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Abstract 

Mechanobiology is an emerging field investigating mechanical signals as a necessary 

component of cellular and developmental regulation. These mechanical signals play a well-

established role in the differentiation of animal cells, whereby cells with identical genes 

specialize their function and create distinct tissues depending on the physical properties of 

their environment, such as shear stiffness. These differences arise from the cell’s ability to use 

those incoming signals to inform which genes it expresses and what molecular machinery it 

builds and activates. Understanding the various missing factors that cause cells with specific 

genes to express an emergent phenotype is termed the genotype-to-phenotype problem, and 

mechanical signaling pathways present themselves as a significant piece of this puzzle. Despite 

the strong evidence for mechanosensing in eukaryotes, the pathways by which prokaryotes 

respond to mechanical stimuli are still largely unknown. Bacteria are among the simplest and 

yet most abundant forms of life. Many of their survival strategies depend on multicellular 

development and the coordinated formation of a colony into functional structures that may 

also feature cellular differentiation. This dissertation employs bacteria as a model system to 

investigate multiple biophysical questions of collective motion through novel experimental and 

analytical techniques. This work addresses the understudied mechanical relationship between a 

bacterial colony and the substrate it colonizes by asking “what is the effect of substrate 

stiffness on colony growth?” This is done by measuring bacterial growth on hydrogel substrates 

that decouple the effects of substrate stiffness from other material properties of the substrate 

that vary with stiffness. We report a previously unobserved effect in which bacteria colonize 



 
 

 

stiffer substrates faster than softer substrates, in opposition to previous studies done on agar, 

where permeability, viscoelasticity, and other material properties vary with stiffness. 

A second theme of this work probes the genetic inputs to the genotype-to-phenotype problem 

in multicellular development. The bacterial species Myxococcus xanthus producing macroscopic 

aggregates called fruiting bodies is used as a model organism for these studies. It has long been 

conjectured that genes may stand in for each other functionally, allowing for development to 

be more consistent and stable, but the extent of this redundancy has resisted measurement. 

We approach the question “how does redundancy among related genes lead to robust 

collective behavior?” by quantifying developmental phenotype in a large dataset of time lapse 

microscopy videos that show development in many mutant strains. We observe that when 

knocking out multiple genes that have a common origin (i.e. homologous genes), the resulting 

phenotypes differ from wild-type in a similar way. These phenotype clusters also differ from 

knockouts from other homologous gene families. These distinct phenotypic clusters provide 

evidence for the existence of networks of redundant genes that are larger than could previously 

be tested directly. Because of this robustness, the effects of individual gene mutations can be 

hidden or damped. We thus develop our analytical techniques further to address the question 

“how can subtle changes in phenotype be measured?” This involves quantifying the breadth of 

variation observed in wild-type development and creating a statistical technique to distinguish 

probabilistic distributions of phenotypic outcomes. We present a coherent method of 

visualizing large phenotypic datasets that include multiple metrics that we use to distinguish 

small developmental differences from wild-type, giving each mutant strain a phenotypic 



 
 

 

fingerprint that can be used in future studies on gene annotation and environmental impacts 

on phenotype.
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1. Introduction 

1.1 Mechanobiology and the genotype-to-phenotype problem 

Although every cell in a multicellular organism shares identical genes, different cells specialize 

their behaviors and structure, and groups of cells can self-organize into distinct and diverse 

tissues with a range of properties and functions [1]. The cell genome, the full sequence of DNA 

base pairs stored in a cell, encodes all the proteins and molecular machinery a cell can 

synthesize and express. Traditionally, the function of each gene is deduced by examining the 

impact of the mutation of that gene on cell and tissue morphology and development. A 

complete description of development was thus once thought to be found in studying the 

genome with sufficient depth and rigor. 

However, even when we know an organism’s full genome, it is often not sufficient to predict 

cellular and developmental behaviors. This is referred to as the genotype-to-phenotype 

problem. A phenotype is any observable characteristic of a living system, and it is clear that an 

organism’s phenotype is a function of both its genome and its environment. Plants grow toward 

light, fungi form spores when starved, and bacteria differentiate into multicellular biofilm 

colonies when making contact with a surface. External physical and chemical environmental 

cues shape developmental decisions. 

Cells evolved in a physical world and have developed ways to sense and respond to 

environmental cues to survive. Cells have built sensors that can detect two general types of 

external signals: chemical, physical, or combination of the two. Chemical signal sensors are 

typically protein receptors that impact intracellular signaling pathways by binding to specific 
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external chemical stimulants. A classic example is bacterial chemotaxis, in which cells show 

directed motility toward or away from a chemical gradient. The responses of cells to chemical 

signals are relatively well-characterized and understood through the lens of molecular 

biochemistry and genetics. Compared to chemical signaling, the cellular response to physical 

stimuli is far less studied [2]. The most described physical sensors detect mechanical features of 

the extracellular environment and typically rely on coupled motion of a cellular organelle with 

the environment. Cells translate these mechanical cues into biochemical signals to adapt their 

behavior, a process known as mechanotransduction. Examples include deflection of primary 

cilia in ear cells to hear sound [3] and membrane-based sensors that detect pressure gradients 

across the cell membrane [4]. 

The field of mechanobiology has emerged in the last twenty years as evidence has grown of the 

impact of mechanics on cell phenotype. This work has primarily focused on human cells and 

animal models, which exhibit marked behavioral changes when grown in tissues of differing 

stiffness values [5]. Tissue stiffness is a critical component of diagnosing diseases such as cancer 

and fibrosis which cannot be explained in the traditional language of biochemistry. New work is 

beginning to highlight how bacteria can also sense and respond to the mechanical features of 

their environment, especially in the context of collective cell morphogenesis and development. 

The work presented in this dissertation presents bacterial systems as an attractive model for 

identifying fundamental mechanisms of mechanosensing, and it explores the applications of 

bacterial multicellular development in addressing the genotype-to-phenotype problem. In 

particular, we test the hypothesis that the physical properties of biofilm substrates affect 

phenotype by designing developmental assays where the stiffness of the substrate is controlled 
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independently from its other material properties. We also investigate evidence for the 

hypothesis that redundancy between collections of genes is a mechanism of developmental 

robustness by designing analytical tools to quantify phenotypic similarity in large datasets. 

Finally, this work is expanded to test the hypothesis that developmental dynamics can be used 

to distinguish the subtle changes caused by single-gene mutations with statistical significance. 

The work done in response to these questions represents a new approach to the genotype-to-

phenotype problem that emphasizes mechanobiology and can be used to measure the impact 

of environmental and genetic changes across a wide variety of living systems. 

1.2 Rheology and viscoelasticity 

When a living system is interacting with its environment, we should consider what formal 

definition of substrate mechanical properties is relevant to this interaction. The field of 

rheology studies the flow and deformation of matter, and it supplies the concepts needed for 

our current purposes. Macosko [6] is used as a reference text for definitions throughout this 

section. When interactions vary with time, one useful definition is the dynamic shear storage 

modulus, 𝐺′, where “storage” refers to the stored energy in the deformed substrate. Generally 

speaking, 𝐺′ is a measure of substrate stiffness. We can think of stiffness as a measure of how 

much force is required to deform a sample by a fixed amount – stiff materials require much 

force per unit deformation, and soft materials require only a little force to cause the same 

change in shape. In rheology, deformation is formalized with a dimensionless quantity called 

“strain,” symbolized 𝛾, which is the ratio of the shear displacement and the height of the 

sample. In turn, we measure the intensive quantity of “stress,” or force per unit area, 
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symbolized 𝜎, that is caused by this deformation. The shear stiffness 𝐺 is defined in the static, 

equilibrium case as the ratio of stress to strain: 

 𝐺 ≡ 𝜎/𝛾. (1.1) 

The quantity 𝐺′ is called a “dynamic” storage modulus because it is measured under dynamic 

shear of the sample. We now define it alongside a complementary quantity, the dynamic shear 

loss modulus, 𝐺′′, which measures the loss or viscous dissipation of energy in the deformed 

substrate. Specifically, a parallel plate rheometer is used to twist a cylindrical sample of 

material back and forth at a fixed frequency 𝜔, as shown in Figure 1.1.  

 

Figure 1.1. Basic shear rheology using cylindrical sample geometry. (A) A rheometer consists of a fixed lower plate 
and a rotating upper plate, with a sample sandwiched in between that has cross-sectional area 𝐴. The upper plate 
can be driven to twist the sample back and forth at a specific frequency 𝜔. A force transducer measures the force 
𝐹 needed to induce this twisting, which can be used to calculate the material properties of the sample. (B) The 
shear deformation caused by twisting the sample depends on 𝜃, the angular displacement of the top of the sample 
relative to the bottom, and the radius 𝑟 and height ℎ of the sample. These values are combined into a 
dimensionless strain 𝛾, which along with the stress 𝜎 define the shear moduli of the sample. 

The deformation exerted by the rheometer is described as a sinusoidal axial shear strain on the 

sample, and it is written with the equation 
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 𝛾(𝑡) =  𝛾0sin (𝜔𝑡). (1.2) 

When deforming a material, there are two useful cases to consider for the material’s internal 

stress response: the purely elastic case and the purely viscous case. In the purely elastic case, 

the stress is precisely in-phase with the strain. That is, more deformation causes more internal 

forces at each instant. In this case, the stress is also sinusoidal: 

𝜎𝑒𝑙𝑎𝑠𝑡𝑖𝑐(𝑡) ∝ 𝑠𝑖𝑛(𝜔𝑡). 

However, in the purely viscous case, the stress response depends on the strain rate according 

to Newton’s law of viscosity. That is, only a change in deformation causes internal forces within 

a fluid. This derivative induces a 90° phase separation between stress and strain: 

𝜎𝑣𝑖𝑠𝑐𝑜𝑢𝑠(𝑡) ∝ 𝑐𝑜𝑠(𝜔𝑡). 

The class of materials that fall in between these two idealized cases are often modelled as so-

called “linear viscoelastic materials” because of their dual elastic (or solid-like) and viscous (or 

liquid-like) natures. This allows us to write the general stress response as a sum of two stress 

responses 

𝜎(𝑡) = 𝜎𝑒𝑙𝑎𝑠𝑡𝑖𝑐(𝑡) + 𝜎𝑣𝑖𝑠𝑐𝑜𝑢𝑠(𝑡). 

When we divide this relation by the amplitude of the sinusoidal shear strain, we obtain the 

definitions of 𝐺′ and 𝐺′′ comparable to equation (1.1) as 

 𝜎(𝑡)

𝛾0
= 𝐺′sin(𝜔𝑡)  +  𝐺′′cos(𝜔𝑡). 

(1.3) 
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Adding the functions sin(𝜔𝑡) and cos(𝜔𝑡) with different positive weights will produce a new 

sinusoidal function with a phase shift 𝛿 between 0 and 90°, depending on the magnitude of the 

weights for each function. According to the trigonometric angle addition formula 

 sin(𝜔𝑡 + 𝛿) = cos(𝛿)sin(𝜔𝑡)  +  sin(𝛿)cos(𝜔𝑡),  

we see that 𝐺′ and 𝐺′′ relate to the phase shift 𝛿 in the strain function 𝜎(𝑡) as 

tan(𝛿)  =  𝐺′′/𝐺′. 

As a rule of thumb, when tan(𝛿) ≥ 0.1, a solid material has enough viscous dissipation to be 

considered “viscoelastic.” We note here that both 𝐺′ and 𝐺′′ can vary depending on the 

frequency and amplitude of the strain being used to probe the sample. If a material under 

dynamic shear is shown to have increasing 𝐺′ with increasing strain amplitude, the material is 

said to exhibit “shear thickening,” a significant rheological characteristic, and one example of a 

nonlinear elastic response. Shear thickening can be demonstrated by biofilms such as those 

produced by Pseudomonas aeruginosa [7]. 

There are several basic rheological models that capture viscoelastic behavior. The Kelvin-Voigt 

model is a simple, two-parameter model for viscoelastic solids. It is often schematically 

represented as an idealized Hookean spring connected in parallel with an idealized Newtonian 

dashpot, as shown in Figure 1.2A.  
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Figure 1.2. Basic viscoelastic model schematics. (A) Schematic of the Kelvin-Voigt model of a viscoelastic material 
under shear. The model combines a Hookean spring with shear modulus 𝐺 in parallel with a Newtonian dashpot 
with viscosity 𝜂. (B) Schematic of the Maxwell model of a viscoelastic material under shear. This model instead 
combines the spring and dashpot in series, resulting in different model behaviors. 

The spring (when considering shear deformation) has shear modulus 𝐺 = 𝜎𝑠/𝛾 in terms of the 

stress on the spring 𝜎𝑠, and the dashpot has viscosity 𝜂, defined via 𝜎𝑑 = 𝜂�̇� in terms of the 

stress on the dashpot 𝜎𝑑. Although this schematic is illustrated with axial compressive strain 

instead of shear strain, the mathematical representation is equivalent for the cylindrical torsion 

geometry we consider. Because the elements are connected in parallel, we have one common 

strain 𝛾, and the overall stress 𝜎 = 𝜎𝑠 + 𝜎𝑑, since the two forces add at a point of common 

cross-sectional area. This gives us the basic model equation 

 𝜎 = 𝐺𝛾 + 𝜂�̇�. (1.4) 

Under sinusoidal strain, we can combine equations (1.2), (1.3), and (1.4) to show 

𝐺′ = 𝐺 

𝐺′′ = 𝜂𝜔. 

In this way, 𝐺′ is considered a measure of how “solid-like” a material is, and 𝐺′′ is considered a 

measure of how “liquid-like” it is. We can also see how a Kelvin-Voigt material would respond 
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to a creep test — that is, a rheological test involving the application of a constant stress. 

Assuming 𝜎 is a constant, we can solve equation (1.4) for 𝛾(𝑡) and show that 

𝛾(𝑡)  =  
𝜎

𝐺
(1 − 𝑒

− 
𝐺
𝜂

𝑡
). 

That is, a Kelvin-Voigt material subjected to a constant stress starts from zero strain and 

eventually saturates upwards to a maximum strain of 𝜎/𝐺 along an inverted exponential decay 

curve. This is one reason the Kelvin-Voigt model is appropriate for viscoelastic solids, since 

viscoelastic liquids would instead flow indefinitely under a constant stress.  

Another simple viscoelastic model is the Maxwell model, which instead combines the Hookean 

spring and Newtonian dashpot in series, as shown in Figure 1.2B. In this case, there is one 

common stress 𝜎 between the two elements due to Newton’s third law of motion, setting 

 𝜎 = 𝐺𝛾𝑠 =  𝜂�̇�𝑑, (1.5) 

where the spring and dashpot have their own separate strains, 𝛾𝑠 and 𝛾𝑑 respectively. These 

two strains sum to the overall strain of the material, giving 𝛾 = 𝛾𝑠 + 𝛾𝑑. We can then use 

equation (1.5) to express the Maxwell model equation 

 �̇�

𝐺
+

𝜎

𝜂
= �̇�. 

(1.6) 

When we submit this model equation to a creep test by setting 𝜎 equal to a constant, solving 

equation (1.6) for 𝛾(𝑡) gives the result 

𝛾(𝑡) =
𝜎

𝜂
𝑡. 
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This shows that the Maxwell model is appropriate for viscoelastic fluids that deform indefinitely 

at a constant strain rate under the influence of a constant stress. 

For either the Kelvin-Voigt or Maxwell models to capture nonlinear behavior, the model 

parameters 𝐺 and 𝜂 must vary with the frequency and/or amplitude of the shear strain. 

Other viscoelastic models with more elements, such as the Jeffreys [8] or Burger models [9], 

have been used to model the viscoelasticity of bacterial biofilms. Other viscoelastic models, 

such as the generalized Maxwell model, combine multiple relaxation times explicitly by 

including many elements with a variety of fixed parameters [10]. Continuum models have also 

been used to capture viscoelasticity [11]. 

1.3 Bacteria as model systems 

The motivations for studying bacteria in and of themselves are manifold. Bacteria are 

simultaneously one of the simplest and most abundant forms of life, entering every ecological 

niche where life is found [12], flourishing in the oceans, forming communities with other 

species, and coevolving with host organisms. This success, while being genetically much simpler 

than other organisms, posits bacteria as a unique window into the principles that living systems 

use to survive. The ubiquity of bacteria in natural and man-made environments, indeed even in 

our own bodies, allows them to fulfill both useful and harmful roles with enormous impact on 

daily life, with the biofuel industry, water treatment practices, antibiotic resistance and other 

bacterial diseases, as just a few examples. Greater understanding and control of these roles 

requires new studies into bacteria. 
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The perspective of physicists can provide new understanding at a pivotal time when novel 

quantitative methods are being deployed to study the complexities of living systems  [13–15]. 

The forces that mediate physical interactions between bacterial colonies and the substrates 

they colonize are a promising object of study that is often not included in biophysical models. 

Bacteria adhere to and colonize a staggering variety of environments, from mucus and the soft 

tissues of the GI tract [16] to the hard keratinous shells of crustaceans [17], plastic waste [18], 

and stainless steel [19]. A focus on the softer environments that mimic biological tissue is 

especially relevant to understanding the role of bacteria in disease. For example, cystic fibrosis 

is a condition in which the viscosity of mucus is increased. This change results in chronic 

infections of Pseudomonas aeruginosa biofilms in the lungs of cystic fibrosis patients that are 

extremely difficult to treat but that occur only rarely in people with normal mucus 

viscosity [20]. 

Bacteria also provide insights into fundamental questions about living systems in general. They 

present a model system that is amenable to environmental manipulation and genetic 

manipulation using well-established techniques such as plasmid insertion [21]. The speed with 

which bacteria reproduce also allows for many experimental replicates to be performed in a 

short period of time. This provides enough data to resolve key effects from noisy biophysical 

processes. 

1.4 Bacterial motility, force generation, and force sensing 

Bacteria have evolved a number of different structures and appendages that allow individual 

cells to generate and sense forces. The classical flagellar motor, powered by proton motive 
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forces, is a bacterial analog of a mechanical motor, complete with rotor and stator components. 

It turns helical flagella to allow swimming motility in liquid environments. Pioneering work with 

E. coli bacteria that had their flagella tethered to a fixed substrate demonstrated that the 

flagellar motor operates at near constant torque [22,23]. More recent work shows that stator 

components are dynamically recruited to the flagellar motor in response to changes in 

mechanical load [24]. Transmembrane ion channels are ion pumps powered by adenosine 

triphosphate (ATP), an energy-storing molecule ubiquitous in living systems. These channels 

were found to allow bacteria to adapt to changes in osmotic pressure by actively forcing ions 

out of the cell. When a bacterium encounters an environment with very low salinity for 

example, this reduction in cellular Na+ and Cl- ions can prevent the osmosis that would 

otherwise swell the cell with water and cause it to burst [4]. Pili are an important bacterial 

appendage for generating force and cell motility at a surface. Twitching motility is powered by 

the extension and retraction of type IV pili, which can attach to a surface and pull cells along. 

Active assembly and disassembly of pilin subunits is also likely powered by ATP [25]. Internal 

cellular structures allow for gliding motility, a general term for smooth motility modes along 

surfaces that vary from species to species and are the subject of ongoing research. In 

Myxococcus xanthus, gliding motility involves the rotation of a cytoskeletal helix, which drives 

individual cells forward almost like a corkscrew tank. There is evidence that proton motive 

forces also power gliding motility [26]. 

Beyond individual cells, bacterial colonies collectively expand and adapt to environmental 

stimuli. Swarming motility is powered by the interaction of flagellar activity between cells in a 

dense swarm. This motility mode involves bacteria changing phenotype, becoming 
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hyperflagellated when conditions are right, such as when high concentrations of nutrients and 

moisture are present [27]. Motility modes such as spreading and darting are powered by the 

buildup of pressure from cell division and the manipulation of local surface properties by the 

secretion of extracellular polymeric substances (EPS) and surfactants [28]. In many species, a 

bacterial colony can also create a biofilm, a microenvironment created and inhabited by the 

bacteria that is ubiquitous in nature. The EPS-composed matrix that houses the bacteria has 

been shown to vary in stiffness and strength in differing environments [29]. When biofilms 

grow in flowing liquid, characteristic streamers form, resilient filaments of bacteria and EPS that 

adapt their material properties to have higher yield stress when flow is increased [7,30]. 

This evidence for bacterial response to mechanical signals raises the question as to what 

mechanism underlies these effects. Type IV pili are one of the most useful vectors of 

information for these signaling networks, bridging between a bacterium, its environment, and 

its neighbors. Some known signaling pathways involve type IV pili, such as the Chp system, 

which signals when a bacterium encounters a surface and begins the process of biofilm 

formation [31]. Because pili are dynamically assembled and disassembled from pilin subunits, 

the local density of those subunits inside the cell acts as a readout for how far the pilus is 

extended, giving the cell access to information about its mechanical microenvironment. The 

existence of other signaling pathways that can resolve more fine-grained mechanical 

information or other mechanisms of adaptation to mechanical signals is an open topic of 

research. 
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1.5 Biophysics of biofilms 

To understand the growth and development of biofilms, we should consider the underlying 

physical mechanisms by which biofilms expand. When a few cells are introduced to a solid 

nutritive surface, the cells begin to multiply and divide as cellular behavior transitions from a 

planktonic, free-swimming state to a biofilm-forming state. While the nutrients that allow for 

cell division are necessary for a biofilm to grow, the proliferation of cells is not the only primary 

driving factor in biofilm growth. Although colonies of some bacterial species do grow 

exclusively by cell division (this passive motility mechanism – spreading – is explained in the 

previous section), biofilms expand much faster through other means. Mature biofilms are 

composed primarily of fluid, followed by extracellular matrix components excreted by the 

bacteria, and the bacterial cells themselves take up the smallest fraction of volume. Depending 

on environment, different factors can shape the developing biofilm morphology. In the case of 

biofilms grown in fluid flow, whether through large pipes or in microfluidic channels, polymers 

produced by the bacteria allow cells to adhere end-to-end, and as many thin filaments build up 

on each other, they elongate along the direction of flow, and form so-called “streamers” [7,30]. 

In this work, we consider in more depth the growth of biofilms on a solid interface, where fluid 

is available from the environment but is not being pushed by externally driven flow. In this case, 

biofilm growth occurs when the production of extracellular polymeric substances (EPS) induces 

an osmotic pressure gradient that causes the biofilm to swell with fluid and expand [32,33]. This 

pressure is generated by the high concentration at which the molecules of EPS are produced. 

Like water flowing spontaneously into a briny region enclosed by a permeable membrane, 

diffusion of water into the biofilm is driven by the tendency at equilibrium for the 
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concentration of EPS molecules to be uniform everywhere [33–35]. The EPS molecules are 

produced by the most metabolically active cells at the nutrient-rich edges of the colonized 

region [36,37]. This is illustrated schematically in Figure 1.3.  

 

Figure 1.3. Schematic of biofilm components. As a biofilm grows, its structure is defined by the network of 
extracellular polymeric substances (EPS) produced by the bacteria. At the edges of the biofilm, metabolically active 
bacteria synthesize available nutrients into EPS, producing these molecules at high enough concentrations to drive 
fluid out of the substrate and into the biofilm via osmotic pressure. This osmotic pressure decreases as the biofilm 
swells with fluid, driving its outward expansion. 

Because nutrient uptake powers the production of new osmolytes, these nutrients become 

locally depleted until the biofilm can colonize new, nutrient-rich locations. The concentration of 

osmolytes powers the fluid flow that swells the biofilm, and as fluid flows into the biofilm, the 

local osmotic pressure is decreased as the system attempts to reach equilibrium. This requires 

continuous production of osmolytes to power continued expansion. The interplay between 

these factors is captured by analytical models such as this one proposed by Mahadevan [37] 

that predicts three different phases in biofilm development. 

Other relevant physical factors have been considered in biophysical models and experimental 

studies of biofilm expansion and development. For example, the surface tension of a substrate 

can be influenced by surfactants produced by bacteria. Surfactant-deficient mutants of 
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Pseudomonas aeruginosa produce biofilms with less structure [38], which impedes the flow of 

fluid within the biofilm and may inhibit their ability to colonize surfaces. Other examples 

include surface friction reducing biofilm area and increasing the slope of the leading edge of the 

colony [36], and increased bacterial adhesion causing cells to experience greater shear, which 

then express more of the signaling protein cyclic-di-GMP that upregulates biofilm formation. An 

overview of other relevant studies can be found in the introductory materials of [39]. Less 

explored is the interaction between the biofilm and the substrate it grows on, especially when 

that substrate is soft, although a body of literature in this line of questioning is beginning to 

emerge [39–41], which we contribute to with this work. 

1.6 Robustness in collective bacterial behavior 

The ability of bacteria to coordinate as a colony in order to survive depends on a complex 

network of chemical and mechanical signals sent between cells that regulate the expression of 

genes to modulate individual cellular behavior. Despite the many potential failing points of such 

an intricate network, these behaviors are consistently effective under a wide range of 

conditions. Biofilms resist environmental shear, the influence of antibiotics, and the response of 

immune systems. In Myxococcus xanthus, one mode of biofilm development is the fruiting 

body, an aggregate of EPS and cells, some of which undergo programmed cell death, and some 

of which differentiate into quiescent myxospores that can germinate and form a new colony 

under suitable conditions [42]. Evolutionary pressure has given rise to these behaviors, but 

what mechanisms bacteria employ for this robustness is an open question. 
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One hypothesis for this robustness that is addressed in Chapter 3 is the formation of redundant 

gene networks. In this scenario, proteins that perform a specific cellular function, although 

specialized, may be able to stand in for other proteins that are prevented from performing their 

function. One way that this may occur is via the creation of homologous genes, which are 

derived from identical copies of the same gene occasionally left behind by the apparatus of 

DNA repair processes when DNA breakage occurs. These identical copies, when present for long 

enough in the genome, can collect independent mutations over time, allowing them to 

specialize their function, but possibly leaving other fundamental behaviors intact. This form of 

redundancy therefore exists at the individual cellular level. 

Another more general path to robustness is existence of multiple developmental paths by 

which a desired outcome may be achieved. The methods presented in Chapter 4 provide 

evidence that consistent fruiting body formation can be achieved with varying dynamics. This 

form of developmental redundancy exists at the colony level. 

In general, multicellular development is driven by stochastic processes at all scales, from gene 

expression itself, to the cell-cell contacts that convey signaling information, to the mechanical 

interactions of neighboring cells encountering each other and their substrate. The fact that 

bacteria exhibit robust development in spite of this inherent stochasticity points to 

fundamental principles that await discovery with the proper tools. The work presented in this 

dissertation provides tools towards that purpose. 
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1.7 Primary Component Analysis (PCA) 

One useful tool that can be used to decrease the complexity of high dimensional data while 

preserving its structure is Primary Component Analysis (PCA) [43]. This is a deterministic 

technique with no input parameters that is based on elementary linear algebra and statistics. 

This method begins with an input dataset, where each datapoint 𝒙 is a vector in an 𝑁-

dimensional vector space. PCA first identifies among all the directions in this space the single 

direction 𝒂 that has the most variance across the dataset. This is equivalent to fitting the data 

to a line using the least squares method to minimize the error, where the line points along 𝒂. 

This direction is called the first primary component, or PC1. The datapoints can be projected 

onto this line to obtain a one-dimensional version of the data. The data is now distributed along 

one axis, and the value of each datapoint along this axis is often referred to as the value of PC1. 

This process is visually summarized in Figure 1.4. 
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Figure 1.4. Dimensional reduction of a 2D dataset to one dimension using PCA. (A) From an initial 2D dataset in x-y 
space (blue points), PCA first identifies the direction 𝒂 that maximizes the variance across the dataset, i.e. where 
the data is most widely distributed. The direction of maximum variance is called PC1, or the first primary 
component. Then the data points are projected onto this line. (B) The direction PC1 defines a new axis, and the 
value of the datapoints along this axis (which can be referred to as the values of PC1) constitutes the reduction of 
the data from two dimensions (x and y) to one dimension (PC1). 

A reduction to one dimension often discards too much information, so more primary 

components can be identified. In the (𝑁 − 1)-dimensional subspace of all directions 

perpendicular to PC1, the direction with the next most variance is called PC2. This process of 

identifying primary components can be continued for as along as desired up to 𝑁 primary 

components, with each additional primary component adding more of the total variance but 

increasing the complexity of the reduced dataset, illustrated in Figure 1.5. 

Because the overall structure of the data is changed in this process as little as possible, using 

PCA to reduce a dataset to a visualizable number of dimensions such as two or three can also 

have the effect of revealing correlations or clustering in multivariate data, important properties 
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of high-dimensional datasets that are often not immediately clear. The directions of the 

primary components themselves also reveal which or which combination of the original 𝑁 

dimensions contains the most variation and thus the most information across the dataset. 

 

Figure 1.5. Dimensional reduction via Primary Component Analysis (PCA). An initial dataset (blue points) in x-y-z 
space is projected onto a two dimensional plane. This plane is defined by two directions: PC1, or the first primary 
component, is the direction of highest variance across the dataset, and PC2, or the second primary component, is 
the direction of second highest variance and is perpendicular to PC1. This is the orthogonal projection that 
preserves as much of the structure of the dataset as possible.  

The primary components themselves are calculated as the eigenvectors of the covariance 

matrix 𝑺 of the dataset, with the eigenvalues giving the variance of each. To demonstrate this, 

we first consider the definition of variance, using the value of the datapoint 𝒙 projected onto 

the unit vector 𝒂, that is 𝒂 ∙ 𝒙 = 𝑎𝑖𝑥𝑖  (using the Einstein summation convention): 

 𝑣𝑎𝑟(𝑎𝑖𝑥𝑖) = 〈(𝑎𝑖𝑥𝑖)
2〉  −  〈𝑎𝑖𝑥𝑖〉2  

 𝑣𝑎𝑟(𝑎𝑖𝑥𝑖) = 𝑎𝑖𝑎𝑗〈𝑥𝑖𝑥𝑗〉 − 𝑎𝑖𝑎𝑗〈𝑥𝑖〉〈𝑥𝑗〉  

 𝑣𝑎𝑟(𝑎𝑖𝑥𝑖) = 𝑎𝑖𝑎𝑗𝑆𝑖𝑗 (1.6) 
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where the brackets 〈∙〉 denote an average across the datapoints, and we also obtain the 

definition of the covariance matrix 𝑆𝑖𝑗 = 〈𝑥𝑖𝑥𝑗〉 − 〈𝑥𝑖〉〈𝑥𝑗〉. To maximize the variance, we 

differentiate with respect to the direction 𝒂, using a Lagrange multiplier 𝜆 to constrain 𝒂 to be a 

unit vector, that is 

 𝑎𝑖𝑎𝑖 = 1. (1.7) 

 

Doing this, we then obtain the condition 

 𝜕𝑎𝑖
[𝑎𝑖𝑎𝑗𝑆𝑖𝑗 − 𝜆(𝑎𝑖𝑎𝑖 − 1)]  =  0      

 𝑆𝑖𝑗𝑎𝑗 − 𝜆𝑎𝑖 =  0      

 𝑆𝑖𝑗𝑎𝑗 = 𝜆𝑎𝑖, (1.8) 

showing that any direction 𝒂 that is a local extremum of variance is an eigenvector of 𝑺 with 

eigenvalue 𝜆. We interpret the eigenvalue by combining equations (1.6), (1.7) and (1.8): 

 𝑣𝑎𝑟(𝑎𝑖𝑥𝑖) = 𝑎𝑖𝑎𝑗𝑆𝑖𝑗  

 𝑣𝑎𝑟(𝑎𝑖𝑥𝑖) =  𝑎𝑖𝜆𝑎𝑖 = 𝜆.  

This shows that each primary component is an eigenvector of 𝑺, ordered by the variance given 

by their respective eigenvalues. Since the covariance matrix is symmetric, these eigenvectors 

are all perpendicular to each other. 

Because the calculation of primary components involves foundational techniques of linear 

algebra, implementations of PCA are found in the standard libraries of many programming 

languages, such as MATLAB and Numpy for Python.  
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1.8 Outline 

This body of work explores the biophysical questions of collective bacterial motion by 

presenting new experimental evidence and analytical techniques. Chapter 2 features an 

experimental study of biofilms produced by multiple bacterial species that reveals a previously 

unobserved effect wherein bacteria can generate greater forces and colonize stiffer substrates 

more quickly than softer substrates in a particular window of stiffnesses that are relevant to 

biofilm formation on biological tissues. Chapter 3 begins the focus on a particular organism, 

Myxococcus xanthus, and displays a technique for quantitative phenotyping of a characteristic 

multicellular developmental behavior expressed by this species. This technique is used to test 

long-standing hypotheses in prokaryotic genetics and measure the breadth of networks of 

redundant genes. Chapter 4 develops these analysis techniques further and also presents a 

high-throughput experimental system for future experiments, including a measure of the 

variation of wild-type developmental phenotypes, and validation with subtle mutant 

phenotypes that are difficult to measure with standard statistical techniques. In the concluding 

chapter we recapitulate the findings presented thus far and survey possible future experiments. 
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2. Bacterial colony growth increases with substrate stiffness 

This chapter is based on the article “Spreading rates of bacterial colonies depend on substrate 

stiffness and permeability” previously published in 2022 in PNAS Nexus and coauthored by 

myself, Alison Patteson, Minh Tri Ho Thanh, Arvind Gopinath, Danielle Germann, Robert Carroll, 

Alana Franceski, and Roy Welch. The experiments were designed by Alison Patteson and myself. 

I performed the experimental work and analysis. The manuscript was written by Alison 

Patteson, Minh Tri Ho Thanh, who contributed to the section on traction force microscopy, 

Arvind Gopinath, who contributed analysis of gel permeability, and myself. Minh Tri Ho Thanh 

and Danielle Germann contributed to traction force microscopy experiments and analysis. Alana 

Franceski and Roy Welch assisted in experimental work with M. xanthus. Robert Carroll 

contributed rheological characterization of the polyacrylamide hydrogels and agar.   
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2.1 Introduction 

Biofilm formation is an important process in the bacterial lifecycle. Biofilms are multi-cellular 

communities of bacteria commonly attached to an external surface [44,45]. Emerging evidence 

indicates that bacteria sense and respond to variations in the mechanical properties of the 

surrounding environment, resulting in changes to cell physiology and biofilm morphology [46–

49]. When a bacterium makes contact with a surface, it initiates a program of gene expression 

that promotes colonization and secretion of extracellular polymeric substances that self-

encapsulate the cells and gives the biofilm its structure [50,51]. The biofilm thus consists of 

both cells and EPS components, growing as a result of both cell division and EPS 

deposition [38]. Colony growth is aided by the production of surfactants [38] and EPS-

generated osmotic pressure gradients, which facilitate nutrient uptake from the 

substrate [32,33]. Thus, the physical properties of the underlying substrate have the potential 

to disrupt structural and functional aspects of cell attachment and function that contribute to 

biofilm phenotypes. 

The vast majority of biofilm experiments are conducted on the surface of an agar gel. Agar was 

introduced in 1882 by Angelina Fanny Hesse and gained popularity through Robert Koch [52] 

because it is inert to bacteria degradation. However, agar is isolated from marine algae and is 

an undefined media, as its chemical composition is not entirely known [53]. Agar variability 

from the isolation process makes it difficult to define and reproduce its chemical and physical 

properties [54,55].  

A common feature of these studies is that biofilm expansion decreases with increasing agar 

concentration [33,49,56,57]. Increasing agar concentration increases agar network stiffness but 
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also impacts other properties of the gel, such as the hydrogel pore size [33]. Agar is typically 

prepared in the range 0.5% - 2% agar in a nutrient-rich media, forming a hydrogel comprised of 

a porous solid network and the nutrient-rich interstitial fluid that permeates through the 

network. On stiff agar, the pore size is smaller and the rate of nutrient transport through the 

substrate and to the biofilm decreases [33,37]. A number of studies have attributed this 

inhibited biofilm growth on stiff agar to lack of nutrients rather than stiffness per se [33,37]. On 

the other hand, there are studies indicating substrate stiffness can separately modify biofilm 

shape and expansion by mediating adhesion [39,58] and frictional forces between the biofilm 

and the substrate [36]. The extent to which biofilm growth depends on the combined effects of 

substrate stiffness and nutrient availability is thus an open question, and current bacteria 

culture substrates largely cannot separate the effects of these two properties on biofilm 

growth.  

