
BACHELOR THESIS

Jan Kužeĺık

Automatic schema extraction from RDF
Data

Department of Software Engineering

Supervisor of the bachelor thesis: Mgr. Škoda Petr, Ph.D.
Study programme: Computer Science

Study branch: Software and Data Engineering

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Thank you to my supervisor for your time, patience and guidance.

Thank you to those close to me for your continued support.

Thank you to the open source community for your priceless contributions.

ii

Title: Automatic schema extraction from RDF Data

Author: Jan Kužeĺık

Department: Department of Software Engineering

Supervisor: Mgr. Škoda Petr, Ph.D., Department of Software Engineering

Abstract: The Resource Description Framework (RDF) is a model for the rep-
resentation of semantic data. RDF allows the storage of information without a
fixed schema. This provides more flexibility but the lack of a fixed schema poses
a significant entry barrier to the utilisation of the stored data. The SPARQL
language is used for querying an RDF database.

Several works exist in the domain of schema extraction from SPARQL endpoints.
Most tend to provide a visual representation of the schema, rather than an im-
mediately usable output. Many of these solutions perform a very thorough and
lengthy extraction unsuitable for a web application environment and some are
not even available online.

This thesis introduces TypeSPARQ, an open-source web application for extract-
ing schemata from SPARQL endpoints. TypeSPARQ creates a visualisation of
the endpoint’s schema and offers options for exporting it. TypeSPARQ inte-
grates with LDKit, which provides type-safe access to SPARQL endpoints for
TypeScript applications. These tools combined offer TypeScript developers a
seamless process from endpoint exploration to integrating the endpoint within
their projects.

Keywords: schema-extraction RDF SPARQL schema

iii

Contents

1 Introduction 3
1.0.1 Resource Description Framework 3
1.0.2 SPARQL Protocol and RDF Query Language 4

1.1 Motivation . 4
1.1.1 Schema extraction from RDF data 5

1.2 Contribution . 6

2 Related Work 7
2.1 Enabling ad-hoc reuse of private data repositories through schema

extraction . 7
2.2 HyperGraphQL . 9
2.3 TopBraid . 10
2.4 Stardog . 10
2.5 GraphQL-LD . 11
2.6 UltraGraphQL . 12
2.7 ViziQuer . 12
2.8 LODSight . 13
2.9 A Visual Aide for Understanding Endpoint Data 14
2.10 LD-VOWL . 15
2.11 VizLOD . 16
2.12 SPARQLess . 16
2.13 Simplod . 17
2.14 Summary . 18

3 Requirements 21
3.1 Non-Functional Requirements . 21
3.2 Functional Requirements . 21
3.3 Application design . 22

3.3.1 Non-functional requirements (R1, R2) 22
3.3.2 Schema visualisation (R3) 23
3.3.3 Schema extraction (R4) 23
3.3.4 Querying rate (R5) . 23

4 External integration 25
4.1 LDKit . 25
4.2 Schema Import . 25
4.3 Schema Export . 26

5 Developer documentation 27
5.1 Technologies and Frameworks . 27

5.1.1 Single Page Application 27
5.1.2 Technologies used . 27
5.1.3 NPM . 28
5.1.4 TypeScript . 29
5.1.5 Vite . 29

1

5.1.6 Vue.JS . 30
5.2 Dependencies . 30

5.2.1 Tailwind CSS . 30
5.2.2 Pinia . 31
5.2.3 Vue Flow . 31
5.2.4 Prism . 31
5.2.5 Prettier . 32
5.2.6 Zod . 32

5.3 Project Structure . 32
5.4 Vue Router . 32
5.5 Components . 33

5.5.1 CustomNode . 33
5.5.2 NodeModal . 33
5.5.3 ExportModal . 34
5.5.4 ImportModal . 34

5.6 Visual Design . 35
5.7 Schema queries . 35

5.7.1 QueryQueue . 36
5.8 Stores . 37

5.8.1 EndpointStore . 37
5.8.2 VisStateStore . 37

5.9 Data model . 37
5.10 Assets . 38
5.11 Tests . 38
5.12 Points of Extension . 38

5.12.1 Export formats . 38
5.12.2 Import format . 39
5.12.3 Visualisations . 39
5.12.4 Flow layouts . 40

6 Administrator documentation 41
6.1 Prerequisites . 41
6.2 Getting started . 41
6.3 Build . 41
6.4 Hosting . 42

7 User documentation 43
7.1 Using the web application . 43
7.2 Using the default exported schema 44

8 Evaluation 46
8.1 Queries evaluation . 46

8.1.1 Endpoint Evaluation . 47

9 Conclusion 51

List of Abbreviations 52

References 53

2

1. Introduction
To get an understanding of the aim of this thesis, allow for an explanation of
the concepts of the problem domain and its difficulties, which this thesis aims to
resolve.

1.0.1 Resource Description Framework
RDF is a W3C Recommendation describing the abstract, machine-interpretable
data model of information on the semantic Web. An RDF Graph consists of
subject-predicate-object triples, through which the world is described. The re-
sulting data is a directed knowledge graph with IRIs (Internationalised Resource
Identifier), literals and blank nodes serving as vertices and predicates serving as
edges. IRIs represent unique real-world entities, resources or concepts. Literals
state literal values such as a number or a string. (W3C 2022d)

Because RDF is an abstract data model, it does not directly describe how
its data is serialised. For this purpose, several serialisation techniques exist.
The most common W3C-recommended formats are Turtle (W3C 2022h), N-
Triples (W3C 2022b) and JSON-LD (W3C 2022a). The Listing below shows
a simple example with three triples, meaning
<http://example.org/person/Person1> is a person called Alice with a given
email address.

1 @prefix foaf: <http :// xmlns.com/foaf /0.1/ > .
2

3 <http :// example .org/ person /Person1 > a foaf: Person ;
4 foaf:name "Alice" ;
5 foaf:mbox " alice@mail .com" .

Listing 1.1: Turtle serialisation example
To further facilitate the machine-interpretability of the data, RDF Schema

(RDFS) (W3C 2022e) and the Web Ontology Language (OWL) (W3C 2022c)
are used to describe relationships and schema of the RDF data.

RDFS is a vocabulary for describing properties and classes of RDF resources,
with semantics for generalisation-hierarchies of such properties and classes (W3C
2022c).

OWL adds more vocabulary for describing properties and classes: among oth-
ers, relations between classes (e.g. disjointness), cardinality (e.g. ”exactly one”),
equality and more. An OWL representation of terms and their relationships is
called an ontology (W3C 2022c).

Ontologies provide a unified schema for the data, whilst not enforcing it. This
allows for different data providers to reuse the same concepts if they publish data
in the same domains, but still allows them to add additional information if they
desire. There is a multitude of openly available ontologies and vocabularies for
many areas, which can be freely reused by any linked data provider (Group 2022).

A fundamental feature of an RDF document is its lack of a fixed schema, un-
like, for example, an SQL data store. The schemata that can be described using
RDFS or OWL are descriptive and not prescriptive by the nature of RDF. This
allows for flexibility and the open-world assumption but complicates RDF’s inter-
operability with more traditional rigid schema systems. The descriptive schemata

3

included in the RDF document can be imported from an online, well-defined and
available schema, or be included directly in the data if requiring new custom
definitions.

1.0.2 SPARQL Protocol and RDF Query Language
SPARQL is a W3C Recommendation focusing on querying and manipulating
RDF data using triple patterns (W3C 2022g). It is reminiscent of SQL in its
syntax. A SPARQL endpoint is accessible through HTTP and evaluates and
answers received SPARQL queries. SPARQL allows queries that retrieve data
and queries that modify or insert existing data. A SPARQL endpoint contains
RDF and responds to data retrieval requests by providing either RDF data for
CONSTRUCT queries or tabular data for SELECT queries.

For a basic idea of how a SPARQL SELECT query looks, observe Listing 1.2.
The example query finds the top 20 organisations sorted by their employee count.
Finding the employees is achieved in the WHERE clause, wherein all organisations
are discovered according to their type. Subsequently, nodes that follow the prop-
erty foaf:Employs and are also a foaf:Person are counted. Finally, the results
are aggregated by the company and the employees are counted and ordered. As
with other RDF documents, prefixes are available for visual clarity.

1 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3

4 SELECT ? company (COUNT (? person) AS ? employeeCount)
5 WHERE {
6 ? person a foaf: Person .
7 ? company a foaf: Organization ;
8 foaf: Employs ? person .
9 }

10 GROUP BY ? company
11 ORDER BY DESC (? employeeCount)
12 LIMIT 20

Listing 1.2: Example SPARQL query

For a more complex understanding, please refer to the specification (W3C
2022g).

1.1 Motivation
Approaching a SPARQL endpoint can be somewhat intimidating for many peo-
ple, especially those without extensive RDF and SPARQL knowledge. Yet these
endpoints have the potential to be used by a multitude of people who may not yet
have experience with them. A developer could use the endpoint for integrating
external or public data into applications. Data analysts may look to utilise pub-
licly available SPARQL endpoints for their models. Journalists may utilise them
to look into state-published data. These people may have little to no experience
with SPARQL and therefore great difficulty in exploring a SPARQL endpoint.

Endpoints such as the Czech Government, the Scottish Government or the US
National Library of Medicine endpoints greet users with little more than a query
input field and an execute button. Even for users with good SPARQL knowledge,

4

https://data.gov.cz/sparql
https://statistics.gov.scot/sparql
https://id.nlm.nih.gov/mesh/
https://id.nlm.nih.gov/mesh/

approaching an unknown endpoint will require them to initially execute a series
of sampling queries to get an idea of its contents.

Figure 1.1: data.gov.cz/sparql endpoint

Given the loose nature of RDF data, even if the endpoints are accompanied
by a dataset explorer, those don’t provide information about the frequency of
properties for a given subject. For example a person may have a name and an
email. Suppose you are looking for all people in an endpoint and get 100 results.
Next, according to the explorer, you find that people can have emails. You query
for people and their emails, but only receive 55 results. There was no way to
discover that only 55% of people have provided an email using the simple type
explorer, unless first executing this query.

Having access to an easy-to-use overview of the contents of the endpoints
would make the data more approachable and usable. This would make them a
more attractive for a wider audience, as well as make the regular users’ querying
simpler.

1.1.1 Schema extraction from RDF data
Schema extraction is a rather broad topic, which can be interpreted in multiple
ways.

• The purely RDF-focused interpretation could be generating RDFS and
OWL ontologies based on the already present data to provide an RDF
description of the dataset.

• A programmatic approach would attempt to generate classes or objects in
a specific language or create parsers and constructors for said objects to
automatically generate them from RDF data.

5

• An exploratory approach would focus mainly on presenting the data to the
user graphically or interactively to allow for easier exploration of the RDF
dataset.

The exploratory approach is desirable to satisfy the ideas proposed in 1.1.
Giving users the ability to inspect and visually reason about the otherwise hid-
den schema of RDF data will be a goal of this thesis. Several works offering
an endpoint exploration exist and are discussed in chapter 2. However, a user
inexperienced with using SPARQL will still find difficulty in extracting this data
from the endpoint even if provided with a schema. For that reason, creating or
enabling alternate ways of accessing the endpoints is also required. Some of the
solutions described in chapter 2 provide GraphQL access to the endpoint but lack
in visualisation or user experience.

To maximise the appeal of data in this form, it would be beneficial to provide
access to it through means with which developers are already familiar. Developers
not familiar with SPARQL that are interested in accessing the data may be put
off by the query language and may look elsewhere. LDKit (LDKit Linked Data
query toolkit for TypeScript developers 2023), a JavaScript library solution to
access SPARQL endpoints exists and could fulfil this role. However, it requires
prior knowledge of the endpoint’s schema – something that is assumed unknown
in our case. Therefore, generating this schema would further ease the use of the
data sources.

1.2 Contribution
This thesis provides a solution to the above-described problems by introducing
TypeSPARQ, an open source1 SPARQL endpoint schema exploration and visu-
alisation tool. TypeSPARQ is a web application that provides a user-friendly
view of the endpoint’s schema. It handles the extraction of existing classes, their
attributes and relationships using SPARQL queries and displays this information
to the user using a well-readable visualisation. Subsequently, a subset of the end-
point may be selected to be exported as a schema definition in a selected format.
This schema definition may further be used by developers to query the endpoint
programmatically.

The rest of this thesis is structured as follows. Chapter 2 summarises and
compares current approaches to the problem of schema extraction from RDF
and their shortcomings. A solution to those problems and its requirements are
outlined in chapter 3. Chapter 7 introduces TypeSPARQ, a web-based tool that
resolves the outlined problems. Chapter 5 includes a technical overview of the
solution and its components. For hosting the application, refer to chapter 6.

