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Abstract:
This bachelor thesis explores 27Al NMR spectra in zeolite MFI and investigates the

impact of several factors on the chemical shielding values, including water loading, tem-

perature, and the relative positions of aluminum pairs. Various machine learning-based

methods for calculating chemical shift are evaluated. Molecular dynamics simulations

with neural network potentials are used to simulate experimental conditions. Neural

network potentials offer a highly efficient means of calculating energy with a significant

speed-up of approximately 1000 times faster than density functional theory, while main-

taining a high level of accuracy. This study is the first to examine 27Al NMR under

operando conditions, with a focus on the experimentally relevant amount of water.

Keywords:
27Al NMR, machine learning, zeolites, MFI, operando conditions, neural network poten-

tials

Abstrakt:
Tato bakalářská práce zkoumá 27Al NMR spektra v zeolitu MFI a zkoumá vliv několika

faktorů na chemické stínění, včetně obsahu vody, teploty a relativních poloh hliníkových

párů. Hodnoceny jsou různé metody výpočtu chemického posunu založené na strojovém

učení. Molekulové dynamické simulace s využitím neuronových sítí jsou použity k si-

mulaci experimentálních podmínek. Neuronové sítě nabízejí vysokou účinnost výpočtu

energie s významným zrychlením, asi 1000krát rychlejší než teorie funkcionálu hustoty,

při zachování vysoké úrovně přesnosti. Tato studie je první, která zkoumá 27Al NMR za

operando podmínek, s důrazem na experimentálně relevantní množství vody.

Klíčová slova:
27Al NMR, strojové učení, zeolity, MFI, operando podmínky, potenciály založen=neuronových

sítí
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1 Introduction and Motivation

Zeolites are highly useful microporous aluminosilicate structures employed in diverse in-

dustrial applications, such as catalysis, adsorption, or separation. ZSM-5 is one of the

most widely utilized zeolites in the petrochemical industry, serving as a catalyst for hy-

drocarbon transformations. The catalytic activity of zeolites is primarily determined by

their chemical composition, with structural characteristics such as the shape of the chan-

nels, the accessible pore volume, or the position of aluminum atoms within the framework

also contributing to their catalytic properties. Specifically, the chemical composition of a

zeolite plays a vital role in determining its suitability for different types of catalysis. The

substitution of silicon atoms with aluminum atoms in the framework generates a negative

charge that must be compensated by cations, including H3O+, Co2+, or Na+. The type

of compensating ion can also influence the properties of the zeolite.1

The position of aluminum atoms within the zeolite framework plays a crucial role in

determining the catalytic properties, therefore it is essential to identify a reliable method

for assigning aluminum atoms to specific sites within the structure. X-ray crystallography

is unable to effectively distinguish between aluminum and silicon atoms, which limits its

usefulness for this purpose. Several studies have proposed the use of nuclear magnetic res-

onance (NMR) as a viable approach for aluminum siting and structure determination.2–5

Solid-state NMR spectra are notoriously difficult to interpret due to broadened signals

and significant signal overlap. To gain a better understanding of these spectra, theoretical

calculations of NMR parameters are necessary. Theoretical studies using first-principles

calculations and molecular dynamics (MD) simulations can provide valuable insights into

the behavior of zeolites. Due to the large size of unit cells in zeolites, theoretical elec-

tronic structure calculations are computationally demanding. The widely used density

functional theory (DFT) method is routinely used for single structures or for very short

dynamical simulations but may not be adequate for studying dynamic effects properly.

A cost-efficient alternative to DFT are machine learning (ML) techniques such as neural

network potentials (NNP), which can significantly accelerate not only dynamical calcu-

lations but also property predictions, such as NMR shielding values.6,7

The study of 27Al NMR spectroscopy can provide detailed information about the local
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environment of aluminum atoms in the zeolite framework, which is useful for understand-

ing zeolite properties such as adsorption or catalysis. Multiple studies have attempted to

assign experimental spectra to specific positions in the framework.4,5,8 Figure 1 indicates

that there is inconsistency in the calculated chemical shifts among the three studies,

which aimed to assign the experimental 27Al NMR to specific T-sites in ZSM-5.

Figure 1: Calculated chemical shifts of 24 T-sites in ZSM-5 reported by three studies
with different calculation methods. Blue points are data reported by Dib et al.,8 orange

from Holzinger et al.5 and green from Sklenak et al.4

Standard DFT computations offer valuable information about the interpretation of

spectra. However, they rely on approximate models, which are constructed based on

numerous assumptions, such as neglecting the presence of water molecules or charge

compensating cation. Therefore the experimental conditions are not fully replicated. The

present thesis aims to evaluate the feasibility of assigning T-sites to their corresponding

peaks in experimental 27Al NMR spectra and to also address the mentioned limitations by

testing several parameters that are commonly overlooked in the theoretical calculations

of 27Al chemical shifts. Specifically, the effects of water loading, temperature, and the

presence of Al pairs are examined to determine their impact. This is achieved by utilizing

