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Abstract 

 Numerical grid generation has been a bottleneck in the computational fluid 

dynamics process for a long time when using the structured overset grids. Many current 

structured overset grid generation schemes like the hyperbolic grid generation method 

require significant user interaction to generate good computational grids robustly. Other 

grid generation schemes like the elliptic grid generation method take a significant amount 

of time for grid calculation, which is not desirable for computational fluid dynamics. 

 Herein a new grid generation method is presented that combines the hyperbolic 

grid generation scheme with the elliptic grid generation scheme that uses Poisson’s 

equation. The new scheme builds upon the strengths of the different techniques by first 

applying hyperbolic grid generation, which is very fast but sometimes fails in strong 

concavities, and then using elliptic grid generation to locally fix the problems where 

hyperbolic grid generation results are not acceptable for computational fluid dynamics 

calculation. The new technique is demonstrated in various examples that are known to 

cause problems for either hyperbolic or elliptic grid generation when applied alone. The 

computational speed of the combined scheme grid generation is also exanimated by 

comparing the results with hyperbolic and elliptic grid generation.  

 The combined grid generation scheme is further implemented in Engineering 

Sketch Pad to get useful near-body structure grids based on the geometry of the model. 

Attributes in Engineering Sketch Pad are used to define the places where the surface and 

volume grids should be generated, while the tessellations are used to locate and project 

grid generation results and therefore boost grid generation speed. Three cases are tested 



 
 

to illustrate the implementation of the combined grid generation scheme in Engineering 

Sketch Pad. 
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1. Introduction 

 Numerical grid generation has been an essential tool in computational fluid dynamics 

(CFD), and it is one of the main technical challenges identified in the CFD Vision 2030 Study 

[1]. Generally, the grids can be divided into two main types: structured grids and unstructured 

grids. A structured grid means that the grid cells are well ordered, in which the cells are 

quadrilaterals for two dimensions or cuboids for three dimensions. Single structured grids are 

usually used when the geometry is simple, like a turbine blade or a wing on a fuselage in the 

flow field. An unstructured grid means that the grid cells are irregularly connected, such as 

triangles for two dimensions or tetrahedra for three dimensions. Unstructured grids have the 

advantage that they can be made to conform to nearly any desired geometry, and therefore they 

are used to deal with situations with complex geometry [2]. However, composite structured grid 

schemes, including overset grids scheme [3], can also be applied to resolve complex geometry or 

flow features, and there are several advantages to using overset grids: 

• Overset grids consist of several structured grids, which means that the grids can be 

generated fast, and the grid points have good connectivity. Unstructured grids need more 

information to be stored and retrieved than structured grids, like the neighbor connectivity list of 

grid points and grid cells. Changing element types and sizes may also increase numerical 

approximation errors. 

• Structured overset grids are usually orthogonal grids (grid lines intersect at a right angle 

[4]). An orthogonal grid offers significant advantages when solving partial differential equations 

and the simulations of computational fluid dynamics. Unstructured grids cannot be orthogonal 

grids. 
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• Overset grids are generated separately based on different parts of the geometry, which 

means that if any parameters of the geometry change or any parts of the geometry are moved or 

deleted, only relevant grids need to be recalculated, and other grids can be kept the same. For the 

unstructured grids, all grid points should be recalculated if such changes have been made.  

 This thesis will focus on generating near-body grids of the overset grids. Hyperbolic and 

elliptic grid generation schemes are the two methods that are widely used to generate near-body 

grids. A detailed literature review of hyperbolic is discussed in Chapter 2 and elliptic methods in 

Chapter 3. 

 

1.1 Motivation 

 Overset grid generation is one method to simulate complex computational fluid flow 

problems. In an overset grid system, complex geometry is decomposed into several simple 

overlapping grids, including near-body grids and grids in the far-field. Information about flow 

variables is exchanged between these grids via interpolation, and some grid points may not be 

used in the solution. The boundary or fringe points of each block are in the interior of a 

neighboring block (or blocks). Values at these points can be acquired from the containing 

block(s). Pre-processors like PEGASUS 5 [5] or SUGGAR++ [6] are typically used for domain 

connectivity.  

Here an example figure about overset grids is shown in Figure 1, where near-body grids 

are embedded around space shuttle, and the far-field grids are the Cartesian grids filled in the 

remaining areas. The near-body grids should be as orthogonal to the body as possible to decrease 

computational error when solving flow equations. Near-body grids should also be generated fast 
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in order to deal with the cases where the geometry of the model is changing. Current near-body 

grids techniques require significant user interactions, which requires users to have a strong 

background about grid generation to achieve good grids. Besides, there is no open-source code 

for generating overset grids. Current overset grid generation codes usually have restrictions and 

are private. Chimera Grid Tools (CGT) [7], which is provided by NASA, is a software package 

containing a variety of tools for solving complex configuration problems using the Chimera 

overset grid approach, including OVERGRID [8] and SURGRD [9] for surface grid generation 

and HYPGEN [10] for near-body volume grid generation. This software package can only be 

requested and used by U.S. citizens and permanent residents belonging to a U.S. organization. 

Other commercial computational fluid dynamics software also have their own grid generation 

code, but they are not published. Thus, an open-source code for overset grid generation is highly 

in demand for research purpose. 

 

Figure 1: Overset grids on a space shuttle vehicle [11] 

 

1.2 Objective 

 Based upon the brief introduction to the advantages and disadvantages of the structured 

overset grids, we can find that there are some critical factors for a good grid: 
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• Whether the grid lines are smooth, i.e., gridlines must not be folded or degenerate at any 

points or lines   

• Whether the orthogonality can be controlled near boundaries where data collections are 

generally required to reduce calculation error 

• Whether spacing can be controlled, especially for near-body or viscous region 

• Whether the scheme is economical or time-consuming  

• Whether the scheme needs manual work or not. 

 For the smoothness of grid lines, generating grid lines by solving partial differential 

equations is generally used. The hyperbolic scheme has the advantage that it is speedy, while the 

elliptic scheme has the advantage of no overlapping between grid lines. However, both schemes 

have some user-defined parameters, like outer boundaries of overset grids in the elliptic grid 

generation or smoothing terms in the hyperbolic grid generation. 

 The present method aims to find an intelligent way to combine the hyperbolic scheme 

with the elliptic scheme, which exploits their advantages. Furthermore, the present scheme 

automatically generates a whole near-body structure grid with the default setting of different 

kinds of parameters at the beginning, which does not require users to have a strong background 

of grid generation but can achieve a usable grid within a considerable time. 

 

1.3 Roadmap 

 In this thesis, detailed descriptions of the hyperbolic grid generation and the elliptic grid 

generation are presented in Chapter 2 and Chapter 3. Both chapters start with the literature 

review and math manipulation of planar, surface, and volume grid generation. Several example 



 

5 
 

cases are tested and compared to show the strengths and weaknesses of these two grid generation 

techniques. Then the new combined grid generation scheme is introduced in Chapter 4. Several 

essential steps, including bad points detection, outer boundary correction, and connecting curve 

correction, are discussed in this chapter. Sample cases and comparisons of three grid generation 

schemes are also presented. Then the application of the combined grid generation scheme in 

Engineering Sketch Pad [12] is shown in Chapter 5. Several features in Engineering Sketch Pad 

are utilized to help automatic near-body grid generation, and three example cases are presented 

in this chapter. Conclusion and future work are discussed in Chapter 6.  
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2. Hyperbolic Grid Generation 

 In hyperbolic grid generation, new mesh points are generated by propagating from a 

given level of points. The governing equations of hyperbolic grid generation are typically 

derived from orthogonality of the grid and grid cell size constraints. Local linearization of these 

differential equations allows a mesh to be generated by marching from a known state to the next. 

The total number of marching layers and the grid sizes at each layer can be prescribed based on 

the requirements of the specific application [13]. 

 

2.1 Introduction 

 The founders of the hyperbolic grid generation are Joseph L. Steger and Denny S. 

Chaussee [14]. In 1980, they published the earliest edition of the hyperbolic grid generation 

scheme.  At that time, they started to use hyperbolic partial differential equations to generate a 

primary grid. They demonstrated that normal directions could be constructed from the initial 

distribution of points on the initial surface to an adjacent control plane or level line. Then these 

normal directions can be used to find the adjacent level line [15]. The grids could be generated 

by repeating these steps. The grid spacing could also be specified within this process. They also 

showed how hyperbolic partial differential equations were solved numerically by a linearization 

near a known state. It can be seen from Figure 2 the local orthogonality and spacing can be easily 

controlled using hyperbolic partial differential equations, compared with elliptic schemes 

mentioned above. Moreover, it satisfies the problems that the outer boundary is not known. They 

also came up with a method to calculate the area or volume of the grids accurately. However, 
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they ignored the most critical defects in the hyperbolic grid generation scheme — grid lines may 

overlap at a concave body curve.  

 

(a) Grid detail near the body 

 

(b) Grid detail near the leading edge 

Figure 2: Viscous grid generated about highly cambered airfoil or turbine blade. [14] 

 After a few years, M.J. Berger and J. Oliger [16] came up with a method to generate 

adaptive mesh refinement for the hyperbolic scheme. It is the earliest version for adaptive grid 

generated by the hyperbolic scheme. They said the results of solving hyperbolic equations were 

often smooth and easily approximated over large portions of domains. Nevertheless, when the 

algorithm was applied to locally isolated internal regions with steep gradients, shocks, or body 

discontinuities, it is difficult to approximate those solutions numerically, which is very similar to 

what is discussed in the elliptic scheme. They adaptively used finer grids instead of the coarse 

ones generated by a standard hyperbolic scheme without any assumptions about the number or 

type of irregular regions. The method they used was called rectangles of arbitrary orientation. It 

has the advantages of allowing to approximately align coordinates with singular surfaces such as 

discontinuities and reducing the size of refined regions and the number of added mesh points. 

The values on bodies of finer grids are calculated by interpolation between coarser grids where 



 

8 
 

the refinement is embedded. Their method is significant to the further development by T. Tang 

and H. Tang [17] of adaptive grid generated by hyperbolic partial differential equations. 

However, some problems still need to be studied, including the best solution strategy for steady-

state computations and data structures for component grids in different coordinate systems. 

 In 1985, J. L. Steger [18] developed the scheme of three-dimensional grids by solving 

hyperbolic partial differential equations. Steger extended his scheme for a three-dimensional grid 

generation problem. He derived the equations from the original hyperbolic partial differential 

equations and came up with the method to solve these equations numerically. It was the first time 

that approximate factorization was added into the hyperbolic scheme, which improved the 

computational speed greatly. After approximate factorization was introduced, the matrix can be 

solved by sequences of one-dimensional-like block tridiagonal systems. Moreover, Steger added 

a combination of fourth and second differences explicitly and implicitly into the basic algorithm 

to make it more stable. He also mentioned he had tried many dissipation terms, which is the most 

difficult problem in the hyperbolic scheme in the future. The algorithm opened a window in the 

grid generation scheme, but this algorithm was not suitable for all situations. When the body 

surface is discontinuous or when the user specified surface grid distribution is too irregular, the 

hyperbolic grid generator can fail, although it did well in simple continuous body shapes. 

Furthermore, user interaction cannot be avoided. 

 Four years later, in 1989, Steger [19] himself answered how to use a grid generation 

scheme by solving hyperbolic partial differential equations in complex body shapes. As 

mentioned before, when facing a problem with complicated body shapes, it could only be solved 

by using composite or unstructured grids. He came up with an extension of the procedure to use 

the hyperbolic scheme to generate semi-unstructured grids, which is the chimera overset grid 
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method. This method is one technique to generate grids over very complex geometry. It 

constructs a grid system made up of blocks of overlapping structured grids. The complex 

geometry can be decomposed into a geometrically simple overlapping grids system. The 

boundary conditions are exchanged between grid points by interpolating flow variables, and 

many grid points may not be used in the solution (hole points). In the Chimera overset grids 

scheme, each body component of a complex configuration generates mesh independently, and 

the composite grid is made up of the superposition of the original individual grids, which can be 

seen in Figure 3. These are the overset grids of a space shuttle vehicle made up of a shuttle 

orbiter, external tank, and solid rocket boosters. The individual grids are first connected by 

cutting out points that fall within another body and setting up interpolation links between cut-

out-hole and outer boundaries. Then we can use an efficient structured grid flow solver to solve 

the flow equations on each grid and transport values on grid points across different grids. In this 

way, the advantage of grid generation by solving hyperbolic partial differential schemes has 

significantly been exploited. 

 

Figure 3: Overset grids on a space shuttle vehicle. [19] 
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 In 1992, E.N. Ferry and C.J. Nietubicz [20] developed a grid generator that was 

interactive for projectile CFD. They gave the visual analysis, which is very important in using 

the hyperbolic grid generation scheme. In the previous hyperbolic solver program developed by 

Steger written in FORTRAN, an input data file was read, and a data file containing the final grid 

was produced. This file was like a notebook to record any user's initial setting on the grid. 

However, if any of those parameters required adjustment, the user had to change the input file 

and re-run the code. Furthermore, at that time, another program called DISSPLA [21] was used 

to view the grid to determine if it was acceptable to be used by the appropriate solver. But if 

someone used this program to generate grids, it was very time-consuming because the user could 

only view one part of the grid at a time. Ferry and Nietubicz developed a hyperbolic solver 

which was interactive and worked very efficiently. They combined the hyperbolic grid generator 

with Iris Silicon Graphics workstations. Adding user interactions through the graphics made the 

hyperbolic grid generation task much easier and quicker. The reason is that users could discover 

the parts needed to make modifications and see the results correspondingly so that the result 

could reflect whether those modifications were what the users needed.  

 In the same year, another critical researcher in the hyperbolic grid generation scheme, 

Chan [22], had made massive progress in developing the hyperbolic grid generation scheme. He 

made a couple of enhancements to Steger’s original three-dimensional hyperbolic grid 

generation scheme [18]. Smoothing terms were critical to the hyperbolic grid generation scheme 

to avoid grid collapse when facing concave corners. Moreover, it was an essential task in the 

study of HYPGEN to generate a useful grid by using the hyperbolic scheme in a concave corner. 

Chan developed a way to represent all parameters that could affect the grid points in a concave 

corner. He introduced five parameters into the smoothing terms. Those parameters represented 
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the normal distance from the body surface, the distances between neighboring grid points, the 

angles between neighboring grid points, respectively, which will be discussed later in this thesis. 

In this way, the grids could be smoothed when facing different kinds of body shapes. However, 

users still need to adjust those parameters to make better grids when facing complex body shapes 

with certain concave corners. But at least there is a guideline about how to make the adjustments. 

Chan also developed a local treatment of severe convex corners. It provided extra robustness at 

convex corners by switching from solving the hyperbolic grid generation equations to some other 

equations at the convex corner point, like the implicit averaging scheme or prediction of the 

exact location of grid points in advance. Furthermore, Chan came up with a method to smooth 

the grids near a concave corner. He used a metric correction procedure to provide a satisfactory 

treatment of corner discontinuities in all but highly convex cases. However, the scheme would 

fail in some extreme cases, which is mentioned in the following sections. 

 A year later, Chan [10] wrote a user manual for the HYPGEN hyperbolic grid generator, 

and he developed an HGUI graphical user interface. In this user manual, it can be seen that there 

are several user-defined parameters in his scheme. Three of them are introduced below. The 

parameters TIMJ helps to spread out grid lines that might converge as the grid is matched out. 

The parameters ITSVOL controls the averaging of volumes between grid cells. Increasing 

ITSVOL value will increase the averaging and tend to spread out covering grid lines in tight 

concave corners but may have the undesirable effect of over-distorting the cell volumes at other 

places. SMU2 is the scale factor for the smoothing coefficient. If a user is not very familiar with 

the process of numerical grid generation or does not know much about numerical knowledge, it 

is tough to obtain a useful combination of parameters ultimately. An example of the hyperbolic 

grids on an orbiter is shown in Figure 4. Figure 4 (a) gives the original result of hyperbolic grid 
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generation, which has significant grid collapse due to the concave corner. Figure 4 (b) through (d) 

gives the grid generation results after tuning the parameters TIMJ, ITSVOL, and SMU2, 

respectively, and the results are much better after changing these parameters. However, the 

values of these parameters are not derived from the geometry of the body, and they may change 

for different cases. Users can only get the values by experience or testing for different values 

until a suitable grid for computational fluid dynamics is generated. 

 

Figure 4: Hyperbolic grid generated on an orbiter. [10] 

 In 1995, Chan [9] developed a method to enhance the generality and robustness of 

Steger’s scheme, and he also developed a code called SURGRD, which was the embryonic form 

of the software with the same name. Chan introduced a search and projection algorithm to 
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enhance the robustness of the grids. In Steger’s scheme, the newly generated grid points are 

projected onto the reference surface after each grid marching step. Those projected points and 

the local surface normal directions of those points are used to perform the next grid marching 

step. But Chan assumed the reference surface to be a bilinear surface defined by a collection of 

panel networks. Each network has a sequent set of quadrilaterals. Sometimes it is necessary to 

march away from the body to a direction that is not orthogonal to the body surface, as shown in 

Figure 5. Under this condition, the original hyperbolic scheme cannot solve the problem, and the 

algebraic marching scheme can be used here. These techniques reduce the time for generating 

overset grids, and SURGRD code combines hyperbolic, algebraic, and elliptic methods on an 

overset surface grid generator, which can offer users a choice of an appropriate scheme when 

facing with different situations. 

 

(a) Hyperbolic marching results in a grid that 

is orthogonal to the initial curve 

(b) Algebraic marching results in a grid that is 

parallel to a family of curves defined by the 

surface panels. 

Figure 5: Comparison of hyperbolic and algebraic marching options (reference surface panels 

are represented by thin lines, points on the initial curve are indicated by open circles, surface 

grids are represented by thick lines). [9] 
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 Unlike other researchers who utilize finite-difference for hyperbolic grid generation 

calculation, H.A. Dwyer [23] came up with an alternative and extended presentation of the 

concepts used in hyperbolic grid generation using vector analysis. He presented a clear 

interpretation of the basic hyperbolic partial differential equations, shown in Figure 6.  

 

Figure 6: Interpretation of the hyperbolic partial differential equations with mesh points and 

vectors. [23] 

In this figure,  𝐼𝜉  and 𝐼𝜂 are the vectors defined along and normal to the curve. The orthogonality 

condition is defined by 𝐼𝜉 ∙ 𝐼𝜂 = 0 and spacing controlling is defined by 𝐼𝜉 × 𝐼𝜂 = 𝐴(𝑖, 𝑗), where 

𝐴(𝑖, 𝑗) is the specified area. Then the equations are linearized and solved by Newton’s method. 

His contribution is to introduce a complete description of hyperbolic grid generation, and it can 

be extended to many other grid generation schemes. The problem with his method is that the 

vector he introduced cannot be solved linearly, which needs Newton’s method involving 

iterations. It avoids the principle that the hyperbolic scheme does not need iteration to get a fast-

computing speed. 

 In the algorithm of hyperbolic grid generation, the most important question to each 

researcher is how to solve the problem that grid lines overlap in different situations. In 1995, C.H. 



 

15 
 

Tai, S.L. Yin, and C.Y. Soong [24] introduced an inherent adaptive dissipation into hyperbolic 

grid generation (HGAD), improving the oscillation and overlapping of grid lines. The dissipation 

is a field property and alters automatically, reducing the tendency to oscillate and overlapping the 

grid lines. The critical point of the scheme is that they discretized the original hyperbolic partial 

differential equations by the upwind scheme instead of normal central differencing. After the 

discretization, there is an inherent second-order dissipation term in the equations. Then Tai, Yin, 

and Soong introduced an artificial dissipation similar to the smoothing terms of Chan’s scheme. 

This dissipation term can be second-order or forth-order. This term looks better than the 

smoothing terms in Chan’s scheme because it adds forward and backward operators on a known 

term without any user defined parameters, which can avoid user interaction. However, they only 

compared their results and iteration numbers with the elliptic scheme and explicit hyperbolic grid 

generation (without smoothing). And it is not extended into three-dimension grid generation. 

 After that, in 1998, Kenichi Matsuno [25] developed a high-order upwind method for 

hyperbolic grid generation. The previous method employed a three-point backward difference 

scheme to discretize a derivative in a marching direction, while Matsuno used a high order 

accurate upwind scheme. He also demonstrated that in the hyperbolic grid generation, the first-

order accurate upwind scheme is too dissipative to generate an orthogonal grid, and he could use 

a high-order upwind scheme to get a good grid on complex geometry with sharp edges or deep 

concave corners. The problem is that the method introduced an iteration procedure to solve 

nonlinear equations at each marching step to obtain robustness and orthogonality realized by the 

high-order upwind scheme. In 2D, Newton’s method was used at each marching step before 

going to the next line. For three dimensions, a new pseudo-time iteration approach was 
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developed. But it is still time-consuming compared with the general hyperbolic grid generation 

scheme. 

 In recent years, Chan has kept studying overset grids. In 2004, Chan [26] found the 

problem setup is difficult and not standardized, so he developed a solver-independent standard 

protocol and made it easy to use. He also developed a Chimera Grid Tools (CGT) library, which 

contains file manipulation, grid information, grid editing, grid distribution, grid generation, math 

functions, program execution, error checking, and so on. In 2009, Chan [27] summarized what 

had been done till then about overset grid technology. Overset grids play an essential role in 

simulating high-fidelity compressible viscous flow on very complex aerospace configurations. 

