
BACHELOR THESIS

Milan Veselý

Virtual file system in user space

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Jakub Yaghob, Ph.D.

Study programme: Computer Science

Study branch: Programming and software
development

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

To my family, thank you for feeding me and keeping me alive during this thesis
writing process. To my supervisor, RNDr. Jakub Yaghob, Ph.D., thank you for
guidance, patience, and expertise throughout the entire thesis process. And to my
roommates, thank you for not driving me insane with your noisy shenanigans
while I was trying to work. This thesis is dedicated to all of you for making this
experience more bearable and even enjoyable at times.

ii

Title: Virtual file system in user space

Author: Milan Veselý

Department: Department of Software Engineering

Supervisor: RNDr. Jakub Yaghob, Ph.D., Department of Software Engineering

Abstract: This thesis presents a custom Virtual File System (VFS) built with
C++, using a custom wrapper for the FUSE library. The VFS is modular in design,
facilitating easy extension with new features. Two prototype modules for ver-
sioning and encryption are also included, each accompanied by a command-line
interface tool for control, such as restoring versions or encrypting files. Thanks
to its password/key protection and encryption capabilities, the VFS enhances file
management, enabling secure storage and retrieval of sensitive data. In addition,
built-in versioning functionality allows users to access and restore previous file
versions with ease. Once the VFS is mounted, it can be accessed in the same
standard way as any other file system, making it user-friendly and accessible.

Keywords: VFS user space versioning encryption

iii

Contents

Introduction 3

1 Theoretical overview 5
1.1 Understanding File Systems . 5
1.2 Virtual File Systems . 6

1.2.1 VFS Operations . 6
1.3 Encryption . 7

1.3.1 XChaCha20-Poly1305 . 7
1.4 Versioning . 8

2 Analysis 9
2.1 Analysis of Alternatives . 9

2.1.1 Drawbacks of higher-level applications 11
2.2 Necessary libraries . 11

2.2.1 FUSE . 12
2.2.2 Encryption . 13
2.2.3 Testing . 14
2.2.4 Options parsing . 14
2.2.5 Space for improvement 14

3 Design and Architecture 15
3.1 Using FUSE in C++ . 15
3.2 Architecture . 16

3.2.1 Modularity . 16
3.2.2 Access to VFS features 18
3.2.3 Architectural overview 19

4 Preparation 21
4.1 Cross-platform build System . 21

4.1.1 Platform-Specific Challenges 21
4.2 Gitlab CI . 22

1

4.2.1 Testing . 22
4.3 Docker . 23

5 Implementation 24
5.1 Essential FUSE Operations . 24

5.1.1 Operations for the Base VFS 25
5.2 Encryption . 25
5.3 Versioning . 26

6 Evaluation 27
6.1 Usability . 27
6.2 Reliability and Security . 27
6.3 Performance . 28
6.4 Feature overview . 28

Conclusion and Future Work 30

Bibliography 31

A Installation 33

B Usage 35

2

Introduction

As the significance of data continues to grow, many users require advanced
features such as versioning or file-level encryption for their data storage. The
main goal of this thesis is thus to create a modular and easily extensible virtual
file system (VFS) in user space as a comprehensive solution for these advanced
storage needs. Created with FUSE (Filesystem in Userspace) using C++, the VFS
should be able to be mounted irrespective of the underlying file system.

The created VFS should also provide prototypes of modules for encryption and
versioning, seamlessly integrating them into the core functionality with minimal
user effort. Specifically, the proposed VFS prototypes should enable users to
create snapshots for later rollbacks and let them easily encrypt individual files
or entire directories with a password or key, providing temporary decryption as
needed.

Currently, there is no straightforward method for adding, let alone layering,
these features onto an existing file system, and users who desire such additional
functionality must rely on separate external programs. Even though some suitable
solutions exist, they are usually not provided on file system-level, and the few rare
exceptions that do exist are often outdated or difficult to use. On the other hand,
if a user does not need benefits of file system-level integration, there are many
programs that can be used to achieve similar results. The primary issue with
these programs, which this thesis aims to address, is the necessity of accessing
files through specialized software.

In contrast, the proposed VFS acts as an intermediate layer between the
operating system and specific file systems, delivering desired features in a more
streamlined and user-friendly manner. Not to mention the fact that the VFS does
not have some limitations of such programs, as it can be mounted on top of any file
system, including even network file systems. Furthermore, these features could
also be easily layered on top of each other as opposed to using separate programs,
where, for example, versioning and encryption would be rather problematic.
However, this VFS is not intended to be a replacement for existing solutions, but
rather a proof of concept that demonstrates the feasibility of creating a modular
and extensible VFS.

3

The thesis is structured as follows: Chapter 1 provides a theoretical overview
of file systems, virtual file systems, encryption, and versioning. Chapter 2 delves
into the analysis of alternatives, the rationale behind the project’s choices, and
the explanations of FUSE and other libraries employed for encryption and testing.

After this theoretical foundation, Chapter 3 describes the necessary steps
needed to start the development of the VFS such as cross-platform build system
or the testing framework; and In Chapter 4, the design and architecture of the
VFS solution are described, including the adaptation of FUSE for usage in C++
and the modular architecture that allows adding various VFS features. Chapter 5
details the implementation of essential FUSE operations, prototyping encryption,
and versioning in the VFS and discussing the methods and strategies employed.
Finally, in Chapter 6, the usability, reliability, security, and performance of the
VFS are evaluated, providing insights into its overall effectiveness compared
to existing solutions. The conclusion summarizes the findings and discusses
future work for system enhancement, while Appendix A and B offers a guide on
installing and using the custom VFS.

4

Chapter 1

Theoretical overview

The development of a custom Virtual File System (VFS) with modules for version-
ing and encryption capabilities requires an understanding of several key concepts
and technologies. This chapter aims to provide the necessary background and
context to better understand the VFS implementation discussed in later chapters.
Even for those already familiar with the subject, a brief refresher might be helpful.

1.1 Understanding File Systems
Let us start with what a file system is and what it does, as it is important for
understanding the VFS itself.

A file system is a critical component of any operating system, with the task of
managing and organizing data stored on a device. As described by Oja et al.[1],
a file system represents the methods and data structures used by an operating
system to maintain files on a disk or partition, that is, how files are organized
on the disk. This consists of multiple operations such as creation, reading, modi-
fying, and deleting files or directories. This is done in order to allow users and
applications to interact seamlessly with the underlying storage medium.

It is important to distinguish between a disk or partition and the file system it
contains. While some programs operate directly on raw disk sectors or partitions,
which could potentially damage or corrupt existing file systems, most programs
interact with a file system.

There are various types of file systems, each tailored for specific operating
systems and purposes. Notable file systems include NTFS for Windows, HFS+ for
macOS, and ext4 for Linux. Cross-platform compatibility can be attained using
universal file systems like FAT32 or exFAT, which are compatible with multiple
operating systems.