1https://github.com/Jkuzz/sparql-explorer

6

https://github.com/Jkuzz/sparql-explorer

2. Related Work
Several works exist in the domain of RDF data visualisation and exploration and
are described below. The general aim of the schema extraction process is to reveal
the structure of the data for the user. These works are similar in nature, but each
addresses a different part of the problem using varied approaches. These solutions
tend to provide an adequate overview of the endpoints contents, but not all are
functional at the time of writing of this thesis (Spring 2023). Only displaying the
endpoint’s structure, as some solutions do, may not be sufficient for less proficient
users, who might need further assistance.

Revealing the structure of the endpoint may take several forms. An endpoint
can be explored through a graph visualisation or, as is the goal of some works, via
the automatic creation of GraphQL schemata. Extraction of GraphQL schemata
is a related problem, as GraphQL uses a graph data model and is close in na-
ture to RDF. Therefore, given GraphQL’s popularity and support (Code using
GraphQL 2023) it naturally lends itself as an API into the RDF world. Some
listed works do not provide a fully automatic extraction, but a semi-automatic
one based on a predefined context. The aim of these works is to allow easy access
to semantic data for developers who are not familiar with its concepts but are
familiar with GraphQL. Providing access to RDF data through GraphQL is an
adjacent problem and is worth investigating to learn from its methodology. A
good overview of current approaches for GraphQL querying was presented by
Taelman et al. at the 2019 W3C Workshop on Web Standardisation for Graph
Data (Taelman, Sande, and Verborgh 2019). This chapter extends on their prior
work.

The approaches listed in this chapter were primarily discovered using Google
Scholar. The queries used were similar to the keywords of this thesis. That
includes the queries for ”RDF schema extraction”, ”SPARQL endpoint visuali-
sation” and ”SPARQL schema extraction”. The first few pages of results were
searched for fitting works. For every discovered work, its references and citations
were also checked for fitting candidates. The works presented here are therefore
those that closely matched this thesis’ problem domain. Furthermore, these ap-
proaches were popular enough to appear as relevant results in Google Scholar,
influenced or influenced by such papers.

Follows an overview of the discovered solutions. For each one, its approach
and solution to the problem are described, alongside notes on how it will resolve
the goal of this thesis. In the end, a summary of the described works is presented.

2.1 Enabling ad-hoc reuse of private data repos-
itories through schema extraction

This work introduces an automated approach for extracting schemata from RDF
data sources. The key focus is on schema extraction preserving privacy for sensi-
tive information data stores, such as healthcare data. This method relies on RDFS
and OWL to derive the schema from ontologies provided within the datasets.

The query shown in Listing 2.1 is introduced. It uses RDFS to discover classes

7

and properties of the data. It assumes the full inclusion of all used vocabularies
in the data store. Reliance on the ontology means any deviation from it will not
be detected by the query. It also relies on SPARQL entailment to materialise
implicit triples, which is not common among SPARQL endpoints. This means
classes and properties may not be properly annotated using rdfs:Property and
rdfs:Class and therefore not discovered. (L. C. Gleim et al. 2020)

1 CONSTRUCT {?s ?p ?o}
2 WHERE {
3 {[] ?s []}
4 UNION {[] a ?s} .
5 ?s ?p ?o .
6 }

Listing 2.1: SPARQL Query for ontology schema discovery(L. C. Gleim et al.
2020)

Therefore, the following schema extraction query is introduced. This query
discovers RDFS classes and properties directly instantiated in the queried dataset
without the presence of an ontology based on the data structure:

1 CONSTRUCT {
2 ? predicate ?a ?b ;
3 a rdf: Property ;
4 rdfs: domain ? pDomain ;
5 rdfs:range ? pRange .
6 ? concept ?c ?d ;
7 a rdfs:Class .
8 } WHERE {
9 ?s ? predicate ?o .

10 OPTIONAL {?s a ? pDomain }
11 OPTIONAL {?o a ? pRange }
12 OPTIONAL {? predicate ?a ?b}
13 [] a ? concept
14 FILTER (! isBlank (? concept))
15 OPTIONAL {? concept ?c ?d}
16 }

Listing 2.2: SPARQL Query for instantiated schema discovery(L. C. Gleim et al.
2020)

This query discovers all classes and properties instantiated in the dataset, which
fits the schema discovery requirement.

This approach, however, has two major shortcomings. Firstly, it pays no
attention to the numerosity of each class or property and therefore does not
reveal the schema completeness. Secondly, this schema extraction approach is not
created with execution speed as a priority. The authors cite execution times up to
minutes long. However, upon attempting to run this on the data.gov.cz/sparql
endpoint, it returned the error shown in Listing 2.3.

1 Virtuoso 42000 Error The estimated execution time 15047075 (sec)
exceeds the limit of 80000 (sec).

Listing 2.3: Execution error of query 2.2

This approach is likely not to be feasible for a significantly-sized dataset to provide
quick feedback to users.

8

data.gov.cz/sparql

2.2 HyperGraphQL
HyperGraphQL provides a GraphQL interface for the defined RDF sources. It
uses a configuration file to define RDF services to be wrapped. An annotated
GraphQL Schema with a semantic context both define the endpoint schema
as well as enables the transformation of the context-less GraphQL queries into
SPARQL queries.(Ltd. 2022)

1 {
2 "name ": "dbpedia -hgql",
3 " schema ": " schema1 . graphql ",
4 " server ": {
5 "port ": 8081 ,
6 " graphql ": "/ graphql ",
7 " graphiql ": "/ graphiql "
8 },
9 " services ": [

10 {
11 "id": "dbpedia - sparql ",
12 "type ": " SPARQLEndpointService ",
13 "url ": "http :// dbpedia .org/ sparql /",
14 "graph ": "http :// dbpedia .org",
15 "user ": "",
16 " password ": ""
17 }
18]
19 }

Listing 2.4: HyperGraphQL configuration example(Ltd. 2022)

1 type __Context {
2 City: _@href (iri: "http :// dbpedia .org/ ontology /City ")
3 Country : _@href (iri: "http :// dbpedia .org/ ontology / Country ")
4 label: _@href (iri: "http :// www.w3.org /2000/01/ rdf - schema #

label ")
5 comment : _@href (iri: "http :// www.w3.org /2000/01/ rdf - schema #

comment ")
6 country : _@href (iri: "http :// dbpedia .org/ ontology / country ")
7 capital : _@href (iri: "http :// dbpedia .org/ ontology / capital ")
8 }
9

10 type City @service (id:" dbpedia - sparql ") {
11 label: [String] @service (id:" dbpedia - sparql ")
12 country : Country @service (id:" dbpedia - sparql ")
13 comment : [String] @service (id:" dbpedia - sparql ")
14 }
15

16 type Country @service (id:" dbpedia - sparql ") {
17 label: [String] @service (id:" dbpedia - sparql ")
18 capital : City @service (id:" dbpedia - sparql ")
19 comment : [String] @service (id:" dbpedia - sparql ")
20 }

Listing 2.5: Annotated schema example (Ltd. 2022)

This allows users to send plain GraphQL queries to the instance, which is con-
venient for developers. The response is formatted in JSON-LD, which preserves
the semantic context information while staying comprehensible to those familiar
with JSON.

9

While this appears to be a functional bridge between the linked data world
and GraphQL, this solution depends on a manually configured schema with anno-
tation. The creation of that schema relies on a specialist with domain knowledge
to both create the schema and maintain it, should the wrapped endpoint be
modified.

2.3 TopBraid
TopBraid is a commercial Enterprise Data Governance (EDG) solution, one of
whose features is querying RDF data sources using GraphQL. It uses SHACL
(W3C 2022f) data shape constraints to generate GraphQL schemata. The query
results return JSON, discarding the semantic context.

The TopBraid approach is as described: (TopQuadrant 2022)
• Generates GraphQL Schemata from SHACL ontologies.

• Watches for any changes in ontologies and updates generated schemata on
the fly.

• Lets users query not only data that is captured by EDG, but also the change
the ontology models themselves.

1 enterprise : Country
2 a owl:Class ;
3 a sh: NodeShape ;
4 rdfs:label " Country " ;
5 sh: property enterprise :Country - hasBorderWith ;
6 sh: property enterprise :Country - historicNote ;
7 sh: property enterprise :Country -label ;
8 sh: property enterprise :Country - status ;

Listing 2.6: Class SHACL constraint(TopQuadrant 2022)

This approach does not require an annotated GraphQL Schema, unlike Hy-
perGraphQL. Thanks to the higher expressiveness of SHACL compared to the
annotated GraphQL Schema, the generated schemata are more expressive (Tael-
man, Sande, and Verborgh 2019). The schema generation also allows for schema
introspection. However, the approach relies on the SHACL data constraints,
which must be supplied by the data provider. This is a solution for users of the
TopBraid EDG software, but it is not suitable for general use on the web.

2.4 Stardog
Stardog is another commercial enterprise semantic data solution with support for
querying RDF data using GraphQL. The schema for the data is optional and if
it is not provided, it is generated automatically from the RDFS/OWL schema or
SHACL constraints defined in the database (Union 2022).

The Stardog approach relies on RDFS/OWL classes that are mapped to
GraphQL types. Each unique class is mapped to a GraphQL type. Any property
whose rdfs:domain is set to that class will be added as an additional field to the
type. The GraphQL query is then translated into a SPARQL query and executed.
The following example illustrates the transformation.

10

1 {
2 Human(id: 1000) {
3 name
4 knows: friends {
5 name
6 }
7 }
8 }

Listing 2.7: Stardog example GraphQL query (Union 2022)

1 SELECT *
2 FROM <tag: stardog :api: context :all >
3 {
4 ?0 rdf:type :Human .
5 ?0 :id "1000"ˆˆ xsd: integer .
6 ?0 :name ?1 .
7 ?0 : friends ?2 .
8 ?2 :name ?3 .
9 }

Listing 2.8: Stardog example generated SPARQL query (Union 2022)

Further, Stardog offers Stardog Explorer, a graph and node visualisation of
the data store. It appears to be a force-based node visualisation with searching
capabilities. An example from the Stardog website is shown in figure 2.1.

Figure 2.1: Stardog Explorer interface (Union 2022)

2.5 GraphQL-LD
GraphQL-LD is an academic approach to querying linked data using GraphQL,
developed by Ruben Taelman et al (Taelman, Sande, and Verborgh n.d.). This
method uses JSON-LD context alongside the GraphQL queries to transform them
into SPARQL queries. This reduces the expressiveness of the available queries

11

from the SPARQL baseline. Unlike HyperGraphQL, this approach does not re-
quire an intermediate service to be set up. The SPARQL results are then trans-
formed from the SPARQL graph structure into a hierarchical tree structure and
returned as an ordinary JSON response.

The need for a domain expert to provide the JSON-LD context in order for
developers to create GraphQL queries means that it is not suitable for a developer
looking to approach an unknown SPARQL endpoint, nor does it provide any
insights into the schema.

HyperGraphQl and GraphQL-LD are extensively compared in a construction
context in (Werbrouck et al. 2019), where some shortcomings of both approaches
are addressed. A criticism of HyperGraphQl is the inability to query for a sub-
type. The provided example describes a type Spacewith a subtype Kitchen. A
relation of hasSpacewould fail to retrieve instances of Kitchenfrom the object.
(Werbrouck et al. 2019)

In contrast, with GraphQL-LD’s direct translation into SPARQL, more of
SPARQL’s behaviour is preserved at the cost of the absence of the extracted
schema and introspection. The work commends GraphQL-LD’s serverless flexi-
bility without the need to set up an intermediary, as opposed to HyperGraphQl’s
more rigid nature.

2.6 UltraGraphQL
UltraGraphQL is an academic approach presented in (L. Gleim et al. 2020) and
based on the authors’ previous work in (L. C. Gleim et al. 2020). It focuses
on providing a GraphQL interface to RDF data without the need for any Se-
mantic Web-related knowledge. Extends HyperGraphQL and aims to resolve its
shortcomings by providing automatic schema extraction and mutation support.

First, an RDF schema is extracted by mapping the RDF types and properties
to UltraGraphQL object types. The schema extraction process is described by
authors in (L. C. Gleim et al. 2020) and summarised in this work in 2.1. The
extracted schema is converted to a GraphQL Schema by mapping classes to ob-
jects and RDF properties to fields of those types. This process is to allow for
GraphQL introspection. The mapping process relies on GraphQL Interfaces to
represent RDF subclassing and other relationships feasible in RDF that are not
trivially translatable to GraphQL Schema. Nevertheless, the mapping will not
be perfect due to RDF’s increased expressiveness.

Based on the generated schema an adapter instance is created. This adapter
handles the outgoing GraphQL queries. It transforms the queries it receives into
SPARQL queries, as described in (L. Gleim et al. 2022). Finally, the results
from SPARQL are merged into one, enriched with context and returned by the
adapter.

2.7 ViziQuer
ViziQuer (Zviedris and Barzdins 2011) SPARQL endpoint exploration and visu-
alisation tool. It differs from others as it uses a UML visualisation. Figure 2.2

12

contains the authors’ example of the visualisation. ViziQuer offers an option to
export selected classes as a SPARQL query that selects the desired classes.

