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ABSTRACT

Geometric properties of a domain in the complex plane reflect important information

about the conformal maps to and from the domain. We examine a variety of geometric

properties and use them to construct explicit global distortion bounds for both the com-

pression and stretching of conformal map. Compressive distortion is controlled when the

modulus of the derivative of a complex function is bounded from below, expansive distortion

when it is bounded above.

For the initial set of results, we quantify the degree to which a convex domain is nearly

round with two parameters; radii of the largest inscribed disk and smallest circumscribed

disk. A third parameter captures information about curvature on the boundary. The three

parameters are used to construct a global stretching bound for a conformal map of the unit

disk onto the domain, or equivalently, a bound on compression in the other direction. The

Möbius invariant Kulkarni-Pinkall metric is used in constructing these explicit bounds.

Next we generalize the previous results by weakening the assumption of convexity to

something slightly stronger than star-shaped. The parameter giving the radius of the largest

inscribed disk is replaced a more relevant radius, that of the largest disk from which every

point of the domain can be seen.

Finally we turn to the bounds in the opposite direction, that is, stretching bounds on

conformal maps from a convex domain onto the unit disk, and compression bounds from

the disk onto a convex domain. We use the same two parameters to quantify the degree to

which a domain is nearly round, but have no need of a curvature parameter in this case.

The bound in this final chapter is shown to be the best possible.
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Chapter 1

Introduction

1.1 Conformal Maps and Distortion

Conformal mappings are a class of well behaved functions that locally preserve angle with

only a moderate distortion of lengths away from the boundary of their domain. The com-

pression or stretching of length or distance is referred to as distortion in the literature. Local

distortion can be understood by thinking of the modulus of the derivative as a local scale fac-

tor. Results that estimate the modulus of the derivative are collectively known as distortion

theorems.

The Riemann mapping theorem is a fundamental result in complex analysis, established

first with an incomplete proof by Riemann himself in 1851. This was not realized until

later, and it was not until 1900 that William Osgood published the first complete proof. A

standard version of the theorem is given below. Note that throughout this dissertation D

refers to the unit disk, and D(a, r) = {z ∈ C : |z − a| < r}.

Theorem 1.1.1 (Riemann Mapping Theorem). Let Ω ⊊ C be a simply connected domain

with z0 ∈ Ω. Then there exists a unique conformal mapping f : D onto−−→ Ω with f(0) =

z0, f
′(0) > 0.

Some intuition for conformal mapping can be found in Curtis McMullen’s characterization
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using an egg yolk principle [22]. Regardless of how jagged and non-convex Ω may be, there

is a conformal map from the unit disk onto Ω, and while there may be large oscillations of

stretching and compression near the boundary, these are smoothed as you move away from

the boundary, and tend toward a simple scale factor of |f ′(0)| as you move toward 0. This

is analogous to cracking an egg into a pan; the footprint of the thin egg white can be wild

and irregular, the thick egg white is convex, and the yolk is nearly round.

Figure 1.1: Cracked eggs as an analogy to distortion in conformal maps.

Next we move to present some well known results that demonstrate control of distortion

away from the boundary. To present them in their canonical forms, we must also introduce

a class of normalized conformal maps.

Definition 1.1.2 (Schlicht Functions). Let S be the family of conformal mappings of the

unit disk with f(0) = 0 and f ′(0) = 1.

Theorem 1.1.3. Define the starlike radius (ρS = tanh(π/4) ≈ .655) and the radius of

convexity (ρC = 2−
√
3 ≈ .267). For any f ∈ S , the image of D(0, r) for 0 < r ⩽ ρS is a

starlike set, and the image of D(0, r) for 0 < r ⩽ ρC is a convex set [5, Theorem 2.13].

Observe that S contains all the conformal mappings from Theorem 1.1.1 up to a trans-

lation, and rescaling. That is, if f is as in Theorem 1.1.1, then

f(z)− f(0)

f ′(0)
∈ S .

One of the most famous distortion theorems is credited to Paul Koebe.

Theorem 1.1.4 (Koebe Distortion Theorem). If f ∈ S , then for all z ∈ D

1− |z|
(1 + |z|)3

⩽ |f ′(z)| ⩽ 1 + |z|
(1− |z|)3

. (1.1.1)
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This is one of a variety of forms the theorem can take. This form nicely expresses the

control of distortion around 0. In D \ {0}, equality is attained only by the Koebe function

k ∈ S , up to a rotation.

k : D onto−−→ C \ (−∞,−1
4
), k(z) =

z

(1− z)2
, k′(z) =

1 + z

(1− z)3
. (1.1.2)

One can see that the left bound of (1.1.1) is attained by the Koebe function when z ∈ [−1, 0)

and the right when z ∈ (0, 1]. This shows the upper and lower bounds are both sharp.

1.2 Global Distortion Bounds

A global bound on distortion can be either an upper or lower bound on the modulus of the

derivative, formulated as

sup |1/f ′| ⩽M or sup |f ′| ⩽M,

or an upper or lower bound on the ratio

|f(z1)− f(z2)|
|z1 − z2|

(1.2.1)

that holds for all z1, z2 in the domain of f . An upper bound on the ratio is called a Lipschitz

constant. A Lipschitz function f : G→ Ω is one that satisfies a Lipschitz condition, defined

by the inequality

|f(z1)− f(z2)| ⩽ L|z1 − z2| (1.2.2)

for all z1, z2 in G and for some Lipschitz constant L > 0. For a holomorphic function on

a convex domain a Lipschitz bound is equivalent to the statement |f ′(z)| ⩽ L, but this

is not true in general. Consider the conformal map f(z) =
√
z sending the slit annulus

G = {1 < |z| < 4} \ (−4,−1) onto Ω = {1 < |z| < 2} ∩ {Re z > 0}. Then f ′(z) = 1/(2
√
z)
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and for all z ∈ G, 1
4
< |f ′(z)| < 1

2
. If however you consider the two points straddling the

slit, like 3 + iϵ and 3− iϵ for ϵ > 0 small, the ratio

|f(3 + iϵ)− f(3− iϵ)|
|(3 + iϵ)− (3− iϵ)|

≈
√
3

ϵ

which approaches ∞ as ϵ→ 0. The discrepancy arises from the denominator measuring the

distance between the points 3± iϵ as 2ϵ, that is, along a straight line path that crosses the

slit and thus is not contained in G. The requirement of convexity ensures that the straight

line path between any two points is contained in the domain. Defining the domain distance

in the denominator of (1.2.1) to be the infimum path length over all paths contained in G

connecting z1 and z2, called intrinsic distance, is a workable way to modify the global ratio

bounds to agree with global derivative bounds in the non-convex case. This approach was

recently used, e.g., in [11].

There are comparatively few results related to global distortion bounds, and in fact

there can be no global bounds in general. We can illustrate this point with the Koebe

function (1.1.2), where one can see that k′ → 0 as z → −1 and k′ → ∞ as z → 1. Even

among relatively simple bounded domains, it is often true that a global compression bound

of |1/f ′| ⩽ ∞ and a stretching bound of |f ′| ⩽ ∞ are the best possible. The functions

f1(z) = 2
√
1 + z − 2 and f2(z) =

1
2
(1 + z)2 − 1

2
are both elementary functions (normalized

to be in S ), and as z → −1, |f ′1| and |1/f ′2| both go to infinity.

One can however consider the related concept of integral bounds on distortion. This

warrants some preliminary discussion of Bergman spaces and Hardy spaces.

Definition 1.2.1 (Bergman Space). A Bergman space is function space composed of holo-

morphic functions defined on the unit disk. The Bergman spaces are denoted Ap where

p ∈ (0,∞] is an index. For 0 < p <∞ we say f ∈ Ap if

∥f∥Ap
def
=

(∫
D
|f(z)|p dA

)1/p

< ∞. (1.2.3)
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Here ∥f∥Ap is the Bergman p-norm, and the differential dA is normalized area. As in

Lebesgue spaces, ∥f∥Ap is not a true norm if p < 1, but is sometimes still useful. When

p = ∞, define the infinity Bergman norm by

∥f∥A∞
def
= sup

D
|f |. (1.2.4)

Definition 1.2.2 (Integral Means). Let f be analytic in the unit disk, then the integral

means are defined by

Mp(r, f) =

(∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p

, 0 < p <∞;

M∞(r, f) = max
0⩽θ<2π

|f(reiθ)|.

Definition 1.2.3 (Hardy Space). Hardy spaces, denoted Hp for 0 < p ⩽ ∞, are also function

spaces composed of holomorphic functions defined on the unit disk. We say f ∈ Hp if

∥f∥Hp
def
= sup

0⩽r<1
Mp(r, f) < ∞, (1.2.5)

where the Hardy norm ∥f∥Hp satisfies the definition of a norm when p ⩾ 1. When p = ∞,

define the infinity Hardy norm by

∥f∥H∞
def
= sup

D
|f |. (1.2.6)

Remark 1.2.4. Observe that for a fixed r ∈ (0, 1) and p < q:

(∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p

⩽

(∫ 2π

0

|f(reiθ)|q dθ
2π

)1/q

.

It then follows that ∥f∥Hp ⩽ ∥f∥Hq , and more importantly, that

f ∈ Hq =⇒ f ∈ Hp for all p < q. (1.2.7)
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Remark 1.2.5. If f ∈ Hp for some 0 < p ⩽ ∞, then as r → 1, f(reiθ) converges to a function

F ∈ Lp[0, 2π] a.e. [6, Section 2.3]. Moreover, the Hardy p-norm of f and the Lp norm of F

agree. [12]

Brennan’s conjecture [3](James Brennan, 1978) is one of the most widely recognized open

question in complex analysis, and has been an area of active research since the hypothesis

was made. A concise statement of the conjecture is that for a simply connected Ω ⊊ C and

a conformal mapping g : Ω onto−−→ D, |g′|p is integrable for 4/3 < p < 4.

The upper and lower bounds on p are of course two distinct statements, and for our

purposes it will be simpler to work with equivalent statements written in terms of f def
= g−1.

Conjecture 1.2.6 (Brennan’s Conjecture). Let Ω ⊊ C be a simply connected domain and let

f : D onto−−→ Ω. Then it is known that

∥f ′∥Ap <∞ for 0 < p < 2/3. (1.2.8)

In addition it is conjectured that

∥1/f ′∥Ap <∞ for 0 < p < 2. (1.2.9)

From the perspective of stretching and compression, we could interpret the statement

in (1.2.8) as a limit on the stretching of a conformal map, and (1.2.9) as a limit on compres-

sion.

Proof of (1.2.8). It suffices to prove this for f ∈ S since translation, rotation, and rescaling

have no effect on integrability. Rearranging the combined growth and distortion theorem [5,

Theorem 2.7] gives

|f ′(z)| ⩽ (1 + r)

r(1− r)
|f(z)|. (1.2.10)
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Raising each side of (1.2.10) to the power p and integrating around |z| = r < 1 gives

Mp
p (r, f

′) ⩽

(
(1 + r)

r(1− r)

)p

Mp
p (r, f). (1.2.11)

In [1] Baernstein showed that for all p > 0, Mp(r, f) ⩽ Mp(r, k) where k(z) is the Koebe

function (1.1.2). Applying this result yields

Mp
p (r, f

′) ⩽

(
(1 + r)

r(1− r)

)p

Mp
p (r, k), (1.2.12)

and then [7, Section 3] provides a way to estimate Mp(r, k). This shows Mp
p (r, k) is O((1−

r)1−2p). It then follows from (1.2.12) that

Mp
p (r, f

′) ⩽ g(r) (1.2.13)

where g is O((1 − r)1−3p) and thus
∫ 1

0
Mp

p (r, f
′)dr converges for 1 − 3p > −1, that is, for

0 < p < 2/3.

Progress on the compression bound (1.2.9) has been slow, but it is still widely believed

to hold. Before Brennan made the conjecture, it was known to Metzger [23] working in

polynomial approximations that (1.2.9) holds for 0 < p < 1; this can be easily shown by first

rearranging and relaxing the left side of (1.1.1) in Theorem 1.1.4 to get

|1/f ′(z)| ⩽ 8

1− |z|
. (1.2.14)

Raising to power p and integrating around |z| = r < 1 shows Mp
p (r, 1/f

′) is O((1 − r)−p),

and thus
∫ 1

0
Mp

p (r, 1/f
′)dr converges for 0 < p < 1. Alongside the original conjecture in [3]

Brennan showed that Metzger’s result could be extended to 0 < p < 1+ϵ. In his 1991 text [25]

Pommerenke proved Theorem 8.5 which extended the confirmed range to 0 < p < 1.399.

Daniel Bertilsson extended this to 0 < p < 1.422 in a computer assisted proof as part of his
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1999 Thesis [2].

1.3 Global Distortion Bounds Predicated on Geometric

Conditions

Definition 1.3.1 (Jordan Domain). A Jordan domain is a domain bounded by a simple

closed curve in C. The boundary is called a Jordan curve.

Theorem 1.3.2 (Carathéodory Theorem). [25, Section 2.1] Let f map the unit disk con-

formally onto a domain Ω. Then f and f−1 extend to homeomorphisms of the closures of D

and Ω if and only if ∂Ω is a Jordan curve.

Corollary 1.3.3. [5, Section 1.5] Let Ω1 and Ω2 be Jordan domains and let φ : Ω1
onto−−→ Ω2

be a conformal map. Then φ and φ−1 extend to homeomorphisms between Ω1 and Ω2.

Corollary 1.3.4. Let Ω1 and Ω2 be two Jordan domains, and let F,G : Ω1
onto−−→ Ω2 be

conformal maps. If F and G agree on an interior point and a boundary point, then F = G.