File systems employ diverse techniques to organize data, including partition-

5

ing, allocation units, and indexing. Additionally, file systems manage metadata,
which is crucial for organizing and accessing stored data. Metadata encompasses
information such as file names, creation and modification timestamps, file sizes,
and access permissions.

1.2 Virtual File Systems
A VFS is an essential abstraction layer in modern operating systems, designed to
ease the interaction between various file systems and user applications. The VFS
functions as an intermediary, enabling applications to access various file systems
through a unified interface, regardless of the underlying file system’s specific
characteristics or structure.

According to a book byDavid A. Rusling[2], the VFSmanages variousmounted
file systems by maintaining data structures that describe the entire virtual file
system and the real mounted file systems. The VFS uses superblocks and inodes,
similar to the EXT2 file system, to describe files and directories within the system.
Each file system register with the VFS during operating system initialization. File
system modules are loaded as needed, which allows VFS to read their superblocks.
The VFS maintains a list of mounted file systems and their VFS superblocks, with
each superblock containing pointers to specific file system functions.

The VFS inodes are traversed as the system’s processes access directories and
files. Frequently accessed inodes are kept in the inode cache for quicker access.
Additionally, Linux VFS uses a common buffer cache, independent of the file
systems, to cache data buffers from underlying devices.

VFS also plays a critical role in operating system design as it not only offers
file system independence, but also provides benefits such as improved security or
better performance. In this thesis, we will also demonstrate that the extensibility
of the VFS is a valuable advantage, enabling the incorporation of advanced features
without requiring kernel modifications.

1.2.1 VFS Operations
VFS provides a range of operations for interacting with files and directories. These
operations are implemented as system calls, such as open(2), stat(2), read(2),
write(2), and chmod(2), which are called from a process context.

The way this is implemented in Linux VFS is described by an article by Richard
Gooch and Pekka Enberg[3]. During a system call, the VFS translates a pathname
into a directory entry (dentry) by searching through the dentry cache. However,
if the cache is too small to fit all dentries in RAM, the VFS may have to create
dentries and load inodes to resolve the pathname. Each dentry typically has a

6

pointer to an inode, which represents a file system object that may be on disk or
in memory.

When a file is opened, a file structure is allocated and initialized with a pointer
to the dentry and file operation member functions taken from the inode data. The
open() file method is then called to enable the file system implementation to
perform its work. Finally, the file structure is placed into the file descriptor table
for the process.

To read, write, and close files, the user-space file descriptor is used to call the
appropriate file structure method. As long as the file is open, the corresponding
dentry and VFS inode remain in use.

1.3 Encryption
Another concept that has to be briefly discussed is encryption. It is simply a
process of applying cryptographic algorithms to information in such a way that
only authorized parties can access it. In this thesis, the encryption will be used as
a mean to transform the contents of files and directories into an unreadable format,
which can only be deciphered with the appropriate decryption key. Utilizing
encryption enables users to effectively safeguard their data against unauthorized
access, data breaches, and other malicious activities.

For file and directory encryption, symmetric key algorithms are commonly
utilized due to their computational efficiency and robust security properties. The
Advanced Encryption Standard (AES) is a widely adopted option; however, in
this thesis, the more modern and faster XChaCha20-Poly1305 algorithm has
been chosen as the primary encryption method. To derive an encryption key
from a user-provided password, password-based key derivation functions will be
implemented.

1.3.1 XChaCha20-Poly1305
XChaCha20-Poly1305 is an advanced symmetric encryption algorithm that com-
bines the XChaCha20 stream cipher with the Poly1305 message authentication
code (MAC). This modern encryption algorithm is considered faster than AES,
especially in software implementations, making it a suitable choice for this the-
sis [4].

The XChaCha20 stream cipher operates with a 256-bit secret key and a 192-
bit nonce. The increased nonce size in XChaCha20 significantly improves its
resistance to nonce reuse attacks compared to the original ChaCha20 cipher. The
algorithm employs a series of simple operations, such as addition, rotation, and

7

XOR, to generate a keystream, which is subsequently combined with the plaintext
to produce the ciphertext.

To encrypt data using XChaCha20-Poly1305, a user first generates a secret key,
which is a random sequence of 256 bits. Then, the algorithm uses the secret key
to transform the plaintext into ciphertext. The ciphertext can only be decrypted
back to its original plaintext form using the same secret key.

1.4 Versioning
Last but not least, versioning is a technique used to maintain multiple copies or
states of a file or directory, allowing users to access and restore previous versions
as needed. It enables tracking of changes made to files over time, facilitating
collaboration and recovery from accidental data loss or corruption.

Usually, versioning is implemented by storing multiple copies of a file or
directory, each representing a different version. This approach is straightforward
and easy to implement, but it can be inefficient in terms of storage space and
performance. To address these issues, versioning can be implemented using a
diff-based approach, which stores only the differences between versions, rather
than storing full copies of every version.

8

Chapter 2

Analysis

In order to determine the feasibility of the proposed VFS, it is crucial to analyse
existing alternatives. In this chapter, we will delve into a detailed examination
of various alternative solutions, highlighting their drawbacks and limitations.
Additionally, we will explore the essential libraries and tools required for the
successful implementation of the proposed solution. By thoroughly analyzing ex-
isting alternatives and exploring necessary components, we can better determine
the viability of the proposed VFS.

2.1 Analysis of Alternatives
The proposed solution presents a unique approach, as there is currently no existing
virtual file system specifically designed to layer additional features atop pre-
existing file systems. Nevertheless, FUSE, the very library which was employed
in developing this VFS, could be viewed as its competition, given that it can be
utilized to enhance existing file systems with added features. On the contrary,
FUSE demands considerable effort to build a custom file system from scratch, and
even if a developer undertakes the challenge, they would essentially be replicating
a simplified version of this thesis’ objective.

However, using VFS is not the only way to achieve the desired functionality
of adding features, and in order to judge the potential benefits of our VFS, it
is essential to individually examine alternative solutions that simply provide
custom features on top of existing file systems. This section will analyse existing
non-virtual and virtual file systems with versioning and encryption features, as
well as higher-level applications offering similar functionality.

Let us start with versioning; non-virtual versioning file systems is a well-
documented concept, and there are several implementations available. Notable
non-virtual versioning file systems include OpenVMS, a versioning file system

9

from Digital Equipment Corporation that automatically creates new instances of
files with version numbers appended, and NILFS, a Linux-based log-structured
file system that supports versioning and continuous snapshotting of the entire
file system. And even though these solutions would be viable options, they
are not what someone might consider user-friendly. They also offer limited
configurability and extensibility, which is a significant drawback for a user who
wants to customize the versioning process.

Still, several virtual file systems with versioning capabilities have been devel-
oped:

• User space file systems implemented with FUSE:

– A simple versioning file system for Linux using FUSE[5], written in
Go.