The tool appears to have limitations in its scalability. The authors suggest
against using it to visualise complex endpoints, such as DBPedia. This may
be due to technical limitations of the time (2011) or an inappropriate choice of
queries.

Figure 2.2: ViziQuer endpoint visualisation (Zviedris and Barzdins 2011)

2.8 LODSight
This work (Dudáš, Svátek, and Mynarz 2016) introduces a Java application for
summarising and visualising the relationships and structure in an RDF dataset.
Summarisation is based on [type1 - property - type2], as well as [type - data
property - datatype] paths that are extracted from object instances in the dataset.
The results are stored in an SQL database and visualised using D3.js. The query
used to extract the schema is shown in Listing 2.9.

1 SELECT ?a ?p ?b (COUNT (*) AS ?count)
2 WHERE { [a ?a] ?p [a ?b] . }
3 GROUP BY ?a ?p ?b

Listing 2.9: Path summarisation SPARQL query (Dudáš, Svátek, and Mynarz
2016)

As of the writing of this thesis, the links leading to the application appear to
no longer function. To use it users are required to run their own instance. This
obstacle unfortunately makes it less accessible and less likely to be used by users.

Regarding performance, the authors write that ”processing several hundred
triples takes less than 20s. For large datasets, implementing incremental explo-
ration (...) might be an option.”, suggesting that an incremental solution would

13

be beneficial. The authors also note the severe unreliability of their solution, cit-
ing a 53% success rate in preliminary evaluation using several endpoints. This is
likely due to the complexity of the pathfinding query and the SPARQL endpoints
not managing to compute it or timing out. In exploratory testing, running the
query occasionally succeeds but endpoints do not answer reliably enough to use
this solution.

It is therefore apparent that to more reliably perform schema extraction from
foreign endpoints, a series of exploratory queries is necessary, rather than a single
monolithic query. This is corroborated by other approaches, such as in 2.10.

2.9 A Visual Aide for Understanding Endpoint
Data

This approach (Florenzano et al. 2016) aims to improve the previously presented
LODSight (Dudáš, Svátek, and Mynarz 2016) by providing a more dynamic sys-
tem with improved information about the graph as a whole, as well as more
detailed information about each class and relation. Visually, it brings a more
modern that appears to be based on a force-directed layout. This visualisation
provides the ability to divide nodes of super-types into sub-type nodes, such as
dividing a Person into actor, director, editor and others.

Performance-wise, this system also sustains the problems that LODSight ex-
perienced. The authors themselves note that ”computing the necessary files for
our visualisation may take several minutes or even hours, so it is not possible
to offer on-demand visualisations.”(Florenzano et al. 2016). Unfortunately, as of
writing this thesis, the application doesn’t seem to be available.

Figure 2.3: A Visual Aide for Understanding Endpoint Data(Florenzano et al.
2016)

14

1 SELECT DISTINCT ?class (COUNT(? instance) AS ? instanceCount)
2 WHERE {
3 ? instance a ?class .
4 }
5 GROUP BY ?class
6 ORDER BY DESC(? instanceCount)
7 LIMIT 10 OFFSET 0

Listing 2.10: SPARQL query retrieving the 10 classes having the most
instance (Weise, Lohmann, and Haag 2016)

1 SELECT (COUNT(?val) AS ? valCount) ? valType
2 WHERE {
3 ? instance a <http :// dbpedia .org/ ontology /Agent > .
4 ? instance ?prop ?val .
5 BIND(DATATYPE (?val) AS ? valType) .
6 }
7 GROUP BY ? valType
8 ORDER BY DESC(? valCount)
9 LIMIT 10

Listing 2.11: SPARQL query retrieving the 10 datatypes most often linked to the
DBpedia class Agent (Weise, Lohmann, and Haag 2016)

2.10 LD-VOWL
LD-VOWL is an online1 academic tool that extracts and visualises schema in-
formation from Linked Data endpoints, based on a number of SPARQL queries
(Weise, Lohmann, and Haag 2016). It employs a class-centric approach by query-
ing for classes in the dataset first. To save execution time and complexity, the
schema extraction is split into multiple (up to hundreds of) queries and the vi-
sualisation is built iteratively, as results are retrieved from the endpoint. This
improves latency issues experienced by other approaches, which focus on more
complex and complete SPARQL queries. This is a user-friendly approach, as it
provides information as soon as it is available, unlike some solutions which per-
form a complete extraction before showing anything. This approach is fitting for
our outlined goals.

LD-VOWL is a more dynamic and easier accessible tool than the other visu-
alisation tools. It, however, lacks some features that are satisfied in (Florenzano
et al. 2016), such as attribute numerosity. The graph visualisation can be over-
whelming when an endpoint is visualised, as is shown in Figure 2.4. The number
of objects on the screen quickly makes the visualisation over-saturated and con-
fusing. This is something 2.8 attempted to resolve. The visualisation employs
a force-directed layout. As the queries resolve, the choice of layout causes the
visualisation to move around rapidly as new edges are created. Perhaps a more
static version would be less jarring.

1http://vowl.visualdataweb.org/ldvowl/

15

http://vowl.visualdataweb.org/ldvowl/

Figure 2.4: LD-VOWL visualisation of dbpedia

2.11 VizLOD
VizLod (Anutariya and Dangol 2018) was developed as an improvement of LD-
VOWL. It introduces new visualisation features, such as improved class property
viewing. It maintains a similar visualisation as LD-VOWL, keeping with the
circular force-directed node and link style.

A new feature of VizLOD is a querying mode. This allows users to directly
view schema class instances through the tool. This is a significant improvement
in accessibility to users. It shares this utility with TypeSPARQ. However, this is
limited to use within VizLOD. To ease access for developers, TypeSPARQ will
introduce a schema export solution, something not offered by VizLOD.

2.12 SPARQLess
SPARQLess is an application that is able to discover the schema of data within a
SPARQL endpoint, and subsequently construct an equivalent GraphQL schema.
(SPARQLess 2023) SPARQLess works in four stages to extract and transform
the endpoint’s schema.

1. Observation
2. Model Parsing
3. Postprocessing
4. Schema Creation

16

The initial observation stage uses several Observer classes that each collect
Observations about the endpoint. The collection of these observations is a lengthy
process, up to tens of minutes according to the documentation. Observations
are recorded in a Turtle format file and are constructed by the Observers using
SPARQL CONSTRUCT queries, like the example in Listing 2.12. The listed query
creates an instance of AttributeObservation for every literal connected to the class
instances.

Although this would be a correct way of extracting the complete schema from
an endpoint, it may take multiple hours on a large endpoint. Furthermore, for an
endpoint like dbpedia where instance counts are in the millions, this will generate
tens of gigabytes of data. Given the focus on speed and ease of use, this method
of schema extraction is unsuitable for our described use case.

The parsing process uses the collected observations to create JavaScript ob-
jects – Descriptors, which describe the classes. These objects are then transformed
into a GraphQL Schema in the final phase. The schema creation creates GraphQL
objects with fields based on the original literal attribute types. Interestingly, only
numbers and language strings are considered, everything else is mapped as a plain
string.

1 CONSTRUCT {
2 []
3 a se: AttributeObservation ;
4 se: describedAttribute <${ propertyIri }> ;
5 se: attributeSourceClass <${ classIri }> ;
6 se: targetLiteral ? targetLiteral .
7 } WHERE {
8 {
9 SELECT ? targetLiteral

10 WHERE {
11 GRAPH ?g {
12 ? instance
13 a <${ classIri }> ;
14 <${ propertyIri }> ? targetLiteral .
15 FILTER isLiteral (? targetLiteral)
16 }
17 }
18 }
19 }

Listing 2.12: SPARQLess attrbute observation query (SPARQLess 2023)

2.13 Simplod
Simplod (Simplod - Visualization tool for simplifying access to Linked Data. 2023)
is a React application providing simple access to SPARQL data. It works by
first visualising the endpoint’s schema. The schema extraction does not seem to
be considered. Instead, the service relies on downloading a schema file from a
provided URL and creating a visualisation based on that. This is unfortunately
not suitable for unknown endpoints, as it does not resolve the issue of schema
extraction.

The area where Simplod shines is its ability to query the visualised data
schema by generating SPARQL queries based on the user’s selection. The example

17

in Figure 2.6 shows the interface of Simplod. It provides users with a good search
and filtration system for data and object properties of each class. Once selected,
the selection is transformed into a SPARQL query, which can be run on the
endpoint. The advantage of this is that the output is platform-agnostic. Any
developer with access to a SPARQL library can make use of this service once
the query is generated. As opposed to other solutions, this does not require an
intermediate service to be run, simplifying its use. A slight complaint could be
that the SPARQL query does not come with typing support in statically typed
languages, but it makes up for it in its universality.

Simplod would be a good solution if it provided a schema extraction. If a
schema extraction tool could be used to generate the schema Simplod requires,
both would complement each other well.

2.14 Summary
The presented methods all aim to resolve a related problem, each by its own
implementation. Yet each of them focuses on different aspects of the problem,
leaving room for improvement in achieving the goal that was laid out for this
thesis. The presented approaches are summarised in Table 2.1. The following
paragraphs explain the comparison points.

Availability tracks whether or not the tool can be accessed immediately online
(as of the writing of this thesis). A check mark (✓) denotes that the tool is
available and usable immediately on the web. One cross (✗) means that the
source code or the application can be downloaded, but must be executed (and
potentially compiled) locally by the user. A double cross (✗✗) means that neither
the application nor the source code could be found. That is caused by either the
links leading to non-functioning websites, or missing altogether.

Incremental Extraction shows the rate at which the schema is extracted.
Note that this is not the speed of the entire operation, but rather the time it
takes for the user to receive feedback. A check mark (✓) shows that the service
works by gradually exploring the endpoint and providing some feedback within
seconds. A cross (✗) says that the method runs a background query that could
take multiple minutes, up to hours. The long query provides no feedback until
the end when everything is extracted.

Output describes the output format of the schema extraction tools. Some offer
only a visual representation of the endpoint. In such cases, the type of visuali-
sation used is noted (Force/Flow/UML). Other tools output a schema definition
that is programmatically usable (TypeScript, GraphQL).

No setup analyses whether or not the service can be used without any setup.
This means that the service should be executable without any prior knowledge
about the endpoint, the problem domain or even the concept of linked data. A
need for source code compilation is not considered here. Tools marked with a

18

cross (✗) require the user to provide a semantic context, an ontology, a mapping
or another form of additional information before providing the schema.

Name Available
online

Increm.
extraction Output No setup

ViziQuer ✗ ✗ UML, SPARQL ✓
LD-VOWL ✓ ✓ Force ✓

VizLOD ✗✗ ✓ Force ✓
Visual Aide ✗✗ ✓ Force ✓
LODSight ✗ ✗ Force ✓
HyperGQL ✓1 ✗ GraphQL ✗

TopBraid ✓1 ✗ GraphQL ✗

Stardog ✓ ✗ GraphQL, Force ✗

UltraGQL ✗ ✗ GraphQL ✗

GraphQL-LD ✗ ✗ GraphQL ✗

SPARQLess ✗ ✗ GraphQL ✗

Simplod ✓ ✗ Flow, SPARQL ✗

TypeSPARQ ✓ ✓ Flow, TypeScript ✓

Table 2.1: Overview of existing schema extraction solutions

There are two main groups of approaches that were explored. One group of
tools prioritises schema extraction. They are capable of extracting the schema
and presenting it to the user, typically via a visualisation. They tend to not be
concerned with how that schema is used further. Furthermore, the visualisation
can end up being crowded and chaotic, especially if they rely heavily on force
layouts.

Another group focuses mostly on making endpoints accessible through an
API. They tend to require prior setup in the form of providing a schema, context
or shape constraints. Subsequently, an access point is created for easy access
to the data through means other than SPARQL. The need for prior setup or
domain knowledge makes these inaccessible to casual users. However, the access
they provide is very valuable for developers in accessing the data. It would be
preferable if this approach could be adapted for use in unknown endpoints. This
group also tends to perform a complete schema extraction first, taking minutes
or up to hours before it is accessible.

TypeSPARQ – the solution presented in this thesis aims to combine the ad-
vantages of these two groups into one easy-to-use tool. It enables the exploration
and visualisation of an unknown endpoint in a way that eliminates excessive
force-related movement. Attention is paid to ensuring that the extraction is fast
and gradual, minimising individual response times.

TypeSPARQ’s exploration is combined with API schema export functionality.
It provides the users with the option to export the schema and use it to directly
access the data through an API. TypeSPARQ is designed so that this functionality
is extensible, should a different API be desired. With this approach, TypeSPARQ
takes a middle ground, satisfying both needs.

1Paid commercial solutions

19

Figure 2.5: VizLOD visualisation interface (Anutariya and Dangol 2018)

Figure 2.6: Simplod visualisation interface (Simplod - Visualization tool for sim-
plifying access to Linked Data. 2023)

20

3. Requirements
This chapter defines the requirements for TypeSPARQ to fulfil. These will ensure
that the solution solves the given problem, as well as avoids the shortcomings of
other solutions described in chapter 2. The requirement definitions presented
here will govern further development choices. Concrete implementation decisions
based on these requirements are discussed in section 3.3.