Here we report the development of polyacrylamide (PAA) hydrogels with tunable matrix 

stiffness and matrix porosity to determine their integrated effects on biofilm growth. We 

identify a new regime in the limit of purely elastic substrates in which bacteria colonies spread 

out faster on stiffer substrates compared to softer ones, which is opposite of conventional agar. 

Our study focuses on the bacterium Serratia marcescens, which is a common model organism 

for collective motion and behavior [48,59–61], but we also show that Pseudomonas aeruginosa, 

Proteus mirabilis, and Myxococcus xanthus expand faster on stiffer substrates than soft ones. A 

major advantage of polyacrylamide gels is that unlike agar they linearly deform in response to a 

wide range of stress, which enables facile definable force calculations. Using traction force 

microscopy-based techniques, we show that bacteria colonies generate transient surface forces 
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correlated over length scales much larger than a single bacterium and that the magnitude of 

these forces increases with increasing substrate stiffness. Our results are consistent with a 

model in which biofilm development is impacted by osmotic pressure gradients between the 

biofilm and the substrate and the substrate’s poroelastic response. 

2.2 Results 

Design and characterization of polyacrylamide hydrogels  

In this study, we used both polyacrylamide gels and conventional agar as a point of comparison. 

To characterize the mechanical properties of the gels, we measured under shear their elastic 

storage modulus G′, which quantifies their resistance to shear deformations, and their viscous 

loss modulus G′′, which quantifies viscous energy dissipation, with an oscillatory rheometer. As 

shown in Fig. 2.1a, agar exhibits non-linear shear softening; its shear modulus decreases from 

approximately 10 to 1 kPa as shear strain rises from 2 to 50%. The mechanical response of PAA 

to shear strain differs from agar. As shown in Fig. 2.1b, polyacrylamide gels form linearly elastic 

gels, with near constant G’ over the applied strain range.  
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Figure 2.1. Substrate characterization using a stress-controlled rheometer. The shear storage modulus G’ and loss 
modulus G’’ as a function of shear strain for both (a) agar and (b) polyacrylamide gels. PAA gels are prepared by 
either (c) increasing PAA concentration or (d) chemical crosslinker bis-acrylamide. (e) Schematic representation 
illustrating the effects of increasing PAA polymer concentration vs chemical crosslinker on fluid permeability in the 

network. Error bars denote standard error from 3+ independent trials per condition. 

The shear modulus G’ sets the extent to which a material deforms under an applied shear 

stress. The non-linear shear softening is a property of complex materials and demonstrates that 
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agar is softer when probed at higher deformations compared to small ones. If biofilms deform 

their substrate at magnitudes that vary over time or under different experimental conditions, 

then the shear modulus of the agar substrate will vary in response to the applied deformation 

and the biofilm would experience a different mechanical resistance from the substrate. 

Agar also exhibits significant viscoelasticity, with a viscous loss modulus G’’ of 10%-50% of the 

storage modulus G’ at least for small strain values (2-5%) at a frequency of 1 Hz. This data 

suggests that as a substrate for biofilm growth, agar dissipates energy and relaxes applied 

stresses that might be relevant to outward growth of the colony. PAA gels, in contrast, exhibit 

negligible viscous dissipation, consistent with prior work [62–64].  

Unlike agar and most other bacterial growth substrates, the shear (elastic) moduli of PAA gels 

can be tuned by either crosslinker concentration or polymer concentration, which allows 

tunable control of matrix stiffness and matrix pore size [65]. In order to distinguish between the 

effects of substrate stiffness and substrate permeability on biofilm growth, we thus designed 

PAA gels (Supp. Table 2.2) with shear moduli G’ ranging from 100-10,000 Pa by varying either 

the amount of acrylamide or the amount of the chemical crosslinker bis (Fig. 2.1c&d). These 

two parameters, acrylamide concentration and crosslinker concentration, have two different 

effects on network permeability (Fig. 2.1e) (28). Increasing the concentration of acrylamide 

monomer results in a denser, stiffer polyacrylamide network with a smaller pore size and thus 

lower permeability. Increasing the concentration of crosslinker links together the same density 

of polyacrylamide polymers at a greater number of sites, increasing the network stiffness 

without significantly changing pore size. These effects are illustrated schematically in Fig. 2.1e. 

We confirmed these expectations using effective diffusion and force indentation experiments 
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to estimate the effective pore sizes of the polyacrylamide gels (Table 2.1, Supp. Fig. 2.8&9). 

Here, we note here that diffusion of nutrients through the network depends on both molecular 

diffusion and poroelastic transport of solvent as gels swell or deswell. We refer to nutrient 

transport and diffusivity in terms of effective diffusivities that combine the effects of both. The 

effectivity diffusivities measured here range from approximately 70-175 μm²/s, which is 

consistent with prior literature values for PAA gels [66] accounting for differences in the shear 

modulus G’ of the gels [67]. 

% PAA % Bis Effective Diffusivity 
(μm2/s) 

Pore size (nm) 

3 0.15 170±22 22 ± 5.6 

12 0.15 80±20 0.85 ± 0.1 

8 0.085 75±10 1.5 ± 0.1 

8 0.45 70±10 0.9 ± 0.2 
 
Table 2.1. Effective pore size measurements of polyacrylamide gels (Details in Supplementary Materials). 

 

Substrate stiffness increases biofilm expansion rates 

Our experimental protocol consists of directly observing the growth of Serratia marcescens 

colonies on the surface of hydrogel substrates with time-lapse microscopy (Methods). Before 

inoculation, the PAA gels are soaked multiple times in LB nutrient-rich broth. We deposit a 

small inoculum of bacteria on the gel surfaces and track x-y positions of the resulting biofilm 

boundary as it expands over 15-hour time periods, relevant to prior literature reports [36,68] 

(Fig. 2.2). The biofilm boundary is tracked by a custom semi-automated Python script we 

developed for these videos (Methods, Supp. Fig. 2.10). 
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Figure 2.2. (a) Schematic diagram of the experimental setup. Aliquots of Serratia marcescens were placed on 
polyacrylamide (PAA) substrates that were 0.8 mm in height. The substates were maintained at 37 °C in a humid 
stage top incubator. (b) Visualization of the growing biofilm boundary overlaid on a sample image of the biofilm. 
Images were acquired at 10-minute increments, and boundaries shown here are displayed at 20-minute 
increments. (c) Color image of full bacterial colony after 15 hours of growth. Scale bars, 1mm. 

Representative biofilm time lapse images on a soft (G’ = 0.9 kPa) and a stiff (G’ = 3 kPa) PAA gel 

are shown in Fig. 2.3, with videos available as supplementary materials (Video S2&S3 

respectively). There are notable differences in colony morphology and the collective cell 

migration speed between the two gel types. While the biofilm surface expansion speed 

encompasses the collective effects of rates of EPS production, cell division, and cell surface 

motility, the colony expansion rate is faster on the stiffer PAA gel compared to the softer one, 

opposite of the behavior on conventional agar substrates. 
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Figure 2.3. Representative bright field images of Serratia marcescens colonies growing across a soft (a-c) (SI Video 
1) and stiff (e-g) (SI Video 2) PAA gel. Variations in gray intensity correlate with the amount of transmitted light 
though the biofilm, which depends upon both colony density and height. Both the biofilm structure and expansion 
rate (d) depend on substrate stiffness. Scale bar, 1 mm. Soft gel: G’=0.9 kPa, 4% PAA, 0.15% bis-crosslinker. Stiff 
gel: G’=3 kPa, 6% PAA, 0.15% bis-crosslinker. 

A central feature of biofilm formation is the production of extracellular polymeric substances 

(EPS), which adheres cells to each other and external surfaces. EPS production allows for 

vertical growth of the colony [69] and also mediates osmotic spreading of the colony 

edge [32,37]. To determine whether the bacteria colonies were producing EPS, we stained the 

colonies with a fluorescent biofilm matrix stain and found EPS deposition throughout the 

colony (Supp. Fig. 2.11). We also observed wrinkles and surface corrugations on the colony 

surface, characteristic of EPS production and biofilm formation. To visualize the 3D colony 

structure, we used a white-light interferometer to map the 3D colony verticalization (Supp. Fig. 

2.12). The colonies on soft substrates were more vertical than colonies on stiff substrates, with 

colony heights of approximately 25 μm on soft substrates compared to 5 μm on stiff substrates. 

Compared to 3D imaging methods such as confocal microscopy or white light interferometry, 
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wide-field imaging of the colonies can be gathered in larger numbers with an automated multi-

point microscope. Thus, here, we focus on the 2D colony expansion rates as a high throughput 

metric to screen the effects of substrate stiffness on colony surface dispersal. 

This phenomenon is highlighted in Figure 2.4, which shows snapshots of whole biofilm colonies 

on PAA gels and agar substrates taken several hours after inoculation. We note that the 

reduced biofilm growth on stiff agar substrates compared to soft agar is a common feature of 

many different bacteria species, such as Vibrio cholerae, Proteus mirabilis, Myxococcus xanthus, 

and Salmonella enterica [33,49,56,57]. This inhibited biofilm growth on agar has been 

attributed to the reduction in substrate permeability found in more concentrated agar 

substrates, which limits the transport of fluid and nutrients from the substrate into the 

biofilm [33]. Another physical factor contributing to biofilm expansion rates is the surface 

tension between the biofilm and the surface, where decreasing surface tension increases 

biofilm expansion, by allowing the leading edge to propagate and advance faster [70]. 

Therefore, we measured the surface tension between a fluid droplet and the hydrogel surfaces 

with a contact angle goniometer (Supp. Table 2.3). We found that the contact angle increased 

from 15° ± 2° to 23.5° ± 1° for 4% and 8% PAA, respectively, suggesting that the effects of 

surface tension would lead to increased biofilm expansion on softer PAA gels. The strong 

increase in biofilm expansion on more concentrated PAA gels is thus unexpected from the 

effects of the hydrogel itself on surface tension (Fig. 2.3&4). We note that the colony expansion 

rates here are significantly slower than swarming expansion rates and no vortical collective 

flows are observed, which indicate that the colony is in a biofilm state in contrast to a swarming 
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state [37,71]. Cell motility, however, likely does contribute to the expansion process, as some 

subfraction of cells in a biofilm maintain a motile state [72]. 

 

Figure 2.4. (a) Representative whole-colony pictures of Serratia marcescens grown on soft and stiff agar and PAA 
substrates. While colonies size decreases on stiffer agar substrates, the opposite occurs on purely elastic PAA 
substrates. The biofilms are manually traced and pseudo-colored pink to enhance imaging contrast. Scale bar, 5 
mm. (b&c) Biofilm expansion velocity as a function of substrate stiffness (G’) for Serratia marcescens colonies 
grown on (b) PAA and (c) agar substrates, measured approximately two hours post inoculation. The varying PAA 
data is gathered at 0.15% Bis; the varying bis data, at 8% PAA. A full list of the hydrogel compositions are 
presented in Supp. Table 2.3. Data points represent n ≥ 8 measurements taken in N = 3 independent trials. 
Estimates of the apparent pore size for gels comprised of (d) varying PAA and (e) varying bis-crosslinker 
concentration (SI). The soft varying PAA gels have the largest pore size. 

To quantify the above observations, we calculate the initial biofilm expansion rates by 

calculating the boundary velocities from the tracking data. The biofilm velocity is defined here 

as the average radial displacement of the biofilm boundary over a time interval of Δt = 20 min. 

Here, we use the biofilm boundary velocity as a metric of wild-type collective expansion, not a 

direct measure of single cell surface motility or bacteria doubling time.  

Figure 2.4 shows the initial colony expansion velocities on PAA and agar substrates when radial 

expansion of the biofilms are first beginning to be observed, approximately two hours post 

inoculation.  
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Figure 2.4A shows the surface expansion rate for polyacrylamide hydrogels of increasing PAA 

concentration. We find that there is a significant increase in colony expansion rate with 

increasing substrate stiffness, particularly for substrate stiffness G’ < 5 kPa. For substrate 

stiffness greater than 5 kPa, the colony velocity seems to saturate with substrate stiffness and 

then begins to slowly decline on PAA gels (Fig. 2.4a). These results are strikingly similar for PAA 

gels with the same range of substrate stiffness but prepared by increasing bis-crosslinker (Fig. 

2.4B). We note that Fig. 2.4b serves as a control. Unlike increases in PAA, increasing the bis 

crosslinker does not significantly modify the network pore size, indicating a distinct effect of 

substrate stiffness on colony expansion. These results are entirely different from biofilm growth 

on agar substrates: the colony velocity decreases dramatically with increased agar 

concentration (Fig. 2.4c), even for substrate stiffness less than 5 kPa.  

We note that we do observe differences between hydrogels prepared by varying PAA and 

varying bis of the same hydrogel stiffness G’. These differences are most evident for soft gels, 

where G’ < 5 kPa (Fig. 2.4a&b): colonies on the varying PAA gels expand more quickly than 

colonies on the varying bis gels (p < 0.01 for G’ ≈ 3kPa). In this regime, the varying PAA gels 

have larger pore sizes (22 nm) than the varying bis gels (1.5 nm) (Table 2.1, Supp. Table 2.4). 

This result is thus consistent with the idea that larger network pore sizes increase colony 

expansion rate, allowing more nutrient-rich fluid to flow from the substrate into the colony. For 

G’ < 5 kPa, the expansion rates saturate to approximately the same magnitude, 0.3 mm/hr, for 

each case.  

Taking into account the diverse bacterial strains that colonize agar, we selected three additional 

bacterial species to test on PAA gels: Pseudomonas aeruginosa, Proteus mirabilis, and 
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Myxococcus xanthus (Methods). Given the strong effect of substrate stiffness on Serratia 

marcescens surface expansion (Fig. 2.4), we selected a soft (G’ ≈ 0.5 kPa) and stiff (G’ ≈ 5 kPa) 

PAA gel to culture these three species (Fig. 2.5). In each case, we found that biofilm expansion 

was faster on stiffer PAA than softer PAA (Methods). Pseudomonas aeruginosa and Proteus 

mirabilis are both gram-negative bacteria known to cause disease in humans. Here, we use 

Pseudomonas aeruginosa Xen05, which is derived from a human septicemia isolate, and 

Proteus mirabilis BB2000. Proteus mirabilis are well-known for their ability to swarm, a flagella-

based rapid surface motility mode, which they are capable of doing over a striking range of 

surfaces [73]. Myxococcus xanthus, a member of the δ-Proteobacteria, displays a wide range of 

multicellular emergent behaviors [42,74]. M. xanthus have two well-characterized motility 

modes, social (S)-motility powered by type IV pili [75] and adventurous (A)-motility, powered by 

an inner membrane motor that applies force to the substrate at adhesions [26,76]; they do not 

have flagella. While M. xanthus is well-known for its display of dynamic fruiting body formation 

when starved [42,74], here we focus on its collective biofilm expansion in growth media. Given 

the different motility modes of three different bacteria species, our results suggest that for 

polyacrylamide hydrogels increasing biofilm expansion rates on substrates with increasing 

stiffness is a more general phenomenon and is not unique to Serratia marcescens. 
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Figure 2.5. Biofilm expansion rates on soft (G’=0.5 kPa) and stiff (G’=5 kPa) PAA gels for P. aeruginosa, P. mirabilis, 
and M. xanthus bacteria species. Data reflects n ≥ 8  measurements over N = 2 independent trials. Error bars 
denote standard error. 

 

Biofilm force generation and associated substrate deformations  

The observed increase in biofilm edge velocity with substrate stiffness might be surprising given 

that biofilm expansion rates decrease on substrates of increasing agar concentration. Increasing 

agar concentration has the combined effect of increasing substrate stiffness, the viscous loss 

modulus G’’, and decreasing substrate permeability, which hinders the flow of nutrients to the 

biofilm. Thus, the effects of stiffness cannot be unambiguously related to colony expansion 

rates. 

What may cause substrate elasticity to increase biofilm expansion rates on polyacrylamide 

gels?  To better understand the observed enhancement in biofilm expansion with increasing 

substrate stiffness, we performed experiments in which biofilm-generated substrate 

displacements could be directly visualized via traction force microscopy-based techniques (Fig. 
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2.6). PAA deforms in proportion to applied forces and recovers completely and instantaneously 

on the release of the force. The displacements of PAA substrates are thus related to the surface 

stress, and the surface stress can be reconstructed from the displacement fields based on the 

theory of linear elastostatics [77–79]. However, if the substrate is non-linear or viscoelastic 

(such as agar), then the relationship between stress and strain is much more complicated and 

time-dependent, and the substrate stress cannot be directly reconstructed from the substrate 

displacements.  
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Figure 2.6. Serratia marcescens generate more force on stiffer substrates. (a) Schematic of the beads’ 
displacement underneath the biofilm during expansion. (b) Instantaneous displacement field (blue arrows) and (c) 
stress map of two consecutive frames during biofilm expansion. There exists a small but significant contraction 
towards the edge of the biofilm in the direction of the expansion. Scale bar, 200 µm. (d) Box-and-whisker plots of 
total accumulated traction stress applied by S. marcescens on soft and stiff polyacrylamide gels over three hours. 
Data obtained from a minimum of 7 samples from at least 2 independent trials per condition. 
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To determine whether substrate stiffness impacted the colony’s ability to generate surface 

forces, we used traction force microscopy (TFM) based techniques to measure the surface 

stress exerted on the substrate by the expanding biofilms (Fig. 2.6&7). To visualize the 

deformations of the substrate displacement, the polyacrylamide gels were embedded with 4.8 

μm fluorescence beads, which were tracked over time. Using this technique, we observed two 

main types of substrate displacement. The first type occurred in the vicinity of the expanding 

edge of the colony as transient localized hot spots on the scale of 20 μm, much larger than an 

individual bacterium (Fig. 2.6c&d). These localized regions were reminiscent of traction 

hotspots observed generated by collective motion Myxococcus xanthus cells [80]. Here, these 

transient localized pulses were more evident on soft substrates (G’ = 0.5kPa) for Serratia 

marcescens colonies than on stiff ones (G’ = 5 kPa). In addition to these hot spots, we observed 

a slower – but more consistent – inward motion of the beads toward the center of the colony 

(Fig. 2.6d&f, Fig. 2.7), consistent with the build-up of a bulk inward contractile force [63]. In 

some of the TFM-based experiments, the fluorescence beads are applied only to the surface of 

the gel to more precisely track motion only at the surface of the gel. The fluorescence particles 

typically remained in focus throughout the entire experiment, suggesting minimal z-

displacements. Assuming perfect focus at the start of the experiment, then the particles are 

displaced from center focus to half the depth of field, or 4.5 µm (0.5 x 8.5 µm) for the 10x 

objective used in these experiments, which is consistent with vertical substrate deformations 

on the order of 1-10 μm observed for Vibrio cholerae and Pseudomonas aeruginosa 

biofilms [81]. 
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Figure 2.7. Schematic representation of poroelastic stresses associated with a growing biofilm front. 

To estimate the surface forces exerted by the colony on the substrate, the surface stress was 

reconstructed from the tracer displacement maps via the finite element method [82–84] 

(Methods). The surface stress increased over time, and – surprisingly - the surface stress was 

10-fold higher for colonies on stiff substrates compared to soft ones (Fig. 2.6d): the average 

surface stress was approximately 500 Pa on the stiff gel compared to 40 Pa on the soft gel (3 hr 

time point). Typical surface strains ϵ also increased for biofilms on stiff substrates compared to 

soft ones, with surface strains at approximately 2% on stiff substrates compared to 0.5% on soft 

substrates (Methods). The large difference in bacteria force generation on soft versus stiff 

substrates indicates a strong role of substrate stiffness on biofilm expansion and biofilm force 

generation. 
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To interpret these results (Fig. 2.4, 2.6, and 2.7), we suggest a minimal model that treats 

substrate deformations as a signature of poroelastic stresses in the network driven by osmotic 

pressure differences across the growing biofilm front. In this picture, the hydrogel substrate 

behaves as a poroelastic material permeated by nutrient fluid that can move relative to this 

network. Biofilm growth proceeds as bacteria divide and begin to excrete extracellular 

polymers. Before these polymers assemble into the extracellular matrix network, they act as 

osmolytes that set up an osmotic pressure difference between the biofilm and the 

substrate [32,37,56]. Gradients in osmotic pressure draw up fluid and nutrients into the biofilm, 

which allows the biofilm front to grow and expand. Osmotic spreading of biofilms was first 

observed for bacteria on agar substrates [32,33]. As seen on agar, decreasing network pore size 

reduces fluid permeability and diminishes colony expansion. The detailed 3D flows on agar have 

not been fully resolved, and we note that on viscoelastic substrates, such as agar, 

understanding the flows and stresses in the network are complicated by the non-linear 

mechanics and viscous dissipation that alleviate stresses over time. 

Here we use polyacrylamide gels without viscous dissipation and tunable pore sizes to quantify 

biofilm expansion rates. Our results suggest that the larger stresses induced on stiffer 

substrates provides higher nutrient fluid flows that induces higher rates of biofilm growth. 

Motivated by our findings and the results of others [37,81], we propose that this fluid flow sets 

up transient stresses in the substrate network, which could drive substrate displacements in 

regions surrounding the biofilm. In a poroelastic material, fluid flows and network deformations 

are coupled. This is shown schematically in Fig. 2.6b, in which vertical indentations of the 

substrate are exaggerated to illustrate the effect of the colony osmotic pressure on the 
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substrate. Based on our experimental observations (Fig. 2.4&6), we infer that stiffer substrate 

networks more efficiently couple with fluid flows, increasing transmission of forces through the 

network and driving enhanced transport of the fluid through the network. This is shown 

schematically in Figure 2.7. On soft substrates, in contrast, local strains decay faster, resulting in 

reduced propagation and transmission of stress. The flow of fluid to relax the applied stress is 

thus localized to smaller regions resulting in reduced fluid and nutrient flux. In this way, 

substrate network stiffness may act to increase initial biofilm growth rates. If the substrate is 

viscoelastic, such as agar, then viscous stress dissipation might further reduce flow. Taken 

together, our experiments highlight complementary roles played by fluid flows and network 

strength properties of substrates on which biofilms growth. For growing Serratia marcescens 

colonies, increased substrate stiffness enhances biofilm growth rates. 

2.3 Discussion 

Bacteria are capable of transducing mechanical signals from their environment and responding 

to those cues [40,85,86], but the precise mechanisms remain largely unclear. In this article, we 

investigated the effects of substrate material properties on the biofilm expansion of Serratia 

marcescens. Using polyacrylamide hydrogels of varying composition, we found that substrate 

stiffness and porosity tune the spread of growing biofilm colonies. Our results indicated that 

increasing substrate stiffness enhances biofilm expansion rates in the limit of purely elastic 

substrates, unlike conventional agar substrates.  

Taken together, our results suggest that substrate stiffness and substrate pore size have two 

different effects on colony expansion. Increasing pore size enhances biofilm expansion (Fig. 
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2.4). This result is largely expected as a larger network pore sizes allow for enhanced diffusion 

and flow of nutrients from the substrate into the biofilm. An unexpected finding here is that 

substrate stiffness can have as big an impact on biofilm expansion rates as network pore size, 

and increasing substrate stiffness increases colony expansion (Fig. 2.4), even when network 

pore size is controlled and accounted for. 

In the case of agar, substrate stiffness and pore size are coupled. Decreasing pore size and 

permeability of the network may be the limiting factor in growth, as the biofilms have limited 

access to nutrients. Another factor on agar substrates is its nontrivial mechanical 

properties [87]. Agar has a viscous loss modulus that is as large as 50% its elastic storage 

modulus (Fig. 2.1). Thus, agar behaves as a viscoelastic solid and will dissipate applied stress 

over timescales of minutes relevant to biofilm growth. Since our data suggests that poroelastic 

stress in the network promotes fluid flows that deliver nutrients to the biofilm, the effect of 

viscous dissipation in agar substrates might further limit biofilm growth.  

Our interpretation of colony surface expansion data makes a number of assumptions and 

simplifications. Here, we measure the expansion rate of the biofilm as an important metric of 

cooperative surface dispersal. We do not ascertain to which degree expansion of the colony 

arises from increases in cell motility, cell division rates, EPS production, surfactants, or the 

amount of nutrient availability in the substrate. We do not measure specific genes transcribed 

during initial cell attachment that are required for biofilm differentiation [88]. Biofilms are 

known to preferentially form under conditions of external fluid shear flows [89], where there 

may also be continual renewal of nutrients [90]. Biofilms grown under shear conditions are 

known to express global gene expression profiles that differ from planktonic bacteria and 
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colonies grown under agar [90]; however, the production of EPS in our colonies (Supp. Fig. 2.11) 

indicates some of the bacterial cells show some characteristics of biofilm growth. 

An emerging number of studies indicate that bacteria sense surfaces by translating mechanical 

cues presented by the surrounding environment into biochemical signals through 

mechanosensitive signaling pathways [31,85,86]. At the scale of an individual bacterium, there 

are now several molecular machines identified that can read-out mechanical signals, such as 

the bacteria flagella [91–93], pili [31,85], and cell envelope ion-channels [94–96]. These signals 

allow bacteria to modulate gene expression, cellular differentiation, and virulence factors [85] 

in response to physical changes in their environment. An advantage of polyacrylamide gels is 

that we can comprise gels of increasing stiffness with minimal changes in the surface network 

by modulating the cross-linker density instead of the monomeric acrylamide. It has been 

hypothesized that biofilm activation might be faster on stiffer substrates, because bacteria 

make contact with the substrate network through force-sensitive appendages, such as flagella 

or pili, at a higher frequency, increasing the possible input for cells to differentiate into a biofilm 

state. In contrast to the view, here we find that enhanced surface dispersal of EPS-producing 

colonies occurs even under cases when the surface network is relatively unchanged (Fig. 2.4b).  

Our results are consistent with a model of bacteria colony expansion driven by osmotic 

swelling [32,33] and the poroelastic response of the underlying substrate. Here, we propose 

that in the context of bacteria colonies one source of surface stress is osmotic pressures that 

drive swelling and deswelling deformations of the gel substrate. Interestingly, swelling and 

deswelling deformations have also been recognized in traction force-based experiments in 

epithelial cell sheet systems [97]. Bacteria colonies are thought to exert different types of 
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surfaces stresses, including osmotic stress [32,33] but also friction [36] and internal contractile 

forces [81]. Our TFM based measurements represents a superposition of these effects, and 

there is currently no obvious way to decouple the stress from these different sources 

experimentally. As shown in Fig. 2.6, the substrate displacement maps measured here are 

consistent with localized transient osmotic pressures at the expanding colony edge and a long 

time global contractile force. 

 

Here we demonstrate that Serratia marcescens colonies are capable of responding to changes 

in substrate stiffness by modulating the amount of surface stress that they exert on their 

substrates, enhancing the applied stress with increasing substrate stiffness (Fig. 2.6&7). One 

possible reason is an increased activation in biofilm formation genes that increases rates of EPS 

production, which form a filamentous network that is better able to transmit forces within the 

colony and to the surface. We also find a correlation between the colony substrate stress and 

colony expansion: colony expansion is faster when the colony stress is high. Both colony 

expansion rates and colony stress increase with substrate stress, but precisely how colony 

stress and substrate stiffness modulate expansion rates is not yet clear. 

There are number of human infections involving biofilms [45,88]. Biofilms are implicated in 

cystic fibrosis, gingival disease, pneumonia, urinary tract infections, ear infections, and implant 

infections [45,88]. Serratia marcescens used in this study is an opportunistic bacterium 

implicated in a range of infections, including urinary and respiratory infections [98]. While the 

genes required for biofilm formation have been extensively studied from the point of view of 
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the microbe, there is much less known regarding the requirements for bacteria to infect the 

soft tissue of their host. A number of recent studies have illuminated the role of substrate 

stiffness on cell attachment [39,58] and growth and have demonstrated that bacteria can exert 

direct forces that remodel and disrupt host tissue [81]. Human tissues that bacteria infect vary 

in shear stiffness, ranging from 10-100 Pa for mucus and 10 kPa for lung to 100-1000 kPa for 

skin and gut [99–101]. Inflammation and disease can further alter host tissue stiffness [101–

103]. Our work here shows that the mechanical properties of extracellular environment impact 

colony expansion, which has important implications for understanding the infection of soft 

tissues in vivo.  

Our results provide compelling evidence that biofilms can respond to the mechanical properties 

of their environment beyond single cells and at the collective cell level. Our results suggest new 

models of biofilm growth that explicitly account for the effects of substrate stiffness and 

poroelastic substrate remodeling. Much more work is needed of course, and in this regard we 

note that the polyacrylamide gels presented here can be adapted to investigate the effect of 

specific adhesion factor presented on the surface or to systemically introduce substrate 

viscoelasticity [62,104]. Polyacrylamide hydrogels offer a conceptually simple platform for 

studying how substrate stiffness impacts bacteria surface dispersal and guiding our 

understanding of collective colony growth. 

2.4 Methods 

Cell culture: There were four strains of bacteria used in this study: Serratia marcescens (274 

ATCC), Pseudomonas aeruginosa (Xen05), Proteus Mirabilis (BB2000), and Myxococcus xanthus 
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(DK1622). With the exception of M. xanthus, bacteria cells were inoculated and grown in LB 

medium with shaking at 37 °C overnight. M. xanthus was inoculated and grown in CTTYE 

medium. The cell density was measured at OD600 using 1-cm cuvettes (Globe Scientific 112137) 

and a spectrophotometer (Thermo Fisher Scientific Genesys 50). Cell suspensions were then 

diluted to 0.6 at OD600 in cell medium. For all bacterial strains, 5 μL of inoculum was spotted on 

growth substrates (agar or PAA gels of varying stiffness). Cultures were then maintained at 37°C 

(or 30°C for M. xanthus) for up to 15 hours. Pseudomonas aeruginosa Xen05 was kindly 

provided by Dr. Robert Bucki (Medical University of Białystok), and Proteus Mirabilis (BB2000) 

by Dr. Karine Gibbs (Harvard University). 

 

Gel preparation: To prepare hydrogels of varying stiffness, polyacrylamide gels were prepared 

as described previously [105,106]. Briefly, polyacrylamide gels were prepared by mixing 

together acrylamide, bis-acrylamide, and distilled water at various ratios. Polymerization was 

initiated by the addition of 0.5 μL electrophoresis grade tetramethylethylenediamine (TEMED) 

followed by 1.5 μL of 2% ammonium per-sulfate (APS) per 200 μL of final gel solution. 200 μL of 

the solution were then pipetted between two glass coverslips, one treated with glutaraldehyde 

(bottom) and the other SurfaSil-treated (top) and allowed to polymerize for 20 minutes. Then, 

the top cover slip was removed from the gels, and the final dimensions of the hydrogel formed 

a disc, 18 mm in diameter and 0.8mm in height. For TFM experiments, fluorescent beads 

(4.8μm diameter Fluroro-Max polymer microspheres) were embedded in the gels by using a 

1:20 dilution of the bead solution in distilled water. The dilution was performed after 

centrifuging the bead solution and replacing the supernatant surfactant with distilled water. For 



47 
 

 

a complete list of the gel formulations used in this manuscript, please see Supp. Table 2.2 in the 

Supplementary Materials. 

 

Rheological characterization: Rheology measurements were performed on a Malvern 

Panalytical Kinexus Ultra+ rheometer equipped with a 20 mm diameter plate. The elastic gel 

solutions were polymerized at room temperatures between the rheometer plates at a gap 

height of 1 mm (30 minutes). The shear modulus was then measured as a function of shear 

strain from 2-50% at a frequency of 1 rad/sec. For agar, G’ was chosen as the shear stiffness in 

the limit of 0% shear strain. 

 

Substrate preparation and inoculation: To prepare PAA substrates for inoculation, we followed 

a protocol previously described by Tuson et al [107]. The PAA gels were washed three times 

(two ten-minute washes and one overnight wash) in phosphate-buffered saline (or TPM buffer 

for M. xanthus). The washes were then repeated with LB medium (or CTTYE medium for M. 

xanthus). Before inoculation, the substrates were removed from growth medium, allowed to 

dry for 20 minutes at room temperature, and then treated with UV sterilization for an 

additional 20 minutes. The prepared bacterial solution was inoculated onto the center of each 

gel in a 5 μL droplet. After placing the droplets, 2 μL of liquid was removed from each droplet 

with a pipette to bring bacteria in closer contact with the gel surface. 
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Imaging: Time-lapse imaging was performed with a Nikon Ti-E inverted microscope equipped 

with a 4X objective. The cultures were maintained at 37°C (or 30°C for M. xanthus) using a 

Tokai-Hit stage top incubator. Images were taken every 10 minutes for 15 hours using a 

motorized stage to capture growth at four positions along the edge of each biofilm. After the 15 

hours had elapsed, full colony images were taken with a MotiCam camera or using NIS 

Elements software to automatically stitch together multiple images taken with a 2X objective. 

 

Motility measurements: Time lapse images were loaded in custom Python scripts that allowed 

manual supervision of automated boundary detection (Video S1). The boundaries were fit to 

circular arcs, and the average length of multiple radial lines connecting subsequent arcs 

determined the biofilm velocity. (Fig. 2.2b) Velocities are measured over 20-minute time 

increments. The colony expansion rate was measured at four different imaging windows along 

the periphery of each colony, and the mean expansion rate was computed for each colony. 

Velocities were measured at the earliest time at which expansion was present across gel 

conditions, which varied by species. For the data reported in Fig. 2.4 (S. marcescens), velocities 

were measured after two hours of growth. For the data reported in Fig. 2.5, velocities were 

measured at six hours for P. aeruginosa, three hours for P. mirabilis, and ten hours for M. 

xanthus. Colony expansion rate data presented in Fig. 2.4&5 are computed from the mean of 3-

6 independent bacteria colonies per condition. Each experiment condition was verified from at 

least two separate inoculations of the bacterial stock on different days. Error bars denote the 

standard errors of the mean. 
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Traction force microscopy based methods: For TFM, bacteria were placed on PAA gels with 

embedded 4.8 μm fluorescent beads. Deformation of the PAA gel was captured by time-lapse 

imaging of the fluorescent beads during biofilm growth. The displacement field on the PAA gel 

generated by biofilm traction was calculated by correlating time-lapse fluorescence images 

relative to the first frame of the sequence with particle imaging velocimetry (PIV) [108]. The 

displacement field is then corrected for stage drift by subtracting the displacement field 

generated from the fluorescent beads’ images of the stress-free region of the PAA gel (far from 

the biofilm). The stresses that the biofilm exerts on the substrate can then be reconstructed 

from this deformation field using the finite element method (FEM) [82–84]. In brief, the gel was 

modeled as a 3D block with a thickness of 1mm. The biofilm and PAA gel were meshed with 

four-noded tetrahedral 3D solid elements using a meshing algorithm. Forces with the same 

magnitude but opposing direction to the local stresses were applied to each node. Internal 

strains and stresses were then computed based on the geometry and elastic properties of the 

gel. The stress calculated is measured relative to the (prestressed) first frame of the imaging 

sequence (accumulated stress). The computation routine was performed using MATLAB and 

ANSYS Mechanical APDL. For instantaneous stresses, the displacement field is generated by 

comparing two consecutive frames of the captured fluorescent beads images. Subsequent 

analysis follows the same protocol described for accumulated stress above. Surface shear strain 

ϵ was estimated using the relation τ=Gϵ, where τ is the surface stress given by TFM and G is the 

shear modulus measured from rheology. 
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2.5 Supplementary Materials 

% PAA % Bis G’ (kPa) 

3 0.15 0.14 ± 0.02 

3.5 0.15 (0.5) 

4 0.15 0.94 ± 0.09 

6 0.15 2.72 ± 0.13 

8 0.15 5.34 ± 0.35 

10 0.15 (10) 

12 0.15 12.0 ± 0.93 

8 0.02 0.68 ± 0.14 

8 0.05 1.62 ± 0.31 

8 0.085 (3.5) 

8 0.2 6.02 ± 0.59 

8 0.3 8.82 ± 1.09 

8 0.45 (10) 

8 0.6 11.8 ± 0.42 
Supplementary Table 2.2. Summary of hydrogel compositions and their corresponding storage modulus G’. 
Reported values are mean ± standard deviation, as measured by Malvern Panalytical Kinexus Ultra+ stress-
controlled rheometer (details in Methods section). Values in parentheses are estimated based on linear fits 
between experimental points from Figure 2.2c and 2.2d as appropriate. 