– Wayback: A User-level Versioning File System for Linux[6], developed
in Perl for the USENIX 2004 Annual Technical Conference using an
older version of FUSE.

• Copy-on-Write Version Support for VFS under Linux by Stephan Müller
and Sven Widmer[7], implemented as a kernel patch.

• A versioning virtual filesystem by Steve Huntley[8], written in Tcl. How-
ever, this solution primarily serves as a language demonstration rather than
a practical implementation.

These existing solutions are also not without various constraints, such as
being discontinued or being platform-specific.

The third option for versioning is to use higher-level applications. These
applications usually offer awide range of featureswhile still allowing extendability.
Some of the most popular applications include Git, Subversion, Time Machine,
and Dropbox. And to be honest, using these applications would be a practical
solution, as they are well-maintained and offer a wide range of features.

Regarding encryption, while such focused VFSs are basically nonexistent,
there are several non-virtual file systems that offer encryption capabilities, such
as the EFS which provides cryptographic protection of individual files on NTFS file
system volumes using a public-key system. And surely enough, such solutions are
viable options, but they from my personal experience lack the configurability and
flexibility that a virtual file system can provide, and once more the extensibility is
limited. For instance, as a dual-boot user, if I would like to have my files encrypted
on the common partition, it would be not possible or at least very difficult to
achieve with existing solutions.

10

Moving back to the VFS domain, the closest example to the desired function-
ality is rvault[9], which focuses on encrypting small files (passwords, keys, and
secrets) and makes them accessible through one-time password authentication.
However, this does differ from the intended functionality of the proposed VFS
and could not be considered as an alternative, rather it may serve as a source of
inspiration. Again, the competition is mainly higher-level applications, such as
Folder Lock, Gpg, or Encrypto.

2.1.1 Drawbacks of higher-level applications
Since we now established that the main competition is higher-level applications,
let us examine why developing proposed VFS is still a reasonable idea even
though one might label it as “overkill”. While we are not saying that higher-level
applications are not a viable option, they are not meant for the same user base. De-
pending on specific solution, negative aspects could include problematic layering
of additional features, limited multi-platform support and leaking implementation
details to the user. And even more importantly, users are limited to using that
particular application, while with VFS they can use any application they want.
Yet, for the usage of VFS to be convenient, the user’s application of choice would
need to be slightly modified.

On that note, it is also worth noting that some operating systems, specifically
macOS, provide built-in support for versioning and limited encryption features.
For example, macOS’s Time Machine offers versioning the way that it is possible
to revert to previous versions of files or restore deleted data. However, these
features are not available on other platforms, and they may not provide the desired
level of control over the process.

So, while there are several existing solutions that offer versioning and en-
cryption features, they are usually platform-specific, lack the desired level of
control or extensibility. Additionally, there are no existing virtual file systems
that provide the desired functionality.

2.2 Necessary libraries
In the development of a virtual file system, there are two primary approaches to
consider: writing kernel drivers or utilizing a user space library. Writing kernel
drivers offers low-level access to the operating system but requires extensive
knowledge of the kernel and platform-specific implementations. This method can
be time-consuming, error-prone, and challenging to maintain. Furthermore, this
would result in limited extensibility, as the kernel driver would be responsible for
all the functionality of the file system. Not to mention the fact that kernel drivers

11

are platform-specific, and they must be re-written for each platform. However,
despite the tedious process, it may result in a more efficient and robust solution.

An alternative to writing kernel drivers is using a user space file system library,
such as FUSE. This type of library allows developers to focus on the functionality
and logic of their custom file system, rather than the intricate details of kernel
programming. This approach is more portable and easier to maintain, but it may
not be as efficient as a kernel driver. Nonetheless, the performance difference
between the two approaches is negligible in most cases, and the benefits of using
a user space library heavily outweigh the drawbacks in this particular scenario.

2.2.1 FUSE
FUSE (named after Filesystem in Userspace) is an open-source software interface
that allows developers to create custom file systems in user space without the need
for kernel modifications. It operates by providing a bridge between the kernel’s
VFS layer and user-space file system implementations. The kernel communicates
with the user-space file system using a well-defined API, allowing developers
to create file systems without the need for kernel-level programming. This
abstraction greatly simplifies the development process and reduces the risks
associated with kernel modifications.

FUSE has gained widespread adoption due to its ease of use and modularity.
Many popular file systems have been implemented using FUSE, such as SSHFS,
GlusterFS, S3FS andNTFS-3G, among others. These implementations demonstrate
the versatility and robustness of the FUSE framework in handling a wide range of
file system requirements. Yet, FUSE is not without its limitations. It is arguable
whether it is the best choice for a C++ implementation, as it is written in C,
but more on that in a later section 3.1. Another complication is its portability.
Fortunately, even though FUSE was initially designed for Linux, variants are
available for other platforms, ensuring cross-platform compatibility:

• Linux: libfuse - The reference implementation of FUSE [10].

• macOS: macFUSE - A macOS port of FUSE [11].

• Windows: WinFsp - A Windows File System Proxy that provides FUSE-
compatible functionality [12].

To develop a new file system using FUSE, a handler program connected to the
provided libfuse library must be created. The primary objective of this handler
program is to define the file system’s behavior in response to read, write, and
stat requests. Additionally, the handler program is responsible for mounting
the new file system. Upon mounting, the handler is registered with the kernel.

12

When a user initiates read, write, or stat requests for the newly mounted file
system, the kernel forwards these I/O requests to the handler, which processes
them accordingly. The handler’s response is then relayed back to the user by the
kernel, ensuring a seamless interaction between the custom file system and the
operating system.

The FUSE flow-chart diagram created by Wikipedia user named Sven[13]
depicted in Figure 2.1 effectively illustrates the process involved in handling
a command like ‘ls’, from its initial submission to the virtual file system layer,
through the FUSE kernel module, to a handler program in user space and back.

libfuse

glibcglibc

FUSE

Ext3

...

VFS

ls -l /tmp/fuse

./hello /tmp/fuse

Kernel

Userspace

NFS

Figure 2.1 FUSE flow-chart diagram

Considering the advantages of user space development and the availability
of FUSE for multiple platforms, FUSE is my preferred choice for implementing
the proposed VFS. This approach enables the development of a cross-platform
VFS with versioning and encryption capabilities while avoiding the complexity of
kernel driver development. Still, several other libraries will need to be employed
to address various aspects of the project.

2.2.2 Encryption
Initially, Crypto++[14] was considered for integration into the custom VFS, given
its comprehensive open-source C++ class library covering a wide array of cryp-
tographic schemes, such as encryption, hashing, and authentication algorithms.

13

Utilizing Crypto++ would provide file-level encryption, effectively safeguarding
the security and privacy of the data stored within the VFS.