Proof. Let a be the point in Ω1 such that F (a) = G(a), let b be the point in ∂Ω1 such

that F (b) = G(b). Define a conformal map h : D onto−−→ Ω1 such that h(0) = a. Consider the

composition h−1◦G−1◦F ◦h. This is a conformal mapping of the unit disk fixing 0, therefore

it is a rotation. By the Carathéodory theorem the composition extends to the boundary.

The point h−1(b) ∈ ∂D is also fixed, therefore the composition is the identity map on D and

thus F = G.

The pool of potential geometric conditions to be imposed on Ω is limitless, but a guiding

principle as always is to impose a carefully chosen minimal set of restrictions from which a

comparatively strong result can be deduced.

The Riesz brothers proved an early result of this type. In 1916, Friedrich and Marcel

Riesz presented a proof to the Congress of Scandinavian Mathematicians that if we restrict
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Ω to Jordan domains with rectifiable boundary, then f ′ ∈ H1. In fact they were able to

prove that for a Jordan domain, the boundary is rectifiable if and only if f ′ ∈ H1.

In 1929, Oliver Kellogg imposed a C1,α Hölder condition on ∂Ω for 0 < α ⩽ 1. We pause

to define Hölder continuity and then a general Cn,α Hölder condition.

Definition 1.3.5 (Hölder and Lipschitz continuity). Let X, Y be metric spaces and let

F : X → Y be a continuous function between them. For 0 < α < 1 we say F is α-Hölder

continuous, denoted F ∈ Cα, if there exists a constant M such that for all a, b ∈ X

distY (F (a), F (b)) ⩽M [distX(a, b)]
α . (1.3.1)

Lipschitz continuity describes the special case of Hölder continuity when α = 1.

Definition 1.3.6 (Hölder condition). Let C be a Jordan curve and let w : R → C be a

periodic parameterization. We say that C satisfies a C n,α-Hölder condition (or is C n,α-

Hölder continuous) for 0 < α ⩽ 1 if w is n times continuously differentiable, the first

derivative is nonvanishing, and the n-th derivative is α-Hölder continuous.

With these defined, we present Kellogg’s 1929 Result.

Theorem 1.3.7 (Kellogg’s Theorem). If f maps D onto the Jordan domain Ω whose bound-

ary is C1,α, then f ′ extends continuously to the boundary of D. Furthermore, f ′ and 1/f ′

are in H∞.

This has proven to be a useful result, and was extended a few years later by Stefan

Warschawski into what is now known as the Kellogg-Warschawski Theorem.

Theorem 1.3.8 (Kellogg-Warschawski Theorem). [25, Theorem 3.6] Let f map D con-

formally onto a Jordan domain with boundary satisfying a Cn,α-Hölder condition for some

n ∈ {1, 2, ...} and 0 < α < 1. Then f (n) extends continuously to ∂D and

|f (n)(z1)− f (n)(z2)| ⩽M |z1 − z2|α for z1, z2 ∈ D.
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For a map f ∈ S , there is no p such that f ′ ∈ Hp in general, nor a q such that

1/f ′ ∈ Hq. In the 1955 article [20] Lohwater, Piranian, and Rudin demonstrated that there

exists a conformal map on the unit disk with the property that for almost all θ ∈ [0, 2π)

lim inf
r→1

|f ′(reiθ)| = 0, lim sup
r→1

|f ′(reiθ)| = +∞. (1.3.2)

By virtue of Remark 1.2.5 such f ′ cannot belong to any Hardy class. With this established,

it was clear any further results regarding Hardy space inclusion or Hardy norm bounds of

the derivative must be predicated on some conditions on the domain Ω.

In 1962, Dieter Gaier published the article [10] looking at what happens if we require Ω to

be bounded by a polar curve of the form r = ρ(θ) with log ρ an L-Lipschitz function, that is,∣∣∣ρ′(θ)ρ(θ)

∣∣∣ ⩽ L. The condition prevents ∂Ω from having corners of opening less that π−2 arctanL

(intruding or extruding). The condition also disallows some corners with larger opening if

the angle bisector deviates too much from the radial direction. Gaier was able to show that

for 0 < p < π/(2 arctanL) we get explicit bounds for ∥f ′∥Hp and ∥1/f ′∥Hp . The explicit

bounds can be expressed in terms of an outer radius and an inner radius (both with respect

to the origin), and the Lipschitz bound L from the imposed precondition. These radii are

defined below, recall the notation D(a, r) indicates the set {z ∈ C : |z − a| < r}.

Definition 1.3.9 (Outer and inner radii). For a Jordan domain Ω containing 0, the outer

radius RO(Ω) is the smallest r such that Ω ⊂ D(0, r). The inner radius RI(Ω) is the largest

radius r such that D(0, r) ⊂ Ω.

Then, for 0 < p < π/(2 arctanL) Gaier showed

∥f ′∥pHp ⩽
Rp

O

cos(p arctanL)
and ∥1/f ′∥pHp ⩽

R−pI

cos(p arctanL)
.

There is a natural conjecture one can make based on the observation that a conformal

map taking a corner of angle β to ∂D must behave locally like zβ/π in order to unfold the
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angle and land it on the smooth boundary of the unit disk. It follows that the derivative

must behave locally like z(β/π)−1, and thus |f ′|p ≈ |z|p((β/π)−1)). We lose integrability if

p((β/π) − 1)) drops to −1. The following conjecture is then natural and intuitive, albeit

only to those specialized in this area. If f : D onto−−→ Ω and ∂Ω has no extruding corners of

angle less than β (measured inside the domain), we should have integrability of |f ′|p and

thus containment in Hp when p < 1
1−β/π .

Schober and Warschawski used this intuition in their 1966 article [27], capturing infor-

mation about the corner angle with an analytic condition involving tangent vectors. They

imposed the condition that ∂Ω be a Jordan curve with a tangent vector of bounded varia-

tion, where the argument of the tangent vector is not allowed to have a jump discontinuity

larger than α+ counterclockwise or α− clockwise. From these assumptions they were able to

show that f ′ ∈ Hp for p < π/α+ and that 1/f ′ ∈ Hp for p < 1/α−. This attains the bound

from the so-called natural conjecture, and indeed one can show using the Schwarz-Christoffel

formula for polygons that both bounds on p are sharp.

In the 1987 paper [9] considering conformal mappings of the unit disk onto Jordan do-

mains, Fitzgerald and Lesley tried to achieve the same conclusion using a geometric condi-

tion to regulate the corner angles. They imposed the condition that for every point ζ on the

boundary of Ω, there must be a sector contained in Ω with vertex ζ and angular opening

β, and with radius r > 0. They called this an interior wedge condition. In the paper they

were able to demonstrate a partial result, proving f ′ ∈ Hp for p < 2π−β
2π−2β . For a concrete

comparison, if β = π/2, then Schober and Warschawski (using the tangent vector condition)

showed that f ′ ∈ Hp for p < 2. For this value of β, Fitzgerald and Lesley were able to show

that f ′ ∈ Hp for p < 3/2. In general, they make the natural conjecture that f ′ ∈ Hp for

p < 1
1−β/π under the β-interior wedge condition [8, p. 153].

In his 2017 paper [18], Leonid Kovalev obtained an explicit Lipschitz bound for conformal

maps onto a convex domains using RI and RO from Definition 1.3.9 as well as a curvature

radius RC .
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Definition 1.3.10 (Curvature radius). Let Ω be a Jordan domain. The curvature radius

RC(Ω) is the largest r such that Ω can be expressed as a union of open disks of radius r.

In terms of RO(Ω), RI(Ω), and RC(Ω), Kovalev determined a global bound on the deriva-

tive of a conformal map from the unit disk onto a convex Jordan domain Ω as

∥f ′∥H∞ ⩽ RC exp{2(RO −RC)Φ(RI , RC)}

where

Φ(a, b)
def
=


log a−log b

a−b , if a ̸= b

1
a
, if a = b.

The explicit upper bounds on |f ′| obtained by Gaier and Kovalev were recently found

to be useful in mathematical physics; more specifically in the spectral gap for graphene

quantum dots in [21] (2019), and in the PDEs of fluid mechanics in [14] (2020). In the former,

Lotoreichik and Ourmières-Bonafos found an upper bound for the first positive eigenvalue

using the H2-norm of the derivative of an underlying conformal map. They then used the

Gaier and Kovalev result to express this bound in terms of geometric quantities: Gaier’s

bound in the case where the domain satisfies Gaier’s conditions (star-shaped, et cetera) and

Kovalev’s bound when the domain is convex and satisfies a curvature radius.

1.4 New results

This document is focused on deriving explicit formulas for global stretching bounds for

conformal maps both to and from the unit disk.

Chapter 2 reconsiders the maps in [18] from the unit disk onto a convex domain. We leave

the geometric conditions on the target domain as they were in Kovalev’s paper, that is, a

convex bounded domain Ω obeying the inclusions D(0, RI) ⊂ Ω ⊂ D(0, RO) and expressible

as a union of open disk with radius RC . The derived upper bound on |f ′| is sharpened by

improving an estimate of a hyperbolic distance on which both Kovalev’s bound and this new
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one are based. To express the explicit formula obtained in the main result of the chapter,

we first define some notation. RO should be understood as a shorthand for RO(Ω), the same

goes for RI , RC , and later RS. Let R = max(RC , RI), r = min(RC , RI), d = RO − RC , and

θ = arcsin R−r
d

. Define F (RO, RI , RC) as

d

R
if r = R, (1.4.1a)

when r < R

1

2
log

R + d

R− d
if d ⩽ R tan

θ

2
, (1.4.1b)

1

2

[
cot

θ

2
log

(
R

r
cos θ

)
+ log

1 + tan(θ/2)

1− tan(θ/2)

]
otherwise. (1.4.1c)

Then,

∥f ′∥H∞ ⩽ RCe
2F (RO,RI ,RC).

The chapter closes with some examples demonstrating the improvement, in some cases there

is an improvement of an order of magnitude [4].

In Chapter 3 we seek to reduce the restrictions imposed on the domain, but retain the

conclusion. Instead of smooth convex domain we require only a star shaped Jordan domain.

Any extruding corner in the target domain will have |f ′| = ∞ at its preimage, so some

control on the boundary is necessary, and indeed some is retained in the requirement that Ω

be expressible as a union of disks of radius RC .

We also introduce the stellar core radius RS to replace the inner radius RI . The stellar

core radius RS(Ω) is defined to be the largest r for which every point in D(0, r) is a star

center of Ω. The formulation of the bound in the main result of this chapter is identical to

that in Chapter 2, except that RI is replaced by RS. In the convex case, RS is equal to RI

and in fact the main theorem from Chapter 2 is a special case of the theorem in Chapter 3.

The reformulated conditions introduce the possibility of intruding corners though, and this

lack of smoothness on the boundary causes some problems that need to be dealt with.
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Chapter 4 works in the opposite direction, looking at conformal maps from a bounded

convex domain containing 0 onto the unit disk. This gives an explicit upper bound on the

derivative in terms of only the outer radius and the inner radius. Let f : Ω onto−−→ D be a

conformal map fixing 0. Define θ = arcsin(RI/RO) and α(θ) = 2πθ/(π+2θ). Theorem 4.3.2

states that

∥f ′∥H∞ ⩽ R−1O

2α cotα

θ cos θ

and this estimate is shown to be the best possible.
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Chapter 2

Lipschitz Estimates for Maps from the

Unit Disk onto Convex Domains

2.1 Introduction

This chapter improves a uniform upper bound on |f ′| from [18]. The assumptions controlling

the target domain Ω are maintained. We require that Ω be a convex Jordan domain which

contains a neighborhood of 0 and is expressible as a union of disks of radius RC . These

assumptions are quantified by three radii RO(Ω), RI(Ω), and RC(Ω), which were previously

introduced in Definitions 1.3.9 and 1.3.10. They are bound together in the (RO, RI , RC)

condition which is introduced in Definition 2.3.1.

Our main result is stated below.

Theorem. Let Ω satisfy the (RO, RI , RC) condition in Definition 2.3.1. Then for any con-

formal map f : D onto−−→ Ω fixing 0 we have

∥f ′∥H∞ ⩽ RCe
2F (RO,RI ,RC)

where F (RO, RI , RC) is as in Theorem 2.4.8. Equality is attained whenever Ω is a disk.
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For comparison, the bound in [18] is sharp only for disks centered 0, that is, only

when f is a linear function. The main tool we use to estimate f ′ is the Kulkarni-Pinkall

metric [19] which is defined in §2.2. A precise estimate for this metric is derived in Section 2.4.

Section 2.5 contains the proof of the main result. The chapter concludes with examples in

Section 2.6.

2.2 Hyperbolic type metrics

Throughout this section let Ω be a simply connected proper subdomain of C. The hyperbolic

metric [25, Section 4.6] of Ω is conformally invariant and has constant Gaussian curvature

−4. The hyperbolic distance between z, w ∈ Ω is denoted ρΩ(z, w), and the density at z by

λΩ(z). When Ω is a disk of radius r and z is a point at distance d from its center, we have

λΩ(z) =
r

r2 − d2
(2.2.1)

and therefore [25, p. 6]

ρΩ(z, w) =
1

2
log

1 + r|z − w|/|r2 − zw̄|
1− r|z − w|/|r2 − zw̄|

. (2.2.2)

In the special case w = 0 this formula simplifies to

ρΩ(z, 0) =
1

2
log

r + |z|
r − |z|

. (2.2.3)

Note that ρΩ(z, 0) → ∞ as |z| → r, which indicates that every radius of the disk has infinite

hyperbolic length. By conformal invariance, every geodesic ray in a simply connected domain

has infinite hyperbolic length.

For more general Ω however, explicit formulas for λΩ or ρΩ are tied to explicit conformal

maps between Ω and the unit disk—in most cases neither exist. For this reason alternative
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metrics are used as approximations to the hyperbolic in the literature [13], we will look at

two.