 

 

 

 

n ≥ 3 measurements 

Supplementary Table 2.3. Summary of contact angle (mean ± standard deviation) of water on the surface of PAA 
hydrogels. These measurements were made using a contact angle goniometer. 

% PAA % Bis Contact Angle 

4 0.15 15° ± 2° 
8 0.15 23.5° ± 1° 
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Supplementary Figure 2.8. Characterizing effective transport of a dye through polyacrylamide gels. (a&b) A drop 
of green food-coloring dye spreads through a PAA gel, pictured at (a) initial and (b) final (60 min) time points. The 
transport of the dye is due to fluxes arising as the gel changes state and swells or de-swells as well as due to 
molecular transport. (c) The intensity profile of the diffusing dye is fit to an error function with a specific width w 
(initial profile shown). (d) The slope of w² over time gives the effective (transport) diffusion constant D for the 
hydrogel. (e&f) The effective diffusion constant for gels with varying (e) PAA concentration versus varying (f) bis 
concentration. Results show that D decreases with increasing PAA concentration, but is approximately constant for 
gels with increasing bis concentration. These data span the stiffness range used in this work. The formulation for 
the gels shown in (e) and (f) are in order from left to right: 3% PAA, 0.15% Bis; 12% PAA, 0.15% Bis; 0.085%, 8% 
PAA; and 0.45% Bis, 8% PAA. 

 

Quantifying matrix permeability 

To quantify the permeability of the gel networks, we used a simple dye diffusion experiment 

(Supp. Fig. 2.8). Drops of green-food coloring dye were placed on the surface of the gels and 
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allowed to disperse through the gel over time. The evolution of the dye was tracked via images 

taken 10 minutes apart (Supp. Fig. 2.8a&b). Here, the image intensity correlates with the 

concentration of the dye. The intensity profile across the expanding edge of the droplet was 

well-approximated by an error function. Thus, we fit the intensity profile curves to an error 

function to obtain a profile width w over time (Supp. Fig. 2.8c&d). The width of the intensity 

profile increased over time and the effective diffusion D of the dye through the gel could be 

estimated by the slope of the w² over time (Supp. Fig. 2.8d). The diffusivity values measured in 

our gels varies from approximately 50 to 150 μm2/s. 

Here, the diffusion coefficient that we measure is an effective dispersion coefficient, which 

combines these effects of molecular diffusion and characterizes the transport of solvent as the 

gel swells. Our results suggest that a significant component of the transport is due to fluxes 

arising from a redistribution of fluid in the gel as it swells.  

 

Estimating effective matrix pore size 

Our results suggest that the development of biofilms on soft, porous substrates depends on 

both the elasticity of the gel and its permeability. The permeability of the substrate controls the 

resistance to the flow of nutrient fluxes through the gel matrix. Next, we combined rheological 

data and diffusion experiments to compute a network permeability k and estimate an effective 

pore size 𝑟𝑝 of the networks relevant to osmotic-induced spreading of bacteria colonies. 

Here, we assume that the polyacrylamide substrates act as poroelastic gels that can swell. 

Poroelastic relaxations are associated with fluxes that aim to re-establish chemically 
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equilibrated states occur in a characteristic time p. During the deformation or stressing of 

highly swollen polymer networks, mechanical deformation is coupled to the mass transport of 

solvent through the network. Localized stresses such as those exerted by a large area of the 

biofilm results in substrate deformation and causes a chemical potential gradient to develop 

within the hydrogel close to the interface. Over time, the hydrogel establishes a new chemical 

equilibrium via migration of liquid (here the nutrient solution) away or from the region under 

deformation. Due to this process, the hydrogel undergoes a load relaxation that reflects the 

time-scale to establish this new equilibrium p. The volume of the deformed region establishes 

the volume of the nutrient that must migrate, the relaxation process depends on the area over 

which the gel is deformed or chemical stressed are induced  

To estimate the permeability k of a gel, we first note the equation relating the (poroelastic) 

diffusivity 𝐷 to the shear modulus 𝐺, the Poisson ratio 𝜈, the permeability 𝑘, and the medium 

viscosity 𝜂,  

𝐷 =  
2(1−𝜐)

(1−2𝜐)
 
𝐺𝑘

𝜂
 . 

The diffusivity provides the length scale √𝐷𝑡  over which nutrient concentration is transported 

due to fluid fluxes (local induced pressure gradients) in a time 𝑡 due to imposed deformations. 

The Poisson ratio 𝜈 characterizes the ability of the gel to swell. The permeability, Poisson ratio 

and the shear modulus depend on the degree of swelling of the gel.  

The effective poroelastic diffusion coefficients for different PAA substrates 𝐷,  are roughly 

estimated by analyzing the radial spread of a small molecule dye (Supp. Fig. 2.8) that can be 

transported by and move with fluid in the presence of fluxes, and the shear modulus G is 
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measured via oscillatory tests (Fig. 2.1). Previous studies reported an estimated Poisson ratio of 

around 0.25-0.4 for PAA gels with concentrations of 5 wt% monomer when swollen 

significantly, which we choose to measure here a compression experiment using the rheometer 

(Supp. Fig. 2.9). Knowing 𝐷, 𝐺, 𝜐, and using the viscosity of the solvent permeating the gel 

(approximating it to be that of water), we can compute the permeability 𝑘.  

To calculate the Poisson ratio, we use a parallel-plate rheometer to apply a small uniaxial 

compression. The gel thickness, H = 1.0 mm, is compressed by a vertical amount ≪ 𝐻. The top 

plate of the rheometer is a flat disc of radius 𝑅 and the volume of the indented region is 

𝜋𝑅2𝛿. The normal force on the top plate from the sample is measured over time (Supp. Fig. 

2.10). Here the gel is unjacketed and kept in a medium that allows for motion of fluid through 

the outer boundaries.  

Upon compression, the normal force exhibits a steep instantaneous rise in value, which 

subsequently relaxes over time. At short times, the gel behaves as an incompressible material 

since the fluid does not have time to flow out of the region – this provides an instantaneous 

load 𝐹0 that eventually relaxes to a long-time limiting value 𝐹∞. Ignoring the effects of 

tortuosity and assuming that the final state of indentation allows the gel to relax to a Poisson 

ratio that is its equilibrium value, we use the relationships [109–111] 

𝐹0

𝐹∞
≈  2(1 −  𝜈) 

and 

𝑟𝑝  ≈ 2 (
𝜂

2
 
𝐷(1−2𝜈)

𝐺(1−𝜈)
)

1

2
 . 
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Supp. Table 2.4 summarizes the elastic and transport coefficients measurements from this 

work. Our estimated Poisson ratios are in the range of 0.43 to 0.49 (Supp. Table 2.4). Assuming 

the viscosity of the fluid permeating the gel is close to that of water and ignoring the effects of 

tortuosity within the gel, the estimated mean pore size is in the range of 0.8 to 22 nm (Supp. 

Table 2.4), consistent with prior measurements. Note that the shear modulus does depend on 

the confinement and the compression. For small compressions, we may approximate the shear 

moduli by the uncompressed values.  

 

% PAA % Bis G’ (kPa) Poisson Ratio Pore size (nm) 

3 0.15 0.14 ± 0.02 0.43 ± 0.06 22 ± 5.6 

12 0.15 12.0 ± 0.93 0.49 ± 0.01 0.85 ± 0.14 

8 0.085 (3.5) 0.49 ± 0.01 1.5 ± 0.11 

8 0.45 (10) 0.49 ± 0.01 0.9 ± 0.07 

Supplementary Table 2.4. Parameters used to estimate effective pore size. 

 



56 
 

 

 

Supplementary Figure 2.9. Normal force relaxation of PAA gels.  Representative normal force decay curves from 
uniaxial compression of different PAA gel compositions. 5% uniaxial compression was applied to each gel and the 
normal force decay was measured with a parallel plate rheometer equipped with a 20 mm plate. The Poisson ratio 

𝜈 was then given by 
𝐹0

𝐹∞
≈  2(1 −  𝜈), where 𝐹0 is the initial jump in force when the compression is applied and 𝐹∞ 

is the final value of the force after three minutes of observation. We conducted three independent trials per 
condition to compute a mean and standard deviation. 

 



57 
 

 

 

Supplementary Figure 2.10. Automated biofilm boundary detection algorithm. (a) An unprocessed biofilm image. 
(b) Canny edge detection produces a binary image. (c) A circular kernel nine pixels wide smooths the boundaries 
and closes broken lines. (d) The function cv2.findContours identifies the boundaries around contiguous regions, 
each shown here in a different color. The segment with the longest edge-to-edge distance matches the biofilm 
boundary but often includes erroneous features around the finite edges of the image. (e) Since the boundary 
consistently intersects the edge of the picture, these erroneous features are easily removed by cutting the biofilm 
boundary segment at the picture edges. (f) The coordinates identified with this method follow the biofilm 
boundary with high precision. (g) Zoomed-in snapshot of boundary from (f). 

 

Supervised biofilm boundary detection 

The quantitative metric of biofilm growth used in this study is biofilm boundary velocity. To 

calculate the boundary velocity from a sequence of time lapse images, image processing is used 

first to automatically detect the coordinates of the biofilm boundary for each image. Then the 

detected boundary is manually verified and, if necessary, corrected before being further 

processed as explained in the Methods section. 

The automatic boundary detection and manual correction steps were integrated into a single 

Python script to increase efficiency and ease of use. Highly detailed edge boundary coordinates 

can be extracted from many images in this way. 
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The Python implementation of the OpenCV library [112] is used to implement the steps of the 

automatic boundary detection algorithm. Using the Anaconda distribution of Python, OpenCV 

can be installed as pip install opencv-contrib-python, and then used in scripts with 

import cv2. Loading images is accomplished with the PIMS package. 

The automatic boundary detection algorithm consists of the following steps: 

1. Canny edge detection (cv2.Canny) 

This produces a binary image where edges are shown as white pixels, and the rest of 

the image is black. Two parameters, a minimum and maximum gradient threshold 

are the only inputs. 

2. Morphological closing (cv2.morphologyEx) 

This step closes the broken lines often produced by Canny edge detection by first 

dilating white pixels (i.e. outlining white pixels in white by a specific thickness, or 

kernel size), which bridges the gaps between nearby regions, and then eroding the 

white pixels using the same kernel size to obtain the same edge thickness as before. 

3. Closed contour identification (cv2.findContours) 

This function identifies all the contiguous white regions in the image and returns the 

contour boundary positions for each one. The contour with the longest edge-to-

edge distance consistently matches with the biofilm boundary (Supp. Fig. 2.10e). 

4. Contour segmentation 

This step removes the portions of the closed contour that lie on the image edge, 

removing erroneous edge features and leaving line segments that extend from edge 

to edge of the image (Supp. Fig. 2.10e). 



59 
 

 

5. Segment selection 

Finally, the segment with the longest end-to-end distance is displayed as the 

predicted biofilm boundary. 

Occasionally, an imperfection in the gel surface can get identified as part of the biofilm 

boundary. To address this issue, we developed a GUI that allows the user to click on a point on 

the automatically identified boundary and manually draw a new segment portion that ends on 

the boundary or the image edge. These manually drawn points replace the erroneously 

identified points, and the coordinates of the resulting biofilm boundary are saved by the user 

when all corrections are complete. A demo is shown in Video S1.  

Taken together, this semi-automated boundary tracking code significantly reduces time spent in 

analysis. A typical experimental trial generates 1,000-2,000 images (12 individual colonies in a 

multi-well plate x 4 locations per colony x 3 frames/hr x 10 hours). Manual tracing of this many 

boundaries, in ImageJ with a digital pad for example, would require multiple days to complete. 

Using this code, 1000 individual images can be analyzed and verified for boundary identification 

in about one hour. The full code is available via Github at https://github.com/masp01/SUBII-

Trace, along with sample biofilm images. Any data used in this study is available upon request. 

The resolution of this technique depends on the closing kernel radius (step 2). Here, we used 

4.5 pixels, or 14.5 µm with our 4x objective, which is larger than an individual cell but much 

smaller than the length of boundaries (several mm).  

 

 

https://github.com/masp01/SUBII-Trace
https://github.com/masp01/SUBII-Trace
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Biofilm matrix fluorescent imaging 

To determine whether the bacterial colonies are excreting EPS, after 15 to 24 hours of growth, 

Serratia marcescens colonies were stained with Invitrogen Film Tracer SYPRO Ruby Biofilm 

Matrix Stain (Thermo Fisher F10318) according to the manufacturer’s instructions. Supp. Fig. 

2.11 shows a representative image of a biofilm with positive matrix staining. Adding the matrix 

strain slightly disrupts the colony structure, resulting in a diluted mixture as seen in the image. 

 

 

Supp. Figure 2.11. EPS fluorescent staining indicating biofilm development. The edge of the Serratia marcescens 
colony after 15 hours of growth is present in the upper-left corner. Biofilm matrix stain was applied to the surface 
of the biofilm, revealing regions of concentrated EPS that indicate biofilm development. Scale bar is 1 mm. 
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Supplementary Figure 2.12. Three-dimensional landscape of bacteria colonies.  The 3D colony landscape was 
mapped with a white light interferometer (Bruker CONTOURX-200). Representative interferometer images for 
Serratia marcescens colonies on: (a) a soft, 500 Pa gel (3.5% PAA, 0.15% Bis) and (b) a stiff, 5 kPa gel (8% PAA, 
0.15% Bis). 

Captions for Supplementary Videos (available online) 

Video S1: Demonstration of the GUI that implements the automated boundary detection 

algorithm, allowing the user to quickly verify the boundary quality and make manual updates. 

Video S2: Representative Serratia marcescens biofilm growing on a soft polyacrylamide 

hydrogel (G' = 0.9 kPa). This video was taken with a 4X objective at 10 minutes/frame for 15 

hours. Playback is at 4200 x real-time speed. 

Video S3: Representative Serratia marcescens biofilm growing on a stiff polyacrylamide 

hydrogel (G' = 3 kPa). This video was taken with a 4X objective at 10 minutes/frame for 15 

hours. Playback is at 4200 x real-time speed. 

Video S4: A Serratia marcescens biofilm growing on a soft polyacrylamide hydrogel (G’ = 0.9 

kPa) with 4.8 µm diameter fluorescent beads embedded in the gel to display substrate 

displacements. During the first loop, the biofilm is shown in brightfield. During the second loop, 

only the fluorescent beads are shown. During the third loop, an outline indicating the biofilm 

boundary is overlaid. This video was taken with a 10X objective at 10 minutes/frame for 

approximately 1.5 hr. Playback is at 4200 x real-time speed. 

 

  

https://academic.oup.com/pnasnexus/article/1/1/pgac025/6569128#supplementary-data
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3. Phenotypic similarity measures redundancy of genes 

This chapter is based on the article “Phenotypic similarity is a measure of functional redundancy 

within homologous gene families,” posted as a preprint to bioRxiv in 2022, and coauthored by 

myself, Jessica Comstock, Fatmagül Bahar, Isabella Lee, Alison Patteson, and Roy Welch. The 

manuscript was written by Jessica Comstock and myself, with editorial work by Alison Patteson 

and Roy Welch. The original experiments upon which my analysis was based were performed by 

Fatmagül Bahar. Isabella Lee aided me in the development of the analysis code and manual 

observation of time series data. Manual phenotype analysis was performed by Jessica 

Comstock. 

3.1 Introduction 

A reverse genetics approach to characterizing a gene often begins by disrupting or deleting the 

gene and observing the resulting phenotype. Differences between the mutant and wild-type 

phenotypes can provide invaluable insights regarding gene function(s), but in practice many 

single-gene knockouts, even those in genes predicted to be important based on previously 

studied homologs, yield phenotypes that are relatively minor or indistinguishable from the wild-

type organism [113,114]. This robustness to the phenotypic impact of genetic mutation is an 

important part of an organism’s phenotype and has implications for fitness.   

Robustness is commonly attributed, at least in part, to functional redundancy, or the tendency 

for functionally similar genes to compensate for the role of a disrupted gene [115]. Functional 

redundancy can arise through many mechanisms including duplication and divergence, where 

reduced selective pressure can cause paralogs to accumulate mutations and take on new, 

https://www.biorxiv.org/content/10.1101/2022.07.25.501402v1
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slightly different functions over time [116,117], 2002). Paralogs that are maintained over long 

timescales often retain some of their ancestral function in addition to their diverged 

function [118,119], thus building in redundancy. Repeated gene duplication events can give rise 

to large gene families wherein genes have a range of biochemically similar but specialized 

functions. Though many homologs in a gene family may be capable of performing a similar 

function, due to divergence it is difficult to predict which genes might be able to compensate 

for the function of others. The most recent duplicates within a gene family are not always 

capable of being functionally redundant while some older and more diverged paralogs 

are [120]. Sequence similarity alone is not enough to predict functional redundancy, and the 

extent to which duplicates contribute to robustness varies across organisms [121].  For these 

reasons, it is unclear to what extent families of homologs are contributing to the functional 

redundancy that gives rise to robustness in biological systems.    

Many studies attempting to elucidate functional redundancy in the genome involve the 

creation of single and double knockouts of paralogs to probe for synthetic lethality [122–124]. 

While this method is effective in assessing functional redundancy in pairs of closely related 

genes, it is limited in its power to explore larger networks of redundancy, as may exist in 

expanded gene families. A double mutant that does not show a more significant phenotype 

than each of the corresponding single mutants could imply either that the genes are non-

redundant, or that they are part of a larger redundancy network that has a strong buffering 

capacity and therefore has decreased fragility in the face of genetic perturbation [125]. In this 

way, phenotype is often the readout for assessing redundancy and robustness within biological 

systems. The phenotypic impact of mutation reveals information about robustness, and we can 
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investigate the mechanisms that lead to robustness by considering gene sequence, so 

understanding how redundancy affects robustness is a crucial genotype-to-phenotype 

question.   

Any given gene processes the flow of information from precursors, producing outputs that feed 

into other networks or cellular functions. In a simple case of non-redundancy, a gene produces 

one protein with a primary function, and when this gene is intact, expresses a wild-type 

phenotype (Fig. 3.1A). A mutation in this gene would severely impact the fitness of the 

organism. However, if a given gene is part of a network of structurally similar genes which each 

have their own primary function but also retain some ancestral function, as in gene families 

that arise from duplication, the impact of a mutation can be diffused through the other 

members of its network, producing a relatively minor deviation in phenotype. Redundancy 

networks (Fig. 3.1B), which we here define as the group of two or more genes whose products 

can compensate for the loss of function of one another, allow for the rerouting of information 

through alternative pathways so that the end result has a minimal impact on fitness. As shown 

in Figure 3.1C, an additional byproduct of this buffering effect is that knocking out one member 

of a redundancy network should produce a similar phenotype as knocking out any other 

member of that group, because the entire set of genes is affected no matter which component 

of the network is disrupted by mutation. In this way, phenotypic similarity may be an important 

indicator of functional redundancy within homologous gene families and may provide insights 

into the level of robustness in a genome. Further, because a gene’s redundancy network likely 

overlaps significantly with its family of homologs due to the relationship between protein 
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structure and function (Fig. 3.1D), we predict that mutations in genes from within the same 

gene family will be more phenotypically similar.   

 

Figure 3.1. Functional redundancy resulting in phenotypic similarity. (A) In a pathway with no redundancy, Gene A 
contributes to Function A. Any mutation that renders Gene A nonfunctional would produce a severe phenotype or 
lethality if Function A is essential. (B) Genes A, B, and C belong to the same redundancy network, meaning each 
gene can compensate for the loss of function of one member of its network. In the scenario where all three genes 
are functional and operating optimally, each gene contributes to its primary function (for example, Gene A is 
responsible for most of the contribution to Function A), producing the wild-type phenotype. (C) When a mutation 
occurs that renders Gene A nonfunctional (top), the input to Gene A gets rerouted through Genes B and C such 
that Function A can still occur, but in a slightly reduced capacity (indicated by thickness of arrows compared to 
panel B). Since Genes B and C are processing more input from A, Functions B and C are also affected and operate 
at a reduced capacity. The slight reduction in function of all three network components produces a phenotype that 
is relatively minor and may be indistinguishable from wild-type. A mutation in Gene C (bottom) would result in a 
similar phenomenon, where the input that normally feeds into Gene C is processed by Genes A and B, resulting in 
overall decreased output from each. In this model, a mutation in one member of a redundancy network affects the 
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output from all components regardless of which gene contains the mutation (indicated by the similar output arrow 
size of top and bottom of panel C), and we predict that mutations in members of the same redundancy network 
will produce similar phenotypes. (D) Though not every member of a gene family is functionally redundant, and 
there may be redundant genes that do not belong to the same gene family, the relationship between structure and 
function of proteins dictates that genes in the same redundancy network are likely to come from the same gene 
family. If redundancy networks come primarily from the same gene family, and components of redundancy 
networks show similar mutant phenotypes, then members of the same gene family would be more likely to 
produce the same mutant phenotype. (E) Similarity of the protein sequences used in this study by 
multidimensional scaling. Each point represents one gene, with a Gaussian kernel density estimate to guide the 
eye. Proteins that are more similar in sequence, belonging to the same gene family, cluster together. Each gene 
family forms a single cluster with the exception of the ABC Transporters, which form two major clusters due to the 
different subunits. The highly conserved ATP-binding domains [126] separate very distinctly from the periplasmic 
and substrate-binding domains. We predict that mutations in genes that belong to the same gene family will be 
more phenotypically similar than they will be to mutant phenotypes in other paralogous gene families. Thus, we 
expect phenotype to cluster by gene family. 

To test this, we phenotypically characterized over 250 single-gene mutations in Myxococcus 

xanthus, a soil bacterium with a large genome containing multiple homologous gene 

families [127] and examined the relationship between gene family and phenotype. Under 

nutrient stress, swarming cells of M. xanthus undergo development, aggregating into 

multicellular fruiting bodies wherein populations of cells will differentiate into spores [128] (Fig. 

3.2A). Since the ability of M. xanthus to form fruiting bodies and sporulate is directly tied to its 

fitness, it is likely a robust biological process that involves many functionally redundant genes. 

We generated a library of microscopic time-lapse movies (time series) showing the 

development of 265 knockout strains of M. xanthus belonging to four different gene families 

(102 ABC transporter genes, 45 NtrC-like activators, 80 One component signal transduction 

genes, and 38 ECF sigma factors; see references [21,56,129] for previous work on some of these 

genes in M. xanthus). We made qualitative observations of the ways in which resulting 

phenotypes differed from wild-type and used these observations to inform a novel image 

processing and phenotypic analysis pipeline that automates quantitative measurements of 

phenotype that are explicitly defined. Although previous studies have used image processing to 

extract phenotypic features of aggregate formation [130], this work has applied these tools to 
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the largest library of time series of which we are aware, necessitating a new pipeline and 

analysis methods. Finally, we compared the similarity of phenotypes across gene families using 

principal component analysis (PCA). We found that, just as mutant strains within a gene family 

cluster by sequence similarity through multidimensional scaling (Fig. 3.1E), they also cluster by 

gene family in the phenotypic feature space with a statistically significant sharpness (i.e. small 

cluster size) and separation of clusters, indicating large networks of redundancy within these 

gene families. 

3.2 Results 

Manual Characterization of Development Phenotypes 

Under starvation, a swarm of M. xanthus cells will execute a developmental program during 

which millions of rod-shaped cells coordinate their movements and self-organize into dome-

shaped multicellular aggregates. Some nascent aggregates destabilize and disperse, but most 

persist and continue to grow; when the persisting aggregates become large enough, cells in the 

middle of each differentiate to form a cluster of spores, at which point they are considered 

mature fruiting bodies (Fig. 3.2A). Capturing this process with time-lapse brightfield microscopy 

results in a time series of grayscale images where initial aggregates appear roughly circular with 

irregular boundaries, somewhat darker than the background swarm.  Later in the time series, 

dispersing aggregates shrink and disappear, and the persisting ones grow and darken, with 

boundaries that become stable and clearly defined (Fig. 3.2B). Image features such as these can 

be leveraged to compare development phenotypes between wild-type and mutant M. xanthus 

strains.    
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For this study we recorded 24-hour time series for wild-type and a set of 265 single gene 

knockout mutant strains (Supp. Table 3.4), with an average of three replicates per strain. Due to 

their important roles in signal transduction, transport, and transcriptional regulation, we 

predict that genes within these families will be part of redundancy networks to ensure 

robustness. We compared the mutant phenotypes to our wild-type strain with an emphasis on 

aggregate composition and dynamics. Wild-type aggregation initiated at 9.2±1.6 hours and 

formed uniformly dark circular aggregates with stable and clearly delineated boundaries within 

24 hours (Fig. 3.2B). Mutant strains that consistently initiated aggregation either before or after 

wild-type were designated “early” or “late”, respectively. Mutant strains that consistently 

initiated aggregation at the same time as wild-type but had aggregates that failed to darken 

and/or form clearly delineated boundaries were designated “immature” (Fig. 3.2C). Mutant 

strains that initiated aggregation at the same time as wild-type but then all the aggregates 

dispersed within 24 hours were designated “fall apart” (Fig. 3.2D). Mutant strains that initiated 

aggregation at the same time as wild-type but then all the aggregates dispersed and then re-

aggregated within 24 hours were designated “aggregate-reaggregate” (Fig. 3.2D). Mutant 

strains that consistently matched all aggregation criteria and were indistinguishable from wild-

type were designated “Like Wild-Type” (LWT). Finally, Mutant strains where the replicates 

displayed different developmental classifications were designated “variable”.  

Distribution of Manual Development Phenotypes within each Gene Family 
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Of the mutant strains characterized in this study, less than 10% failed to initiate aggregation at 

all, and 62% consistently produced fruiting bodies that were qualitatively comparable to wild-

type by the end of the 24-hour window. An additional 20% of mutants were able to initiate 

aggregation, but aggregates remained immature; some of these strains may have formed 

mature aggregates if the time series extended longer than 24 hours.   

We hypothesize that the relatively high success rate of aggregation in these mutants is due, at 

least in part, to M. xanthus development being a robust phenotype. If redundancy networks are 

contributing to functional redundancy to produce this robustness, then, according to the 

hypothesis portrayed in Fig. 3.1, mutants within the same gene family will be more 

phenotypically similar. As an initial test of our hypotheses, we sorted the mutant strains into 

their gene families and visualized the proportional representation of our developmental 

phenotype classifications (Fig. 3.2E).  The distribution of some phenotypes did seem to favor 

specific gene families. For example, LWT strains made up over half of the ABC Transporter 

family, the early aggregating strains compose nearly half of the ECF sigma factor family, and 

about one third of the One component family produce variable phenotypes in different 

replicates.   

The manual categorization of development phenotypes presented here serves two purposes. 

First, it provides support for our hypothesis that M. xanthus development is as robust a 

phenotype as we expected, making it a suitable phenotype for observing the extent of 

functional redundancy networks in gene families. Second, though we do not claim these data 

alone provide sufficient evidence for the existence of redundancy networks, as the data show 

only the most obvious associations between gene family and phenotype, these qualitative 
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observations do provide information about the various ways in which phenotype can differ 

during development. This was used to inform a more systematic, quantitative, and 

multidimensional characterization pipeline to test our remaining hypothesis about phenotypic 

similarity among families of paralogs: if redundancy networks contribute to robustness, and if 

those networks are comprised primarily of genes within the same family, then a grouping of 

mutant strains based on phenotypic features should also group the strains according to gene 

family. 

 

Figure 3.2. Manual categorization of M. xanthus development. (A) Upon sensing nutrient stress, vegetative M. 
xanthus cells undergo a developmental process that culminates in spore-filled fruiting bodies. (B) Wild-type M. 
xanthus cells on TPM agar begin to cluster into early aggregates after 9 hrs of starvation (blue arrow), and as more 
cells join the premature aggregates over the course of 24 hours, the aggregates mature into fruiting bodies that 
appear round and dark with conventional brightfield microscopy. Mutant strains that show initial aggregation 
either before or after the average time for wild-type are assigned the early aggregation (orange arrow) and late 
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aggregation (yellow arrow) phenotypes, respectively. Scale bar 500 µm. (C) Like wild-type (LWT) mutants that 
produced dark, circular fruiting bodies on a timeline similar to wild-type (left), non-aggregating mutants (center), 
and mutants that produced immature aggregates (right). Scale bar 500 µm. (D) Some mutants formed initial 
aggregates that eventually shrank and fell apart (top). Other mutants formed initial aggregates that fell apart 
before re-aggregating into mature fruiting bodies (bottom). Scale bar 100 µm. (E) Distribution of development 
classifications within each gene family. 

Automated Characterization of Phenotypes 

We developed and implemented an automated image processing pipeline in Python (see 

Methods, SI). Using it, we were able to identify and track every aggregate in all the time series, 

recording changes in aggregate number, position, size, shape, and gray value. In total, our 

pipeline captured the developmental dynamics of more than 150,000 aggregates, both 

dispersing and persisting. These data were analyzed to determine the timing and position of 

significant changes in swarm dynamics, such as the initial onset of aggregation, the average 

aggregate growth rate, and the rate of change in aggregate gray value; these quantitative 

features serve as an unbiased and more accurate replacement for the manual phenotypes 

“early”, “late”, “immature”, “LWT”, and “variable”.  

We identified 18 quantitative features (Fig. 3.3) to represent and measure the variation 

observed in the wild-type and mutant strains. For each time series, we calculated a list of these 

18 numbers, mapping it to a single point in an 18-dimensional feature space. Distance between 

points in this feature space is a measure of phenotypic dissimilarity. To reduce the complexity 

of this data and visualize it, we used principal component analysis (PCA), a deterministic 

method with no additional input parameters, to reduce the feature space to two dimensions, 

PC1 and PC2. The distribution of points on a two-dimensional map of PC1 versus PC2 captures 

the phenotypic features that vary the most across the dataset, while discarding those 

combinations of features that vary less. 
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Figure 3.3. Automated quantification of fruiting body formation phenotypes. (A-C) Features related to global 
fruiting body development (D-F) Features related to fruiting body fate (A) A representative curve showing total 
fruiting body area over time in a 7.2 mm² field size. Images are shown of aggregation at start time, peak time, and 
final time (24 hours), all measured as time elapsed since inoculation (t=0). The slope of the dotted line in (A) gives 
the average growth rate, a key phenotypic feature. (B) Representative histograms from the same time series of 
average fruiting body area at peak time and (C) final time. The mean and standard deviation of these distributions 
are key phenotypic features. (D) Five representative time lapse images show fruiting body fate, either to persist or 



74 
 

 

disappear after 24 hours of development. (E) Area versus time curves for each identifiable fruiting body in the 
same time series. For non-persistent fruiting bodies, the point of peak area is marked with a cyan circle. Two key 
features are the fraction of total identifiable fruiting bodies that persist (in this case, 32%, or 42 of 132), and (F) the 
standard deviation of the time at which non-persistent fruiting bodies peak in size (temporal coherence). 
Developmental dynamics can distinguish between time series of different homologous groups, as illustrated in (G) 
the curves for median total fruiting body area over time (quartiles bound the shaded regions, and outliers are 
bounded by the dotted lines). These variations are captured by 18 phenotypic features, with quantitative 
definitions given in Supp. Table 3.3. 

The most significant phenotypic features are revealed by the makeup of the first two principal 

components, PC1 and PC2 (Table 3.1). These two components together account for 43% of the 

total variance. The constituent parts of both principal components represent a broad array of 

many different features, with no single outstanding feature. However, there are significant 

differences between PC1 and PC2. PC1 primarily represents growth rate, mean and standard 

deviation in fruiting body area at peak time, and mean and standard deviation in fruiting body 

area at final time. PC2, while sharing mean and standard deviation in area at peak time with 

PC1, also represents features involved with timing, including growth time, peak time, and 

temporal coherence. These developmental features with definitions are illustrated in Fig. 3.3. 

Although PC2 shares some key features with PC1, its correlations are different. For example, a 

high value in PC2 indicates high standard deviation in aggregate area and low growth rate, 

whereas a high value in PC1 indicates high standard deviation in fruiting body area and high 

growth rate. 
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Table 3.1. Makeup of PC1 and PC2 by phenotypic feature. Each primary component is a direction or vector in the 
18-dimensional phenotype space, with its makeup shared to varying degree by each feature, with either a positive 
(blue) or negative (red) correlation. PC1 captures the direction of greatest variance in the overall dataset, and PC2 
is the direction perpendicular to PC1 that captures the next greatest amount of variance. The features most 
strongly represented in each primary component are those that have the greatest potential to distinguish time 
series phenotypically across the dataset. Each feature is numbered according to its prevalence in PC1. 

Each of the four homologous gene families used in this study has a different number of genes, 

and therefore each family is not represented by an equal number of mutant strains. This 

presents a potential bias towards over-represented gene families if PCA were to be performed 

on the entire dataset. To address this, we performed the PCA multiple times on random 

samplings of the time series such that each gene family is always equally represented (see 

Methods). We found that across all such samplings of the full dataset of over 1000 time series, 

the gene families always form clusters in distinct parts of two-dimensional phenotype space 

(Fig. 3.4), with clusters representing a different “typical” developmental phenotype for each 

gene family. There was significant overlap between the clusters, so that the differences 

between clusters only became apparent when using a sufficiently large sample size to visualize 
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an estimate of the probability density. The PCA analysis therefore agrees with the manually 

derived developmental classifications presented in Fig. 3.2, in that mutant strains from each 

gene family display a full spectrum of phenotypes, but there are specific phenotypes that each 

family exhibits with higher frequency. 

 

Figure 3.4. PCA reveals typical phenotypic features for each homologous family. (A) Each point represents a single 
time series, placed by phenotype according to values of PC1 and PC2. Units for PC1 and PC2 are arbitrary, but (0,0) 
represents average behavior. Behind points is displayed an estimation of the probability distribution function, 
using Gaussian kernel density estimation. Higher probability is plotted with higher opacity, revealing phenotypic 
clusters in each gene family. Outlined in red is a phenotypic zone containing only time series that exhibit little to no 
aggregation, a severe phenotype. Outside the red zone are successful fruiting body formation time series. An 
arrow points to a time series typical of the cluster, shown in: (B) The typical phenotype in each gene family cluster, 
illustrated with three frames from a representative time series, taken at 4 hours, 8 hours, and 16 hours after 
inoculation. Scale bars 100 μm. (C) Only the probability distribution estimates for each gene family are shown, 
illustrating both separation and overlap in phenotypic behavior. The directions of seven key phenotypic features 
are shown to indicate the coupled meaning of PC1 and PC2. Values of each feature increase in the direction of 
each respective arrow, with the length of the arrow indicating how much motion in feature space is caused by a 
fixed increase in the value of that feature, i.e. how significantly the feature is expressed by the two principal 
components. 
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The phenotypic cluster of ABC transporter mutants and ECF sigma factor mutants each show a 

distinct but consistently successful method of fruiting body formation, whereas One 

component mutants tend to vary widely phenotypically or form immature aggregates, and a 

plurality of NtrC-like mutants fail to form fruiting bodies entirely, as shown in the insets in Fig. 

3.4B. Expanding on the comparison between the automated and manual phenotyping, we see 

that the phenotypic PCA clusters are not only consistent with the results of Fig. 3.2, but may 

also explain why a particular phenotype, such as “early aggregation” for the ECF sigma factor 

mutants, is expressed more often than for other homologous groups: a set of redundant genes 

robustly produces a minor mutant phenotype which shares multiple features in their 

aggregation formation dynamics, among which is an early aggregation time. Variability in 

phenotype can now also be measured by the spread of replicates in phenotype space, instead 

of needing to be classed as a separate phenotype unto itself. Representative visualizations and 

a basic measure of the spread of strain replicates are presented in Supp. Fig. 3.6.  

There are two generic features of the way in which phenotype clusters form for each gene 

family. First, the separation between clusters indicates that mutations in each homologous 

group affect phenotype in a distinct way. Second, the size of each cluster’s individual peak 

points to how often each similar phenotype is expressed within the homologous group. Clusters 

in the PCA output were shown to be both separated and small with high statistical significance 

(with p-values of 10-5 and 0.0083 respectively) when compared to random groupings of time 

series instead of grouping by homologous group (Supp. Fig. 3.5).  