However, the implementation of Crypto++ led to various issues, primarily
complicating the build process. As a result, the decision was made to switch to
libsodium[15], which is amore user-friendly alternative. It offers a robust selection
of encryption, decryption, and cryptographic functions while maintaining a
focus on simplicity and efficiency. With that, the custom VFS can achieve the
desired level of data protection without incurring the complexities associated
with Crypto++.

2.2.3 Testing
Google Test[16], commonly referred to as gtest, is a widely-used C++ testing
framework developed by Google. This library enables testing of individual com-
ponents and the overall functionality of the custom VFS. By employing gtest,
the quality, reliability, and performance of the custom VFS can be evaluated,
guaranteeing that it fulfills the requirements and expectations outlined in this
thesis.

2.2.4 Options parsing
The Boost Program Options library[17] is a C++ library used for option parsing,
which makes it easy to parse command-line options and arguments. This library
has been utilized for the custom VFS to handle different command-line options
effectively, including setting the mount point, enabling or disabling debugging
mode, and so on. Besides that, it was also used for the supporting tools.

The reason why this library was chosen in particular is because of its ease of
use, popularity, and variety of features.

2.2.5 Space for improvement
While the libraries mentioned above have been used for the custom VFS, there
are still some areas for improvement. Mainly, some libraries could potentially be
used instead of “reinventing the wheel” such as source code for handling of paths,
configuration files, and logging. But it is hard to say how severe this issue is, as
all of these implementations are elementary and straightforward. Furthermore,
all of these implementations are written as such that they could be easily replaced
with a library if needed.

14

Chapter 3

Design and Architecture

This chapter will outline the architecture and design decisions made during the
development of the custom and extendable VFS. The first section will describe
complications that arose from the use of FUSE in C++, while the second section
will focus on the architecture of the VFS itself.

3.1 Using FUSE in C++
Properly incorporating FUSE in C++ presents many design challenges, primarily
due to its interface design, which necessitates the use of a static wrapper for
operations. The issue originates from FUSE expecting a C struct with pointers
to functions, which poses a problem for non-static C++ methods. To solve this
issue, two solutions can be considered: either writing C++ code without utilizing
objects, rendering the use of C++ instead of C rather pointless, or implementing
a singleton wrapper with only static methods.

As is evident, the latter solution was chosen. Fortunately, there was no need
to start from scratch, as existing repositories already provide a solution to this
problem. However, none of them were complete and up-to-date, and it was
necessary to write or update portions of the code.

The foundation for this project was built upon the fusexx[18] repository,
which was found most suitable for the needs of this thesis. But as was said,
significant changes were made to the existing code, as it was not written in a
modern C++ style and did not adhere to the project’s design goals. The first
step was therefore to refactor the code to use modern C++ features and resolve
numerous clang-tidy warnings. Moreover, the repository was not updated for
several years, and it was necessary to change some of the code’s version-specific
parts. And as a final touch, some methods were completely rewritten to improve
readability or efficiency.

15

Needless to say, there was also a third, rather “hacky” solution, more like
a sub-solution of the second one, which involved beside other implementation
details using a data field in the FUSE context to store a pointer to the C++ object.
Something similar is done in the fusepp[19] repository. But this approach did
not seem to be the most elegant solution, and it was decided to use the singleton
wrapper instead. Furthermore, the fusepp repository was not updated for even
longer and would be harder to be used as a base for the project.

3.2 Architecture
Once the foundation was laid, the next step was to design a core VFS. It is
important to note that this implementation was not the primary focus of this
thesis as it was rather focused on providing modularity and extensibility. The
result of this is that the entire core VFS is built on top of already present filesystem
in the operating system. It is based on simply using a backing directory to store
all the files and directories. However, such implementation details can be easily
replaced, allowing for future improvements.

Still, there were some design decisions to be made regarding the object-
oriented design of the VFS. And multiple approaches were contemplated: mainly
one involving a single VFS class and another comprising separate File, Directory,
and VFS classes. Although the latter approach adheres more closely to object-
oriented principles, We have decided to go with the former, as it is better suited
for use with FUSE. The reason for that is that it would still be needed to somehow
bound all those classes into one, meaning at least the wrapper would have to
be more complicated. Another concern regarding the second approach is that it
would be harder to make the VFS extensible, but more on that in the following
sections.

3.2.1 Modularity
The VFS is designed to be modular, allowing for the addition of new features
without the need tomodify the core implementation. To achieve this, the decorator
pattern was selected as the primary design pattern for this project.

The decorator pattern is a structural design pattern that involves a set of
decorator classes used to wrap concrete components. Decorator classes mirror
the types of the components they decorate, sharing the same interface but adding
or overriding behavior.

The benefit of this pattern is that it allows for the dynamic addition of new
features to an object without modifying its implementation. Also, it is possible
to combine multiple decorators to add multiple features to the same object at

16

the same time. These properties make the decorator pattern a perfect fit for this
project.

The decorator pattern is thus used to implement the VFS prototypes, such as
encryption and versioning. For example, an EncryptionVfs class is implemented
as a decorator, inherited from the VfsDecorator class. The VfsDecorator class,
in turn, inherits from the base CustomVfs class. The decorator class wraps an
instance of the base VFS class, allowing it to perform additional encryption-related
tasks when reading or writing files.

Following code snippet 3.1 showcase the standard implementation of decorator
pattern:

Listing 3.1 Decorator pattern implementation

class VfsDecorator : public CustomVfs {
public:

explicit VfsDecorator(CustomVfs& wrapped_vfs);
protected:

CustomVfs& wrapped_vfs_;
};

class EncryptionVfs : public VfsDecorator {
public:

explicit EncryptionVfs(CustomVfs& wrapped_vfs);
int read(/*...*/) override;
// ...

};

It is important to note that currently both inheritance and composition are
used in the decorator pattern. The reason behind that is that it allows sparing
some boilerplate code and make the code more readable as the CustomVfs is used
more like a value type (if there was such thing in C++), meaning its behaviour
is defined not by its reference but the values inside it. This allows me to simply
copy construct the parent CustomVfs object with passed decorator.

The use of this pattern is then illustrated in the following code snippet 3.2,
which shows how the VFS is initialized and used in the main function:

Listing 3.2 VFS initialization and usage

void main(int argc, char* argv[]) {
CustomVfs custom_vfs();
VersioningVfs versioned_vfs(custom_vfs);
EncryptionVfs enc_vers_vfs(versioned_vfs);
enc_vers_vfs.main(argc, argv);

}

17

Modularity caveats

Unfortunate thing about this modularity design is complications with accessing
the files other ways than using the parent decorator. To demonstrate the point,
We will explore the complication with combing versioning and encryption. With
that, you have to consider what do you want to perform first. In case of first
versioning and then encryption, you have to encrypt all the concerned files. In
case of first encrypting and then versioning, you lose the ability to version the
diff-based way.

This order decision has to be done by the person creating the result vfs, but
it is my responsibility to provide sufficient tools. For the described example, it
means simply that each decorator has to be able to ask its parent for all concerned
files.