NNP and other ML derivated techniques allowing highly efficient MD simulations at

operando conditions.
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2 Theoretical Introduction

2.1 Zeolites

Zeolites are crystalline structures that consist of tetrahedral units TO4, where the T-atom

can be either silicon or another heteroatom such as gallium, titanium, or more commonly,

aluminum. This thesis considers only the aluminum atoms as the heteroatoms in the

lattice. Positions, where either silicon or aluminum atoms are located, are called T-sites

and are crystallographically distinguishable. The number of T-sites varies depending on

the type of zeolite framework. The position of aluminum atoms in a zeolite structure can

have an impact on its properties, which has been demonstrated experimentally, such as

in the case of the methanol-to-olefins reaction in ZSM-5.9 Zeolites are composed of TO4

tetrahedra that form cavities and channels with diameters up to 20 Å. These channels can

have different shapes and sizes, which make zeolites excellent for shape-selective catalysis.1

The International Zeolite Association (IZA) database lists a total of 248 distinct zeolite

structure types that have been identified and characterized so far.10

In zeolites, the introduction of aluminum atoms creates a tetrahedral AlO�
4 unit, which

possesses a negative charge that must be compensated by a cation. When this cation is

a proton (H+), it can form an acidic group Si-(OH)-Al known as a Brønsted acid site

(BAS). Such a BAS is depicted in Figure 2 and such zeolites are termed acid(ic) zeolites.

When water molecules are present within the zeolite structure, the proton that is bound

to oxygen may dissociate from the framework and generate an H3O+ cation. This acidic

property plays a significant role in various industrial applications of zeolites.1

The number of aluminum atoms in the framework is limited by the Löwenstein rule,11

which states that the two aluminum atoms must be separated at least by one silicon

atom. As a result, the minimum Si/Al ratio in zeolites is equal to 1. However, there is

no defined upper limit for the Si/Al ratio and it can theoretically be infinitely high.

2.1.1 MFI

The IZA database provides a three-letter abbreviation for each zeolite framework.10 The

MFI type framework is widely used in various industries, such as petrochemistry, gas
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Figure 2: BAS in two states – not solvated proton (left) and solvated proton creating
H3O+ (right). Oxygen is labeled with red color, aluminum with purple, silicon with

yellow and hydrogen with white.

purification, and the reduction of NOx. ZSM-5, an MFI type zeolite, is widely regarded

as one of the most useful zeolites due to its capability to isomerize hydrocarbons in oil

processing.1 The MFI framework is considered to be one of the most intricate types

of zeolite structures made up of pentasil units and containing at least 12 distinct T-

sites. The framework is formed through the arrangement of these units into a pentasil

chain, as illustrated in Figure 3.1 MFI can adopt a structure with either an orthorhombic

or monoclinic symmetry, which determines the number of distinct T-sites. All T-sites

depending on cell symmetry are displayed in Figure 4.

Figure 3: Building units of MFI framework type – pentasil unit (left) and pentasil chain
(right).1

Figure 5 illustrates the complete MFI framework which consists of multiple channels,

including the largest one with a circumference of 10 T-atoms. The unit cell of MFI has
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Figure 4: T-site labels located in MFI at orthorhombic (red) or monoclinic (blue) cell.12

an accessible volume of almost 10 %,10 which can be utilized to calculate the optimal

number of water molecules that can fit in its channels. Based on the assumption that

the density of water is 1 g · cm�3, the optimal water loading for MFI zeolite would be

17 water molecules per unit cell, given that the total volume of the MFI zeolite cell is

approximately 5300 Å3.

Figure 5: MFI framework displayed from two different angles.1,10
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2.2 NMR

Nuclear magnetic resonance is based on the principle that certain nuclei possess spin

I. The spin gives rise to 2I + 1 degenerate spin states. The application of a constant

magnetic field causes the degeneracy to be split into multiple energy states. The nuclei

experience an effective magnetic field Beff that depends on their chemical surroundings

and is described by the following Equation (1):

Beff = B0(1� �), (1)

where � is the shielding constant and B0 is the applied magnetic field. Information about

the local environment can be extracted from the chemical shielding through the manipu-

lation of the nuclear spin. The absolute measurement of chemical shielding is challenging,

and thus, chemical shift is used instead as a relative measure in parts per million (ppm)

with respect to a known compound as a reference. Different chemical environments re-

sult in different chemical shifts. For instance, the chemical shift of aluminum in zeolites

depends on the coordination number. For aluminum in a tetrahedral configuration, the

chemical shift is around 60 ppm, whereas for octahedral coordination, it is around 0 ppm,

and for an aluminum with the coordination number of five, it is around 20 ppm.1

27Al nucleus has spin 5
2 , which means that it is a quadrupolar nucleus. Therefore the

spectral peaks are broadened due to the quadrupolar interaction, which can be described

by two parameters. The magnitude of this interaction is denoted by the coupling constant

CQ, while the asymmetry of the interaction is characterized by the asymmetry parameter

⌘.