3.1 Non-Functional Requirements
As was outlined in section 1.1, the aim is to provide easy access to SPARQL
endpoints for people with or without prior SPARQL knowledge. Therefore the
following requirement1 arises.

R1: The application SHOULD be easily accessible to a majority of users, even
those without SPARQL knowledge.

Some solutions required the endpoint provider to run the schema extraction or
provide metadata or ontologies alongside their service. Reliance on this external
support is unfeasible. It makes sense to only consider approaches that perform
exploratory queries on unknown endpoints.

Prior setup or technical knowledge requirements should be avoided at all costs.
Having to download source code from a code repository to access the service may
be more reliable, but adds a level of complexity to the process. That could deter
its use with more casual users.

R2: The application SHOULD require minimal setup.

Source code compilation is a hurdle that should be preferably avoided. Issues
such as having an incompatible compiler version would diminish R2 compliance.
For this reason, it would be preferable to provide the application as either an
executable out of the box or a web application or service.

3.2 Functional Requirements
Considering the prior analysis of currently and previously available solutions,
functional requirements will be defined. These will serve as a guide of what
functional features will be implemented. Primarily, the service should provide a
graphical view of the endpoint.

R3: The schema SHALL be revealed by displaying RDF classes and their
relationships to the user.

To cater towards users without SPARQL knowledge, providing access to the
endpoint in another format will improve the tool’s utility, as well as support
R1. A fitting export medium would be a programmatic schema or API of the

1Requirements are presented in accordance with RFC2119

21

endpoint. Providing developers without LD knowledge access to SPARQL data
stores makes the data more accessible. Creating new consumers of this data
would certainly increase the appeal for other publishers. To facilitate this, access
in a modern programming language is appropriate.

R4: The extracted schema SHALL be exportable in a non-visual programmatic
format.

Given the analysis of various schema extraction methods and the end-user
orientation of this solution, a long latency should be avoided. Explored solutions
such as queries presented in (Dudáš, Svátek, and Mynarz 2016) (L. C. Gleim et al.
2020) or (SPARQLess 2023) presented a major computational cost in extracting
using a single query. Having a singular extraction step makes the application ap-
pear frozen and unresponsive while the query is being executed. Furthermore, as
noted in (Dudáš, Svátek, and Mynarz 2016), the schema extraction is not reliable
due to endpoint throttling and timeouts. Therefore, the following requirement
emerges:

R5: Schema extraction SHOULD provide feedback as quickly as possible.
Extraction SHALL follow an iterative process and display information as soon

as it is available.

To resolve an oversight of (Weise, Lohmann, and Haag 2016), wherein only
the top 9 classes are displayed, it would be beneficial to include an option to
query more than the initial number of classes. Iterative querying will lead to a
subset of classes from the dataset being displayed at first, followed by more on
request to capture as much of the data as possible.

R6: The application SHALL enable the user to request additional classes
beyond those initially queried.

One might wonder why a limitation to the number of classes is used at all. The
reason is R5 compliance. Should all classes of the dataset be queried at once,
the number of possible edges grows exponentially. In waiting for those queries,
other queries, such as attributes could be delayed. It can be expected that most
users will be interested in the most common information about the endpoint.
However, if a user consciously wants the entire endpoint, they can simply request
these additional classes.

3.3 Application design
Resolution of some requirements necessitates the making of more informed deci-
sions. The solutions for compliance with some requirements and their implemen-
tation are outlined in this section.

3.3.1 Non-functional requirements (R1, R2)
It is important to decide whether the application will be developed as a native
application or a web-based app. To avoid environment and interpreter compat-
ibility issues, having to run an executable locally should be avoided. Further,

22

maintaining software versions for multiple operating systems (or mobile devices)
adds an additional level of complexity to the development process.

Therefore, the most appropriate approach would be a web-based application.
Designing the application to perform all functionality client-side would mean
that no server is required to run. Hosting a static site reduces hosting expenses,
ensuring the service stays available longer. Should the hosting of the website fail
in the future, source code will also be provided and can be run locally.

3.3.2 Schema visualisation (R3)
Schema visualisation is the main feature of some of the existing solutions. How-
ever, a common approach is using a force-directed layout. Whilst this can seem
natural to account for an iteratively changing visualisation, the result is that
nodes and edges move around erratically during query execution. Another op-
tion, implemented by 2.7 used UML. The familiarity of that style could be help-
ful, but displaying all existing properties at once could clutter the visualisation.
Hundreds of attributes would be better displayed in a more advanced interface,
perhaps including searching and filtering.

To avoid force layouts’ problems and to experiment with a different approach,
the Flow library will be used. It is described further in section 5.2.3. A more
static visualisation will allow users to arrange the endpoint to their liking. A
layout is nevertheless important, so some initial placement support should be
included. As can be seen in Figure 2.4, some further steps should be taken to
reduce visual clutter. Aggregating edges and attributes behind dialogues may be
required to avoid a similar situation.

3.3.3 Schema extraction (R4)
A fitting realisation of export will be employing the LDKit library. LDKit is
a TypeScript library that handles querying a SPARQL endpoint and is further
described in chapter 4. However, it requires a schema definition, describing the
endpoint. Enhancing this existing solution with a schema generation tool would
adequately provide access to an unknown endpoint. Thanks to TypeSPARQ’s
schema extraction, the access is not gated by a need to manually explore the
endpoint, nor prior SPARQL or RDF experience.

The goal of TypeSPARQ is not to present itself as a service that facilitates
these queries, as is the case with many of the GraphQL adapter solutions. The
goal is rather to generate an output that can be used independently of TypeS-
PARQ. Any TypeScript developer can use TypeSPARQ to access SPARQL end-
points programmatically using only LDKit, once the schema is generated. This
should make developing applications over SPARQL endpoints easier for develop-
ers.

3.3.4 Querying rate (R5)
Multiple queries will be issued to display information to the user as soon as
possible and to avoid long query evaluation times. To realise this, queries should
be rather short and simple. This will have the positive side effect of helping

23

avoid endpoint timeouts due to long query times. The overall extraction will
likely be slightly slower due to request overhead, but the application will provide
information and be usable much faster.

24

4. External integration
TypeSPARQ is integrated with external tools to improve both their and its own
utility. The reason for this is that they provide the functionality required for
TypeSPARQ to accomplish its goals without requiring the re-implementation of
existing solutions. The application is designed in a way that makes it easy to
integrate even further tools by extending the extension points outlined in 5.12.
This section outlines the options for external integration.

4.1 LDKit
TypeSPARQ relies on LDKit, an external open-source (LDKit Linked Data query
toolkit for TypeScript developers 2023) library, to provide TypeScript access to the
extracted schema. LDKit is a tool created at the Faculty of Software Engineering
at MFF UK. It uses a data schema definition, such as the example in Listing 4.1
to create a data lens into a SPARQL endpoint. The endpoint can then be queried
through the LDKit API to fetch entities from the schema. The fetched objects
are typed using TypeScript according to the schema.

1 import { dbo , rdfs , xsd } from "ldkit/ namespaces ";
2

3 const PersonSchema = {
4 "@type ": dbo.Person ,
5 name: rdfs.label ,
6 abstract : dbo.abstract ,
7 birthDate : {
8 "@id ": dbo.birthDate ,
9 "@type ": xsd.date ,

10 },
11 } as const;

Listing 4.1: Example LDKit schema definition (LDKit Linked Data query toolkit
for TypeScript developers 2023)

4.2 Schema Import
To allow for interoperability of TypeSPARQ with other schema extraction ap-
proaches, it is necessary to allow a schema to be imported. A schema import
will replace TypeSPARQ’s built-in endpoint querying with user input. This will
allow users to perform more detailed extractions that would take too long to be
run in-browser.

To import data into TypeSPARQ, an Import modal dialogue is created, ac-
cessed via the ”Import” button. The technical details of the process are discussed
in 5.5.4. To import data, supply a JSON document compliant with the JSON
Type Definition (JTD) shown in Listing 4.2. This input will be parsed and, if
valid, seeded into the application.

The schema is structured as follows. The nodes array contains the schema’s
classes and the edges contains the predicates. The id id property is the IRI of
the class or property. For edges, source or target are subject and object IRIs. A

25

1 {
2 properties : {
3 endpoint : { type: ’string ’ },
4 nodes: {
5 elements : {
6 properties : {
7 id: { type: ’string ’ },
8 instanceCount : { type: ’uint32 ’ },
9 },

10 optionalProperties : {
11 attributes : {
12 elements : {
13 properties : {
14 id: { type: ’string ’ },
15 type: { type: ’string ’ },
16 instanceCount : { type: ’uint32 ’ },
17 },
18 },
19 },
20 },
21 },
22 },
23 edges: {
24 elements : {
25 properties : {
26 source : { type: ’string ’ },
27 target : { type: ’string ’ },
28 id: { type: ’string ’ },
29 instanceCount : { type: ’uint32 ’ },
30 },
31 },
32 },
33 },
34 }

Listing 4.2: TypeSPARQ import data JSON Type Definition

class can contain attributes, which are literal values related to instances of the
class. Attributes must contain a type definition in the form of an IRI.

When creating the import data, be aware of the correctness of the input.
Whilst the schema is validated and errors are reported, semantically incorrect
data may be handled silently. Issues such as providing nodes with non-unique ids
or edges connecting non-existent classes may not report errors.

4.3 Schema Export
If desired, TypeSPARQ can be used as a schema extraction tool for you to build
other tools and applications on top of. TypeSPARQ offers an extensible set
of export options that should allow you to make use of its schema extraction
capabilities for whichever purpose. Either make use of one of the provided export
options to import schemata into your applications, or extend TypeSPARQ with
the format you need (see Section 5.12 for extending TypeSPARQ).

26

5. Developer documentation
This chapter serves as the technical documentation for the source code, which is
available at https://github.com/Jkuzz/sparql-explorer.

5.1 Technologies and Frameworks
This section explains the frameworks, technologies and tools that will be used in
the implementation. Smaller libraries and other dependencies will be described
in 5.2. A summary of each technology and the reason for its inclusion will be out-
lined. For a more complex explanation, please refer to the linked documentation.

5.1.1 Single Page Application
A Single Page Application (SPA) is a method of implementing a web page that
does not use traditional HTTP redirects to move users between pages. Rather,
the application is a single document, whose content is dynamically changed. This
eliminates the need for a page reload on every route, speeding up the user ex-
perience. The experience can also be smoother, as more control is in the hands
of the application, allowing for requests to run in the background. The user can
then use other features of the application, not having to wait for a page to load.

This approach comes with some drawbacks. Primarily, Search Engine Optimi-
sation (SEO) is negatively affected. This is due to the way that engine crawlers
index the site’s contents. Without proper support, some frameworks (such as
Vue) initially serve an almost blank HTML page, which is then populated dy-
namically using JavaScript. Since web crawlers do not tend to run this code,
the page appears empty. There are ways to mitigate this, such as using Server
Side Rendering (SSR). However, since we wish to remain serverless, SSR is not
used. Another option if loading times are a concern can be code splitting. Code
splitting is used for this purpose in the project, mainly to separate the router
imports.

5.1.2 Technologies used
1. HTML HyperText Markup Language is a web standard describing the

document which serves as the structure and content of a web page. The
tree structure of the document defines elements using HTML tags, each with
its own purpose and functionality. The document tree is also referred to as
the Document Object Model (DOM), a concept describing the hierarchical
structure of the document. (HTML Living Standard 2022)

2. CSS Cascading Style Sheets is a language used to define the appearance of
a DOM document, primarily used for HTML in web applications. CSS is
applied to the HTML document by the browser during rendering. Whilst
pure CSS is not used (see 5.2.1), its paradigms and implementation are
heavily present in order to style the application.

27

https://github.com/Jkuzz/sparql-explorer

3. JavaScript (JS) is the de-facto standard programming language for web
apps, as it is used by over 98% of all websites(Usage statistics of JavaScript
as client-side programming language on websites 2022). JS is an imple-
mentation of the ECMAScript standard by ECMA International. It is a
language primarily created for use in browsers to run client-side code in
browsers. Modern browsers include an ECMAScript-compliant compiler
and engine that runs JS code downloaded alongside HTML and CSS from
a website.(International 2022).

4. Git is an open source version control software for software development(Git
Version Control System 2022). It is used to track files and their changes.
The remote repository for this project is github.com and the code is available
https://github.com/Jkuzz/sparql-explorer.

5. JSON JavaScript Object Notation is a lightweight data-interchange for-
mat that is language-independent and based on a subset of ECMAScript.
(Introducing JSON 2022) It will be used to communicate with SPARQL
servers. SPARQL schema extraction query requests will be answered by
endpoints using JSON, which is then easily processed in JS.

Provided JavaScript is the primary development language, the vast suite of JS
libraries and frameworks is available. The following will be used in the appli-
cation. The next sections assume a basic understanding of the above-described
technologies.