3.2.2 Access to VFS features
Another crucial aspects of the architecture is determining the method by which
users can access the added VFS features. In this implementation, hooks have
been designed to integrate seamlessly with standard filesystem operations. By
‘hook’, we are referring to a file with a specific name that triggers a specific action
when accessed. Additionally, a simple command-line interface (CLI) has been
implemented to facilitate creating hooks for the VFS features.

The filesystem captures the mentioned operation, performs the requested
action, and writes the result of the operation to the hook file. This approach
allows users to interact with the VFS features without deviating from standard
filesystem operations.

The CLI consists of two primary components: one for encryption and another
for versioning. Users can execute commands related to these features via the CLI,
making it a user-friendly and accessible interface for interacting with the VFS.
Commands for encryption may include encryption key management and selecting
encryption algorithms, while versioning commands may involve creating new
versions, listing available versions, and reverting to a previous version.

Although the current implementation utilizes a command-line interface, the
hooks can potentially be integrated into a graphical user interface (GUI) in the
future. Incorporating the VFS features into a GUI would provide users with an
even more intuitive and visually appealing interface for managing encryption
and versioning. However, the development of a GUI was beyond the scope of this
thesis.

Benefits of this approach include the ability to easily integrate the VFS features
into existing applications, such as file managers. This is because the VFS features
are accessed through standard filesystem operations, which are already supported

18

by most applications. Additionally, the hooks allow for the seamless integration
of new features, such as encryption and versioning, without the need to modify
the core VFS implementation as can be seen in the following code example:

Listing 3.3 Example of hook implementation

int Vfs::write(const std::string &ppath, char *buffer,
size_t size, off_t offset) {

if (is_hook(path)) {
return handle_hook(path, buffer, size, offset);

}
// Do normal write operation...

}

Each module has then its own implementation. It is also necessary to mention
that all hooks share the same format, which is also the same as the format of
hidden files. For this reason, the module needs to be able to ignore hooks that are
not meant for it.

This format is #<module_name>(<args>)#<affected_file> and creation
and parsing of this format is handled by the PrefixParser class.

3.2.3 Architectural overview
We will conclude this chapter by providing an architectural overview of the VFS.
The architecture of our system is designed using object-oriented principles to
ensure modularity, extensibility, and maintainability. The core of the system is
built around the FuseWrapper class, which provides a base implementation for
interacting with the FUSE library. By deriving from this base class, we can create
custom virtual file systems with various features and functionality.

The FuseWrapper class, which is a parent class of CustomVfs, serves as a
foundation for more specialized virtual file systems. By utilizing the decorator
pattern, we implement additional functionality in separate classes, such as En-
cryptionVfs and VersioningVfs, which both inherit from the VfsDecorator class.
This approach allows us to easily extend the system with new features while
minimizing the impact on existing code.

The key components of the architecture, along with their relationships and key
methods, are illustrated in Figure 3.1. The diagram shows the main classes, their
inheritance relationships, and some of the methods that define their behavior.

Still, there are a lot of helper classes that are not shown in the diagram, but
they are not important for the understanding of the architecture. These classes
would typically include logging, handling paths or custom tool for prefixing file
names with custom metadata.

19

FuseWrapper

– static struct fuse_operations ops

+ main(…) { fuse_main(…, &ops, this); }

+ virtual write(…)
+ virtual read(…)
+ virtual open(…)
+ …

CustomVfs

– std::string mountpoint
– std::string backing_dir

+ write(…)
+ read(…)
+ open(…)
+ …

VfsDecorator

– CustomVfs& wrapped_vfs

EncryptionVfs

+ open(…)
+ release(…)
…

VersioningVfs

+ write(…)
– revert(…)
…

Encryptor

+ encrypt(…)
+ decrypt(…)
…

Figure 3.1 UML diagram of the system architecture.

20

Chapter 4

Preparation

With the architecture and design decisions established, the focus now shifts to
the implementation of the custom and extendable VFS. This concise chapter will
outline the tools and technologies employed throughout the development process,
ensuring a solid foundation for the implementation phase.

4.1 Cross-platform build System
CMake[20], an open-source build system, has been selected for this project due
to its cross-platform compatibility, user-friendliness, and extensive support for
various platforms. CMake generates native build environments, such as Makefiles
or project files for integrated development environments (IDEs), streamlining the
development process.

4.1.1 Platform-Specific Challenges
Despite the cross-platform advantages provided by CMake, several platform-
specific challenges arose during development. For instance, running applications
on an M1 Mac proved difficult due to the lack of compatible binaries for the
hardware. While building the applications from source was an option, there were
no compelling reasons to do so for the purposes of this thesis. Furthermore, the
osxfuse port had not received an update in five years, exacerbating the situation.
On Windows, WinFsp[12] is required to ensure FUSE compatibility, introducing
additional hurdles for seamless cross-platform development.

Unfortunately, the current implementation of the encryption module is not
compatible with Apple Silicon. This was found out during the final stages of
development, as the project was being tested on an M1 Mac. The reason for this
is that libsodium does not properly support Apple Silicon yet. However, the rest

21

of the project should work just fine, and the part of encryption module could be
easily replaced with a different implementation.

4.2 Gitlab CI
The MFF faculty GitLab instance was utilized for this project[21]. GitLab CI/CD
pipelines were employed to automate various tasks, such as checking code for-
matting with clang-format, building the project, running Google Test unit tests,
and providing the ability to download build artifacts. This approach facilitated a
more efficient and organized development process.

Regarding the clang-format check, the project was configured to use the
Google C++ style guide[22] with a few minor modifications. The Google style
guidewas also used regarding the naming convention, although that unfortunately
is not enforced by the clang-format tool.

4.2.1 Testing
For the testing purposes, Google Test was integrated into the GitLab CI/CD
pipelines. This allowed for the execution of simple tests on every commit, such
as creating directories and files. Apart from testing the added VFS functionality,
the tests also check helper classes, such as the Encryptor class for encryption
and decryption, or a custom library to allow prefixing file names with additional
information.

To optimize the testing process, the tests were run on a shared mount-point
that was cleared every time, although this approach is not ideal as it can make it
harder to determine the root cause of a failure. Nonetheless, the primary purpose
of these tests was to ensure that basic functionality was not broken with each
commit, rather than to diagnose the cause of any failures that occurred.

Originally, the tests were supposed to mount and unmount the VFS, but this
proved to be problematic. Debugging the tests was difficult in particular, since
the gdb did not properly handle detached processes and would not stop on VFS
breakpoints. As a result of that, mounting of the VFS is now done manually before
running the tests and the mount-point needs to be passed as an argument.

Another fact that proved to be problematic was that FUSE requires a kernel
module, as mentioned in section 4.3. Because of that, the tests needed to run on
a custom runner with privileged access, but as it would be a complication to let
them run all the time, CI/CD pipeline was limited to only run helper method tests.