Until 2009, surface grid generation, near-body volume grid generation, off-body volume grid 

generation had been used as primary grid generation schemes to generate overset grids. Also, 

multiple software, like visualization software, pre-processing and post-processing software, 

overset grid flow solvers have been developed based on the basic idea of overset grids technique 

and make it more convenient for users to solve flows. However, Chan [28] showed that there are 

still some bottlenecks in overset grids scheme. For post-processing, it is difficult to determine 

solution convergence if the number of grids and geometric components is large (103 − 104), and 

it is difficult to compute surface loads accurately. For volume grids domain connectivity, there is 

no such software that is robust, automatic, fast and has low memory usage. Moreover, for surface 

grid generation, making decisions in surface domain decomposition and grid point distribution to 

get a good grid is also a challenge, which should be studied in the future. 

 



 

17 
 

2.2 Hyperbolic Planar Grid Generation 

 We will show the math manipulation of hyperbolic grid generation by starting from the 

two-dimensional scheme in the coming sections. The basic idea of hyperbolic planar grid 

generation is to generate grids with an initial body curve and then march this curve into a far 

field. In Figure 7, the bold red curve is the initial body curve, and all dashed lines are unknown 

grid lines. At the circle point, if we want to assure its orthogonality, it needs to satisfy, 

 

Figure 7: Illustration about grid generation based on a curve. 

𝑟𝜉 ∙ 𝑟𝜂 = 0 (2.1) 

where 𝑟 refers to the position vector of each grid point, i.e., 𝑟 = [𝑥, 𝑦]𝑇, 𝜉 and 휂 are the 

computational coordinates along and normal to the curve. 𝑟𝜉, 𝑟𝜂 represents the derivatives of 𝑟 in 

𝜉 and 휂 direction, respectively. And if we want to control the spacing between the initial body 

curve and the next grid line, it needs to satisfy 

|𝑟𝜉 × 𝑟𝜂| = Δ𝐴 (2.2) 
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where ∆A is the local cell area, which is typically defined by the local arc length along 𝜉 

direction, i.e., |𝑟𝜉|, times a user-defined spacing Δ𝑠 along 휂 direction. That is, 

Δ𝐴 = |𝑟𝜉| ∗ Δ𝑠 (2.3) 

This user-defined spacing can be set very small near the initial curve and stretched out in the far-

field. In this thesis, a constant stretching ratio, which is also defined by users, is applied for 

simplicity. This cell size specification provides reasonable grid clustering control near the body, 

which would be very important in the viscous calculation. An improved way of cell size 

specification provided by Chan [22] is discussed in Chapter 2.5. 

 The differential form of the control equations 2.1 and 2.2 can be written as 

𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 = 0 (2.4a) 

𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑦𝜉 = ΔA (2.4b) 

Since all derivatives belong to points on the new grid lines, Equations 2.4 are non-linear 

equations that are very difficult to solve. Therefore, a local linearization of these equations is 

implemented at a given state 0, and we can have 

𝑥𝜉𝑥𝜂 = (𝑥0 + �̃�)𝜉(𝑥0 + �̃�)𝜂 

= 𝑥𝜉0𝑥𝜂0 + 𝑥𝜉0(𝑥 − 𝑥0)𝜂 + 𝑥𝜂0(𝑥 − 𝑥0)𝜉 + ℎ. 𝑜. 𝑡. 

≈ 𝑥𝜉0𝑥𝜂 + 𝑥𝜂0𝑥𝜉 − 𝑥𝜉0𝑥𝜂0 (2.5𝑎) 

𝑥𝜉𝑦𝜂 = (𝑥0 + �̃�)𝜉(𝑦0 + �̃�)𝜂 

= 𝑥𝜉0𝑦𝜂0 + 𝑥𝜉0(𝑦 − 𝑦0)𝜂 + 𝑦𝜂0(𝑥 − 𝑥0)𝜉 + ℎ. 𝑜. 𝑡. 

≈ 𝑥𝜉0𝑦𝜂 + 𝑦𝜂0𝑥𝜉 − 𝑥𝜉0𝑦𝜂0 (2.5𝑏) 
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𝑦𝜉𝑥𝜂 = (𝑦0 + �̃�)𝜉(𝑥0 + �̃�)𝜂 

= 𝑦𝜉0𝑥𝜂0 + 𝑦𝜉0(𝑥 − 𝑥0)𝜂 + 𝑥𝜂0(𝑦 − 𝑦0)𝜉 + ℎ. 𝑜. 𝑡. 

≈ 𝑦𝜉0𝑥𝜂 + 𝑥𝜂0𝑦𝜉 − 𝑦𝜉0𝑥𝜂0 (2.5𝑐) 

𝑦𝜉𝑦𝜂 = (𝑦0 + �̃�)𝜉(𝑦0 + �̃�)𝜂 

= 𝑦𝜉0𝑦𝜂0 + 𝑦𝜉0(𝑦 − 𝑦0)𝜂 + 𝑦𝜂0(𝑦 − 𝑦0)𝜉 + ℎ. 𝑜. 𝑡. 

≈ 𝑦𝜉0𝑦𝜂 + 𝑦𝜂0𝑦𝜉 − 𝑦𝜉0𝑦𝜂0 (2.5𝑑) 

with �̃� and �̃� refer to a small perturbation in x and y direction, ℎ. 𝑜. 𝑡. refers to higher-order terms 

which can be neglected. Substitute Equations 2.5 into original hyperbolic partial differential 

Equations 2.4 

𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 = 𝑥𝜉0𝑥𝜂 + 𝑥𝜂0𝑥𝜉 − 𝑥𝜉0𝑥𝜂0 + 𝑦𝜉0𝑦𝜂 + 𝑦𝜂0𝑦𝜉 − 𝑦𝜉0𝑦𝜂0 

                                    = 𝑥𝜂0𝑥𝜉 + 𝑦𝜂0𝑦𝜉 + 𝑥𝜉0𝑥𝜂 + 𝑦𝜉0𝑦𝜂  

                                    = 0 

 (2.6𝑎) 

𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑥𝜉 = 𝑥𝜉0𝑦𝜂 + 𝑦𝜂0𝑥𝜉 − 𝑥𝜉0𝑦𝜂0 − 𝑦𝜉0𝑥𝜂 − 𝑥𝜂0𝑦𝜉 + 𝑦𝜉0𝑥𝜂0 

= 𝑦𝜂0𝑥𝜉 − 𝑥𝜂0𝑦𝜉 − 𝑦𝜉0𝑥𝜂 + 𝑥𝜉0𝑦𝜂 − (𝑥𝜉0𝑦𝜂0 − 𝑦𝜉0𝑥𝜂0) 

= 𝑦𝜂0𝑥𝜉 − 𝑥𝜂0𝑦𝜉 − 𝑦𝜉0𝑥𝜂 + 𝑥𝜉0𝑦𝜂 − Δ𝐴0 

= Δ𝐴 

 (2.6𝑏) 

Equations 2.6 can be arranged into a matrix form 

𝐴0𝑟𝜉⃗⃗⃗⃗ + 𝐵0𝑟𝜂⃗⃗⃗ ⃗ = 𝑓 (2.7) 
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where 

𝐴0 = [
𝑥𝜂0 𝑦𝜂0
𝑦𝜂0 −𝑥𝜂0

] 𝐵0 = [
𝑥𝜉0 𝑦𝜉0
−𝑦𝜉0 𝑥𝜉0

]  𝑓 = [
0
∆𝐴
] (2.8) 

Since |𝐵0| = 𝑥𝜉0
2 + 𝑦𝜉0

2, we can left-multiply Equation 2.8 by 𝐵0
−1, which gives 

𝐵0
−1𝐴0𝑟𝜉⃗⃗⃗⃗ + 𝑟𝜂⃗⃗⃗ ⃗ = 𝐵0

−1𝑓 (2.9) 

Here, a non-iterative implicit finite difference scheme, which is centrally differenced in 𝜉 and 

differenced in 휂, is applied. And the equation 2.9 becomes to 

𝐵𝑘
−1𝐴𝑘𝛿𝜉(𝑟𝑘+1 − 𝑟𝑘) + 𝑟𝑘+1 − 𝑟𝑘 = 𝐵𝑘

−1𝑓𝑘 (2.10)

with 

𝛿𝜉𝑟 =
𝑟𝑗+1 − 𝑟𝑗−1

2
(2.11𝑎) 

𝑓𝑘 = (0, Δ𝐴𝑘)
𝑇 (2.11𝑏) 

where subscript 𝑗 refers to 𝜉 direction while subscript 𝑘 refers to 휂 direction. 

 In Equation 2.10, the coefficient matrix 𝐵𝑘 is directly computed using central 

differencing along 𝜉 direction while the coefficient matrix 𝐴𝑘 contains derivatives along 휂 

direction. These derivatives are calculated using Equation 2.4 as 

(
𝑥𝜂
𝑦𝜂
) =

Δ𝐴

𝑥𝜉
2 + 𝑦𝜉

2 (
−𝑦𝜉
𝑥𝜉
) = 𝐵−1𝑓 (2.12) 

In regions with the grid spacing changing rapidly in the 𝜉 direction, a more robust method for 

calculating 휂 derivatives will be described later in Chapter 2.6. 

 Equation 2.10 can also be written as, 
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[𝐼 + 𝐵𝑘
−1𝐴𝑘𝛿𝜉](𝑟𝑘+1 − 𝑟𝑘) = 𝐵𝑘

−1𝑓𝑘 (2.13) 

where 𝐼 is the 2-by-2 identity matrix. This equation means that the unknown values 𝑟𝑗−1,𝑘+1, 

𝑟𝑗,𝑘+1 ,and 𝑟𝑗+1,𝑘+1 can be solved simultaneously with points on the known state 𝑟𝑗−1,𝑘, 𝑟𝑗,𝑘 , and 

𝑟𝑗+1,𝑘. With all points given on the known state, we can solve all the new points with a proper 

boundary condition. The boundary conditions are dictated by the topology of the initial curve or 

by the desired boundary behavior. For a non-periodic initial curve, users can directly define the 

side boundary grids starting from the two ending points on the curve. The boundaries can also be 

allowed for free-floating and splay conditions using the equation provided by Chan [22], which 

gives at 𝑗 = 1 boundary 

(∆𝑟)𝑗=1 = (∆𝑟)𝑗=2 + 휀𝑥((∆𝑟)𝑗=2 − (∆𝑟)𝑗=3) (2.14) 

where 0 ≤ 휀𝑥 ≤ 1 is the extrapolation factor. This equation is a mixed zeroth- and first-order 

extrapolation of the boundary points. A free-floating condition is achieved by letting 휀𝑥 = 0, and 

the boundaries can splay out from the grid interior by increasing the extrapolation factor. A 

default value of 0.1 is used in the thesis, and a similar equation can be obtained on the other side 

of the boundary. 

 A block tridiagonal matrix can be generated and solved in these two cases by the Thomas 

algorithm. The block tridiagonal matrix can be written as 

[
 
 
 
 
 
 
𝐼 𝑀1

−𝑀2 𝐼 𝑀2

−𝑀3 𝐼 𝑀3

⋱ ⋱ ⋱
−𝑀𝑛−1 𝐼 𝑀𝑛−1

−𝑀𝑛 𝐼 ]
 
 
 
 
 
 

(

 
 
 
 

Δ𝑟1
Δ𝑟2
Δ𝑟3
⋮

Δ𝑟𝑛−1
Δ𝑟𝑛 )

 
 
 
 

=

(

 
 
 

𝐹1
𝐹2
𝐹3
⋮

𝐹𝑛−1
𝐹𝑛 )

 
 
 

(2.15) 
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with  

𝑀𝑗 = {

1

2
𝐵𝑗,𝑘

−1𝐴𝑗,𝑘, 2 ≤ 𝑗 < 𝑛 − 1

0, 𝑗 = 1, 𝑛
(2.16𝑎) 

𝐹𝑗 = {
𝐵𝑗,𝑘
−1𝑓𝑗,𝑘, 2 ≤ 𝑗 < 𝑛 − 1

Δ𝑟𝑗, 𝑗 = 1, 𝑛
(2.16𝑏) 

for defined boundary points case and  

𝑀𝑗 =

{
 
 

 
 

1

2
𝐵𝑗,𝑘

−1𝐴𝑗,𝑘, 2 ≤ 𝑗 < 𝑛 − 1

𝐼 +
휀𝑥

1 + 휀𝑥
𝑀2
−1, 𝑗 = 1

−(𝐼 +
휀𝑥

1 + 휀𝑥
𝑀𝑛−1
−1 ) , 𝑗 = 𝑛

(2.17𝑎) 

𝐹𝑗 =

{
 
 

 
 𝐵𝑗,𝑘

−1𝑓𝑗,𝑘 , 2 ≤ 𝑗 < 𝑛 − 1
휀𝑥

1 + 휀𝑥
𝑀2
−1𝐹2, 𝑗 = 1

−
휀𝑥

1 + 휀𝑥
𝑀𝑛−1
−1 𝐹𝑛−1, 𝑗 = 𝑛

(2.17𝑏) 

for extrapolation case. The subscripts refer to 𝑗𝑡ℎ points on the known state ranging from 1 to n.  

Since 𝑀𝑗 is not a diagonal matrix, Equation 2.15 cannot be decoupled into two equations with 

respect to x and y coordinates separately. 

 In the Thomas algorithm, a forward sweep is first used to eliminate the values below the 

diagonal. For Equation 2.15, the second row can be modified by adding the first row times 𝑀2 

and dividing (𝐼 +𝑀1𝑀2)which gives 
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[
 
 
 
 
 
 
 
𝐼 𝑀1

𝐼
𝑀2

𝐼 + 𝑀1𝑀2

−𝑀3 𝐼 𝑀3

⋱ ⋱ ⋱
−𝑀𝑛−1 𝐼 𝑀𝑛−1

−𝑀𝑛 𝐼 ]
 
 
 
 
 
 
 

(

 
 
 
 

Δ𝑟1
Δ𝑟2
Δ𝑟3
⋮

Δ𝑟𝑛−1
Δ𝑟𝑛 )

 
 
 
 

=

(

 
 
 
 

𝐹1
𝐹2 + 𝐹1𝑀2

𝐼 + 𝑀1𝑀2

𝐹3
⋮

𝐹𝑛−1
𝐹𝑛 )

 
 
 
 

(2.18) 

Then we can take a similar step on the third row to eliminate −𝑀3 using the equation on the 

second row. This procedure is repeated until the nth row, and all the values below the diagonal 

are removed as  

[
 
 
 
 
 
𝐼 𝑀1

𝐼 𝑀′
2

𝐼 𝑀′
3

⋱ ⋱
𝐼 𝑀′

𝑛−1

𝐼 ]
 
 
 
 
 

(

 
 
 
 

Δ𝑟1
Δ𝑟2
Δ𝑟3
⋮

Δ𝑟𝑛−1
Δ𝑟𝑛 )

 
 
 
 

=

(

 
 
 

𝐹1
𝐹′2
𝐹′3
⋮

𝐹′𝑛−1
𝐹′𝑛 )

 
 
 

(2.19) 

where  

𝑀′
𝑗 = {

𝑀𝑗

𝐼 + 𝑀𝑗𝑀′
𝑗−1

, 2 ≤ 𝑗 ≤ 𝑛 − 1

𝑀1, 𝑗 = 1

(2.20𝑎) 

𝐹′𝑗 = {

𝐹𝑗 +𝑀𝑗𝐹
′
𝑗

𝐼 + 𝑀𝑗𝑀
′
𝑗−1

, 2 ≤ 𝑗 ≤ 𝑛 − 1

𝐹1, 𝑗 = 1

(2.20𝑏) 

 Then a backward substitution about this equation can be applied to produce the solution, which 

is 

Δ𝑟𝑗 = {
𝐹′𝑗 −𝑀

′
𝑗Δ𝑟𝑗−1, 1 ≤ 𝑗 ≤ 𝑛 − 1

𝐹′𝑗 , 𝑗 = 𝑛
(2.21) 
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 For a periodic boundary condition, however, additional terms are added on the top-right 

and bottom-left of the matrix, which becomes 

[
 
 
 
 
 
 
𝐼 𝑀1 −𝑀1

−𝑀2 𝐼 𝑀2

−𝑀3 𝐼 𝑀3

⋱ ⋱ ⋱
−𝑀𝑛−1 𝐼 𝑀𝑛−1

𝑀𝑛 −𝑀𝑛 𝐼 ]
 
 
 
 
 
 

(

 
 
 
 

Δ𝑟1
Δ𝑟2
Δ𝑟3
⋮

Δ𝑟𝑛−1
Δ𝑟𝑛 )

 
 
 
 

=

(

 
 
 

𝐹1
𝐹2
𝐹3
⋮

𝐹𝑛−1
𝐹𝑛 )

 
 
 

(2.22) 

In this case, we can make use of the Sherman–Morrison formula [44] to modify our results, 

which gives  

(𝑀 + 𝑢𝑣𝑇)−1 = 𝑀−1 −
𝑀−1𝑢𝑣𝑇𝑀−1

1 + 𝑣𝑇𝑀−1𝑢
(2.23) 

This equation can be proved by  

(𝑀 + 𝑢𝑣𝑇) (𝑀−1 −
𝑀−1𝑢𝑣𝑇𝑀−1

1 + 𝑣𝑇𝑀−1𝑢
) = 𝑀𝑀−1 + 𝑢𝑣𝑇𝑀−1 −

𝑀𝑀−1𝑢𝑣𝑇𝑀−1

1 + 𝑣𝑇𝑀−1𝑢
−
𝑢𝑣𝑇𝑀−1𝑢𝑣𝑇𝑀−1

1 + 𝑣𝑇𝑀−1𝑢
 

= 𝐼 + 𝑢𝑣𝑇𝑀−1 −
𝑢(1 + 𝑣𝑇𝐴−1𝑢)𝑣𝑇𝐴−1

1 + 𝑣𝑇𝐴−1𝑢
 

= 𝐼 + 𝑢𝑣𝑇𝑀−1 − 𝑢𝑣𝑇𝑀−1 (2.24) 

This formula provides a numerically cheap way to compute the inverse of  (𝑀 + 𝑢𝑣𝑇) if the 

inverse of 𝑀 can be easily found. In this case, u and v can be defined as  

𝑢 =

(

 
 
 

−𝑏1
0
0
⋮
0
𝑀𝑛 )

 
 
 
, 𝑣 =

(

 
 
 

𝐼
0
0
⋮
0

𝑀1/𝑏1)

 
 
 

(2.25𝑎) 

where b1 is the first element on the diagonal and is 𝐼 in this case. Then the matrix M becomes  

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computationally_expensive
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𝑀 =

[
 
 
 
 
 
 
2𝐼 𝑀1
−𝑀2 𝐼 𝑀2

−𝑀3 𝐼 𝑀3

⋱ ⋱ ⋱
−𝑀𝑛−1 𝐼 𝑀𝑛−1

−𝑀𝑛 𝐼 − 𝑀1𝑀𝑛]
 
 
 
 
 
 

(2.25𝑏) 

and the solution is 

Δ𝑟 = (𝑀 + 𝑢𝑣𝑇)−1𝐹 

= 𝑀−1𝐹 −
(𝑀−1𝑢)𝑣𝑇

𝐼 + 𝑣𝑇(𝑀−1𝑢)
𝑀−1𝐹 

= 𝑀−1𝐹 − (𝑀−1𝑢)[𝐼 + 𝑣𝑇(𝑀−1𝑢)]−1𝑣𝑇𝑀−1𝐹 (2.25𝑐) 

In practice, we first solve for 𝑀−1𝐹 and 𝑀−1𝑢 using the Thomas algorithm, and then take vector 

calculation to get the results. Forward sweep can be computed once as for 𝑀−1𝐹 and 𝑀−1𝑢 

share the same matrix. Vector calculation can also be calculated fast since there are only two 

non-zero blocks in the matrix 𝑣. This solution can be obtained in 𝑂(𝑛) operations and is tested 

by generating grids around a circle, which is shown in Table 1. In this table, all grids are 

generated around a circle with 𝑟 = 1, the initial spacing along 휂 direction is 0.001, and the 

stretching ratio is 1.1. 
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Table 1: Computational time of generating hyperbolic grids around a circle 

Number of 

points in the 𝜉 

direction 𝑛 

Number of 

layers in the 휂 

direction 𝐿 

Computational 

time t (s) 

𝑡

𝐿
 (s) 

𝑡

𝐿𝑛
 (s) 

1001 30 0.066 2.19 ∗ 10−3 2.19 ∗ 10−6 

1001 45 0.094 2.08 ∗ 10−3 2.08 ∗ 10−6 

1001 60 0.125 2.08 ∗ 10−3 2.08 ∗ 10−6 

1001 90 0.177 1.96 ∗ 10−3 1.96 ∗ 10−6 

2001 30 0.130 4.33 ∗ 10−3 2.17 ∗ 10−6 

2001 45 0.195 4.34 ∗ 10−3 2.17 ∗ 10−6 

2001 60 0.250 4.16 ∗ 10−3 2.08 ∗ 10−6 

2001 90 0.374 4.15 ∗ 10−3 2.08 ∗ 10−6 

4001 30 0.281 9.38 ∗ 10−3 2.34 ∗ 10−6 

4001 45 0.416 9.25 ∗ 10−3 2.31 ∗ 10−6 

4001 60 0.547 9.11 ∗ 10−3 2.28 ∗ 10−6 

4001 90 0.782 8.69 ∗ 10−3 2.17 ∗ 10−6 

Note: Computational time may be different on different software and operating system. 

Cases are compiled and run in Clion software from JetBrains on a laptop with Windows 

10 operating system, Intel(R) Core i7-7700HQ CPU 2.80 GHz processor, and 16GB 

RAM. Same computer sets are used for all tables in the thesis. 