Definition 2.2.1. Distance in the quasihyperbolic metric between z, w ∈ Ω is denoted

ρ∗Ω(z, w). The density at any point z ∈ Ω, denoted λ∗Ω(z), is the hyperbolic density with

respect to the largest disk centered at z that is contained in Ω. The quasihyperbolic density

is comparable to the hyperbolic [16, Section 2],

1

4
λ∗Ω(z) ⩽ λΩ(z) ⩽ λ∗Ω(z).

Note that [16] uses a version of the hyperbolic metric with curvature −1, whereas we

have opted for the −4 convention. The quasihyperbolic metric was used to attain the bound

in [18]. We now introduce a more refined metric which will be used to improve this bound.

Definition 2.2.2. Distance in the Kulkarni-Pinkall (KP) metric between z, w ∈ Ω is de-

noted by KPΩ(z, w), density by µΩ(z). If we take ∆ to be the set of all disks D such that

z ∈ D ⊂ Ω, then

µΩ(z)
def
= inf

D∈∆
λD(z). (2.2.4)

The KP density is also comparable to the hyperbolic density [16, Section 3],

1

2
µΩ ⩽ λΩ ⩽ µΩ, (2.2.5)

again shown with the −4 curvature convention. Note that the KP metric gives a better

approximation to the hyperbolic metric than the quasihyperbolic does.

The KP metric was introduced by Kulkarni and Pinkall in a 1994 article [19] with an

emphasis on its Möbius invariance. In different ways the KP and quasihyperbolic metrics

both take advantage of the fact that the hyperbolic metric is monotone with respect to
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domain, that is, if Ω1 ⊂ Ω2 ⊂ C are simply connected domains then

∀a, b ∈ Ω1, ρΩ1(a, b) ⩾ ρΩ2(a, b). (2.2.6)

This can be seen as a consequence of the Schwarz-Pick lemma.

By [15, Theorem 3.5] for each point z in a simply connected domain Ω ⊊ C, there exists

a unique disk that attains the infimum in (2.2.4), referred to as the extremal disk (this disk is

understood in the sense of the Riemann sphere when Ω is unbounded). The extremal disk is

determined by a subtle trade-off between the size of the disk and the proximity of its center

to z.

Lemma 2.2.3. [16, Section 2.3] For a simply connected domain Ω ⊊ C and a point z ∈ Ω,

the KPΩ extremal disk for z is the unique disk D satisfying the condition that z lies in the

closure of the convex hull of ∂D ∩ ∂Ω with respect to the hyperbolic metric on D.

Remark 2.2.4. Suppose Ω1 ⊂ Ω2 are domains and D is the KPΩ2 extremal disk for some

z ∈ Ω2. If D ⊂ Ω1, then D is also the KPΩ1 extremal disk for z.

Example 2.2.5. The KPH extremal disk at x ∈ R for the infinite strip H def
= {|Im z| < 1} is

D
def
= {z : |x− z| < 1} with ∂D ∩ ∂H = {x± i}. Here (x− i, x+ i) is a hyperbolic geodesic

in D and is the hyperbolic convex hull of ∂D ∩ ∂H in D.

Example 2.2.6. Fix θ ∈ (0, π/2). The KPS extremal disk at x > 0 for the sector S def
=

{|Arg z| < θ} is the disk D with ∂D ∩ ∂S = {xe±iθ}. The circular arc A def
= {xeit : |t| <

θ} ⊂ D is a hyperbolic geodesic in D and is the hyperbolic convex hull of ∂D ∩ ∂S in D.

Example 2.2.7. The KP extremal disk for every point in a domain D that is itself a disk is

D, because the convex hull of ∂D with respect to the hyperbolic metric on D is all of D.

Example 2.2.8. Suppose a domain S contains a disk D such that Γ def
= ∂D∩∂S is a circular

arc. Then the convex hull of Γ in the hyperbolic metric on D is the portion of D bounded
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by Γ and a circle orthogonal to Γ at both of its endpoints. Here we use circle in the sense of

the Riemann sphere so that if Γ is a semicircle, the orthogonal circle is a line.

The inclusion of Remark 2.2.4 and subsequent examples are to clarify the extremal disks

on the segment between centers of a stadium as described in Definition 2.4.1, and in the

proof of Lemma 2.4.4.

Recall from Definition 1.2.3 that the infinity Hardy norm of a holomorphic function f on

D is given by

∥f∥H∞ = sup
D

|f |.

As previously mentioned, we will use the KP metric to improve the derivative bound from [18],

which relied on the quasihyperbolic metric and can be stated as

∥f ′∥H∞ ⩽ RC exp{2(RO −RC)Φ(RI , RC)} (2.2.7)

where

Φ(a, b)
def
=


log a−log b

a−b , if a ̸= b

1
a
, if a = b.

.

This restatement of the result by Lotoreichik et al can be found in [21, Proposition 19]. Our

improved bound (Theorem 2.5.1) is sharp in a wider class of convex domains than (2.2.7).

2.3 Disk conditions for convex domains

Definition 2.3.1. Suppose Ω is a convex domain that contains 0. We say that such a

domain satisfies the (RO, RI , RC) condition if:

• RO, RI , RC are all positive,

• RO is the minimal r such that Ω ⊂ D(0, r),

• RI is the maximal r such that D(0, r) ⊂ Ω,
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• Ω can be expressed as a union of open disks of radius RC .

Figure 2.1: This is a sample domain Ω where the solid line denotes the boundary of Ω and
the dotted lines show the disks D(0, RO), D(0, RI), and one of many disks of radius RC .
This particular disk of radius RC is shown because where its boundary overlaps with the
boundary of Ω, there is no larger disk that could touch the boundary and still be contained
inside Ω.

The subscripts in Definition 2.3.1 serve to indicate that RO is the outer radius, RI the

inner radius, and RC a curvature radius. Figure 2.1 gives a visual aid to the definition.

By [17, Proposition 2.4.3], the expressibility of Ω as a union of open disks of fixed radius

RC in combination with convexity implies a C1,1 boundary. Therefore, the C1,1 smooth

boundary assumption in [18] can be removed.

Definition 2.3.2. A domain Ω ⊂ C satisfies a boundary uniform interior disk condition

(boundary-UIDC) with radius RC if for all ζ ∈ ∂Ω there exists a disk D ⊂ Ω of radius RC

such that ζ is a shared boundary point of D and Ω.

Definition 2.3.3. A domain Ω ⊂ C satisfies a covering uniform interior disk condition

(covering-UIDC) with radius RC if for all z ∈ Ω, there exists a disk D of radius RC such

that z ∈ D ⊂ Ω.

Lemma 2.3.4. Suppose a domain Ω ⊂ C satisfies a covering-UIDC with radius RC. Then

Ω also satisfies a boundary-UIDC with radius RC.
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Proof. We will show that for every ζ ∈ ∂Ω there exists a ∈ Ω such that D(a,RC) ⊂ Ω

and ζ ∈ ∂D(a,RC). Take a sequence zn → ζ of points zn ∈ Ω and cover each zn with

a disk D(an, RC) ⊂ Ω. The sequence {an} has a convergent subsequence {ank
}. Let a

be its limit. Clearly D(a,RC) ⊂ Ω, which implies |a − ζ| ⩾ RC . On the other hand,

|a− ζ| = limk→∞ |ank
− znk

| ⩽ RC .

Figure 2.2: This non-Jordan domain clearly satisfies a boundary-UIDC for some radius RC ,
but will not satisfy a covering-UIDC for any radius r > 0.

The converse does not hold, there exist non-Jordan simply connected domains like that

in Figure 2.2, which satisfy a boundary-UIDC for some radius RC , but do not satisfy a

covering-UIDC for any positive radius. A non-Jordan domain satisfying a boundary-UIDC

with radius RC permits a portion of the boundary to have the domain on both sides—at each

point, one side or the other must admit a boundary-UIDC disk, but it is possible that the

other side is inaccessible. There is reason to believe the partial converse in Conjecture 2.3.5

holds.

Conjecture 2.3.5. If a Jordan domain satisfies a boundary-UIDC with radius RC , then it

must also satisfy a covering-UIDC with radius RC/
√
3.

Example 2.3.6 (Clover Domain). Define D0 = D(0, 1/
√
3) (dashed in Figure 2.3). Take

three equally spaced points on the circle {z : |z| = 2/
√
3}, construct a disk of radius 1

centered at each, call these disks D1, D2, and D3. Observe that the boundaries of D1, D2, D3
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Figure 2.3: Points in the dashed hyperbolic triangle defined by D0 \ (D1 ∪D2 ∪D3) are not
contained in any sub-disk of Ω of radius 1.

have pairwise intersections of a single point, and that these three points all lie on ∂D0. Let

Ω
def
= D0 ∪D1 ∪D2 ∪D3.

By construction, Ω satisfies the boundary-UIDC with radius 1. However, 0 cannot be covered

by a disk of radius greater than 1/
√
3 that is contained in Ω.

There is a weak converse to Lemma 2.3.4 which uses the additional assumption that Ω

is convex.

Lemma 2.3.7. Suppose a convex domain Ω satisfies a boundary-UIDC with radius RC.

Then Ω also satisfies a covering-UIDC with radius RC.

Figure 2.4: ∂Ω pinched between L and ∂D(a,RC) in a neighborhood of ζ.
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Proof. Let z ∈ Ω be arbitrary. We will show there exists a ∈ Ω such that z ∈ D(a,RC) ⊂ Ω.

If dist(z, ∂Ω) ⩾ RC , then a = z and we are done; assume dist(z, ∂Ω) < RC . Since ∂Ω is

a closed set, there is a point ζ ∈ ∂Ω that attains the distance dist(z, ∂Ω), meaning that

dist(z, ∂Ω) = |ζ − z|. Since Ω is convex, there exists a line L that passes through ζ and

is disjoint from Ω. Let D(a,RC) be the disk satisfying the boundary-UIDC at ζ. Then

in a neighborhood of ζ, ∂Ω lies between D(a,RC) inside Ω and L which is outside Ω (See

Figure 2.4.) The radius of D(a,RC) terminating at ζ must then be orthogonal to L. Finally,

since |z − ζ| = dist(z, ∂Ω), we must have L orthogonal to the segment (z, ζ). It follows that

z, ζ, and a are collinear, and that z ∈ D(a,RC).

2.4 Estimates for the hyperbolic metric in convex do-

mains

We introduce a class of convex domains which are convenient for estimating the hyperbolic

metric.

Definition 2.4.1. A stadium is the convex hull of the union of two open disks in the plane.

It is denoted by S(r1, r2, d) where r1 and r2 are the radii of the two disks and d is the distance

between their centers.

The notation S(r1, r2, d) in Definition 2.4.1 omits the centers of the disks that form the

stadium since they are usually irrelevant to the hyperbolic geometry of the domain. The

centers will be given in context when relevant.

The following lemma is a special case of [17, Proposition 2.4.3].

Lemma 2.4.2. The boundary of a stadium is C1,1-smooth. That is, the unit speed parame-

terization of its boundary has Lipschitz continuous derivative.

Proof. The boundary of a stadium S(r1, r2, d) consists of circular arcs, possibly joined by

tangent line segments. If we take w to be a unit speed parameterization of the boundary
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and r = min(r1, r2), then the inequality

|w′(t1)− w′(t2)| ⩽
1

r
|t1 − t2| (2.4.1)

holds on each of two circular arcs. It also holds on linear segments where w′ is constant. It

now follows that w′ is Lipschitz continuous.

Definition 2.4.3. For 0 < r < R < ∞, let DR and Dr denote the two open disks used to

construct a stadium S def
= S(R, r, d) as in Definition 2.4.1. If d > R − r, then the boundary

of S is composed of two circular arcs and two congruent line segments. These segments can

be extended to circumscribe an infinite sector Ŝ around S. The opening of the sector is 2θ

where θ def
= arcsin R−r

d
. When working with a sector Ŝ(R, r, d) it is useful to assume that

after a rigid motion, Ŝ = {z : |Arg z| < θ}.

Lemma 2.4.4. Given a stadium S(R, r, d) where r ⩽ R, let θ = arcsin R−r
d

if d > R − r.

The KP distance between the centers of DR and Dr is given by

d

R
if r = R, (2.4.2a)

when r < R

1

2
log

R + d

R− d
if d ⩽ R tan(θ/2) (2.4.2b)

1

2

[
cot

θ

2
log

(
R

r
cos θ

)
+ log

1 + tan(θ/2)

1− tan(θ/2)

]
otherwise. (2.4.2c)

Proof. Throughout this proof we refer to the disks Dr and DR as well as their centers; these

are the disks from Definition 2.4.1.

If r = R, then S is contained in an infinite strip of width 2r. By Remark 2.2.4 and in light

of Example 2.2.5, at every point z along the segment connecting the centers the extremal

disk is D(z, r). Then µS(z) = λD(0,r)(0), from (2.2.1) the density is 1/r, and integrating this

along a segment of length d yields the result in (2.4.2a).

Next assume d ⩽ R − r; then θ = π/2. In this case we clearly have d < R tan(θ/2), and
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furthermore Dr ⊂ DR so S = DR. Like Example 2.2.7, for every point in S the KPS extremal

disk will be DR. Thus the KP distance between the centers is the KP length of a radial

segment of length d, with the center of DR as one endpoint. This distance is equivalent to

ρD(0,R)(0, d). The formula for hyperbolic distance in (2.2.3) gives the result in (2.4.2b).

Now assume that R − r < d ⩽ R tan(θ/2). We will show that the segment connecting

the centers is contained in the convex hull of ∂DR ∩ ∂S in the hyperbolic metric on DR,

and thus DR is the extremal disk along the whole segment. Let Ŝ = {|Arg z| < θ} as in

Definition 2.4.3. Then it is easily verified that ∂DR ∩ ∂Ŝ = {Re±iθ cot θ} and ∂DR ∩ ∂S has

endpoints {Re±iθ cot θ}. The convex hull of ∂DR ∩ ∂S in the hyperbolic metric on DR is the

portion of DR bounded by ∂DR ∩ ∂S and D(0, R cot θ)∩ {|Arg z| < θ} (see Example 2.2.8).