In the end, the tests were not as extensive as could be, but they still provided
a good baseline for the project.

22

4.3 Docker
Docker[23] was also incorporated into the project because of several reasons.
First, it allowed for the creation of a consistent and reproducible development
environment, ensuring that the project could be built and run across different
platforms without issues.

Additionally, Docker provided two methods for debugging or even demoing
the VFS: one that displays debug output in a terminal, and another that runs the
VFS in the background. By integrating Docker into the project, the development
and deployment process was simplified, allowing for a more efficient and effective
implementation of the custom and extendable VFS.

To create the Docker environment for the project, a base Ubuntu 20.04 image
was used. Of course, some dependencies included FUSE, GTest, Boost Program
Option, and Libsodium were also installed. After that, the source code is copied
into the container and the project is built.

Sadly, the Docker container in this project has one major drawback, as FUSE
requires a kernel module, which Docker is not able to provide. Meaning that the
Docker would still need access to the fuse device, complicating the process of
running the container across different platforms. Besides that, it also needs to
run with privileged access, which is not ideal.

Overall, the incorporation of Docker into the project provided a consistent
and reproducible development environment, simplified the deployment process,
and allowed for easier debugging and testing of the custom VFS.

23

Chapter 5

Implementation

5.1 Essential FUSE Operations
Initially, it was necessary to identify and incorporate various FUSE operations that
need to be implemented and passed to FuseWrapper class. This section provides
a brief overview of some of the essential operations, incorporating information
from the Facile Engineering tutorial and IBM Developer article[24, 25]:

• getattr: Retrieves the metadata of a given path. This operation is always
called before any other operation made on the filesystem. It is responsible
for reading the file or directory attributes, such as size, access permissions,
and timestamps.

• readdir: Lists the contents of a directory, filling a buffer with the structure
of the accessed directory.

• mknod: Creates a non-directory node, such as a file.
• unlink: Deletes a file.
• open: Called when the system requests a file to be opened.
• read: Called when FUSE is reading data from an opened file, while filling
the buffer with the content of those bytes.

• write: Writes data to an open file.
• mkdir: Creates a new directory.
• rmdir: Deletes an existing directory.
• rename: Renames a file or directory.

Besides these operations a full-featured filesystemmight need operations such
as truncate, symlink, link, chmod, chown, utime, statfs, flush, release,
fsync, setxattr, getxattr, listxattr, and removexattr.

24

5.1.1 Operations for the Base VFS
The core of the implementation is provided by CustomVfs class, which is re-
sponsible for handling all file system operations. This particular class mainly
redirects the operations to the appropriate system calls, which are then handled
by the operating system. The exact way this is done is using a backing directory,
which is mounted to the .customvfs-mount directory that is created when the
filesystem is mounted. This particular directory is then used to store all the files
and directories that are created by the user by simply forwarding the operations
to the backing directory. Consequently, the debugging process is simplified as
the user can easily access the backing directory and verify that the operations are
being handled correctly.

Using the base VFS is also then as simple as creating an object and invoking
the main method, as demonstrated in the following code snippet 5.1.

Listing 5.1 Main method of the CustomVfs class

void main(int argc, char* argv[]) {
CustomVfs custom_vfs();
custom_vfs.main(argc, argv);

}

The arguments passed to the main method are then simply forwarded to the
wrapper and consequently to the FUSE library. This allows the user to specify the
mount point and other options such as the debug mode or ignoring non-empty
mount point.

5.2 Encryption
To implement the prototype module of encryption, the XChaCha20-Poly1305,
described in the initial chapter 1.3.1, was chosen. Particularly, was used the
implementation from libsodium library as discussed in 2.2.2.

There are two main approaches how to use the added encryption functionality.
The first approach is to use a user-defined password, which is then employed to
generate the encryption key. This method is not very practical, as the user has
to manually lock and unlock files, since there is no mechanism to request the
password when accessing a file.

The second approach involves using a key file. This method is more conve-
nient, as users can store the key file in a secure location and access their files
without additional steps. However, this brings up the question of when to encrypt
and decrypt the files.

Encryption and decryption of files are easily performed upon opening and
closing the file, respectively. In contrast, handling directories is more complicated,

25

as there is no way to identify when the directory is being accessed. As a result,
there is no encryption of the file names; instead solely the individual file con-
tents are decrypted when the file is opened. This approach reduces unnecessary
encryption and decryption operations and maintains relatively fast performance.

The encryption itself was done by asking the parent vfs for the proper file path
and then using the libsodium library to encrypt or decrypt the file. Encryption of
directories was then done using stack instead of recursion.

5.3 Versioning
The versioning module prototype is as of now rather limited since implementing
a full-featured versioning system would be a significant undertaking. Namely,
instead of using a diff-based approach for versioning, the entire file is stored in
the versioning system as it simplifies the implementation. Diff-based approach
could be then implemented in the future.

Similar to the encryption implementation, the read and write operations were
wrapped to include versioning. The following code snippet shows a high-level
overview of how to wrap the write operation with versioning functionality.

Listing 5.2 Write with versioning functionality

int VersVfs::write(const std::string &file_path ,
char *buf, size_t size, off_t off) {

store_previous_version(file_path);
if (off > 0) {

prepare_newfile_for_write(file_path);
}
wrapped_vfs_ ->write(file_path , buf, size, off);

}

That means the current version is always stored in a file with the real name,
whereas the previous versions are suffixed with special symbol and their version
number. With this approach, operations such as restore, delete, or list are relatively
straightforward to implement. Restore just creates a new stored version with
the current content of the file and renames the restored version to the real name.
Delete operation then simply removes the file and all its versions. And listing
operation just finds all the files with the real name and the special symbol and
returns them.

26

Chapter 6

Evaluation

Once the implementation of the custom VFS is complete, it is necessary to evaluate
the project. The evaluation is performed in terms of its functionality, usability,
reliability, security, and performance.

6.1 Usability
The VFS itself is user-friendly, as the user only needs to specify the mount
directory on the command line to start using it. The features are currently
accessed through a set of CLI tools, which are slightly less user-friendly, but that
could be improved over time. Despite the limited effort put into developing the
CLI, it remains a functional and accessible interface.

In future iterations, the usability of the custom VFS could be further enhanced
by providing a graphical user interface (GUI) to make it even more accessible for
users who are not familiar with command-line interfaces. Moreover, more detailed
documentation and tutorials could be provided to facilitate user onboarding and
promote the adoption of the custom VFS.

6.2 Reliability and Security
The VFS implementation has undergone testing through unit tests using Google
Test, ensuring good code coverage and the core features, such as encryption and
communication with kernel code, rely on well-tested external libraries.

However, there is still room for improvement in the core VFS implementation
to further enhance its reliability. In future iterations, a more extensive suite of
tests could be developed, covering not only unit tests but also integration and
stress tests. This would help ensure that the VFS behaves correctly under various
scenarios and is resilient against potential failures.