Symmetric environments usually have lower values of CQ, which leads to a smaller

broadening of NMR signals.1 The electron distribution around NMR-active nuclei is typ-

ically non-spherical, causing the shielding to depend on the orientation of the molecule.

In solid-state NMR, shielding is represented by a 3⇥3 matrix-shaped tensor � displayed

in Equation (2):13
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� =

0

BBB@

�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

1

CCCA
, (2)

where x, y, z are the spatial axes with z being parallel to magnetic field B0. The

shielding tensor is commonly described by two values: the isotropic chemical shift and

the asymmetry.13 The isotropic shielding �iso, which determines the position of NMR

peaks, is calculated by Equation (3):

�iso =
1

3
(�xx + �yy + �zz). (3)

Asymmetry ⌘, which dictates the shape of peaks in NMR spectra, is defined by Equa-

tion (4):

⌘ =
�xx � �yy

�zz + �iso
. (4)

2.2.1 NMR in zeolites

Solid-state NMR is a valuable technique to gain insight into the local structure of elements

in solids, such as zeolites. Specifically, 29Si NMR is a useful tool to investigate silicate

materials, as it can provide information on the Si-O-Si angles, which are known to directly

correlate with chemical shifts. 17O NMR is mainly used to study the catalytically active

sites in zeolites, as the oxygen atoms in the framework act as the acidic centers.14

Several studies have proposed that 27Al NMR spectroscopy can be utilized to identify

and assign aluminum atoms to distinct T-sites in zeolite structures.2–5 Numerous research

papers have reported the successful assignment of specific T-sites to different peaks in
27Al NMR spectra in zeolites such as ZSM-54 or FER.3 Most studies that have calculated

the 27Al chemical shift in zeolites have done so without considering the presence of a

counter ion that would compensate for the negative charge of the AlO�
4 unit. Instead, a

uniform positive background charge is assumed. It has been suggested that the solvated

countercations do not interact with AlO�
4 tetrahedra and that neither the solvent nor the

countercations affect the shielding.4

Experimental NMR is typically not performed on dehydrated zeolites because they
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produce broad spectral peaks. Without water, the acidic proton cannot solvate, which

causes the Al-O bond to stretch and produces a strong quadrupolar interaction.15 This can

make NMR features invisible or difficult to discern. Figure 6 displays the experimental
27Al NMR spectra of zeolite H-ZSM-5 at different hydration degrees.16 In addition to

neglecting the presence of water and countercations, various assumptions are commonly

made in the evaluation of chemical shielding in computational studies, such as relying

on a single minimal energy structure that is expected to represent the system of interest

fully. However, the validity of these assumptions is not fully established, and some have

already been challenged.7,17

Figure 6: Experimental 27Al NMR spectra of zeolite H-ZSM-5 at different water
loadings. Two major peaks are observed corresponding to Al atoms at different

coordination environment.16

One of the most influential studies on 27Al NMR was conducted by Lippmaa in 1986.

This study proposed a simple linear correlation between aluminum chemical shifts and
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average Al-O-Si angle displayed in Equation (5):18

�CS(Al) = �0.50 · ↵(Al-O-Si) + 132 ppm (5)

where �CS(Al) is the chemical shift of aluminum and ↵(Al-O-Si) is the angle between

atoms Al-O-Si (i.e., TOT angle), which is typically between 130 � to 150 �. This method

of calculating chemical shifts has been used in numerous articles.5,19 The validity of

a simple linear correlation between TOT angles and the 27Al chemical shift has been

debated, particularly for highly siliceous zeolites, suggesting Si/Al ratio also plays a role

in chemical shifts.4,17 Also, the research has shown that another aluminum atom can

cause a change in the chemical shift of up to 4 ppm.20

The correlation between the TOT angle and aluminum chemical shift has been theo-

retically explained. As the TOT angle increases, the hybridization of the oxygen atom

changes, resulting in an increase in the s orbital component and a contraction of bonding

orbitals. This causes an increase in electron density on aluminum and oxygen atoms,

leading to an increase in chemical shielding and a decrease in chemical shift.21 It has

been suggested that the bond distance between aluminum and oxygen does not have a

significant effect compared to the TOT angle.21

2.3 Machine learning and potential energy surface sampling

Machine learning (ML) is a subfield of artificial intelligence that involves the use of

algorithms to analyze and learn from data, in order to make predictions based on patterns

in the data. There are two main types of machine learning: supervised learning and

unsupervised learning. In supervised learning, a model is trained using data that contains

both input and output values (labels), while unsupervised learning is trained using only

input values.22 Among the popular machine learning algorithms are neural networks and

kernel ridge regression (KRR). ML techniques have been increasingly utilized in various

fields, including data processing,23 healthcare24 or in scientific research including sampling

of the potential energy surface (PES).25

The total potential energy of an atomic system can provide information about many