 From this table, we can find that the computational time of hyperbolic grid generation is 

linearly related to the number of layers in the 휂 direction. 𝑂(𝑛)  operations are required to 
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generate each layer of the grids based on the number of points in the 𝜉 direction 𝑛. This result 

can be further proved by taking a logarithmic fit between the computational time/number of 

layers and the number of points, shown in Figure 8. A slope of 1.06 is calculated from the figure, 

which is reasonable and within the calculation error. 

 

Figure 8: Logarithmic fit of computational time of hyperbolic grids 

 After finding the solutions of (𝑟𝑘+1 − 𝑟𝑘), we can get the points on the new grid lines. 

Then we can use this new grid line as an initial curve to generate the next grid line as Figure 9. In 

Figure 9 (a), the dashed line is calculated based on the red line, and that dashed line becomes the 

red line in Figure 9 (b), which can be used to generate the next level of grid lines. 
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(a) Generate the second grid line 

 

(b) Generate the third grid line 

Figure 9: Further illustration for grid generation. 

 This equation works well for the convex body curve. However, problems occur when the 

hyperbolic grid generation scheme is applied to a concave corner. When the normal vectors of 

two points intersect with each other, it can lead to grid lines overlapping, as Figure 10 (a) 

 

(a) Grids without smoothing 

 

(b)  Grids after adding smoothing 

Figure 10: Grids after adding smoothing terms 

In order to improve the grid quality at concave corners, the implicitness factor 휃 [29] and explicit 

and implicit smoothing terms [22] are added into Equation 2.13, and the equations become to 

[𝐼 + (1 + 휃𝜉)𝐵𝑘
−1𝐴𝑘𝛿𝜉 − 휀𝑖𝜉(Δ∇)𝜉](𝑟𝑘+1 − 𝑟𝑘) = 𝐵𝑘

−1𝑓𝑘+1 − 휀𝑒𝜉(Δ∇)𝜉𝑟𝑘 (2.26) 
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where (Δ∇)𝜉𝑟𝑘 = 𝑟𝑗+1 − 2𝑟𝑗 + 𝑟𝑗−1. The implicitness factor 휃 ranges between 0 and 4. A larger 

value of the implicitness factor is used to deal with large concave geometry. However, it would 

also lead to instability in the far-field of hyperbolic grids. In this thesis, a default value of 2 is 

applied to reduce grid overlapping.  휀𝑖𝜉, 휀𝑒𝜉 are implicit and explicit smoothing terms, 휀𝑖𝜉 ≈ 2휀𝑒𝜉. 

The detail about smoothing terms will be talked about later. This equation can be solved by using 

the Thomas algorithm and the Sherman–Morrison formula discussed above with some 

modification of the matrix. After adding the smoothing term, the grid lines in the concave corner 

do not overlap, as shown in Figure 10 (b).  

 

2.3 Hyperbolic Surface Grid Generation 

 The governing equation of hyperbolic grid generation on a curved surface is similar to 

that in two dimensions. Since there is one more unknown variable, one more equation is needed 

to solve the problem. Except for orthogonality and cell size constraints, another equation is 

added that the marching direction 𝑟𝜂⃗⃗⃗ ⃗ is perpendicular to the surface normal direction, as shown in 

Figure 11. The governing equation can be written as 

𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 + 𝑧𝜉𝑧𝜂 = 0 (2.27a) 

�̂�1(𝑦𝜉𝑧𝜂 − 𝑧𝜉𝑦𝜂) + �̂�2(𝑧𝜉𝑥𝜂 − 𝑥𝜉𝑧𝜂) + �̂�3(𝑥𝜉𝑦𝜂 − 𝑦𝜉𝑥𝜂) = ΔS (2.27b) 

�̂�1𝑥𝜂 + �̂�2𝑦𝜂 + �̂�3𝑧𝜂 = 0 (2.27c) 

where �⃗⃗� = (�̂�1, �̂�2, �̂�3) is the local unit surface normal. Δ𝑆 is the local cell size on the surface, 

which is the same as the cell size in two dimensions with z coordinates added. 

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
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Figure 11: Illustration of grids generated on a curved surface. 

Local linearization of these equations will result in the same grid generation equation except for 

changing the size of matrix or vector, which gives 

𝐴0𝑟𝜉⃗⃗⃗⃗ + 𝐵0𝑟𝜂⃗⃗⃗ ⃗ = 𝑓 (2.28) 

where 

A = [

𝑥𝜂 𝑦𝜂 𝑧𝜂
�̂�3𝑦𝜂 − �̂�2𝑧𝜂 �̂�1𝑧𝜂 − �̂�3𝑥𝜂 �̂�2𝑥𝜂 − �̂�1𝑦𝜂

0 0 0

] (2.29𝑎) 

B = [

𝑥𝜉 𝑦𝜉 𝑧𝜉
−�̂�3𝑦𝜉 − �̂�2𝑧𝜉 −�̂�1𝑧𝜉 − �̂�3𝑥𝜉 −�̂�2𝑥𝜉 − �̂�1𝑦𝜉

�̂�1 �̂�2 �̂�3

] (2.29𝑏) 

𝑟 = [
𝑥
𝑦
𝑧
] (2.29𝑐) 

𝑓 = [
0
∆𝑆
0
] (2.29d) 
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The matrix 𝐵0
−1 exists unless the arc length in 𝜉 direction is zero. Besides, 𝐵0

−1𝐴0 is symmetric, 

and the system of equations is hyperbolic for marching in 휂 direction. 

 Similar to the scheme employed for hyperbolic planar grid generation, Equation 2.28 is 

solved numerically by central differencing with explicit and implicit smoothing in 𝜉 direction 

and implicit differencing in 휂 direction. The governing equation can be written as  

[𝐼 + (1 + 휃𝜉)𝐵𝑘
−1𝐴𝑘𝛿𝜉 − 휀𝑖𝜉(Δ∇)𝜉](𝑟𝑘+1 − 𝑟𝑘) = 𝐵𝑘

−1𝑓𝑘+1 − 휀𝑒𝜉(Δ∇)𝜉𝑟𝑘 (2.30) 

which is the same as Equation 2.26.  

 The elements of matrix A contains 휂 derivatives, which can be computed using Equation 

2.27 as 

(

𝑥𝜂
𝑦𝜂
𝑧𝜂
) =

1

𝛽
[

𝑥𝜉�̂�1𝑤 �̂�2𝑧𝜉 − �̂�3𝑦𝜉 �̂�1𝑠𝜉
2 − 𝑥𝜉𝑤

𝑦𝜉�̂�2𝑤 �̂�3𝑥𝜉 − �̂�1𝑧𝜉 �̂�2𝑠𝜉
2 − 𝑦𝜉𝑤

𝑧𝜉�̂�3𝑤 �̂�1𝑦𝜉 − �̂�2𝑥𝜉 �̂�3𝑠𝜉
2 − 𝑧𝜉𝑤

] �⃗� = 𝐵−1�⃗� (2.31) 

where 

𝑤 = �̂� ∙ 𝑟𝜉 = �̂�1𝑥𝜉 + �̂�2𝑦𝜉 + �̂�3𝑧𝜉 (2.32𝑎) 

𝑠𝜉
2 = 𝑟𝜉 ∙ 𝑟𝜉 = 𝑥𝜉

2 + 𝑦𝜉
2 + 𝑧𝜉

2 (2.32𝑏) 

𝛽 = 𝐷𝑒𝑡(𝐵) = 𝑠𝜉
2 − 𝑤2 (2.32𝑐) 

 When calculating for a new layer of grid points, the local unit surface normal of each 

point is computed based on the current known old points.  Therefore, these new points calculated 

by this method are not on the surface and should be projected onto the reference surface after 

each marching step. In Figure 12, 𝑃’ is the point computed on 𝑟𝜂⃗⃗⃗ ⃗ direction. This point should be 
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projected onto the surface, which gives the point P. Generally, for a given parameterized 

reference surface and each grid point, the normal equation can be applied to project the 

calculated point onto the surface, which can give the results with the least squared residuals. By 

using the Jacobian matrix at reference points, the difference between the calculated point and the 

reference point in Cartesian coordinates (𝑑𝑥 𝑑𝑦 𝑑𝑧)𝑇can be converted into a difference in 

parameter base (𝑑𝑢 𝑑𝑣)𝑇. 

𝐽 [
𝑑𝑢
𝑑𝑣
] = [

𝑑𝑥
𝑑𝑦
𝑑𝑧

] (2.33) 

where 𝐽 is the Jacobian matrix at given points 

𝐽 =

[
 
 
 
 
 
𝜕𝑥

𝜕𝑢

𝜕𝑥

𝜕𝑣
𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣
𝜕𝑧

𝜕𝑢

𝜕𝑧

𝜕𝑣]
 
 
 
 
 

(2.34) 

 

Figure 12: Project calculated results onto the surface. 
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Once the differences in parameter base 𝑑𝑢 and 𝑑𝑣 are calculated, the new grid point can 

be acquired by adding this difference onto the reference point and evaluating the new parameters. 

This new point is guaranteed on the reference surface and is closest to the calculated point if the 

surface can be parameterized. For the cases with multiple surfaces, further steps to locate and 

project the new grid points will be discussed in Chapter 5.2. 

 

2.4 Hyperbolic Volume Grid Generation 

 In three-dimensional hyperbolic grid generation, the general coordinates become to 

𝜉(𝑥, 𝑦, 𝑧), 휂(𝑥, 𝑦, 𝑧), and 휁(𝑥, 𝑦, 𝑧) corresponding to grid indices j, k, and l. The requirements of 

3D hyperbolic volume grid generation equations can be written as 

𝑟𝜉⃗⃗⃗⃗ ∙ 𝑟𝜁⃗⃗⃗ ⃗ = 𝑥𝜉𝑥𝜁 + 𝑦𝜉𝑦𝜁 + 𝑧𝜉𝑧𝜁 = 0 (2.35𝑎) 

𝑟𝜂⃗⃗⃗ ⃗ ∙ 𝑟𝜁⃗⃗⃗ ⃗ = 𝑥𝜂𝑥𝜁 + 𝑦𝜂𝑦𝜁 + 𝑧𝜂𝑧𝜁 = 0 (2.35𝑏) 

𝑟𝜁⃗⃗⃗ ⃗ ∙ (𝑟𝜉⃗⃗⃗⃗ × 𝑟𝜂⃗⃗⃗ ⃗) = |

𝑥𝜉 𝑦𝜉 𝑧𝜉
𝑥𝜂 𝑦𝜂 𝑧𝜂
𝑥𝜁 𝑦𝜁 𝑧𝜁

| = ∆𝑉 (2.35𝑐) 

∆𝑉 is derived by the surface area ∆𝐴 times a user-defined spacing off the surface ∆𝑠, which is 

Δ𝑉𝑗,𝑘,𝑙 = Δ𝐴𝑗,𝑘,𝑙∆𝑠 (2.36) 

where the surface area ∆𝐴 is computed using the cross product of the derivatives at the grid 

points, which is 

Δ𝐴𝑗,𝑘,𝑙 = 𝑟𝜉⃗⃗⃗⃗ × 𝑟𝜂⃗⃗⃗ ⃗ (2.37) 

Local linearization of Equation 2.23 gives 
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𝐴0𝑟𝜉⃗⃗⃗⃗ + 𝐵0𝑟𝜂⃗⃗⃗ ⃗ + 𝐶0𝑟𝜁⃗⃗⃗ ⃗ = 𝑒 (2.38) 

where 

𝐴 = [

𝑥𝜁 𝑦𝜁 𝑧𝜁
0 0 0

(𝑦𝜂𝑧𝜁 − 𝑦𝜁𝑧𝜂) (𝑥𝜁𝑧𝜂 − 𝑥𝜂𝑧𝜁) (𝑥𝜂𝑦𝜁 − 𝑥𝜁𝑦𝜂)
] (2.39𝑎) 

𝐵 = [

0 0 0
𝑥𝜁 𝑦𝜁 𝑧𝜁

(𝑦𝜁𝑧𝜉 − 𝑦𝜉𝑧𝜁) (𝑥𝜉𝑧𝜁 − 𝑥𝜁𝑧𝜉) (𝑥𝜁𝑦𝜉 − 𝑥𝜉𝑦𝜁)
] (2.39𝑏) 

𝐶 = [

𝑥𝜉 𝑦𝜉 𝑧𝜉
𝑥𝜂 𝑦𝜂 𝑧𝜂

(𝑦𝜉𝑧𝜂 − 𝑦𝜂𝑧𝜉) (𝑥𝜂𝑧𝜉 − 𝑥𝜉𝑧𝜂) (𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑦𝜉)
] (2.39𝑐) 

𝑒 = [
0
0
∆𝑉
] (2.39𝑑) 

The coefficient matrix A, B, and C in this equation contains derivatives in 𝜉, 휂, and 휁 directions. 

The 𝜉 and 휂 derivatives can be obtained directly by central differencing, while 휁 derivatives are 

calculated based on Equation 2.35 as a linear combination of 𝜉 and 휂 derivatives which is shown 

as: 

(

𝑥𝜁
𝑦𝜁
𝑧𝜁
) =

Δ𝑉

𝐷𝑒𝑡(𝐶)
(

𝑦𝜉𝑧𝜂 − 𝑦𝜂𝑧𝜉
𝑥𝜂𝑧𝜉 − 𝑥𝜉𝑧𝜂
𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑦𝜉

) = 𝐶−1�⃗� (2.40) 

with 𝐷𝑒𝑡(𝐶) = (𝑦𝜉𝑧𝜂 − 𝑦𝜂𝑧𝜉)
2
+ (𝑥𝜂𝑧𝜉 − 𝑥𝜉𝑧𝜂)

2
+ (𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑦𝜉)

2
. This equation can also be 

improved by the metric correction, which is talked about later. 

Using finite differencing for Equation 2.38 and left multiplying 𝐶𝑙
−1 we can get 

𝐶𝑙
−1𝐴𝑙𝛿𝜉(𝑟𝑙+1 − 𝑟𝑙) + 𝐶𝑙

−1𝐵𝑙𝛿𝜂(𝑟𝑙+1 − 𝑟𝑙) + (𝑟𝑙+1 − 𝑟𝑙) = 𝐶𝑙
−1�⃗�𝑙 (2.41) 
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with 

𝛿𝜉𝑟 =
𝑟𝑗+1 − 𝑟𝑗−1

2
(2.42𝑎) 

𝛿𝜂𝑟 =
𝑟𝑘+1 − 𝑟𝑘−1

2
(2.42𝑏) 

�⃗�𝑙 = (0, 0, Δ𝑉𝑙)
𝑇 (2.42𝑐) 

This equation provides a relation between the five points (one point and its four neighbor points 

along 𝜉 and 휂 directions) on the known surface and the five points on the new surface, which can 

be written into a sparse matrix that can be tough to solve. 

 A better way to solve Equation 2.41 is provided by approximate factoring, which gives 

[𝐼 + 𝐶𝑙
−1𝐵𝑙𝛿𝜂] [𝐼 + 𝐶𝑙

−1𝐴𝑙𝛿𝜉](𝑟𝑙+1 − 𝑟𝑙) = 𝐶𝑙
−1�⃗�𝑙 (2.43) 

where 𝐼 is the 3-by-3 identity matrix. In this equation, an additional term 

[𝐶𝑙
−1𝐵𝑙𝐶𝑙

−1𝐴𝑙𝛿𝜂𝛿𝜉](𝑟𝑙+1 − 𝑟𝑙) is added for simplicity with 𝛿𝜂𝛿𝜉𝑟 is actually the differential form 

of second-order cross partial derivative 𝑟𝜂𝜉, which would be very small and negligible in most of 

the cases. After approximate factoring, the problem is now reduced to solve a sequence of block 

tridiagonal systems along 𝜉 and 휂 directions. Periodic and non-periodic boundary conditions can 

be applied on 𝜉 and 휂 directions based on the geometry of the initial surface. The Thomas 

algorithm and the Sherman–Morrison formula discussed before can then be applied to solve the 

matrix along 𝜉 and 휂 directions separately. 

 Like in hyperbolic planar grid generation, smoothing is also required to get a better 

performance in concave surfaces, which gives 

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
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[𝐼 + (1 + 휃𝜂)𝐶𝑙
−1𝐵𝑙𝛿𝜂 − 휀𝑖𝜂(Δ∇)𝜂] [𝐼 + (1 + 휃𝜉)𝐶𝑙

−1𝐴𝑙𝛿𝜉 − 휀𝑖𝜉(Δ∇)𝜉](𝑟𝑙+1 − 𝑟𝑙)

= 𝐶𝑙
−1�⃗�𝑙+1 − [휀𝑒𝜉(Δ∇)𝜉 + 휀𝑒𝜂(Δ∇)𝜂]𝑟𝑙⃗⃗⃗ (2.44)

 

 

2.5 Grid Quality Improvement Mechanism 

2.5.1 Smoothing 

 Added dissipation is an essential part of controlling the smoothness of the grid. The form 

and magnitude of dissipation may change the shape of the grid significantly, and therefore the 

dissipation must be applied selectively for different body shapes. A low amount of smoothing is 

desired near the body and in low curvature regions of the geometry, where grid orthogonality 

should dominate. In contrast, a large value of smoothing is needed to prevent grid lines from 

crossing in concave regions. A spatially variable dissipation coefficient based on the above 

attributes was in Chan and Steger’s paper [22]. It should be noticed that the smoothing terms 

should be relatively small compared with the other terms in the hyperbolic grid generation 

equations. Otherwise, the characteristics of the governing equations would be changed. 

 The explicit dissipation coefficient 휀𝑒𝜉 in planar and surface grid generation depend on 

five quantities as follows: 

휀𝑒𝜉 = 휀𝑐𝑁𝜉𝑆𝑘�̅�𝑗,𝑘
𝜉
𝑎𝑗,𝑘
𝜉 (2.45) 

In this equation, 휀𝑐 is a user-specified constant of 𝑂(1). The value of 휀𝑐 varies for different 

shapes of bodies. Small values of 휀𝑐 would be applied for cases where less dissipation is required 

while large values of 휀𝑐 would be taken to get more dissipation.  A default value of 0.5 is used in 

the thesis. 
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𝑁𝜉  is the scaling with the local mesh spacing, which can be approximated by the matrix 

norm ‖𝐵−1𝐴‖, given by 

𝑁𝜉 = √
𝑥𝜂2 + 𝑦𝜂2 + 𝑧𝜂2

𝑥𝜉
2 + 𝑦𝜉

2 + 𝑧𝜉
2

(2.46) 

 The scaling function 𝑆𝑘 controls the dissipation based on the distance from the body such 

that small dissipation is applied near-body where orthogonality is desired. The form of the 

function is given by 

𝑆𝑘 =

{
 
 

 
 

√
(𝑘 − 1)

(𝑘𝑚𝑎𝑥 − 1)
,    1 ≤ 𝑘 ≤ 𝑘𝑡𝑟𝑎𝑛𝑠

√
(𝑘𝑡𝑟𝑎𝑛𝑠 − 1)

(𝑘𝑚𝑎𝑥 − 1)
,    𝑘𝑡𝑟𝑎𝑛𝑠 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥

(2.47) 

where 𝑘𝑚𝑎𝑥 is the number of points in k direction and 𝑘𝑡𝑟𝑎𝑛𝑠 is restricted to the range 

[
3

4
𝑘𝑚𝑎𝑥 , 𝑘𝑚𝑎𝑥] and once the following is true: 

max
𝑗
𝑑𝑗,𝑘
𝜉
−max

𝑗
𝑑𝑗,𝑘−1
𝜉

< 0 (2.48) 

This term is used to guarantee slight smoothing near the body curve. As the number of layers 

increases, larger smoothing is required to generate grids in the concave corners. This term is also 

increased to match up the smoothing. And since we also have the grid point distribution sensor 

function and the grid angle function to deal with the concave corners, smoothing provided by this 

term will be enough and will no longer need to increase when the convergence of the local grid 

lines is slowing down (Equation 2.48). 

 The gridpoint distribution sensor function �̅�𝑗,𝑘
𝜉

 is given by 
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�̅�𝑗,𝑘
𝜉
= 𝑚𝑎𝑥 [(𝑑𝑗,𝑘

𝜉
)

2
𝑆𝑘 , 0.1] (2.49) 

where 

𝑑𝑗,𝑘
𝜉
= {

|𝑟𝑗+1,𝑘−1 − 𝑟𝑗,𝑘−1| + |𝑟𝑗−1,𝑘−1 − 𝑟𝑗,𝑘−1|

|𝑟𝑗+1,𝑘 − 𝑟𝑗,𝑘| + |𝑟𝑗−1,𝑘 − 𝑟𝑗,𝑘|
, 𝑘 ≥ 2

1, 𝑘 = 1

(2.50) 

This term depends on the ratio of the average distances between grid points at layer (k-1) to that 

at layer k, which means that it can locally increase the smoothing where grid line convergence is 

detected. 

 The grid angle function 𝑎𝑗,𝑘
𝜉

 is used to locally increase the smoothing at severe concave 

corner points. It can be more conventionally defined in the following unit vectors. Let vectors 

points in the plus and minus 𝜉 directions at grid point (𝑗, 𝑘) be represented by 𝑟�⃗⃗⃗�
+

 and 𝑟�⃗⃗⃗�
−

 

respectively, where 

𝑟�⃗⃗⃗�
+
= 𝑟𝑗+1,𝑘 − 𝑟𝑗,𝑘,    𝑟�⃗⃗⃗�

−
= 𝑟𝑗−1,𝑘 − 𝑟𝑗,𝑘 (2.51)    

And let �̂�𝑗
+ and �̂�𝑗

− represent the unit vectors of 𝑟�⃗⃗⃗�
+

 and 𝑟�⃗⃗⃗�
−

. The local unit normal �̂�𝑗,𝑘 can be 

calculated as  

�̂�𝑗,𝑘 =
�⃗⃗�𝑠𝑢𝑟 × (�̂�𝑗

+ − �̂�𝑗
−)

|�⃗⃗�𝑠𝑢𝑟||�̂�𝑗
+ − �̂�𝑗

−|
(2.52) 

where �⃗⃗�𝑠𝑢𝑟 is the surface normal and is (0,0,1)𝑇 for two-dimensional grids. 