5.1.3 NPM
Node Package Manager (NPM)1 is a dependency manager for Node. It tracks the
declared dependencies, including the desired version and installs them from the
npm registry. The npm registry is a public database containing freely available
user-submitted software packages. The majority of dependencies and tools listed
in this section are installed using npm and can be found in the project’s package
.json – the file where npm reads dependencies.

Npm supports two kinds of dependencies: regular and devDependenies. Reg-
ular dependencies are used at runtime and therefore are required to be present in
the final bundle. This includes libraries and frameworks, although sometimes only
parts that are actually used are included. The devDependencies are usually tools
that are used during development but are not included in the final application.
This includes tools such as formatters, linters, and bundlers. Also included are
type definitions for typescript packages, as no typescript is exported (see 5.1.4).

Npm also allows the declaration of scripts, which can execute the installed
packages or other system scripts. Scripts are used to execute lifecycle stages or
other utilities. Listing 5.1 shows an extract of script definitions from the project.

1 " scripts ": {
2 "build ": "run -p type -check build -only",
3 "build -only ": "vite build",
4 "type -check ": "vue -tsc --noEmit -p tsconfig . vitest .json --

composite false",

1https://www.npmjs.com/

28

https://github.com/Jkuzz/sparql-explorer

5 " format ": " prettier . --write"
6 },

Listing 5.1: package.json script definitions

5.1.4 TypeScript
Typescript is a programming language that evolved from JavaScript. The need for
a better development experience and support inspired the creation of Typescript.
It was developed by Microsoft and released as open source in 2012(Announcing
TypeScript 1.0 2023). The language provides static support for type definitions
and type checking among other features.

Typescript code must be ”transpiled” into JavaScript, which is performed by
the Typescript compiler. This compilation step performs the before-mentioned
type checking and other optimisations. The resulting code is served to the browser
as a normal JS file. This step is often performed by a bundler, in our case, Vite.

TypeScript’s static typing and improved tooling support have been shown to
improve developer productivity over JavaScript (Fischer and Hanenberg 2015).
The majority of libraries used within this project provide TypeScript type def-
initions of their APIs. This implementation will also utilise this type of safety
for all its APIs in order to ease current and future development. Furthermore,
one of the output methods will be the LDKit schema definition. LDKit itself
is a type-safe access API for SPARQL endpoints, as was discussed previously.
Providing type-safe access to endpoints should therefore provide similar benefits
for developers.

5.1.5 Vite
Vite is a modern JS bundler. (Vite 2023) A bundler is a developer tool that takes
the source files and modules and turns them into a native JS, HTML and CSS
bundle. This can involve multiple steps, including but not limited to:

• Packing dependencies
• Typescript transpiling
• CSS preprocessing from SCSS, Sass, others
• Minifying JavaScript, compressing resources

and many more. Bundlers are typically configurable with plugins to support
whatever steps are required.

The disadvantage of this approach is felt during development. As the appli-
cation becomes larger, it can take much longer to pack. If the developer wants
to see their changes, waiting up to a few minutes is detrimental to productivity.
Vite resolves this by implementing Hot Module Replacement (HMR). Instead of
invalidating the entire bundle on change and re-bundling, Vite is able to only
invalidate the changed files and dynamically replace the changed modules in the
application, which removes a lot of time overhead from the bundling. This ap-
proach also scales much better, as each rebuild tends to be of a constant size,
rather than the entire application.

29

5.1.6 Vue.JS
Vue2 is a JavaScript framework for building user interfaces. Vue’s syntax extends
HTML by defining new tags and attributes, which the framework interprets and
implements. Vue uses a single-file component (SFC) structure. That means that
every component is contained within its individual file. These components are
reusable and mountable within other components. Each SFC defines its own
HTML, JS and CSS, which are bundled and included by the framework wherever
the component is used.

Vue’s reactivity model simplifies the flow of data between the state and the
DOM. The framework automatically invalidates and redraws any DOM elements
that have been set up to model a variable. Listing 5.2 shows a simple button
component that increments the count variable on click and shows its current value.
Vue uses enhanced HTML to provide efficient declarations of common web and
programming paradigms. Those include functions called on user actions, event
emitting and receiving, conditional rendering and many more. Another example
in 5.2 shows a simple data-driven SFC.

1 <button @click =" count ++">
2 Count is: {{ count }}
3 </button >

Listing 5.2: Vue reactivity example (VueJS 2023)

1 <template >
2 <div
3 v-for ="(person , i) in people "
4 :key ="i"
5 >
6 User: {{ person }}
7 </div >
8 </template >
9

10 <script setup lang ="ts">
11 const people = [’Alpha ’, ’Bravo ’, ’Charlie ’, ’Delta ’]
12 </script >

Listing 5.3: Vue data-driven component

5.2 Dependencies
This section will describe the libraries and other dependencies used in the project.
The dependencies are managed by NPM and can be seen in the package.json file.

5.2.1 Tailwind CSS
To improve application accessibility, responsive design is favoured in web devel-
opment, as it provides improved accessibility and user experience (Almeida and
Monteiro 2017). A framework providing a streamlined and easily implementable
responsive design is Tailwind3. It will facilitate the layout of the application in a
simple but sufficient manner.

2https://vuejs.org/
3https://tailwindcss.com/

30

Tailwind eliminates the need to write custom CSS by providing a set of utility
classes, which can be directly used in the page’s HTML. This pattern makes the
HTML more readable by directly containing the style, so developers can find it
easier to reason how each of the tags look and what their role is.

Tailwind also employs a bundling step, performed by a bundler plugin. In
order to not ship all of its classes, Tailwind only adds the classes that are used
to the final bundle. This is a major decrease in bundle size, as no duplicate or
unused CSS is shipped.

5.2.2 Pinia
Pinia4 is Vue’s official state management solution. A state storage is essentially
a managed global data store. It primarily handles data that is handled and
modelled by multiple components, serving as a single source of truth for the
application. A store is used to avoid passing data as properties up and down
multiple levels in the dependency tree. Using these global stores with defined
access points gives better control and untangles the application dependency tree.

The stores are modular and multiple can be used. The implementation uses
several stores, described in detail in 5.8.

5.2.3 Vue Flow
Vue flow5 is the Vue port of React Flow 6. It is a component library providing
the Flow component. The Flow component is used in the application to display
the schema of the endpoint to the user. It allows the nodes to be rearranged by
dragging, providing an important user experience factor.

Flow enables the developer to provide custom components for the visualisa-
tion, which is the case here. The nodes and their behaviour (besides dragging)
were created within the CustomNode.vue component.

Flow enables data modelling, which is a regular feature of Vue components.
The component is handed some data and when it is modified, Vue handles notify-
ing the component, which then redraws itself to reflect the change. This feature is
used alongside a Pinia store. The store’s contents are filled as the schema extrac-
tion requests resolve. whenever the store’s contents are changed, the component
automatically changes to account for that. This is performed entirely using Vue’s
reactivity paradigms, requiring almost no further implementation.

5.2.4 Prism
”Prism is a lightweight, extensible syntax highlighter”7 Prism is used to syntax
highlight the generated LDKit code export. The exported code is valid JS and
Prism makes it easier to read for the user. This is important for the user experi-
ence since developers are used to syntax highlighting, as it is provided by most
modern IDEs.

4https://pinia.vuejs.org/
5https://vueflow.dev/
6https://reactflow.dev/
7https://prismjs.com/

31

5.2.5 Prettier
Prettier8 is a code formatter, meaning it reformats code according to its set
of rules without affecting the functionality. Usually, prettier is used only as a
developer tool, to ensure consistency and readability in the source code. Since one
of the outputs of this application is the LDKit schema definition, the formatter
is run dynamically on the output text as well. This is for much the same reasons
as the primary use, since the intention is that the generated code will be copied
and used.

5.2.6 Zod
Zod9 is a schema validation library. It provides parser definitions that parse and
validate inputs against a defined schema. The incoming data are validated and
inserted into a Zod-defined wrapper type, which provides complete TypeScript
typing, validated by the parser.

Zod is used to parse the responses from SPARQL endpoints, ensuring their
shape is as expected. Therefore, no other abstraction or preprocessing happens.
All further computing can run on these well-known and well-typed objects. This
ensures that validation and internal use of types are consistent and the data is
correct, without needing to maintain a validator and a parser as two separate
entities. Zod validators are defined in src/stores/validators.ts.

5.3 Project Structure
The application follows a typical Vue component application structure. The main
HTML file is index.html, which provides very little content. However, it is the file
which is served initially to the client. It contains <div id="app">, which is where
Vue mounts the application. The Vue entry point is src/main.ts, wherein the app
and its plugins are mounted. All other views and components are mounted by
Vue automatically.

Components are located in src/components and are described below, as well as
within in-code documentation. Components do not include CSS, as all styling is
implemented using Tailwind. Therefore, elements include styling classes instead
of within the HTML.

5.4 Vue Router
The project uses Vue Router10, the official SPA routing solution for Vue. Single-
page routing simulates the traditional browser routing experience whilst avoiding
page loads. The router’s component acts as a placeholder, where the routed
elements are swapped. The routed elements are regular Vue SFCs, but present
in a different folder – src/Views for semantic purposes.

The router’s configuration and route definitions can be in src/router/index.
ts. An optimisation to reduce initial load time is employed here. The routes

8https://prettier.io/
9https://zod.dev/

10https://router.vuejs.org/

32

1 <VueFlow
2 v-model:nodes =" endpointStore .nodes"
3 >
4 <template #node - custom =" props">
5 <CustomNode
6 :data =" props"
7 @click =" onClickNode (props)"
8 />
9 </template >

10 </VueFlow >

Listing 5.4: Passing a custom node component to VueFlow

beyond the initial one are imported dynamically, instead of statically, reducing
the amount of files that must be sent to the client.

The router component is located in src/App.vue, alongside the header. Ulti-
mately, the entire application besides the header is controlled by the router and
each View therefore acts as its own route screen (hence the name).

The most important view FlowView. The visualisation and exports happen
here. The <VueFlow> component is mounted here, modelling the data stores. Fur-
ther, the bindings of the modal dialogues are defined here (more detail in 5.5).

Furthermore, the layout functionality is mounted here. This enables the user
to select a layout for the existing nodes, before manipulating them further. The
implementation can be found in src/stores/layout.ts.

5.5 Components
The application views are made up of components. Vue uses a single file com-
ponent (SFC) structure, meaning each component is contained in its own file.
Components are present in the src/components folder. Some components warrant
additional description beyond what is included as in-code documentation.

5.5.1 CustomNode
The Flow library uses node components to model the provided data. It allows the
definition of a custom node component to be used instead. CustomNode is passed
to the <VueFlow> component in FlowView. Listing 5.4 shows how this is performed.
Flow takes the modelled data and creates a custom node for each data object.
Line 2 defines which data structure is modelled. Pay closer attention to line 5,
where the modelled objects are passed to the node component as a property.

5.5.2 NodeModal
This modal dialogue is displayed to the user upon clicking a class node in the
visualisation. It contains information about the node’s attributes and incoming
and outgoing edges. The modal contains three list sub-components, each of which
displays one of the three options and can be toggled between. This dialogue is the
only way that a user can add nodes or their attributes to the export selection. The

33

1 {
2 label: ’LDKit ’,
3 exporter : exportSchema satisfies Exporter ,
4 prismClass : ’language -ts ’,
5 prettierConfig : {
6 semi: false ,
7 parser : ’typescript ’,
8 plugins : [parserTypescript],
9 },

10 },

Listing 5.5: Defining an export format

selected entities will be included in the exported schema, performed in ExportModal
(5.5.3).

5.5.3 ExportModal
The export modal employs the Prettier and PrismJS dependencies. The code is
generated from the contents of the Pinia store in src/stores/schema.js. The out-
put is passed to Prettier, which formats the code at runtime. This is an unusual
use of Prettier, as it is usually used on the project’s source code exclusively. It
is important that the generated code is syntactically correct, or else the format-
ting will fail. The formatted code is passed to Prism, which performs syntax
highlighting.

The default LDKit export is a transformation of Pinia JavaScript objects
into text containing LDKit schema JavaScript objects. Each node creates an
output class with its selected attributes and selected outgoing edges as fields.
Attention must be paid to the proper definition of namespaces. LDKit comes
with some most common namespace definitions, but others must be registered to
LDKit. Every IRI that is being transformed into an output object must have its
namespace defined.

The export functionality is set up to be modular and easily extensible. The
NodeModal contains the ExportOptions component, wherein all export option defi-
nitions are located. Listing 5.5 shows the definition of the LDKit exporter. Once
selected, the exporter function is provided with the selected data nodes. The
output, alongside the Prism class and Prettier configuration, is passed back to
the NodeModal. There, the class is injected into the Prism code block and Pret-
tier is run using the defined configuration. When adding new export options, be
mindful of the correctness of these definitions.