of its properties. Local minima in the PES correspond to (meta)stable atomic struc-
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tures, such as pristine or defective zeolites and surfaces. The curvature of the PES

correlates with the force constants and vibrational and phonon frequencies, while sad-

dle points on the surface correspond to the activation energies of chemical reactions

and phase transitions.22 Due to the high computational cost of calculating the PES

with ab initio methods, particularly for large systems or molecular dynamics simula-

tions, neural network-based methods have been developed to model the PES with similar

accuracy.26

Neural networks are a type of machine learning algorithms that are inspired by bio-

logical neurons. They consist of multiple layers, including an input layer (e.g., molecular

structure) and an output layer (e.g., potential energy), with several hidden layers in be-

tween. These layers consist of interconnected modules, known as neurons, which process

inputs from the previous layer. The inputs are processed using parameters, weights, and

activation functions.25 Neural network potentials (NNP) are machine learning models

that are trained to model the PES of atomic systems with ab initio accuracy. They are

trained using data from density functional theory (DFT) calculations, and can only be

as accurate as the reference DFT method used to train them. NNPs have found use in

simulations of large systems, such as zeolites, with energy errors as low as a few meV per

atom.6

Kernel ridge regression (KRR) is a supervised machine learning method that combines

the ridge regression algorithm with the kernel trick. Ridge regression is a method used to

estimate model coefficients that fit the training data best. These coefficients are estimated

by minimizing the cost function, which consists of the sum of squared residuals and a

regularization term with parameter � and the square of model coefficients. The cost

function is displayed by the following Equation (6):

kX

i=1

(yi � ŷi)
2 =

kX

i=1

(yi � w · xi)
2 + � · w2, (6)

where yi is reference value of training data, ŷi is the predicted value, w represents model

coefficients, xi is the input value of training data (features), k is the total number of

samples in the training set and � is a parameter determining the bias. An optimal � is

determined by grid search to achieve the best possible trade-off between model variance
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and bias. The kernel trick is a method used to perform linear regression by mapping the

original features to a higher dimensional space. This method allows for more complex and

flexible models to be constructed. The transforming of the data is illustrated in Figure 7.

KRR has gained popularity in the scientific community due to its simplicity and flexibility.

It has been widely used for predicting material properties from descriptors, as well as

generating density functionals.22 KRR has also been shown to perform competently in

calculation of solid state NMR parameters in aluminosilicate glasses.27

Figure 7: Visualization of the kernel trick. (a) original set of data and (b) transformed
data into higher dimension separable by a hyperplane.22

2.4 Density functional theory

The stationary Schrödinger equation is a fundamental tool for determining the properties

of an atomic system. There are three popular approximations to solving this equation:

Hartree-Fock (HF) method, post-HF methods, and Density Functional Theory (DFT).

The (post)-HF methods rely on 3N variables, where N represents the number of electrons,

while DFT depends on only three spatial variables. Due to their high computational cost

scaling at least as O(N3), HF and post-HF methods are not always practical for large

systems, such as zeolites. Therefore, DFT has become a popular method for calculat-

ing electronic structure and atomic properties. DFT employs the electron density as a
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substitute for many-electron wave functions. The electron density ⇢ is defined by Equa-

tion (7):28

⇢ (r) = N

Z
dr2

Z
dr3 . . .

Z
drN | (r, r2, . . . , rN)|

2 (7)

where  is the wavefunction, N is the number of electrons and r is a spatial variable. The

validity of using electron density instead of many-electron wave functions in calculating

atomic properties is justified by the Hohenberg-Kohn theorems.29

The energy of a system, EDFT, can be calculated by expressing it as a function of

electron density, which can be mathematically represented by Equation (8):28

EDFT = TS [⇢] + Ene [⇢] + J [⇢] + Exc[⇢], (8)

where TS is the kinetic term, Ene is the potential energy term between nucleus and

electron, J is the Coulomb term and Exc is the exchange-correlation functional. The

terms TS, Ene, and J in the Equation (8) can be calculated exactly, while the exchange-

correlation functional term Exc cannot be precisely determined. Various DFT methods

differ in their approaches to calculating this Exc functional. It is worth noting that we

tacitly assumed the validity of the Born-Oppenheimer approximation, which assumes

that the nuclei are stationary due to their much larger mass compared to electrons.