The cosine of the local half-angle 𝛼𝑗,𝑘 is given by 

cos 𝛼𝑗,𝑘 = �̂�𝑗,𝑘 ∙ �̂�𝑗
+ = �̂�𝑗,𝑘 ∙ �̂�𝑗

− (2.53) 
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The grid angle function 𝑎𝑗,𝑘
𝜉

 is then defined as 

𝑎𝑗,𝑘
𝜉
=

{
 

 
1

(1 − 𝑐𝑜𝑠2𝛼𝑗,𝑘)
  if 0 ≤ 𝛼𝑗,𝑘 ≤

𝜋

2

1                            if 
𝜋

2
≤ 𝛼𝑗,𝑘 ≤ 𝜋

(2.54) 

which means that the grid angle function is designed to have the value of one except at a severe 

concave corner point. The effect of the smoothing terms has been discussed previously and 

shown in Figure 10. 

 For hyperbolic volume grid generation, similar equations can be obtained for 휀𝑒𝜉 and 휀𝑒𝜂 

by calculating relevant coefficient along 𝜉 and 휂 direction separately, which is given below as 

휀𝑒𝜉 = 휀𝑐𝑁𝜉𝑆𝑙�̅�𝑗,𝑘,𝑙
𝜉
𝑎𝑗,𝑘,𝑙
𝜉 (2.55𝑎) 

휀𝑒𝜂 = 휀𝑐𝑁𝜂𝑆𝑙�̅�𝑗,𝑘,𝑙
𝜂
𝑎𝑗,𝑘,𝑙
𝜂 (2.55𝑏) 

𝑁𝜉 = √
𝑥𝜁
2 + 𝑦𝜁

2 + 𝑧𝜁
2

𝑥𝜉
2 + 𝑦𝜉

2 + 𝑧𝜉
2

(2.56𝑎) 

𝑁𝜂 = √
𝑥𝜁
2 + 𝑦𝜁

2 + 𝑧𝜁
2

𝑥𝜂2 + 𝑦𝜂2 + 𝑧𝜂2
(2.56𝑏) 

𝑆𝑙 =

{
 
 

 
 

√
(𝑙 − 1)

(𝑙𝑚𝑎𝑥 − 1)
,    1 ≤ 𝑙 ≤ 𝑙𝑡𝑟𝑎𝑛𝑠

√
(𝑙𝑡𝑟𝑎𝑛𝑠 − 1)

(𝑙𝑚𝑎𝑥 − 1)
,    𝑙𝑡𝑟𝑎𝑛𝑠 ≤ 𝑙 ≤ 𝑙𝑚𝑎𝑥

(2.57) 

𝑙𝑡𝑟𝑎𝑛𝑠 is set in the range [
3

4
𝑘𝑚𝑎𝑥 , 𝑘𝑚𝑎𝑥] and one of the Equations 2.58 (a) and (b) is true 
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 max
𝑗,𝑘

𝑑𝑗,𝑘,𝑙
𝜉

−max
𝑗,𝑘

𝑑𝑗,𝑘,𝑙−1
𝜉

< 0 (2.58a) 

 max
𝑗,𝑘

𝑑𝑗,𝑘,𝑙
𝜂

−max
𝑗,𝑘

𝑑𝑗,𝑘,𝑙−1
𝜂

< 0 (2.58b) 

�̅�𝑗,𝑘,𝑙
𝜉

= 𝑚𝑎𝑥 [(𝑑𝑗,𝑘,𝑙
𝜉
)

2
𝑆𝑙 , 0.1] (2.59𝑎) 

�̅�𝑗,𝑘,𝑙
𝜂

= 𝑚𝑎𝑥 [(𝑑𝑗,𝑘,𝑙
𝜂
)
2
𝑆𝑙 , 0.1] (2.59𝑏) 

𝑑𝑗,𝑘,𝑙
𝜉

= {

|𝑟𝑗+1,𝑘,𝑙−1 − 𝑟𝑗,𝑘,𝑙−1| + |𝑟𝑗−1,𝑘,𝑙−1 − 𝑟𝑗,𝑘,𝑙−1|

|𝑟𝑗+1,𝑘,𝑙 − 𝑟𝑗,𝑘,𝑙| + |𝑟𝑗−1,𝑘,𝑙 − 𝑟𝑗,𝑘,𝑙|
, 𝑘 ≥ 2

1, 𝑘 = 1

(2.60𝑎) 

𝑑𝑗,𝑘,𝑙
𝜂

= {

|𝑟𝑗,𝑘+1,𝑙−1 − 𝑟𝑗,𝑘,𝑙−1| + |𝑟𝑗,𝑘−1,𝑙−1 − 𝑟𝑗,𝑘,𝑙−1|

|𝑟𝑗,𝑘+1,𝑙 − 𝑟𝑗,𝑘,𝑙| + |𝑟𝑗,𝑘−1,𝑙 − 𝑟𝑗,𝑘,𝑙|
, 𝑘 ≥ 2

1, 𝑘 = 1

(2.60𝑏) 

 

𝑎𝑗,𝑘,𝑙
𝜉

=

{
 

 
1

(1 − 𝑐𝑜𝑠2𝛼𝑗,𝑘,𝑙)
  if 0 ≤ 𝛼𝑗,𝑘,𝑙 ≤

𝜋

2

1                            if 
𝜋

2
≤ 𝛼𝑗,𝑘,𝑙 ≤ 𝜋

(261𝑎) 

𝑎𝑗,𝑘,𝑙
𝜂

=

{
 

 
1

(1 − 𝑐𝑜𝑠2𝛽𝑗,𝑘,𝑙)
  if 0 ≤ 𝛽𝑗,𝑘,𝑙 ≤

𝜋

2

1                            if 
𝜋

2
≤ 𝛽𝑗,𝑘,𝑙 ≤ 𝜋

(2.61𝑏) 

cos 𝛼𝑗,𝑘,𝑙 = �̂�𝑗,𝑘,𝑙�̂�𝑗
+ = �̂�𝑗,𝑘,𝑙�̂�𝑗

− (2.62𝑎) 

cos 𝛽𝑗,𝑘,𝑙 = �̂�𝑗,𝑘,𝑙�̂�𝑘
+ = �̂�𝑗,𝑘,𝑙�̂�𝑘

− (2.62𝑏) 
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�̂�𝑗,𝑘,𝑙 =
(�̂�𝑗

+ − �̂�𝑗
−) × (�̂�𝑘

+ − �̂�𝑘
−)

|(�̂�𝑗
+ − �̂�𝑗

−) × (�̂�𝑘
+ − �̂�𝑘

−)|
(2.63) 

𝑟�⃗⃗⃗�
+
= 𝑟𝑗+1,𝑘,𝑙 − 𝑟𝑗,𝑘,𝑙,    𝑟�⃗⃗⃗�

−
= 𝑟𝑗−1,𝑘,𝑙 − 𝑟𝑗,𝑘,𝑙 (2.64𝑎)    

𝑟𝑘⃗⃗⃗⃗
+
= 𝑟𝑗,𝑘+1,𝑙 − 𝑟𝑗,𝑘,𝑙,    𝑟𝑘⃗⃗⃗⃗

−
= 𝑟𝑗,𝑘−1,𝑙 − 𝑟𝑗,𝑘,𝑙 (2.64𝑏)    

 

2.5.2 Cell size specification 

 Except for adding dissipation terms, there is another way to enhance grid smoothness by 

performing smoothing steps on the prescribed cell sizes, which is also introduced by Chan [22]. 

The improved way of cell size specification is given by averaging the cell size of its neighbor 

cells, which is  

Δ𝐴𝑗,𝑘 = (1 − 𝑣𝑎)Δ�̅�𝑗,𝑘 +
𝑣𝑎
2
(Δ�̅�𝑗−1,𝑘 + Δ�̅�𝑗+1,𝑘) (2.65) 

for two-dimensional grids and  

Δ𝑉𝑗,𝑘,𝑙 = (1 − 𝑣𝑎)Δ�̅�𝑗,𝑘,𝑙 +
𝑣𝑎
4
(Δ�̅�𝑗−1,𝑘,𝑙 + Δ�̅�𝑗+1,𝑘,𝑙 + Δ�̅�𝑗,𝑘−1,𝑙 + Δ�̅�𝑗,𝑘+1,𝑙) (2.66) 

for three-dimensional grids, where Δ�̅� and Δ�̅� are the original area and volume of the grid cells 

in Equation 2.3 and 2.24, respectively. 𝑣𝑎 is the volume average factor that can help generate 

more uniformly spaced grids. A default value of 𝑣𝑎 = 0.5 is used in this thesis. Varying the 

volume average factor has a similar effect as the dissipation terms, i.e., a larger value can better 

avoid grid clustering but get less orthogonality. A smaller value has the opposite effect. An 

example with different values of 𝑣𝑎 is shown in Figure 13. It can be seen that grids are highly 
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clustered in the concave regions with 𝑣𝑎 = 0 in Figure 13 (a), and this problem is relieved with 

𝑣𝑎 = 0.5 in Figure 13 (b).  

 

(a) Hyperbolic grids with 𝑣𝑎 = 0 

 

(b) Hyperbolic grids with 𝑣𝑎 = 0.5 
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(c) Hyperbolic grids with 𝑣𝑎 = 0.5, taking the average step 5 times 

Figure 13: Hyperbolic grids with different values of volume average factor 

 In practice, this averaging step can be applied one or more times when calculating each 

layer of hyperbolic grids to enlarge the small cells and lessen the large cells slightly. Taking this 

step iteratively can further avoid grid clustering or twisting and thus smooth the grids. Figure 13 

(c) shows the grid result of the same case after taking the averaging step five times (itsvol = 5). 

However, the number of iteration times is another user-defined parameter. A small number of 

iteration times may remain the problem of grid clustering or twisting. On the other hand, a large 

number of iteration times may lead to an over-smoothed grid. An example is shown in Figure 14, 

where the grids are generated inside a square, and the points are clustered in the corners. The 

grids are generated by taking averaging step 50 times. In this thesis, a default value of itsvol = 5 

is applied. 
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(a) Hyperbolic grids with 𝑖𝑡𝑠𝑣𝑜𝑙 = 5 

 

(b) Hyperbolic grids with 𝑖𝑡𝑠𝑣𝑜𝑙 = 50 

Figure 14: Hyperbolic grid generated inside a square 
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2.6 Metric Correction 

 The smoothing terms mentioned in Chapter 2.5 are typically sufficient to generate a 

smooth grid at either convex or concave corners if the grid spacing to each side of the corner is 

approximately equal. Nevertheless, if the grid spacing is much different at a corner, smoothing 

terms alone is usually not enough to get a smooth grid. Therefore, an additional remedy, called 

the metric correction, is applied in such cases to solve the problem. 

  With 휂 derivatives shown in Equation 2.12, the direction in which the grid will develop 

is such that it is perpendicular to the line joining the two neighbor points of the corner, which 

will not be a good feature for a corner with unevenly spaced points. An example is shown in 

Figure 15 (a). In order to guide the grids out in a direction that can bisect the angles at a point 

subtended by its neighbor points, the derivatives are modified as follows: 

Figure 15: Comparison treatment of concave corner with unequal grid spacings. (a) Without 

metric correction. (b) with metric correction. [22] 

(
𝑥𝜂
′

𝑦𝜂
′) =

Δ𝐴

𝐷𝑒𝑡(𝐵′)
(
−𝑦𝜉

′

𝑥𝜉
′ ) (2.67) 

where 
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𝐷𝑒𝑡(𝐵′) = 𝑥𝜉
′ 2 + 𝑦𝜉

′ 2 (2.68) 

(𝑥𝜉
′ 𝑦𝜉

′
)
𝑇
=
1

4
(|𝑟�⃗⃗⃗�

+
| + |𝑟�⃗⃗⃗�

−
|) (

𝑟�⃗⃗⃗�
+

|𝑟�⃗⃗⃗�
+
|
−
𝑟�⃗⃗⃗�
−

|𝑟�⃗⃗⃗�
−
|
) (2.69) 

 While Equation 2.67 is preferred to calculate 휂 derivatives near the body, the original 

method of computing these quantities (Equation 2.12) should still be restored away from the 

body, which can be achieved by 

(𝑥𝜂 𝑦𝜂)𝑇 = (1 − 𝜈𝑘)(𝑥𝜂
𝑜 𝑦𝜂

𝑜)𝑇 + 𝜈𝑘(𝑥𝜂
′ 𝑦𝜂

′)𝑇 (2.70) 

where 𝜈𝑘 = 21−𝑘 and 𝑥𝜂
𝑜, 𝑦𝜂

𝑜 are values calculated in Equation 2.12. These modified derivatives 

can be computed as if their neighbor points of the corner are equally spaced on the two sides of 

the corner. The result of applying this procedure to a concave corner is shown in Figure 15 (b). 

Similar equations can also be obtained for surface grids and volume grids. 

 

2.7 Sample Results 

 Several computational examples are presented in this section to demonstrate the utility of 

hyperbolic grid generation in two dimensions, including on planar and curved surfaces and 

hyperbolic grid generation in three dimensions.  
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Figure 16: Case 1. Hyperbolic grid around Y-shaped body. 

 

Figure 17: Case 2. Hyperbolic grid around Z-shaped body 
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Figure 18: Case 3. Hyperbolic surface grid starting from a curve. 

 

Figure 19: Case 4. Hyperbolic surface grid around a U-shaped body. 
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                          (a) Far field view                                          (b) Close-up view 

Figure 20: Case 5. Slice of hyperbolic volume grid around a U-shaped body. 

 

                     (a) Far-field view                                (b) Close-up view at concave corner 

Figure 21: Case 6. Slices of hyperbolic volume grid starting from a curve. 

 From the cases listed above, it can be seen that hyperbolic grid generation can work well 

in some cases (Case 1, 3, and 5). However, there are also some cases where grid lines overlap 

(Case 2, 4, and 6). These cases are not desirable and may lead to failure in computational fluid 

dynamics. User-defined parameters are selected as the default values mentioned above in these 

cases. Grid results will be different if these parameters are changed. But it may take some effort 
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to find one good set of parameters for a particular case. The computational time for these cases is 

listed in Table 3. As mentioned above, the computational speed is significantly fast to generate 

the hyperbolic grids. 

Table 3: Computational time of grid generation using the hyperbolic scheme 

Case 

number 

Name Grid type Grid size 

Computational 

time (s) 

1 Y-shaped body Surface grid 45×48 0.007 

2 Z-shaped body* Planar grid 31×36 0.003 

3 Curve Surface grid 21×62 0.007 

4 U-shaped body* Surface grid 21×66 0.031 

5 Curve Volume grid 41×62×21 0.243 

6 U-shaped body* Volume grid 41×66×21 0.264 

Note: Computational time may be different on different software and operating system. 

The first three cases are compiled and run in Clion software from JetBrains, and the last 

four cases are compiled are run in x64 Native Tools Command Prompt for VS 2019 from 

Visual Studio on a laptop with Windows 10 operating system, Intel(R) Core i7-7700HQ 

CPU 2.80 GHz processor, and 16GB RAM.  

It should be mentioned that the results marked with an asterisk (hyperbolic grid generation result 

for cases 2, 4, and 6) are not desirable because the grids will overlap in some places. 
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2.8 Comments for hyperbolic grid generation scheme 

 Based on the discussion above, we can draw the conclusion that using the hyperbolic 

technique to generate grids is very fast. However, the hyperbolic grids are not guaranteed to 

work every time because they may cluster or overlap in the far-field when dealing with concave 

corners. Otherwise, the user needs to change the parameter such as smoothing coefficients or 

implicit smoothing factors for different cases to get good grids, which requires a significant 

amount of knowledge and experience of the hyperbolic grid generation. 
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3. Elliptic Grid Generation 

 Unlike the hyperbolic technique, the mesh generated by elliptic grid generation is solved 

simultaneously by given point information on the boundary. The essence of elliptic grid 

generation is a mapping between the physical space to the computational domain, as shown in 

Figure 22. The primary motivation to use this method is that grids generated by elliptic methods 

tend to be smooth and the elliptic method works very well for complex geometry.  

 

Figure 22: Comparison between computational space (left) and physical space (right). [30] 

  

3.1 Introduction 

 The embryo of the elliptic grid generation scheme came from Joe G. Thompson [31], 

who talks about the numerical generation of body-fitted curvilinear coordinate systems in 1974. 

He was the first person who systematically introduced that a numerical generation of a general 

curvilinear coordinate system can be done automatically, regardless of the shape of boundaries. 

He used the Laplace equation to transform any shape in the physical plane into a rectangle 

transformed plane, as shown in Figure 23 (a). His scheme could avoid the interpolations between 

grid points, which is very important for boundaries with strong curvature or slope discontinuities 
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because interpolation between grid points not coincident with the boundaries is inaccurate. 

However, his scheme cannot control space or orthogonality near the inner boundary. From 

Figure 23 (b), it can be seen that the cells are not orthogonal at all. 

      

           (a) Field transformation-single body                (b) Grids near a rock shape  

Figure 23: Grid Generation of body-fitted curvilinear. [31] 

 In 1977, the author of the GRAPE scheme, Reese L. Sorenson and Joseph L. Steger [32], 

developed an algorithm that can simplify clustering mesh points near the inner boundary. They 

added a source term to the right-hand side of Poisson equations. They derived the equations by 

setting source values to make points clustering near the inner boundary at first, then did reversed 

derivation on formulas. They use the Newton-Raphson method to iterate the value of source 

terms by manually setting the spacing between grid lines along the η direction, which is 

relatively slow.  

 Two years later, J.L. Steger and R.L. Sorenson [33] improved their scheme in 1979. They 

made significant progress this time. In earlier schemes, the values of source terms were set 

manually. They computed all values of each layer to get what they needed to cluster points near 
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the inner boundary, which can help get the source term. In the scheme of 1979, the derivatives 

along 휂  direction on the inner boundary can be achieved by solving the general spacing equation, 

and the values of source terms P and Q on the inner boundary can be calculated. Therefore, all 

values of source terms in a whole field can be obtained by an exponential decay. The result of the 

scheme is shown in Figure 24 (b). The problem with this algorithm is the same as the previous 

one. Although they could compute source terms P and Q automatically, orthogonality on the 

inner boundary can still not be guaranteed. 

     

                 (a) Grid without spacing control               (b) Grid with spacing control  

Figure 24: Grid Generation of body-fitted curvilinear. [33] 

 One year later, R.L. Sorenson [30] came up with the early version of the GRAPE scheme, 

which is short for “Generate Two-Dimensional Grids About Airfoils and Other Shapes by the 

Use of Poisson’s Equation.” By using this scheme, the orthogonality on the inner boundary can 

also be guaranteed besides spacing controlling from previous schemes. Sorenson added angle 

terms 𝑐𝑜𝑠휃 and 𝑠𝑖𝑛휃 into previous 𝑥𝜂and 𝑦𝜂 terms, where θ is specified by users. Generally, it is 

set to 90 degrees to achieve orthogonality on the inner boundary. 
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 In 1988, Reese L. Sorenson [34] finally developed a scheme in three dimensions for 

GRAPE. He rewrote the equations so that they were compatible in 3D. The critical idea in 3D 

does not have many differences compared to 2D. The sources of the inner boundary are 

calculated then exponentially decayed into the field. However, the algorithm became more 

complicated with the increment of the number of surfaces. The algorithm can solve the problems 

in 3D by using Poisson’s equation by splitting the whole space into different zones then the grid 

could be drawn. But the effort for dividing zones and computing elliptic equations in each zone 

is tough. Sorenson [35] also wrote a handbook to illustrate using the 3D GRAPE generator coded 

by Fortran. 

 After Sorensen set up the theory of GRAPE, many other people studied it. Sungcho Kim 

[36] developed new source terms in 2000. Unlike Steger and Sorenson, Kim evaluated the 

control functions by solving the governing equations simultaneously, and the grid spacing is 

controlled in the nearest body surface region. His idea is that he assumed the application of the 

method is used on the planes perpendicular to the main flow direction coordinate. This type of 

main flow direction co-ordinate can be assumed to be the function of only one coordinate in the 

computational domain. This means for the vector 𝑟, x coordinate can be assumed as 𝑥(𝜉). By 

doing this, the original equation can easily be transformed into a quasi-three-dimensional form, 

and the three source terms can easily be acquired. Also, Kim mentioned that the grid 

orthogonality was improved by 40 percent compared with the initial grid. This method works 

well in certain flows, but it does not fit for general cases as it needs the assumption. 

 In the original paper, there is one group of parameters called decay factors in the GRAPE 

scheme. They are set to be constant in the original scheme, which may fail in some instances or 

take a long time manually setting to get the ultimate value. In 2003, Upender K. Kaul [37] 
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developed a scheme that set a new boundary constraint for elliptic partial differential equations. 