The distance from the center of DR, located at R csc θ, to the boundary of D(0, R cot θ)

along the real axis is R csc θ − R cot θ = R tan(θ/2). Then because d ⩽ R tan(θ/2), the

segment is contained in the convex hull, DR is the KPS extremal disk along the segment, and

the center of DR is one endpoint of the segment. The KPS length can again be calculated as

ρD(0,R)(0, d). This completes the result in (2.4.2b).

Finally, assume d > R tan(θ/2), and thus the segment connecting the centers extends

beyond the convex hull of ∂DR ∩ ∂S. We will divide the segment into a proximal segment

[r csc θ, R cot θ] and a distal segment [R cot θ, R csc θ], where proximal and distal indicate

relative position with respect to the vertex at 0. The distal segment will have as its extremal

disk DR, and as before we calculate the length as

KPS(R cot θ, R csc θ) =

∫ R(csc θ−cot θ)

0

λD(0,R)(z) dz =
1

2
log

1 + tan(θ/2)

1− tan(θ/2)
. (2.4.3)

For the proximal segment we rely on work done by Herron, Ma, and Minda [16, p. 331].

They produced a formula for the KP metric density at any point in an infinite sector. After

adjusting the notation, the curvature convention, and taking advantage of the simplification
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that our segment is along the central axis, the formula is

µŜ(z) =
1

2z
cot(θ/2). (2.4.4)

We need to show that the KPŜ extremal disk for every point on the proximal segment

is contained in S. Then, by Remark 2.2.4 it will also be the extremal disk in S. This will

justify using the infinite sector formula in (2.4.4) to give the KP density in our stadium S.

It will suffice to show that the extremal disk for the two endpoints of the proximal segment

are in S.

The proximal endpoint of the proximal segment is r csc θ, constructing the extremal disk

in Ŝ for r csc θ gives a disk tangent to ∂Ŝ at {re±iθ csc θ}. The disk Dr is tangent to ∂Ŝ

at {re±iθ cot θ}, and because csc θ < cot θ in (0, π) the KPŜ extremal disk for the endpoint

r csc θ is far enough from the vertex to be contained in S. The other endpoint is R cot θ, and

we have already seen that ∀z ∈ S : |z| ⩾ R cot θ, the KPS extremal disk is DR.

We now calculate the KP length of the proximal segment in S by integrating the density

given in (2.4.4):

∫ R cot θ

r csc θ

1

2z
cot(θ/2) dz =

1

2
cot(θ/2) log

(
R

r
cos θ

)
. (2.4.5)

Combining the proximal and distal lengths completes the proof,

KPS(r csc θ, R csc θ) =
1

2

[
cot(θ/2) log

(
R

r
cos θ

)
+ log

1 + tan(θ/2)

1− tan(θ/2)

]
. (2.4.6)

Lemma 2.4.5. Let δ(r1, r2, d) be the hyperbolic distance between the centers in a stadium

S(r1, r2, d), then δ(r1, r2, d) is an increasing function in d.

Proof. Fix r1 and r2. Let d1 < d2 and define λ = d2/d1. Dilating S(r1, r2, d1) by a factor of
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λ and observing the conformal invariance of the hyperbolic metric we have

δ(r1, r2, d1) = δ(λr1, λr2, d2). (2.4.7)

Now consider S(r1, r2, d2) and S(λr1, λr2, d2). After a rigid motion, the segments connecting

the centers of two stadia are coincident and S(r1, r2, d2) ⊂ S(λr1, λr2, d2). Then by the

monotonicity of the hyperbolic metric (2.2.6) we have

δ(λr1, λr2, d2) ⩽ δ(r1, r2, d2), (2.4.8)

and combining (2.4.7) and (2.4.8) gives the result.

Lemma 2.4.6. Let Ω satisfy the (RO, RI , RC) condition in Definition 2.3.1. Then

|RI −RC | ⩽ RO −RC .

Proof. If RC ⩽ RI , then we are trying to show RI − RC ⩽ RO − RC . It is clear from the

definitions that RI ⩽ RO, so the inequality is verified in this case.

Now assume RI < RC , we want to show RC − RI ⩽ RO − RC . There exists a point

ξ ∈ ∂Ω such that |ξ| = RI . The smoothness of ∂Ω implies that it must be share a tangent

line with ∂D(0, RI) at ξ, otherwise ∂Ω has modulus less than RI in a neighborhood of ξ

contradicting that D(0, RI) ⊂ Ω.

By Definition 2.3.1 and Lemma 2.3.4 there exists a disk D(a,RC) ⊂ Ω with ξ as a

boundary point. Because ξ ∈ ∂Ω ∩ ∂D(a,RC) and ∂Ω is smooth, ∂Ω must share a tangent

line with ∂D(a,RC) at ξ. It follows that ∂D(0, RI) and ∂D(a,RC) also share a tangent

line at ξ, and this line is orthogonal to the segment (0, ξ). It follows that the points ξ, 0,

and a all lie on the same line L. Observe that D(a,RC) ⊂ Ω ⊂ D(0, RO). It follows that

2RC ⩽ diam (Ω ∩ L) ⩽ RO +RI , (see Figure 2.5) and thus RC −RI ⩽ RO −RC .

The necessary condition in Lemma 2.4.6 turns out also to be sufficient for the existence
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Figure 2.5: If 2RC > RO +RI , we contradict the definition of either RO or RI .

of such Ω.

Lemma 2.4.7. We can construct a domain Ω satisfying the (RO, RI , RC) condition for an

arbitrary RO, RI , RC so long as they satisfy the relationship |RI −RC | ⩽ RO −RC.

Proof. If RI > RC , letK be the closed Euclidean convex hull of the setD(0, RI−RC)∪{RO−

RC}. Otherwise, let K be the line segment [RC −RI , RO −RC ]. Define Ω =
⋃
z∈K

D(z,RC).

By construction, Ω is convex and has C1,1-smooth boundary. More specifically, Ω is

a stadium in the sense of Definition 2.4.1. That Ω has the required values of RO and

RI is a consequence of the fact that −RI and RO are boundary points of Ω, and that

D(0, RI) ⊂ Ω ⊂ D(0, RO).

Our main result of this section provides an upper bound on the hyperbolic distance from

the base point 0 to any point a such that D(a,RC) ⊂ Ω. This bound is given in terms of

the outer, inner, and curvature radii of Ω.

Theorem 2.4.8. Let Ω satisfy the (RO, RI , RC) condition in Definition 2.3.1 and let a be

any point such that D(a,RC) ⊂ Ω. Let R = max(RC , RI), r = min(RC , RI), d = RO − RC,
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and θ = arcsin R−r
d

. Define F (RO, RI , RC) as

d

R
if r = R, (2.4.9a)

when r < R

1

2
log

R + d

R− d
if d ⩽ R tan

θ

2
, (2.4.9b)

1

2

[
cot

θ

2
log

(
R

r
cos θ

)
+ log

1 + tan(θ/2)

1− tan(θ/2)

]
otherwise. (2.4.9c)

Then ρΩ(0, a) ⩽ F (RO, RI , RC).

Proof. First, note that Lemma 2.4.6 allows us to define θ in this way. Observe thatD(a,RC) ⊂

Ω ⊂ D(0, RO), thus |a| + RC ⩽ RO and |a| ⩽ d. Since Ω is a convex domain containing

the disks D(0, RI) and D(a,RC), it contains the corresponding stadium S(RI , RC , |a|). For

containment the position of the stadium is important, so to be clear S is the convex hull

of D(0, RI) ∪ D(a,RC). It follows from (2.2.6) regarding the domain monotonicity of the

hyperbolic metric and from Lemma 2.4.5 that

ρΩ(0, a) ⩽ δ(RI , RC , |a|) = δ(R, r, |a|) ⩽ δ(R, r, d) (2.4.10)

where δ is as in Lemma 2.4.5. Since the hyperbolic distance is majorized by the KP dis-

tance (2.2.5), the claim follows from the explicit formulas for KP distance from Lemma 2.4.4.

In each of the three cases we find the longest possible line segment from 0 to an allowable

a, construct S(RI , RC , RO − RC) = S(R, r, d) ⊂ Ω around the segment, and find its KPS

length. The formula in (2.4.9a) corresponds to the case where the KP metric has constant

density along the segment. The formula in (2.4.9b) corresponds to the case where the KPS

extremal disk is the same at every point of the segment. The formula in (2.4.9c) corresponds

to the case where the extremal disk and density vary along the segment.
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2.5 Global expansion bound for maps from the disk onto

convex domains

We are now ready to prove the main result.

Theorem 2.5.1. Let Ω satisfy the (RO, RI , RC) condition in Definition 2.3.1. Then for any

conformal map f : D onto−−→ Ω fixing 0 we have

∥f ′∥H∞ ⩽ RCe
2F (RO,RI ,RC). (2.5.1)

where F is as in Theorem 2.4.8.

Proof. By assumption, Ω has a smooth boundary and f ′ exist on ∂D. Take any number

L > RCe
2F (RO,RI ,RC). It suffices to show that |f ′| ⩽ L in D, which we will do by proving this

inequality holds on the boundary and then using the maximum principle. More specifically,

it suffices to show

lim sup
|z|↗1

dist(f(z), ∂Ω)

1− |z|
⩽ L. (2.5.2)

Fix z ∈ D. Let d = dist(f(z), ∂Ω), since we are interested in the limit as d → 0, we may

assume d < RC . We will show that

d

L
⩽ 1− |z| (2.5.3)

for sufficiently small d, thus establishing the inequality in (2.5.2).

We choose a point w ∈ ∂Ω such that |f(z) − w| = d. By definition of RC there is a

disk D = D(a,RC) that has w on its boundary and is contained in Ω. The smoothness of

∂Ω and ∂D at w requires that f(z) lie on the radius of D that ends at w, and therefore

|f(z)− a| = RC − d. Keeping in mind that the hyperbolic metric is monotone with respect

to domain and the formula for hyperbolic distance in a disk along a radius is well known,
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observe

ρΩ(f(z), a) ⩽ ρD(a,RC)(f(z), a) =
1

2
log

2RC − d

d
<

1

2
log

2RC

d
. (2.5.4)

Next we estimate ρΩ(a, 0) using the KP estimate from Theorem 2.4.8:

ρΩ(a, 0) ⩽ F (RO, RI , RC). (2.5.5)

Now suppose for the sake of contradiction that (2.5.3) is false, this implies

1− |z| < d/L and 1 + |z| > 2− d/L.

By conformal invariance of the hyperbolic metric we know ρΩ(f(z), 0) = ρD(z, 0), then

ρΩ(f(z), 0) =
1

2
log

1 + |z|
1− |z|

>
1

2
log

2− d/L

d/L
. (2.5.6)

Using the triangle inequality to combine this with (2.5.4) and (2.5.5) we get

1

2
log

2− d/L

d/L
<

1

2
log

2RC

d
+ F (RO, RI , RC)

which can be rearranged to

L− d

2
< RCe

2F (RO,RI ,RC).

But RCe
2F (RO,RI ,RC) < L, so we have a contradiction when d is sufficiently small. This

contradiction proves (2.5.3).

There are two obvious corollaries. The first generalizes the arbitrary choice of 0 that

was used as a base point throughout the chapter. The second recognizes that the stretching

bound on all conformal f : D onto−−→ Ω attained in Theorem 2.5.1 is equivalent to a compression

bound on all g : Ω
onto−−→ D, that is, it formalizes the observation that if |f ′| ⩽ L in D, then

|[f−1]′| ⩾ L−1 in Ω.
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Corollary 2.5.2. Let Ω be a domain and z0 a base point in the domain such that Ω0
def
=

{z − z0 : z ∈ Ω} satisfies the (RO, RI , RC) condition in Definition 2.3.1. Then for any

conformal map f : D onto−−→ Ω such that f(0) = z0, we have

∥f ′∥H∞ ⩽ RCe
2F (RO,RI ,RC). (2.5.7)

where F is as in Theorem 2.4.8.

Proof. Define a conformal map g : D onto−−→ Ω0 by g(z)
def
= f(z) − z0. Then for all z ∈ D, we

have g′(z) = f ′(z) and by Theorem 2.5.1 ∥g′∥H∞ ⩽ RCe
2F (RO,RI ,RC).

Corollary 2.5.3. Let Ω satisfy the (RO, RI , RC) condition in Definition 2.3.1. Then for any

conformal map f : Ω onto−−→ D

sup
z∈Ω

|1/f ′| ⩽ RCe
2F (RO,RI ,RC). (2.5.8)

where F is as in Theorem 2.4.8.

Proof. Let g = f−1 and let z ∈ D be arbitrary, so that g(z) = w ∈ Ω. Then by the inverse

function theorem g′(z) = 1
f ′(w)

. It follows that

|1/f ′(w)| = |g′(z)| ⩽ ∥g′∥H∞ ,

and we know from Theorem 2.5.1 that |g′(z)| ⩽ RCe
2F (RO,RI ,RC). Since z and f(z) = w were

arbitrary, it follows that sup |1/f ′| ⩽ RCe
2F (RO,RI ,RC).

2.6 Examples

Remark 2.6.1. In the absence of convexity, we would need some other condition for ∥f ′∥H∞

to be controlled by the three radii RO, RI , RC . Let ϵ > 0 and define Ω as D(0, 1)∪D(2−ϵ, 1)
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(See Figure 2.6). Then RI = RC = 1 and RO = 3− ϵ, so all three radii stay between 1 and 3.