By manually reviewing each time series that fell near a phenotypic cluster, we determined that 

each represented a coherent overall phenotype with only a small number of outliers. 
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Significantly, a developmental phenotype that could be considered severe, little to no 

aggregate formation, was shown to vary throughout the dataset, and the NtrC-like activators’ 

typical phenotype was shown to be a distinct form of failure to aggregate in which there was 

still bacterial motility, but little to no departure from a uniform swarm layer. Details on each 

typical phenotype and the metric values that distinguish them are available in the SI.  

Our decision to characterize developmental phenotype via aggregate dynamics may have had a 

negative impact on our ability to differentiate the severe phenotypes that exhibit little to no 

aggregation. There is an identifiable phenotypic zone in the PCA output that represents little to 

no aggregation, as outlined in red in Fig. 3.4A. However, even within this zone, different 

behaviors are still distinguishable, and there is separation between homologous gene families. 

This is shown by the NtrC-like activators and One component mutants tending to occupy 

different phenotypic territory within the red outline. Differences in the dynamics of small, 

transient aggregates still hold significance in identifying typical behaviors across gene families.  

Our observation that PCA of phenotypic metrics recapitulates homologous families of mutant 

strains indicates that phenotypic similarity and sequence identity are positively correlated 

across a genome, but this correlation does not scale down to fine-grained genetic differences. 

We observe that, within a homologous gene family, pairwise sequence similarity in this dataset 

correlates only weakly with phenotypic similarity, and therefore it is not an effective predictor 

of phenotype between pairs of genes within the same family (Supp. Fig. 3.6), consistent with 

previous findings [121]. The phenotype clusters for each gene family are populated by 

replicates of many mutant strains in that family, both the genetically similar and dissimilar. For 

the ABC transporters, 56% of strains (20 of 36) have replicates within the phenotypic cluster. 
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This is also true for 24% (8 of 34) of NtrC-like activator strains, 39% (15 of 38) of ECF sigma 

factor strains, and 64% (16 of 25) of One component strains. Fine-grained genetic similarity is 

not necessary for redundancy to exist, and redundant gene networks may be quite large.  

Taken together, Fig. 3.4 demonstrates that different homologous gene groups are likely to 

contain redundant gene networks, which each produce a distinct minor mutant phenotype. 

3.3 Discussion 

Goldman et al proposed that the expansion of the M. xanthus genome due primarily to 

duplication and divergence has led to an enrichment of some gene families, especially those 

involved in cell signaling and transcriptional regulation, over others [127]. This asymmetry of 

enrichment is notable because it implies a purpose for the expansion of specific gene families. 

We propose at least part of that purpose is to create functional redundancy networks that act 

as buffers to stabilize M. xanthus development (i.e. robustness). In this study we confirm that 

M. xanthus development meets the criteria of a robust phenotype, by showing that more than 

250 mutant strains with disruptions in genes that are part of four large homologous families 

display severe developmental phenotypes very infrequently. We then provide support for our 

hypotheses regarding the existence of redundancy networks by quantifying the phenotypes of 

these mutant strains and observing that using PCA to map phenotypic feature space also 

clusters the mutant strains according to the four homologous gene families.  

Paralogs within a gene family may share similar molecular mechanisms, but they are expected 

to have different biological functions. For example, the ABC transporters in M. xanthus all 

perform active transport across membranes, but they are expected to transport different 
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substrates. This would mean that a disruption of any one ABC transporter would cause a 

change in developmental phenotype specific to its substrate. There is no obvious reason why 

mutant strains of the ABC transporters would display similar changes in phenotype unless there 

is significant functional redundancy between transporters. There is also no obvious reason why 

the phenotypic similarities would include a plurality of a large homologous gene family unless 

the functional redundancy is widely distributed.  

When a group of functionally redundant genes absorbs the effect of one member’s disruption 

with low overall stress on the system, the impact on phenotype is more subtle. The ABC 

Transporter and ECF sigma factor gene families exemplify this, as there are very few single gene 

knockouts that result in severe phenotypes (Fig. 3.2E). The phenotypes of those genes cluster 

sharply by homologous family in the PCA feature space (Fig. 3.4A), meaning that both gene 

families display a typical phenotype that is different from the others. Plausible biological 

explanations for this type of widely distributed functional redundancy can be made. Many ABC 

Transporters, due to varying homology in periplasmic and substrate-binding domains across the 

gene family, may be able to transport similar and/or overlapping substrates [131,132], 

mitigating the effect of many of the mutations in this gene family and most often producing like 

wild-type phenotypes. Similarly, robustness has been shown to be encoded in transcriptional 

regulatory networks by alternative pathways [133], and though some studies suggest that 

alternative sigma factors display minimal crosstalk [134], it is not unprecedented for there to be 

overlap in the regulation of genes by multiple ECF sigma factors, creating networks of 

integrated regulation [135–137]. Our data indicate that M. xanthus may use such networks of 

crosstalk among ECF sigma factors to coordinate transcription in response to extracellular 
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signals, and that this may involve integration from many redundant or parallel pathways, 

ultimately leading to earlier aggregation initiation time and faster fruiting body growth rate 

than we see in wild-type for the majority of ECF sigma factor mutants.  

In contrast, NtrC-like activator mutants show more severe phenotypes and cluster in a region 

where strains do not form fruiting bodies (Fig. 3.4). Though it could be argued that a non-

aggregating strain indicates a lack of redundancy for the mutated gene, this seems unlikely 

given that the NtrC-like activators fail to produce aggregates in a way that is distinct from non-

aggregating mutants in other gene families (Fig. 3.4A—region outlined in red). This again points 

to the idea of networks of redundancy, but highlights that there can be a cost to redundancy in 

some situations. Extensive research has shown that kinase-response regulator pairs tend to be 

very insulated with limited crosstalk, and that this feature rapidly evolves in newly-duplicated 

two-component systems [138,139]. NtrC-like activators and other bacterial DNA-binding 

response regulators have high affinity interactions with their cognate kinases, and crosstalk 

generally increases noise and decreases the overall response of the system to the incoming 

signal [140]. The specificity of response regulators for phosphorylation by their cognate kinases 

is governed primarily by molecular recognition, though these proteins can be very sequence 

similar, and by maintaining a relatively high abundance of response regulator relative to its 

cognate kinase within a cell to prevent unwanted phosphorylation [138,141,142]. Taken 

together, this indicates that mutations to response regulators, like those that we have 

introduced in the NtrC-like proteins in this study, might lead to a situation where there is a high 

concentration of phosphorylated kinase in the absence of its highest affinity interaction 

partner, allowing the cognate kinase to phosphorylate structurally similar non-target response 
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regulators and inappropriately initiate those signaling cascades. This model would explain why 

so many of the NtrC-like activator mutations produced severe phenotypes that fail to form 

fruiting bodies in the same way and highlights that redundancy due to gene duplication can 

have negative consequences without proper insulation.  

Rarely is a typical phenotype expressed a majority of the time within knockouts of homologous 

group – instead, the typical phenotype represents the plurality behavior. Replicates even of the 

same strain are seen to straddle multiple zones in the PCA feature space. This is particularly 

evident in the One component gene family, which was observed to have the greatest variation 

in phenotype from replicate to replicate (Supp. Fig. 3.6). The same mutant strain, for example, 

can yield a phenotype indistinguishable from wild-type in one replicate, and make immature 

aggregates or fail to aggregate entirely in other replicates. This variability might indicate that 

the impact of mutation on these functional networks increases sensitivity to stochastic 

fluctuations within the cellular environment that contribute to a tendency toward one 

phenotypic fate or another.   

We do not propose that phenotypic similarity serves as a strong indicator of functional 

redundancy. There are almost certainly insignificant associations in the PCA feature space. For 

example, there are a small number of ABC transporter mutants positioned within the NtrC-like 

activator cluster. We do not propose that these genes are functionally redundant with the 

majority of NtrC-like activators, but we might suggest that they are less likely to be functionally 

redundant with those in the ABC transporter cluster. It is also possible that any group of 

completely unrelated genes could have some degree of functional redundancy, but this 

represents a background level or lower threshold of observable redundancy. We have shown 
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that the redundancy we observe is significantly above that background by measuring the 

phenotypic clustering of random groupings of genes from the various homologous groups. We 

are sure there are many forms and many degrees of functional redundancy that are not 

represented by this PCA, but it does reveal a widely distributed functional redundancy above a 

background threshold.  

Extensive progress has been made in recent years in looking at large-scale studies of digenic 

and even trigenic interactions and redundancies that affect phenotypic robustness and 

fitness [118,143]. Others have begun to disentangle the relationship between subsets of 

multigene families and their roles in redundancy [144]. We add to this growing body of 

literature by exploring functional redundancy in large, homologous gene families of M. xanthus. 

We make no claims about functional redundancy between specific genes in M. xanthus. Rather, 

we seek to define the scale and distributive nature of redundancy networks that include these 

large gene families, demonstrating that redundancy networks are not necessarily limited to a 

few of the closest paralogs; they may include dozens or hundreds of genes.   

Instead of trying to quantify the direct effect of mutations on fitness by measuring a single 

variable such as growth, we chose to measure multiple aspects of a complex development 

process. While our method requires the collection of more data per strain than a synthetic 

genetic array, for example, it has the ability to detect more subtle phenotypes that may not 

have strong implications for fitness but can still inform studies of redundancy. Since many single 

gene disruptions have such subtle phenotypes, and since we propose that extensive 

redundancy networks protect an organism from the fitness costs of mutation, we chose 
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phenotypic similarity, rather than overall effect on fitness, to assess the extent of functional 

redundancy within gene families.  

Our results highlight the importance of considering the nature and extent of redundancy when 

making claims regarding interactions between genotype and phenotype. Gene families can 

have high degrees of functional entanglement that may mitigate the impact of mutation, so 

that quantifying even minor deviations in phenotype may allow for the recognition of patterns; 

if mutations within a redundancy network produce similar phenotypes, then subtle changes in 

phenotype have the potential to inform annotation. For example, a gene of unknown function 

displaying a subtle phenotype similar to that of genes of known function could provide 

evidence that the unknown gene is part of a redundancy network. Our image analysis pipeline 

can be extended to future studies of M. xanthus, even under differing experimental conditions, 

for automated extraction of phenotypic features. Further, our dataset can be used to probe 

whether there are patterns in amino acid sequence homology that lead to functional 

redundancy by comparing the sequences of genes that are located within the family cluster on 

the PCA to those that are located outside the cluster and are presumably non-redundant. 

Underscoring all these results is the observation that without a sufficiently large collection of 

mutants and replicates, functional redundancy does not present itself clearly enough to be 

recognized. 

3.4 Conclusions 

This work provides evidence for the existence of large networks of redundant genes as a means 

by which an organism such as Myxococcus xanthus can execute complex multicellular social 
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behaviors robust to perturbations to gene function. We observe subtle deviations in 

phenotype, a distinct set for each homologous gene family, that present when knocking out any 

one gene within these redundancy groups. These subtle deviations are measurable due to the 

large number of time series included in our full dataset and the quantitative detail of the 

extracted phenotypic information, which in combination necessitate the automated analysis 

pipeline we have developed. 

3.5 Methods 

Strains and Culture Conditions 

Myxococcus xanthus strain DK1622 was used as the wild-type for this study. All 265 mutant 

strains in the ABC Transporter, ECF sigma factor, NtrC-like activator, and One Component Signal 

Transduction System families (Supp. Table 3.4) were created using plasmid insertion via 

homologous recombination as previously described [21,145] and modified by Yan et al [56]. 

Briefly, 400-600bp internal fragments of each gene were PCR amplified and ligated into 

pCR®2.1-TOPO [Invitrogen]. The plasmids were amplified in E. coli before isolation and 

electroporation into M. xanthus DK1622, where the plasmid incorporates into the M. xanthus 

genome via the homologous region on the plasmid. PCR verification was used to confirm the 

location of each insertion.   

Cells were grown overnight in CTTYE (1% Casein Peptone (Remel, San Diego, CA, USA), 0.5% 

Bacto Yeast Extract (BD Biosciences, Franklin Lakes, NJ, USA), 10 mM Tris (pH 8.0), 1 mM 

KH(H2)PO4, 8 mM MgSO4) with vigorous shaking at 32°C. Cultures of mutant strains were 

supplemented with 40µg/mL kanamycin. Cells were centrifuged to remove the nutrient broth, 
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washed in TPM buffer (10 mM Tris (pH 7.6), 1 mM KH(H2)PO4, 8 mM MgSO4), and resuspended 

to a final concentration of 5x109 cells/mL. For development assays, approximately 2.5x107 cells 

were spotted onto TPM agar slide complexes, as previously described [146].   

Imaging  

Development assays for wild-type and mutant strains were carried out on TPM starvation agar 

slide complexes for 24 hours, with approximately three replicates per strain. Though it can take 

multiple days for cells within fruiting bodies to fully differentiate into spores, we generated 

time series of only the first 24 hours of development because wild-type cells show little to no 

observable change in fruiting body morphology, count, or behavior following this period at the 

magnification used. Time-lapse grayscale images were captured every 60 seconds under 4x 

magnification with a Nikon Eclipse E-400 microscope [Nikon Instruments] and SPOT Insight 

camera. ImageJ was used for processing the .TIFF images into time series for analysis.   

Multidimensional scaling of gene sequence dissimilarity  

Amino acid sequences for the four homologous families were retrieved from NCBI and 

imported into the Multiple Sequence Alignment tool in Clustal Omega [147], generating a 

percent identity matrix for all 265 proteins. This was then converted to a percent dissimilarity 

matrix and used as the input for the Classical Multidimensional Scaling package in R to generate 

plotting coordinates in two dimensions. Then Gaussian kernel density estimation was used to 

plot an estimate of the probability distribution function (plotted with increased opacity to 

represent higher probability) to guide the eye in identifying sub-clusters of similar genes within 

each paralogous group.  
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Manual phenotyping  

Manual preliminary phenotyping of the mutant strains in this study was performed using the 

time series described above. We will refer to mature aggregates as fruiting bodies for simplicity, 

though we did not test sporulation efficiency in this study. First, strains that failed to produce 

fruiting bodies at all within 24 hours across all replicates were labeled “no aggregation” 

mutants. Strains that formed initial aggregates that disassociated completely before the 24-

hour mark were labeled as “fall apart”. Some strains, labeled “aggregate-reaggregate”, formed 

aggregates that initially fell apart, but new aggregates were formed that persisted and looked 

similar to wild-type by the endpoint of the time series.   

To qualitatively determine the start time of aggregation, the time series were observed in 

sliding windows of 25 minutes to identify the window where initial aggregates were first 

formed. The average start time of 22 wild-type replicates was used for comparison, and mutant 

strains that had start times outside of one standard deviation of the mean of wild-type were 

considered either “early” or “late” aggregation mutants. 

Wild-type fruiting bodies at 24 hours appear almost black in color and are roughly circular in 

brightfield images. Any strains that appeared to have these characteristics and initiated 

aggregation within the same window as wild-type were classified like-wild-type (LWT). Strains 

that initiated aggregation at a normal time but didn’t develop aggregates that were as dark in 

gray value as wild-type were labeled as “immature aggregation” mutants. Finally, mutants that 

did not display consistent phenotypes across replicates were classified as “variable”. A table of 

all mutant strains used in the study, as well as their manually assigned phenotype, can be found 

in Supp. Table 3.4.   
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Automated phenotyping 

Phenotype was automatically quantified for the mutant strains in this study by running 144 

individual .TIFF images (ten minutes between each frame over 24 hours of total development) 

from each time series through a custom Python image processing and analysis pipeline to 

identify in each frame which pixels could belong to a fruiting body, based on their gray value. 

The information for the position and geometry of each aggregate was filtered to remove noise 

and spurious aggregates. This information was then collected for the entire time series to track 

individual fruiting bodies over time, revealing their fate and dynamics. This detailed data 

summary for each time series then had a list of eighteen specific numbers extracted from it, 

each of which captures one overall feature, such as average growth rate or the average size of 

final fruiting bodies. The values of these eighteen metrics together (a phenotypic vector) 

constitute the phenotype profile for that time series. The full details of the image processing 

pipeline and all phenotypic metrics are available in the Supplementary Materials.  

A selection of 133 mutant time series were chosen at random from each paralogous group so as 

not to weigh any paralogous group more than the other. The phenotypic vector for each time 

series was calculated, and the values of each metric were shifted by a constant amount and 

scaled by a constant factor so that across the dataset, each metric had a mean of zero and a 

variance of one. This ensured that one metric would not supersede the others simply due to the 

magnitude of its units. PCA was performed on this normalized dataset to extract the two 

combinations of metrics, PC1 and PC2, that captured the most variation across the dataset.  

The phenotypic clusters were revealed by plotting each time series as a point in the PC1 vs. PC2 

phenotype space and then estimating the probability density for each homologous group via 
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Gaussian kernel density estimation. Essentially, a Gaussian blur was applied to the points, and 

areas of greater overlap were colored with higher opacity, as shown in Fig. 3.4. The width of the 

smoothing kernel was chosen to be the smallest value that could preserve the shape of the 

probability density for different equally sized subsamples from each homologous group.  

The statistical test used to generate the p-values for average cluster separation and average 

cluster size was a form of bootstrapping which started with the PC1 and PC2 coordinates of 

each point shown in the data sample of Fig. 3.4. Each point was randomly reassigned one of 

four arbitrary families in such a way that replicates of the same strain were all assigned the 

same family. A new Gaussian kernel density estimation was performed to approximate the 

probability density of each family in PCA phenotype space. The contour representing 75% of the 

maximum value of the estimated probability distribution function was then extracted, with 

cluster separation being the average across all pairings of families of the centroid-to-centroid 

distance between contours, and cluster size quantified by the average across families of the 

radius of gyration of each contour, i.e. the root mean square distance of each contour’s points 

from its centroid. Each p-value was calculated as the fraction of the random groupings that had 

a greater average separation or smaller average size than that of the original data grouped by 

the actual gene families. 

3.6 Supplementary Materials 

Statistical testing and controls  

The results presented in Fig. 3.4, namely the separation of phenotypic clusters for each 

homologous gene family, were tested for statistical significance by recreating the estimated 
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probability density functions for random groupings instead of the actual gene family and 

observing the resulting sharpness of and separation between peaks in each grouping’s 

probability density function (see Methods). To illustrate the difference in phenotypic peak 

between these random groupings and the actual gene family groupings expected to correspond 

to redundant gene groups, we present the results of a representative random grouping in Supp. 

Fig. 3.5.  
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Supplementary Figure 3.5. Phenotypic clusters arise robustly from homologous gene families as compared to 
random groupings of mutant strains. (A) Reproduced from Figure 3.4, each of the four gene families produces a 
distinct phenotypic cluster when plotting the estimated probability distribution function for that family (using 
Gaussian kernel density estimation) in phenotype space. (B) A contour is shown for each gene family where the 
estimated probability distribution function is at 75% of its maximum value, and the geometry of that contour is 
used to quantify the width of the cluster and its separation from other clusters. (C) The same data used in Figure 
3.4 was regrouped into four random groupings, and the PCA and probability density function estimates were 
repeated, showing much more incoherent phenotype clusters. (D) The corresponding contours for the four 
random groupings show less separation and less sharpness than phenotypic clusters based on homologous gene 
groups. Both (C) and (D) come from one representative random grouping, many of which were made to calculate 
the p-values for cluster separation and sharpness reported in Results. 

Replicates of the same strain can vary in phenotype. Several plots showing phenotypic spread 

for a few representative strains are included in Supp. Fig. 3.6.  
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Supplementary Figure 3.6. Replicates of the same strain can vary in phenotype. Reproduced for context from 
Figure 3.4 are the phenotypic scatterplot resulting from the PCA (where each point is a time series, plotted nearby 
other time series that are phenotypically similar) and the superimposed probability distribution functions for each 
of the homologous gene families: ABC transporters in blue, NtrC-like activators in orange, ECF sigma factors in 
green, and One component in pink. Each subplot includes all replicates of a few representative strains, where the 
replicates of each strain are represented in a single color and drawn with a bounding polygon to aid the eye. 
Replicate-to-replicate variation is larger or smaller depending on strain and to which homologous family the strain 
belongs.  

A metric for replicate-to-replicate phenotypic spread of a specific strain is the sample standard 

deviation 𝑠 generalized to two dimensions  
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n
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where 𝑛 is the number of replicate points, 𝑥𝑖  and 𝑦𝑖 are the coordinates of the 𝑖th replicate 

point, and �̅� and �̅� are the means of each coordinate across the replicate points, i.e. the 

centroid coordinates. In this case, the 𝑥 and 𝑦 coordinates are the value of PC1 and PC2 

respectively.  

Supp. Table 3.2 summarizes the mean replicate-to-replicate phenotype spread averaged over 

strain for each gene family using the metric 𝑠, with errors given by the standard error of the 

means.  

Gene family  Mean replicate-to-replicate spread 𝑠 

ABC Transporters  1.42 ± 0.12  

NtrC-like Activators  1.57 ± 0.14  

ECF Sigma Factors  1.31 ± 0.09  

One Component  1.94 ± 0.18  
  

Supplementary Table 3.2. A summary of the average replicate-to-replicate spread for each homologous gene 
family, with errors given by the standard error of the means. This spread is illustrated for some representative 
strains in Supp. Fig. 3.6 

 

This indicates a statistically significant difference for replicate-to-replicate phenotype spread 

between One Component strains and ABC Transporter strains (p = 0.024), and between One 

Component strains and ECF Sigma Factor strains (p = 0.004) according to a two-sided Welch’s t-

test.  

Correlation of genetic differences with phenotypic differences  

When comparing the genetic similarity and phenotypic similarity of the mutant strains used in 

this study, little correlation was found, as illustrated in Supp. Fig. 3.7.  
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For each homologous gene group, all unique pairings of different strains were plotted using 

genetic difference on the x-axis and phenotypic difference on the y-axis. Genetic difference was 

quantified using Clustal Omega Multiple Sequence Alignment [147], and phenotypic difference 

was calculated as the Euclidean distance between two 18-feature points, averaging the feature 

values over all of the replicates for that strain. These plots show that close genetic similarity of 

two mutant strains is not necessary for and in fact poorly predicts phenotypic similarity. 

Instead, we infer that phenotypic similarity is roughly equivalent across all mutants in a group 

of redundant genes.  
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Supplementary Figure 3.7. Genetic similarity is not an effective predictor of phenotypic similarity within a 
homologous gene family. For each of the four gene families analyzed, each point represents a unique pairing of 
two strains. Phenotypic dissimilarity is quantified by Euclidean distance in 18-dimensional feature space, where 
feature values are represented by averages over all replicates for that strain. Genetic dissimilarity is quantified by 
comparison of base pairs using Clustal Omega Multiple Sequence Alignment. Within each of the four gene families, 
phenotypic dissimilarity and genetic dissimilarity to not correlate.  

 

Description of typical phenotype for each homologous gene family  

A manual review of time series near the phenotypic cluster for each respective gene family (Fig. 

3.4) was performed to describe the typical behavior. This summary is with respect to only time 
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series that fell within the contour of 75% of the maximum of the probability distribution 

function for each gene family.  

Both the ABC transporter and ECF sigma factor mutants showed similar behaviors both with 

rapid formation and darkening of aggregates. Their differences lie in the number of persistent 

fruiting bodies and the rates of formation. Fruiting bodies of ECF sigma factor mutants form 

faster than the those of ABC transporter mutants, captured by growth rate.  

The time series in the ECF sigma factor cluster also have a higher fraction of their fruiting bodies 

fail to persist. So, although they are fast to form, these aggregates have more of a tendency to 

either be absorbed by their neighboring fruiting bodies or not survive at all.  

Nearly all of the time series in the NtrC-like activator cluster fail to form fruiting bodies. While 

the bacteria do move around and occasionally form aggregates, these never completely darken 

or stabilize and most evaporate. This tendency to fail to aggregate is most directly captured 

quantitatively in the small final number of persistent fruiting bodies and in the low growth rate 

of these time series.  

One component mutants near the phenotypic cluster were observed to have the ability to form 

fruiting bodies but not darken significantly, remaining immature. They also appear to be less 

circular than the fruiting bodies of ABC transporters or ECF sigma factor mutants. The One 

component time series also showed signs of struggle when forming – they took much longer 

than the other successfully aggregating gene families to form their persistent fruiting bodies.  

The individual phenotypic features that support these observations are included in Supp. Fig. 

3.8. 
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Supplementary Figure 3.8. Quantitative comparison of the behavior in phenotypic clusters for each gene family. 
(A) Histogram of growth rates. ECF sigma factor mutants form aggregates faster than ABC transporter mutants. (B) 
Histogram of fraction of fruiting bodies that fail to persist. ECF sigma factor mutants have more evaporating 
fruiting bodies than ABC transporter mutants. (C) Histogram of growth rates between three gene families with 
successful fruiting body formation. One component mutants form fruiting bodies the slowest of the three 
displayed gene families. (D) Histogram of maturation rates (i.e. the maximum rate of darkening during fruiting 
body maturation). One component mutants do not darken or mature at a rate much slower than ABC transporter 
mutants or ECF sigma factor mutants.  

  

Image processing  

Custom Python code was written for this analysis, available on Github 

(https://github.com/masp01/SU-myxo-aggregate-tracking). Using the Python implementation 

https://github.com/masp01/SU-myxo-aggregate-tracking
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of OpenCV [112], each raw frame is put through the following image processing steps to 

identify the size, shape, and position of each fruiting body:  

1. Non-local means denoising (cv2.fastNlMeansDenoising)  

To remove background noise, a 7 pixel wide template window is moved over the 

image to find regions that visually match (typically uniform, noisy regions). This 

search is done within a 21 pixel distance of each patch of the image. The gray value 

of each pixel is replaced with the average gray value of pixels in matching regions, 

smoothing over noise while keeping boundaries distinct. The smoothing strength 

was chosen at a constant value of 70 after manually testing parameter values for 

many images. Template window and search sizes are standard and were not tuned.  

2. Adaptive thresholding (cv2.adaptiveThreshold)  

To identify locally dark regions that should belong to fruiting bodies, the gray value 

of each pixel is compared to the average gray value of its neighbors within a block 

101 pixels (145 µm) wide. 8-bit pixels (gray value from 0 – 255) that have a gray 

value at least 20 below this local average are marked white. All other pixels are 

marked black, creating a binary image. Parameters were chosen after manually 

testing with many images and are robust enough to be used across the entire 

dataset.  

3. Morphological opening (cv2.morphologyEx)  

A circular kernel 5 pixels (7.2 µm) wide is moved over the binary image. Any feature 

covered entirely by the kernel is removed. This reduces single-pixel noise.  
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4. Contour identification (cv2.findContours)  

Contiguous regions of white pixels are automatically identified in the binary image. A 

list is compiled of the x,y coordinates of the pixels on the boundary of each such 

region. This gives both a count of total candidate fruiting bodies and the geometry of 

their boundary.  

At this point, a list of features has been identified, some of which are genuine fruiting bodies, 

and some of which are noise or spurious aggregates. The contour of each feature is measured 

for the x,y coordinates of its center, its area A, perimeter P, and average gray value. The 

circularity 4πA/P², is also calculated. It captures the elongation of the fruiting bodies and 

ranges from 0 (completely flat) to 1 (perfectly circular).  

Tracking fruiting bodies and filtering  

Once all the frames of a time series have been processed, the Python package Trackpy [148] is 

used to assign an ID to each feature that tracks it over time. It is at this point that filtering is 

done to remove spurious features:  

1. Minimum area filter  

Features that are smaller than 576 µm² are ignored. This is the smallest fruiting body 

size that is distinguishable from noise at 4X magnification  

2. Maximum gray value filter  

Features with an average gray value above 200 (max 255) are considered too bright 

to be fruiting bodies and are ignored.  

3. Formation time filter  

Features that appear before 100 minutes have elapsed are incidental initial 
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aggregates, and not genuine fruiting bodies that have assembled over time. In no 

time series did a new aggregate form in less than 100 minutes. These incidental 

aggregates are tracked over time and ignored in all frames in which they appear.  

4. Category filter  

The area dynamics of each remaining fruiting body are considered to see if the 

fruiting body persists to the end of the time series (persistors) or if it vanishes 

smoothly (evaporators). Persistors with an average circularity below 0.5 are typically 

noise and are ignored. Smoothly vanishing is defined as starting with an area less 

than max area and then decreasing from maximum area by at least 25% by the final 

frame of the time series. Evaporators with centers within (14.4 µm of the edge of 

the frame or with an average circularity below 0.5 are considered noise and ignored. 

Any feature that cannot be categorized as a persistor or evaporator is assumed to be 

spurious or contain dynamics errors and is ignored.  

Feature extraction  

The data for each time series is then analyzed to measure the following quantitative features, 

each a single number summarizing one aspect of the time series. Measurements are taken over 

a 7.2 mm² field size.  

Supplementary Table 3.3. Enumeration of all quantitative features used in the automated phenotype analysis  

   Feature name  Description  Formula  

1  
   

Start time  Elapsed time from inoculation to the beginning of 
visible aggregation  

When at least 10 fruiting 
bodies grow larger than 1000 
µm² in area  

2  Peak time  Elapsed time from inoculation to the peak of visible 
aggregation  

When total fruiting body area 
reaches a maximum  

3  Stability time  Elapsed time from inoculation to overall aggregate 
stability  

When the number of fruiting 
bodies changes by less than 
three per hour (24 hours 
maximum)  
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4  Growth time  Duration of initial growth phase  Peak time minus start time  

5  Growth rate  Average rate of total area increase during growth 
phase  

Change in total area divided by 
change in time between start 
time and peak time  

6  Peak average area  The average fruiting body area at peak time     

7  Peak area std  The standard deviation of fruiting body area at peak 
time  

   

8  Final average area  The average fruiting body area at the moment 24 
hours after inoculation  

   

9  Final area std  The standard deviation of fruiting body area 24 
hours  post-inoculation  

   

10  Gray value % change  Percent difference between minimum and maximum 
average gray value (only for persistent fruiting 
bodies)  

   

11  Maturation rate  Maximum slope of gray value vs. time curve for 
persistent fruiting bodies  

   

12  Temporal coherence  How closely in time each evaporating fruiting body 
reaches its maximum area before starting to shrink  

The standard deviation of the 
distribution of the time of 
maximum area for 
evaporators  

13  Fraction of 
evaporators  

Total number of evaporators divided by total number 
of evaporators plus persistors  

   

14  Maximum number  Total number of fruiting bodies at peak time     

15  Average lifetime  The elapsed time between an evaporator’s first and 
final moment above the minimum area threshold, 
averaged over all evaporators  

   

16  Std lifetime  Standard deviation of the elapsed times between 
each evaporator’s first and final moment above the 
minimum area threshold  

   

17  Maximum average 
area falloff  

   Most negative slope of average 
area vs. time curve  

18  Maximum number 
falloff  

   Most negative slope of number 
vs. time curve  

  

  

  

Supplementary Table 3.4. List of strains used in this study, listed by MXAN number, followed by the manual 
phenotype classification associated with Fig. 3.2, gene family, and citation for creation of the specific strain used.   