These constraints are derived using Green’s Theorem based on the conservation of thermal 

energy near boundaries. For the previous scheme, constant values for the decay factor work well 

in zones near a small extent of clustering of spacing control. When going to large gradients of 

clustering near boundaries, it may fail or not be very economical to get the appropriate values. In 

Kaul’s method, these decay factors are set to be a function of coordinates. Then he uses 

Neumann type boundary constraints to fix them. By this, the values of those decay factors are 

obtained automatically without any sources. He uses the knowledge of thermodynamics, which 

has a deep meaning in elliptic grid generation. The method is further applied in 3D [38]. Also, 

the scheme is applied to certain physical cases.  

 The most important term in the elliptic grid generation scheme is the control function — 

source terms. It determines the quality of the grids directly. In 2004, S.H. Lee and B.K. Soni [39] 

developed a new way to calculate the second derivative terms of source terms. In the previous 

scheme, the second derivative terms 𝑟𝜂𝜂 are related to the location of grid points in the first, 

second and third layer and the first order derivatives 𝑟𝜂. Lee and Soni derived the equations in 

their tensor form and rewrote the source functions. Therefore, the second derivative terms 𝑟𝜂𝜂 are 

only based on the first-order derivative terms 𝑟𝜂. When trying to discretize the second-order 

derivative terms normal to the boundary involved in terms of control functions, it was found that 

the quality of a grid depends on the first order derivatives 𝑟𝜂 from the second derivative 

equations because it is the only term that can be iterative through converge process. Based on 

this, a 7-point finite analytic scheme was derived. This new method can help make a smoothing 

connection between the so-called boundaries of blocks in algebraic systems.  
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 In 2009, Vianey Villamizar and Sebastian Acosta [40] discovered some exciting aspects 

of source terms and developed two systems. One is to generate grids with near-uniform cell areas. 

We have known that Φ and Ψ (or written in P and Q) are the important source terms in elliptic 

grid generation. Villamizar and Acosta discovered that an increment of the Φ -value at a given 

grid point offers a local displacement of the corresponding 휂-curves in the direction of increasing 

휂. And it is the reversed process that the grid line will move inwards in decreasing 휂 direction if 

the value of Φ goes down. This kind of movement is also related to the magnitude of value Φ 

changes. The same thing happens to source Ψ and the movement of grid lines in 𝜉 direction, 

shown in Figure 25. Figure 25 a represents grid lines with given values of Ψ and Φ. Figure 25 b 

represents that the value of Φ has been changed. The value of Ψ increasing leads to a movement 

outwards of 𝜉 direction in Figure 24 c. 

 

Figure 25: Making grids with uniform area cells. [40] 

 Villamizar and Sebastian also developed a way to get a nearly uniform cell area. They 

found that the area of a cell region R is approximately equal to the determinant of Jacobian. 

Based on this theory, Villamizar and Sebastian used some approximation for the values in the 

governing equations and used a numerical iterative method to solve them. With the check of cell 

size, smoothness and orthogonality have significantly improved compared with initial algebraic 
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mesh. The method is fascinating and has a meaningful aspect of studying the source term. The 

problem is that it can only achieve a uniform grid, which does not have the spacing clustering 

near the inner boundary as we need.  

 Many researchers are still focusing on studying source terms in the GRAPE scheme in 

recent years. W. Wenli, Z. Pei, Y. l. Liu [41] has developed a new method to determine the 

source terms (P and Q) of Poisson equations. The basic idea of determining the functions P and 

Q is based on two conditions: 

• The boundary points are selected as desired.  

• The constraint that the transverse coordinate curves be orthogonal to the boundary 

is imposed. 

After applying the new source terms, it is much easier to deal with irregular solid boundary 

conditions. The generated grid can adapt to the change of physical quantities, which leads to 

reasonable accuracy in computational fluid dynamics. This method comes from Thompson’s 

method and only slightly changes the original equation. The degree of discrepancy between the 

two methods is the problem of this method.  

 During the gap of GRAPE development, Dale A. Anderson [42] developed a new scheme 

that combines equidistribution schemes, Poisson generators, and adaptive grids. In the physical 

domain, the generated grid needs to be adjusted to position points where need to be refined to get 

better resolution in regions or to provide some decrement in global error. Therefore, an 

equidistribution scheme is a common way to generate an adaptive mesh. Anderson found that a 

transformed form of GRAPE equations was very similar to equidistribution expressions in 

differential form. After substituting source terms P, Q into the equidistribution scheme, a revised 
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elliptic generator can be used to get an adaptive mesh. The scheme is very economical. Just a 

trivial change can transform grid generators into solution-adaptive schemes. 

 Based on Anderson’s scheme, Y.N. Jeng and Y.C. Lou [43] developed a desired grid 

stretching over the smooth region during initial grid system generation and before grid 

adaptation is performed. They rewrote the weighting form in Anderson’s method and used a term 

𝑀𝑖𝑗 to represent the measurement of a physical variable’s variation, and they combined the 

scheme that could achieve boundary grid control on all the boundaries so that the requirement of 

stretching grid points over regions of the smooth solution is imposed during initial grid 

generation. 

 

3.2 Governing Equations of Elliptic Planar Grid Generation (GRAPE)  

 In two-dimensional elliptic grid generation, the mapping function, following Thompson 

[32], are required to satisfy the Poisson equations 

𝜉𝑥𝑥 + 𝜉𝑦𝑦 = 𝑃 (3.1a) 

휂𝑥𝑥 + 휂𝑦𝑦 = 𝑄 (3.1b) 

And the transformed equations between computational space and physical space is given in 

Equation 3.2 

𝜉𝑥 =
𝑦𝜂

𝐽
(3.2a) 

𝜉𝑦 = −
𝑥𝜂

𝐽
(3.2b) 

휂𝑥 = −
𝑦𝜉

𝐽
(3.2𝑐) 
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휂𝑦 =
𝑥𝜉

𝐽
(3.2d) 

𝐽 = 𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑦𝜉 (3.2𝑒) 

Transforming the above equations in computational space yields a set of elliptical PDEs 

𝛼𝑥𝜉𝜉 − 2𝛽𝑥𝜉𝜂 + 𝛾𝑥𝜂𝜂 = −𝐽
2(𝑃𝑥𝜉 + 𝑄𝑥𝜂) (3.3a) 

𝛼𝑦𝜉𝜉 − 2𝛽𝑦𝜉𝜂 + 𝛾𝑦𝜂𝜂 = −𝐽2(𝑃𝑦𝜉 + 𝑄𝑦𝜂) (3.3b) 

where 

𝛼 = 𝑥𝜂
2 + 𝑦𝜂

2 (3.4a) 

𝛽 = 𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 (3.4b) 

𝛾 = 𝑥𝜉
2 + 𝑦𝜉

2 (3.4c) 

The grid can be generated by solving the equations above with a particular choice of source 

terms P and Q and a particular set of boundary conditions. If 𝑃 = 𝑄 = 0, Equations 3.3 becomes 

Laplace equations, which are only able to generate basic grids without any orthogonality or 

spacing control, which is shown in Figure 26. 

 

(a) Far field view 

 

(b) Close-up view 

Figure 26: Grids around a square shape using Laplace equations. 
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Therefore, picking source terms P and Q to assure orthogonality and spacing control becomes a 

problem. From Reese L. Sorenson [30], the source terms can be set as 

𝑃 = 𝑝(𝜉)𝑒−𝑎𝜂 + 𝑟(𝜉)𝑒−𝑐(𝜂𝑚𝑎𝑥−𝜂) (3.4a) 

𝑄 = 𝑞(𝜉)𝑒−𝑏𝜂 + 𝑠(𝜉)𝑒−𝑑(𝜂𝑚𝑎𝑥−𝜂) (3.4b) 

where p, q, r, and s are the values of source terms defined on body curves and outer boundary, 

which can be obtained by the boundary conditions. Details about getting these values are 

discussed in Chapter 3.4. Factors a, b, c, and d are the four positive constants that determine the 

rate of the exponential decay from the boundary and the interior grid lines. Small values (e.g., 

0.2) lead to the slow decay of the source terms, which means that the geometry of the initial grid 

lines and outer boundary will affect deeper into the grid field. However, small values will also 

cause the problem that the numerical convergence will be more difficult at the same time. Large 

values (e.g., 0.7) have the opposite effects. If the values are too large, the effect of the source 

terms will be negligible, and the governing equation becomes the Laplace equation inside the 

grid region. The default value of the exponential decay factors is 0.4.  

 

3.3 Governing Equations of Elliptic Surface Grid Generation  

 The governing equation for elliptic grid generation on a curved surface is an extension 

based on that in two-dimension, which is given as  

𝛼𝑥𝜉𝜉 − 2𝛽𝑥𝜉𝜂 + 𝛾𝑥𝜂𝜂 = −𝐽
2(𝑃𝑥𝜉 + 𝑄𝑥𝜂) (3.5𝑎) 

𝛼𝑦𝜉𝜉 − 2𝛽𝑦𝜉𝜂 + 𝛾𝑦𝜂𝜂 = −𝐽2(𝑃𝑦𝜉 + 𝑄𝑦𝜂) (3.5𝑏) 

𝛼𝑧𝜉𝜉 − 2𝛽𝑧𝜉𝜂 + 𝛾𝑧𝜂𝜂 = −𝐽
2(𝑃𝑧𝜉 + 𝑄𝑧𝜂) (3.5𝑐) 
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and the Jacobian matrix becomes to 

𝐽 = |

𝑥𝜉 𝑦𝜉 𝑧𝜉
𝑥𝜂 𝑦𝜂 𝑧𝜂
�̂�1 �̂�2 �̂�3

| (3.6) 

where �̂� = (�̂�1, �̂�2, �̂�3)
𝑇 is the local unit surface normal. For a parameterized surface (

𝑥
𝑦
𝑧
) =

𝑓(𝑢 𝑣), the surface normal can be computed as 

(�̂�1, �̂�2, �̂�3)
𝑇 =

�⃗⃗�

|�⃗⃗�|
=
1

|�⃗⃗�|
(

𝑦𝑢𝑧𝑣 − 𝑧𝑢𝑦𝑣
𝑧𝑢𝑥𝑣 − 𝑥𝑢𝑧𝑣
𝑥𝑢𝑦𝑣 − 𝑦𝑢𝑥𝑣

) (3.7𝑎) 

|�⃗⃗�| = (𝑦𝑢𝑧𝑣 − 𝑧𝑢𝑦𝑣)
2 + (𝑧𝑢𝑥𝑣 − 𝑥𝑢𝑧𝑣)

2 + (𝑥𝑢𝑦𝑣 − 𝑦𝑢𝑥𝑣)
2 (3.7𝑏) 

The choice of inhomogeneous terms 𝑃 and 𝑄 for elliptic surface grid generation will be the same 

as for elliptic planar grid generation. 

 

3.4 Governing Equations of Elliptic Volume Grid Generation 

 For a three-dimensional elliptic grid, it is required that the mapping between 𝜉, 휂, 휁, and 

𝑥, 𝑦, 𝑧 satisfy the Poisson equation (Sorenson [33]) 

𝜉𝑥𝑥 + 𝜉𝑦𝑦 + 𝜉𝑧𝑧 = 𝑃 (3.8a) 

휂𝑥𝑥 + 휂𝑦𝑦 + 휂𝑧𝑧 = 𝑄 (3.8b) 

휁𝑥𝑥 + 휁𝑦𝑦 + 휁𝑧𝑧 = 𝑅 (3.8c) 

Equations 3.8 are solved using transform equation, which becomes 

𝛼11𝑟𝜉𝜉 + 𝛼22𝑟𝜂𝜂 + 𝛼33𝑟𝜁𝜁 + 2(𝛼12𝑟𝜉𝜂 + 𝛼13𝑟𝜉𝜁 + 𝛼23𝑟𝜂𝜁) = −𝐽
2(𝑃𝑟𝜉 + 𝑄𝑟𝜂 + 𝑅𝑟𝜁) (3.9𝑎) 
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where 

𝑟 = [𝑥, 𝑦, 𝑧]𝑇 (3.9𝑏) 

 𝛼𝑖𝑗 = ∑ 𝛾𝑚𝑖𝛾𝑚𝑗

3

𝑚=1

(3.9𝑐) 

𝛾𝑖𝑗 is ijth cofactor of the matrix M 

M = |

𝑥𝜉 𝑥𝜂 𝑥𝜁
𝑦𝜉 𝑦𝜂 𝑦𝜁
𝑧𝜉 𝑧𝜂 𝑧𝜁

| (3.9𝑑) 

and J is the determinant of M, i.e.                    

𝛼11 = (𝑦𝜂𝑧𝜁 − 𝑧𝜂𝑦𝜁)
2
+ (𝑧𝜂𝑥𝜁 − 𝑥𝜂𝑧𝜁)

2
+ (𝑥𝜂𝑦𝜁 − 𝑦𝜂𝑥𝜁)

2
(3.9𝑒) 

𝛼22 = (𝑦𝜉𝑧𝜁 − 𝑧𝜉𝑦𝜁)
2
+ (𝑧𝜉𝑥𝜁 − 𝑥𝜉𝑧𝜁)

2
+ (𝑥𝜉𝑦𝜁 − 𝑦𝜉𝑥𝜁)

2
(3.9𝑓) 

𝛼33 = (𝑦𝜉𝑧𝜂 − 𝑧𝜉𝑦𝜂)
2
+ (𝑧𝜉𝑥𝜂 − 𝑥𝜉𝑧𝜂)

2
+ (𝑥𝜉𝑦𝜂 − 𝑦𝜉𝑥𝜂)

2
(3.9𝑔) 

𝛼12 = −(𝑦𝜂𝑧𝜁 − 𝑧𝜂𝑦𝜁)(𝑦𝜉𝑧𝜁 − 𝑧𝜉𝑦𝜁) − (𝑧𝜂𝑥𝜁 − 𝑥𝜂𝑧𝜁)(𝑧𝜉𝑥𝜁 − 𝑥𝜉𝑧𝜁)

−(𝑥𝜂𝑦𝜁 − 𝑦𝜂𝑥𝜁)(𝑥𝜉𝑦𝜁 − 𝑦𝜉𝑥𝜁) (3.9ℎ)
 

𝛼13 = (𝑦𝜂𝑧𝜁 − 𝑧𝜂𝑦𝜁)(𝑦𝜉𝑧𝜂 − 𝑧𝜉𝑦𝜂) + (𝑧𝜂𝑥𝜁 − 𝑥𝜂𝑧𝜁)(𝑧𝜉𝑥𝜂 − 𝑥𝜉𝑧𝜂)

+(𝑥𝜂𝑦𝜁 − 𝑦𝜂𝑥𝜁)(𝑥𝜉𝑦𝜂 − 𝑦𝜉𝑥𝜂) (3.9𝑖)
 

𝛼23 = −(𝑦𝜉𝑧𝜁 − 𝑧𝜉𝑦𝜁)(𝑦𝜉𝑧𝜂 − 𝑧𝜉𝑦𝜂) − (𝑧𝜉𝑥𝜁 − 𝑥𝜉𝑧𝜁)(𝑧𝜉𝑥𝜂 − 𝑥𝜉𝑧𝜂)

−(𝑥𝜉𝑦𝜁 − 𝑦𝜉𝑥𝜁)(𝑥𝜉𝑦𝜂 − 𝑦𝜉𝑥𝜂) (3.9𝑗)
 

In this elliptic grid generation approach, the choice of inhomogeneous terms will affect the grid 

results. From Sorenson’s paper [33], the term P is chosen as 
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𝑃(𝜉, 휂, 휁) = ∑𝑃𝑛(𝜉, 휂, 휁)

6

𝑛=1

(3.10) 

where n refers to the face number of the computational cube, 1 ≤ 𝑛 ≤ 6. Face 1, for example, is 

the face where 𝜉 is fixed at zero. And term 𝑃1 is given as  

𝑃1(𝜉, 휂, 휁) = 𝑝1(휂, 휁)𝑒
−𝑎𝜉 (3.11) 

where a is a positive constant. It can be seen that on face 1, the exponential factor becomes one, 

and terms 𝑃2 through 𝑃6 are almost of no effect. Therefore, on face 1, inhomogeneous term 𝑃 

will reduce to just 𝑝1. Term 𝑃2 through 𝑃6 are found similarly in order to get the source terms on 

the other computational cubic faces. Terms Q and R are identical in form. 

 

3.5 Boundary Conditions for Elliptic Grid Generation 

3.5.1 Boundary Conditions for Elliptic Planar Grid Generation 

 The system of partial differential equations talked in Chapter 3.2 can be solved for a 

specific set of boundary conditions. First, if we want to control the spacing neat the body curve, 

we can specify the distance as 

𝑠𝜂|𝑘=1 = (𝑥𝜂
2 + 𝑦𝜂

2)
𝑘=1

1/2
(3.12) 

The second geometric requirement is the angle of the intersection between the body and the ξ = 

constant line. This angle is also able to be defined by users. Generally, CFD researchers want 

grid lines to be orthogonal to the body curve that the angle should be set as 90°. From the 

definition of the dot product, the angle 휃 is defined by 

(∇𝜉 ∙ ∇휂)𝑘=1 = (|∇𝜉||∇휂|𝑐𝑜𝑠휃)𝑘=1 (3.13) 
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Expanding, we have 

(𝜉𝑥휂𝑥 + 𝜉𝑦휂𝑦)𝑘=1 = [(𝜉𝑥
2 + 𝜉𝑦

2)
1
2(휂𝑥

2 + 휂𝑦
2)
1
2𝑐𝑜𝑠휃]

𝑘=1

(3.14) 

Applying the transformation Equations 3.2 to Equation 3.14 yields 

(−𝑦𝜂𝑦𝜉 − 𝑥𝜂𝑥𝜉)𝑘=1
= [(𝑦𝜂

2 + 𝑥𝜂
2)
1
2(𝑦𝜉

2 + 𝑥𝜉
2)
1
2𝑐𝑜𝑠휃]

𝑘=1

(3.15) 

Combining those two Equations 3.12 and 3.15, we can find the derivatives 𝑥𝜂 , 𝑦𝜂 at the inner 

boundary as. 

𝑥𝜂|𝑘=1 = [
𝑠𝜂(𝑥𝜉𝑐𝑜𝑠휃 − 𝑦𝜉𝑠𝑖𝑛휃)

(𝑥𝜉2 + 𝑦𝜉2)
1/2

]

𝑘=1

(3.16a) 

𝑦𝜂|𝑘=1 = [
𝑠𝜂(−𝑦𝜉𝑐𝑜𝑠휃 + 𝑥𝜉𝑠𝑖𝑛휃)

(𝑥𝜉2 + 𝑦𝜉2)
1/2

]

𝑘=1

(3.16b) 

Then on the body curve, Equations 3.4 becomes: (𝑘 = 휂 + 1, 𝑗 = 𝜉 + 1) 

𝑃(𝜉, 0) = 𝑝(𝜉) (3.17𝑎) 

𝑄(𝜉, 0) = 𝑞(𝜉) (3.17𝑏) 

Solving Equations 3.3 and 3.17, we have 

𝑝(𝜉) = (
𝑦𝜂𝑅1 − 𝑥𝜂𝑅2

𝐽
)
𝑘=1

(3.18𝑎) 

𝑞(𝜉) = (
−𝑦𝜉𝑅1 + 𝑥𝜉𝑅2

𝐽
)
𝑘=1

(3.18𝑏) 

where 
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𝑅1 = [
−(𝛼𝑥𝜂𝜂 − 2𝛽𝑥𝜉𝜂 + 𝛾𝑥𝜉𝜉)

𝐽2
]
𝑘=1

(3.18𝑐) 

𝑅2 = [
−(𝛼𝑦𝜂𝜂 − 2𝛽𝑦𝜉𝜂 + 𝛾𝑦𝜉𝜉)

𝐽2
]
𝑘=1

(3.18𝑑) 

Similar equations can be obtained for 𝑟(𝜉) and 𝑠(𝜉) at the outer boundary where 𝑘 = 𝑘𝑚𝑎𝑥. 

 In practice, in order to increase the stability of the algorithm, relaxation parameters and 

limitation factors, given by Reese L. Sorenson [30], have been added to solve the source terms  

𝑝(𝑛+1) = 𝑝(𝑛) + 𝑆𝐼𝐺𝑁 [𝑚𝑖𝑛 (𝜔𝑝|𝑝 − 𝑝
(𝑛)|, 𝑝𝑙𝑖𝑚𝑚𝑎𝑥(|𝑝

(𝑛)|, 1)) , 𝑝 − 𝑝(𝑛)] (3.19) 

where the SIGN function gives the magnitude of the first argument and the sign of the second 

argument.  𝑝𝑙𝑖𝑚 is the limitation factor that controls the change of P in the first several iterations. 

𝜔𝑝 is the relaxation parameter that controls the change of P in the rest iterations, which is 

restricted as 0 < 𝜔𝑝 < 1. Similar procedures are used for 𝑞(𝑛+1), 𝑟(𝑛+1) and 𝑠(𝑛+1). The default 

value of the limitation factor is 1, and the default value of the relaxation parameter is 0.3. 

Increasing these factors may lead to more rapid convergence, but it may also cause numerical 

instability, and the results will blow up. If such a case happens, smaller values of the limitation 

factors and the relaxation parameters should be selected to recalculate the grids.  

 It should also be noticed that the source terms p, q, r, and s calculated using the equations 

above would be significantly large when dealing with points at sharp corners, which would cause 

instability. At such points, the computed value of the source terms p, q, r, and s should be 

replaced by the average values on either side of the points. This procedure would give smaller 

values of source terms at sharp corners, and thus a more stable grid result can be achieved. The 
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criteria of the sharp corner, in this case, is defined as the internal angle is smaller than 
2𝜋

3
 or 

larger than 
4𝜋

3
. 