But for a conformal map φ : D onto−−→ Ω with φ(0) = 0 and φ′(0) > 0, we have ∥φ′∥H∞ → ∞

as ϵ→ 0.

Figure 2.6: The Mastercard domain D(0, 1) ∩ D(2 − ϵ, 1). A non-convex Ω such that for
f : D onto−−→ Ω with f(0) = 0, supD |f ′| is not controlled by the radii RO, RI , RC .

Proof. Let z0 = φ−1(2− ϵ). By the Schwarz-Pick lemma [25, Corollary 1.4]

|φ′(z0)| ⩾
dist(φ(z0), ∂Ω)

1− |z0|2
=

1

1− |z0|2
. (2.6.1)

By conformal invariance of the hyperbolic metric

ρD(0, z0) = ρΩ(0, 2− ϵ). (2.6.2)

From (2.2.3) we have

ρD(0, z0) =
1

2
log

1 + |z0|
1− |z0|

. (2.6.3)

We will show that ρΩ(0, 2 − ϵ) → ∞ as ϵ → 0. This along with (2.6.2) and (2.6.3) will

establish that |z0| → 1 as ϵ → 0, which along with (2.6.1) is enough to show |φ′(z0)| → ∞

and thus prove the claim.

The two circular arcs forming the boundary of Ω meet at e±iθ where θ = arccos(1 − ϵ
2
),

so θ → 0 as ϵ→ 0. If we define G to be the complex plane with vertical cuts going up from

eiθ and down from e−iθ, we have Ω ⊂ G. Then by hyperbolic domain monotonicity in (2.2.6)

we know ρΩ(0, 2− ϵ) ⩾ ρG(0, 2− ϵ).
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By the linear map f(z) = z−cos θ
sin θ

, G can be transformed in H which we define as the

complex plane with vertical cuts up from i and down from −i. Then f(0) = − cot θ and

f(2 − ϵ) = f(2 cos θ) = cot θ. The statement to be proven in Remark 2.6.1 reduces to

ρH(− cot θ, cot θ) → ∞ as ϵ → 0. Observe that as ϵ → 0, θ → 0 and thus the segments

(− cot θ, cot θ) cover the real line. By the symmetry of H, R is a hyperbolic geodesic and

every hyperbolic geodesic ray in a simply connected domain has infinite hyperbolic length

(see beginning of Section 2.2).

Example 2.6.2. Let Ω = {|z| < r}, then RO = RI = RC = r. Theorem 2.5.1 says that for

all conformal f : D onto−−→ Ω fixing 0, ∥f ′∥H∞ ⩽ re0 = r. The function f(z) = rz shows the

bound is attained in this case.

This can be generalized to show that the bound in Theorem 2.5.1 is sharp whenever Ω

is a disk containing 0.

Proposition 2.6.3. Let Ω = D(a, r) with 0 ⩽ |a| < r. Then the bound in Theorem 2.5.1 is

sharp for a conformal map f : D onto−−→ Ω.

Proof. After a rotation about the origin, we may assume 0 ⩽ a < r. Then Ω satisfies the

condition (RO = r + a,RI = r − a,RC = r), and one can check that Theorem 2.5.1 gives

∥f ′∥H∞ ⩽ r
r + a

r − a
. (2.6.4)

Take

f1(z) =
z − a

r

1− a
r
z
, f2(z) = z +

a

r
, and f3(z) = rz.

Then the conformal mapping f3 ◦ f2 ◦ f1 : D
onto−−→ D(a, r) fixes 0, and its derivative attains

the bound (2.6.4) at z = 1.

To illustrate the improvement over the bound given in equation (2.2.7), we close with

two more examples.
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Example 2.6.4. One of examples considered in [18] is a rounded triangle with RO =

0.6, RI = 0.5, RC = 0.4. For this domain, the bound (2.2.7) is ∥f ′∥H∞ ⩽ 0.977. Theo-

rem 2.5.1 improves this to ∥f ′∥H∞ ⩽ 0.931.

Example 2.6.5. For the domain in Proposition 2.6.3 with 0 ⩽ a < r the bound (2.2.7) is

∥f ′∥ ⩽
r3

(r − a)2
. (2.6.5)

The ratio of two bounds (2.6.4) and (2.6.5) tends to 0 as a → r, indicating a substantial

improvement. For a specific example, let a = 1 and r = 2, so Ω = D(1, 2). The bound

in (2.6.4) becomes ∥f ′∥H∞ ⩽ 6, which is sharp as noted above. In contrast (2.2.7) gives

∥f ′∥H∞ ⩽ 8 for this example.
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Chapter 3

Lipschitz Estimates for Maps from the

Unit Disk onto Stellar Core Domains

3.1 Introduction

The goal of this chapter is to move beyond convex domains. Star-shaped domains are a

natural class to consider next. In Figure 3.1 we see an example of a star-shaped domain that

is not convex and even has intruding corners, but is still expressible as the union of disks of

some radius RC .

Since the existence of RC no longer guarantees smoothness (in contrast to the convex

case), additional ideas are required to obtain Lipschitz estimates for such domains. Also,

the inner radius of a star-shaped domain in general cannot be used in conjunction with the

boundary-UIDC to construct a stadium contained in Ω.

We replace the inner radius with so-called stellar core radius RS and show that the

conclusion in Theorem 2.5.1 still holds without convexity using this new radius. Note that

if Ω is convex then RI = RS, and it will be seen that Theorem 2.5.1 is a special case of the

stronger Theorem 3.4.6, which is the main result in this chapter.
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Figure 3.1: This flower domain is centered on the point 0. The dotted stadium shown is
constructed using the stellar core radius (see Definition 3.2.2) and a boundary-UIDC disk.
This shows that the approach used to prove Theorem 2.5.1 can be adapted for a class of
non-convex domains, a motivating idea for this chapter.

3.2 Definitions and preliminary results

Definition 3.2.1. A domain Ω is starlike with respect to a point a if for all z ∈ Ω, the line

segment [a, z] is contained in Ω. The point a is called a star center of Ω.

Definition 3.2.2 (Stellar Core Radius). Let a domain Ω be starlike with respect to 0. We

say Ω has a positive stellar core radius if there exists r such that ∀z ∈ Ω, the convex hull of

the set {z} ∪ D(0, r) is contained in Ω. If there exists such a positive number we call Ω a

stellar core domain and define RS to be the largest r for which it holds. If no such positive

number exists, let RS = 0.

Remark 3.2.3. It would be equivalent to define the stellar core radius as the largest r for

which Ω is starlike with respect to every point in D(0, r).

Definition 3.2.4 (Tangent Line). Let Γ be a Jordan curve. By definition, there is a home-

omorphic parameterization f : ∂D onto−−→ Γ. For a point ζ = f(eit) ∈ Γ we say that there is a

tangent line if the limit

v
def
= lim

s→t
sign

(
f(eis)− f(eit)

s− t

)
(3.2.1)

exists, where sign z = z/|z| is the complex sign function. If the limit does exist, define the

tangent line L to Γ at ζ as the line {ζ + tv : t ∈ R}.
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Definition 3.2.5. Suppose Ω is a Jordan domain which is starlike with respect to 0. We

say that such a domain satisfies the (RO, RS, RC) condition if:

• RO is the minimal r such that Ω ⊂ D(0, r).

• Ω has positive stellar core radius RS.

• Ω satisfies the boundary uniform interior disk condition from Definition 2.3.2 with

radius RC .

Figure 3.2: The solid lines are the boundary of a sample domain Ω. The radii RC and RO

are shown, but are unchanged and need no further explanation. A clumsier, but visually
intuitive definition of the radius RS might be to consider the set of all lines L tangent to ∂Ω
and set RS = inf dist(0, L). Two such extremal tangent lines L1 and L2 are shown.

The subscripts serve to indicate that RO is the outer radius, RS the stellar core radius,

and RC the curvature radius. Figure 3.2 gives a visual aid to the definition. Recall that

Definition 2.3.2 says for all ζ ∈ ∂Ω there exists a disk D of radius RC such that ζ ∈ ∂D and

D ⊂ Ω.

Definition 3.2.6 (Corner). Let Ω be a Jordan domain satisfying the boundary-UIDC (Def-

inition 2.3.2), and let ζ be a point in ∂Ω. Let ∆ be the set containing the centers of all disks

D ⊂ Ω with radius RC such that ζ ∈ ∂D ∩ ∂Ω. For any a, b ∈ ∆, the ordered triple a, ζ, b

defines two angles; β1(a, ζ, b) + β2(a, ζ, b) = 2π where β1(a, ζ, b) ⩽ π and β2(a, ζ, b) ⩾ π. Let
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β denote the supremum of β1(a, ζ, b) taken over all pairs a, b ∈ ∆. Then we say Ω has a

corner of exterior measure π − β.

Remark 3.2.7. Observe because Ω is assumed to satisfy the boundary uniform interior disk

condition, all corners are necessarily intruding. If there were an extruding (jutting outward)

angle at some point, Ω could not possibly satisfy the boundary-UIDC at that point.

3.3 Disk and wedge conditions without a convexity re-

quirement

Lemma 3.3.1. Let Ω satisfy the boundary-UIDC (Definition 2.3.2) and let ζ ∈ ∂Ω be a

point at which there is a tangent line L to ∂Ω. Then there is a unique disk D(a,RC) ⊂ Ω

with ζ ∈ ∂D(a,RC), and the segment [a, ζ] is orthogonal to L.

Proof. Existence follows immediately from Definition 2.3.2. For uniqueness, assume not.

Then there exist a1 ̸= a2 such that D(ai, RC) ⊂ Ω and ζ ∈ ∂D(ai, RC). Define 0 < α ⩽ π

as α = ∡(a1, ζ, a2). Then ∂Ω must have a corner of exterior measure at most π − α at ζ

contradicting the existence of a tangent line. This establishes that there is a unique disk

D(a,RC).

Now assume that (a, ζ) is not orthogonal to L. Define 0 < β < π/2 as the angle between

the segment (a, ζ) and a line orthogonal to L. Then by Definition 3.2.6, ∂Ω must have a

corner of exterior measure at most π−β at ζ contradicting existence of the tangent line L.

The converse is also true.

Lemma 3.3.2. Let Ω satisfy the boundary-UIDC (Definition 2.3.2) and let ζ ∈ ∂Ω be a

point at which there is a unique disk D(a,RC) ⊂ Ω with ζ ∈ ∂D(a,RC). Then there exists a

tangent line to ∂Ω at ζ.

Proof. First, we establish continuity of the boundary-UIDC disk center at ζ by a convergence

argument similar to that in the proof of Lemma 2.3.4. Let ζ ∈ ∂Ω be a point at which there
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is a unique disk D(a(ζ), RC) ⊂ Ω such that ζ ∈ ∂D(a(ζ), RC). Since Ω is assumed to satisfy

a boundary-UIDC, for every point ξ ∈ ∂Ω near ζ there is a disk D(a(ξ), RC) ⊂ Ω such that

ξ ∈ ∂D(a(ξ), RC). As ξ → ζ, it must be true of the disk centers that limξ→ζ a(ξ) = a(ζ). If

this was not the case, then a subsequence could be chosen for which the center a(ξ) converges

to something other that a(ζ) which would contradict the uniqueness of D(a(ζ), RC).

It follows that

∀ϵ > 0∃δ > 0: |ξ − ζ| < δ =⇒ |a(ξ)− a(ζ)| < ϵ. (3.3.1)

The boundary point ξ cannot lie inside D(a(ζ), RC), so it is constrained from the inside of the

domain. Near ζ, ∂D(a(ζ), RC) looks locally like a line L orthogonal to the segment (ζ, a(ζ))

and containing ζ. In the neighborhood D(ζ, δ) away from a(ζ) (below ζ in Figure 3.3) there

is a sector S↓ with vertex ζ where ξ cannot be; if it were, the contradiction ζ ∈ D(a(ξ), RC)

would be forced by the assumption that a(ξ) ∈ D(a(ζ), ϵ). Observe that this sector is bisected

by a line though ζ and a(ζ). Note also that this sector (and the next two) are created by

the intersection of two circles and are only true sectors in the limit. Then ξ can only be in

the two remaining sectors: S← and S→, both with angle measure θ = arctan(ϵ/RC).

In Figure 3.3, the upper arc through ζ represents a portion of ∂D(a(ζ), RC), the two

lower arcs with ζ as an endpoint represent the boundaries of two possible disks, D(a(ξ), RC)

under the constraint that |a(ξ) − a(ζ)| < ϵ. The disks shown are chosen because they

(diagrammatically) attain the maximal angle θ, thus setting the edge of S↓ as described.

As ϵ → 0, θ → 0 and the boundary point ξ squeezed onto the line L (which would

be horizontal through ζ in Figure 3.3). The possibility that ∂Ω approaches ζ through S←,

has a cusp at ζ, and then passes back out S← is eliminated by the assumption of a unique

boundary-UIDC disk at ζ and the continuity argument that began the proof; this is also

true of S→.

Define s and t such that ξ = f(eis) and ζ = f(eit). Then s → t as ξ → ζ, and the limit
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in Definition 3.2.4 of a tangent line exists. This tangent line is the line L alluded to just

below (3.3.1). Observe that L is orthogonal to the segment (ζ, a(ζ)).

Figure 3.3: The dotted circle is the neighborhood D(ζ, δ).

As a corollary, we obtain a partial result related to Conjecture 2.3.5.

Corollary 3.3.3. If a Jordan domain satisfies a boundary-UIDC (Definition 2.3.2) with a

unique disk at every boundary point, then it satisfies a covering-UIDC (Definition 2.3.3) for

the same radius RC.