27

In terms of security, the implemented encryption relies on the Libsodium
library, which is a well-tested and widely used library for encryption.

6.3 Performance
Performance was not the primary focus of this project, as it is still a prototype. For
that reason, there were no performance tests conducted. On the other hand, there
are no known performance bottlenecks in the current implementation, as the VFS
is built on top of the FUSE library, which is known for its high performance.

Future work could involve conducting performance tests to identify poten-
tial areas of improvement and optimize the VFS accordingly. This would be
particularly important for applications with high I/O demands or large-scale
deployments.

6.4 Feature overview
To showcase the features of the custom VFS; the following table compares created
VFS to similar software. I have even included some file systems, as they have
some of the same features.

It is important to note that the custom VFS is not a direct competitor to the
other software, as it is a prototype and not a fully-fledged product. Besides that,
the custom VFS has the ability to combine features easily, which could be used to
create a more complete product.

Hopefully, most of the columns’ names are self-explanatory, but there is a
brief explanation of the more ambiguous ones just in case. The versioning Dir
and File columns simply tell if the VFS can version directories and files. The Type
means whether it stores full snapshots or only the differences between snapshots,
whereas the Auto there means that the VFS stores versions automatically, without
any user intervention, similarly Auto unlock in encryption describes whether the
files are automatically unlocked on access.

28

Win Linux macOS Files Dirs Type Auto
This VFS – – Full
Btrfs – – Diff
ZFS – Diff

Time Machine – – Diff
Shadow Copy – – Full

Git Diff –

Table 6.1 Versioning Tools Evaluation

Win Linux macOS Password Key Auto Unlock
This VFS –
VeraCrypt –
BitLocker – –
AxCrypt – – –
7-Zip – – –

Table 6.2 Encryption Tools Evaluation

29

Conclusion and Future Work

This thesis has successfully presented the design and implementation of a modular
and easily extensible VFS in user space. Moreover, I have provided prototypes
for encryption and versioning modules, which seamlessly integrate with the core
functionality and require minimal user effort. The proposed VFS prototypes
enable users to create snapshots for potential rollbacks and effortlessly encrypt
individual files or entire directories using a password or key, offering temporary
decryption when necessary. Importantly, the VFS transcends the limitations of
similar programs, as it can be mounted on any file system, including network file
systems, and its features can be easily layered on top of one another.

As we look ahead, there are several opportunities for future development and
research to enhance the results of this thesis:

• Optimization: The current VFS implementation can be optimized for
improved performance and storage efficiency.

• GUI Integration: Integrating the VFS features into a graphical user inter-
face or even existing file managers will provide users with a more intuitive
and visually appealing experience.

• Additional Features: Developers can create and incorporate new features
or modules into the VFS, such as versioning based on diff, compression,
deduplication, or support for various storage backends.

• Real-world Deployment: Refining and testing the VFS for real-world
deployment will enable the evaluation of its performance, reliability, and
usability in more diverse and demanding environments.

• Windows Support: The VFS can be ported to Windows, allowing users to
access its features on a wider range of operating systems.

In conclusion, this thesis has substantiated the feasibility of creating an ex-
tensible Virtual File System with support for encryption and versioning. Future
work can expand upon this foundation, developing a more robust, efficient, and
feature-rich VFS suitable for a wide range of applications.

30

Bibliography

[1] Joanna Oja et al. “The Linux System Administrator’s Guide”. In: Linux
Documentation Project, 2000. Chap. 5.10. url: https://tldp.org/LDP/
sag/html/filesystems.html.

[2] David A Rusling. “The Virtual File System”. In: The Linux Kernel. Internet:
Self-published, 1997. url: http://www.science.unitn.it/~fiorella/
guidelinux/tlk/node102.html#SECTION001120000000000000000.

[3] Richard Gooch and Pekka Enberg. Overview of the Linux Virtual File System.
url: https://www.kernel.org/doc/html/latest/filesystems/
vfs.html.

[4] XChaCha20Poly1305. url: https : / / www . cryptopp . com / wiki /
XChaCha20Poly1305.

[5] FooSoft. A simple versioning file system for Linux using FUSE. url: https:
//github.com/FooSoft/vfs.

[6] Cornell. “Wayback: A User-level Versioning File System for Linux”. In:
USENIX 2004 Annual Technical Conference. url: https://www.usenix.
org/legacy/events/usenix04/tech/freenix/cornell.html.

[7] Stephan Müller and Sven Widmer. Copy-on-Write Version Support for VFS
under Linux. url: https://osm.hpi.de/vvfs/.

[8] Steve Huntley. A versioning virtual filesystem. url: https://wiki.tcl-
lang.org/page/A+versioning+virtual+filesystem.

[9] rmind. Rvault repository. url: https://github.com/rmind/rvault.

[10] FUSE repository. url: https://github.com/libfuse/libfuse.

[11] FUSE for macOS. url: https://osxfuse.github.io/.

[12] WinFsp repository. url: https://github.com/billziss-gh/winfsp.

[13] Sven. FUSE flow-chart diagram. 2007. url: https://commons.wikimedia.
org/wiki/File:FUSE_structure.svg.

[14] Crypto++. url: https://www.cryptopp.com/.

31

https://tldp.org/LDP/sag/html/filesystems.html
https://tldp.org/LDP/sag/html/filesystems.html
http://www.science.unitn.it/~fiorella/guidelinux/tlk/node102.html#SECTION001120000000000000000
http://www.science.unitn.it/~fiorella/guidelinux/tlk/node102.html#SECTION001120000000000000000
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://www.cryptopp.com/wiki/XChaCha20Poly1305
https://www.cryptopp.com/wiki/XChaCha20Poly1305
https://github.com/FooSoft/vfs
https://github.com/FooSoft/vfs
https://www.usenix.org/legacy/events/usenix04/tech/freenix/cornell.html
https://www.usenix.org/legacy/events/usenix04/tech/freenix/cornell.html
https://osm.hpi.de/vvfs/
https://wiki.tcl-lang.org/page/A+versioning+virtual+filesystem
https://wiki.tcl-lang.org/page/A+versioning+virtual+filesystem
https://github.com/rmind/rvault
https://github.com/libfuse/libfuse
https://osxfuse.github.io/
https://github.com/billziss-gh/winfsp
https://commons.wikimedia.org/wiki/File:FUSE_structure.svg
https://commons.wikimedia.org/wiki/File:FUSE_structure.svg
https://www.cryptopp.com/

[15] libsodium. url: https://doc.libsodium.org/.

[16] Google Test repository. url: https://github.com/google/googletest.

[17] Boost Program Options. url: https://www.boost.org/doc/libs/1_82_
0/doc/html/program_options.html.

[18] Fuse++ repository. url: https://github.com/xloem/fusexx.