Strain  Phenotypic Classification  Gene Family  Strain Creation  

DK1622  Wild-type  N/A     

MXAN_0035  No aggregation  ABC Transporter   [56] 

MXAN_0036  LWT  ABC Transporter   [56] 

MXAN_0037  Late aggregation  ABC Transporter   [56] 

MXAN_0069  Early aggregation  One Component  This study  

MXAN_0079  Variable  One Component   [149] 

MXAN_0090  Late aggregation  One Component  This study  
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MXAN_0107  Early aggregation  ABC Transporter   [56] 

MXAN_0108  LWT  ABC Transporter   [56] 

MXAN_0116  No aggregation  NtrC-Like Activators  This study  

MXAN_0172  Fall apart  NtrC-Like Activators   [149] 

MXAN_0180  LWT  NtrC-Like Activators  This study  

MXAN_0203  Early aggregation  ECF Sigma Factors  This study  

MXAN_0213  Variable  One Component   [149] 

MXAN_0214  Variable  One Component  This study  

MXAN_0233  Immature aggregates  ECF Sigma Factors  This study  

MXAN_0250  Early aggregation  ABC Transporter   [56] 

MXAN_0251  LWT  ABC Transporter   [56] 

MXAN_0353  Early aggregation  NtrC-Like Activators  This study  

MXAN_0387  Late aggregation  One Component  This study  

MXAN_0445  Early aggregation  One Component  This study  

MXAN_0502  Variable  One Component   [149] 

MXAN_0553  LWT  ABC Transporter   [56] 

MXAN_0554  LWT  ABC Transporter   [56] 

MXAN_0556  LWT  One Component  This study  

MXAN_0559  Variable  ABC Transporter   [56] 

MXAN_0596  Immature aggregates  ABC Transporter   [56] 

MXAN_0597  LWT  ABC Transporter   [56] 

MXAN_0603  Late aggregation  NtrC-Like Activators   [149] 

MXAN_0622  LWT  ABC Transporter   [56] 

MXAN_0627  Early aggregation  One Component  This study  

MXAN_0629  Immature aggregates  ABC Transporter   [56] 

MXAN_0654  LWT  One Component  This study  

MXAN_0665  Variable  One Component   [149] 

MXAN_0681  Aggregate-reaggregate  ECF Sigma Factors   [149] 

MXAN_0684  Late aggregation  ABC Transporter   [56] 

MXAN_0685  No aggregation  ABC Transporter   [56] 

MXAN_0686  LWT  ABC Transporter   [56] 

MXAN_0687  Late aggregation  ABC Transporter   [56] 

MXAN_0696  Early aggregation  ABC Transporter   [56] 

MXAN_0707  Variable  One Component  This study  

MXAN_0721  LWT  ABC Transporter   [56] 

MXAN_0722  LWT  ABC Transporter   [56] 

MXAN_0748  LWT  One Component  This study  

MXAN_0751  LWT  ABC Transporter   [56] 

MXAN_0770  LWT  ABC Transporter   [56] 

MXAN_0771  LWT  ABC Transporter   [56] 

MXAN_0772  LWT  ABC Transporter   [56] 
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MXAN_0832  Variable  One Component  This study  

MXAN_0887  Immature aggregates  One Component  This study  

MXAN_0907  Early aggregation  NtrC-Like Activators  This study  

MXAN_0937  LWT  NtrC-Like Activators  This study  

MXAN_0943  Variable  One Component  This study  

MXAN_0947  LWT  ECF Sigma Factors  This study  

MXAN_0966  Early aggregation  ABC Transporter   [56] 

MXAN_0967  LWT  ABC Transporter   [56] 

MXAN_0968  Late aggregation  ABC Transporter   [56] 

MXAN_0995  LWT  ABC Transporter   [56] 

MXAN_1078  Immature aggregates  NtrC-Like Activators   [149] 

MXAN_1097  LWT  ABC Transporter   [56] 

MXAN_1124  LWT  ABC Transporter   [56] 

MXAN_1128  Variable  NtrC-Like Activators   [149] 

MXAN_1137  Variable  One Component  This study  

MXAN_1151  Variable   ABC Transporter   [56] 

MXAN_1153  LWT  ABC Transporter   [56] 

MXAN_1154  LWT  ABC Transporter   [56] 

MXAN_1155  LWT  ABC Transporter   [56] 

MXAN_1167  Late aggregation  NtrC-Like Activators   [149] 

MXAN_1189  Early aggregation  NtrC-Like Activators  This study  

MXAN_1210  Late aggregation  ECF Sigma Factors  This study  

MXAN_1245  Immature aggregates  NtrC-Like Activators   [149] 

MXAN_1262  LWT  ABC Transporter   [56] 

MXAN_1286  Aggregate-reaggregate  ABC Transporter   [56] 

MXAN_1319  LWT  ABC Transporter   [56] 

MXAN_1320  Early aggregation  ABC Transporter   [56] 

MXAN_1321  Early aggregation  ABC Transporter   [56] 

MXAN_1345  LWT  NtrC-Like Activators  This study  

MXAN_1376  Late aggregation  ABC Transporter   [56] 

MXAN_1377  LWT  ABC Transporter   [56] 

MXAN_1402  Variable  One Component  This study  

MXAN_1510  LWT  ECF Sigma Factors  This study  

MXAN_1514  Immature aggregates  ECF Sigma Factors  This study  

MXAN_1547  LWT  ABC Transporter   [56] 

MXAN_1548  LWT  ABC Transporter   [56] 

MXAN_1565  Variable  NtrC-Like Activators   [149] 

MXAN_1575  Variable  One Component  This study  

MXAN_1597  LWT  ABC Transporter   [56] 

MXAN_1598  Variable  ABC Transporter   [56] 

MXAN_1604  Variable  ABC Transporter   [56] 
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MXAN_1605  Early aggregation  ABC Transporter   [56] 

MXAN_1654  LWT  One Component  This study  

MXAN_1661  Early aggregation  ECF Sigma Factors  This study  

MXAN_1667  LWT  One Component  This study  

MXAN_1677  Variable  One Component  This study  

MXAN_1683  LWT  One Component  This study  

MXAN_1695  Immature aggregates  ABC Transporter   [56] 

MXAN_1711  No aggregation  One Component  This study  

MXAN_1719  LWT  One Component  This study  

MXAN_1726  Variable  One Component  This study  

MXAN_1746  Variable  One Component  This study  

MXAN_1757  Variable  One Component  This study  

MXAN_2018  LWT  ABC Transporter   [56] 

MXAN_2019  No aggregation  ABC Transporter   [56] 

MXAN_2020  Immature aggregates  ABC Transporter   [56] 

MXAN_2030  Early aggregation  ECF Sigma Factors   [149] 

MXAN_2078  LWT  ABC Transporter   [56] 

MXAN_2128  Immature aggregates  One Component  This study  

MXAN_2145  Late aggregation  One Component  This study  

MXAN_2159  Early aggregation  NtrC-Like Activators  This study  

MXAN_2184  Aggregate-reaggregate  ECF Sigma Factors  This study  

MXAN_2204  Immature aggregates  ECF Sigma Factors  This study  

MXAN_2230  Late aggregation  One Component  This study  

MXAN_2234  Immature aggregates  One Component  This study  

MXAN_2249  Late aggregation  ABC Transporter   [56] 

MXAN_2250  LWT  ABC Transporter   [56] 

MXAN_2251  Early aggregation  ABC Transporter   [56] 

MXAN_2268  LWT  ABC Transporter   [56] 

MXAN_2395  Early aggregation  ECF Sigma Factors  This study  

MXAN_2407  LWT  ABC Transporter   [56] 

MXAN_2428  LWT  ABC Transporter   [56] 

MXAN_2429  LWT  ABC Transporter   [56] 

MXAN_2430  LWT  ABC Transporter   [56] 

MXAN_2437  LWT  ECF Sigma Factors  This study  

MXAN_2500  Early aggregation  ECF Sigma Factors  This study  

MXAN_2501  Aggregate-reaggregate  NtrC-Like Activators  This study  

MXAN_2516  Immature aggregates  NtrC-Like Activators  This study  

MXAN_2654  Early aggregation  ABC Transporter   [56] 

MXAN_2711  Variable  One Component   [149] 

MXAN_2783  Early aggregation  ABC Transporter   [56] 

MXAN_2794  Immature aggregates  One Component  This study  
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MXAN_2795  LWT  ABC Transporter   [56] 

MXAN_2831  LWT  ABC Transporter   [56] 

MXAN_2832  LWT  ABC Transporter   [56] 

MXAN_2833  LWT  ABC Transporter   [56] 

MXAN_2853  Early aggregation  ABC Transporter   [56] 

MXAN_2896  LWT  One Component  This study  

MXAN_2929  LWT  ECF Sigma Factors  This study  

MXAN_2949  Aggregate-reaggregate  ABC Transporter   [56] 

MXAN_2951  Early aggregation  ABC Transporter   [56] 

MXAN_3095  Early aggregation  NtrC-Like Activators  This study  

MXAN_3142  Immature aggregates  One Component  This study  

MXAN_3151  Immature aggregates  One Component  This study  

MXAN_3208  Immature aggregates  ABC Transporter   [56] 

MXAN_3209  Early aggregation  ABC Transporter   [56] 

MXAN_3214  Fall apart  NtrC-Like Activators   [149] 

MXAN_3240  LWT  One Component  This study  

MXAN_3256  No aggregation  ABC Transporter   [56] 

MXAN_3257  No aggregation  ABC Transporter   [56] 

MXAN_3258  No aggregation  ABC Transporter   [56] 

MXAN_3333  Variable  NtrC-Like Activators  This study  

MXAN_3339  LWT  ABC Transporter   [56] 

MXAN_3381  Aggregate-reaggregate  NtrC-Like Activators  This study  

MXAN_3418  LWT  NtrC-Like Activators  This study  

MXAN_3426  Early aggregation  ECF Sigma Factors  This study  

MXAN_3429  Early aggregation  One Component  This study  

MXAN_3443  Immature aggregates  One Component  This study  

MXAN_3648  Variable  ABC Transporter   [56] 

MXAN_3650  LWT  ABC Transporter   [56] 

MXAN_3686  Early aggregation  ECF Sigma Factors  This study  

MXAN_3692  No aggregation  NtrC-Like Activators  This study  

MXAN_3702  No aggregation  One Component   [149] 

MXAN_3711  Immature aggregates  One Component  This study  

MXAN_3717  No aggregation  ABC Transporter   [56] 

MXAN_3718  Fall apart  ABC Transporter   [56] 

MXAN_3773  LWT  ABC Transporter   [56] 

MXAN_3811  LWT  NtrC-Like Activators  This study  

MXAN_3908  LWT  ABC Transporter   [56] 

MXAN_3909  Early aggregation  ABC Transporter   [56] 

MXAN_3959  Early aggregation  ECF Sigma Factors  This study  

MXAN_3986  LWT  ABC Transporter   [56] 

MXAN_4042  Immature aggregates  NtrC-Like Activators  This study  
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MXAN_4060  LWT  One Component  This study  

MXAN_4072  Late aggregation  One Component  This study  

MXAN_4110  Late aggregation  One Component  This study  

MXAN_4173  LWT  ABC Transporter   [56] 

MXAN_4196  No aggregation  NtrC-Like Activators   [149] 

MXAN_4199  LWT  ABC Transporter   [56] 

MXAN_4240  LWT  NtrC-Like Activators  This study  

MXAN_4247  Late aggregation  One Component  This study  

MXAN_4252  Late aggregation  NtrC-Like Activators  This study  

MXAN_4261  LWT  NtrC-Like Activators  This study  

MXAN_4263  LWT  One Component  This study  

MXAN_4309  Early aggregation  ECF Sigma Factors  This study  

MXAN_4316  Early aggregation  ECF Sigma Factors  This study  

MXAN_4339  LWT  NtrC-Like Activators  This study  

MXAN_4356  LWT  One Component  This study  

MXAN_4471  LWT  One Component  This study  

MXAN_4523  LWT  ABC Transporter   [56] 

MXAN_4580  Early aggregation  NtrC-Like Activators  This study  

MXAN_4622  LWT  ABC Transporter   [56] 

MXAN_4662  Immature aggregates  ECF Sigma Factors  This study  

MXAN_4665  LWT  ABC Transporter   [56] 

MXAN_4716  Fall apart  ABC Transporter   [56] 

MXAN_4733  Early aggregation  ECF Sigma Factors  This study  

MXAN_4749  LWT  ABC Transporter   [56] 

MXAN_4750  LWT  ABC Transporter   [56] 

MXAN_4785  Late aggregation  NtrC-Like Activators  This study  

MXAN_4790  Variable  ABC Transporter   [56] 

MXAN_4899  Fall apart  NtrC-Like Activators  This study  

MXAN_4949  Early aggregation  ECF Sigma Factors  This study  

MXAN_4977  Early aggregation  NtrC-Like Activators  This study  

MXAN_4983  Variable  NtrC-Like Activators  This study  

MXAN_4987  LWT  ECF Sigma Factors  This study  

MXAN_5029  No aggregation  One Component  This study  

MXAN_5041  Immature aggregates  NtrC-Like Activators  This study  

MXAN_5048  Late aggregation  NtrC-Like Activators  This study  

MXAN_5101  Early aggregation  ECF Sigma Factors   [149] 

MXAN_5124  Fall apart  NtrC-Like Activators   [149] 

MXAN_5128  LWT  One Component  This study  

MXAN_5153  Early aggregation  NtrC-Like Activators   [149] 

MXAN_5245  Late aggregation  ECF Sigma Factors  This study  

MXAN_5263  No aggregation  ECF Sigma Factors   [149] 
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MXAN_5271  No aggregation  One Component  This study  

MXAN_5276  LWT  ABC Transporter   [56] 

MXAN_5305  LWT  One Component  This study  

MXAN_5356  Early aggregation  One Component  This study  

MXAN_5379  LWT  ABC Transporter   [56] 

MXAN_5410  Early aggregation  ECF Sigma Factors   [149] 

MXAN_5480  Early aggregation  One Component  This study  

MXAN_5492  LWT  One Component  This study  

MXAN_5503  LWT  ABC Transporter   [56] 

MXAN_5506  Early aggregation  ECF Sigma Factors  This study  

MXAN_5545  Variable  One Component  This study  

MXAN_5547  LWT  One Component  This study  

MXAN_5584  LWT  ABC Transporter   [56] 

MXAN_5680  Variable  NtrC-Like Activators   [149] 

MXAN_5731  Immature aggregates  ECF Sigma Factors  This study  

MXAN_5777  Variable  NtrC-Like Activators   [149] 

MXAN_5853  Variable  NtrC-Like Activators  This study  

MXAN_5879  Fall apart  NtrC-Like Activators   [149] 

MXAN_5894  Variable  One Component   [149] 

MXAN_6000  Late aggregation  ABC Transporter   [56] 

MXAN_6058  Variable  ECF Sigma Factors  This study  

MXAN_6149  LWT  One Component  This study  

MXAN_6157  LWT  One Component  This study  

MXAN_6161  LWT  One Component  This study  

MXAN_6167  Variable  One Component  This study  

MXAN_6173  Early aggregation  ECF Sigma Factors   [149] 

MXAN_6206  Variable  One Component  This study  

MXAN_6251  Variable  One Component  This study  

MXAN_6402  LWT  ABC Transporter   [56] 

MXAN_6426  No aggregation  NtrC-Like Activators   [149] 

MXAN_6461  Fall apart   ECF Sigma Factors  This study  

MXAN_6468  Variable  One Component  This study  

MXAN_6475  Early aggregation  ABC Transporter   [56] 

MXAN_6479  LWT  One Component  This study  

MXAN_6486  LWT  One Component  This study  

MXAN_6518  Variable  ABC Transporter   [56] 

MXAN_6549  Late aggregation  One Component  This study  

MXAN_6551  LWT  ABC Transporter   [56] 

MXAN_6646  LWT  One Component  This study  

MXAN_6653  No aggregation  One Component  This study  

MXAN_6759  Immature aggregates  ECF Sigma Factors  This study  
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MXAN_6833  Variable  One Component  This study  

MXAN_6889  No aggregation  One Component   [149] 

MXAN_6967  Late aggregation  One Component  This study  

MXAN_7072  Variable  One Component  This study  

MXAN_7078  LWT  One Component  This study  

MXAN_7214  Early aggregation  ECF Sigma Factors  This study  

MXAN_7289  Immature aggregates  ECF Sigma Factors  This study  

MXAN_7312  LWT  One Component  This study  

MXAN_7316  LWT  One Component  This study  

MXAN_7322  Late aggregation  One Component  This study  

MXAN_7326  LWT  ECF Sigma Factors  This study  

MXAN_7440  No aggregation  NtrC-Like Activators   [149] 

MXAN_7454  Early aggregation  ECF Sigma Factors  This study  
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4. Phenotype probability distinguishes near-wild-type from wild-type 

behavior 

This chapter contains work that has not yet been published, done in collaboration with Roy 

Welch, Alison Patteson, and Eduardo Caro. The manuscript was written by myself and Eduardo 

Caro. I was responsible for the analysis work, and Eduardo Caro performed the experiments. The 

image acquisition system presented here employed microscopy hardware previously produced 

by the Welch lab. I created the software that coordinates and controls the image acquisition 

and managed the networking of the microscopes, and Eduardo Caro maintained and optimized 

the microscopes. 

4.1 Introduction 

Multicellular development is a necessary part of the life cycle of many organisms, requiring 

extensive coordination and response to stochastic events for a desired phenotype to 

emerge [150–152]. Networks of intracellular and extracellular signals, gene expression, and the 

physical principles that control them are highly interwoven and contain 

redundancies [153,154]. The genotype-phenotype problem is the broad task of understanding 

this web of phenotypic effect and genetic cause. 

We use the bacteria Myxococcus xanthus as a model organism that exhibits a rudimentary but 

robust form of development in the form of fruiting body aggregation, wherein cells in a low 

nutrient environment spontaneously organize from a homogeneous, flat swarm into a discrete 

number of mound-shaped aggregates harboring thousands of cells. In nature, these aggregates 

mature into fruiting bodies, which contain metabolically quiescent myxospores that can reseed 
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a new, active colony once conditions improve [42]. This example of a collective behavior that 

achieves a specific end (fruiting bodies) that are tied to communal survival is a promising object 

of study for the genotype-phenotype problem. A complex regulatory system is necessary for 

successful fruiting body development, including genes that regulate internal cell behaviors, as 

well as those that control cell-to-cell signaling, such as the cell-membrane-associated C-signal 

protein [155]. Using site directed mutagenesis, specific genes in the genome can be disrupted 

and observed for changes in the process and results of fruiting body formation, i.e., phenotypic 

changes [156]. The observations can then be contrasted with the genetically undisturbed “wild-

type” behavior to intuit the function of the disrupted gene. However, gene expression itself is 

highly stochastic, particularly in timing. The protein a gene codes for can be produced in short, 

irregular bursts instead of at a steady rate [150,157]. This stochasticity is a trait that organisms 

like bacteria rely on for necessary biological processes such as sporulation [158]. 

Differentiating mutant behavior from wild-type is at the heart of the genotype phenotype 

problem and biological research in gene annotation, the assignment of function to otherwise 

unknown genes. Of the over seven thousand protein-coding genes identified in the genome of 

wild-type M. xanthus strain DK1622, nearly 40% do not currently have a predicted 

function [159]. A key factor needed to establish significance when observing mutant behavior is 

a boundary defining what may be considered “near-wild-type” behavior. Biological systems 

have inherent variation, so controlling genome and experimental conditions can only reduce 

that variation to a baseline level. If genes can only be identified by catastrophic changes in 

fruiting body formation, the knowledge of the associated gene function is severely limited. The 

orchestration of many cells to form fruiting bodies requires interplay between many genetic 
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factors, most of which, on their own, have only a subtle effect or an effect with high variability 

due to gene redundancy arising from gene duplication and other factors [113]. This causes 

problems with some conventional analysis methods such as t-tests on one developmental 

metric at a time. A random variable with high, unknown variance can be falsely selected by a t-

test as significant, and when the number of samples is small, low sensitivity means no effect is 

captured with statistical significance [160]. This necessitates a method both for reliably 

observing subtle changes in phenotype and quantifying how far the deviation is from wild-type 

behavior.  

Performing studies that embrace and scrutinize stochasticity is necessary for developing a 

working understanding of complex, biophysical systems. Statistical techniques that are useful in 

the face of highly stochastic events such as gene expression are a topic of active 

interdisciplinary research [161], and the inherent ability of living systems to submit to statistical 

study is an open epistemological question [162]. When a baseline level of variation can be 

measured for a wild-type system, any differences distinct from that baseline are capable of 

distinguishing mutant phenotypes. Many observations are needed to establish this baseline 

with confidence. In this study, we present a high-throughput experimental setup for observing 

many instances of cellular aggregation and an analysis pipeline that quantifies developmental 

phenotype in order to distinguish mutant strain behavior from wild-type behavior with 

statistical significance and assess the developmental impact of single gene mutations. The array 

of centrally controlled microscopes built to fulfill the unique needs of a high-throughput system 

for fruiting body aggregation assays, when combined with a novel statistical technique that 
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combines the effects of multiple quantitative markers of development, demonstrates a 

statistically significant measurement of the subtle effects of single gene mutations. 

 

Figure 4.1: Stochasticity is inherent to multicellular behaviors in social bacteria. (A) A bacterial colony undergoing 
fruiting body development is exposed to stochastic noise on multiple scales. At the cellular level, gene expression 
depends on thermally driven chemical events, and environmental factors such as variations in temperature and 
humidity introduce further uncertainty. Thus both direct and indirect effects of genotype arrive at a final 
phenotype, possibly via multiple developmental paths. (B) Images of final developmental phenotype for separate 
aggregation assays at 24 hours post inoculation. Pictured are a range of outcomes from the wild-type M. xanthus 
strain as well as the four mutant strains used in this study. Aggregates are visible as dark spots, seen from above. 
Scale bar, 250 μm. (C) The average final area and final count of wild-type aggregates and those for four mutant 
strains are reported with boxplots. Although there are some differences in these typical metrics of comparison, 



113 
 

 

there is considerable overlap between wild-type and each of the mutant strains. N > 500 measurements for wild-
type, taken over 25 different days; N = 15 measurements for each mutant strain, taken over 2 different days. 

4.2 Results 

An accurate measurement of the variation of wild-type behavior requires a large sample size to 
accommodate the many developmental outcomes observed in M. xanthus fruiting body 
development and estimate their probability. To accomplish this with enough simultaneously 
running assays to measure the impact of day-to-day variation, we produced custom built 
microscopes and a microscope control network to collect and organize developmental data. 
Each fruiting body aggregation assay requires a sealed chamber with sufficient temperature, 
oxygenation, and humidity for development to occur. Cells are inoculated from liquid culture 
and sealed in each slide assembly, where the aggregates begin to form after about five hours. 
After manual setup and focus, automated imaging proceeds for 24 hours, at which point most 
aggregates are stable. The resulting time series images are organized on a central hub 
computer from which image processing can begin.

Figure 4.2. High-throughput time series acquisition setup. (A) A single microscope, at 1.2 kg and 24x19x25 cm3, 
with 3D-printed armature, 4X objective lens, light source, heated stage, camera, and Raspberry Pi microcomputer. 
(B) Slide assembly for each developmental experiment. Sandwiched between a glass coverslip and a glass slide, 
two silicone gaskets create a sealed enclosure containing a disk of non-nutritive agarose on which a colony of M. 
xanthus has been inoculated. Aggregate development is imaged over a 24-hour period with one image taken each 
minute. (C) Panoramic photograph of full image acquisition setup including 96 microscopes and central hub 
computer. (D) Basic network architecture for centralized image storage and control of all 96 microscopes. 

Using a dataset of over 500 wild-type aggregation time series acquired over 25 separate days, 

we quantify the range of developmental phenotype by measuring ten quantitative metrics for 
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each video. We choose three metrics related to timing: start time, when aggregation begins; 

peak time, when the area occupied by aggregates reaches its maximum; and stability time, 

when the number of aggregates becomes stable. We also measure the mean and standard 

deviation in average aggregate area at two time points: peak time, and 24 hours. We measure 

the number of identifiable aggregates at both peak time and 24 hours. Finally, we measure the 

fraction of aggregates that appear and then disperse before 24 hours elapse from inoculation. 

Myxobacteria development, when observing fruiting body morphogenesis, is typically resolved 

by 24 hours, especially in wild-type DK1622. After placement onto starvation media, the 

movement of aggregates, their size, and distinctive morphology has usually been set by this 

point, even though the internal myxospores are still maturing for an additional 3-5 days. For the 

purposes of our study, we chose to limit our time lapses to 24 hours to highlight differences in 

the dynamics of fruiting body aggregation. Phenotypic differences could yet be observed in 

mutants that take longer than 24 hours using the methods established here. The specific 

algorithms used to determine each phenotypic metric are detailed in the Supplementary 

Materials (Supp. Table 4.3). These metrics are extracted with a custom Python image 

processing algorithm that identifies and measures each aggregate, as described in Methods. 

Values for these metrics across the wild-type dataset are shown in Figure 4.3A, with the 

distributions illustrating averages and variation for each metric. Peak time, aggregate count at 

peak time, and the fraction of aggregates that disperse exhibit bimodal distributions. Long-

tailed distributions, such as the standard deviation (σ) of area and aggregate count (both at 

peak time and after 24 hours) indicate the presence of abnormal phenotypes with extreme 

values in these metrics. 
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We next map the wild-type dataset in a visualizable way. Because we use ten phenotypic 

metrics, each time series may be represented by a point in a 10-dimensional phenotype space, 

where points closer together are more phenotypically similar than points far apart. To reduce 

the number of dimensions but retain the structure of our dataset, we use principal component 

analysis (PCA), to reduce the number of dimensions from ten to two. the resulting metrics from 

each time series are mapped to a point in a 2D phenotype space. The two dimensions of this 

space are called PC1 and PC2, the first and second principal components, respectively. PC1 and 

PC2 are each a single numerical measure that is a mathematical composite of multiple 

quantitative features, each weighted differently. Principal component analysis guarantees that 

PC1 and PC2 are the metrics that display the most variation across the wild-type dataset as 

compared to any other linearly independent combination of the input metrics. Between just 

PC1 and PC2, the majority of the variance across the full dataset (56%) is accounted for. The 

distribution of points in this map constitutes the wild-type phenotype profile. 
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Figure 4.3. Quantitative breadth of wild-type phenotype. (A) Histograms display the range of phenotypic metrics 
across over 500 wild-type aggregate development time series. Bimodal shapes in peak time (when total aggregate 
area is maximum), aggregate count at peak time, and fraction of aggregates that disperse reflect the two most 
common groupings of metrics. Long-tailed distributions, such as standard dev. (σ) of area and aggregate count 
(both at peak time and after 24 hours) indicate the presence of abnormal phenotypes. All y-axes display probability 
density. (B) By using PCA to combine information from all ten metrics, each wild-type time series is plotted as a 
single datapoint in a phenotypic feature space. PC1 primarily measures aggregate area, and PC2 correlates with 
number and timing of aggregates. For example, while moving in the direction of the arrow labelled “Npeak,” 
datapoints will have generally higher numbers of aggregates at peak time.  Units of PC1 and PC2 are arbitrary, 
although the origin at (0,0) represents average behavior across the full wild-type dataset. A contour is drawn 
enclosing 90% of the datapoints, separating typical phenotypes from rare phenotypes. Within typical behavior, two 
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separate clusters, Mode 1 and Mode 2, contain 50% of the wild-type datapoints. (C) Curves displaying the total 
number of aggregates over time (top) and mean area of aggregates over time (bottom) illustrate the 
developmental differences and similarities between the two wild-type modes. The central line represents the 
median at each time point, and the colored bands span the 25th to 75th percentiles at each time point, i.e. half the 
data about the median. In Mode 1, a larger number of aggregates develop at an earlier time, most of which 
disperse. The final number of aggregates is comparable for both modes. The rates of increase of mean area are 
also similar across the two modes. (D&E) Two representative time series each for Mode 1 and Mode 2 phenotypes 
at three relevant time points. Mode 1 displays many, dense aggregates that form early and then disperse. This 
causes an early peak time. Mode 2 displays aggregates that form later, most of which persist through the 24 hours 
of development, slowly growing in area and darkening. This causes a late peak time. Scale bar 100 μm.  

The unique weighted combination of metrics that make up PC1 and PC2 indicate key metrics 

that can distinguish behavior. The weights are bounded between -1 and 1, with larger absolute 

values indicating more strongly weighted metrics. Both PC1 and PC2 contain a mix of all ten 

metrics, with no one metric standing out in significance over the others, but rather groups of 

metrics being more significant. In this study, the top weighted metrics of PC1 (with weights 

given in parentheses) are number of aggregates at peak time (0.47), fraction of aggregates that 

disperse (0.44), peak time (-0.43), and start time (-0.39). For PC2, the top metrics are mean area 

at peak time (0.57), standard deviation in area at peak time (0.46), standard deviation in area at 

24 hours (0.42), and mean area at 24 hours (0.40). The full list of weights is given in the 

Supplementary Materials (Supp. Table 4.2). In summary, PC1 is primarily shared between timing 

and the total number of fruiting bodies that form, in diametrical opposition. That is, when 

aggregation starts and peaks at an earlier time, the number of fruiting bodies tends to be 

larger, and vice-versa. PC2 is a variable independent from PC1 that mostly characterizes area. 

Thus, large aggregates can present in large or small numbers, and do so early or late relative to 

average wild-type behavior. 

We observe two primary modes of aggregate formation, as shown by the two shaded regions in 

Figure 4.3B. What we term “Mode 1” features aggregates that start forming and peak in total 
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aggregate area generally sooner than other wild-type assays. Mode 1 aggregates are generally 

numerous, small, and dark at peak time, but a large fraction of them disappear before 24 hours 

of development. These aggregates tend to be dynamic and lack a well-defined shape until after 

peak time (Figure 4.3D). In contrast, Mode 2 aggregation is less mature early on, with either no 

visible aggregates or aggregates with fewer layers of cells able to block light (Figure 4.3E). These 

aggregates are more static and form with more well-defined shapes, and more of them tend to 

persist through the 24 hours of development. Because these aggregates tend to persist once 

they form, the time of peak total area is very late for Mode 2, when stable aggregates are still 

growing slowly. Although there are fewer Mode 2 aggregates at peak time than most wild-type 

assays, the mean number and size of these aggregates at 24 hours is equal to that of Mode 1, as 

well as wild-type assays in general. Both modes demonstrate more consistently sized 

aggregates than other wild-type assays, both at peak time and at 24 hours. Histograms of all ten 

metrics for the two modes are presented in the Supplementary Materials (Supp. Fig. 4.6). 

Exceptional phenotypes observed in our wild-type dataset include those that produce unusually 

large fruiting bodies. These occur by a variety of mechanisms, such as large aggregates forming 

either extremely early with defined shapes from initial formation or extremely late with shapes 

that only appear visible towards the end of 24 hours (time series in Supplementary Materials, 

Supp. Fig. 4.7). These abnormal behaviors present at the margins of PCA phenotype space 

because they represent a confluence of multiple abnormal metrics, revealing more information 

than standard statistical tests on one metric at a time.  
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Some rare behaviors observed include failure to aggregate, which occurred in about 2% of wild-

type assays, and failure for aggregates to stabilize after 24 hours, which occurred in about 17% 

of wild-type assays. 

We choose four mutant strains to compare with our nominal wild-type strain DK1622, each 

with 60 to 80 replicates each collected over two to six separate days. These strains were chosen 

to be developmentally similar to wild-type in order to test the sensitivity of our methods. In 

preliminary experiments, all four strains produced a set of three replicates that were manually 

identified as “near-wild-type” and displayed final aggregate size and number that could not be 

distinguished from wild-type with a Student’s t-test. Three mutant strains contain insertions of 

simple reporter genes, such as DK10546 producing GFP (See Methods for more details on each 

strain). Analyzing these strains tests the assumption that introducing reporter genes into a 

prokaryotic genome will not significantly impact cellular behavior or emergent phenotypes, an 

important preliminary consideration before their use in other experiments. When more 

replicates had been analyzed, standard statistical tests distinguish one strain, DK7517, as 

distinct from wild-type because it produces smaller than average aggregates (Fig. 4.1). Because 

the distribution of wild-type final mean areas is non-Gaussian as measured by a Shapiro-Wilk 

normality test, the Kolmogorov-Smirnov test for distinguishing two distributions was chosen as 

the standard test in favor of a Student’s t-test, which assumes normality of the underlying 

distributions. 

The developmental data for the additional replicates of the mutant strains are projected onto 

the same PC1, PC2 axes that were defined for the wild-type data. This allows direct comparison 

and visualization of multiple metrics simultaneously. The typical behavior and variability of each 
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mutant strain’s development is captured by two regions: a contour is drawn that captures 50% 

of the datapoints, creating an effective median region in PCA space. We then choose a wider 

contour that captures 90% of datapoints to serve as a boundary for abnormal phenotypes. By 

comparing the distribution of the mutant strain points to that of wild-type, a p-value can be 

calculated for the null hypothesis that the mutant datapoints are drawn from the wild-type 

distribution. This p-value depends on the number of points found inside the 50% contour and 

the number inside the 90% contour, and was calculated with bootstrapping, as described in 

Methods. This is a nonparametric, data-driven statistical method that makes no assumptions 

about the dataset a priori, allowing for multi-modal distributions which are likely to arise in 

living systems. Validation can be confirmed on multiple subsamples to quantify the impact of 

day-to-day variation on the p-value. 
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Figure 4.4. Deviation of near-wild-type mutant strains from wild-type behavior. (A) Each mutant development 
time series is plotted as a single data point in phenotype space, as measured by the collective metrics PC1 and PC2. 
For each respective strain, dashed contours enclose 90% of data points, and the shaded region(s) enclose 50% of 
data points. The 90% and 50% contours for wild-type are shown for reference. The deviation of mutant phenotype 
from wild-type is determined by the departure of the mutant distribution from the wild-type distribution. 
Statistically significant departures from the wild-type distribution are measured for all four mutant strains, with p-
values calculated for subsamples of only 15 replicates each. These p-values are calculated from many random 
samplings drawn from the wild-type dataset (Methods). Arrows point to time series shown in (B) Time series of 
phenotypes expressed rarely in wild-type are shown at three relevant time points for each mutant strain. Scale bar 
100 μm. 

All four strains demonstrated subtle yet statistically significant departure from wild-type 

behavior. Strains DK10546 and DK4322 in particular showed a preference for Mode 1 behavior, 

with Mode 2 being rarely expressed, unlike in wild-type. Some mutant replicates that exhibited 

rare behaviors are highlighted in Fig. 4.4B. Replicates of DK10546 displayed more extreme 

versions of Mode 1 behavior, in which many small aggregates form early on, almost all of which 

disperse by 24 hours. DK4322 replicates also displayed a more extreme version of Mode 1 

behavior in which aggregates at peak time, although distinct, had very irregular shapes. The 
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final aggregates were slightly larger and more varied in area than typical wild-type assays. The 

aggregates of some DK6665 replicates formed from sparse, small points that formed late and 

grew steadily over the course of the 24 hours. This nucleation was seldom expressed in wild-

type. This strain also displayed difficulty in the dispersal of the random initial cell clumps that 

are present at inoculation. In wild-type, these initial clumps nearly always disperse, and final 

aggregate positions have no correlation with these initial clumps. Finally, the abnormal 

behavior of DK7517 replicates, which involved late aggregates that never significantly 

darkened, was also a noticeable deviation from even exceptional wild-type behavior. Among 

the mutant strains, about 2% failed to aggregate (the same fraction as wild-type), and 30% to 

45% of mutant assays failed to stabilize after 24 hours, a significant increase from the 17% 

observed in wild-type. 

4.3 Discussion 

Each instance of fruiting body formation is the result of the combined effects of the genetic 

background, environmental factors both controllable – such as temperature or substrate 

stiffness – and uncontrollable – such as local pockets of varying initial cell density, or the 

changes in gene expression that uniquely unfold for that specific population of cells. Genetic 

changes may be better described by how they affect the odds of a multiplicity of outcomes. In 

fact, we observe that most mutants behave like wild-type a majority of the time. This is a 

significant reinterpretation of the meaning of the “phenotype” that results from a given 

genotype, not as a guaranteed outcome, but as a reshuffling of likely outcomes. This 

description is appropriate to the physics of living systems, which are tuned through evolution to 

be poised at the center of a variety of behaviors, ready to adapt to rapid changes either in the 
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organism or its environment. Techniques in the biostatistics community are consistent with this 

perspective, such as probabilistic latent variable models [163], which complement the analysis 

presented in this study. 

Essentially, the statistical method reported here characterizes phenotype in terms of abnormal 

behavior, either locally – i.e. groupings of behavior that fall within the broad scope of wild-type, 

but are still outside the norm – or globally – i.e. behaviors that are never expressed in the entire 

wild-type profile. Because measures of mean behavior can fail to capture variations, such as a 

shifting distribution that happens not to be skewed, the study of abnormalities is a fruitful 

ground for distinguishing the effects of single-gene mutations, especially when enough 

replicates can be performed to reliably observe abnormal behavior [164]. This perspective also 

emphasizes the need to vet exceptional data to ensure that they represent genuine but rare 

behavior and are not simply abnormal due to a failure of data processing, such as inconsistent 

imaging conditions. Insofar as possible, the metrics chosen in this study were selected to 

minimize dependence on imaging setup, and manual vetting was performed on points that fell 

on the margins of PCA phenotype space. 

The methods we report in this work are not unique to bacterial development. A similar analysis 

could be performed for any stochastic system that can: 1) Have many comparable replicates 

prepared, 2) Have multiple relevant metrics measured for each replicate. This method can thus 

be compared to a similar general analysis framework, such as machine learning. Machine 

learning is powerful in that metrics do not need to be chosen in advance. However, this comes 

at the cost of the transparency in how categorization is accomplished, and the need for training 

a model on input data categorized by some other method. It is often true that a system of 
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interest has several obvious aspects that are amenable to measurement with image processing. 

In the case where the dynamics of the system are relevant, our method is also attractive to use 

with time series image data, which in raw form can be multiple gigabytes in size and generally 

difficult to work with on large scales. The initial choice of phenotypic metrics represents a large 

simplification of the unprocessed image data that ensures phenotypic relevance is preserved 

over image acquisition noise. The further reduction of the phenotypic dataset from ten to two 

dimensions not only produces a phenotypic map that is sufficiently navigable to reveal overall 

structure and guide investigation of individual datapoints, but also avoids a well-known 

problem in data science associated with the so-called “curse of dimensionality.” This issue 

occurs in high-dimensional datasets, where geometry tends to make the distance between 

neighboring points similar to the distance across the dataset, making “similarity” in terms of 

distance essentially meaningless [165]. 

Although 60 replicates or more were analyzed for each mutant strain in this study, a strain that 

appears like wild-type to the eye can be distinguished from wild-type with fewer replicates. By 

analyzing the distribution in PCA space of many subsamples of wild-type aggregation, we find 

that only 15 replicates spread over two days are needed to establish departure from wild-type 

behavior for each of the mutant strains above. Notably, for this same sample size, standard 

statistical tests based on individual metrics (average aggregate area after 24 hours shown in 

Supplementary Materials) can only distinguish one strain, DK7517, as distinct from wild-type, 

and with less statistical power than the method used in this study. Because the distribution of 

final mean areas is non-Gaussian as measured by a Shapiro-Wilk normality test, the 
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Kolmogorov-Smirnov test for distinguishing two distributions was chosen as the standard test in 

favor of a Student’s t-test, which assumes normality of the underlying distributions. 

Our results indicate that there are indirect effects on fruiting body formation dynamics in M. 

xanthus due to the use of common reporters. Reporter genes are used as effective markers for 

successful transfection and are used for quantitative assays, which require them to not obstruct 

or alter the mechanism of study. GFP, a 28kDa green-fluorescent-protein, allows for the precise 

visualization of proteins using UV light. Although small enough to diffuse from the cytosol into 

the nucleus, there are inherent indirect costs to attaching these tags to a molecule of interest. 

By inserting this extra DNA, another introduction of molecular noise via transcription and 

translation steps is added during these biochemical reactions [166–168]. These non-target 

effects can cause cellular differences in expression changes which contribute to the stochastic 

variation we see in the overall cell population [169].  

Another reporter gene, Tn5 lac, is a promoter-less trp-lac fusion that was designed to identify 

strains that specifically increase beta-galactosidase expression at some point during M. xanthus 

development as developmental markers. Transposons are a diverse class of mobile genetic 

elements that can promote genetic rearrangements without a requirement for sequence 

homology [170]. The Tn5 transposon was inserted so lac Z transcription occurred with 

exogenous promoters and their promoter strength was quantified [171] to identify genes that 

were expressed during M. xanthus fruiting body morphogenesis. By attaching to the promoter, 

it was assumed that lacZ expression would occur in parallel with gene-specific myxospore 

development without disrupting gene function. However, Tn5 transposon insertions can 

promote adjacent deletions [172] which can then disrupt regulatory regions and lead to 
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changes in phenotype from differences in gene expression [173]. The ability to differentiate 

these transposon insertion strains from wild-type emphasizes the need to assess the impact of 

reporter genes, especially in biophysical studies that focus on developmental dynamics, where 

differences may be easier to observe. 