Proof. Let z be an arbitrary point in Ω. If dist(z, ∂Ω) ⩾ RC , then D(z, RC) ⊂ Ω covers

z. Assume d = dist(z, ∂Ω) < RC , because ∂Ω is closed there is a point ζ ∈ ∂Ω such that

|z−ζ| = d. By assumption there is a unique diskD(a,RC) ⊂ Ω with ζ ∈ ∂D(a,RC)∩∂Ω, and

by Lemma 3.3.2 there is a line L tangent to both ∂Ω and ∂D(a,RC) at ζ. Since D(z, d) ⊂ Ω

and ζ ∈ ∂D(z, d), the line L is also tangent to ∂D(z, d) at ζ. Then ∂D(a,RC) and ∂D(z, d)

are mutually tangent at ζ, and z ∈ D(z, d) ⊂ D(a,RC). Because z was arbitrary we have

shown that for all z ∈ Ω, there exists D(a(z), RC) ⊂ Ω containing z and the statement is

proven.
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Lemma 3.3.4 (Wedge Condition). Let Ω be a domain satisfying the boundary-UIDC (Defi-

nition 2.3.2) and with a line L tangent to ∂Ω at ζ. Then for all θ < π/2 there exists a sector

G ⊂ Ω with radius r > 0, vertex ζ, angular opening 2θ, and angle bisector inward normal to

L at ζ. The radius r depends on RC and θ only.

Proof. By Definition 3.2.5 there exists D(a,RC) ⊂ Ω with ζ ∈ ∂D(a,RC) ∩ ∂Ω. By

Lemma 3.3.1 the segment [a, ζ] ⊥ L. For r < 2RC cos θ, define a sector G with vertex ζ,

radius r, angular opening 2θ, and angle bisector collinear with [a, ζ]. Then by construction,

G ⊂ D(a,RC) ⊂ Ω.

3.4 Global expansion bound for maps from the disk onto

stellar core domains

Lemma 3.4.1. Let Ω be a domain satisfying the (RO, RS, RC) condition. Then |RC −RS| ⩽

RO −RC.

Proof. The inequality to be proven reduces to the statements RS ⩽ RO or RC ⩽ RO if

RS > RC or RS = RC respectively. It is inherent to Definition 3.2.5 that RO is the largest

of the three radii, so we may concern ourselves only with the case where RS < RC . In this

case, the inequality to be verified is equivalent to RS ⩾ 2RC −RO.

Observe that if 2RC ⩽ RO, then 2RC ⩽ RO + RS and the statement is proven. Now

assume 2RC > RO and take an arbitrary point z ∈ Ω. To complete the proof we need to

show that the convex hull of {z}∪D(0, 2RC −RO) is contained in Ω. Let ζ be the projection

of z from 0 onto the boundary. If z = 0, an arbitrary choice of ζ will suffice. Definition 3.2.5

furnishes a disk D(a,RC) ⊂ Ω with ζ contained in ∂D(a,RC) ∩ ∂Ω. We know |ζ| ⩽ RO

and by assumption 2RC > RO, so it follows that the disk D(0, 2RC − RO) ⊂ D(a,RC) (See

Figure 3.4). Because 0 ∈ D(a,RC), ζ ∈ ∂D(a,RC), and by construction z in on the line

segment [0, ζ], we may conclude z ∈ D(a,RC). Finally since {z}∪D(0, 2RC−RO) is a subset
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of D(a,RC) and D(a,RC) is convex, the convex hull of {z}∪D(0, 2RC −RO) is contained in

D(a,RC) and is therefore contained in Ω. Since z was arbitrary, we showed that the convex

hull of {z}∪D(0, 2RC −RO) is contained in Ω for all z ∈ Ω. It follows from Definition 3.2.2

that RS ⩾ 2RC −RO.

Figure 3.4: If 2RC > RO, then for any diskD(a,RC) ⊂ Ω it must be the case thatD(0, 2RC−
RO) ⊂ D(a,RC).

Theorem 3.4.2. Let Ω satisfy the (RO, RS, RC) condition in Definition 3.2.5 and let a be

any point such that D(a,RC) ⊂ Ω. Let R = max(RC , RS), r = min(RC , RS), d = RO −RC,

and θ = arcsin R−r
d

. Define F (RO, RS, RC) as

d

R
if r = R, (3.4.1a)

when r < R

1

2
log

R + d

R− d)
if d ⩽ R tan

θ

2
, (3.4.1b)

1

2

[
cot

θ

2
log

(
R

r
cos θ

)
+ log

1 + tan(θ/2)

1− tan(θ/2)

]
otherwise. (3.4.1c)

Then ρΩ(0, a) ⩽ F (RO, RS, RC).

Proof. We know that Ω contains D(a,RC) and has stellar core D(0, RS). Then for all
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z ∈ D(a,RC), the convex hull of {z}∪D(0, RS) is contained in Ω. It follows that the convex

hull of D(a,RC)∪D(0, RS) is contained in Ω. This convex hull is the stadium S(RS, RC , |a|)

from Definition 2.4.1.

It follows from the domain monotonicity of the hyperbolic metric that

ρΩ(0, a) ⩽ δ(RS, RC , |a|) (3.4.2)

where δ is the hyperbolic distance between centers, as in Lemma 2.4.5. Observe that |a| ⩽

RO −RC , otherwise we contradict D(a,RC) ⊂ D(0, RO). Applying Lemma 2.4.5 shows

δ(RS, RC , |a|) ⩽ δ(RS, RC , RO −RC). (3.4.3)

Since the hyperbolic distance is majorized by KP distance (see (2.2.5)), the claim follows

by combining inequalities (3.4.2) and (3.4.3) with the explicit formula for KP distance from

Lemma 2.4.4.

Lemma 3.4.3. Let Ω be a Jordan domain and suppose there exist a tangent line to ∂Ω at a

point ζ. If w → ζ along the interior normal half line, then

|w − ζ|
dist(w, ∂Ω)

→ 1.

Proof. By Lemma 3.3.4, the existence of a tangent line at ζ implies that for all θ < π/2

there exists an r > 0 such that the sector with vertex ζ, angular opening 2θ, radius r, and

bisector inward normal to the tangent line is contained in Ω. Call this sector G.

When w is on the bisector of G is sufficiently close to ζ (|ζ − w| < r/2), then

dist(w, ∂Ω) ⩾ dist(w, ∂G) = |ζ − w| sin θ.
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As w → ζ along the bisector,

lim sup
|w − ζ|

dist(w, ∂Ω)
⩽ 1/ sin θ,

and this for all θ < π/2 yields

lim sup
|w − ζ|

dist(w, ∂Ω)
⩽ 1.

Since |w − ζ| ⩾ dist(w, ∂Ω), we have the desired result.

Lemma 3.4.4. Let Ω be a Jordan Domain, and let ζ ∈ ∂Ω, and let f : D onto−−→ Ω be a

conformal map. Then f extends continuously to the boundary and if f ′(ζ) exists and is

nonzero, then ∂Ω admits a tangent line at ζ.

Proof. Continuous extension to the boundary follows from Theorem 1.3.2 (Carathéodory’s).

Define t such that ζ = f(eit) and consider the limit

lim
s→t

f(eis)− f(eit)

s− t
= lim

s→t

f(eis)− f(eit)

eis − eit
· e

is − eit

s− t
= f ′(eit) ieit. (3.4.4)

Observe that on the right we have a product of a nonzero quantity f ′(ζ) with a unimodular

constant. Since the limit exists and is nonzero we are justified in defining a vector v as

v = lim
s→t

sign
(
f(eis)− f(eit)

s− t

)
,

Then the line L def
= {ζ + tv : t ∈ R} satisfies Definition 3.2.4 of a tangent line.

Lemma 3.4.5. Let Ω ⊂ C be a Jordan domain. Suppose that for a conformal map f : D onto−−→

Ω there exists a constant L > 0 such that

∀ϵ > 0 ∃δ > 0 : ∀z ∈ D, 1− |z| < δ =⇒ dist(f(z), ∂Ω)

1− |z|
< L+ ϵ. (3.4.5)



46

Then |f ′| ⩽ L in D.

Proof. Fix ϵ > 0. Observe that from the Koebe covering theorem [25, Corollary 1.4] we get

|f ′(z)| ⩽ 4

1 + |z|
dist(f(z), ∂Ω)

1− |z|
<

4

2− δ
(L+ ϵ)

whenever |z| > 1 − δ. By the maximum principle, |f ′(z)| ⩽ 4
2−δ (L + ϵ) for all z ∈ D. Since

δ can be made smaller without violating (3.4.5), we have |f ′(z)| ⩽ 2(L + ϵ) for all z ∈ D.

Letting ϵ → 0 gives |f ′(z)| ⩽ 2L in D. Then the derivative of f is bounded in D, and this

is the definition of the Hardy class H∞. Hardy spaces are nested, see Remark 1.2.7, and in

particular f ′ ∈ H∞ implies f ′ ∈ H1. We may then apply Theorem 6.8 from [25], yielding

that

f ′(ζ)
def
= lim

z→ζ,z∈D

f(z)− f(ζ)

z − ζ

exists and is nonzero a.e. on ∂D. If we prove that |f ′| ⩽ L a.e. on ∂D, it will follow that

∥f ′∥H∞ ⩽ L, because the Hardy norm is equal to the Lebesgue norm when defined on the

boundary by Remark 1.2.5.

Now choose a point ζ ∈ ∂D where f ′ exists. Assume for the sake of contradiction that

|f ′(ζ)| > L, then

lim inf
z→ζ, z∈D

|f(z)− f(ζ)|
1− |z|

⩾ lim
z→ζ, z∈D

|f(z)− f(ζ)|
|z − ζ|

> L. (3.4.6)

We know ∂Ω is smooth at f(ζ) because 0 < |f ′(ζ)| <∞, and therefore must admit a tangent

line at ζ by Lemma 3.4.4.

Let z → ζ so that f(z) → f(ζ) along the interior normal line to the boundary, then

dist(f(z), ∂Ω)

1− |z|
=

dist(f(z), ∂Ω)

|f(z)− f(ζ)|
|f(z)− f(ζ)|

1− |z|
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where the first factor tends to 1 by Lemma 3.4.3. It follows from (3.4.6) that

lim sup
z→ζ

dist(f(z), ∂Ω)

1− |z|
> L.

This is in contradiction with the initial assumption of the lemma.

Theorem 3.4.6. Let Ω satisfy the (RO, RS, RC) condition in Definition 3.2.5. Then for any

conformal map f : D onto−−→ Ω fixing 0 we have

∥f ′∥H∞ ⩽ RCe
2F (RO,RS ,RC). (3.4.7)

where F is as in Theorem 3.4.2.

Proof. First, observe that the boundary uniform interior disk condition with radius RC

implies that for any ζ ∈ ∂D, there exists a sector with vertex f(ζ), angular opening π/2,

radius RC/2, and containment in Ω. Then Ω satisfies what is referred to as an (α = 1
2
, r =

RC/2) wedge condition in [9], and the authors show this implies f ′ ∈ Hp for all p < 3/2

in [9, Theorem 2]. They proceed to show that ∂Ω is rectifiable [9, Proposition on p.279].

Theorem 6.8 in [25] gives that sets of Lebesgue measure zero in ∂D correspond to sets

of Lebesgue measure zero in ∂Ω under f . Additionally, the theorem states that almost

everywhere in ∂D, f ′ exists and is nonzero. By Lemma 3.4.4 this implies that for almost all

ζ ∈ ∂D a tangent line exists at f(ζ) ∈ ∂Ω.

Now, take any number L > RCe
2F (RO,RS ,RC) and any point ζ ∈ ∂D where f ′(ζ) exists. If

we prove |f ′(ζ)| ⩽ L it will show |f ′| ⩽ L a.e. on ∂D and then it will follow from Remark 1.2.5

regarding Hardy-Lebesgue equivalence on the boundary that ∥f ′∥H∞ ⩽ L.

It will suffice to show that:

lim
z→ζ

dist(f(z), ∂Ω)

1− |z|
⩽ L. (3.4.8)

Choose z ∈ D such that such that f(z) is along the normal vector to ∂Ω at f(ζ). Let
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d = dist(f(z), ∂Ω). Our goal is to estimate ρΩ(0, f(z)), this will yield

d

L
⩽ 1− |z| (3.4.9)

for sufficiently small d proving (3.4.8).

Because there is a tangent line at f(ζ), by Lemma 3.3.1 there is a unique disk D(a,RC)

such that f(ζ) ∈ ∂Ω ∩ ∂D(a,RC) and D(a,RC) ⊂ Ω. By Lemma 3.4.3, if f(z) → f(ζ)

along the normal vector to ∂Ω, then |f(z) − f(ζ)|/d → 1. Moreover, when d < RC , the

point f(z) lies on the radius [a, f(ζ)) of D(a,RC), and therefore |f(z) − f(ζ)| = d and

|f(z)− a| = RC − d. Keeping in mind that the hyperbolic metric is monotone with respect

to domain and the formula for hyperbolic distance in a disk along a radius is (2.2.3), we have

ρΩ(f(z), a) ⩽ ρD(a,RC)(f(z), a)

=
1

2
log

RC + |f(z)− a|
RC − |f(z)− a|

(3.4.10)

=
1

2
log

2RC − d

d
<

1

2
log

2RC

d
.

Next we estimate ρΩ(a, 0) using the KP derived bound from Theorem 3.4.2:

ρΩ(a, 0) ⩽ F (RO, RS, RC). (3.4.11)

Now suppose for the sake of contradiction that equation (3.4.9) is false, this implies

1− |z| < d/L and 1 + |z| > 2− d/L.

By the conformal invariance of the hyperbolic metric we know ρΩ(f(z), 0) = ρD(z, 0), then

ρΩ(f(z), 0) =
1

2
log

1 + |z|
1− |z|

>
1

2
log

2− d/L

d/L
. (3.4.12)
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Using the triangle inequality to combine this with equations (3.4.10) and (3.4.11) we get

1

2
log

2− d/L

d/L
<

1

2
log

2RC

d
+ F (RO, RS, RC)

which can be be rearranged to

L− d

2
< RCe

2F (RO,RS ,RC).