2.5 Molecular dynamics

Molecular dynamics is a simulation method used to study the behavior of many-body

systems, implementing the evolution of the atomic system according to laws of motion

described by Newton. While this method can be applied to most systems, it is important

to consider quantum effects when dealing with light atoms or high-frequency vibrational

motion.30

The molecular dynamics algorithm can be simplified into several steps. Firstly, the

forces acting on each atom are computed by evaluating the interaction potentials. To

improve the efficiency of the simulation, a cut-off radius is introduced, which limits the

number of interacting atoms. Then the forces are numerically integrated using Newton’s

second law of motion and the Verlet algorithm to propagate positions and velocities of

atoms in time. The total kinetic energy of the system fluctuates which changes the
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instantaneous temperature. The temperature is a function of the velocity vi and mass

mi of each atom and can be defined using Equation (9):30

T =
NX

i=1

miv2i
kBNf

, (9)

where kB is the Boltzmann constant and Nf are the degrees of freedom which can be

calculated as 3N � 3 with N being the number of atoms. To replicate experimental

conditions, it is essential to maintain a constant temperature during molecular dynamics

simulations. Several thermostats have been developed for this purpose, including the

Berendsen, Andersen, and Nosé-Hoover thermostats.30
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3 Methods

3.1 Creating the models

The MFI structure was obtained from the IZA database,10 and its unit cell parameters

were adjusted to the values that have been demonstrated to be optimal for the framework

containing aluminum.31 Optimal cell volume was determined by the lowest energy model.

Modified cell parameters are:

a = 20.20 Å

b = 19.85 Å

c = 13.22 Å.

These parameters result in a total volume of 5300 Å3. Using Materials studio,32 one

silicon atom was replaced with aluminum and a hydrogen atom was manually added to

the oxygen atom bound to the aluminum, creating a Si-O(H)-Al group that represents a

Brønsted acid site (BAS). The MFI unit cell contains 12 distinct T-sites, each connected

to four oxygen atoms, resulting in a total of 48 possible BAS. For models with a lower

Si/Al ratio, the same modeling procedure was followed as for the unit cell containing one

aluminum atom.

Water molecules were manually placed to provide immediate access to the BAS for

low water loading (i.e., 1-3 water molecules). For higher water content, the Sorption

module in Materials Studio32 was used with the COMPASS27 force field to place the

water molecules.

3.2 Calculation details and NNP

Neural network potentials (NNP) were employed to perform molecular dynamics sim-

ulations and geometry optimizations. These potentials were developed specifically for

zeolite systems containing water molecules, and were constructed using the SchNetPack

library33 written in the Python programming language.34 The training and testing data

for the neural networks were obtained using DFT employing the exchange-correlation

functional SCAN+D3.35 The Python library Atomic Simulation Environment (ASE)36

was utilized to analyze structural features, such as the positions of framework atoms and

water molecules.
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3.3 Optimization of geometry

Three optimization algorithms (BFGS, FIRE, and MDMIN) were evaluated to determine

the optimal method for geometry optimization. BFGS was found to offer the best per-

formance and was therefore used for all subsequent geometry optimizations. To achieve

convergence, a maximum force threshold of 1 meV·Å�1 per atom was applied. A radius

cutoff of 6 Å was used to limit the interaction range included in the calculations. The

optimizations were conducted under constant volume conditions.

3.4 MD simulation

The MD simulation was performed for a time period of 1 ns with a time step of 0.5 fs. To

facilitate the analysis of various structural characteristics, a snapshot of the system was

saved every 100 steps, leading to a total of 20 000 structures per one 1ns simulation. The

Nosé-Hoover thermostat was employed to maintain a temperature of 350 K throughout

the simulation.37 The radius cutoff was set at 6 Å. The simulation was conducted in the

NVT ensemble, where the number of atoms, temperature, and volume were held constant.
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4 Results and discussion

4.1 Solvation and adsorption energy

The role of proton solvation is significant in 27Al NMR as keeping the proton bound to

the framework leads to the broadening of spectral peaks, thereby making it difficult to

interpret the experimental spectra. In this thesis, solvation is defined as follows: the

proton is considered solvated when the distance of oxygen from the water molecules to

the proton Rw is smaller than the distance of oxygen from the framework to the proton

Rf. The distances mentioned in the solvation definition can be visualized in Figure 8.

Figure 8: Visualization of the distances used in solvation analysis, where Rw represents
the distance between the oxygen of water molecule to the proton, and Rf represents the

distance of the framework oxygen to the proton.

The solvation percentage was determined using Equation (10):

Solvation[%] =
Nsolv

Ntotal
· 100 %, (10)

where Nsolv is the number of structures in which the proton is solvated and Ntotal is the

total number of structures generated from the MD simulation. This value can be used to

estimate the acidity of specific Brønsted acid sites (BAS), as the acidic BAS have higher

solvation percentages. The solvation can be a valuable parameter for investigating the

energy of water adsorption. Water adsorption energy Eads is the amount of energy that
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is released when a water molecule is adsorbed onto the zeolite framework. This energy

can be calculated using Equation (11):

Eads = Efr,w � Efr � Ew, (11)

where Efr,w is the potential energy of a zeolite system with a water molecule, Efr is

the energy of the framework without water molecule and Ew is the energy of the water

molecule in a gas phase. Figure 9 shows the relationship between the adsorption energy

and the solvation percentage of all possible BAS with 1 Al atom per unit cell. This corre-

lation is consistent with previous studies, which state that BAS with higher acidity have

more exothermic adsorption energy,38 justifying the use of the solvation as an important

parameter of the model.

