M. Ausubel, A General Method for Site-Directed Mutagenesis in

Prokaryotes, Nature 289, 85 (1981).

[157] A. M. Kierzek, J. Zaim, and P. Zielenkiewicz, The Effect of Transcription and Translation

Initiation Frequencies on the Stochastic Fluctuations in Prokaryotic Gene Expression, J.

Biol. Chem. 276, 8165 (2001).

[158] D. J. Wilkinson, Stochastic Modelling for Quantitative Description of Heterogeneous

Biological Systems, Nat. Rev. Genet. 10, 122 (2009).

[159] H. Nordberg, M. Cantor, S. Dusheyko, S. Hua, A. Poliakov, I. Shabalov, T. Smirnova, I. V.

Grigoriev, and I. Dubchak, The Genome Portal of the Department of Energy Joint Genome

Institute: 2014 Updates, Nucleic Acids Res. 42, 26 (2014).

[160] M. Jeanmougin, A. de Reynies, L. Marisa, C. Paccard, G. Nuel, and M. Guedj, Should We

Abandon the T-Test in the Analysis of Gene Expression Microarray Data: A Comparison of

Variance Modeling Strategies, PLoS One 5, 1 (2010).

[161] H. Vuong, K. Shedden, Y. Liu, and D. M. Lubman, Outlier-Based Differential Expression

Analysis in Proteomics Studies, J. Proteomics Bioinforma. 4, 116 (2011).

[162] E. R. Dougherty and I. Shmulevich, On the Limitations of Biological Knowledge, Curr.

Genomics 13, 574 (2012).

[163] K. Sankaran and S. P. Holmes, Latent Variable Modeling for the Microbiome, Biostatistics

20, 599 (2019).

[164] A. Smiti, A Critical Overview of Outlier Detection Methods, Comput. Sci. Rev. 38, 100306

(2020).

[165] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When Is “Nearest Neighbor”

Meaningful?, in Database Theory -- ICDT’99, edited by C. Beeri and P. Buneman (Springer

Berlin Heidelberg, 1999), pp. 217–235.

[166] U. N. Singh, Polyribosomes and Unstable Messenger RNA: A Stochastic Model of Protein

Synthesis, J. Theor. Biol. 25, 444 (1969).

226

[167] O. G. Berg, A Model for the Statistical Fluctuations of Protein Numbers in a Microbial

Population, J. Theor. Biol. 71, 587 (1978).

[168] M. S. H. Ko, A Stochastic Model for Gene Induction, J. Theor. Biol. 153, 181 (1991).

[169] F. M. F. Nunes, A. C. Aleixo, A. R. Barchuk, A. D. Bomtorin, C. M. Grozinger, and Z. L. P.

Simões, Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded

RNA (DsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays, Insects 4, 90

(2013).

[170] J. K. Lodge, K. Weston-Hafer, and D. E. Berg, Transposon Tn5 Target Specificity:

Preference for Insertion at G/C Pairs., Genetics 120, 645 (1988).

[171] L. Kroos, A. Kuspa, and D. Kaiser, A Global Analysis of Developmentally Regulated Genes

in Myxococcus Xanthus, Dev. Biol. 117, 252 (1986).

[172] R. A. Jilk, J. C. Makris, L. Borchardt, and W. S. Reznikoff, Implications of Tn5-Associated

Adjacent Deletions, J. Bacteriol. 175, 1264 (1993).

[173] H. H. Kazazian, Mobile Elements: Drivers of Genome Evolution, Science (80-.). 303, 1626

(2004).

[174] D. Kaiser, Social Gliding Is Correlated with the Presence of Pili in Myxococcus Xanthus.,

Proc. Natl. Acad. Sci. U. S. A. 76, 5952 (1979).

[175] D. Wall and D. Kaiser, Alignment Enhances the Cell-to-Cell Transfer of Pilus Phenotype,

Proc. Natl. Acad. Sci. U. S. A. 95, 3054 (1998).

[176] H. B. Kaplan, A. Kuspa, and D. Kaiser, Suppressors That Permit A-Signal-Independent

Developmental Gene Expression in Myxococcus Xanthus, J. Bacteriol. 173, 1460 (1991).

[177] M. Varon and E. Rosenberg, Transcriptional Regulation of Genes Required for Antibiotic

TA Synthesis in Myxococcus Xanthus, FEMS Microbiol. Lett. 136, 203 (1996).

227

Merrill E. Asp
Curriculum Vitae

373 Physics Building, Syracuse University

masp01@syr.edu – (775) 720-7201

Education

May 2023 (projected graduation date)

Ph.D. Physics
Syracuse University

2016

B.S. Physics, Math minor
Brigham Young University

Research Assistantships

2019 - Current

SU Physics Dept./Bioinspired Institute, Alison Patteson
Bacterial culture. Fluorescence microscopy. Time-lapse microscopy. Bulk rheology. Hydrogel

synthesis (PAA). Image processing with ImageJ and Python. Mentored five undergraduates and

three high school students.