5.5.4 ImportModal
The ImportModal is used to manually import a schema into the application. It
presents a text input, into which the input data is inserted. The modal contains
a list of parsers, which can independently process the input text and populate
the endpointStore. Each parser also provides a data schema, by which it validates
the input data. The parser type definition is shown in Listing 5.6. The import
options were designed with extensibility in mind and more details are provided
in section 5.12.

34

1 type InputParser = (input: string) => SchemaType
2 type ImportDef = { parser : InputParser ; schema : string }

Listing 5.6: Import format definition

1 SELECT DISTINCT ?class (COUNT (*) AS ? instanceCount)
2 WHERE {
3 ?s a ?class
4 }
5 GROUP BY ?class
6 ORDER BY DESC (? instanceCount)
7 LIMIT 10

Listing 5.7: Class discovery query

5.6 Visual Design
Some visual design methods were employed to ensure a consistent visual style.
In order to appear orderly and avoid elements appearing out of place, care was
given to ensure elements had consistent padding, rounding and colours.

Generic elements were turned into components to force their consistent use.
Whenever a button is used, the ButtonGeneric fulfils that role. This means when-
ever the style of the button had to be modified, the change to the component is
propagated correctly. Bypassing the use of the generic component would present
obstacles, should there be changes to the visual style in the future. In line with
this, component reuse is prominent with the header, although only a single in-
stance is used and shared between the views.

TailwindCSS helps in keeping a coherent design system through the design of
its utility classes. The consistency in its padding and margins ease the spacing
decisions by granulating the available sizes to fewer possible steps. Tailwinds’
colour definitions are also deliberate, providing a sizeable palette that was hand-
picked and tested 11.

5.7 Schema queries
A collection of TS modules handles the querying and response validation. The
actual SPARQL queries are present in src/stores/sparql.ts. As explained in
requirement R5, the queries are rather simple and are designed to extract suffi-
cient information without overwhelming the endpoint. The query results should
hold enough information to add to the visualisation as soon as they are complete
without having to wait for other responses. This means that a pipeline of sorts
is created. Once each request resolves, it is handled by a defined handler class in
the QueryQueue 5.7.1. The initial query is 5.7, which discovers classes present in
the endpoint.

Once the classes have been discovered, a series of queries can be run to find
their literal attributes and edges between other existing classes. Query 5.8 is run
for each pair of currently known classes.

11https://tailwindcss.com/docs/customizing-colors

35

https://tailwindcss.com/docs/customizing-colors

1 SELECT DISTINCT ? property (COUNT (*) AS ? instanceCount)
2 WHERE {
3 ? class1 a <${ class1URI }> .
4 ? class2 a <${ class2URI }> .
5 ? class1 ? property ? class2 .
6 }

Listing 5.8: Query finding edges between classes

1 SELECT DISTINCT ? attribute ?type (COUNT (1) AS ? instanceCount)
2 WHERE {
3 ? instance
4 a <${ classURI }> ;
5 ? attribute ? targetLiteral
6 FILTER isLiteral (? targetLiteral)
7 BIND(datatype (? targetLiteral) AS ?type)
8 }
9 ORDER BY DESC (? instanceCount)

Listing 5.9: Query discovering a class’ attributes

Simultaneously, a query to discover the new class’ attributes is run. This
finds a list of its literal attributes. The attributes are retrieved alongside their
types and counts. The types are stored for later use in the export, where they
are converted from type IRIs to target environment types.

All queries are executed using the fetch API12. The query is URI-encoded and
inserted as a GET parameter. A JSON format GET parameter is also added to
the fetched URL. Endpoints that do not provide JSON results or do not answer
GET requests are currently not supported.

5.7.1 QueryQueue
This module handles the querying capabilities that are used to populate the data
stores (5.8.1). It consists of a queue of queries that the application requested
and executes them in order. The queue employs a lock mechanism to ensure
it does not run queries simultaneously. This is used in order to not overwhelm
the endpoint with hundreds of queries, which could result in the requests being
denied or filtered.

The queued queries must provide the query string, a callback and a validator.
Validators are defined using Zod (5.2.6)w and incoming responses are validated
immediately. Once valid, they are passed to the callback function.

QueryQueue implements a clearing mechanism, which means that if query
execution should stop, the queue is cleared and queries run before the clear are
ignored should the return a response later. This is important for changing end-
points, as showing query results from the last point would lead to confusion.

12https://developer.mozilla.org/en-US/docs/Web/API/Fetch API

36

5.8 Stores
State storage is managed by Pinia (5.2.2). Two main Pinia stores are present,
accompanied by functional and utility modules.

5.8.1 EndpointStore
The endpointStore contains all information known about the endpoint. Primarily,
that is the discovered nodes and edges of the endpoint. The data structures are
defined to directly contain the query response objects, as parsed and validated
by Zod. This data is used to display the edges and properties in node 5.5.2
and export 5.5.3 modal dialogues. The actual visualisation does not model these
edges, as that would cause a render calculation for each present edge. Instead, a
unique set of edges is maintained in VisStateStore5.8.2.

This store also includes query callback functions. Once the QueryQueue re-
turns a valid response, the callback functions place the response into the appro-
priate data structure within the store.

5.8.2 VisStateStore
The VisStateStore holds information about the current state of the visualisation.
It is closer to the user than endpointStore. As mentioned, the edges are used for
visualisation, instead of all existing edges for performance reasons. When the
user selects classes and edges they want to include in the export, those selections
are tracked and handled in this store. The export takes this information from
this store when required.

5.9 Data model
This section describes the shape of the data that is stored within the stores. The
most important types are StoreNode and StoreEdge, which are defined in src/stores
/validators.ts alongside the Zod validators for their constituent parts. The data
that are received from the endpoint are passed to the validators to ensure their
shape is correct. Once validated, Zod also provides a TypeScript type definition
equivalent to the validation shape. This is used to conduct the parsing and
validation steps at once. The parsed data is therefore stored in the same shape
that it arrives in.

Observe Listing 5.10 to see the StoreNode type. The incoming data is stored
in the data field of the node. z.infer<...> extracts the TypeScript type from
the Zod parser definition. An alternative is that the data are not received as an
endpoint response, but are imported from text (as described in section 4.2). In
such cases, some of the fields expected by the Zod shapes are filled artificially
from the import.

The StoreNode is being directly modelled by the Flow component. This is
to avoid the need to manage a separate copy of the objects. That means that
datatypes required by Flow must also be present. This creates the position, id
and type fields. The IRI is used as an id, but for edges, an artificial id is created
as a combination of source, id and target IRIs. Those three IRIs are also stored

37

1 type StoreNode = {
2 position : {
3 x: number
4 y: number
5 //...
6 }
7 id: string
8 type: string
9 data: {

10 node: z.infer < typeof NodeBinding >
11 labels : z.infer < typeof Labels >
12 attributes : z.infer < typeof AttributeBindingArr >
13 }
14 }

Listing 5.10: StoreNode type definition

separately on the Edge objects for easy access, as they are required often. Note
that at runtime, Flow will create more fields on these objects.

5.10 Assets
The applications’ assets, available in src/assets hold font files. Their use is man-
aged by Tailwind in the font families definitions found in tailwind.config.js.
Fonts were downloaded from open source font repositories https://fontesk.com
and https://fonts.google.com/.

5.11 Tests
Unit tests are included with the application. Tests are present for parts of the
core functionality but complete coverage was not pursued. Tests were created
using Vitest13, which is the native testing framework for Vite. Tests are present
in the src/__tests__ folder, with each test file describing a module. Tests can be
run using the npm run test:unit npm script.

5.12 Points of Extension
TypeSPARQ is designed in a way that expects future extension. The main points
of extension that are considered are explained in this section.

5.12.1 Export formats
In order to implement a new export format, a new ExportDef must be registered in
the registeredExports array in src/components/ExportOptions.vue. The definition
(shown in Listing 5.11) should be implemented in order to provide all exporting

13https://vitest.dev/

38

https://fontesk.com
https://fonts.google.com/

1 interface Exporter {
2 (nodes: StoreNode [], selectedAttributes : { [key: string]:

string [] }): string
3 }
4

5 type ExportDef = {
6 label: string
7 exporter : Exporter
8 prismClass : string
9 prettierConfig : Object

10 }

Listing 5.11: ExportDef type definition

functionality. Most importantly, the Exporter function will be handed the con-
tents of VisStateStore, namely the user-selected nodes and attributes they wish
to export.

Should you wish to make use of PrismJS syntax highlighting functionality, set
the PrismClass field to a supported Prism language14. This is optional, an empty
string may be used instead. In case a new language is used, the Prism style for
the language will need to be imported as well. Do this in the ExportModal script.

To use Prettier formatting, provide a configuration object. Refer to the Pret-
tier documentation15 or use the TypeScript hints for more information. If you
wish to skip the formatting step, use a falsy value.

The new implementation should preferably be provided as a standalone file.
The exporter function should be imported into ExportOptions and used only in
registeredExports.

5.12.2 Import format
To support a new import format, a parser implementation must be provided and
subsequently registered in the ImportModal component.

The parser is a function that will be called and provided with the user input.
The endpointStore provides the handleParsedImport function to populate itself with
StoreNode and StoreEdge instances. This function accepts an object that satisfies
the SchemaType type. Your parser implementation must create this SchemaType
data object. endpointStore.handleParsedImport(data) will be called on your parsed
input. Should your parser encounter an error, simply throw an Error with your
message and it will be displayed to the user.

To register your parser, import it into the ImportModal and create an ImportDef
object. Place it in the importOptions object alongside the schema string. The field
you choose will be used as the button label.

5.12.3 Visualisations
Thanks to the design of the data model, adding a new visualisation does not
require any complicated handling of the data. All fetching and handling is done
by the stores and components contained within VisSidebar.

14https://prismjs.com/#supported-languages
15https://prettier.io/docs/en/api.html#prettierformatsource-options

39

https://prismjs.com/#supported-languages
https://prettier.io/docs/en/api.html#prettierformatsource-options

1 endpointStore .nodes. forEach ((n) => {
2 n. position .x = 0
3 n. position .y = 0
4 })

Listing 5.12: Layout example

First, create a new view and place it in src/views. Register it to the router in
src/router/index.ts and add it to the links array in src/components/PageHeader.
vue. When implementing the visualisation, make sure to take the following steps

Include the VisSidebar component The VisSidebar component provides the
users with ways to control the state of the application. It also contains the
importing and exporting functionality

Model endpointStore data The data store, located in src/stores/endpoint.ts
contains all data extracted from the endpoints.

Update visStateStore This store holds the state of the visualisation. When
users select and deselect nodes or attributes, they should be updated here. The
exporter read the user selections from here.

5.12.4 Flow layouts
Providing a new layout to the existing view requires defining the layouting func-
tion in src/stores/layout.ts. The function will be called when the user clicks the
layout’s button, which is created automatically from the layoutTypes dictionary.
The layout definition must provide the function, a label and an optional tooltip.
Your function is expected to mutate the position field of nodes, as the example
in Listing 5.12.

40

6. Administrator documentation
This chapter describes how to set up the environment, how to build the applica-
tion and how to host it. Everything was tested on a machine, running Windows 10
Home 64-bit using Node v18.12.1 and NPM 9.5.1. Since the application runs on
the client, a server capable of hosting static content is sufficient. The source code
of the application is available at https://github.com/Jkuzz/sparql-explorer.

6.1 Prerequisites
• Node.JS version 18+

• NPM version 9+

Node is available for download at its website1 and should include NPM. Make
sure they are both installed correctly by running node --version, npm --version.

6.2 Getting started
Once your environment is set up correctly, take the following steps to install the
dependencies of the application.

1. Create an empty folder and navigate to it

2. Run ’git clone https://github.com/Jkuzz/sparql-explorer.git’ .

3. Run ’npm ci’ This will find the required dependencies as defined in package
.json and download them to the node_modules folder.

6.3 Build
Once all prerequisites are installed, the application must be built. All build
scripts are defined in package.json under "scripts". They can be run using npm
by executing npm run [script]. Primarily the following are present:

npm run build performs a TypeScript type check and then builds the application
for production. The build output will be placed in the ./dist folder.

npm run dev will host a local development server using Vite. This is used during
development, as it utilises Vite’s HMR to speed up developer feedback.

npm run preview will host a local server, which will contain the built application.
This can be used to preview what the live, built application will look like.

1https://nodejs.org/en/download

41

https://github.com/Jkuzz/sparql-explorer
https://nodejs.org/en/download

6.4 Hosting
In order to host the built application, provide the static content present in the
./dist folder using your static hosting solution of choice.

At the time of writing, a demo of TypeSPARQ is available on GitHub us-
ing GitHub Pages2. The hosted version is rebuilt and redeployed automatically
whenever the master branch of the repository is updated. This is performed via
a GitHub Actions workflow, which is located in ./.github/workflows/deploy.yml.

2https://pages.github.com/

42

7. User documentation
This section serves as the user documentation for TypeSPARQ. It provides guid-
ance on how to use the web tool and its exporting and importing features.