These results point to a method of gene annotation that is sufficiently sensitive to identify the 

impact of single gene mutations that would otherwise be imperceptible. Each mutant strain 

becomes associated with a signature distribution in a PCA space that can be generally defined 

and used by any laboratory. Strains with sufficiently similar distributions can then be said to 

share a function because they impact development in a demonstrably similar way. If the 

signature distribution of well-understood genes is reported, newly characterized genes of 

unknown function can be compared to those benchmark distributions. Notably, these 

signatures are agnostic of any specific biological model, and are based only on visually 

observable characteristics. Future work can process a library of single-gene knockout strains 

with unknown function. Over time, this also develops an overall phenome with respect to 

fruiting body development that is quantitative, and which creates a common language of 

comparison for the function of many different genes. As more such experiments are done in 

this framework, either through high-throughput imaging methods like those described here or 

by the collective efforts of many researchers, developmental phenotypes that are uncommon 

will be revealed. These unusual events serve to define a boundary on multicellular behavior and 

can expose the regulatory mechanisms of fruiting body formation when stretched to their limits 

by stochastic factors alone. These “exceptions” can teach us much about the “rule.” 
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Among these sources of behavioral change, we expect that small aspects of experimental 

protocol will have subtle but measurable effects. Over the course of the experiments carried 

out for this work, a new protocol variable was confirmed that is not normally controlled for in 

M. xanthus culture, namely the age of the agar plate containing colonies to be harvested for 

liquid bacterial culture. It is expected that reintroducing bacteria to liquid culture will “reset” 

their metabolic state regardless of what state they were in before, but our analysis revealed 

preliminary evidence that a colony will “remember” the age of the plate it was harvested from 

and produce fewer fruiting bodies if the colony grew on the plate for at least three days 

(Supplementary Materials, Supp. Fig. 4.8). Although the mechanism of this memory is unknown, 

the effect has been consistent, and we expect that other such protocol variables exist that have 

a measurable phenotypic impact. 

The sensitivity of the methods presented here may also be used to measure phenotypic 

response to changes in a variety of environmental variables. In a similar fashion to running 

replicates of single-gene mutants, running replicates with differing substrates will reveal subtle 

or overt changes in phenotype. This future work could address the missing environmental 

information of the genotype-phenotype problem and expand the bounds of “wild-type 

behavior” as a function of environmental conditions. The contour bounding abnormal wild-type 

behavior encompasses exactly what has not yet been characterized to have a specific cause, 

providing both a measure of ignorance of relevant physical and biological mechanisms, and a 

way to characterize how much knowledge is gained when subregions can be assigned a root 

cause, and thus separated from wild-type. 
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4.4 Conclusions 

Overall, our work demonstrates that single gene disruptions can produce measurable changes 

in M. xanthus aggregation development, even when introducing reporter genes widely 

assumed to be benign with respect to impacting cellular behavior. These effects are subtle and 

emphasize changes in dynamics over changes only in final developmental outcome, but they 

can be reliably observed in samples of only 15 replicates. These methods provide a pattern for 

characterizing development by mapping out phenotype in a clearly visualizable way that also 

incorporates the many different quantitative aspects that can be measured in collective, living 

systems. These tools can serve as a language of data presentation with applications in gene 

annotation or investigations of the impact of environmental variables on the genotype-

phenotype problem. 

4.5 Methods 

Imaging setup 

The setup can simultaneously collect time series images for 96 experiments using an array of 

compact and identical microscopes controlled by a central computer. Each of the 96 

microscopes is equipped with a single 4X objective lens, a Peltier device that maintains stage 

and sample temperature, a red-light source, and a camera controlled by a Raspberry Pi, a 

single-board minicomputer. The 3D-printed armature and assembly hardware serve to keep all 

components firmly in place and provides a focus knob for higher image quality. 

To ensure uniform control of all microscopes and central storage of their time series output, 

each individual Raspberry Pi unit is networked via ethernet and two 64-port network switches 
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to a central hub computer. This computer runs Piserver software, which boots each Raspberry 

Pi from a single operating system image, allowing software to be changed and updated for all 

Raspberry Pi units simultaneously. Custom software written in Python provides a convenient 

GUI to control image acquisition from each camera via SSH and organize output in a centralized 

image storage location. 

Cell culture 

Long term stock cultures were recovered on nutrient rich CTTYE media agar (1% Casein Peptone 

(Remel, San Diego, CA, USA), 0.5% Bacto Yeast Extract (BD Biosciences, Franklin Lakes, NJ, USA), 

10 mM Tris (pH 8.0), 1 mM KH(H2)PO4 (pH 7.6), 8 mM MgSO4). Cells were harvested from the 

plates and used to inoculate broth cultures in CTTYE with vigorous shaking at 32°C and grown to 

an approximate density of 4x108 cells/mL (100 Klett or 0.7 A550).  

Cells were centrifuged to remove the nutrient broth, washed in TPM buffer (10 mM Tris (pH 

7.6), 1 mM KH(H2)PO4, 8 mM MgSO4), and resuspended to a final concentration of 4x109 

cells/mL. For the development assay, approximately 4x107 cells (10µL aliquots) were spotted 

onto a TPM agar slide, a nutrient limited medium, then incubated on the microscope stage at 

32°C for 24 hours. TPM slides were prepared as previously described [146]. 

Table 4.1. The strains used in this study. 

Strain Description 

DK1622 The nominal wild-type strain was genetically modified from a naturally 
occurring M. xanthus isolate [174]. This was done to establish a stable baseline 
for fruiting body development assays, as strains isolated directly from soil have 
a high rate of developmental failure in a laboratory setting. 

DK10546 The free expressing GFP labeled strain is used to track motility and cell 
dynamics during development. Used as an experimental control for 
fluorescence microscopy, the construct was generated fusing a copy of the pilA 
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promoter to the coding sequence of GFP (pilAp-GFP), that was then re-inserted 
into the M. xanthus chromosome [175]. This study showed an increased 
likelihood of early aggregation with many dispersing aggregates over wild-type 
for this strain. 

DK6665 The Tn5 Ω6658 sasB7 mutant was generated from a mutation created in 
suppressor developmental gene sasB [176]. Previous work observed no visible 
phenotypic impact on the mutant as the strain can still proceed through 
development via other regulatory channels. This study observed initial cell 
clumps having an unusually high impact on final aggregates due to a lack of 
dispersal of initial cell clumps relative to wild-type. 

DK4322 The spiA::Tn5-lacZ strain, is a reporter fusion for the developmental gene spi 
with lacZ for β-galactosidase assays. The spi gene has been shown to be 
induced at 2 hrs into development and is developmentally regulated by C signal 
pathways. In previous work, the transposon insertion was characterized as not 
interfering with development or affect spore production [171]. This study 
showed a higher likelihood of irregular aggregate shapes at early times for this 
strain than wild-type. 

DK7517 Generated via a Tn5-LacZ insertion into a TA synthesis gene, as a reporter gene 
involved in toxin and antitoxin production also for β-galactosidase assays [177] 
to isolate regulatory mutants. This reporter fusion was shown to be expressed 
during vegetative growth while peaking during lag phase. In this study, late and 
immature aggregates were more likely to develop in this strain than wild-type. 

 

Image processing pipeline 

Phenotype was automatically quantified for each fruiting body aggregation assay in this study 

by running 144 individual .TIFF images (ten minutes between each frame over 24 hours of total 

development) from each time series through a custom Python image processing and analysis 

pipeline to identify in each frame which pixels could belong to a fruiting body, based on their 

gray value. The information for the position and geometry of each aggregate was filtered to 

remove noise and spurious aggregates. This detailed data summary for each time series then 

had a list of ten specific numbers extracted from it, each of which captures one overall feature, 

such as the time at which aggregation began or the average size of final fruiting bodies. The 

values of these ten metrics together were then used in further analysis. The full details of the 



131 
 

 

image processing pipeline and all phenotypic metrics are available in the Supplementary 

Materials (Supp. Table 4.3). 

Statistical methods 

To calculate p-values that test the null hypothesis of mutant development datapoints in PCA 

space being drawn from the same distribution as the wild-type development datapoints, we 

first generate the contours for the wild-type PCA data by starting with Gaussian kernel density 

estimation (KDE) and using standard root-finding techniques to draw contours from the density 

estimate that capture 50% and 90% of the PCA datapoints. An appropriate kernel size for the 

KDE is validated by using 75% of the wild-type dataset, and ensuring that, across many 

subsamples of the remaining 25% (verification data), the distribution of enclosed points is 

centered on the appropriate percentage. When this distribution is skewed, it indicates 

overfitting of the original contour. With these contours drawn, we then use a data-driven 

statistical technique similar to bootstrapping. Given a sample size N, 10,000 samples of that size 

are drawn from the wild-type dataset. Each subsample has a characteristic pair of numbers, 

(n50, n90), which corresponds to the number of points in the sample that fall inside the 50% and 

90% contours, respectively. Once the distribution of these pairs for wild-type data is known, n50 

and n90 are calculated for a sample of mutant PCA datapoints of size N. The fraction of wild-

type videos that have both n50 and n90 greater than the mutant sample’s values of n50 and n90 

gives the p-value, or the probability that a sample of wild-type data of size N would exhibit the 

same distribution. Contours for mutant strains are shown for visualization only, and do not 

figure into the calculation of the p-values. 
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4.6 Supplementary Materials 

 

 

Supplementary Figure 4.5. Standard statistical test (Kolmogorov-Smirnov on one metric) compared with p-value 
calculated from changing distributions in PCA space. (A) Each mutant development time series is plotted as a 
single data point in phenotype space, as measured by the collective metrics PC1 and PC2. For each respective 
strain, dashed contours enclose 90% of data points, and the shaded region(s) enclose 50% of data points. The 90% 
and 50% contours for wild-type is shown for reference. The deviation of mutant phenotype from wild-type is 
determined by the departure of the mutant distribution from the wild-type distribution. Statistically significant 
departures from the wild-type distribution are measured for all four mutant strains, with p-values calculated for 
subsamples of only 15 replicates each. These p-values are calculated from many random samplings drawn from the 
wild-type dataset. (B) The same mutant strains are compared against wild-type using only a metric taken from the 
last frame of development, final aggregate area. With subsamples of size N=15, a Kolmogorov-Smirnov test can 
only distinguish between DK7517 and wild-type with statistical significance. 
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Supplementary Figure 4.6. Comparison of metrics for Mode 1 (red) and Mode 2 (blue) wild-type assays. Modes 1 
and 2 are defined by the two regions of the contour bounding 50% of the total wild-type assay data in PCA space, 
as shown in Fig. 4.3 of the main text. The medians of each histogram are indicated by the position of the square 
marker at the top of each subplot. 

A fruiting body aggregation assay performed in any lab can be compared to the results reported 

in this work by calculating the values of PC1 and PC2 for that assay. First, scale each metric by 

subtracting the mean WT value of that metric and dividing the result by the WT standard 

deviation of that metric, according to the values reported in Table 4.1. This normalizes each 

metric to have zero mean and unit variance. Then, each resulting scaled metric is multiplied by 

an appropriate weight, either for PC1 or PC2. The weighted sum of the scaled metrics gives the 

final value of PC1 or PC2 for that assay. 

Supplementary Table 4.2. Numerical definition of PC1 and PC2 for reproducibility.  

Metric Name Mean value 
(WT dataset) 

Standard dev. 
(WT dataset) 

Weight (PC1) Weight 
(PC2) 

Start time (min) 291 90.0 -0.387 0.047 

Peak time (min) 843 454 -0.430 0.245 

Stability time (min) 1008 486 0.183 0.038 

Mean area at peak time (μm2) 5414 2063 -0.126 0.574 

Std area at peak time (μm2) 4670 3525 0.188 0.465 

Final mean area (μm2) 6617 1690 0.255 0.401 

Final std area (μm2) 4244 1972 0.281 0.424 

N at peak time* 113 75.6 0.468 -0.198 

Final N* 61.7 27.8 0.149 0.062 

Fraction lost 0.463 0.253 0.443 -0.083 

*Number of aggregates is reported in a field size of area 5.0 mm2. Different field sizes should scale aggregate count 

appropriately, assuming a constant density of aggregates per mm2. 
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Supplementary Table 4.3. Description of each of the ten developmental metrics used to quantify aggregation 
phenotype. 

Metric Name Description Formula 

Start time The time elapsed between 
inoculation and the beginning of 
observable aggregation. 

The earliest time at which at least 
ten aggregates have reached an area 
of at least 800 μm2 

Peak time The time elapsed between 
inoculation and the moment 
aggregation reaches maximum 
total area 

The time at which the sum of the 
areas of all aggregates in one frame 
is at a maximum value across the 
time series 

Stability time The time elapsed between 
inoculation and the moment the 
number of aggregates becomes 
stable 

If stability is achieved within 24 
hours, the time at which the rate of 
change of number of aggregates falls 
below and stays below 0.5 per 
minute. Rate of change is calculated 
with a Savitsky-Golay filter using a 
window 31 minutes wide. Otherwise, 
2000 minutes, to represent a later 
eventual stability time. 

Mean area at peak time The average area of all 
aggregates at the moment of 
peak time 

Peak time is evaluated, and the 
average area of each aggregate in 
that one frame is calculated 

Std area at peak time The standard deviation in the 
area of all aggregates at the 
moment of peak time 

Peak time is evaluated, and the 
sample standard deviation of each 
aggregate area in that one frame is 
calculated 

Final mean area The average area of all 
aggregates 24 hours after 
inoculation 

For the one frame showing 24 hours 
after inoculation, the average area of 
each aggregate is calculated 

Final std area The standard deviation in the 
area of all aggregates 24 hours 
after inoculation 

For the one frame showing 24 hours 
after inoculation, the sample 
standard deviation of each aggregate 
area is calculated 

N at peak time The number of aggregates at 
peak time 

Peak time is evaluated, and all 
aggregates are counted in the 5.0 
mm2 visible field in that one frame 

Final N The number of aggregates 24 
hours after inoculation 

All aggregates in the 5.0 mm2 visible 
field are counted in the one frame 
showing 24 hours after inoculation 

Fraction lost The fractional change in number 
of aggregates from the moment 
of maximum number to 24 hours 
after inoculation. 

For N_max the maximum number of 
aggregates (smoothed by averaging 
the three largest values) and N_24 
the number of aggregates 24 hours 
after inoculation, (N_max – N_final) / 
N_max 
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Supplementary Figure 4.7. Abnormal phenotypes expressed in wild-type. (A) Wild-type phenotype profile, 
showing the location in PCA space of four instances of illustrative, abnormal behavior in wild-type replicates. (B) 
An extreme instance of Mode 2 behavior, especially due to late start time and the small number of final 
aggregates. Successful aggregates that are less mature than these are expressed seldom in wild-type. (C&D) Time 
series of abnormal behavior show the larger aggregates that form in the region with high PC2 values, but with 
significant differences in timing and number depending on the value of PC1. (E) A representative time series of 
failed aggregate formation. Bacterial activity is visible, but aggregates of any significant size or darkness do not 
form after 24 hours. Scale bar 100 μm. 
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Supplementary Figure 4.8. Variation of metrics across wild-type dataset. This figure illustrates how PC1 and PC2 
organize the variation of phenotypic metrics in PCA space. Of the ten metrics used in the PCA, eight display a 
particular gradient direction. Only two, stability time and final number of aggregates, do not display a clear 
gradient direction but vary in a more complex pattern. For instance, high stability time (i.e. those time series that 
do not stabilize by 24 hours) and high final number of aggregates mostly present outside the regions of Mode 1 
and Mode 2 (See Fig. 4.3 in the main text). Although not included in the PCA, the mean and standard deviation of 
aggregate circularity at 24 hours is also reported, not showing any clear correlation with the other metrics. 
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Supplementary Figure 4.9. Variation of wild-type videos based on date of inoculation. Differences were observed 
in the distribution of wild-type outcomes depending on the day the time lapse was started. This may represent an 
effect of the length of time M. xanthus bacteria spend in a colony on agar before being transferred to liquid culture 
and eventually inoculated on the non-nutritive agar used in fruiting body development assays. A shift from Mode 1 
to Mode 2 being favored occurs when comparing Monday to Saturday development videos. 
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5. Conclusion 

We have demonstrated that focusing on the mechanical relationship between bacterial 

colonies and the substrates they colonize reveal novel effects by which bacteria increase the 

forces they exert for colony expansion.  

Future work can use techniques such as RNA sequencing to identify the genes that change 

expression in response to substrate stiffness. This may reveal new signaling pathways that 

cause the change in exerted force. Fluorescence microscopy techniques such as FRAP can now  

be used to track the assembly and disassembly of pili in real time [41] to provide evidence for 

the involvement of type IV pili in proposed pathways. Other experiments should test the 

poroelastic mechanism proposed in Chapter 2, for example by introducing tracer particles into 

the substrate fluid to track its flow. This would allow the measurement of the correlation 

between substrate displacement and fluid flow. A detailed simulation of the biofilm and 

substrate using finite element methods could validate whether this mechanism was sufficient 

to explain the change in force with substrate stiffness. Additional factors that have a physical 

effect should be screened, such as the production of surfactants by the bacteria that affect local 

surface tension, the production of the osmolytes that induce fluid flow, and the amount of 

viscoelasticity in the substrate, expanding beyond the purely elastic substrates used in this 

work. 

We have also developed new tools to approach the genotype-phenotype problem in bacterial 

multicellular development and demonstrated their efficacy in providing quantitative evidence 
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for long-standing hypotheses such as the existence of networks of redundant genes, and in 

distinguishing subtle phenotypic effects. 

Future studies can use these tools to intuit the function of genes that have resisted 

characterization by correlating their phenotypic fingerprint with that of genes with known 

functions. The established library of single-gene knockouts in Myxococcus xanthus can be used 

to compile the necessary repository of phenotypic fingerprints. These tools will also aid in 

measuring the impact of the transduction of mechanical signals when fruiting body 

development is observed in varying environmental conditions, such as on PAA or agar 

substrates with varying stiffness. There is still much to uncover in the mechanical interactions 

that connect genotype and phenotype. 
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Appendix A: Protocols 

Preparation of coverslips for polyacrylamide gels 

Adapted from Katrina Cruz, Janmey Lab (2017) 

1. Solution preparation 

a.    Prepare a 10% SurfaSil solution in acetone in a small glass beaker (less than 5-10 

ml). 

2. Preparation of top coverslips (Coverslips that do not stick to gel) 

a.    Carefully add ~20 large glass coverslips to the beaker containing 10% SurfaSil. 

b.    Swirl for a few minutes. 

c.    Using tweezers, move the coverslips to a beaker containing a small amount of 

acetone, swirl for a few seconds. 

d.    Using tweezers, move the coverslips to a beaker containing a small amount of 

methanol, swirl for a few seconds. 

e.    Air dry the coverslips on kimwipes in the biological safety cabinet.   

f.     Store siliconized coverslips at room temperature.  

h. Can Re-use coverslips (4 or 5 times) and then re-siliconize them 
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3. Preparation of bottom coverslips (Coverslips that do stick to gel) 

a.    Place small coverslips in coverslip racks. 

b.    Cover the coverslips with 0.1 M NaOH and incubate for 3 minutes. Decant and save 

the NaOH 

c.    Working in the chemical hood, cover the coverslips with 3-APTMS, using the 

smallest glass beakers that fit the coverslip racks to conserve 3-APTMS. Incubate for 3 

minutes and then decant 3-APTMS for reuse or disposal. 

d.    Rinse the coverslips once with deionized water. Wash the coverslips with deionized 

water three times for 10 minutes each wash. 

e.     Transfer racks w/ coverslips to new clean container 

f.    Cover coverslips completely with 0.5% glutaraldehyde solution (stored in 4°C fridge) 

and incubate for 30 minutes in the chemical hood. Decant the glutaraldehyde for reuse. 

g.    Rinse the coverslips once with deionized water. Wash the coverslips with deionized 

water three times, 10 minutes each wash. 

h.      Place coverslips individually on kimwipes to air dry. 

i.   Store in the desiccator under vacuum. Can store under vacuum for about one month 

(especially when preparing stiffer, 30 kPa, gels; for softer gels that don’t swell as much 

these coverslips may last longer) 
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Materials 

Surfasil; Thermo Scientific TS42801 or TS-42800 

(3-aminopropyl)trimethoxysilane (3-APTMS) 97%; Sigma-Aldritch 281778-500ML 

Glutaraldehyde 50%; Fisher Scientific G151 1 (dilute to 0.5% with distilled water) 

18 mm circular glass coverslips; Fisher Scientific 12-546-P 

22 mm circular glass coverslips; Fisher Scientific 12-546-1P 
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Preparation of phosphate-buffered-saline (PBS) 

Adapted from protocolsonline.com 

For 1 liter of 1X PBS, prepare as follows: 

(1) Start with 800 ml of distilled water: 

(2) Add 8 g of NaCl. 

(3) Add 0.2 g of KCl. 

(4) Add 1.44 g of Na2HPO4. (2.72 g of Na2HPO4 x7H20) 

(5) Add 0.24 g of KH2PO4. 

(6) Adjust the pH to 7.4 with HCl. 

(7) Add distilled water to a total volume of 1 liter. 

Dispense the solution into aliquots and sterilize by autoclaving (20 min, 121°C, liquid cycle). 

Store at room temperature. 

  

http://www.protocolsonline.com/recipes/phosphate-buffered-saline-pbs/
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Preparation of TPM Buffer 

For 1L of TPM buffer, prepare as follows: 

(1) Add ~800mL distilled water to a flask 

(2) Add 10mL MgSO4 

(3) Add 10mL Tris pH 7.6 

(4) Add 1mL KPO4 

(5) Bring up to 1L by adding distilled water 

(6) Mix, titrate pH to ~7.6 and autoclave 

Store at room temperature. 

NOTE: pH of Tris used in CTTYE is 8.0 while for TPM it’s 7.6 
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Polyacrylamide gel synthesis protocol for bacteria 

Varying PAA gel formulas (each for three 200 μL gels) with 5% extra volume for error 

 
3.5% PAA 
(0.15% Bis) 

 
 

 
8% PAA 
(0.15% Bis) 

Distilled water 521 
 

 Distilled water 451 

Acrylamide 55.1 
 

 Acrylamide 126.0 

Bis-acrylamide 47.3 
 

 Bis- acrylamide 47.3 

TEMED 1.58 
 

 TEMED 1.58 

APS 4.73 
 

 APS 4.73 

Total 630 μL 
 

 Total 630 μL 

 

If making gels for traction force measurements, instead of distilled water, use a 20:1 dilution 

of 2 μm diameter Fluoro-Max beads: 

1. Prepare an appropriate volume of fully concentrated Fluoro-Max beads in a mini-

centrifuge tube 

(For a target of 1000 μL of diluted bead solution, get 50 μL of fully concentrated beads) 

2. Centrifuge at 5000 rpm for 1 minute or until the beads concentrate into a pellet 

3. Keeping track of the volume, remove the supernatant (a surfactant that is harmful to 

bacteria) 

(For 50 μL of fully concentrated beads, about 40 μL of supernatant can be removed) 

4. Replace the same volume of removed supernatant with distilled water. This produces a 

fully concentrated bead solution suspended in mostly distilled water instead of 

surfactant. 

5. Add the appropriate volume of distilled water for a 20:1 dilution 

(For a target of 1000 μL of diluted bead solution, add 950 μL of distilled water) 

6. Using a pipette tip, gently mix the resulting dilution until homogeneous. 
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7. Store protected from light, i.e. wrapped in aluminum foil 

Gel synthesis 

1. Mix the distilled water, acrylamide, and bis-acrylamide in mini-centrifuge tubes 

2. Add TEMED to solution, using the fume hood 

3. Vortex solution to mix for about ten seconds 

4. Lay out glutaraldehyde cover slips on a working surface (i.e. glass board) and have 

SurfaSil cover slips ready  

5. Add APS to solution and vortex for about 5 seconds (do this step and the following ones 

quickly) 

6. Pipette 200 μL gel solution onto the glutaraldehyde coverslips, then gently place SurfaSil 

cover slips on top with tweezers 

Tip: be careful to simply release the coverslips and not press downwards 

7. Let polymerize for about 10 minutes, then rehydrate each gel by pipetting ~20 μL of 

distilled water around the edge of the gel, capillary forces should suck it into the gel 

8. After 20 minutes total of polymerization time, carefully remove the SurfaSil cover slip 

and set it aside for reuse. Each gel should stay adhered to the glutaraldehyde cover slip. 

9. Place gels in a well plate and immerse in PBS (or TPM for Myxococcus xanthus) 

Gels can be stored immersed in PBS in well plates sealed with parafilm at 4°C for about one 

week. 
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Gel washing process 

Each polyacrylamide gel should be washed in an appropriate buffer (TPM for Myxococcus 

xanthus, 1X PBS for other species) and then washed again in an appropriate nutrient medium 

(CTTYE for Myxococcus xanthus, LB for other species) before inoculating them with bacteria. 

1. Quick wash: Ensure gels are immersed in buffer. Use aspirator to remove buffer from 

well plates, then immerse gels again with fresh buffer 

2. 10-minute wash: Place well plates on the plate shaker for 10 minutes, then use aspirator 

to remove buffer. Add fresh buffer again 

3. Overnight wash: Seal well plates in parafilm and store at 4°C overnight 

Repeat these steps the following day, using three washes in nutrient medium. 

Now the gels can be used for the sterilization and inoculation protocol. 

Materials 

• Acrylamide (40% w/v); Fisher Scientific BP1402 1 – in 4°C fridge in aliquots 

• Bis-acrylamide (2% w/v); Fisher Scientific BP1404 250 – in 4°C fridge in aliquots 

• Ammonium persulfate (APS, 10% w/v); Fisher Scientific 45-000-225 – in -20°C freezer in 

aliquots, single use 

• Tetramethylethylenediamene (TEMED, 99%); Fisher Scientific AC138450500 – in fume 

hood, must be handled inside fume hood 

• SurfaSil treated cover slips – see cover slip protocol for polyacrylamide gels 

• Glutaraldehyde treated cover slips – see cover slip protocol for polyacrylamide gels 
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Inoculating PAA gels with bacteria 

Required materials: Active liquid bacteria culture begun the day before (within 18 to 24 hours), 

PAA gels that have been undergoing an overnight wash in LB medium. 

 

Ideally, all gel drying and sterilization should be performed in a biosafety cabinet. 

 

Inoculation of bacteria can be performed outside the biosafety cabinet to prevent 

contamination. 

 

Turn on the microscope incubator to bring it up to temperature (37°C) and allow it to 

equilibrate while you perform the following procedure. 

 

1. Remove LB medium from well plate with an aspirator. 

a. Then tilt the well plate so that any LB medium remaining on the gels pools 

on one side of the gel surface, and gently remove the medium from each gel 

surface. The gel surface should have as little visible liquid as possible, but be 

careful not to scratch the gels too much. 

2. Allow gels to dry, exposed to still air, for 20 minutes (i.e. lower the hood if using a 

biosafety cabinet). 

3. Using either UV from the biosafety cabinet or an external UV lamp, expose the gel 

surfaces to UV sterilization for 20 minutes. The gel surfaces should now have no visible 

liquid. 
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4. After thoroughly mixing liquid bacterial culture by repeatedly pipetting up and down, 

dispense 5 μL in a single, small droplet in the middle of each gel. 

Tip: Hold the micropipette above the gel surface, then dispense the 5 μL droplet, which should 

still be stuck to the pipette tip. Then gently lower the pipette tip until it contacts the gel 

surface. 

5. From each liquid culture droplet, remove 2 μL to flatten the droplets. 

The gels are now ready to begin imaging in an incubated chamber heated to 37°C. 
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Appendix B: Python Code 

Script for combining automated boundary detection with manual validation 

System-specific dependencies and other information can be found on Github at 

https://github.com/masp01/SUBII-Trace 

import numpy as np 

from tkinter import filedialog 

from tkinter import messagebox 

from tkinter import * 

from FindFeature import Boundaries 

from ensureDataPath import ensureDataPath 

import matplotlib.pyplot as plt 

import os 

 

class App: 

 def __init__(self): 

  # File access 

  self.contourFile = 'trial{0}xy{1:02d}_{2:02d}.txt' 

  self.paths = ensureDataPath().paths 

 

  self.root = Tk()  # application window 

  self.i = 0    # frame index 

  self.c = 0    # contour index 

  self.j = 0    # segment index 

  self.xmin = np.inf  # display limits 

  self.xmax = -1   # '' 

  self.ymin = np.inf  # '' 

  self.ymax = -1   # '' 

  self.drawState = False # is the user drawing points? 

  self.drawnLine = None # matplotlib artist of user-drawn line 

  self.drawnXs = []  # coordinates of user-drawn line 

  self.drawnYs = []  # '' 

https://github.com/masp01/SUBII-Trace
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  # Calculate boundary predictions 

  self.trial = 5 # default value 

  self.xy = 28 # '' 

  self.b = Boundaries(trial=self.trial, xy=self.xy, edgeMin=50, edgeMax=50, 
boost=5) 

  self.c = self.b.frames[self.i].c 

   

  # Store user-drawn points 

  self.boundaryLine = None 

  self.boundaryXs = [] 

  self.boundaryYs = [] 

  self.insertionIndices = [] 

 

  # Disable some default hotkeys 

  if 's' in plt.rcParams['keymap.save']: 

   plt.rcParams['keymap.save'].remove('s') 

  if 'f' in plt.rcParams['keymap.fullscreen']: 

   plt.rcParams['keymap.fullscreen'].remove('f') 

  if 'left' in plt.rcParams['keymap.back']: 

   plt.rcParams['keymap.back'].remove('left') 

  if 'right' in plt.rcParams['keymap.forward']: 

   plt.rcParams['keymap.forward'].remove('right') 

 

  # Create all frames 

  TrialControls = Frame(self.root) 

  ViewControls = Frame(self.root) 

  EdgeControls = Frame(self.root) 

  FrameControls = Frame(self.root) 

  ContourControls = Frame(self.root) 

  SegmentControls = Frame(self.root) 

   

  # Organize frames vertically in order 

  TrialControls.pack(padx=5, pady=5) 

  ViewControls.pack(padx=5, pady=5) 
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  EdgeControls.pack(padx=5, pady=10) 

  FrameControls.pack(padx=5) 

  ContourControls.pack(padx=5) 

  SegmentControls.pack(padx=5) 

 

  # Window title 

  self.root.title("") 

 

  # Widgets in TrialControls 

  Label(TrialControls, text='Trial').grid(row=0) 

  self.trialEntry = Entry(TrialControls, width=5) 

  self.trialEntry.insert(0, self.trial) 

  self.trialEntry.grid(row=0, column=1) 

  Label(TrialControls, text='xy').grid(row=0, column=2) 

  self.xyEntry = Entry(TrialControls, width=5) 

  self.xyEntry.insert(0, self.xy) 

  self.xyEntry.grid(row=0, column=3) 

  Button(TrialControls, text="Load", command=self.loadData).grid(row=0, column=4) 

 

  # Widgets in EdgeControls 

  Label(EdgeControls, text="edgeMin").grid(row=0) 

  self.edgeMinEntry = Entry(EdgeControls, width=5) 

  self.edgeMinEntry.insert(0, 50) 

  self.edgeMinEntry.grid(row=0, column=1) 

  Label(EdgeControls, text="edgeMax").grid(row=1) 

  self.edgeMaxEntry = Entry(EdgeControls, width=5) 

  self.edgeMaxEntry.insert(0, 50) 

  self.edgeMaxEntry.grid(row=1, column=1) 

  Button(EdgeControls, text="Redo Edges", command=self.redoEdges).grid(row=0, 
column=2) 

  Button(EdgeControls, text="Histogram", command=self.makeHistogram).grid(row=1, 
column=2) 

 

  # Widgets in ViewControls 

  self.viewMode = StringVar() 

  self.viewMode.set('img') 
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  Radiobutton(ViewControls, text="Image", variable=self.viewMode, value='img', 
command=self.showFrame).pack() 

  Radiobutton(ViewControls, text="Edges", variable=self.viewMode, value='edges', 
command=self.showFrame).pack() 

  Radiobutton(ViewControls, text="Fill", variable=self.viewMode, value='fill', 
command=self.showFrame).pack() 

  self.adaptZoom = IntVar() 

  Checkbutton(ViewControls, text="Adapt Zoom", variable=self.adaptZoom, 
command=self.showFullFrame).pack() 

 

  # Widgets in FrameControls 

  prevFrameButton = Button(FrameControls, text="<", command=lambda: 
self.onClickFrame(-1)) 

  nextFrameButton = Button(FrameControls, text="Next Frame >", command=lambda: 
self.onClickFrame(1)) 

  self.frameText = StringVar() 

  self.frameText.set("{0}/{1}".format(self.i + 1, len(self.b.frames))) 

  Label(FrameControls, textvariable=self.frameText).pack(side=BOTTOM) 

  prevFrameButton.pack(side=LEFT) 

  nextFrameButton.pack(side=LEFT) 

 

  # Widgets in ContourControls 

  prevContourButton = Button(ContourControls, text="<", command=lambda: 
self.onClickContour(-1)) 

  nextContourButton = Button(ContourControls, text="Next Contour >", 
command=lambda: self.onClickContour(1)) 

  self.contourText = StringVar() 

  self.contourText.set("{0}/{1}".format(self.c + 1, 
len(self.b.frames[self.i].contours))) 

  Label(ContourControls, textvariable=self.contourText).pack(side=BOTTOM) 

  prevContourButton.pack(side=LEFT) 

  nextContourButton.pack(side=LEFT) 

 

  # Widgets in SegmentControls 

  prevSegmentButton = Button(SegmentControls, text="<", command=lambda: 
self.onClickSegment(-1)) 

  nextSegmentButton = Button(SegmentControls, text="Next Segment >", 
command=lambda: self.onClickSegment(1)) 

  self.segmentText = StringVar() 
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  self.segmentText.set("{0}/{1}".format(self.j + 1, 
len(self.b.frames[self.i].segments))) 

  Label(SegmentControls, textvariable=self.segmentText).pack(side=BOTTOM) 

  nextSegmentButton.pack(side=RIGHT) 

  prevSegmentButton.pack(side=RIGHT) 

 

  self.fig, self.ax = plt.subplots() 

  self.fig.canvas.manager.set_window_title('Biofilm Image') 

  plt.axis('off') 

  plt.tight_layout() 

  displayData = getattr(self.b.frames[self.i], self.viewMode.get()) 

  self.im = self.ax.imshow(displayData, cmap='gray') 

  self.showFrame() 

  self.fig.canvas.mpl_connect('pick_event', self.onPickDataPoint) # Enable picking 
data points 

  self.fig.canvas.mpl_connect('button_press_event', self.onClick) 

  self.fig.canvas.mpl_connect('button_release_event', self.onRelease) 

  self.fig.canvas.mpl_connect('axes_leave_event', self.onLeaveAxes) 

  self.fig.canvas.mpl_connect('key_press_event', self.onKey) 

  plt.connect('motion_notify_event', self.drawPoints) 

  plt.show() 

   

  self.root.mainloop() 

 

 def showFrame(self): 

  # Get the coordinates of the predicted boundary 

  xs, ys = self.b.frames[self.i].segments[self.j] 

  self.boundaryXs = xs 

  self.boundaryYs = ys 

 

  # Set the display limits 

  padding = 20 

  xmin = min(xs) - padding 

  self.xmin = min(xmin, self.xmin) 

  self.xmin = max(0, self.xmin) 

  xmax = max(xs) + padding 
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  self.xmax = max(xmax, self.xmax) 

  self.xmax = min(self.b.frames[self.i].width - 1, self.xmax) 

  ymin = min(ys) - padding 

  self.ymin = min(ymin, self.ymin) 

  self.ymin = max(0, self.ymin) 

  ymax = max(ys) + padding 

  self.ymax = max(ymax, self.ymax) 

  self.ymax = min([self.b.frames[self.i].height - 1, self.ymax]) 

   

  # Display the frame and predicted boundary 

  displayData = getattr(self.b.frames[self.i], self.viewMode.get()) 

  self.im.set_data(displayData) 

  if self.boundaryLine is not None: 

   self.boundaryLine.remove() 

   self.boundaryLine = None 

  self.boundaryLine, = self.ax.plot(xs, ys, linewidth=4, color='#1f77b460', 
picker=5) # tolerance of 5 pixels for clicking data points 

  if self.adaptZoom.get(): 

   plt.xlim(self.xmin, self.xmax) 

   plt.ylim(self.ymax, self.ymin) 

  self.fig.canvas.draw() # This line is necessary to update the figure 

 

 def showFullFrame(self): 

  # updates zoom level appropriately when changing 

  # the Adapt Zoom checkbox 

  if not self.adaptZoom.get(): 

   self.ax.clear() 

   displayData = getattr(self.b.frames[self.i], self.viewMode.get()) 

   self.im = self.ax.imshow(displayData, cmap='gray') 

   plt.axis('off') 

   plt.tight_layout() 

  self.showFrame() 

 

 def rollback(self, prevTrial, prevXy): 

  self.trial = prevTrial 
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  self.xy = prevXy 

  self.trialEntry.delete(0, END) 

  self.trialEntry.insert(0, '{}'.format(self.trial)) 

  self.xyEntry.delete(0, END) 

  self.xyEntry.insert(0, '{}'.format(self.xy)) 

 

 def loadData(self): 

  prevTrial = self.trial 

  prevXy = self.xy 

  # Check that the given trial and xy are valid numbers 

  try: 

   self.trial = int(self.trialEntry.get()) 

   self.xy = int(self.xyEntry.get()) 

   # Check that images exist for the given trial and xy 

   try: 

    self.redoEdges(showFrame=False) 

   except IOError: 

    print("No images found for this trial and xy.") 

    self.rollback(prevTrial, prevXy) 

    self.redoEdges(showFrame=False) 

  except ValueError: 

   self.rollback(prevTrial, prevXy) 

 

  # Update image 

  displayData = getattr(self.b.frames[self.i], self.viewMode.get()) 

  self.im = self.ax.imshow(displayData, cmap='gray') 

 

  # Print a warning if contours have already been traced for this image 

  if os.path.exists(self.paths.contours[self.trial].format(self.xy) + 
self.contourFile.format(self.trial, self.xy, self.i+1)): 

   print("This contour has already been traced. Saving will overwrite 
previous data.") 