• Synthesized a range of hydrogel substrates for mechanosensing bacterial experiments,

and characterized their surface energy, permeability, and rheology

• Studied the effects of substrate mechanics on bacterial growth across multiple species

• Developed software for supervising and automating image processing

• Developed high-throughput imaging hardware and software in collaboration with Roy

Welch (SU Biology) to study collective bacterial motion in Myxococcus xanthus

2014 - 2016

BYU Physics Dept., Mark Transtrum
Dimensional reduction of analytical cell signaling models with Python.

2015 - 2016

BYU College of Humanities, Christopher Oscarson
Trained part-of-speech taggers on large literary corpora. Analysis with R.

mailto:masp01@syr.edu

228

Publications

(Featured article)

Alison Patteson, Merrill E. Asp, Paul Janmey, “Materials science and mechanosensitivity of

living matter” Applied Physics Reviews (2022) doi.org/10.1063/5.0071648

Merrill E. Asp, Minh Tri Ho Thanh, Danielle A. Germann, Robert J. Carroll, Alana Franceski, Roy

D. Welch, Arvind Gopinath, Alison E. Patteson, “Spreading rates of bacterial colonies depend on

substrate stiffness and permeability” PNAS Nexus (2022) doi.org/10.1093/pnasnexus/pgac025

Merrill E. Asp, Elise Jutzeler, Katherine Kerr, Dawei Song, Alison E. Patteson, “A torsion-based

rheometer for measuring viscoelastic material properties” The Biophysicist (2022)

doi.org/10.35459/tbp.2020.000172

(In review)

Merrill E. Asp*, Jessica Comstock*, Isabella Lee, Fatmagül Bahar, Alison E. Patteson, Roy D.

Welch, “Phenotypic similarity as an indicator of functional redundancy within large homologous

groups” biorxiv.org/content/10.1101/2022.07.25.501402v1

(In review)

Joshua Tamayo, Yuchen Zhang, Merrill E. Asp, Alison E. Patteson, Arezoo M. Ardekani, Arvind

Gopinath, “Swarming bacterial fronts: Dynamics and morphology of active swarm interfaces

propagating through passive frictional domains” Soft Matter

biorxiv.org/content/10.1101/2020.04.18.048637v3

(In preparation)

Merrill E. Asp*, Eduardo Caro*, Roy D. Welch, Alison E. Patteson, “Stochastic bounds of

aggregation dynamics distinguish near-wild-type from wild-type strains in social bacteria”

(Submitted)

Merrill E. Asp, Minh-Tri Ho Thanh, Subarna Dutta, Jessica Comstock, Roy D. Welch, Alison E.

Patteson, “Mechanobiology as a new tool for addressing the genotype-to-phenotype problem in

microbiology” Biophysics Reviews

*Denotes co-first author contribution

https://doi.org/10.1063/5.0071648
https://doi.org/10.1093/pnasnexus/pgac025
https://doi.org/10.35459/tbp.2020.000172
http://www.biorxiv.org/content/10.1101/2022.07.25.501402v1
https://biorxiv.org/content/10.1101/2020.04.18.048637v3

229

Grants and Awards

• 2022 Social Justice Award (SU Physics Dept.)

• 2021 NYSS-APS Physics Outreach Grant ($2060)

o Co-organized a new outreach program

o Multiple visits to 3 high schools

o 7 classes (physics, biology, earth science), over 100 students

• 2021 Summer Dissertation Fellowship ($4000)

• 2020 Outstanding Teaching Assistant Award

Talks and Presentations

• “Bridging the Gap: Bringing Research from Universities to Schools”

2022 Topical Symposium of the New York State Section of the APS

• “Bacteria spreading increases with substrate stiffness”

APS March Meeting 2022

• “How do bacteria ‘feel’ their environment?”

Summer Soft and Living Matter Seminar,

Syracuse University 2021

• “Control of biofilm growth through substrate mechanics”

Virtual APS March Meeting 2021

• “How do bacteria ‘feel’ their environment?”

Virtual APS Division of Fluid Dynamics (DFD) Meeting 2020

• “How do bacteria ‘feel’ their environment?”

Stevenson Biomaterials Lecture & Research Poster Session, Syracuse University

2020

• “Searching for minimal mechanisms that can achieve biological adaptation” APS

Four Corners Section 2015

• “Who can perform an observation?” Utah Academy of Sciences, Arts, & Letters

Annual Conference 2011

230

Professional Development

• Certificate in University Teaching

• Future Professoriate Program (SU)

• Bioinspired Institute Graduate and Postdoctoral Development Program (SU)

Teaching Experience

Syracuse University

• Newtonian Mechanics Instructor, Summer 2019

• MCAT Prep Guest Lecturer, 2019

• Newtonian Mechanics Teaching Assistant, 2017 - 2020

Brigham Young University

• Physics Dept. Tutor (Introductory to senior-level physics courses), 2013 – 2016

Service

• Voting member of the College of Arts & Sciences Curriculum Committee, Syracuse University

• Organized Physics Outreach visits to local high schools, 2021 - 2022

	The biophysics of bacterial collective motion: Measuring responses to mechanical and genetic cues
	Recommended Citation

	tmp.1692980282.pdf.oNUy_