Figure 9: Adsorption energy dependence on solvation percentage for the model with
1 water molecule and 1 Al per unit cell.
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4.2 Chemical shift models and their performance

There are multiple methods to calculate chemical shift, each with varying levels of ac-

curacy and computational cost. The most computationally expensive approach is to use

ab initio methods, such as DFT, to calculate chemical shift. Although this is a very

accurate method, the high computational cost makes it unsuitable for employing it for

large number of structures. In contrast, a simpler method was proposed by Lippmaa,18

which relates the TOT angle with the chemical shift, as described in the Equation (5).

Several alternative methods for calculating chemical shift have been developed beyond

the Lippmaa method. These include the 2-parameter equation (2p), as denoted in Equa-

tion (12), the 5-parameter equation (5p), as denoted in Equation (13), based on bond

lengths d and bond angles ↵:

� = 180.60 · d(Al-O) + 0.80 · ↵(Al-O-Si) + 64.15 ppm (12)

� = 185.34 · d(Al-O) � 15.6 · (max[d(Al-O)]� min[d(Al-O)]) + 2.94 · d(Al-Si)

+ 0.73 · ↵(Al-O-Si) � 1.40 · ↵(O-Al-O) + 209.33 ppm,
(13)

and the Kernel Ridge Regression (KRR) approach.7 To transform chemical shielding �

into chemical shift �, a calibration Equation (14) was used:7

� = �1.110 · � + 609.7 ppm (14)

To assess the reliability of various methods for calculating shielding, they were compared

with results obtained from DFT using PBE functional. Due to the high computational

cost of DFT calculations, only a limited number of structures were selected for a testing

set. Specifically, the testing set comprised structures with a single aluminum atom per

unit cell, and for each water loading (0, 1, 2, 3, and 17 water molecules per unit cell),

two Brønsted acid sites (BAS) were chosen to cover the entire range of chemical shifts

obtained from the KRR calculations. The chosen BAS are listed in the Table 1. For

each selected BAS, 10 structures were selected from the MD trajectory with equal time

intervals between them, resulting in total of 100 structures in the testing set. The testing

set includes structures that contain O4 oxygen, which exhibit high instability when a
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water molecule is introduced to the framework, as it cannot be solvated due to its in-

traframework hydrogen bond with the framework oxygen and its position which prohibits

the access of a water molecule. This property of O4 oxygen causes the KRR method to

significantly overestimate chemical shift values compared to DFT calculations, with an

offset of approximately 8 ppm. However, the trend in chemical shift values obtained from

the KRR method is relatively consistent with DFT calculations, as shown in Figure 10.

The overestimation could be attributed to the absence of similar configurations to O4 in

the KRR training set.

Table 1: Selected BAS for each water loading to test the accuracy of the different methods

Water loading 1st BAS 2nd BAS

0 T4O4 T6O10
1 T9O21 T7O18
2 T9O15 T7O18
3 T9O15 T7O17
17 T9O15 T11O16

To evaluate the performance of each model, the error was calculated as the absolute

difference between the chemical shift obtained from DFT and that predicted by the model.

The mean absolute error (MAE) for each water loading is summarized in the Table 2.

Figure 10: Comparing different chemical shifts calculation method with DFT for T4O4
BAS without water with MAE values in ppm.
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Table 2: Mean absolute error in ppm of methods compared to DFT at different water
loadings

Water loading Lippmaa 2p 5p KRR

0 4.01 2.34 2.21 5.61
1 3.19 1.60 2.06 1.84
2 3.63 1.11 1.74 1.18
3 3.96 1.85 2.04 1.32
17 3.03 1.90 2.13 1.27

The high error of KRR for lower water loading can be explained by reviewing the

testing structures for each chosen BAS individually. Selected testing structures are shown

in Figure 11. Despite the high error associated with the chemical shift calculated from

KRR, it exhibits similar trends to the DFT-calculated chemical shifts with an average

offset of approximately 2-3 ppm. However, this offset diminishes at higher water loading.

At the maximum water loading of 17 water molecules per unit cell, KRR surpasses all

other methods by more than 0.5 ppm.

The two and five parameter equations have been found to be more accurate in cal-

culating chemical shift compared to the simple correlation between chemical shift and

TOT angle proposed by Lippmaa.18 This observation indicates that the chemical shift of

tetrahedral Al atoms in zeolite framework is influenced not only by the TOT angle but

also by the Al-O bond length. These findings contradict a study done by Liu et al.21 that

suggests that bond distance is not as significant as TOT angle in determining chemical

shift. However, the KRR method has been demonstrated to be the most reliable method

for calculating chemical shift for hydrated zeolites. Hence, the KRR method is employed

for computation unless stated otherwise.
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Figure 11: Chemical shifts for individual testing structures for a specific BAS at
different water loadings with MAE values in ppm. BAS and water loading (from top):

0 water molecules/UC, BAS T6O10
1 water molecule/UC, BAS T7O18

17 water molecules/UC, BAS T9O15
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4.3 Time-averaging chemical shift values

Calculating chemical shift typically involves obtaining a single structure that is expected

to correspond to the ground state of the structure, which is the arrangement of atoms

that corresponds to the global minimum energy state on the potential energy surface.