 

  # Update frame label 

  self.frameText.set("{0}/{1}".format(self.i + 1, len(self.b.frames))) 
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  # Reset display limits 

  self.xmin, self.ymin = np.inf, np.inf 

  self.xmax, self.ymax = -1, -1 

 

  # Reset to check the first frame 

  self.i = 0 

  self.showFrame() 

 

 def makeHistogram(self): 

  # Display a histogram of the gray values of the current image 

  # Most useful when zoomed into the biofilm boundary, 

  # to estimate edgeMin and edgeMax values 

  xlims = self.ax.get_xlim() 

  ylims = self.ax.get_ylim() 

  img = self.im.get_array() 

  grayValues = img[int(min(ylims)):int(max(ylims)), 
int(min(xlims)):int(max(xlims))].flatten() 

  self.histFig = plt.figure('Gray Value Histogram') 

  plt.hist(grayValues) 

  self.histFig.canvas.draw() 

  plt.show() 

 

 def redoEdges(self, showFrame=True): 

  self.b = Boundaries(trial=self.trial, xy=self.xy, 
edgeMin=int(self.edgeMinEntry.get()), edgeMax=int(self.edgeMaxEntry.get()), boost=5) 

 

  # Reset to check the first contour and segment 

  self.c = self.b.frames[self.i].c 

  self.j = 0 

 

  # Update labels 

  self.contourText.set("{0}/{1}".format(self.c + 1, 
len(self.b.frames[self.i].contours))) 

  self.segmentText.set("{0}/{1}".format(self.j + 1, 
len(self.b.frames[self.i].segments))) 

   

  if showFrame: 
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   self.showFrame() 

 

 def onClick(self, event): 

  if self.fig.canvas.manager.toolbar.mode == '': 

   self.drawState = True 

   self.drawPoints(event) 

 

 def onLeaveAxes(self, event): 

  if self.fig.canvas.manager.toolbar.mode != '': 

   return 

  if self.drawState: 

   x = event.xdata 

   y = event.ydata 

   self.drawPoints(event) 

   self.drawState = False 

   if self.drawnLine is not None: 

    self.drawnLine.remove() 

    self.drawnLine = None 

   self.fig.canvas.draw() 

   if len(self.insertionIndices) == 1: # a new insertion was drawn from a 
boundary point to the edge of the image 

    i = self.insertionIndices[0] 

 

    # determine which end of the boundary to change 

    # and add the drawn points to the end of the boundary 

    if i < int(np.floor(len(self.boundaryXs)/2)): 

     keptBoundaryXs = self.boundaryXs[i:] 

     keptBoundaryYs = self.boundaryYs[i:] 

     self.boundaryXs = np.concatenate((self.drawnXs[::-1], 
keptBoundaryXs)) 

     self.boundaryYs = np.concatenate((self.drawnYs[::-1], 
keptBoundaryYs)) 

    else: 

     keptBoundaryXs = self.boundaryXs[:i+1] 

     keptBoundaryYs = self.boundaryYs[:i+1] 

     self.boundaryXs = np.concatenate((keptBoundaryXs, 
self.drawnXs)) 
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     self.boundaryYs = np.concatenate((keptBoundaryYs, 
self.drawnYs)) 

 

    # redraw the boundary 

    self.boundaryLine.remove() 

    self.boundaryLine, = self.ax.plot(self.boundaryXs, 
self.boundaryYs, linewidth=4, color='#1f77b460', picker=5) 

    self.fig.canvas.draw() 

 

 def onRelease(self, event): 

  if self.fig.canvas.manager.toolbar.mode != '': 

   return 

  self.drawPoints(event) 

  self.drawState = False 

  self.boundaryLine.pick(event) # run the picker 

  if self.drawnLine is not None: 

   self.drawnLine.remove() 

   self.drawnLine = None 

  #self.ax.plot(self.drawnXs, self.drawnYs, linewidth=4, color='#e4211c60') 

  self.fig.canvas.draw() 

  if len(self.insertionIndices) == 2: # a new insertion was drawn that touched the 
boundary at two points 

   firstBookend = np.array(range(min(self.insertionIndices) + 1)) 

   secondBookend = np.array(range(max(self.insertionIndices), 
len(self.boundaryXs))) 

 

   # check if points were drawn in the opposite direction of the boundary 
points 

   defaultDist = np.sqrt((self.drawnXs[0] - self.boundaryXs[firstBookend[-
1]])**2 + (self.drawnYs[0] - self.boundaryYs[firstBookend[-1]])**2) 

   flippedDist = np.sqrt((self.drawnXs[0] - 
self.boundaryXs[secondBookend[0]])**2 + (self.drawnYs[0] - 
self.boundaryYs[secondBookend[0]])**2) 

   if flippedDist < defaultDist: 

    self.drawnXs = np.array(self.drawnXs)[::-1] 

    self.drawnYs = np.array(self.drawnYs)[::-1] 

 

   # insert the drawn points inbetween the remainder of the boundary 
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   self.boundaryXs = np.concatenate((self.boundaryXs[firstBookend], 
self.drawnXs, self.boundaryXs[secondBookend])) 

   self.boundaryYs = np.concatenate((self.boundaryYs[firstBookend], 
self.drawnYs, self.boundaryYs[secondBookend])) 

   self.boundaryLine.remove() 

   self.boundaryLine, = self.ax.plot(self.boundaryXs, self.boundaryYs, 
linewidth=4, color='#1f77b460', picker=5) 

   self.fig.canvas.draw() 

   

  # Reset drawn points 

  self.insertionIndices = [] 

  self.drawnXs = [] 

  self.drawnYs = [] 

 

 def drawPoints(self, event): 

  if self.drawState: 

   self.drawnXs.append(event.xdata) 

   self.drawnYs.append(event.ydata) 

   if self.drawnLine is not None: 

    self.ax.lines.remove(self.drawnLine) 

    self.drawnLine = None 

   self.drawnLine, = self.ax.plot(self.drawnXs, self.drawnYs, linewidth=4, 
color='#e4211c30') 

   self.fig.canvas.draw() 

 

 def onKey(self, event): 

  print(event.key) 

  if event.key == 's': 

   print('Got save event') 

   filename = self.paths.contours[self.trial].format(self.xy) + 
self.contourFile.format(self.trial, self.xy, self.i+1) 

   if not os.path.exists(self.paths.contours[self.trial].format(self.xy)): 

    os.makedirs(self.paths.contours[self.trial].format(self.xy)) 

   with open(filename, 'w') as txt_file: 

    for i in range(len(self.boundaryXs)): 

     txt_file.write(str(self.boundaryXs[i]) + '\t' + 
str(self.boundaryYs[i]) + '\n') 
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  elif event.key == 'right': 

   self.onClickFrame(1) 

  elif event.key == 'left': 

   self.onClickFrame(-1) 

  elif event.key == 'f': 

   self.onClickContour(1) 

 

 def onPickDataPoint(self, event): 

  line = event.artist 

  xs = line.get_xdata() 

  ys = line.get_ydata() 

  indices = np.array(event.ind) 

  ind = indices[int(np.floor(len(indices)/2))] # choose the index of the center 
point 

  self.insertionIndices.append(ind) 

  #points = tuple(zip(xs[ind], ys[ind])) 

  #print('onpick points: {0}'.format(points)) 

 

 def onClickFrame(self, step): 

  # Move one frame 

  self.i += step 

  self.i %= len(self.b.frames) # loop back to the first frame 

 

  # Reset to check the first contour and segment 

  self.c = self.b.frames[self.i].c 

  self.b.frames[self.i].segments = 
self.b.frames[self.i].splitSegments(self.b.frames[self.i].contours[self.c]) 

  self.j = 0 

 

  # Update labels 

  self.frameText.set("{0}/{1}".format(self.i + 1, len(self.b.frames))) 

  self.contourText.set("{0}/{1}".format(self.c + 1, 
len(self.b.frames[self.i].contours))) 

  self.segmentText.set("{0}/{1}".format(self.j + 1, 
len(self.b.frames[self.i].segments))) 

 

  # Reset the display limits when on the first frame 
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  if self.i == 0: 

   self.xmin, self.ymin = np.inf, np.inf 

   self.xmax, self.ymax = -1, -1 

 

  # Print a warning if contours have already been traced for this image 

  if os.path.exists(self.paths.contours[self.trial].format(self.xy) + 
self.contourFile.format(self.trial, self.xy, self.i+1)): 

   print("This contour has already been traced. Saving will overwrite 
previous data.") 

 

  # Show the frame and boundary 

  self.showFrame() 

 

 def onClickContour(self, step): 

  # Move one contour 

  self.c += step 

  self.c %= len(self.b.frames[self.i].contours) # loop back to the first contour 

 

  # Find the first contour that touches the image edges and split it into segments 

  contourRange = np.array(range(len(self.b.frames[self.i].contours))) 

  if step == 1: 

   contourRange = np.concatenate((contourRange[self.c:], 
contourRange[:self.c])) 

  else: 

   contourRange = np.concatenate((contourRange[self.c::-1], 
contourRange[self.c+1:][::-1])) 

  for thisC in contourRange: 

   self.b.frames[self.i].segments = 
self.b.frames[self.i].splitSegments(self.b.frames[self.i].contours[thisC]) 

   if len(self.b.frames[self.i].segments) > 0: 

    self.c = thisC 

    break 

 

  # Warn the user if no such contour is found 

  if len(self.b.frames[self.i].segments) == 0: 

   print("No contours found that touch the edges") 
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   self.b.frames[self.i].segments = 
[self.b.frames[self.i].contours[self.c]] # store contour coordinates anyway 

 

  # Reset to check the first segment 

  self.j = 0 

 

  # Update labels 

  self.contourText.set("{0}/{1}".format(self.c + 1, 
len(self.b.frames[self.i].contours))) 

  self.segmentText.set("{0}/{1}".format(self.j + 1, 
len(self.b.frames[self.i].segments))) 

 

  # Reset the display limits 

  #self.xmin, self.ymin = np.inf, np.inf 

  #self.xmax, self.ymax = -1, -1 

 

  # Show the frame and boundary 

  self.showFrame() 

 

 def onClickSegment(self, step): 

  # Move one segment 

  self.j += step 

  self.j %= len(self.b.frames[self.i].segments) # loop back to the first segment 

   

  # Update segment label 

  self.segmentText.set("{0}/{1}".format(self.j + 1, 
len(self.b.frames[self.i].segments))) 

 

  # Show the frame and boundary 

  self.showFrame() 

   

app = App() 
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Image processing and other tools for detection of M. xanthus aggregates 

import numpy as np 

import cv2 

import os 

import re 

import pandas as pd 

import time 

import multiprocessing as mp 

import matplotlib.pyplot as plt 

import trackpy as tp 

from data_paths import data_paths 

from scipy.signal import savgol_filter 

from scipy.spatial import ConvexHull, convex_hull_plot_2d 

from scipy.optimize import minimize_scalar 

from matplotlib.path import Path 

import paramiko # pip install paramiko 

from stat import S_ISDIR, S_ISREG 

from datetime import datetime 

 

def get_img(video_i, t): 

    # Time t measured in minutes since inoculation 

    dp = data_paths(video_i) 

    img_path = dp.img_name.format(t+1) # Images start at #0001 

    img = cv2.imread(img_path, 0) 

    return img 

 

# particles is a list of trackpy id numbers to include in the overlay, 

# defaulting to all 

def get_overlay_img(video_i, t, particles=None): 

    dp = data_paths(video_i) 

    img = get_img(video_i, t) 

    img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGBA) 

    if not os.path.exists(dp.contour_points_path.format(t)): 

        return img 
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    contours = np.load(dp.contour_points_path.format(t), allow_pickle=True) 

    if isinstance(particles, int): 

        particles = [particles] 

    df = get_df(video_i) 

    # Remove spurious early aggregates 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df = df[[p not in early_p for p in df.particle]] 

    for i,contour in enumerate(contours): 

        # Color based on particle id # 

        if df is not None: 

            p = df[(df.contour == i) & (df.t == t)].particle 

            if len(p) == 0: 

                continue 

            else: 

                p = int(p) 

            c = np.array(plt.cm.tab10(p%10))*255 

        else: 

            c = np.array(plt.cm.tab10(i%10))*255 

        if (particles is None) or (p in particles): 

            img = cv2.drawContours(img, contours, i, c, 5) 

    return img 

 

def load_registry(): 

    registry = data_paths(0).registry 

    return registry 

 

def save_registry(r): 

    r.to_csv(data_paths(0).registry_path) 

 

def add_rows_to_registry(new_rows_df): 

    # Ensure added rows have the appropriate columns 

    r = load_registry() 

    column_conditions = [col in new_rows_df.columns for col in r.columns] 

    if not all(column_conditions): 

        print('New rows added to the registry must have all of the following columns:') 
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        print(r.columns.values) 

        return 

    extra_columns = [col for col in new_rows_df.columns if col not in r.columns] 

    if len(extra_columns) != 0: 

        print('Columns not recognized:') 

        print(extra_columns) 

        return 

 

    # Ensure no row corresponds to a video that is already in the registry 

    failed_check = False 

    for i in new_rows_df.index.values: 

        run_num = new_rows_df.loc[i, 'run'] 

        scope_num = new_rows_df.loc[i, 'scope'] 

        registry_slice = r[(r.run == run_num) & (r.scope == scope_num)] 

        if len(registry_slice) != 0: 

            print('Run {} scope {} already exists in the registry.'.format(run_num, 
scope_num)) 

            failed_check = True 

    if failed_check: 

        return 

 

    # Append the new rows to the end of the registry 

    new_r = pd.concat((r, new_rows_df)) 

 

    # Reindex the new rows 

    new_r.index = np.arange(len(new_r)) 

 

    # Ensure no old videos were reindexed somehow 

    if not all(new_r.loc[r.index, 'img_folder'] == r.img_folder): 

        print('Reindexing failure. Try again or update registry manually.') 

 

    # Save updated registry 

    new_indices = [i for i in new_r.index.values if i not in r.index.values] 

    print('New video indices added: {}'.format(new_indices)) 

    print('Saving new registry.') 
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    save_regsitry(new_r) 

 

def update_processed_column(): 

    r = load_registry() 

    n_processed_old = sum(r.processed) 

 

    df_filenames = os.listdir(data_paths(0).video_df_folder) 

    processed = [data_paths(i).videoname in df_filenames for i in r.index] 

 

    n_difference = sum(processed) - n_processed_old 

    print('{} new videos processed'.format(n_difference)) 

     

    r.processed = processed 

    save_regsitry(r) 

    print('Registry saved') 

    return r 

 

def ensure_final_slash(dir_path): 

    if dir_path[-1] != '/': 

        dir_path = dir_path + '/' 

    return dir_path 

 

# from a given search location, recursively 

# search for all folders containing .tif files 

def img_folders(search_path='.'): 

    img_folders = [] 

    for root, dirs, files in os.walk(search_path): 

        if any([file.endswith('.tif') for file in files]): 

            img_folder = os.path.abspath(root) 

            img_folders.append(img_folder) 

    return img_folders 

 

# Given a video index, get the dataframe with aggregate information, 

# assuming the video has been processed 

def get_df(video_i): 
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    dp = data_paths(video_i) 

    if not os.path.exists(dp.video_df_path): 

        print('File {} does not exist'.format(dp.video_df_path)) 

        return None 

    return pd.read_csv(dp.video_df_path) 

 

############################## 

 

############################## 

# IMAGE PROCESSING FUNCTIONS # 

############################## 

 

############################## 

 

# extract x,y coordinates from a cv2 contour 

def get_coordinates(contour): 

    xs = [contour[i][0][0] for i in range(len(contour))] 

    ys = [contour[i][0][1] for i in range(len(contour))] 

    return xs,ys 

 

# Given a video dataframe, categorize the aggregates 

def add_category_col(df): 

        # Identify early (spurious) aggregates 

        early_p = np.unique(df[df.t < 100].particle.values) 

 

        # Identify persistent FBs 

        persist_p = [] 

        for p,df_slice in df.groupby('particle'): 

            if p in early_p: 

                continue 

            avgCirc = np.mean(df_slice.circularity) 

            if avgCirc > 0.5: 

                persist_p.append(p) 

 

        # Identify evaporators 
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        evap_p=[] 

        for p,df_slice in df.groupby('particle'): 

            if p in early_p: 

                continue 

            a = df_slice.area.values 

            xmin = min(df_slice.x.values) 

            xmax = max(df_slice.x.values) 

            ymin = min(df_slice.y.values) 

            ymax = max(df_slice.y.values) 

            notNearEdges = (xmin > 50) and (xmax < 2542) and (ymin > 50) and (ymax < 1894) 

            avgCirc = np.mean(df_slice.circularity) 

            if (a[-1] < 0.75*max(a)) and notNearEdges and (avgCirc > 0.5) and (a[0] < max(a)) 
and (p not in persist_p): 

                evap_p.append(p) 

 

        # Add category column 

        category_col = ['other']*len(df) 

        for i,this_row in enumerate(df.iloc): 

            if this_row.particle in early_p: 

                category_col[i] = 'early' 

            elif this_row.particle in persist_p: 

                category_col[i] = 'persistent' 

            elif this_row.particle in evap_p: 

                category_col[i] = 'evaporates' 

        df['category'] = category_col 

 

        return df 

 

def find_contours(img): 

    # Denoise 

    denoised = cv2.fastNlMeansDenoising(img, None, 70, 9, 25) 

     

    ####################### 

    # A) Create hull mask # 

    ####################### 
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    # A1) Low-pass adaptive thresholding -> binary image of dark regions 

    thresh_dark = 255 - cv2.adaptiveThreshold(denoised, 255, cv2.ADAPTIVE_THRESH_MEAN_C, 
cv2.THRESH_BINARY, 121, 20) 

     

    # A2) Identify contours, keeping those that aren't contained in a larger contour 

    contours,h = cv2.findContours(thresh_dark,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) 

    try: 

        parent_info = np.array([i[-1] for i in h[0]]) 

    except TypeError: 

        print('Could not process contour hierarchy') 

        return None, None 

    top_level_contours = [contours[i] for i in range(len(contours)) if parent_info[i] == -1] 

     

    # A3) Remove small contours, to prep for morphological closing 

    # Keep convex hulls of contours 

    area_filtered_hulls = np.zeros(np.shape(img), np.uint8) 

    thresh_dark_filtered = np.zeros(np.shape(img), np.uint8) 

    for contour in top_level_contours: 

        if cv2.contourArea(contour) > 1200: # Changed from 480 since previous algorithm 

            convex_hull = cv2.convexHull(contour) 

            area_filtered_hulls = cv2.drawContours(area_filtered_hulls, [convex_hull], -1, 
255, -1) 

            thresh_dark_filtered = cv2.drawContours(thresh_dark_filtered, [contour], -1, 255, 
-1) 

             

    # A4) Morphological closing 

    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (21,21)) 

    closed = cv2.morphologyEx(area_filtered_hulls, cv2.MORPH_CLOSE, kernel) 

     

    # A5) Find contours of closed regions, 

    # keeping the convex hulls 

    final_contours,h = cv2.findContours(closed,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) 

    hull_mask = np.zeros(np.shape(img), np.uint8) 

    for contour in final_contours: 

        convex_hull = cv2.convexHull(contour) 
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        hull_mask = cv2.drawContours(hull_mask, [convex_hull], -1, 255, -1) 

         

    ###################### 

    # B) Find highlights # 

    ###################### 

     

    # B1) High-pass adaptive thresholding -> binary image of light regions 

    thresh_light = 255 - cv2.adaptiveThreshold(255-denoised, 255, cv2.ADAPTIVE_THRESH_MEAN_C, 
cv2.THRESH_BINARY, 31, 13) 

     

    # B2) Keep only highlights that are inside aggregates by 

    # filtering the high-pass binary image with the hull mask 

    interior_highlights = cv2.bitwise_and(hull_mask, thresh_light) 

     

    # B3) Dilate the interior highlights 

    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (17,17)) 

    interior_highlights = cv2.morphologyEx(interior_highlights, cv2.MORPH_DILATE, kernel) 

     

    ########################################## 

    # C) Combine highlights and dark regions # 

    ########################################## 

     

    # C1) Combine interior highlights with low-pass binary image 

    comb = cv2.bitwise_or(interior_highlights, thresh_dark_filtered) 

     

    # C2) Morphologically close the combined aggregates 

    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15,15)) 

    agg_mask = cv2.morphologyEx(comb, cv2.MORPH_CLOSE, kernel) 

     

    # C3) Remove small aggregates using the hull mask 

    agg_mask = cv2.bitwise_and(agg_mask, hull_mask) 

     

    ###################################### 

    # D) Obtain final aggregate contours # 

    ###################################### 
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    all_contours,h = cv2.findContours(agg_mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) 

    if len(all_contours) == 0: 

        # Error handling if no contours were found 

        return [], thresh_dark 

    else: 

        parent_info = np.array([i[-1] for i in h[0]]) 

        # Keep contours that aren't contained in another contour (like dark spots) 

        contours = [all_contours[i] for i in range(len(all_contours)) if parent_info[i] == -1] 

        return contours, thresh_dark 

 

def find_contours_dark_only(img, denoising_strength=70, kernel_size=5, threshold_offset=20): 

    # Nonlinear means denoising (blur that maintains edges) 

    denoised = cv2.fastNlMeansDenoising(img, None, denoising_strength, 7, 21) 

     

    # Adaptive thresholding (makes binary image)\ 

    
thresh1=cv2.adaptiveThreshold(denoised,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,101,th
reshold_offset)  

     

    # Morphological opening (denoises binary image) 

    kernel =cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(kernel_size,kernel_size)) 

    opened=cv2.morphologyEx(255-thresh1,cv2.MORPH_OPEN,kernel) 

     

    # Find contours 

    contours,h = cv2.findContours(opened,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) 

 

    # Minimum area filter (ADDED TO MATCH NEW ALGORITHM) 

    contours = [contour for contour in contours if cv2.contourArea(contour) > 1200] 

     

    return contours 

 

def getCenterOfMassCoords(contour, axis): 

    return np.mean([contour[i][0][axis] for i in range(len(contour))]) 

 

def getAvgGray_dark_only(img, contours, contour_i): 

    mask = np.zeros(img.shape, np.uint8) 



173 
 

 

    cv2.drawContours(mask, contours, contour_i, 255, -1) 

    return cv2.mean(img, mask)[0] 

 

def getAvgGray(img, thresh_dark, contours, contour_i): 

    mask = np.zeros(img.shape, np.uint8) 

    mask = cv2.drawContours(mask, contours, contour_i, 255, -1) 

    mask = cv2.bitwise_and(mask, thresh_dark) # Only count gray value of pixels that aren't 
included in a highlight 

    return cv2.mean(img, mask)[0] 

         

# Process the frame at time t (minutes from inoculation) 

# of the video with registry index number video_i 

# 

# Saves the contour points and returns a dataframe for the processed image 

# 

# If dark_only = True, this frame will be processed with the 

# old aggregate finding algorithm that assumes aggregates do not have  

# bright highlights 

def process_frame(video_i, t, dark_only=False): 

    # Prep output locations 

    dp = data_paths(video_i) 

     

    # Find image file for the chosen video and timepoint 

    img = get_img(video_i, t) 

    if img is None: 

        print('Video {} has no image at time {}'.format(video_i, t)) 

        return 

 

    # Process image to find aggregate contours 

    # and regions where aggregates are dark 

    if dark_only: 

        contours = find_contours_dark_only(img) 

    else: 

        contours,thresh_dark = find_contours(img) 

    if contours is None: 
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        print('Contour hierarchy could not be processed for video {} at time t={} 
mins.'.format(video_i, t)) 

        return pd.DataFrame(columns=['t', 'x', 'y', 'area', 'perim', 'circularity']) 

 

    # Extract data from contours 

    all_ts = [t]*len(contours) 

    all_cxs = [getCenterOfMassCoords(contour, 0) for contour in contours] 

    all_cys = [getCenterOfMassCoords(contour, 1) for contour in contours] 

    all_areas = [cv2.contourArea(contour) for contour in contours] 

    all_perims = [cv2.arcLength(contour, True) for contour in contours] 

    if dark_only: 

        all_avggray = [getAvgGray_dark_only(img, contours, contour_i) for contour_i in 
range(len(contours))] 

    else: 

        all_avggray = [getAvgGray(img, thresh_dark, contours, contour_i) for contour_i in 
range(len(contours))] 

     

    # Save contour points 

    np.save(dp.contour_points_path.format(t), np.array(contours, dtype=object)) 

 

    # Make a dataframe for output 

    frame_df = pd.DataFrame({ 

            't':all_ts, 

            'x':all_cxs, 

            'y':all_cys, 

            'area':all_areas, 

            'perim':all_perims, 

            'grayValue':all_avggray 

            }) 

    # Remove small aggregates 

    frame_df = frame_df[frame_df.area > 480] 

    # Calculate circularity column 

    frame_df['circularity'] = 4*np.pi*frame_df.area.values / (frame_df.perim.values)**2 

    # Add a column for contour number 

    frame_df['contour'] = frame_df.index.values 
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    return frame_df 

 

# Process an entire video 

# 

# If dark_only = True, this video will be processed with the 

# old aggregate finding algorithm that assumes aggregates do not have 

# bright highlights 

def process_video(video_i, dark_only=False, t_range=None): 

    # Default t_range if not specified 

    if t_range is None: 

        t_range = np.arange(0,1440+10,10) 

 

    # Process frames in parallel (also saves contour points) 

    worker_pool = mp.Pool() 

    frame_dfs = worker_pool.starmap(process_frame, [(video_i,t,dark_only) for t in t_range]) 

    frame_dfs = [f for f in frame_dfs if f is not None] 

    video_df = pd.concat(frame_dfs) 

    video_df.index = np.arange(len(video_df)) 

     

    # Add tracking information 

    tp.quiet() # Suppress unnecessary messages 

    tracked_df = tp.link_df(video_df, 30, memory=70, t_column='t') 

 

    # TODO: Add evaporator/persistor categories (may require handling mergers/separations?) 

 

    # Save dataframe 

    dp = data_paths(video_i) 

    tracked_df.to_csv(dp.video_df_path, float_format='%.3f', index=False) 

    print('Saved video dataframe to ' + dp.video_df_path) 

 

# Reprocess selected frames of a video 

# 

# If dark_only = True, these frames will be processed with the 

# old aggregate finding algorithm that assumes aggregates do not have 

# bright highlights 
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def reprocess_video(video_i, dark_only=False, t_range=None): 

    # Default t_range if not specified 

    if t_range is None: 

        t_range = np.arange(0,1440+10,10) 

 

    # Load previous dataframe 

    video_df = get_df(video_i) 

 

    # Process frames in parallel (also saves contour points), 

    # updating only the affected rows of the video dataframe 

    worker_pool = mp.Pool() 

    frame_dfs = worker_pool.starmap(process_frame, [(video_i,t,dark_only) for t in t_range]) 

    # Trim out non-existent frames 

    processed_frames_i = [i for i in range(len(frame_dfs)) if frame_dfs[i] is not None] 

    frame_dfs = np.array(frame_dfs)[processed_frames_i] 

    t_range = np.array(t_range)[processed_frames_i] 

    for i in range(len(t_range)): 

        video_df = video_df.drop(index=video_df[video_df.t == t_range[i]].index.values) 

        video_df = pd.concat((video_df, frame_dfs[i])) 

        video_df.index = np.arange(len(video_df)) 

    video_df = video_df.sort_values('t') 

    video_df.index = np.arange(len(video_df)) 

     

    # Add tracking information 

    tp.quiet() # Suppress unnecessary messages 

    tracked_df = tp.link_df(video_df, 30, memory=70, t_column='t') 

 

    # TODO: Add evaporator/persistor categories (may require handling mergers/separations?) 

 

    # Save dataframe 

    dp = data_paths(video_i) 

    tracked_df.to_csv(dp.video_df_path, float_format='%.3f', index=False) 

    print('Updated video dataframe ' + dp.video_df_path) 

 

###################### 
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###################### 

# ANALYSIS FUNCTIONS # 

###################### 

 

###################### 

 

def accept_video_i(func): 

        # If the user specifies a video index, 

        # load the video df 

        def wrapper(identifier, *args, **kwargs): 

            if isinstance(identifier, int) or isinstance(identifier, np.int64): 

                df = get_df(identifier) 

                return func(df, *args, **kwargs) 

            else: 

                # otherwise assume the df was passed 

                return func(identifier, *args, **kwargs) 

        return wrapper 

 

######################## 

# From video dataframe # 

######################## 

 

@accept_video_i 

def get_start_time(df, n_threshold=10, area_threshold=800): 

    # Return time when the number of fruiting bodies 

    # above a certain size reaches a certain threshold 

    def n_are_large(areas, threshold): 

        return sum(np.array(areas) > threshold) 

     

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

 

    n_large = df_slice.groupby('t')['area'].agg(n_are_large, area_threshold) 
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    times_when_n_large_exceeds = n_large.index[n_large >= n_threshold] 

    if len(times_when_n_large_exceeds) == 0: 

        return 0 

    return min(times_when_n_large_exceeds) 

 

@accept_video_i 

def get_peak_time(df): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

 

    total_areas = df_slice.groupby('t')['area'].agg(np.sum) 

    if len(total_areas) == 0: 

        return 0 

    times_at_max = total_areas.index[total_areas == max(total_areas)] 

    return min(times_at_max) 

 

@accept_video_i 

def get_stability_time(df, window=31, threshold=0.5): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

 

    n = df_slice.groupby('t')['area'].agg(len) 

    if len(n) < window: 

        return 2000 

    n_deriv = savgol_filter(n.values, window, 3, deriv=1) 

    all_stable_after_i = np.where([np.all(abs(n_deriv[i:]) <= threshold) for i in 
range(len(n_deriv))])[0] 

    if len(all_stable_after_i) == 0: 

        return 2000 # A hypothetical eventual stability time? 

    else: 

        min_stable_after_i = min(all_stable_after_i) 

        return n.index.values[min_stable_after_i] 
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@accept_video_i 

def get_peaktime_area_mean(df): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

 

    peak_time = get_peak_time(df) 

    return np.mean(df_slice[df_slice.t == peak_time].area.values) 

 

@accept_video_i 

def get_peaktime_area_std(df): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

 

    peak_time = get_peak_time(df) 

    return np.std(df_slice[df_slice.t == peak_time].area.values) 

 

@accept_video_i 

def get_final_area_mean(df): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

 

    mean_areas = df_slice.groupby('t')['area'].agg(np.mean) 

    return mean_areas.values[-1] 

 

@accept_video_i 

def get_final_area_std(df): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

 

    std_areas = df_slice.groupby('t')['area'].agg(np.std) 

    return std_areas.values[-1] 
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@accept_video_i 

def get_peaktime_n(df): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

    if len(df_slice) == 0: 

        return 0 

 

    peak_time = get_peak_time(df) 

    return len(df_slice[df_slice.t == peak_time]) 

 

@accept_video_i 

def get_final_n(df): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

    if len(df_slice) == 0: 

        return 0 

 

    return len(df_slice[df_slice.t == max(df_slice.t.values)]) 

 

@accept_video_i 

def get_frac_lost(df): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

    if len(df_slice) < 4: 

        return 0 

 

    ns = df_slice.groupby('t')['area'].agg(len) # count could use any column 

    n_sort = np.sort(ns.values) # sort ascending 

    n_max = np.mean(n_sort[-3:]) # smooth max n with three largest values 

    n_final = ns.values[-1] 
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    if n_final >= n_max: 

        return 0 

    else: 

        return (n_max - n_final)/n_max 

 

@accept_video_i 

def get_final_circ_mean(df): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

 

    mean_circs = df_slice.groupby('t')['circularity'].agg(np.mean) 

    return mean_circs.values[-1] 

 

@accept_video_i 

def get_final_circ_std(df): 

    # Ignore aggregates that formed at 100 minutes after inoculation or earlier 

    early_p = np.unique(df[df.t < 100].particle.values) 

    df_slice = df[[p not in early_p for p in df.particle]] 

 

    std_circs = df_slice.groupby('t')['circularity'].agg(np.std) 

    return std_circs.values[-1] 

 

####################### 

# Metrics from images # 

####################### 

 

def get_final_comp_size(i): 

    dp = data_paths(0) 

    cs_df = pd.read_csv(dp.img_metrics_compSize, index_col=0) 

    return np.mean(cs_df.loc[i].comp_size.values[-10]) 

 

def get_max_comp_size(i): 

    dp = data_paths(0) 

    cs_df = pd.read_csv(dp.img_metrics_compSize, index_col=0) 
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    return max(cs_df.loc[i].comp_size.values) 

 

def get_t_max_comp_size(i): 

    dp = data_paths(0) 

    cs_df = pd.read_csv(dp.img_metrics_compSize, index_col=0) 

    this_df = cs_df.loc[i] 

    max_slice = this_df[this_df.comp_size == max(this_df.comp_size)] 

    if len(max_slice) == 0: 

        return 0 

    else: 

        return min(max_slice.t.values) 

 

def get_final_std_grayValue(i): 

    dp = data_paths(0) 

    sg_df = pd.read_csv(dp.img_metrics_std_grayValue, index_col=0) 

    return np.mean(sg_df.loc[i].std_grayValue.values[-10]) 

 

def get_max_std_grayValue(i): 

    dp = data_paths(0) 

    sg_df = pd.read_csv(dp.img_metrics_std_grayValue, index_col=0) 

    return max(sg_df.loc[i].std_grayValue.values) 

 

###################### 

 

###################### 

# PLOTTING FUNCTIONS # 

###################### 

 

###################### 

 

# Plot many images together as a mosaic, 

# specifying the video index to show 

# and the time to show. 

# Optionally, the video index and time can be 

# displayed on each image 



183 
 

 

def frame_mosaic(video_indices, ts=None, show_i=True, show_t=False, dpi=75): 

    ncols = 6 

    nrows = int(np.ceil(len(video_indices)/ncols)) 

    height,width = np.shape(get_img(0,0)) 

    fig,all_ax = plt.subplots(nrows,ncols,figsize=(20,20*height/width*nrows/ncols*1.025), 
dpi=dpi) 

    fig.subplots_adjust(hspace=0, wspace=0) 

 

    # Default time 

    if ts is None: 

        ts = [1440]*len(video_indices) 

    # Allow user to pick one timepoint for all images 

    if isinstance(ts, int): 

        ts = [ts]*len(video_indices) 

         

    for i,ax in enumerate(all_ax.flatten()): 

        if i < len(video_indices): 

            img = get_img(video_indices[i], ts[i]) 

            ax.imshow(img, cmap='gray') 

            label = '' 

            if show_i: 

                label = str(video_indices[i]) 

            if show_t: 

                label += ', {} min'.format(ts[i]) 

            ax.annotate(label, (0,250), color='white') 

        ax.axis('off') 