7.1 Using the web application
To begin using the schema extraction tool, navigate to the Schema tab. To begin
exploring an endpoint, press the ”Select endpoint” button, shown in Figure 7.1 as
1. Insert your endpoint’s URL into the dialogue window and start the extraction
by pressing ”Extract”. Make sure that the URL points to the SPARQL endpoint
directly.

Once an endpoint is selected for extraction, schema extraction queries will
be issued. You can track their progress in the sidebar, as shown in Figure 7.1
number 2. As the queries resolve, their results will be immediately added to the
visualisation. The visualised nodes can be rearranged by dragging and zooming is
performed using the mouse wheel. The nodes can be placed in one of the available
layouts by expanding the layout slider on the top right and selecting a layout.

Figure 7.1: TypeSPARQ user interface

To see details about a class, click any of the class nodes to display a modal
dialogue window. The dialogue window shown in Figure 7.2 shows information
about the class. Here, the class’ attributes and incoming and outgoing edges can
be seen, alongside their types and occurrences. The type of relationship displayed
can be changed using the tabs marked as 3. Edges can be filtered to only show
the classes that are also selected using 4. The URIs can be also filtered via a
substring search located in 2. ”Occurrence” means how many instances of the
attribute/edge are present on average on an instance of the class. For example,
an occurrence of 120% says that an average instance of the class has 1.2 instances
of the attribute.

The node modal allows you to select the class using the component marked
as 1, at which point it will show up in the sidebar and be included in the schema

43

export. Similarly, attributes and edges can be selected as well.

Figure 7.2: TypeSPARQ node detail modal window

More classes beyond the initial 10 can be queried. To do this, click the ”More
classes” button at the bottom of the sidebar and select the number of classes.
Be mindful of visualising a large number of classes, as the number of queries for
edges between classes grows exponentially.

To import a schema into the application, click the ”Import” button at the
bottom of the sidebar and select an import format in the displayed dialogue
window. You can view the schema definition by clicking the ”Schema” button
on the bottom left. The input text is validated against this schema once the
”Import” button in pressed. If valid, the schema will be immediately available
in the visualisation. If the parser refuses the schema, an error will be displayed.
Be mindful when importing a schema, since semantic errors will likely not be
reported. Watch out for issues such as defining edges between non-existent node
IRIs or duplicate class IRIs.

To export the selected schema parts, click the ”Export” button at the bottom
of the sidebar. An export dialogue will open, presenting a selection of possible
export formats. Selecting one will generate the corresponding output and present
it. Here, the schema can be copied or downloaded as a file.

7.2 Using the default exported schema
The default schema export provides an LDKit (LDKit Linked Data query toolkit
for TypeScript developers 2023) schema definition. This section briefly illustrates
how to start using it. For more in-depth information, see ldkit.io and read the
documentation.

To start using the LDKit export, you will need a JavaScript runtime, a bundler
and a package manager. As an example, I suggest NodeJS, NPM and Vite (de-
scribed further in section 5.2). Install the typescript transpiler and LDKit. In
the example setup, this can be performed by running commands shown in Listing
7.1.

1 npm i typescript -D
2 npm i ldkit

Listing 7.1: Installing dependency packages

44

ldkit.io

Once your environment is ready, add the file generated by TypeSPARQ into
your project and begin using LDKit to access the SPARQL endpoint. See the
Getting Started section of LDKit’s documentation for simple working examples.

45

8. Evaluation
The viability of this approach was evaluated by running a series of scripts and
testing responses of unknown endpoints. Their results are evaluated in this sec-
tion. For information about unit tests, see Section 5.11.

8.1 Queries evaluation
The queries used to extract the schema information were tested on endpoints to
verify their effectiveness. A list1 of publicly available SPARQL endpoints was
used to determine the endpoints that will be tested. It listed 90 unique and
supposedly available endpoints.

A testing script was used that ran the class extraction query and recorded the
response or any errors. The source code for it can be found at https://github.
com/Jkuzz/sparql-queries-testing. The queries were given a timeout of 120
seconds. The results of the testing can be seen in Table 8.1. The endpoints were
queried for their 10 most common classes and subsequently for the edges between
the two most common classes. The queries used are identical to those described
in Section 5.7. The measured states are described below.

No response is likely caused by the 120-second timeout. This means that the
endpoint was either too slow or contained too many classes to answer the query
in the given time. Since these were not tested further, it is possible that given
more time, it would work, but no such guarantee can be made.

Invalid response format seems to be caused by endpoints that do not obey
our queried URL parameters. The query URL contains the request format in the
following way: &format=application%2Fsparql-results%2Bjson. These 10 endpoints
responded with variations of HTML or XML responses. This is a possible point
of improvement to improve the usability of the application. Unfortunately, it is
not addressed at this moment due to time limitations.

Error 40X 3 Endpoints returned 400 Bad Request and 1 returned
406 Not Acceptable. This suggests a failure on the sent fetch request. However,
upon manual inspection of all these cases, it turns out that the 406 is not acces-
sible at all. Of the three 400s, two return errors are shown in Listing 8.1. The
last one responds to the query correctly, suggesting it does not provide an API
and its only interface is the query input. These are regarded as failures since the
schema extraction could be performed given additional development. Given the
number of these cases, this is not addressed.

Error 50X 3 Endpoints returning a 503 Service Unavailable implies that reality
has changed since recording the initial endpoint dataset and these are disregarded.
The remaining errors are 2 504 Gateway Timeout and 5 500 Internal Server Error.

1https://skoda.projekty.ms.mff.cuni.cz/horizon/data-endpoint/
sparql-2023-04-03.json

46

https://github.com/Jkuzz/sparql-queries-testing
https://github.com/Jkuzz/sparql-queries-testing
https://skoda.projekty.ms.mff.cuni.cz/horizon/data-endpoint/sparql-2023-04-03.json
https://skoda.projekty.ms.mff.cuni.cz/horizon/data-endpoint/sparql-2023-04-03.json

1 Error: You have an error in your SQL syntax ; check the manual
that corresponds to your MySQL server version for the right
syntax to use near ’*) AS ‘instanceCount ‘

Listing 8.1: 400 responses error message

These cases are not regarded as a failure of the used queries, because presumably,
any schema discovery query would have failed on these endpoints anyway.

OK These queries passed both query tests successfully. Interestingly, an outlier
containing only one class was present, so the edge query could not be tested.

In summary, of the 86 applicable tested endpoints, 10 failed by their fault, 14
failed by our fault and the remaining 60 succeeded. Therefore, the success rate
of queries used by TypeSPARQ can be evaluated at 81%.

Status Number Percentage
Total 90 100%
No response 3 3.3%
Invalid response for-
mat 10 11.1%

Error 40X 4 4.4%
503 Not Available 3 3.3%
Other 50X 7 7.7%
OK 63 70%

Table 8.1: Query evaluation results

8.1.1 Endpoint Evaluation
Since a volume of data was extracted from various endpoints, it would be amiss
to not explore them. This section provides a brief exploration of the gathered
data.

First, Figure 8.1 shows the frequencies and volumes of different classes. This
only includes the top 10 most frequent classes in each endpoint. The explored
endpoints appear very diverse in their top classes. Of the 63 queried endpoints
a total of 372 different classes were present and 247 classes were only present in
a single endpoint. Out of all discovered classes, only 4 classes were present in at
least 10 endpoints and 12 classes were present in at least 5 endpoints. Table 8.2
shows the most ubiquitous classes.

Unsurprisingly, the most common classes are very generic. Interestingly, many
of these common classes are equivalent, such as the Person and Agent classes.
Some endpoints included all three Person classes with similar instance counts in
their top 10, whilst others used only one. This suggests that sometimes, Type-
SPARQ’s schema extraction process could produce misleading results if objects
in the store are marked with multiple equivalent classes. Using ontologies dur-
ing the schema extraction process would allow us to merge these classes using
equivalence definitions.

47

Figure 8.1: Number of endpoints containing different classes

Class IRI #endpoints
http://www.w3.org/2004/02/skos/core#Concept 16
http://www.w3.org/2002/07/owl#Thing 14
http://xmlns.com/foaf/0.1/Document 13
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property 10
http://dbpedia.org/ontology/Image 8
http://purl.org/linked-data/cube#Observation 7
http://schema.org/Person 7
http://xmlns.com/foaf/0.1/Person 7
http://dbpedia.org/ontology/Person 7
http://xmlns.com/foaf/0.1/Agent 6
http://dbpedia.org/ontology/Agent 5
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#Agent 5

Table 8.2: Most commonly found classes in the top 10

Figure 8.2 shows the occurrence of classes and the total number of instances. It
is noteworthy that there are classes present in very few endpoints, whose instance
counts surpass those more common classes. Table 8.3 shows the classes with
the most instances among the queried endpoints. Clearly, spatial databases and
data cube observations generate the greatest volume of data points, but such
endpoints appear to be rare. TypeSPARQ’s schema extraction process is capable
of extracting even at these volumes thanks to relying on aggregation queries.

Figure 8.3 shows the instance counts of different namespaces. A total of 130
different namespaces were present among the top 10 classes of each endpoint.
This is another measure of the massive diversity of endpoint contents. Every
endpoint on average introduces at least two new namespaces to the potential
data consumers. This combines with the previous view to support the following
observation. Either SPARQL endpoints are extremely specialised, each requiring
custom class definitions to support the stored data, or data stored in SPARQL

48

Figure 8.2: Comparison of frequency and volume of classes

Class IRI Instances Endpoints
http://geovocab.org/geometry#Geometr 454492113 3
http://geovocab.org/spatial#Feature 82127836 3
http://xmlns.com/foaf/0.1/Document 72519180 13
http://purl.org/linked-data/cube#Observation 69418092 7
http://schema.org/GeoCoordinates 59023338 2
http://www.opengis.net/ont/gml#Point 59023338 2
http://www.opengis.net/ont/geosparql#Geometry 58869036 2
http://www.w3.org/2002/07/owl#Thing 57230656 14
http://linkedgeodata.org/meta/Node 52703808 2
http://dati.camera.it/ocd/voto 45157643 1

Table 8.3: Classes with the most instances

endpoints fail to make use of foreign namespaces’ classes and create their own
instead.

These findings emphasise the heterogeneity of data stored within publicly
available SPARQL endpoints. It suggests that endpoints tend to be very spe-
cialised and use a custom schema for each endpoint. This level of variety shows
why it is very difficult to approach an endpoint and why tools like TypeSPARQ
or similar are needed by developers.

49

Figure 8.3: Counts of namespace member instances in endpoints

50

9. Conclusion
In this thesis, we presented TypeSPARQ, a web application for exploring and vi-
sualising a SPARQL endpoint’s schema. TypeSPARQ is an open-source project
designed to be extensible and inter-operable with other services and libraries.
TypeSPARQ allows users and developers unfamiliar with SPARQL to view the
contents of the endpoint. Further, TypeSPARQ provides code generation inte-
grated with LDKit that creates a TypeScript fetching API to access the selected
subset of the endpoint.

This thesis explained the concepts of RDF and SPARQL. A multitude of exist-
ing approaches to schema extraction were explored and summarised. Iterating on
the existing solutions, requirements for an application for extracting the schema
of SPARQL endpoints were outlined. TypeSPARQ, the presented solution ful-
fils the outlined requirements. TypeSPARQ not only provides a standard visual
presentation of the endpoint’s schema but specialises in exporting the schema
in various easy-to-use formats. TypeSPARQ also accounts for the occurrences
of properties of classes. By these metrics, all requirements for this thesis were
fulfilled.

TypeSPARQ can be extended to work with any kind of schema extraction
model by providing a schema import option. The schema export can also be
extended to provide further functionality. These features ensure TypeSPARQ’s
utility beyond the initial version. Developing more of these options is a point
of future work. Considering not all RDF data are stored in SPARQL endpoints,
extracting a visualising from an RDF dump.

Further future work includes integrating TypeSPARQ with other SPARQL li-
braries and generating starter code for other languages beyond TypeScript. This
could involve platform-specific libraries similar to LDKit to provide static typ-
ing, or alternatively generating SPARQL queries to use with generic SPARQL
libraries.

In exploring the endpoints using the schema extraction method, we found the
method to work as designed in a majority of cases. Using simple aggregation
queries seems to be a fitting solution for schema extraction from unknown end-
points with user experience in mind. Furthermore, we concluded that the variety
of data contained within the publicly available endpoint is vast. This fabricates
the need for software and approaches like the one presented in this thesis and the
need for their further development.