[19] Fusepp repository. url: https://github.com/jachappell/Fusepp.

[20] CMake. url: https://cmake.org/.

[21] Milan Vesely. Thesis Repository. 2023. url: https://gitlab.mff.cuni.
cz/teaching/theses/yaghob/vesely-milan/.

[22] Google. Google C++ Style Guide. url: https://google.github.io/
styleguide/cppguide.html.

[23] Docker. url: https://www.docker.com/.

[24] Develop your own filesystem with FUSE. url: https://developer.ibm.
com/articles/l-fuse/.

[25] Lorenzo Fontana. Writing a file system with FUSE. url: https : / /
engineering.facile.it/blog/eng/write-filesystem-fuse/.

[26] System and kernel extensions in macOS. url: https://support.apple.
com/en-gb/guide/deployment/depa5fb8376f/web.

32

https://doc.libsodium.org/
https://github.com/google/googletest
https://www.boost.org/doc/libs/1_82_0/doc/html/program_options.html
https://www.boost.org/doc/libs/1_82_0/doc/html/program_options.html
https://github.com/xloem/fusexx
https://github.com/jachappell/Fusepp
https://cmake.org/
https://gitlab.mff.cuni.cz/teaching/theses/yaghob/vesely-milan/
https://gitlab.mff.cuni.cz/teaching/theses/yaghob/vesely-milan/
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://www.docker.com/
https://developer.ibm.com/articles/l-fuse/
https://developer.ibm.com/articles/l-fuse/
https://engineering.facile.it/blog/eng/write-filesystem-fuse/
https://engineering.facile.it/blog/eng/write-filesystem-fuse/
https://support.apple.com/en-gb/guide/deployment/depa5fb8376f/web
https://support.apple.com/en-gb/guide/deployment/depa5fb8376f/web

Appendix A

Installation

Dependencies
Before we even start, we need to clone the repository.

git clone git@gitlab.mff.cuni.cz:teaching/\
theses/yaghob/vesely-milan/source-code.git

…or in case you do not have access to MFF GitLab:

git clone https://github.com/vesmil/thesis-source

After that we need to install the dependencies.

Linux
On Debian-based Linux systems (such as Ubuntu), you may install these depen-
dencies with apt:

sudo apt-get update && sudo apt-get install -y \
clang cmake make g++ fuse libfuse-dev \
libgtest -dev libsodium -dev \
pkg-config libboost-program-options-dev

Other linux distributions may have different package names for the dependencies.
But overall, it should be similar.

Docker

Even though there is a functioning Docker file, its main purpose was for testing.
The Reason behind that is that FUSE requires kernel module, and Docker would
have to reuse the host’s kernel.

33

macOS
For macOS, you have to use Homebrew:

brew install --cask macfuse && \
brew install libsodium boost googletest cmake llvm

Even though macs are supported and tested for both Intel and Apple Silicon;
the setup does include some extra steps. Namely, you need to enable support for
kernel extensions. This is done through recovery mode, but I will not go into
details as there are multiple guides on the internet on how to do that[26]. I may
also note that in case you skip this step, the program will prompt you to do so
upon running.

Unfortunately, the current implementation of encryption module is not com-
patible with Apple Silicon. This is due to the fact that libsodium does not support
it yet. However, the rest of the project should work just fine.

Windows
The project is not supported on Windows as both WinFSP and Dokany have
different API than FUSE. However, it could be easily ported to Windows by
providing a different implementation of FuseWrapper. All the other used libraries
should be platform independent. Nonetheless, it could be theoretically run on
Windows using WSL.

Build
Once the environment is set up, you can build the project easily using CMake.
From the root of the repository follow these steps:

mkdir build
cd build

Configure the project using CMake:

cmake ..
make

Optionally, you can save yourself some typing by adding the executables to your
PATH variable or creating aliases such as:

alias cvfs_encrypt="path/to/cvfs_encrypt"
alias cvfs_version="path/to/cvfs_version"
alias custom_vfs="path/to/customvfs_exec"

34

Appendix B

Usage

Mount the VFS
Mounting the VFS is rather simple, you just need to run the following command:

.\customvfs_exec /path/to/mountpoint

In case you want to use already existing directory in this VFS, you can use
the -b or --backing option with a specified path to the directory. Note that the
directory will be altered and used for helper files, hooks, and other stuff.

Another option you might use is -f or --fuse-args which will pass the
following argument to the FUSE library. In case of multiple arguments, you have
to use quotes.

Example
The following command will mount the file system to /path/to/mountpoint
with backing directory set to /path/to/backing/directory. Besides that, it
will also pass -o nonempty -f -d to the FUSE main, meaning it will run in
foreground, print debug messages and allow mounting to non-empty directory.

.\customvfs_exec -b /path/to/backing/directory \
-f "-o nonempty -f -d" \
/path/to/mountpoint

Unmount
That is even simpler as you just have to run:

fusermount -u /path/to/mountpoint
or in case of macOS - umount /path/to/mountpoint

35

Commands
Now when you are all set up, you can start using the file system. All standard
operations stay the same as you are used to. But if you wish to use the custom
features, you need to use one of the two provided tools from the tools directory.

Encryption
The cvfs_encrypt tool is used for encrypting files or directories. The following
commands can be utilized:

• Encrypt a file using a password (or a custom key):
cvfs_encrypt --lock <file> (--key <key>)

• Encrypt a file with a default key:
cvfs_encrypt --default-lock <file>

• Decrypt a file using a password (or a custom key):
cvfs_encrypt --unlock <file> (--key <key>)

• Generate a new encryption key:
cvfs_encrypt --generate <file>

• Set a default path for the encryption key:
cvfs_encrypt --set-key-path <vfs> <file>

Versioning
The cvfs_version tool is used for file versioning, and available are the following
commands:

• List all versions of a file:
cvfs_version --list <file>

• Restore a file to a specific version:
cvfs_version --restore <version> <file>

• Delete a specific version of a file:
cvfs_version --delete <version> <file>

• Delete all versions of a file:
cvfs_version --delete-all <file>

36

	Introduction
	Theoretical overview
	Understanding File Systems
	Virtual File Systems
	VFS Operations

	Encryption
	XChaCha20-Poly1305

	Versioning

	Analysis
	Analysis of Alternatives
	Drawbacks of higher-level applications

	Necessary libraries
	FUSE
	Encryption
	Testing
	Options parsing
	Space for improvement

	Design and Architecture
	Using FUSE in C++
	Architecture
	Modularity
	Access to VFS features
	Architectural overview

	Preparation
	Cross-platform build System
	Platform-Specific Challenges

	Gitlab CI
	Testing

	Docker

	Implementation
	Essential FUSE Operations
	Operations for the Base VFS

	Encryption
	Versioning

	Evaluation
	Usability
	Reliability and Security
	Performance
	Feature overview

	Conclusion and Future Work
	Bibliography
	Installation
	Usage