This is expected to be achieved by optimizing the geometry of the reasonable initial

structure chosen by the expert. To verify the validity of this approach, all structures

in the molecular dynamics (MD) simulation of a model without water and with 1 Al

atom per unit cell at 350 K were locally optimized using NNP, and the chemical shift

was calculated using the 2-parameter equation. Figure 12 shows the chemical shift of the

optimized structures as a function of time during the MD simulation.

Figure 12: Chemical shift of the locally optimized structures of the MD trajectory of a
model without water and with 1 Al atom per unit cell at 350 K.

The calculated chemical shift of locally optimized structures is highly dependent on the

starting structure, and thus it cannot be reliably reproduced. These results are consistent

with what has been proposed by Hoffman et al.39 for MFI zeolite.

In contrast to using local optimization to obtain structures and calculate their chemical

shifts, a plot of the computed chemical shift over time was generated using the entire MD

simulation of the same system. This plot is shown in Figure 13. Although the chemical

shift values vary over a wide range, the moving average value remains relatively constant.
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Figure 13: Chemical shift over time of the MD trajectory with moving average with a
window size of 25 ps. The average value of chemical shift is 62.14 ppm and the standard

deviation of the moving average values is 0.66 ppm.

4.4 Effects of different factors on chemical shift

4.4.1 Water loading

Chemical shift was investigated at various water loadings, including 0, 1, 2, 3, or 17 water

molecules per unit cell. The 17 water molecules represent hydrated zeolites, which were

determined based on the accessible volume of MFI zeolite from the IZA database10 and

the required amount of water molecules to achieve a water density of 1 g · cm�3. This

amount of water molecules is consistent with the findings of Holzinger et al.,5 who reported

a water loading of 15 ± 1 water molecules per unit cell in their experimental investigation

of H-ZSM-5 sample with a Si/Al ratio of 50.

There are four oxygen atoms connected to every T-atom in the zeolite framework,

resulting in four possible Brønsted acid site (BAS) configurations for every aluminum

atom. The distribution of BAS populations is governed by the Boltzmann probability

distribution, which states that the most stable configurations are the most likely to be

populated. The probability of each configuration can be calculated using Equation (15):

pi
pj

= e
(Ej�Ei)

kBT , (15)

where pi is the probability of a state i with energy Ei, kB is the Boltzmann constant and
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T is the temperature.

By calculating the Boltzmann probability factor for all four BAS configurations and

normalizing them so the sum of Boltzmann probability factors is equal to one, a nor-

malized Boltzmann probability factor is obtained that was used to average the chemical

shift values of the different BAS configurations. This Boltzmann averaging of the four

BAS configurations connected to each T-atom yields a single value for the chemical shift,

which is expected to be a valid approximation of the experimentally measured value for

a specific T-site.

The plot presented in Figure 14 shows the variation in chemical shift values as a

function of water loading for all twelve T-sites. The high chemical shift values observed

in the dehydrated state (i.e., at 0 water molecules per unit cell) can be partially explained

by the offset of the KRR method at low water loading, as demonstrated in section 4.2.

This is made evident by examining the results from the other methods, as shown in the

Figure 15, where it can be observed that there is no general decrease in chemical shift

from 0 to 1 water molecule. In Table 3 are values of chemical shift for each water loading

from different methods of calculating chemical shift.

Figure 14: Boltzmann averaged values of chemical shift for each T-site in the MFI
framework with 1 Al atom per unit cell and different water loadings. The chemical shift

was calculated by the KRR method.
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Figure 15: Chemical shift values for each T-site in the MFI framework with 1 Al atom
per unit cell and different water loadings. The chemical shift was calculated by different

methods: Lipppmaa, 2p and 5p.
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Table 3: Average values of chemical shift with ranges in ppm at different water loadings
from different methods

Water loading Lippmaa 2p 5p KRR

0 60.1 ± 2.2 65.4 ± 3.6 66.4 ± 3.3 63.8 ± 1.9
1 60.1 ± 1.7 66.1 ± 3.1 66.7 ± 2.9 62.9 ± 1.4
2 60.3 ± 1.4 67.5 ± 2.6 67.6 ± 2.5 63.6 ± 1.9
3 60.0 ± 1.6 67.4 ± 2.9 67.4 ± 2.8 63.3 ± 1.7
17 59.5 ± 1.6 67.1 ± 2.8 67.0 ± 2.8 62.0 ± 1.7

The most significant change in chemical shift calculated by KRR is observed between

models with 3 and 17 water molecules per unit cell. This change can be attributed to

the increasing number of water molecules, as solvation percentages of 3 and 17 water

molecules are practically the same, both with over 99 %. This observation suggests a

connection between the number of water molecules and chemical shift for all T-sites.