51

List of Abbreviations

Abbreviation Definition
RDF Resource Description Framework
RDFS RDF Schema
LD Linked data
W3C World Wide Web Consortium
SPARQL SPARQL Protocol and RDF Query Language
OWL Web Ontology Language
JSON JavaScript Object Notation
SQL Structured Query Language
HTTP Hypertext Transfer Protocol
API Application programming interface
EDG Enterprise Data Governance
SHACL Shapes Constraint Language
UML Unified modeling language
IRI Internationalised Resource Identifier
URI Uniform Resource Identifier
URL Uniform Resource Locator
HTML HyperText Markup Language
CSS Cascading Style Sheets
JS JavaScript
TS TypeScript
DOM Document Object Model
SPA Single Page Application
SEO Search Engine Optimisation
SSR Server-side Rendering
NPM Node Package Manager
HMR Hot Module Replacement
SFC Single-File Components

Table 9.1: List of abbreviations

52

References
Zviedris, Martins and Guntis Barzdins (2011). “ViziQuer: A Tool to Explore

and Query SPARQL Endpoints”. In: The Semanic Web: Research and Appli-
cations. Ed. by Grigoris Antoniou et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 441–445. isbn: 978-3-642-21064-8.

Fischer, Lars and Stefan Hanenberg (Oct. 2015). “An Empirical Investigation of
the Effects of Type Systems and Code Completion on API Usability Using
TypeScript and JavaScript in MS Visual Studio”. In: SIGPLAN Not. 51.2,
pp. 154–167. issn: 0362-1340. doi: 10.1145/2936313.2816720. url: https:
//doi.org/10.1145/2936313.2816720.

Dudáš, Marek, Vojtěch Svátek, and Jindřich Mynarz (2016). “Dataset Summary
Visualization with LODSight”. In: url: https : / / link . springer . com /
chapter/10.1007/978-3-319-25639-9_7 (visited on 07/04/2022).

Florenzano, Fernando et al. (2016). “A Visual Aide for Understanding Endpoint
Data”. In: url: http://ceur-ws.org/Vol-1704/paper9.pdf (visited on
07/06/2022).

Weise, Marc, Steffen Lohmann, and Florian Haag (2016). “LD-VOWL: Extracting
and Visualizing Schema Information for Linked Data Endpoints”. In: Proceed-
ings of the 2nd International Workshop on Visualization and Interaction for
Ontologies and Linked Data (VOILA 2016). Vol. 1704. CEUR-WS. CEUR-
WS.org, pp. 120–127. url: http://ceur-ws.org/Vol-1704/paper11.pdf.

Almeida, Fernando and José Monteiro (2017). “The Role of Responsive Design
in Web Development”. In: 14 No. 2, pp. 48–65. url: https://www.research
gate.net/profile/Fernando-Almeida-10/publication/324131848_The_
role_of_responsive_design_in_web_development/links/5aca790ea6fd
cc8bfc84eea8/The-role-of-responsive-design-in-web-development.
pdf (visited on 07/19/2022).

Anutariya, Chutiporn and Reshma Dangol (2018). “VizLOD: Schema Extraction
And Visualization Of Linked Open Data”. In: 2018 15th International Joint
Conference on Computer Science and Software Engineering (JCSSE), pp. 1–
6. doi: 10.1109/JCSSE.2018.8457325.

Taelman, Ruben, Miel Vander Sande, and Ruben Verborgh (2019). “Bridges be-
tween GraphQL and RDF”. In: url: https://www.w3.org/Data/events/
data-ws-2019/assets/position/Ruben%20Taelman.pdf.

Werbrouck, Jeroen et al. (2019). “Semantic query languages for knowledge-based
web services in a construction context”. In: url: https://www.research
gate.net/publication/334263376_Semantic_query_languages_for_
knowledge-based_web_services_in_a_construction_context.

Gleim, Lars et al. (2020). “Automatic Bootstrapping of GraphQL Endpoints for
RDF Triple Stores”. In: url: http://ceur-ws.org/Vol-2722/quweda2020-
paper-2.pdf (visited on 06/27/2022).

Gleim, Lars Christoph et al. (2020). “Enabling ad-hoc reuse of private data reposi-
tories through schema extraction”. In: Journal of Biomedical Semantics. url:
https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-
020-00223-z (visited on 06/26/2022).

53

https://doi.org/10.1145/2936313.2816720
https://doi.org/10.1145/2936313.2816720
https://doi.org/10.1145/2936313.2816720
https://link.springer.com/chapter/10.1007/978-3-319-25639-9_7
https://link.springer.com/chapter/10.1007/978-3-319-25639-9_7
http://ceur-ws.org/Vol-1704/paper9.pdf
http://ceur-ws.org/Vol-1704/paper11.pdf
https://www.researchgate.net/profile/Fernando-Almeida-10/publication/324131848_The_role_of_responsive_design_in_web_development/links/5aca790ea6fdcc8bfc84eea8/The-role-of-responsive-design-in-web-development.pdf
https://www.researchgate.net/profile/Fernando-Almeida-10/publication/324131848_The_role_of_responsive_design_in_web_development/links/5aca790ea6fdcc8bfc84eea8/The-role-of-responsive-design-in-web-development.pdf
https://www.researchgate.net/profile/Fernando-Almeida-10/publication/324131848_The_role_of_responsive_design_in_web_development/links/5aca790ea6fdcc8bfc84eea8/The-role-of-responsive-design-in-web-development.pdf
https://www.researchgate.net/profile/Fernando-Almeida-10/publication/324131848_The_role_of_responsive_design_in_web_development/links/5aca790ea6fdcc8bfc84eea8/The-role-of-responsive-design-in-web-development.pdf
https://www.researchgate.net/profile/Fernando-Almeida-10/publication/324131848_The_role_of_responsive_design_in_web_development/links/5aca790ea6fdcc8bfc84eea8/The-role-of-responsive-design-in-web-development.pdf
https://doi.org/10.1109/JCSSE.2018.8457325
https://www.w3.org/Data/events/data-ws-2019/assets/position/Ruben%20Taelman.pdf
https://www.w3.org/Data/events/data-ws-2019/assets/position/Ruben%20Taelman.pdf
https://www.researchgate.net/publication/334263376_Semantic_query_languages_for_knowledge-based_web_services_in_a_construction_context
https://www.researchgate.net/publication/334263376_Semantic_query_languages_for_knowledge-based_web_services_in_a_construction_context
https://www.researchgate.net/publication/334263376_Semantic_query_languages_for_knowledge-based_web_services_in_a_construction_context
http://ceur-ws.org/Vol-2722/quweda2020-paper-2.pdf
http://ceur-ws.org/Vol-2722/quweda2020-paper-2.pdf
https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-020-00223-z
https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-020-00223-z

Announcing TypeScript 1.0 (2023). url: https://devblogs.microsoft.com/
typescript/announcing-typescript-1-0/ (visited on 03/20/2023).

Code using GraphQL (2023). url: https://graphql.org/code/ (visited on
03/25/2023).

Git Version Control System (2022). url: https://git-scm.com/ (visited on
08/07/2022).

Gleim, Lars et al. (2022). UltraGraphQL Translation Phase. url: https://git.
rwth-aachen.de/i5/ultragraphql/-/blob/master/docs/translation_
phase.md (visited on 07/03/2022).

Group, Ontology Engineering (2022). Linked Open Vocabularies. url: https:
//lov.linkeddata.es/dataset/lov/ (visited on 06/27/2022).

HTML Living Standard (2022). url: https://html.spec.whatwg.org/multip
age (visited on 08/07/2022).

International, ECMA (2022). ECMAScript® programming language standard. url:
https://www.ecma-international.org/technical-committees/tc39/
(visited on 08/07/2022).

Introducing JSON (2022). url: https://www.json.org/json-en.html (visited
on 08/07/2022).

LDKit Linked Data query toolkit for TypeScript developers (2023). url: https:
//ldkit.io/ (visited on 03/20/2023).

Ltd., Semantic Integration (2022). HyperGraphQL. url: https://www.hypergr
aphql.org/tutorial/ (visited on 06/24/2022).

Simplod - Visualization tool for simplifying access to Linked Data. (2023). url:
https://jaresan.github.io/simplod/ (visited on 04/16/2023).

SPARQLess (2023). url: https://mff-uk.github.io/sparqless/ (visited on
04/10/2023).

Taelman, Ruben, Miel Vander Sande, and Ruben Verborgh (n.d.). GraphQL-LD:
Linked Data Querying with GraphQL. url: https://biblio.ugent.be/
publication/8578324/file/8579408.pdf.

TopQuadrant, Inc. (2022). Querying TopBraid EDG with GraphQL. url: https:
//www.topquadrant.com/querying-topbraid-edg-with-graphql/ (visited
on 06/24/2022).

Union, Stardog (2022). Stardog GraphQL Documentation. url: https://docs.
stardog.com/query-stardog/graphql (visited on 06/24/2022).

Usage statistics of JavaScript as client-side programming language on websites
(2022). url: https://w3techs.com/technologies/details/cp-javascrip
t/ (visited on 08/07/2022).

Vite (2023). url: https://vitejs.dev/ (visited on 03/23/2023).
VueJS (2023). url: https://vuejs.org/ (visited on 03/23/2023).
W3C (2022a). A JSON-based Serialization for Linked Data. url: https://www.

w3.org/TR/json-ld/ (visited on 08/09/2022).
— (2022b). A line-based syntax for an RDF graph. url: https://www.w3.org/

TR/n-triples/ (visited on 08/09/2022).
— (2022c). OWL Web Ontology Language Overview. url: https://www.w3.

org/TR/owl-features/ (visited on 06/19/2022).
— (2022d). RDF 1.1 Concepts and Abstract Syntax. url: https://www.w3.org/

TR/rdf11-concepts/ (visited on 06/18/2022).

54

https://devblogs.microsoft.com/typescript/announcing-typescript-1-0/
https://devblogs.microsoft.com/typescript/announcing-typescript-1-0/
https://graphql.org/code/
https://git-scm.com/
https://git.rwth-aachen.de/i5/ultragraphql/-/blob/master/docs/translation_phase.md
https://git.rwth-aachen.de/i5/ultragraphql/-/blob/master/docs/translation_phase.md
https://git.rwth-aachen.de/i5/ultragraphql/-/blob/master/docs/translation_phase.md
https://lov.linkeddata.es/dataset/lov/
https://lov.linkeddata.es/dataset/lov/
https://html.spec.whatwg.org/multipage
https://html.spec.whatwg.org/multipage
https://www.ecma-international.org/technical-committees/tc39/
https://www.json.org/json-en.html
https://ldkit.io/
https://ldkit.io/
https://www.hypergraphql.org/tutorial/
https://www.hypergraphql.org/tutorial/
https://jaresan.github.io/simplod/
https://mff-uk.github.io/sparqless/
https://biblio.ugent.be/publication/8578324/file/8579408.pdf
https://biblio.ugent.be/publication/8578324/file/8579408.pdf
https://www.topquadrant.com/querying-topbraid-edg-with-graphql/
https://www.topquadrant.com/querying-topbraid-edg-with-graphql/
https://docs.stardog.com/query-stardog/graphql
https://docs.stardog.com/query-stardog/graphql
https://w3techs.com/technologies/details/cp-javascript/
https://w3techs.com/technologies/details/cp-javascript/
https://vitejs.dev/
https://vuejs.org/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

W3C (2022e). RDF Schema 1.1. url: https://www.w3.org/TR/rdf-schema/
(visited on 06/18/2022).

— (2022f). Shapes Constraint Language (SHACL). url: https://www.w3.org/
TR/shacl/ (visited on 06/19/2022).

— (2022g). SPARQL 1.1 Overview. url: https://www.w3.org/TR/sparql11-
overview/ (visited on 06/18/2022).

— (2022h). Terse RDF Triple Language. url: https://www.w3.org/TR/turtl
e/ (visited on 08/09/2022).

55

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/

	Introduction
	Resource Description Framework
	SPARQL Protocol and RDF Query Language

	Motivation
	Schema extraction from RDF data

	Contribution

	Related Work
	Enabling ad-hoc reuse of private data repositories through schema extraction
	HyperGraphQL
	TopBraid
	Stardog
	GraphQL-LD
	UltraGraphQL
	ViziQuer
	LODSight
	A Visual Aide for Understanding Endpoint Data
	LD-VOWL
	VizLOD
	SPARQLess
	Simplod
	Summary

	Requirements
	Non-Functional Requirements
	Functional Requirements
	Application design
	Non-functional requirements (R1, R2)
	Schema visualisation (R3)
	Schema extraction (R4)
	Querying rate (R5)

	External integration
	LDKit
	Schema Import
	Schema Export

	Developer documentation
	Technologies and Frameworks
	Single Page Application
	Technologies used
	NPM
	TypeScript
	Vite
	Vue.JS

	Dependencies
	Tailwind CSS
	Pinia
	Vue Flow
	Prism
	Prettier
	Zod

	Project Structure
	Vue Router
	Components
	CustomNode
	NodeModal
	ExportModal
	ImportModal

	Visual Design
	Schema queries
	QueryQueue

	Stores
	EndpointStore
	VisStateStore

	Data model
	Assets
	Tests
	Points of Extension
	Export formats
	Import format
	Visualisations
	Flow layouts

	Administrator documentation
	Prerequisites
	Getting started
	Build
	Hosting

	User documentation
	Using the web application
	Using the default exported schema

	Evaluation
	Queries evaluation
	Endpoint Evaluation

	Conclusion
	List of Abbreviations
	References