 

# Helper function for scatterplots: 

# Plot the polygon that bounds the x,y points 

# to emphasize the spread, especially alongside 

# other scatterplots 

def plotHull(xs, ys, ax, *args, **kwargs): 

    if args == (): 

        args = 'o-' # default plot marker 

    points = np.column_stack((xs, ys)) 
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    if len(points) > 2: 

        hull = ConvexHull(points) 

        vertices_i = hull.vertices.copy() 

        vertices_i = np.append(vertices_i, hull.vertices[0]) 

        ax.plot(np.array(xs)[vertices_i], np.array(ys)[vertices_i], *args, **kwargs) 

    else: 

        ax.plot(xs, ys, *args, **kwargs) 

 

def get_points_inside(c, xs, ys): 

    points_data = np.column_stack((xs,ys)) 

    all_points_inside_i = [] 

    for clevel in c.allsegs: 

        n_points = 0 

        for segment in clevel: 

            cpath = Path(segment) 

            points_inside_i = np.arange(len(xs))[cpath.contains_points(points_data)] 

            all_points_inside_i.extend(points_inside_i) 

    return np.array(xs)[all_points_inside_i], np.array(ys)[all_points_inside_i] 

 

# Helper function for finding contour 

# that contains a given fraction of  

# scatterplot points 

def get_frac_points_inside(c, xs, ys): 

    points_data = np.column_stack((xs,ys)) 

    frac_points = [] 

    for clevel in c.allsegs: 

        n_points = 0 

        for segment in clevel: 

            cpath = Path(segment) 

            points_inside = sum(cpath.contains_points(points_data)) 

            n_points += points_inside 

        frac_points.append(n_points / len(points_data)) 

    return frac_points 

 

# Helper function for finding contour 
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# that contains a given fraction of  

# scatterplot points 

def incl_cost(ax, cloud, xs, ys, q, frac): 

    c = ax.contour(cloud.T, [np.quantile(cloud.flatten(), q)], extent=(-10, 10, -10, 10)) 

    points_data = np.column_stack((xs,ys)) 

    for clevel in c.allsegs: 

        n_points = 0 

        for segment in clevel: 

            cpath = Path(segment) 

            points_inside = sum(cpath.contains_points(points_data)) 

            n_points += points_inside 

    return (n_points/len(points_data) - frac)**2 

 

# Gaussian kernel density of 2D scatterplot 

def densityMap(xs, ys, extent=(-10,10), nBins=500, kernelWidth=101): 

    heatmap, xedges, yedges = np.histogram2d(xs, ys, bins=np.linspace(*extent, nBins)) 

    density = cv2.GaussianBlur(heatmap, (kernelWidth, kernelWidth), 0) 

    return density 

 

# Returns xs and ys of desired contour. 

# NOTE: There may be multiple polygons, so plot this as 

# 

# polys = get_frac_contour(ax, xs, ys, frac) 

# for poly in polys: 

#     plot(*poly) 

def get_frac_contour(ax, xs, ys, frac, extent=(-10,10), nBins=500, kernelWidth=101, 
min_q=None, **kwargs): 

    # Create density map of scatterplot points 

    cloud = densityMap(xs, ys, extent, nBins, kernelWidth) 

 

    # Solve for contour 

    if min_q is None: 

        min_q = sum(cloud.flatten() > 0)/len(cloud.flatten()) + 0.01 

    sol = minimize_scalar(lambda q: incl_cost(ax, cloud, xs, ys, q, frac), bounds=(min_q, 1), 
method='bounded') 
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    # Extract contour 

    c = ax.contour(cloud.T, [np.quantile(cloud.flatten(), sol.x)], extent=(*extent, *extent)) 

 

    # Extract coordinates 

    polys = [(cdata.T[0], cdata.T[1]) for cdata in c.allsegs[0]] 

    return polys 

 

######################## 

 

######################## 

# HUB ACCESS FUNCTIONS # 

######################## 

 

######################## 

 

def get_remote_scope_folders(sftp, remote_run_folder): 

    scope_folders = [] 

    for entry in sftp.listdir_attr(remote_run_folder): 

        mode = entry.st_mode 

        if S_ISDIR(mode): 

            if entry.filename.startswith('Scope'): 

                scope_folders.append(entry.filename) 

    return scope_folders 

 

def get_t(filename): 

    t = int(re.findall('_(\\d+).tif$', filename)[0]) - 1 

    return t 

 

def cpMovieFromHub(remote_scope_folder, local_dst_folder, remote_server='as-welchlab-
nat.syr.edu', username='', password=''): 

    # Open SSH connection 

    ssh = paramiko.SSHClient() 

    ssh.load_host_keys(os.path.expanduser('~/.ssh/known_hosts')) 

    ssh.connect(remote_server, username=username, password=password, allow_agent=False) 

    sftp = ssh.open_sftp() 
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    # Get all image filenames in this remote scope folder 

    img_filenames = sftp.listdir(remote_scope_folder) 

 

    # If there are less than 100 images, warn the user 

    if len(img_filenames) < 100: 

        print('There are less than 100 images in {}'.format(remote_scope_folder)) 

 

    # Get subset of images with a 10 minute increment 

    imgs_to_copy = [os.path.join(remote_scope_folder, f) for f in img_filenames if get_t(f)%10 
== 0] 

 

    # Copy those images to the destination folder 

    for img_path in imgs_to_copy: 

        img_filename = os.path.basename(img_path) 

        sftp.get(img_path, os.path.join(local_dst_folder, img_filename)) 

 

    # Close SSH connection 

    sftp.close() 

    ssh.close() 

 

def findRunFolder(sftp, run_num): 

    dp = data_paths() 

    run_folder = None 

    for search_path in dp.hub_run_folder_locations: 

        try: 

            for entry in sftp.listdir_attr(search_path): 

                mode = entry.st_mode 

                if S_ISDIR(mode): 

                    if 'Run{:04d}'.format(run_num) in entry.filename: 

                        run_folder = os.path.join(search_path, entry.filename) 

        except: 

            continue 

    if run_folder is None: 

        print('No folder found for run {}'.format(run_num)) 
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    return run_folder 

 

# Use this function to copy every tenth image from all videos in a given run 

# Note that it returns a dataframe that should be manually validated 

# and then added to the video registry with add_rows_to_registry() 

def cpRunFromHub(run_num, local_dst_folder=None): 

    dp = data_paths() 

    # Default local destination directory 

    if local_dst_folder is None: 

        local_dst_folder = dp.new_img_parent 

 

    # Get network hub info for remote connection 

    remote_server = dp.hub_ip 

    username = dp.hub_user 

    password = dp.hub_pw 

 

    # Open SSH connection 

    ssh = paramiko.SSHClient() 

    ssh.load_host_keys(os.path.expanduser('~/.ssh/known_hosts')) 

    ssh.connect(remote_server, username=username, password=password, allow_agent=False) 

    sftp = ssh.open_sftp() 

 

    # Find images on the network hub 

    remote_run_folder = findRunFolder(sftp, run_num) 

    if remote_run_folder is None: 

        return 

    print('Copying videos from Run {}: {}'.format(run_num, remote_run_folder)) 

    scope_folders = get_remote_scope_folders(sftp, remote_run_folder) 

 

    # Prep run folder in local destination 

    new_run_folder = os.path.join(local_dst_folder, os.path.basename(remote_run_folder)) 

    if not os.path.exists(new_run_folder): 

        os.mkdir(new_run_folder) 

 

    # Get date when run was started 
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    m_time = sftp.stat(os.path.join(remote_run_folder, 'scopeInfo.txt')).st_mtime 

    timestamp = datetime.fromtimestamp(m_time) 

    date = "{dt.month}/{dt.day}/{dt.year}".format(dt = timestamp) 

 

    # Prepare new rows to be added to the registry 

    sftp.get(os.path.join(remote_run_folder, 'scopeInfo.txt'), os.path.join(new_run_folder, 
'scopeInfo.txt')) 

    scopeInfo = pd.read_csv(os.path.join(new_run_folder, 'scopeInfo.txt'), sep='\t') 

    new_rows = pd.DataFrame({'run':run_num, 'scope':scopeInfo.scope, 
'strain':scopeInfo.strain}) 

    new_rows['condition'] = '1%_TPM_agar' 

    new_rows['date'] = date 

    new_rows['error'] = 0 

    new_rows['processed'] = False 

    new_rows['img_folder'] = '' # to be populated 

 

    # Copy images from the network hub with a time increment of 10 minutes  

    for i,scope_folder in enumerate(scope_folders): 

        print('Copying from folder {} of {}: {}'.format(i+1, len(scope_folders), 
scope_folder), flush=True, end='\r') 

 

        # Get all image filenames in this remote scope folder 

        img_filenames = sftp.listdir(os.path.join(remote_run_folder, scope_folder)) 

 

        # If there are less than 100 images, skip this folder 

        if len(img_filenames) < 100: 

            continue 

 

        # Prep scope folder in local destination 

        new_scope_folder = os.path.join(new_run_folder, scope_folder) 

        if not os.path.exists(new_scope_folder): 

            os.mkdir(new_scope_folder) 

 

        # Get subset of images with a 10 minute increment 

        imgs_to_copy = [os.path.join(remote_run_folder, scope_folder, f) for f in 
img_filenames if get_t(f)%10 == 0] 
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        # Copy those images to the destination folder 

        for img_path in imgs_to_copy: 

            img_filename = os.path.basename(img_path) 

            sftp.get(img_path, os.path.join(new_scope_folder, img_filename)) 

 

        # Include local destination in rows to be added to registry 

        scope_num = int(scope_folder[5:]) # Scope folder named as 'Scope44' 

        new_row_i = new_rows[new_rows.scope == scope_num].index.values[0] 

        new_rows.loc[i, 'img_folder'] = new_scope_folder 

 

    # Close SSH connection 

    sftp.close() 

    ssh.close() 

 

    # Return rows to be added to registry 

    return new_rows 
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Tools for PCA analysis 

""" 

# Calculate a new PCA from scratch: 

# run PCA_tools 

# sample = registry[...conditions...] 

# p = PCA_tools().new(sample) # Loads default metrics and scales them unsupervised 

# p.computePCA() 

 

# Save data: 

# p.save() # Prompts user for savepath 

#  or 

# p.save('/user/home/myxo-tracking/PCA/tmp/') 

 

# Load previously calculated data: 

# data = PCA_tools().load() # Prompts user for loadpath 

#  or 

# data = PCA_tools().load('/user/home/3d-scope-agg-tracking/PCA/PCA_all/') 

# 

# Loading data also makes plotting functions available 

 

# If computing new default metrics: 

# p = PCA_tools() 

# p.new(filter_errors=False) 

# p.computeMetrics() 

#  

# then place metrics_df.csv in the default parentPath 

""" 

 

import numpy as np 

import agg_tools as tools 

import pandas as pd 

import os 

from datetime import datetime 

from sklearn.preprocessing import StandardScaler 
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from sklearn.decomposition import PCA 

import matplotlib.pyplot as plt 

from matplotlib.colors import ListedColormap 

from matplotlib import colors 

from matplotlib.patches import Patch 

import cv2 

from scipy.optimize import minimize_scalar 

from matplotlib.path import Path 

 

registry = tools.load_registry() # for convenience when using `run PCA_tools` 

 

class PCA_tools: 

 def __init__(self): 

  # Filenames for all ouput 

  # Keys are properties of the class 

  self.output_filenames = { 

   'registry_sample':'included_videos_unfiltered.csv', 

   'filtered_registry_sample':'included_videos_filtered.csv', 

   'metrics_df':'metrics_df.csv', 

   'scaled_metrics_df':'scaled_metrics_df.csv', 

   'principalDf':'PCA.csv', 

   'pc_variance_ratios':'PC_variance.txt', 

   'pc_metrics':'PC_metrics.txt', 

   'nan_indices':'nan_indices.txt', 

   'metrics_datetime':'when_metrics_calculated.txt' 

   } 

 

  self.metric_functions = { 

   'start_time':tools.get_start_time, 

   'peak_time':tools.get_peak_time, 

   'stability_time':tools.get_stability_time, 

   'peaktime_area_mean':tools.get_peaktime_area_mean, 

   'peaktime_area_std':tools.get_peaktime_area_std, 

   'final_area_mean':tools.get_final_area_mean, 

   'final_area_std':tools.get_final_area_std, 
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   'peaktime_n':tools.get_peaktime_n, 

   'final_n':tools.get_final_n, 

   'frac_lost':tools.get_frac_lost 

   } 

 

  # Initialize 

  self.metric_names = list(self.metric_functions.keys()) 

 

  self.parentPath = self.ensureFinalSlash(tools.data_paths(0).pca_folder) # 
Directory for output folders, should also contain metrics_df.csv for default pre-calculated 
metrics 

  self.savepath = None 

 

  self.registry_sample = None 

  self.filtered_registry_sample = None 

  self.metrics_df = None 

  self.scaled_metrics_df = None 

  self.principalDf = None 

  self.nan_indices = None 

  self.n_components = None 

  self.metrics_datetime = None 

 

  self.registry = tools.load_registry() 

 

 # Prepares scaled metrics from registry sample 

 # ready to run PCA 

 def new(self, registry_sample=None, filter_errors=True, parentPath=None): 

  # Default to using entire registry 

  if registry_sample is None: 

   registry_sample = self.registry 

 

  # Clean up registry sample 

  self.registry_sample, self.filtered_registry_sample = 
self.prepRegistrySample(registry_sample, filter_errors) 

 

  # Load default metrics 
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  self.metrics_df = self.loadDefaultMetrics(parentPath) 

  if self.metrics_df is None: 

   # Check if some default metrics are missing 

   return self 

 

  # Scale metrics (unsupervised) 

  self.scaleMetrics() # Populates self.scaled_metrics_df and self.nan_indices 

 

  return self 

 

 def save(self, savepath=None): 

  # Prompt user for savepath if one is not given or previously specified 

  if savepath is None: 

   if self.savepath is None: 

    savepath = self.makeNewDir(self.parentPath) 

   else: 

    savepath = self.savepath 

 

  # Prompt user if anything might be overwritten 

  proceed, savepath = self.checkSaveConflicts(savepath) 

  if not proceed: 

   return 

 

  # Save each output file 

  self.registry_sample.to_csv(savepath + self.output_filenames['registry_sample']) 

  self.filtered_registry_sample.to_csv(savepath + 
self.output_filenames['filtered_registry_sample']) 

  self.appendColumns(self.metrics_df).to_csv(savepath + 
self.output_filenames['metrics_df']) 

  self.appendColumns(self.scaled_metrics_df).to_csv(savepath + 
self.output_filenames['scaled_metrics_df']) 

  self.principalDf.to_csv(savepath + self.output_filenames['principalDf']) 

  np.savetxt(savepath + self.output_filenames['pc_variance_ratios'], 
self.pc_variance_ratios) 

  np.savetxt(savepath + self.output_filenames['pc_metrics'], self.pc_metrics) 

  np.savetxt(savepath + self.output_filenames['nan_indices'], self.nan_indices, 
fmt='%d') 
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  with open(savepath + self.output_filenames['metrics_datetime'], 'w') as f: 

   f.write(self.metrics_datetime) 

 

  print('Output data saved to ' + savepath) 

  self.savepath = savepath 

 

 # Loads data saved at loadpath 

 def load(self, loadpath=None): 

  # Defaults to user prompt for loadpath 

  if loadpath is None: 

   loadpath = self.pickLoadpath(self.parentPath) 

 

  # Check for each file in self.output_filenames 

  for variable_name in self.output_filenames.keys(): 

   output_filename = self.output_filenames[variable_name] 

   if os.path.exists(loadpath + output_filename): 

    # Load in dataframes 

    if output_filename.endswith('.csv'): 

     df = pd.read_csv(loadpath + output_filename, index_col=0) 

     if variable_name != 'principalDf': 

      # Remove non-numeric columns that help human 
readability 

      df = df.drop('strain', axis=1) 

     # Store data in memory 

     setattr(self, variable_name, df) 

    # Load in metrics_datetime 

    elif variable_name == 'metrics_datetime': 

     with open(loadpath + output_filename, 'r') as f: 

      self.metrics_datetime = f.readline()[:-1] 

    # Load in numeric txt files 

    else: 

     if os.stat(loadpath).st_size != 0: # suppress an annoying 
warning about an empty file 

      data = np.loadtxt(loadpath + output_filename) 

     else: 

      data = [] 



196 
 

 

     # Store data in memory 

     setattr(self, variable_name, data) 

   else: 

    print(loadpath + output_filename + ' missing') 

 

  # Load the number of primary components 

  self.n_components = sum(['pc' in colName for colName in 
self.principalDf.columns]) 

  return self 

 

 ################# 

 ################# 

 ###           ### 

 ###  PCA CORE ### 

 ###           ### 

 ################# 

 ################# 

 

 def computeMetric(self, video_i): 

  # Calculate all metric values for this video 

  metric_vector = [self.metric_functions[metric_name](video_i) for metric_name in 
self.metric_names] 

  return metric_vector 

   

 def computeMetrics(self, video_indices=None): 

  # Default to indices in the filtered_registry_sample 

  if video_indices is None: 

   video_indices = self.filtered_registry_sample.index 

 

  # Calculate and store metrics for each video 

  metric_vectors = [] 

  for i in video_indices: 

   # Indicate which metric is being calculated (in case of warnings/errors) 

   videoname = tools.data_paths(i).videoname 

   print('{}: {}'.format(i, videoname)) 
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   # Calculate all metric values for this video 

   metric_vector = self.computeMetric(i) 

 

   # Store metric values for this video 

   metric_vectors.append(metric_vector) 

 

  # Keep date and time for when metrics were calculated 

  self.metrics_datetime = datetime.now().strftime("%Y-%m-%d, %H:%M:%S") 

 

  # Compile all metric values into a dataframe by video index 

  self.metrics_df = pd.DataFrame(data=metric_vectors, columns=self.metric_names) 

  self.metrics_df.index = video_indices 

 

  return self.metrics_df 

 

 # Filter out metrics that are nan 

 # Scale remaining metrics unsupervised, 

 # i.e. mean -> 0, variance -> 1 for the given sample of metrics 

 # Returns: 

 # - dataframe of scaled metrics 

 # - list of video indices with nan metrics 

 def scaleMetrics(self, metrics_df=None): 

  # Default to self.metrics_df 

  if metrics_df is None: 

   metrics_df = self.metrics_df 

 

  # Remove vectors that have missing values 

  metrics_df = self.filterNan(metrics_df, store_nan_indices=True) 

 

  # Scale each metric to have mean 0 and variance 1 

  scaled_metric_vectors = StandardScaler().fit_transform(metrics_df) 

 

  # Compile all scaled metric values into a dataframe by video index 

  self.scaled_metrics_df = pd.DataFrame(data=scaled_metric_vectors, 
columns=self.metric_names) 
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  self.scaled_metrics_df.index = metrics_df.index 

 

  return self.scaled_metrics_df, self.nan_indices 

 

 def computePCA(self, input_data=None, n_components=6): 

  self.n_components = n_components 

 

  # Default to using the scaled metric vectors as input 

  if input_data is None: 

   if self.scaled_metrics_df is None: 

    self.scaleMetrics() 

   input_data = self.scaled_metrics_df 

 

  # Report on how many videos of each strain are included in the PCA 

  print(self.filtered_registry_sample.strain.value_counts()) 

 

  # Perform PCA 

  pca = PCA(n_components=n_components) 

  pc = pca.fit_transform(input_data) 

  pca_out = pca.fit(input_data)   

 

  # Save output: 

  # - principal component values for each video 

  # - explained variance of each PC 

  # - metric makeup of each PC 

  self.principalDf = pd.DataFrame(data = pc, columns = ['pc{}'.format(i+1) for i 
in range(n_components)]) 

  self.principalDf.index = input_data.index 

  self.principalDf = self.appendColumns(self.principalDf) 

 

  self.pc_variance_ratios = pca_out.explained_variance_ratio_ 

  self.pc_metrics = pca_out.components_ 

  #self.covariance = pca_out.get_covariance() 

 

  # Report on explained variance 



199 
 

 

  print('Explained variance:') 

  print(self.pc_variance_ratios) 

  print('{}% of total variance explained by the top {} primary 
components'.format(int(100*sum(self.pc_variance_ratios)), n_components)) 

 

 ########################### 

 ########################### 

 ###                     ### 

 ###  PLOTTING FUNCTIONS ### 

 ###                     ### 

 ########################### 

 ########################### 

 

 # Scatterplot of all PCA points 

 def plotPCA(self, x_axis='pc1', y_axis='pc2', data=None, fig=None, ax=None): 

  # Make new plot window if one isn't supplied 

  if (fig is None) or (ax is None): 

   self.fig,self.ax = plt.subplots() 

  else: 

   self.fig = fig 

   self.ax = ax 

 

  # Use full principalDf if a slice isn't supplied 

  if data is None: 

   data = self.principalDf 

 

  # Plot PCA output 

  self.fig.canvas.manager.set_window_title("PCA Feature Space") 

  self.ax.set_aspect('equal') 

  for i in data.index: 

   homolog_group = data.loc[i,'mutant'] 

   x,y = data.loc[i, x_axis], data.loc[i, y_axis] 

   self.ax.scatter(x,y, color=self.h_colors[homolog_group]) 

 

  self.fig.tight_layout() 
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  plt.show() 

 

 def densityMap(self, xs, ys, extent=(-6.5,6.5), nBins=20, kernelWidth=5): 

  heatmap, xedges, yedges = np.histogram2d(xs, ys, bins=np.linspace(*extent, 
nBins)) 

  density = cv2.GaussianBlur(heatmap, (kernelWidth, kernelWidth), 0) 

  return density 

 

 def plotDensity(self, mutant=None, scatter=True, scattersize=2, x_axis='pc1', 
y_axis='pc2', data=None, fadeExp=2, darkenFactor=0.75, scatter_alpha=0.6, extent=(-6.5, 6.5), 
nBins=20, kernelWidth=5, colorbar=True, fig=None, ax=None): 

  # Make new plot window if one isn't supplied 

  if (fig is None) or (ax is None): 

   self.fig,self.ax = plt.subplots() 

  else: 

   self.fig = fig 

   self.ax = ax 

 

  # Use full principalDf if a slice isn't supplied 

  if data is None: 

   data = self.principalDf 

 

  # Filter by mutant if supplied 

  if mutant is not None: 

   data = data[data.mutant == mutant] 

   scatter_color = self.darken(self.h_colors[mutant], darkenFactor) 

   fade_map = self.fade(self.h_colors[mutant], fadeExp) 

  else: 

   scatter_color = self.darken('C0', darkenFactor) 

   fade_map = self.fade('C0', fadeExp) 

 

  # Extract data 

  xs,ys = data[x_axis], data[y_axis] 

 

  # Make scatterplot, if desired 

  if scatter: 
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   self.ax.scatter(xs, ys, scattersize, color=scatter_color, 
alpha=scatter_alpha) 

   

  # Plot density 

  self.ax.set_xlim(*extent) 

  self.ax.set_ylim(*extent) 

  im = self.ax.imshow(self.densityMap(xs, ys, extent=extent, nBins=nBins, 
kernelWidth=kernelWidth).T, extent=(*extent,*extent), origin='lower', cmap=fade_map) 

  if colorbar: 

   self.fig.colorbar(im) 

 

 def plotPCmakeup(self, top_n_components=4, top_n_metrics=10, width_ratios=[1,5], 
fig=None, ax=None): 

  # Make new plot window if one isn't supplied 

  if (fig is None) or (ax is None): 

   self.fig,self.ax = plt.subplots(1,2, figsize=(8,4), 
gridspec_kw={'width_ratios': width_ratios}) 

  else: 

   self.fig = fig 

   self.ax = ax 

 

  # Calculate PCA if it has not been done yet 

  if self.principalDf is None: 

   self.computePCA() 

 

  ########################### 

  # Explained variance plot # 

  ########################### 

  # Colors for explained variance bars 

  bar_colors = [plt.cm.Blues(i) for i in np.linspace(0.25, 1, self.n_components)] 

   

  total_explained_variance = sum(self.pc_variance_ratios) 

  # Bar for "other" 

  self.ax[0].bar(0, 1-total_explained_variance, bottom=total_explained_variance, 
fill=None, edgecolor='lightgray', hatch='//') 

  # Stacked bars the explained variance of each PC 

  for i in range(self.n_components): 
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   self.ax[0].bar(0, self.pc_variance_ratios[i], 
bottom=sum(self.pc_variance_ratios[:i]), color=bar_colors[i], edgecolor='black') 

 

  # Add text to label the variance bars 

  i=0 

  for bar in self.ax[0].patches: 

   if i > 0: 

    self.ax[0].text( 

     # Center text 

     bar.get_x() + bar.get_width() / 2, 

     # Offset text vertically 

     bar.get_height() + bar.get_y()-0.055, 

     'PC{}'.format(i), 

     ha='center', 

     color='w', 

     weight='bold', 

     size=12 

    ) 

   i += 1 

 

  # Style axes 

  self.ax[0].axes.xaxis.set_visible(False) 

  self.ax[0].set_xlim(-1,1) 

  self.ax[0].set_yticks(np.arange(0, 1.1, 0.1)) 

  self.ax[0].set_ylabel('Cumulative variance') 

  self.ax[0].set_title('Variance explained') 

 

  ######################################### 

  # Primary component breakdown by metric # 

  ######################################### 

  # Choose 18 distinct colors, with the 10 darkest colors the top metrics of PC1, 

  # and the other 8 pastel 

  init_colors = np.concatenate((plt.cm.tab10.colors, plt.cm.Pastel2.colors))[:18] 

  pc1_sort = np.argsort(np.abs(self.pc_metrics[0]))[::-1] 

  metric_colors = np.array([None]*18) 
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  for i in range(18): 

   metric_colors[pc1_sort[i]] = init_colors[i] 

   

  for i in range(top_n_components): 

   pci_sort = np.argsort(np.abs(self.pc_metrics[i]))[::-1] # Sort 
descending 

   pci_sort_comp = self.pc_metrics[i][pci_sort] 

   pci_sort_names = self.metric_names[pci_sort] 

   bar_norm = sum(np.abs(pci_sort_comp)) 

   self.ax[1].bar('PC{}'.format(i+1), 
sum(np.abs(pci_sort_comp)[top_n_metrics:])/bar_norm, fill=None, edgecolor='lightgray', 
hatch='//') 

   for j in range(top_n_metrics): 

    bar,= self.ax[1].bar('PC{}'.format(i+1), 
np.abs(pci_sort_comp[j])/bar_norm, bottom=sum(np.abs(pci_sort_comp)[(j+1):])/bar_norm, 
color=metric_colors[pci_sort][j], edgecolor='black') 

    if pci_sort_comp[j] < 0: 

     self.ax[1].scatter(bar.get_x()+bar.get_width()/8, 
bar.get_y()+bar.get_height()/2, color='black', zorder=3) 

  self.ax[1].set_ylim(0, 1.1) 

  self.ax[1].axes.yaxis.set_visible(False) 

   

  # Shrink current axis by 20% 

  box = self.ax[1].get_position() 

  self.ax[1].set_position([box.x0, box.y0, box.width * 0.8, box.height]) 

   

  # Put a legend to the right of the current axis 

  legend_elements = [Patch(facecolor=metric_colors[pc1_sort][i], 
edgecolor='black', label=self.metric_names[pc1_sort][i]) for i in range(18)] 

  self.ax[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), 
handles=legend_elements) 

  self.ax[1].set_title('Top metrics of Principal Components\n(A dot indicates the 
negative direction)') 

 

 # Graphical helper functions 

 def fade(self, color, exponent=1): 

  if isinstance(color, str): 

   color = colors.to_rgba(color) 

  if len(color) == 3: # no alpha in specified color 
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   newColors = [(*color, a) for a in np.linspace(0,1,256)**exponent] 

  elif len(color) == 4: 

   r,g,b,a = color 

   newColors = [(r,g,b,alpha) for alpha in np.linspace(0,1,256)**exponent] 

  return colors.ListedColormap(newColors) 

 

 def darken(self, color, factor=0.5): 

  if isinstance(color, str): 

   color = colors.to_rgba(color) 

  if len(color) == 3: # no alpha in specified color 

   r,g,b = color 

   a = 1 

  elif len(color) == 4: 

   r,g,b,a = color 

  return (r*factor, g*factor, b*factor, a) 

 

 ########################## 

 ########################## 

 ###                    ### 

 ###  HELPER FUNCTIONS  ### 

 ###                    ### 

 ########################## 

 ########################## 

 

 def loadDefaultMetrics(self, parentPath=None): 

  # Prepare directory that contains precalculated metric vectors 

  if parentPath is None: 

   parentPath = self.parentPath 

  parentPath = self.ensureFinalSlash(parentPath) 

 

  # Ensure metrics_df.csv is in the parentPath 

  default_metrics_path = parentPath + self.output_filenames['metrics_df'] 

  if not os.path.exists(default_metrics_path): 

   print('Precalculated metrics at ' + default_metrics_path + ' do not 
exist') 
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   return 

 

  # Load default precalculated metric vectors 

  self.metrics_df = pd.read_csv(default_metrics_path, index_col=0) 

  self.metrics_df = self.metrics_df[self.metric_names] 

  print('Loaded precalculated metrics') 

 

  # Get datetime string for when these metrics were calculated 

  timestamp = datetime.fromtimestamp(os.path.getmtime(default_metrics_path)) 

  self.metrics_datetime = timestamp.strftime("%Y-%m-%d, %H:%M:%S") 

   

  # Restrict to videos for the given registry sample 

  try: 

   self.metrics_df = 
self.metrics_df.loc[self.filtered_registry_sample.index] 

  except KeyError: 

   # The registry sample contains indices for videos with unprocessed 
metrics 

   print('\n***New metrics must be calculated***') 

   print('\tp = PCA_tools()') 

   print('\tp.new(filter_errors=False)') 

   print('\tp.computeMetrics()') 

   print('\n\tafter saving output, place metrics_df.csv in the default 
parentPath: {}'.format(parentPath)) 

   return 

 

  return self.metrics_df 

 

 # Add strain and videoname columns to a dataframe 

 # Requires df.index to be registry index values 

 def appendColumns(self, df): 

  new_df = df.copy() 

  strains = [self.registry.loc[i,'strain'] for i in new_df.index] 

  runs = [self.registry.loc[i,'run'] for i in new_df.index] 

  scopes = [self.registry.loc[i,'scope'] for i in new_df.index] 

  if 'strain' not in new_df.columns: 
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   new_df.insert(0, 'strain', strains) 

  if 'scope' not in new_df.columns: 

   new_df.insert(0, 'scope', scopes) 

  if 'run' not in new_df.columns: 

   new_df.insert(0, 'run', runs) 

  return new_df 

 

 # Prints a summary of processing errors 

 def errorSummary(self, print_summary=True): 

  errorString = '' 

  for i in self.registry_sample[self.registry_sample.error == 1].index.values: 

   run = registry.loc[i, 'run'] 

   scope = registry.loc[i, 'scope'] 

   errorString += 'Video {} (r{}s{}) had large intial clumps\n'.format(i, 
run, scope) 

 

  if self.nan_indices is not None: 

   errorString += '\n\n{} videos removed due to missing metric values 
(indices in self.nan_indices)'.format(len(self.nan_indices)) 

 

  if print_summary: 

   print(errorString) 

  else: 

   return errorString 

 

 # Returns whether to proceed with saving and where 

 # based on whether conflicts exist 

 # and if so what the user specifies 

 def checkSaveConflicts(self, savepath): 

  # Prompt user if anything will be overwritten 

  conflictingFiles = [f for f in self.output_filenames.values() if 
os.path.exists(savepath + f)] 

  if len(conflictingFiles) == 0: 

   proceed = True 

  else: 

   print('The following files will be overwritten in {}:'.format(savepath)) 
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   for f in conflictingFiles: 

    print('\t' + f) 

   overwriteAnswer = '?' 

   while overwriteAnswer not in ['y', 'n', '']: 

    overwriteAnswer = input('Do you want to overwrite these files? 
y/[n] ') 

   # Give user the option to save in a new directory 

   if overwriteAnswer != 'y': 

    newDirAnswer = '?' 

    while newDirAnswer not in ['y', 'n', '']: 

     newDirAnswer = input('Do you want to save in a new 
directory? [y]/n ') 

    if newDirAnswer != 'n': 

     savepath = self.makeNewDir(self.parentPath) 

     proceed = True 

    # Otherwise abort save 

    else: 

     proceed = False 

   else: 

    proceed = True 

 

  return proceed, savepath 

 

 def filterNan(self, df, store_nan_indices=False, return_nan_indices=False): 

  # Remove vectors that have missing values 

  filtered_df = df.dropna() 

  kept_indices = filtered_df.index 

  if len(df) != len(filtered_df): 

   print('{} rows of {} removed due to missing values'.format(len(df)-
len(filtered_df), len(df))) 

   

  # Store indices of which vectors were nan, if desired 

  if store_nan_indices: 

   self.nan_indices = [i for i in df.index if i not in kept_indices] 

   

  # Return indices of which vectors were nan, if desired 
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  # Otherwise, just return the filtered dataframe 

  if return_nan_indices: 

   return nan_indices, filtered_df 

  else: 

   return filtered_df 

 

 def makeNewDir(self, parentPath=None): 

  # Prepare parent directory for new output folder 

  if parentPath is None: 

   parentPath = self.parentPath 

  parentPath = self.ensureFinalSlash(parentPath) 

 

  # Make folder for new output 

  newDirSuccess = False 

  while not newDirSuccess: 

   # Prompt user for new output folder name 

   newDirName = input('New output folder name? ') 

   # Make the new folder if possible 

   if not os.path.exists(parentPath + newDirName): 

    try: 

     os.mkdir(parentPath + newDirName) 

     newDirSuccess = True 

     print('Folder ' + parentPath + newDirName + ' created') 

    except: 

     print('Folder ' + parentPath + newDirName + ' could not be 
created') 

   else: 

    # Allow an empty, preexisting folder to be used 

    if len(os.listdir(parentPath + newDirName)) == 0: 

     newDirSuccess = True 

    else: 

     print('Folder ' + parentPath + newDirName + ' already 
exists and is not empty') 

 

  return self.ensureFinalSlash(parentPath + newDirName) 

 



209 
 

 

 def pickLoadpath(self, parentPath=None): 

  # Get a parentPath containing the available loadpath folders 

  if parentPath is None: 

   parentPath = self.parentPath 

  parentPath = self.ensureFinalSlash(parentPath) 

 

  # Get all folders in the parentPath 

  allContents = os.listdir(parentPath) 

  allFolders = [f for f in allContents if os.path.isdir(parentPath + f)] 

  if len(allFolders) == 0: 

   print('No folders in directory ' + parentPath) 

   return 

 

  # Prompt user to pick a folder 

  print('Available folders:') 

  for f in allFolders: 

   print('\t'+f) 

  folderPick = '?' 

  while not os.path.exists(parentPath + folderPick): 

   folderPick = input('') 

 

  return self.ensureFinalSlash(parentPath + folderPick) 

 

 def prepRegistrySample(self, registry_sample=None, filter_errors=True): 

  # Default to using all videos if no registry sample is given 

  if registry_sample is None: 

   registry_sample = self.registry 

 

  # Ignore videos that are unprocessed 

  # If desired, also filter out videos with non-fatal errors 

  if filter_errors: 

   filtered_registry_sample = registry_sample[(registry_sample.processed == 
True) & (registry_sample.error == 0)] 

   if len(filtered_registry_sample) != len(registry_sample): 
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    print('{} videos of {} with nonzero error codes ignored (summary 
in self.errorSummary)'.format(len(registry_sample)-len(filtered_registry_sample), 
len(registry_sample))) 

  else: 

   # An odd error code indicates a fatal error (missing data for the video) 

   filtered_registry_sample = registry_sample[registry_sample.processed & 
(registry_sample.error%2 == 0)] 

   if len(filtered_registry_sample) != len(registry_sample): 

    print('{} videos of {} with fatal error codes ignored (summary in 
self.errorSummary)'.format(len(registry_sample)-len(filtered_registry_sample), 
len(registry_sample))) 

   

 

  return registry_sample, filtered_registry_sample 

 

 def ensureFinalSlash(self, path): 

  if path[-1] != '/': 

   path += '/' 

  return path 
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