 In order to calculate p, q, r, and s, it is necessary to get all the values of the derivatives 

appearing in Equations 3.18. At the inner and outer boundaries, x, y, and 휂 are fixed while 𝜉 

varies. We can directly calculate 𝑥𝜉 , 𝑦𝜉 , 𝑥𝜉𝜉  and 𝑦𝜉𝜉  by finite differencing boundary points. 𝑥𝜂 

and 𝑦𝜂 can be calculated using equation 3.16 with given 휃 and 𝑠𝜂 as input. 𝑥𝜉𝜂 and 𝑦𝜉𝜂 can also 

be solved by differencing 𝑥𝜂 and 𝑦𝜂 with respect to 𝜉. The only unknown terms in Equations 

3.18 are 𝑥𝜂𝜂 and 𝑦𝜂𝜂 which can be computed by Taylor expansion as 

𝑥𝜂𝜂|𝑘=1 =
−7𝑥|𝑘=1 + 8𝑥|𝑘=2 − 𝑥|𝑘=3

2(Δ휂)2
−
3𝑥𝜂|𝑘=1

Δ휂
(3.20𝑎) 

𝑦𝜂𝜂|𝑘=1 =
−7𝑦|𝑘=1 + 8𝑦|𝑘=2 − 𝑦|𝑘=3

2(Δ휂)2
−
3𝑦𝜂|𝑘=1

Δ휂
(3.20𝑏) 

 With all the equations given above, we can finally solve the Poisson equations iteratively.  

The general iterative procedure can be described as follows: 

1. Give the body shape an appropriate outer boundary and an initial guess for all grid points 

by linear interpolation between inner and outer boundary grid points. 

2. Set the value for 휃, 𝑠𝜂, a, b, c, and d at body curve and outer boundary and compute first 

and second order derivates. 

3. Use the initial setting or the previous results to compute 𝑥𝜂 and 𝑦𝜂. 

4. Compute p, q, r, and s using values got from step 1 and 2. 

5. Compute source terms P and Q for all grid points. 
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6. Solve the partial differential Equation 3.3 numerically using one step successive line 

over-relaxation (SLOR) technique. Block tridiagonal matrix is generated for each line and is 

solved by the Thomas algorithm. 

7. Repeat 2-6 until the error comes to the tolerance. 

After adding the source terms, the result from the previous square shape example becomes as 

Figure 27  

 

(a) Far field view 

 

(b) Close-up view 

Figure 27: Grids around a square shape using Poisson equations. 

From Figure 27, it can be seen that the orthogonality near the body curve has been achieved, and 

gridlines cluster towards the body curve. Therefore, the geometry requirements for CFD research 

have been satisfied. 

 The direction of lines in SLOR (step 6) is a topic that needs to be mentioned. One can use 

the lines in the 𝜉 direction or the 휂 direction, or even both directions (e.g., changing line 

direction in every other iteration), and the computational speed and stability might be different 

based on the choice of the direction. This phenomenon can be explained by analyzing the 

transformed Poisson equation. When taking the difference scheme for Equations 3.3, a 

tridiagonal matrix is made with the value (−2 ∗ (𝛼 + 𝛾)) on the diagonal and 2 ∗ 𝛼 off-diagonal 

if the lines run in 𝜉 xi direction (2 ∗ 𝛾 if the lines run in 휂 xi direction). If the aspect ratio on the 
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inner boundary is smaller than one, i.e., 𝛼 < 𝛾, making equations along 𝜉 direction will 

maximize diagonal dominance and thereby increase numerical stability compared with that along 

𝛾 direction. However, smaller off-diagonal values also mean that the grid points can hardly be 

affected by their neighbor points, and thus more iterations are required for the equations to 

converge. Opposite effects occur for lines running in 휂 xi direction. Several tests about 

convergence speed are computed in Table 4. It can be seen from this table that taking SLOR in 휂 

direction is significantly faster when the aspect ratio is less than unity, and the computational 

speed for SLOR in both directions lies in the middle. 
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Table 4: Convergence speed for different line directions in SLOR 

Case 

number 

Case 

name 

Number 

of layers 

Stretching 

ratio 

Average 

aspect 

ratio 

SLOR in 

𝜉 

direction 

(s) 

SLOR in 

휂 

direction 

(s) 

SLOR in 

both 

directions 

(s) 

1 

Y-

shaped 

body 

30 1.2 0.11 3.351 1.076 1.361 

2 

Y-

shaped 

body 

30 1.1 0.11 3.12 0.214 0.291 

3 

Y-

shaped 

body 

45 1.1 0.11 11.262 1.369 2.203 

4 

Y-

shaped 

body 

(Fine 

grids) 

30 1.1 0.21 6.193 1.019 1.33 

5 

Z-

shaped 

body 

30 1.1 0.19 2.112 0.178 0.304 

6 

Z-

shaped 

body 

45 1.1 0.19 9.217 0.553 0.847 

 Note: Cases are compiled and run in Clion software from JetBrains on a laptop with 

Windows 10 operating system, Intel(R) Core i7-7700HQ CPU 2.80 GHz processor, and 16GB 

RAM. Outer boundaries and points distribution along the boundaries are calculated based on the 
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hyperbolic grid generation result with the given stretching ratio. Grid spacing along the initial 

curve is reduced by half for fine grids (case 4).  

 Another statement of the elliptic grid generation scheme that can be put forward is that 

the computational time increases significantly as the grid size escalates. Comparing results in 

case 2 and case 3 (same for case 5 and case 6), we find that adding the number of grid layers by 

50% will increase computational time several times. This phenomenon is quite different from the 

hyperbolic grid generation scheme, for which the computational time is almost linearly related to 

the number of grid layers. It will also take much more computational time if the number of grid 

points increases by comparing case 2 and 4. 

 

3.5.2 Boundary Conditions for Elliptic Surface Grid Generation 

 For the grid generation on a curved surface, the equation for spacing control at the inner 

boundary is given as  

𝑠𝜂
2|𝑘=1 = (𝑥𝜂

2 + 𝑦𝜂
2 + 𝑧𝜂

2)|𝑘=1 (3.21) 

The orthogonality gives 

(𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 + 𝑧𝜉𝑧𝜂)|𝑘=1 = 0 (3.22) 

Another constraint added for the surface grid is that the grid lines should be perpendicular to the 

surface normal 

(�̂�1𝑥𝜂 + �̂�2𝑦𝜂 + �̂�3𝑧𝜂)|𝑘=1 = 0 (3.23) 

where �̂� = (�̂�1, �̂�2, �̂�3)
𝑇 is the local unit surface normal. 
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Combining Equation 3.22 and 3.23, we can get 

[(𝑥𝜉�̂�3 − 𝑧𝜉�̂�1)𝑥𝜂]|𝑘=1 = [(𝑧𝜉�̂�2 − 𝑦𝜉�̂�3)𝑦𝜂]|𝑘=1 (3.24𝑎) 

[(𝑦𝜉�̂�1 − 𝑥𝜉�̂�2)𝑦𝜂]|𝑘=1 = [(𝑥𝜉�̂�3 − 𝑧𝜉�̂�1)𝑧𝜂]|𝑘=1 (3.24𝑏) 

[(𝑧𝜉�̂�2 − 𝑦𝜉�̂�3)𝑧𝜂]|𝑘=1 = [(𝑦𝜉�̂�1 − 𝑥𝜉�̂�2)𝑥𝜂]|𝑘=1 (3.24𝑐) 

Taking Equation 3.24 into Equation 3.21, we have 

𝑥𝜂|𝑘=1 = [(1 +
(𝑥𝜉�̂�3 − 𝑧𝜉�̂�1)

2
+ (𝑦𝜉�̂�1 − 𝑥𝜉�̂�2)

2

(𝑧𝜉�̂�2 − 𝑦𝜉�̂�3)
2 )

−
1
2

𝑠𝜂]

𝑘=1

(3.25𝑎) 

𝑦𝜂|𝑘=1 = [(1 +
(𝑦𝜉�̂�1 − 𝑥𝜉�̂�2)

2
+ (𝑧𝜉�̂�2 − 𝑦𝜉�̂�3)

2

(𝑥𝜉�̂�3 − 𝑧𝜉�̂�1)
2 )

−
1
2

𝑠𝜂]

𝑘=1

(3.25𝑏) 

𝑧𝜂|𝑘=1 = [(1 +
(𝑧𝜉�̂�2 − 𝑦𝜉�̂�3)

2
+ (𝑥𝜉�̂�3 − 𝑧𝜉�̂�1)

2

(𝑦𝜉�̂�1 − 𝑥𝜉�̂�2)
2 )

−
1
2

𝑠𝜂]

𝑘=1

(3.25𝑐) 

Like the elliptic planar grid generation, the governing equation of elliptic surface grid generation 

at the inner boundary (휂 = 0) is given as 

𝑃(𝜉, 0) = 𝑝(𝜉) (3.26𝑎) 

𝑄(𝜉, 0) = 𝑞(𝜉) (3.26𝑏) 

𝑝(𝜉) and 𝑞(𝜉) can then be computed by taking all the derivatives into Equation 3.5. However, 

since there are three equations and only two unknown variables, the normal equation is also 
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applied here to get a set of results that best fit all three equations. A matrix form for solving 𝑝(𝜉) 

and 𝑞(𝜉) is given as 

[

𝑥𝜉 𝑥𝜂
𝑦𝜉 𝑦𝜂
𝑧𝜉 𝑧𝜂

]

𝑘=1

(
𝑝(𝜉)

𝑞(𝜉)
) = − [

1

𝐽2
(

𝛼𝑥𝜉𝜉 − 2𝛽𝑥𝜉𝜂 + 𝛾𝑥𝜂𝜂
𝛼𝑦𝜉𝜉 − 2𝛽𝑦𝜉𝜂 + 𝛾𝑦𝜂𝜂
𝛼𝑧𝜉𝜉 − 2𝛽𝑧𝜉𝜂 + 𝛾𝑧𝜂𝜂

)]

𝑘=1

(3.27) 

Once 𝑝(𝜉) and 𝑞(𝜉) are calculated, they can be taken into Equation 3.5 to update grid points and 

derivatives by one step successive line over-relaxation (SLOR). The choice of line direction is 

the same as elliptic planar grid generation. 

 

3.5.3 Boundary Conditions for Elliptic Volume Grid Generation 

 The geometry constraints for the three-dimensional elliptic grid generation are imposed 

on the lines in 휁 direction which intersects face. First, the lines in 휁 direction should be normal to 

the surface, i.e., normal to the lines in 𝜉 and 휂 direction. Second, the length along 휁 direction 

must be controlled. These constrain at the inner boundary can be expressed in algebraic form as 

(𝑥𝜉𝑥𝜁 + 𝑦𝜉𝑦𝜁 + 𝑧𝜉𝑧𝜁)|𝑘=1 = 0 (3.28a) 

(𝑥𝜂𝑥𝜁 + 𝑦𝜂𝑦𝜁 + 𝑧𝜂𝑧𝜁)|𝑘=1 = 0 (3.28b) 

𝑠𝜁
2|𝑘=1 = (𝑥𝜁

2 + 𝑦𝜁
2 + 𝑧𝜁

2)|𝑘=1 (3.28c) 

From these equations, expressions can be obtained using cofactors mentioned in Equation 3.9, 

which is given as 

𝑥𝜁|𝑘=1 =
𝛾13𝑠𝜁

±√𝛾13
2 + 𝛾23

2 + 𝛾33
2

(3.29𝑎) 
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𝑦𝜁|𝑘=1 =
𝛾23𝑠𝜁

±√𝛾13
2 + 𝛾23

2 + 𝛾33
2

(3.29𝑏) 

𝑧𝜁|𝑘=1 =
𝛾33𝑠𝜁

±√𝛾13
2 + 𝛾23

2 + 𝛾33
2

(3.29𝑐) 

The positive sign for the radical is chosen for a right-handed coordinate system. This set of 

derivatives can be differenced with respect to 𝜉 and 휂 to obtain the 𝜉휁 and 휂휁 mixed second-

partial derivatives. 휁휁 second-partial derivative can be computed in the same form as Equation 

3.20. These derivatives can be used to solve for 𝑝1, 𝑞1, and 𝑟1 in Equation 3.11, and 𝑃1, 𝑄1, 

and 𝑅1 are then known. Terms 𝑃𝑛, 𝑄𝑛, and 𝑅𝑛 for 2 ≤ 𝑛 ≤ 6 are found similarly. 

 

3.6 Sample Results 

 Several examples of elliptic grid generation in two dimensions, including on a planar face 

and on a curved surface, and elliptic grid generation in three dimensions are presented in this 

section. The first case uses points on a circle as outer boundary points, and the rest cases use the 

results from hyperbolic grid generation to calculate the outer boundary. 
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                          (a) Far field view                                          (b) Close-up view 

Figure 28: Case 1. Elliptic planar grid generation around Y-shaped body 

 

Figure 29: Case 2. Elliptic planar grid generation around Z-shaped body. 
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Figure 30: Case 3. Elliptic surface grid generation from a curve 

 

Figure 31: Case 4. Elliptic surface grid generation around U-shaped body 
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                          (a) Far field view                                          (b) Close-up view 

Figure 32: Case 5. Slices of elliptic volume grid starting from a curve. 

 

                          (a) Far field view                                          (b) Close-up view 

Figure 33: Case 6. Slices of elliptic volume grid around U-shaped body 

 The computational time for these cases is listed in Table 5. It can be seen that the 

computational speed is much slower compared with that using the hyperbolic scheme. But the 

grid lines do not overlap in any of these cases. 
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Table 5: Computational time of grid generation using the elliptic scheme 

Case 

number 

Name Grid type Grid size 

Computational 

time (s) 

1 Y-shaped body Planar grid 46×48 1.369 

2 Z-shaped body Planar grid 23×36 1.937 

3 Curve Volume grid 21×62 0.067 

4 U-shaped body Surface grid 21×66 2.471 

5 Curve Volume grid 41×62×21 2.500 

6 U-shaped body Volume grid 41×66×21 26.872 

Note: Computational time may be different on different software and operating system. 

The first two cases are compiled run in Clion software from JetBrains, and the last four 

cases are compiled and run in x64 Native Tools Command Prompt for VS 2019 from 

Visual Studio on a laptop with Windows 10 operating system, Intel(R) Core i7-7700HQ 

CPU 2.80 GHz processor, and 16GB RAM. 

 

 3.6 Comments for elliptic grid generation 

 The main problem of the elliptic grid generation scheme is that the computational speed 

is relatively slow compared with hyperbolic grid generation because the grids are computed 

iteratively, and every grid point needs to be updated in each iteration. Several limitation factors 

are utilized to increase the stability of the scheme, but they will also reduce the speed at the same 

time. Besides, the problem of computational speed will be significantly amplified if the number 

of grid points and the number of grid layers are large.  
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 Although using the elliptic technique to generate grids seems to work on any geometry 

shape, there are still some situations that can lead to convergence failure for the elliptic grid 

generation scheme in practice. The most likely reason for elliptic grid generation failure is that a 

physically impossible situation is made based on a given number of layers, initial spacing at the 

inner and outer boundary, exponential factors, and the size of the outer boundary. In other words, 

the region defined by the outer boundary is too big for the grids, which have small initial spacing 

and exponential factors, to fill in within the few numbers of layers. In this case, more layers of 

grids, larger initial spacing, larger exponential factors, the smaller size of the outer boundary, or 

any combination of these would be suggested to deal with the problem. On the other hand, too 

many layers of grid lines and too small size of outer boundary will invalidate the definition of 

initial spacing and exponential factors, leaving a nearly equally spaced grid. Therefore, these 

parameters should be appropriately selected in order to generate a useful grid.  
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4.  Combined Scheme 

 The idea of the combined scheme is to take advantage of both grid generation techniques, 

i.e., the grid can be generated fast as the hyperbolic scheme, and the grid can work on any 

boundary shape as the elliptic scheme. Based on the discussion in Chapter 2, we can find the 

main problems of the hyperbolic grid generation. Therefore, we come up with a new method that 

uses hyperbolic grid generation to get a profile of the grid and makes some corrections at the 

places where hyperbolic grid generation works poorly, i.e., where grid overlapping or grid 

clustering occurs by the elliptic grid generation method, which is introduced in Chapter 3. 

 The general procedure of the combined scheme is: 

1. Generate grids with the hyperbolic scheme to get a mesh with “bad” points 

2. Detect the “bad” points and cut them out 

3. Generate an outer boundary and generate grids in the revised area by elliptic grid generation 

method  

4. Revise the outer boundary and redo the grid generation until converge criterion is satisfied 

5. Revise the intersection regions between hyperbolic and elliptic grids 

 By using the combined scheme, a default smoothing coefficient for hyperbolic grid 

generation can be applied because it is unnecessary to make all grids work. The definition of the 

outer boundary for the elliptic grid generation method is also not required since we can calculate 

it with the help of the result from hyperbolic grid generation. Therefore, user input about the 

procedure for grid generation can be eliminated. 
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4.1 Bad Points Detection 

 One of the essential steps in the combined scheme is to know where we should keep the 

result from hyperbolic grid generation and where we need to fix the grids by elliptic techniques, 

i.e., to detect the “bad” points that tangle with other grid points. First, a good grid cell should be 

a simple quadrilateral, in which the corners of the cell are convex corners and edges cannot 

intersect with each other. Any grid point that fails to pass this criterion will be viewed as bad 

points, and the elliptic technique will be applied in those areas. An example figure about 

gridlines twisting is shown in Figure 34 (a). In this picture, red lines are the hyperbolic grid lines 

calculated based on the grid lines on the bottom left. Line ab and cd are two grid lines along 휂 

direction. Points along line ab and line cd can be written as 

�⃗�𝑎 = (1 − 𝑠)𝑟𝑎 + 𝑠𝑟𝑏 (4.1𝑎) 

�⃗�𝑐 = (1 − 𝑡)𝑟𝑐 + 𝑡𝑟𝑑 (4.1𝑏) 

where 𝑠 and 𝑡 are the parameters along the grid lines. If we let �⃗�𝑎 = �⃗�𝑐, we can have the 

intersection of the two grid lines, and if both s and t are in the range from 0 to 1, we can define 

these points as bad points. Similar equations can be applied along 𝜉 direction.  

 Except for the situation mentioned above, we also need to see if grid lines twists due to 

the geometry of the initial curve, i.e., the grid lines self-intersect in a concave corner even though 

each grid cell looks good. Another example of self-intersection is presented in Figure 34 (b). In 

this case, we can use the same equations as above but apply them on every two grid lines along 𝜉 

direction in the same layer but not consecutive. Once we find an intersection point, we will treat 

all points from Point a to Point d as bad points. 
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(a) Gridlines twisting                                     

 

(b) Self-intersection                                     

Figure 34: Different kinds of bad points in hyperbolic grid generation 

 Equation 4.1 is relatively straightforward to find an intersection point on a plane. For the 

surface grids and the volume grids where the grid lines are typically not coplanar, we can use 

pseudoinverse or normal equations to solve the parameters in Equation 4.1, and it will give the 

closest points on the two grid lines instead of the intersection point. However, we should also 

check the distance of the two closest points (minimum distance of two grid lines) to see if the 
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lines really “intersect,” i.e., the distance is smaller than a critical value. In this paper, the critical 

values for gridline twisting 𝑐𝑔𝑡  and self-intersection 𝑐𝑠𝑖 are set as 

𝑐𝑔𝑡 = 0.5 ∗ min(|𝑟𝜉⃗⃗⃗⃗ |, |𝑟𝜂⃗⃗⃗ ⃗|) (4.2𝑎) 

𝑐𝑠𝑖 = 10 ∗ |𝑟𝜉⃗⃗⃗⃗ | (4.2𝑏) 

where |𝑟𝜉⃗⃗⃗⃗ | and |𝑟𝜂⃗⃗⃗ ⃗| are the length of the local grid line along 𝜉 and 휂 respectively. Sometimes 

two grid lines are quite far away from each other, and there is no chance to “intersect.” Therefore, 

a precheck about the bounding boxes of the two grid lines can be applied before finding the 

intersection point using the following inequations 

𝑚𝑎𝑥(𝑟𝑖,𝑎, 𝑟𝑖,b) < 𝑚𝑖𝑛(𝑟𝑖,𝑐, 𝑟𝑖,𝑑) (4.3𝑎) 

𝑚𝑎𝑥(𝑟𝑖,𝑐, 𝑟𝑖,𝑑) < 𝑚𝑖𝑛(𝑟𝑖,𝑎, 𝑟𝑖,𝑏) (4.3𝑏) 

where 𝑖 = 1, 2, 3 refers to the x, y, and z component of each point, respectively. This set of 

inequalities refers that if the coordinate component of all points on one grid line is smaller (or 

larger) than those on the other, there will not intersect. 

 The bad points detection discussed above is applied after each layer of hyperbolic grid 

generation, and a vector is used to save the position and layer number of the bad points. In order 

to avoid too much grid twisting when generating grids inside a closed loop, we set the maximum 

number of bad points in one layer as half of the total number of the grid points. If the number of 

bad points in one layer exceeds this maximum, we will discard the latest layer of grids and 

terminate hyperbolic grid generation. An example of this criterion is shown in Figure 35 when 

generating hyperbolic grids inward a U-shaped body with a thin neck. All points will be viewed 
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as bad based on the criteria above if we generate one more layer of hyperbolic grids. Thus, the 

grid generation is terminated, and the last layer is removed. 