But RCe
2F (RO,RS ,RC) < L, so we have a contradiction when d is sufficiently small. This

contradiction establishes that |f ′| ⩽ L almost everywhere on ∂D and completes the proof.

As with Theorem 2.5.1 in the previous chapter, there are some immediate consequences

of Theorem 3.4.6 included as corollaries. The proofs are similar to those included for Corol-

laries 2.5.2 and 2.5.3 in Chapter 2.

Corollary 3.4.7. Let Ω be a domain and z0 a base point in Ω such that Ω0
def
= {z − z0 : z ∈

Ω} satisfies the (RO, RS, RC) condition in Definition 3.2.5. Then for any conformal map

f : D onto−−→ Ω such that f(0) = z0, we have

∥f ′∥H∞ ⩽ RCe
2F (RO,RS ,RC). (3.4.13)

where F is as in Theorem 3.4.2.

Corollary 3.4.8. Let Ω satisfy the (RO, RS, RC) condition in Definition 3.2.5. Then for

any conformal map φ : Ω onto−−→ D

∥1/φ′∥H∞ ⩽ RCe
2F (RO,RS ,RC). (3.4.14)

where F is as in Theorem 3.4.2.
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Chapter 4

Lipschitz Estimates for Maps from

Convex Domains onto the Unit Disk

4.1 Introduction

Thus far we have concerned ourselves with explicit expansion bounds for conformal maps

f : D onto−−→ Ω of the form ∥f ′∥H∞ ⩽ M , and for each expansion bound we get a compression

bound of the form ∥1/f ′∥H∞ ⩽M for maps satisfying the same conditions, but going in the

Ω → D direction.

In this chapter we turn to consider the opposing bounds. We will construct explicit

expansion bounds for conformal maps φ : Ω → D. We are not concerned with extruding

corners of Ω because in this direction they give φ′(z) → 0 as z approaches the vertex.

Restricting to domains with no extruding corners was the major reason a curvature radius

RC was needed in the previous chapters, and here it can be dispensed with. We do however

need to be concerned with intruding corners, where φ′(z) → ∞, but this will be controlled

by a requirement that Ω be convex.
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4.2 Definitions and preliminary results

The following result can be found in a short paper by Robert Osserman [24, Corollary 1]

where it is described as a well known, elementary consequence of the Schwarz Lemma.

Lemma 4.2.1 (Boundary Schwarz Lemma). Let F : D → D be a holomorphic function fixing

0. If F extends continuously to some boundary point b with |b| = 1 and |F (b)| = 1, and if

F ′(b) exists, then |F ′(b)| ⩾ 1 with equality only if F is a rotation.

We next extend this result from self-mappings of the unit disk to more general self-

mappings of Jordan domains.

Lemma 4.2.2 (Generalized Boundary Schwarz Lemma). Let Ω be a Jordan domain with

boundary satisfying a C1,α-Hölder condition (as in Definition 1.3.6) in a neighborhood of

b ∈ ∂Ω, and let F : Ω → Ω be a holomorphic function fixing a ∈ Ω and b. Then either

|F ′(b)| ⩾ 1, or F ′(b) does not exist.

Proof. Define a conformal map G : Ω
onto−−→ D such that G(a) = 0 and G(b) = 1. Then the

composition G◦F ◦G−1 maps the unit disk into itself fixing the points 0 and 1. The local form

of Kellogg’s theorem [26, Theorem 1] tells us that the derivative of G extends continuously

to the boundary at b, and the derivative of G−1 extends continuously at 1. Assuming that

F ′(b) exists, Lemma 4.2.1 gives

∣∣(G ◦ F ◦G−1)′(1)
∣∣ ⩾ 1.

Applying the chain rule chain rule and observing that |G′(b)|−1 = |[G−1]′(1)| gives the desired

result: |F ′(b)| ⩾ 1.

Definition 4.2.3 (Truncated Disk). For positive numbers r ⩽ R, define the truncated disk
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G and the chord Γ as follows:

G(R, r) = {z ∈ D(0, R) : Re z < r}

Γ(R, r) = {z ∈ D(0, R) : Re z = r}.

Observe that if r = R, then Γ = ∅ and G = D(0, R).

In the following lemma we show that for a conformal map from G(R, r) onto D, the

maximum modulus of the derivative restricted to the chord Γ is attained at the chords

midpoint r. The inverse map seems to offer the most concise proof.

Lemma 4.2.4 (Maximum Modulus of Derivative on Γ attained at Midpoint). For 0 < r < R,

define G and Γ as in Definition 4.2.3. Let φ : G onto−−→ D be a conformal map fixing 0. Then

the derivative φ′ extends continuously to Γ, and for all ζ ∈ Γ : |φ′(ζ)| ⩽ |φ′(r)|.

Proof. Because G(R, r) is a Jordan domain (Definition 1.3.1), Carathéodory’s Theorem 1.3.2

tells us that φ extends continuously to the boundary. Since multiplication of φ by a uni-

modular constant would have no impact on the modulus of the derivative, we assume that

φ(r) = 1. It is a consequence of the Schwarz reflection principle that the derivative extends

continuously to the boundary segment Γ. Fix ζ ∈ Γ, define ψ : D onto−−→ G as φ−1, and define

w ∈ ∂D by φ(ζ) = w (see Figure 4.1). The statement we set out to prove, |φ′(ζ)| ⩽ |φ′(r)|,

can then be written in terms of the inverse function ψ as

|ψ′(w)| ⩾ |ψ′(1)|. (4.2.1)

First, we claim that the function φ is symmetric with respect to the real axis. To prove

this claim it is sufficient to show φ(z̄) = φ(z). Observe that the two conformal maps agree at

one interior point and one boundary point: φ(0) = φ(0) = 0 and φ(r) = φ(r) = 1. Then by

Corollary 1.3.4 φ(z̄) = φ(z). We conclude that φ and its inverse ψ are symmetric functions

with respect to the real axis.
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Figure 4.1: G(R, r) is on the left with D on the right. The functions φ and ψ are conformal
inverses each fixing 0, φ(ζ) = w, and φ(r) = 1.

Figure 4.2: The solid curved line inside G(R, r) is ψ(∂Dϵ) which contains three points. The
dotted line segment connecting ψ((1− ϵ)w) and ψ((1− ϵ)w) illustrates the contradiction of
convexity.

Now fix ε > 0 small and let Dε
def
= D(0, 1−ε). By the hereditary property of convexity for

conformal maps [5, Ch. 2], ψ(D) convex implies ψ(Dε) is also convex. Because ψ is convex

and symmetric with respect to the real axis, we may conclude that Re {ψ((1 − ε)w)} ⩽

Re {ψ(1 − ε)}. Observe that if Re {ψ((1 − ε)w)} > Re {ψ(1 − ε)}, then the segment

connecting ψ((1 − ε)w) and ψ((1− ε)w) would not be contained in ψ(Dε) contradicting

convexity (see Figure 4.2). Since both ψ(w) = ζ and ψ(1) = r are points in Γ, Re ψ(w) =
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Re ψ(1) = r. It then follows that

∣∣ψ(w)− ψ
(
(1− ε)w

)∣∣ ⩾ Re
{
ψ(w)− ψ

(
(1− ε)w

)}
⩾ ψ(1)− ψ(1− ε)

= |ψ(1)− ψ(1− ε)|.

Dividing both sides by ε and letting ε→ 0 gives the desired result.

Recall from Definition 4.2.3 that for positive real numbers r ⩽ R, we defined the truncated

disk by G(R, r) = {z ∈ D(0, R) : Re z < r} and the chord by Γ(R, r) = {z ∈ D(0, R) :

Re z = r}.

Lemma 4.2.5 (Explicit Formula for Derivative Modulus at Midpoint of Γ). Let φ : G(R, r) onto−−→

D be a conformal map fixing 0. Define θ = arcsin(r/R) and α = 2πθ/(π + 2θ). Then

|φ′(r)| =M(θ)/R where

M(θ) =
2α cotα

θ cos θ
. (4.2.2)

Proof. Scaling G(R, r) by a factor of 1/R makes G def
= G(1, r/R), a truncated unit disk, which

simplifies the calculations ahead. The function M(θ) will be shown to be the modulus of the

derivative of a conformal map G(1, r/R) onto−−→ D fixing 0, at the midpoint of Γ(1, r/R). This

proof consists of constructing the map explicitly as a composition of three maps, collecting

derivative modulus factors from the chain rule at each step, and then dividing the result by

R to account for the scaling. Because the composition is conformal, it will be the unique

conformal map from G onto D fixing 0, up to multiplication by a unimodular constant.

The sequences ak and bk for k = 0, 1, 2 will be used to trace the image of 0 and the

midpoint of the chord respectively. For each of the composed functions, we use the modulus

of the derivative at the image of the midpoint, along with the chain rule to achieve the
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conclusion as follows

R · |φ′(r)| =
∣∣[f3 ◦ f2 ◦ f1]′(b0)∣∣

= |f ′1(b0)| · |f ′2(b1)| · |f ′3(b2)| =M(θ).

Figure 4.3: This is the scaled truncated disk G defined by G(1, r/R). The larger arc is a
subset of the unit circle, the vertical chord on right is the set {Re z = r/R : z ∈ D(0, 1)}.
Observe that a0 = 0, that b0 = r/R. The dotted right triangle illustrates θ.

We start with a0 = 0 and b0 = sin θ in the scaled domain (Figure 4.3), the first function

f1(z) =
sin θ + i cos θ − z

z − sin θ + i cos θ

maps G onto the set {0 < arg z < π
2
+ θ}. The modulus of f ′1(b0) is 2/ cos θ, a0 7→ a1 = e2iθ,

and b0 7→ b1 = 1. Recalling that α = 2πθ/(π + 2θ), the second function

f2(z) = zα/θ

maps {0 < arg z < π
2
+ θ} onto the upper half plane. The modulus |f ′2(b1)| = α/θ, a1 7→

a2 = e2iα, and b1 7→ b2 = 1. The last function

f3(z) =
z − a2
z − a2

takes the half plane to the unit disk, f3(a2) = 0 and |f ′3(b2)| = cotα.
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The modulus of the derivative of the composition can be expressed as a function of θ in

the form

M(θ) =
2

cos θ
· α
θ
· cotα.

It follows that for any conformal map taking the (unscaled) domain G(R, r) to the unit disk

while fixing 0, the modulus of the derivative at the midpoint of the chord Γ is M(θ)/R.

Lemma 4.2.6. If 0 < θ1 < θ2 <
π
2
, then M(θ1) > M(θ2).

Proof. For i = 1, 2 define Ri = csc θi so that R1 > R2 and M(θi) = M(arcsin(1/Ri)).

We will prove M(θ1) > M(θ2) using properties of the nested domains G(R2, 1) ⊂ G(R1, 1)

(notation introduced in Definition 4.2.3). We define three conformal mappings each fixing

the points 0 and 1: φi : G(Ri, 1) → D and f : G(R1, 1) → G(R2, 1). Then φ1 = φ2 ◦ f

by Corollary 1.3.4 because they agree on an interior point and a boundary point, and in

particular |φ′1(1)| = |φ′2(1)| · |f ′(1)|.

Since the point 1 is the midpoint of the boundary chord in both domains G(Ri, 1), we

can use the explicit formula from Lemma 4.2.5 to see that |φ′i(1)| =M(θi)/Ri. Applying the

boundary Schwarz lemma (Lemma 4.2.2) to the mapping f with a = 0, b = 1 assures that

|f ′(1)| ⩾ 1 and we can write

M(θ1)/R1 ⩾M(θ2)/R2.

Observing that R1 > R2, we can conclude M(θ1) > M(θ2).

4.3 Global expansion bound for maps from a convex do-

main onto the disk

In this section we prove the main result of the chapter (Theorem 4.3.2). The proof requires

a lemma about continuity of radii.
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Lemma 4.3.1. Let (Ωn)
∞
n=1 be a sequence of domains containing 0 such that Ωn ⊂ Ωn+1 and⋃∞

n=1Ωn = Ω. Then RI(Ωn) → RI(Ω) and RO(Ωn) → RO(Ω).

Proof. Observe that RI(Ωn) is increasing in n and bounded by RI(Ω), thus RI(Ωn) converges

to some number less than or equal to RI(Ω). Choose r < RI(Ω), then (Ωn)
∞
n=1 is an open

cover of the compact set D(0, r). There exists a finite subcover, which means there exists N

such that
⋃N

n=1 Ωn is a finite subcover, and it follows that RI(ΩN) ⩾ r. For any r < RI(Ω)

then, the limit of RI(Ωn) as N → ∞ is at least r. It follows that RI(Ωn) → RI(Ω) as n→ ∞.

Observe that RO(Ωn) is increasing in n and bounded by RO(Ω), thus RO(Ωn) converges

to some number less than or equal to RO(Ω). Assume for the sake of contradiction that

RO(Ωn) converges to some number R < RO(Ω). Then there exists z ∈ Ω with |z| > R,

and since the Ωn exhaust Ω, there must exist N such that z ∈ ΩN . This would imply that

RO(ΩN) > R. This is a contradiction, proving that RO(Ωn) → RO(Ω) as n→ ∞.

Theorem 4.3.2. Suppose Ω is a bounded convex domain in C containing 0 with RI
def
=

sup{r > 0 : D(0, r) ⊂ Ω} and RO
def
= inf{r > 0 : Ω ⊂ D(0, r)}. Let f : Ω onto−−→ D be a

conformal map fixing 0. Then

sup
z∈Ω

|f ′(z)| ⩽ 1

RO

M
(
arcsin(RI/RO)

)
with equality attained if Ω = G(R0, RI) up to multiplication by a unimodular constant.