  

       (a) Overview of the hyperbolic grids generating inward a U-shaped body 

 

       (b) Closed-up view at the neck of the body 

Figure 35: Example for hyperbolic grids generating inward a U-shaped body with a thin neck 

 After finding the bad points using the criteria mentioned above, we can build bad points 

region(s), which include all bad points and are rectangular regions in computational space. Here 

is the same example in Figure 17. The bad points regions are detected and marked in red, shown 

in Figure 36 (a). We can just cut these points out and take elliptic calculation in the blank regions, 

shown in Figure 36 (b). 
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       (a) Hyperbolic grids with bad points marked in red 

 

       (b) Hyperbolic grids with bad points removed 

Figure 36: Example for hyperbolic grids with bad points 

 

4.2 Outer Boundary Definition 

 Before calculating the elliptic grids, we need to define outer boundary points to enclose 

the patching area. One of the choices of defining outer boundary points is to make a quadratic 

Bezier curve. The two endpoints of the Bezier curve are directly derived from the hyperbolic grid 

result, and the control point is the intersection point of the grid lines on the last layer of 

hyperbolic grids, which get through the endpoints. Another example of a hyperbolic grid is 
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shown in Figures 37 (a) and (b), with all bad points removed. We can write an equation of the 

line 𝑃1𝑃2 in a parametric form as 

𝑃𝑎 = 𝑃1 + 𝑠𝑎(𝑃2 − 𝑃1) (4.4𝑎) 

 and the line 𝑃3𝑃4  

𝑃𝑏 = 𝑃4 + 𝑠𝑏(𝑃3 − 𝑃4) (4.4𝑏) 

where 𝑠𝑎 and 𝑠𝑏 are the parameters along line 𝑃1𝑃2 and line 𝑃3𝑃4 separately. Then we can find 

the intersection point 𝑃5 of the two lines by setting 𝑃𝑎 = 𝑃𝑏 and draw a Bezier curve using points 

𝑃2, 𝑃3, and 𝑃5 as 

𝑃 = (1 − 𝑡)2𝑃2 + 𝑡(1 − 𝑡)𝑃5 + 𝑡
2𝑃3,    0 ≤ 𝑡 ≤ 1 (4.5) 

where 𝑡 is the parameter along the curve, and it can be derived by using the same points 

distribution ratio on the initial body curve. Figure 35 (c) and (d) show the calculated outer 

boundary. After setting the outer boundary points, we can then calculate the grids in the patching 

area by the elliptic grid generation scheme.  
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       (a) Hyperbolic grids with bad points removed                   (b) Closed-up view 

 

          (c) Using Bezier curve as outer boundary                     (d) Closed-up view 

Figure 37: Making outer boundary of elliptic grids using quadratic Bezier curve  

 The advantage of using the Bezier curve is that it can make a smooth outer boundary 

curve for the elliptic region where the tangents at each endpoint are the same for both hyperbolic 

and elliptic grids, i.e., 𝐶1 continuous. However, there are several special situations that we need 

to take into account. First, the intersection point may lie on either side of the two grid lines, i.e., 

𝑠𝑎 or 𝑠𝑏 is in the range between 0 and 1. In this case, we can manually enlarge the bad points 

region on the corresponding side and recalculate the intersection point until both 𝑠𝑎 and 𝑠𝑏 are 

greater than one. A good example of this case is the Z-shaped body (Figure 34). It can be seen 
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that the intersection point will lie on the left grid line if we use the method mentioned above (𝑠𝑎 

is about 0.6 in this case). Thus, we need to cut out one column of grids (along 휂 direction) on the 

left of bad points regions and recalculate the outer boundary. The outer boundary after 

recalculation and the elliptic grids are shown in Figure 37 (b). Besides, the intersection point 

may be too far away from the endpoints (the slope of the grid lines are closed) or even does not 

exist (the grid lines are parallel), or the bad points region is on the non-periodic boundary of the 

hyperbolic grids. In any of these cases, we will use a straight line as the outer boundary of the 

elliptic region. This will lead to 𝐶0 continuous at the intersection of hyperbolic and elliptic grids, 

but it is still solvable. 

 

(a) Far-field view                         (b) Closed-up view 

Figure 38: Generate elliptic grids in bad points regions 

 It should also be noticed that some modifications have been applied to the elliptic grid 

generation in the combined scheme. First, the source terms (P, Q, and R) on the outer boundary 

of the elliptic grid generation scheme may lead to the spacing decrease along the direction 

normal to the geometry body near the outer boundary, which is different from the hyperbolic grid 

generation results. Also, orthogonality is not highly required near the outer boundary of the 
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combined scheme. Therefore, only the source terms on the inner boundary are applied in the 

combined grid generation scheme. Second, the source terms in the original elliptic grid 

generation method are calculated based on spacing and orthogonality requirements on the 

boundaries as an approximation of the derivatives in the normal direction. However, in the 

combined scheme, we can get the derivatives in the normal direction more accurately by directly 

differencing the hyperbolic grids nearby. 

 

4.3 Intersection Regions Correction 

 The last step in the combined scheme is to revise the intersection regions (the left and 

right boundary of the patching area) because there is a massive difference in cell sizing between 

hyperbolic grids and elliptic grids. To improve grid quality at that place, we first use neighbor 

points of the left and right boundary as the fixed region and recalculate the grid points by the 

elliptic method. For example, if the elliptic region locates in 𝑎 ≤ 𝑗 ≤ 𝑏, we will recalculate 

points on 𝑗 = 𝑎 using grids 𝑗 = 𝑎 − 1 and 𝑗 = 𝑎 + 1, which are calculated in the previous step. 

Same procedure is applied on 𝑗 = 𝑏. This intersection regions correction can be further applied 

on 𝑗 = 𝑎 + 1  and 𝑗 = 𝑏 − 1 to improve the grid quality if necessary. Since we only need to 

solve one column of points in each step, the computational speed will be much faster compared 

with the main elliptic grids calculation. 

 In our example of grids around Z-shaped body, from Figure 38 (a) and (b), it is clear to 

see that grid size calculated from elliptic grid generation is much smaller than the size of 

hyperbolic grid nearby. But if we recalculate the left and right boundaries of the patching area, as 

shown in Figure 39 (a) and (b), the problem can be reduced. 
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(a)  After connecting curve correction 

 

(b) Closed-up view 

Figure 39: Example for connecting curve correction  

 

4.4 Bad points detector and outer boundary correction in elliptic volume grid generation  

 The basic idea for bad points criteria for three-dimensional grids is an extension of the 

criteria mentioned in Chapter 4.1, which is applied to on the slices of constant 𝜉 face, constant 휂 

face, and constant 휁 face. If a grid point satisfies Equation 4.1 on any slices of three-dimensional 

grids, it will be treated as a bad point. And the bad points will then group into bad point regions 

using the method, which will be discussed in Chapter 4.6. In practice, bad grids are typically 

generated due to the concave corner on the surface grid. Thus, if we combine two surface grids 

and then generate a volume grid and define the intersection curve of the two surfaces as 휂 

direction, it is most likely that bad points occur on the constant 휂 faces. 

 The outer boundary definition of the three-dimensional elliptic region is also an extension 

of the two-dimensional cases. As a matter of fact, outer boundary points are calculated in the 

same way as two-dimensional cases on each constant 휂 face. Transfinite interpolation using the 

good grids on the last layer of the hyperbolic volume grid is another optional choice of outer 

boundary definition. However, we found that the outer boundary may bend into the surface and 
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make negative regions in some cases using such a scheme, and it is thus not preferred. Once the 

outer boundary of the volume grids is defined, the initial guess of the entire grid can be retrieved 

by three-dimensional transfinite interpolation. 

 

4.5 Bad Points Grouping  

 One big problem about bad point detection for volume grids is how to group the bad 

points. In order to apply the elliptic grid generation technique, the bad points region should be 

defined, which can enclose all the bad points and should be as small as possible to reduce the 

computational effort, which is also known as a bounding box. Sometimes the bad points will 

cluster in several regions, and then elliptic grid generation should be applied separately. The side 

boundaries of these regions can be easily found in two-dimensional grids by sweeping each 𝜉 

line. An example of this is shown in Figure 40(a).  

 

       (a) Sketch map of good points in each 𝜉 line           (b) Result of bad points regions 

Figure 40: Bad points Regions Grouping in two-dimensional grids. 
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The curve in the picture refers to the number of good points in each 𝜉 line in computational 

space, i.e., the bad points are above the curve (and below 𝜉𝑚𝑎𝑥). Then bad points regions can be 

easily found by sweeping along the 𝜉 direction, shown in Figure 40 (b). 

 However, this method cannot be achieved easily for a volume grid because sweeping can 

only go in either 𝜉 or 휂 direction while the bad points regions require consecutive bad points in 

both directions. If we combine all the bad points information in the same constant 𝜉 or 휂 line, the 

information from different bad points regions might be blocked or overlapped with each other. 

An example sketch of bad points regions in computational space is shown in Figure 41 (a). In 

this picture, different colors refer to different good (or bad) points along 휁 direction, which is 

supposed to be out of the plane. And the colors other than yellow refers to the existence of bad 

points along 휁 direction. It will be hard to find decent bad points regions if we use the method 

mentioned above. 

 

 (a) Sketch map of bad points in computational space viewed in 휁 direction 
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 (b) First step of finding bad points regions 

 

(c) Second step of finding bad points regions 

Figure 41: Bad points Regions Grouping in three-dimensional grids. 
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 A two-step bad points grouping method is then introduced to find the boundary volume 

of bad points regions. In the first step, we still combine all the bad points information in the same 

constant 𝜉 and 휂 line, but we multiply the results together as the first guess of bad points regions. 

In this case, for example, 2 × 2 = 4 possible bad points regions are found, which is shown in 

Figure 41(b). In the second step, we check every possible bad points region. If no bad points 

exist in the region, the elliptic revise is skipped, and the number of bad points regions will be 

reduced. If bad points are found in the region, the bounding box of the bad points region can be 

further refined by the minimum and maximum 𝜉 and 휂 value of the bad points in this region. The 

final result about bad points regions of the example case is shown in Figure 41 (c) and marked in 

red, in which all bad points are found and grouped into minimum bad point regions. 

 

4.6 Sample Results 

 Grids in two dimensions and three dimensions using the combined grid generation 

scheme are presented in this section. By comparing the result from the hyperbolic scheme with 

that from the combined scheme, we can find that the combined scheme solves the problems 

about grid overlapping and grid clustering successfully, while the hyperbolic scheme may have 

such problems.  



 

95 
 

 

(a) Hyperbolic grid result 

 

(b) Combined scheme result 

 

(c) Close-up view of hyperbolic grid result 

 

(d) Close-up view of the combined scheme 

result 

Figure 42: Grids around a Z-shaped body. 
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 (a) Hyperbolic grid result 

 

(b) Combined scheme result 

Figure 43: Surface grids around a U-shaped body.  

 

(a) Hyperbolic grid result 

 

(b) Combined scheme result 

 

(c) Close-up view of hyperbolic grid result 

 

(d) Close-up view of the combined scheme 

result 

Figure 44: Slices of volume grids around a U-shaped body. 
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4.7 Computational speed 

 The computational speed of these examples by using hyperbolic grid generation, elliptic 

grid generation, and the combined scheme is shown in Table 6. It should be mentioned that the 

results marked with asterisks (hyperbolic grid generation results for cases 2, 4, and 6) are not 

desirable because the grids will cluster or overlap in some places. 

 From the result shown below, it can be seen that the combined scheme takes only a little 

bit more time than hyperbolic grid generation, while the elliptic grid generation method takes 

significant time.  This is because in the combined scheme, most grid points are generated by 

hyperbolic grid generation, and only a few grid points need to be revised by the elliptic method. 

Case 1, 3, and 5 show that all grid points from hyperbolic grid generation are acceptable, and no 

grids need to be revised. Then the combined scheme will use the result from hyperbolic grid 

generation, but it still needs some extra time for bad points detection. 
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Table 6: Comparison of computational time between hyperbolic grid generation, elliptic grid generation, and combined scheme 

Case 

number 
Name Grid Type Grid size 

Hyperbolic 

grid 

generation 

(s) 

Elliptic grid 

generation 

(s) 

Combined 

scheme (s) 

Ratio 

between 

hyperbolic 

and 

combined 

scheme 

Ratio 

between 

elliptic and 

combined 

scheme 

1 
Y-shaped 

body 
Planar grid 46×48 0.007* 1.369 0.108 0.064 12.676 

2 
Z-shaped 

body 
Planar grid 23×36 0.003* 1.937 0.039 0.077* 49.667 

3 Curve Surface grid 21×62 0.007 0.067 0.009 0.778 7.444 

4 
U-shaped 

body 
Surface grid 21×66 0.031* 1.316 0.358 0.087* 3.676 

5 Curve Volume grid 41×62×21 0.243 2.500 0.358 0.679 6.983 

6 
U-shaped 

body 
Volume grid 41×66×21 0.264* 26.872 1.586 0.166* 16.943 

Note: Computational time may be different on different software and operating system. The first two cases are compiled and 

run in Clion software from JetBrains, and the last four cases are compiled are run in x64 Native Tools Command Prompt for 

VS 2019 from Visual Studio on a laptop with Windows 10 operating system, Intel(R) Core i7-7700HQ CPU 2.80 GHz 

processor, and 16GB RAM. 
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5. Application of the Combined Scheme in Engineering 

Sketch Pad (ESP) 

 Engineering Sketch Pad (ESP) is a browser-based system that allows users to interact 

with a configuration by building or modifying the design parameters and feature tree that define 

the configuration. It is explicitly designed to support the analysis and design of aerospace 

vehicles. ESP is built both upon the WebViewer (which is a WebGL-based visualizer for three-

dimensional configurations and data) and upon OpenCSM (which is a constructive solid modeler; 

it, in turn, is built upon the EGADS and OpenCASCADE systems) [12]. With the help of these 

open-source software components and some of the distinguishing features of ESP, the combined 

grid generation scheme can be applied and examined in ESP.  

 

5.1 Edge and Points Information for Grid Generation  

 The first step for automatic near-body grid generation starting from a given geometry is 

to find the intersection curves between different parts and decide the distribution of points along 

the curves. In order to find these intersection curves, attributes in ESP are applied such that all 

faces in the same part, like fuselage, wing, flap, slat, and symmetry plane, are grouped in one 

attribute. By taking these attributes, surface grids will be generated only on the intersection 

curves of different parts. Besides, the surface grids can be generated on different faces as long as 

they are in the same group of attributes. This feature makes it feasible to generate surface grids 

on a complicated geometry. 
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 After finding the intersection curve, the next step is to rearrange the edges along the 

curve. Function EG_makeLoop in Engineering Sketch Pad can be applied to adjust the sequence 

of the edges, but the edges collected by this function may have opposite directions in one loop. 

For a two-dimensional grid, the grid should be on the left-hand side of the edges, or the edges 

should be clockwise to generate a grid outside of the loop. Therefore, any edges which are not 

clockwise should be flipped, which means points distribution on that edge is computed and saved 

back to front. Besides, sometimes even the sequence of the edges is not clockwise and should be 

flipped as well. 

 Once the intersection curve and the sequence of edges are decided, a proper points 

distribution is required to start the grid generation. Equal spacing is generally feasible for a curve 

with no prescription. However, sometimes we want the grids clustered at some points or edges, 

like the leading edge and trailing edge of the wing or the nose and tail of the fuselage. Then 

attributes can also be applied on corresponding Nodes or Edges to mark these distinguishing 

features. Points spacing along the intersection curve will be set smaller where these attributes are 

found and will gradually increase on both sides with a given stretching ratio until a standard size, 

usually the value of equal spacing, is reached. Once all the points on the intersection curve are 

computed, the surface and field grid can then be calculated using the combined grid generation 

scheme. 

 

5.2 Locating and Projecting Grid Points using Tessellation 

 When taking the projection step in generating a hyperbolic surface grid, except for using 

the Jacobian matrix mentioned in Chapter 2.3, the EG_invEvaluate function in ESP is also a 

helpful tool to find the point that is on the reference surface and closest to the calculated point. 
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However, this function is inefficient because it takes iteration to find the point. Besides, if the 

hyperbolic surface grid develops into the other surfaces, the EG_invEvaluate function may need 

to run several times on all the neighbor surfaces to find the closest surface as well as the closest 

point. This is also a problem if we want to use the Jacobian matrix because the parameter 

coordinates are usually different on different surfaces. Plus, it would be unstable to use 

EG_invEvaluate if the point is out of the domain of the surface. 

 To better find the closest points and surfaces for hyperbolic surface grid generation on 

multiple surfaces, tessellation in Engineering Sketch Pad is utilized to help to locate the points. 

Tessellation is a group of unstructured grids on each face. A tessellation contains not only the 

coordinates of the node points and supporting triangle indices but also other data, such as the 

underlying surface parameters for each point and the connectivity of the triangles, assists in 

traversing through dissecting a complex part. However, these kinds of information are counted 

separately on each surface. In order to better utilize the tessellation, the information of nodes, 

edges, and triangles in each face are connected such that nodes and edges can be mapped through 

different faces.  

 Once the mapping among all faces is generated, an extended barycentric coordinate 

system can be applied to locate the grid points. A barycentric coordinate system is usually used 

for points in a two-dimensional plane. When it turns to a surface, the equations of the barycentric 

coordinate system are extended as 

𝑥 = 𝜆1𝑥1 + 𝜆2𝑥2 + 𝜆3𝑥3 (5.1𝑎) 

𝑦 = 𝜆1𝑦1 + 𝜆2𝑦2 + 𝜆3𝑦3 (5.1𝑏) 

𝑧 = 𝜆1𝑧1 + 𝜆2𝑧2 + 𝜆3𝑧3 (5.1𝑐) 
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where 𝜆1, 𝜆2, 𝜆3 are the barycentric coordinates of the point 𝑟 = (𝑥, 𝑦, 𝑧),  𝑟𝑖⃗⃗⃗ = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)  𝑖 =

1,2,3 are the triangle vertices, and 𝜆3 = 1 − 𝜆1 − 𝜆2 since the sum of the barycentric 

coordinates should always be unity. Taking 𝜆3 into Equation 5.1, the system of equations 

becomes 

𝜆1(𝑥1 − 𝑥3) + 𝜆2(𝑥2 − 𝑥3) + 𝑥3 − 𝑥 = 0 (5.2𝑎) 

𝜆1(𝑦1 − 𝑦3) + 𝜆2(𝑦2 − 𝑦3) + 𝑦3 − 𝑦 = 0 (5.2𝑏) 

𝜆1(𝑧1 − 𝑧3) + 𝜆2(𝑧2 − 𝑧3) + 𝑧3 − 𝑧 = 0 (5.2𝑐) 

𝜆1, 𝜆2 (and 𝜆3) can be solved if the Cartesian coordinates of all three nodes in a triangle and the 

Cartesian coordinate of a given point  𝑟 = (𝑥, 𝑦, 𝑧) are given. However, it can be easily found 

that there are two unknowns, but there are three equations, which means these variables are 

overdetermined. Therefore, pseudoinverse or normal matrix is needed to solve for 𝜆1, 𝜆2 (and 

𝜆3). As a matter of fact, this set of barycentric coordinates gives a point in the triangle surface 

and is closest to the given point, which is also the projection of the given point to the triangle 

surface. And if the three barycentric coordinates 𝜆1, 𝜆2 and 𝜆3 are all between 0 and 1, the 

projection point will be in the triangle, and the corresponding surface is the actual projection 

surface. 

 In order to find the actual projection surface, a loop search for all the triangles is 

generally required. However, a better searching method can be applied if a known point and its 

triangle are given. Taking the Cartesian coordinate of the new point and the given triangle nodes 

into Equation 5.2, and if 𝜆1, 𝜆2 and 𝜆3 are all between 0 and 1, the new point is in the given 

triangle. If one of these values is negative, another triangle that shares the edge corresponding to 

this negative barycentric coordinate with the previous triangle should be checked. If there are 
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two negative barycentric coordinates, we can pick either of them and take the same steps. If 

negative values still exist, go to the next neighbor triangle until all the three barycentric 

coordinates are positive. 

 Several points should be pointed out when using the extended barycentric coordinate 

system. First, the uniqueness and existence of the result are not guaranteed in the extended 

scheme. There is a unique mapping between a given point and a projection point for a two-

dimensional planar barycentric coordinate system. However, in the extended barycentric 

coordinate system, a space point may project onto more than one triangle at a concave corner or 

not project onto any of the triangles at a convex corner. In these cases, the projection point is on 

the triangle closest to a previous point (also the first searched) for a concave corner and on the 

intersection edge for a convex corner. 

 Another problem with this procedure is that this projection method may have more than 

one triangle that satisfies the criteria of the barycentric coordinates. Just take a point on a 

cylinder surface as an example. Two triangles can be found with all three coordinates lying 

between 0 and 1: one near this point and one on the opposite side of the cylinder. Therefore, the 

distance between the given point and the projection triangle should be checked, and the triangle 

with the smallest distance should be picked.    

 Besides, the size of the tessellation may affect the result of the projection. A tessellation 

with a smaller size can better represent a curved surface, and thereby the grid can be computed 

more accurately. But if the size of the tessellation is not tiny enough, bad grids could be 

generated at some places. For a surface grid generation, the initial points are evaluated directly 

on the intersection curve, and they are usually not on the edges of the tessellation. This will 

become a problem when generating grids on one side while some points are on the other side. An 
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example is shown in Figure 45. In this picture, green lines refer to the edge of tessellation while 

red lines refer to the initial grid curve for grid generation with two grid points staying on the left 

Face. The problem will happen when generating grids on the right Face because no triangle can 

be found with all three barycentric coordinates 𝜆1, 𝜆2, and  𝜆3 between 0 and 1 for these two 

points and the first layer of grids. This might lead to an incorrect evaluation of the position of the 

points and their normal vectors and then make a bad grid. This problem can be solved by 

reducing the size of the tessellation.   

 

Figure 45: Initial grid curve (red) and the edge of tessellation (green). 

 Sometimes the tessellation cannot represent the geometry of a curved surface exactly, 

which will also lead to a bad grid generation. One particular case about this exists at the nose of 

the fuselage, which is shown in Figure 46 (a). In this case, the grid points fail to project onto 

proper tessellation and make a terrible grid. This failure is because u and v coordinates work like 

polar coordinates and the nose point is a singular point. The v coordinate could be any value 

from 0 to 𝜋 at the nose point but only one value is saved in the tessellation and miscalculated in 



 

105 
 

the barycentric coordinate system. To solve this problem, we can search this kind of singular 

point by checking if the intersection angle between 𝜉-lines and 휂-lines is less than 
𝜋

4
 or larger 

than 
3𝜋

4
, or if the grid point in the new layer is too close to that in the previous layer. Once such 

singular points are found, we can recalculate the new projection point by inverse evaluation 

without any guess from tessellation. This check is only applied when calculating the first layer of 

grids, but the points in the rest layers of grids should take inverse evaluation without any guess to 

avoid further miscalculation if they are developed from the singular points. The revised result of 

the case at the nose of the fuselage is shown in Figure 46 (b). 

       

                     (a) Use tessellation only                   (b) Use both tessellation and inverse evaluation 

Figure 46: Grids at the nose of the fuselage. 

 

5.3 Separated grids 

 Smoothing is essential for hyperbolic grid generation, especially for the grids near a 

corner. However, smoothing will also cause problems if the marching direction (휂 direction) of 

the hyperbolic surface grids is along the corner edge. An example is shown in Figure 47 (a). 

Grids are generated at the intersection of blue and pink faces in this case. For the grids on the 

blue faces, grid points at the corner will be smoothed and projected onto a face on either side 
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rather than the corner edge. This will make the grids go through the body and lose the geometry 

information at this corner. In order to avoid this problem, the surface grids can be calculated 

separately on each side of the corner. And the corner edges become boundary conditions of 

surface grids. This forces the grid points to stay on the edges and keeps the shape of the corner. 

The criterion of such a corner is that the normal vectors of the same point on two faces are 

significantly different (with an angle of over 30 degrees). The result after using separate grids is 

shown in Figure 47 (b). 

    

                      (a) One entire grid                                             (b) Separated grids 

Figure 47: Grids around a corner edge. 

 

5.4 Imaginary grid points 

 Generally, the surface grids are generated in the same group of faces. When some grid 

points reach another group of faces, grid generation should be stopped at these points. However, 

surface grids with the same number of grid points in marching direction for all points are 

required in order to calculate a three-dimensional grid. We can terminate grid generation when 
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any point reaches another group of faces, but we can also keep generating grids using imaginary 

points. Imaginary points are the grid results before projecting onto reference surfaces. These 

results will be good enough to generate a smooth surface grid when the curvature of the surface 

is small. For each layer of grid points, differencing and smoothing terms for imaginary points are 

calculated in the same way as that for regular grid points. The only problem is that the normal 

vector cannot be evaluated directly on the surfaces. Then an equation for approximately 

calculating normal vector is derived as 

�⃗⃗�𝑗,𝑘 = {
�⃗⃗�𝑙,𝑘 + (�⃗⃗�𝑗,𝑘−1 − �⃗⃗�𝑙,𝑘−1)

�⃗⃗�𝑟,𝑘 − �⃗⃗�𝑙,𝑘
�⃗⃗�𝑟,𝑘−1 − �⃗⃗�𝑙,𝑘−1

, �⃗⃗�𝑟,𝑘−1 − �⃗⃗�𝑙,𝑘−1 ≠ 0

�⃗⃗�𝑙,𝑘 + (�⃗⃗�𝑗,𝑘−1 − �⃗⃗�𝑙,𝑘−1), �⃗⃗�𝑟,𝑘−1 − �⃗⃗�𝑙,𝑘−1 = 0

(5.3) 

 where 𝑙 and 𝑟 refer to the first points on the left and right sides that are still in the given group of 

faces (regular points), and (𝑘 − 1) refer to the points in the previous layer. 

 Imaginary grid points can be calculated using the approximate normal vector, and the 

grid result is quite reasonable in a few layers of grids. An example is shown in Figure 48, with 

points in the grey region being imaginary grids. However, it should be mentioned that the 

tessellation near the intersection should be fine enough to avoid grid points projecting onto the 

wrong face and to separate regular points and imaginary points clearly. 
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Figure 48: Imaginary grid points (grey region). 

 

5.5 Sample Results of Grid Generation using Engineering Sketch Pad 

 Several examples of grids using combined scheme are presented in this section. In order 

to generate the grids, users need to provide an input file which includes the geometry of the 

configuration, the group number of each surface, along with the essential requirements of the 

surface and volume grids, i.e., number of points along the intersection curve, number of layers, 

initial spacing, and stretching ratio of surface and volume grids. Users will also need to run 

serveCSM in Engineering Sketch Pad to obtain the grids. 

In these examples, different parts in this model are grouped and shown in different colors. 

Surface grids are generated at the intersection of different groups of faces on both sides. Then the 

surface grids are connected, and volume grids are calculated based on those surface grids. 

Sample cases of generating surface volume grids using Engineering Sketch Pad are shown below. 
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5.5.1 Semicylinder case 

 The geometry of the first case is a semicylinder that contains a U-shaped body and a 

cylindrical hole on its curved surface. This case is made up by using Engineering Sketch Pad to 

test the features mentioned in previous sections. Several views of this case are shown in Figure 

49. Other views, including hyperbolic and combined scheme grids, are also shown in Figure 43 

and 44. Different groups of faces are shown in different colors from their neighbor groups. The 

U-shaped body contains concave corners for both surface grids and volume grids, and those are 

the places where the combined scheme applies (Figure 49c). The vertical faces of the U-shaped 

body are not smoothly connected, so the grids should be generated separately to avoid grids 

getting inside the body (Figure 49e). The inclined curve on the semicylinder surface crosses 

several faces, and the tessellation feature can be tested (Figure 49f). The computational time of 

generating surface and volume grids using the combined scheme is shown in Table 7 and Table 8. 

The grid around the U-shaped body is the 8th grid. 

 

(a) Far field front view 
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(b) Far field back view 

      

(c) Grids around U-shaped body 
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(d) Grids at the cylindrical hole 

 

(e) Surface grids on the vertical faces generated separately 
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(f) Surface grids cross different faces in the same group 

Figure 49: Surface and slices of volume grids of semicylinder case. 
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Table 7: Computational time of generating surface grids for semicylinder case 

Grid number Grid Size 

Hyperbolic 

grid 

generation (s) 

Elliptic revise 

(s) 

Total time (s) 

1 41×62 0.023 0 0.023 

2 41×61 0.034 0 0.034 

3 41×62 0.033 0 0.033 

4 41×62 0.035 0 0.035 

5 41×62 0.068 0 0.068 

6 41×62 0.054 0 0.054 

7 41×62 0.064 0 0.064 

8 41×66 0.050 0.327 0.387 

9 41×62 0.049 0 0.049 

10 41×62 0.048 0 0.048 

11 41×62 0.056 0 0.056 

12 41×61 0.061 0 0.061 

13 41×63 0.045 0 0.045 

14 28×65 0.045 0 0.045 

total    1.002 

 

  



 

114 
 

Table 8: Computational time of generating volume grids for semicylinder case 

Grid number Grid Size 

Hyperbolic 

grid 

generation (s) 

Elliptic revise 

(s) 

Total time (s) 

1 41×62×21 0.358 0 0.358 

2 41×61×21 0.353 0 0.353 

3 41×62×21 0.359 0 0.359 

4 41×62×21 0.356 0 0.356 

5 41×62×21 0.351 0 0.351 

6 41×62×21 0.361 0 0.361 

7 41×62×21 0.355 0 0.355 

8 41 ×66×21 0.387 1.199 1.586 

9 41×62×21 0.362 0 0.362 

10 41×62×21 0.354 0 0.354 

11 41×62×21 0.347 0 0.347 

12 41×61×21 0.349 0 0.349 

13 41×63×21 0.371 0 0.371 

14 28×65×21 0.254 0 0.254 

total    7.533 

 

5.5.2 Semi-airplane case 

 The second case is derived from the High Lift Common Research Model (HL-CRM) 

provided in the 2nd AIAA Geometry and Mesh Generation Workshop. Surfaces of the geometry 
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are grouped based on different airplane sections, including symmetry plane, fuselage, wing, slat 

face, and the pylon of the flap.  

 Overviews of surface and slices of volume grids are shown in Figure 50 a and b. The 

main problem of this case is that the hyperbolic volume grid will overlap near the trailing edge of 

the wing-fuselage intersection where the surface grid is convex in one direction but concave in 

the other direction (Figure 50 d). Elliptic grids are successfully applied in this region, and no 

twisting is found after the modification (Figure 50 e). Another problem about grid generation 

exists when generating grids on the wing, shown in Figure 50 g, that a highly sharp corner exists 

in the green region, and it is not desirable to generate surface and volume grids on that region. 

Besides, no edges in this figure are suitable as a side boundary when generating surface grids on 

the red face. Thus, an imaginary side boundary, which is normal to the red-blue intersection 

curve, is made up. Similar situations are also applied near the root of the wing. Other features, 

including the nose of the fuselage and imaginary grids, are also shown in Figure 46 and Figure 

48. The computational time of generating surface and volume grids using the combined scheme 

is shown in Table 9 and Table 10, where grids at the wing-fuselage intersection are the 1st grids. 
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(a) Far field front view 

 

(b) Far-field side view 

 

(c) Grids at the leading edge of the wing-fuselage intersection 
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(d) Hyperbolic grids at trailing edge of wing-fuselage intersection (blow up) 

 

(e) Combined scheme grids at trailing edge of the wing-fuselage intersection 
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(f) Grids at the pylon-fuselage intersection 

 

(g) Grids of wing-slat face intersection near the tip of the wing 

Figure 50: Surface grids and slices of volume grids of semi-airplane.  
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Table 9: Computational time of generating surface grids for semi-airplane case 

Grid number Grid Size 

Hyperbolic 

grid 

generation (s) 

Elliptic revise 

(s) 

Total time (s) 

1 61×339 1.704 0 1.704 

2 52×203 0.632 0 0.632 

3 61×244 2.632 0 2.632 

4 52×215 0.704 0 0.704 

5 61×204 0.804 0 0.804 

6 61×205 0.808 0 0.808 

total    7.284 
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Table 10: Computational time of generating volume grids for semicylinder case 

Grid number Grid Size 

Hyperbolic 

grid 

generation (s) 

Elliptic revise 

(s) 

Total time (s) 

1 61×339×31 5.017 85.777 90.794 

2 52×203×31 2.484 0 2.484 

3 61×244×31 3.701 0 3.701 

4 52×215×31 2.655 0 2.655 

5 61×204×31 2.934 0 2.934 

6 61×205×31 2.975 0 2.975 

total    105.543 

 

5.5.3 Open Parametric Aircraft Model case 

 The third case is derived from the Open Parametric Aircraft Model #1 (OPAM-1) model 

that is also provided in the 2nd AIAA Geometry and Mesh Generation Workshop. This aircraft 

model is defined by 53 design parameters, including wing sweep, fuselage length, semi-span 

location of the pod, and created by a list of primitives like spheres, cones, cylinders, and ruled 

surfaces. Surfaces of different parts of the model are grouped manually, and surface and volume 

grids are generated at the intersection of different groups using the combined scheme provided in 

this paper.  

 Overviews of the geometry and the surface and slices of volume grids are shown in 

Figures 51 a and b. In this case, hyperbolic grid lines twist at the leading edge of the pylon-pod 

intersection and the end of the fuselage (Figure 51 c and e). Besides, grid lines also overlap at the 
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trailing edge of the wing-pylon intersection (Figure 51 g) because the inclined edges are viewed 

as side boundaries of hyperbolic grids. Laplace equation is applied here to guarantee smooth 

grids. These problems are solved using the combined scheme and are shown in  Figure 51 d, f, 

and h separately. For the volume grids, bad grids occur in concave corners shown in Figure 51 i 

and k, and grid results using the combined scheme are shown in Figure 51 j and l. The 

computational time of generating surface and volume grids using the combined scheme is shown 

in Table 11 and Table 12. Grids at the tail of the fuselage, left and right wing-pylon intersection, 

left and right pylon-pod intersection are 6th, 10th, 11th, 12th, 13th grid, respectively. 

 

 (a) Far field top view 
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(b) Far field left view 

 

(c) Hyperbolic grids result at the leading edge of the pylon-pod intersection 
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(d) Combined scheme grids result at the leading edge of the pylon-pod intersection 

 

(e) Hyperbolic grids result at the end of the fuselage 

 

(f) Combined scheme grids result at the end of the fuselage 



 

124 
 

 

(g) Hyperbolic grids result at the trailing edge of the wing-pylon intersection 

 

(h) Combined scheme grids result at the trailing edge of the wing-pylon intersection 
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 (i) Hyperbolic grids result at the trailing edge of the pylon-pod intersection 

 

(j) Combined scheme grids result at the trailing edge of the pylon-pod intersection 
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(k) Hyperbolic grids result at the leading edge of the wing-pylon intersection 

 

(l) Combined scheme grids result at the leading edge of the wing-pylon intersection 

Figure 51: Surface grids and slices of volume grids of OPAM-1. 
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Table 11: Computational time of generating surface grids for OPAM-1 case 

Grid number Grid Size 

Hyperbolic 

grid 

generation (s) 

Elliptic revise 

(s) 

Total time (s) 

1 67×203 0.236 0 0.236 

2 71×201 0.303 0 0.303 

3 71×234 0.386 0 0.386 

4 71×201 0.326 0 0.326 

5 71×234 0.386 0 0.386 

6 52×203 0.339 0.453 0.792 

7 71×241 0.399 0 0.399 

8 71×241 0.404 0 0.404 

9 71×241 0.400 0 0.400 

10 62×239 0.550 3.368 3.918 

11 62×239 0.521 3.302 3.823 

12 68×235 0.365 1.714 2.079 

13 68×235 0.364 1.667 2.031 

Total    15.483 
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Table 12: Computational time of generating volume grids for semicylinder case 

Grid number Grid Size 

Hyperbolic 

grid 

generation (s) 

Elliptic revise 

(s) 

Total time (s) 

1 67×203×26 2.627 0 2.627 

2 71×201×26 2.812 0 2.812 

3 71×234×26 3.266 0 3.266 

4 71×201×26 2.798 0 2.798 

5 71×234×26 3.294 0 3.294 

6 52×203×26 1.947 0 1.947 

7 71×241×26 3.401 0.314 3.715 

8 71×241×26 3.374 48.803 52.177 

9 71×241×26 3.371 0.316 3.687 

10 62×239×26 2.861 22.288 25.149 

11 62×239×26 2.882 20.387 23.269 

12 68×235×26 3.201 76.742 79.943 

13 68×235×26 3.175 67.941 71.116 

total    275.80 

 

Based on the three cases above, we can find that surface and volume grids can be automatically 

generated in all three cases within a reasonable time. Hyperbolic grid generation is good enough 
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for most of the grids. And elliptic grid generation is successfully applied at the place where 

hyperbolic grid generation fails. 

 

5.6 Limitation 

 Although most surface and volume grids are successfully generated in Engineering 

Sketch Pad using the combined grid generation scheme, we still need to point out that there still 

are some cases that the combined technique cannot handle. One of the situations that the 

combined scheme will fail is generating grids at a face with a sharp convex corner like the 

yellow face shown in Figure 52. This figure comes from the horizontal tail of the case OPAM-1. 

If we want to generate grids on this surface, the grids will overlap with each other easily in the 

first several layers, and there is not enough place to take elliptic revise. Therefore, we will ignore 

these faces with sharp convex corners when generating surface and volume grids.  

 

Figure 52: Example with a sharp convex corner. 
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 Another restriction of the volume grid generation using the combined scheme is that the 

bad points cannot be on the four side boundaries of the volume grids. They can only exist inside 

the volume domain. This is because the bad points region cannot be adequately defined, and 

elliptic grid generation cannot be taken if bad points are found on the side boundaries. One 

example is shown in Figure 53, which is the last layer of the hyperbolic volume grid generation 

result. In this example, bad points exist on the inner loop boundary of the volume grid. It is not 

desirable to keep that boundary and generate an elliptic patch. But it is also problematic to 

discard this boundary and draw a new boundary because it crosses the geometry of the body 

(which is in the top right of the figure). Since the result of bad points from hyperbolic grid 

generation will affect the calculation of their neighbor points and the neighbor points will affect 

more points in the next layer, the best way to deal with this problem is to limit the number of 

layers of volume grid generation before the side boundaries get affected by the bad points.  

 

Figure 53: Example of bad grids that affect boundary points. 
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6. Conclusion and Future Work 

6.1 Conclusion 

 A combined grid generation algorithm is developed, which employs the hyperbolic grid 

generation method in the near-body field and is further enhanced using the elliptic grid 

generation method in the regions where the hyperbolic grid generation method performs poorly. 

This algorithm exploits the advantages of both methods. The hyperbolic grid generation method 

creates grids quickly, and the elliptic grid generation modifies the grids resulting in no 

overlapping or clustering. The combined grid generation scheme is better than solely using either 

hyperbolic grid generation without changing smoothing parameters or the elliptic grid generation 

method. It is the first time that hyperbolic and elliptic methods are utilized together to generate 

structure grids.  Additionally, the proposed method does not require user input about 

mechanisms like the smoothing coefficients in hyperbolic grid generation and the outer boundary 

definition in the elliptic grid generation method. Only essential user input like cell size and the 

number of grid layers are required. By implementing this proposed scheme, near-body structured 

grids can be generated automatically in a reasonable period of time without requiring the user to 

have background knowledge of grid generation. The computational speed of hyperbolic grid 

generation, elliptic grid generation, and combined grid generation are also investigated in several 

cases. 

 A set of bad points detection criteria is put forward for two-dimensional and three-

dimensional structured grids. This set of criteria is raised based on the geometry of the grids by 

checking the distance between two neighbor points and the area of a grid cell in order to avoid 

grid lines clustering or grid lines overlapping. It can be used to check if bad points with such 
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problems exist in any two-dimensional or three-dimensional structured grids. A bad points 

grouping method is also provided that can combine the bad points into several regions, especially 

for three-dimensional structured grids. This method can help set apart bad points, minimize the 

size of bad points regions, and thereby improve the speed of calculation of the combined grid 

generation scheme. 

  The combined scheme for near-body structured grid generation is successfully tested and 

implemented in Engineering Sketch Pad. Initial grid points are automatically picked up on the 

intersection curves between every two groups of faces based on the geometry created in the 

software. Surface and volume structured grids are created by the hyperbolic grid generation 

scheme using these grid points and revised by the elliptic grid generation scheme where bad 

points occur. One great advantage of using the Engineering Sketch Pad to generate grids is that 

surfaces are grouped by attributes such that grids can be generated over several surfaces. Besides, 

the evaluation function in Engineering Sketch Pad is applied to calculate the derivatives and 

normal vector on the surfaces that can improve the accuracy of grid results.  

 Another contribution relies on using tessellation to locate and project grid points onto the 

surfaces. Projecting points onto surfaces are required in the hyperbolic grid generation scheme, 

and it is much faster when using tessellation and extended barycentric coordinate system to get 

the results than using inverse evaluation provided in Engineering Sketch Pad. However, this 

method should be carefully handled because it is extended from a set of two-dimensional 

equations. Further notices about the problems for using tessellation and the extended barycentric 

coordinate system can be followed based on the discussion in this paper. 
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6.2 Future work 

 Many different cases and adaptations are required and left for the future due to lack of 

time. Future work may concern deeper analysis of particular mechanisms like the other bad 

points detection criteria that are not provided in this paper, new proposals to try different 

parameters in hyperbolic and elliptic grid generation. Different methods of calculating outer 

boundaries of the bad points regions for two-dimensional and three-dimensional grid generation 

would also be considered to get a higher-order continuity between hyperbolic results and elliptic 

regions.  

 Two kinds of limitations of the combined scheme are discussed in Chapter 5.6: the grid 

cannot be generated successfully by the combined scheme on a surface with a sharp convex 

corner, and the number of volume grid layers should be limited to avoid bad points existing on 

boundaries. One of the solutions to the first problem is that grids can be generated separately 

based on the edge on the upper face and the lower face. Then the grid lines will not tangle with 

each other but overset on the surface. Extra imaginary grids points might be required to generate 

the grids. Other solutions may require C-type grids, which start and end in the far-field, instead 

of O-type grids, which are periodic around the geometry of the body. 

 For the second problem, it could be possible to pause hyperbolic grid generation for 

every five or ten layers and fix the bad points within these layers. Once the bad points are solved, 

another five or ten layers of hyperbolic grids can be generated based on the revised grid. Another 

idea to solve this problem is to build an imaginary surface boundary like the outer boundary 

curve for surface grid generation. However, it should be handled carefully to keep the shape of 

the volume grids and avoid getting across the geometry of the body. Different techniques for 

these problems can be discussed in the future. 



 

134 
 

 Regarding overset grids, the surface and volume grids using the combined scheme in 

Engineering Sketch Pad are only generated at the intersection of two surfaces where grid lines 

clustering or overlapping is more likely to exist. This means that the entire model is not fully 

covered (like in the middle of the wing or fuselage). Other surface and volume grids along the 

geometry of the model are required to cover these areas for near body grid generation. These 

grids, along with far-field grids, will constitute the overset grids and be used to calculate 

computational fluid dynamics problems. 
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