Proof. First, suppose ∂Ω is C∞ smooth. By Kellogg’s Theorem (Theorem 1.3.7) f ′ extends

continuously to the boundary. Fix ζ ∈ ∂Ω. Since Ω is convex there exists a line l through ζ

such that l ∩ Ω = ∅. Define G to be the part of the disk D(0, RO) that contains 0 and lies

on one side of the line l; define r = dist(0, l). Now G = G(RO, r) up to multiplication by a

unimodular constant, and we should observe that Ω ⊂ G, ζ ∈ ∂Ω ∩ ∂G, and RI ⩽ r ⩽ RO.

If r = RO, define a conformal map h : D(0, RO)
onto−−→ Ω fixing 0 and ζ. Then h is a

conformal self mapping of D(0, RO) into itself, and by the general boundary Schwarz lemma

(Lemma 4.2.2) |h′(ζ)| ⩾ 1. Define g : D(0, RO)
onto−−→ D by g(z) = z/RO. Observe that
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by Corollary 1.3.4 which says two conformal maps agreeing on an interior point (0) and a

boundary point (ζ) are equal, there exists t ∈ [0, 2π) such that f = eit[g ◦ h−1]. It follows

that |f ′(ζ)| = 1/(RO|h′(ζ)|), and that |f ′(ζ)| ⩽ 1/RO. Finally observe that in 0 < θ < π/2,

M(θ) is strictly decreasing by Lemma 4.2.6, and using L’Hôpital’s rule one can show that

lim
θ→π

2

M(θ) = lim
θ→π

2

4π

(π + 2θ) sin( 2πθ
π+2θ

)
·
cos( 2πθ

π+2θ
)

cos θ
= 1.

We conclude that M(θ) > 1 on (0, π/2), and thus |f ′(ζ)| ⩽ (1/RO)M(arcsin(RI/RO)) when

r = RO.

Now assume r < RO. Let g : G → Ω be a conformal mapping fixing 0 and ζ, and let

φ : G → D be a conformal mapping fixing 0. Then φ = f ◦ g up to multiplication by a

unimodular constant and by the chain rule |φ′(ζ)| = |f ′(ζ)| · |g′(ζ)|. Lemma 4.2.5 shows that

|φ′(r)| = 1
RO
M(arcsin(r/RO)) and Lemma 4.2.4 shows |φ′(ζ)| ⩽ |φ′(r)|. Combining these,

we conclude

|φ′(ζ)| ⩽ 1

RO

M(arcsin(r/RO)).

Using the fact that r/RO ⩾ RI/RO and applying the monotonicity result in Lemma 4.2.6,

we see that M(arcsin(r/RO)) ⩽M(arcsin(RI/RO)). So far we have

1

RO

M(arcsin(RI/RO)) ⩾ |φ′(ζ)| = |g′(ζ)| · |f ′(ζ)|.

Applying the boundary Schwarz lemma (Lemma 4.2.2) to g gives |g′(ζ)| ⩾ 1 which yields

|f ′(ζ)| ⩽ 1
RO
M(arcsin(RI/RO)) for r < RO. We have now shown that for an arbitrary choice

of ζ ∈ ∂Ω, |f ′(ζ)| ⩽ 1
RO
M(arcsin(RI/RO)), and the maximum principle extends this to all

z ∈ Ω.

Next, we drop the assumption that ∂Ω is smooth. Fix ε ∈ (0, 1). Make the definitions

Ωε = f−1(D(0, 1 − ε)) and Fε : Ωε → D, Fε = (1 − ε)−1f
∣∣
Ωε

. Choose an arbitrary z ∈ ∂Ωε.
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Since ∂Ωε is smooth we know

|F ′ε(z)| ⩽
1

RO(Ωε)
M

(
arcsin(RI(Ωε)/RO(Ωε))

)
and it follows that

|f ′(z)| ⩽ (1− ε)−1|f ′(z)| = |F ′ε(z)| ⩽
1

RO(Ωε)
M

(
arcsin(RI(Ωε)/RO(Ωε))

)
.

Here the right hand side has no dependence on z, so we can take the supremum over all

z ∈ ∂Ωε on the left. Then by the maximum principle we can extend this to

sup
z∈Ωε

|f ′(z)| ⩽ 1

RO(Ωε)
M

(
arcsin(RI(Ωε)/RO(Ωε))

)
.

Observe that by Lemma 4.3.1, RI(Ωε) → RI(Ω) and RO(Ωε) → RO(Ω) as ε → 0. Looking

at (4.2.2), the continuity M(θ) in (0, π/2) is transparent from the formula. Then as ε → 0

we get

sup
z∈Ω

|f ′(z)| ⩽ 1

RO

M
(
arcsin(RI/RO)

)
.

Again there are two immediate corollaries. The first formalizes the translation invariance

of the derivative, and hence the bound in Theorem 4.3.2. The second interprets the theorem

in the reverse direction, as a compression bound for maps from the disk onto convex domains.

Corollary 4.3.3. Suppose Ω is a bounded convex domain in C containing z0 with RI
def
=

sup{r > 0 : D(z0, r) ⊂ Ω} and RO
def
= inf{r > 0 : Ω ⊂ D(z0, r)}. Let f : Ω onto−−→ D be a

conformal map such that f(z0) = 0. Then

sup
z∈Ω

|f ′(z)| ⩽ 1

RO

M
(
arcsin(RI/RO)

)
.

Corollary 4.3.4. Suppose Ω is a bounded convex domain in C containing 0 with RI
def
=
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sup{r > 0 : D(0, r) ⊂ Ω} and RO
def
= inf{r > 0 : Ω ⊂ D(0, r)}. Let g : D onto−−→ Ω be a

conformal map fixing 0. Then

∥1/g′(z)∥H∞ ⩽
1

RO

M
(
arcsin(RI/RO)

)
.

4.4 Counterexample to continuity of the derivative

The possibility that conclusion in Theorem 4.3.2 could be strengthened to include a contin-

uous extension of f ′ to the boundary was considered. The following counterexample shows

this cannot be done without strengthening the assumptions as well.

Example 4.4.1. Let D = D(1
3
, 2
3
). We construct Ω such that D ⊂ Ω ⊂ D by choosing

a countable, strictly clockwise sequence {ζn}∞n=1 on the unit circle accumulating at 1, and

each connected to the next by a segment. The idea is to construct a convex domain with

a countably infinite number of extruding corners accumulating at 1. Let h : D onto−−→ D and

g : Ω
onto−−→ D be conformal maps, each fixing 0 and 1.

Suppose for the sake of contradiction that g′ is continuous on ∂D. It is a consequence of

Theorem 3.9 in Pommerenke’s book [25] that in each corner we have g′(ζn) = 0. Then by

our assumption we have g′(1) = 0.

The composition g ◦ h−1 is a conformal mapping of D into itself fixing 0 and 1. We

apply Lemma 4.2.1 to conclude that
∣∣[g ◦ h−1]′(1)∣∣ ⩾ 1. Using the chain rule, this implies

|g′(1)| ⩾ |h′(1)|. To achieve a contradiction it is enough to show |h′(1)| > 0 since this will

imply |g′(1)| > 0. Observe that the conformal map h : D → D fixing 0 and 1 is unique and

easily constructed. If we let f1 = 3
2
[z− 1

3
] and f2 = z+.5

1+.5z
then h = f2 ◦ f1 where f1 translates

and rescales the disk and f2 is a Möbius transformation assuring that 0 7→ 0. The derivative

of the composition at 1 is 1
2
.
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Figure 4.4: Counterexample to continuity of the derivative of g. The smaller dotted disk
is D def

= D(1
3
, 2
3
), the larger is D, and ∂Ω has a solid line boundary with D ⊂ Ω ⊂ D. The

corners of Ω accumulate at 1, the derivative of g : Ω onto−−→ D is 0 in each corner, and it is
shown in Example 4.4.1 that |g′(1)| ⩾ 1

2
.



62

Bibliography

[1] Albert Baernstein, II. Integral means, univalent functions and circular symmetrization.

Acta Math., 133:139–169, 1974.

[2] Daniel Bertilsson. On Brennan’s conjecture in conformal mapping. ProQuest LLC, Ann

Arbor, MI, 1999. Thesis (Dr.Tech.)–Kungliga Tekniska Hogskolan (Sweden).

[3] James E. Brennan. The integrability of the derivative in conformal mapping. J. London

Math. Soc. (2), 18(2):261–272, 1978.

[4] Christopher G. Donohue. Lipschitz estimates for conformal maps from the unit disk to

convex domains. Comput. Methods Funct. Theory (to appear).

[5] Peter L. Duren. Univalent functions, volume 259 of Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,

New York, 1983.

[6] Peter L. Duren. Theory of Hp Spaces. Dover books on mathematics. Dover Publications,

2000.

[7] Jinfu Feng and Thomas H. Macgregor. Estimates on integral means of the derivatives

of univalent functions. J. Analyse Math., 29:203–231, 1976.

[8] Carl H. FitzGerald and F. David Lesley. Boundary regularity of domains satisfying a

wedge condition. Complex Variables Theory Appl., 5(2-4):141–154, 1986.



63

[9] Carl H. FitzGerald and F. David Lesley. Integrability of the derivative of the Riemann

mapping function for wedge domains. J. Analyse Math., 49:271–292, 1987.

[10] Dieter Gaier. On conformal mapping of nearly circular regions. Pacific J. Math.,

12:149–162, 1962.

[11] Eva A. Gallardo-Gutiérrez and Christian Pommerenke. On geometric estimates for

univalent functions. Ann. Mat. Pura Appl. (4), 200(3):1075–1084, 2021.

[12] G. M. Goluzin. Geometric theory of functions of a complex variable. Translations of

Mathematical Monographs, Vol. 26. American Mathematical Society, Providence, R.I.,

1969.

[13] Parisa Hariri, Riku Klén, and Matti Vuorinen. Conformally invariant metrics and

quasiconformal mappings. Springer Monographs in Mathematics. Springer, Cham, 2020.

[14] Zineb Hassainia, Nader Masmoudi, and Miles H. Wheeler. Global bifurcation of rotating

vortex patches. Comm. Pure Appl. Math., 73(9):1933–1980, 2020.

[15] David A. Herron, William Ma, and David Minda. A Möbius invariant metric for regions

on the Riemann sphere. In Future trends in geometric function theory, volume 92 of Rep.

Univ. Jyväskylä Dep. Math. Stat., pages 101–118. Univ. Jyväskylä, Jyväskylä, 2003.

[16] David A. Herron, William Ma, and David Minda. Estimates for conformal metric ratios.

Comput. Methods Funct. Theory, 5(2):323–345, 2005.

[17] Lars Hörmander. Notions of convexity, volume 127 of Progress in Mathematics.

Birkhäuser Boston, Inc., Boston, MA, 1994.

[18] Leonid V. Kovalev. Conformal contractions and lower bounds on the density of harmonic

measure. Potential Anal., 46(2):385–391, 2017.

[19] Ravi S. Kulkarni and Ulrich Pinkall. A canonical metric for Möbius structures and its

applications. Math. Z., 216(1):89–129, 1994.



64

[20] A. J. Lohwater, G. Piranian, and W. Rudin. The derivative of a schlicht function. Math.

Scand., 3:103–106, 1955.

[21] Vladimir Lotoreichik and Thomas Ourmières-Bonafos. A sharp upper bound on the

spectral gap for graphene quantum dots. Math. Phys. Anal. Geom., 22(2):Paper No.

13, 2019.

[22] Curtis McMullen. Riemann surfaces, dynamics and geometry. Course notes. https:

//people.math.harvard.edu/~ctm/papers/, 2020.

[23] Thomas A. Metzger. On polynomial approximation in Aq(D). Proc. Amer. Math. Soc.,

37:468–470, 1973.

[24] Robert Osserman. A sharp Schwarz inequality on the boundary. Proc. Amer. Math.

Soc., 128(12):3513–3517, 2000.

[25] Ch. Pommerenke. Boundary behaviour of conformal maps. Springer-Verlag, Berlin,

1992.

[26] S. E. Warschawski. On differentiability at the boundary in conformal mapping. Proc.

Amer. Math. Soc., 12:614–620, 1961.

[27] S. E. Warschawski and G. E. Schober. On conformal mapping of certain classes of

Jordan domains. Arch. Rational Mech. Anal., 22:201–209, 1966.

https://people.math.harvard.edu/~ctm/papers/
https://people.math.harvard.edu/~ctm/papers/


 

 

 

Vita 

 

Education: 

 Bachelor of Science 

 Mathematics, Summa Cum Laude, SUNY Cortland, May 2009 

 

 Master of Science 

 Adolescent Education in Math, SUNY Cortland, August 2011 

 

 Master of Science 

 Mathematics, Syracuse University, May 2017 


	Distortion Estimates for Conformal Maps Predicated on Geometric Properties of a Domain
	Recommended Citation

	Thesis (ProQuest)
	Introduction
	Conformal Maps and Distortion
	Global Distortion Bounds
	Global Distortion Bounds Predicated on Geometric Conditions
	New results

	Maps from the Disk onto Convex Domains
	Introduction
	Hyperbolic type metrics
	Disk conditions for convex domains
	Estimates for the hyperbolic metric in convex domains
	Global expansion bound for maps from the disk onto convex domains
	Examples

	Maps from Disk onto Stellar Core Domains
	Introduction
	Definitions and preliminary results
	Disk and wedge conditions without a convexity requirement
	Global expansion bound for maps from the disk onto stellar core domains 

	Maps from Convex Domains onto the Disk
	Introduction
	Definitions and preliminary results
	Global expansion bound for maps from a convex domain onto the disk
	Counterexample to continuity of the derivative


	Vita