However, the magnitude of this connection varies for each specific T-site, indicating that

the effect of the number of water molecules on chemical shift is site-dependent. Other

methods for calculating chemical shifts do not exhibit this effect, as can be seen from

Figures 15 and Table 3. However, they are less robust than KRR in this range of water

loading, as shown in section 4.2.
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4.4.2 Al pairs

The introduction of an additional aluminum atom within the zeolite framework may

result in the formation of an aluminum pair. The aluminum pair is characterized by two

aluminum atoms in close proximity to one another, to the extent that they can interact

and influence each other. However, if these two atoms are positioned at a sufficient

distance, their behavior will resemble that of isolated aluminum atoms.40

The T-atom closest to the aluminum atom is referred to as the nearest neighbor,

followed by the next-nearest neighbor and so on. However, the closest two aluminum

atoms can only be in a next-nearest neighbor (NNN) position due to the Löwenstein

rule,11 which prohibits the nearest neighbor position. The relative positions of aluminum

pairs with NNN and next-next-nearest neighbor (NNNN) positions are illustrated in

Figure 16.

Figure 16: Al pair in the NNN positions (left) and NNNN position (right) in one ring.

To investigate the effect of introducing an additional aluminum atom to the framework,

a total of 20 models containing aluminum pairs were created. At least one of the T-site

in each model was T12, which was selected due to its position at the intersections of

channels and its reputation as the most stable position for aluminum atoms in the MFI

framework.12 The T12O8 BAS was selected as the initial BAS due to its stability across
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various water loadings. Subsequently, an additional aluminum atom was inserted into the

framework at either the next-nearest-neighbor (NNN) or the next-next-nearest-neighbor

(NNNN) position relative to the initial T12O8 BAS. This resulted in the creation of

12 NNN and 8 NNNN aluminum pairs. Each pair was then loaded with varying numbers

of water molecules per unit cell, specifically 0, 1, 2, 3, or 17 water molecules.

The KRR method was employed to calculate the chemical shift of each aluminum

atom. The resulting T12 aluminum chemical shift was plotted as a function of the

distance between aluminum atoms, as shown in Figure 17. In the dehydrated model,

the chemical shift change can be as large as 3 ppm, and it is more prominent in NNN

aluminum pairs. A similar trend is observed for all water loadings. Dědeček et al.20

also reached a similar conclusion, reporting that the change in the chemical shift in the

Al-Si-Al pair can be as high as 4 ppm.

Figure 17: Calculated chemical shift of the aluminum at T12 position being part of the
aluminum pair for 0 (left) and 17 (right) water molecules per unit cell. Black line

represents chemical shift value for isolated T12O8. Blue data points are from NNN
pairs and red are from NNNN pairs.

There appears to be no direct correlation between the interatomic distance separating

aluminum atoms and their chemical shifts, as the chemical shift can vary in either a

positive or negative direction. Furthermore, the magnitude of the chemical shift alteration

appears to be distinct for each individual aluminum pair.
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4.4.3 Temperature

The effect of temperature is often neglected in studies that calculate 27Al chemical shift

because the calculations are typically based on structures at the minimum of the potential

energy surface (PES). Temperature effect was investigated on the 27Al chemical shift

in the T5 position of the framework. The temperature range of 250 K to 500 K was

considered with a step of 50 K. The T5 position was selected due to its high stability

and location at the intersection of the channels. All possible BAS were modeled and

subjected to MD simulations at different temperatures with varying water loading. The

chemical shift of different BAS was averaged using the Boltzmann probability distribution

at various temperatures. The results are presented in Figure 18 that illustrates the

chemical shift as a function of temperature.

Figure 18: Chemical shift of aluminum at T5 position at different temperatures for
different water loadings.

In the absence of water molecules, the zeolite model exhibits negligible changes in

chemical shift with temperature. The largest change is observed between 300 K and

350 K, where the chemical shift increases by negligible 0.2 ppm. Similarly, for the model

with 1 water molecule per unit cell, the chemical shift remains almost constant across the

temperature range. However, for the models with higher water loadings of 2 and 3 water

molecules, a significant and steady decrease in chemical shift is observed with increasing

temperature. The model with 17 water molecules per unit cell exhibits a general decrease

in chemical shift with a slight increase from 450 K to 500 K.
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The observed phenomenon may be partially explained by variations in the solvation

percentage with temperature. Figure 19 depicts the relationship between temperature and

solvation percentage for various water loadings. For the model with 1 water molecule, the

solvation percentage exhibits a slight increase of less than 1 %, which is a negligible change

and could be due to small simulation errors. In contrast, for the model with 2 water

molecules, the change in solvation percentage is significant, decreasing by more than 30 %

from 250K to 500K. A similar trend is observed for the model with 3 water molecules,

although the change is not as pronounced. The proton in the 17 water molecules per unit

cell model remains fully solvated throughout the entire temperature range.

Through the comparison of the solvation and chemical shift dependencies on temper-

ature shown in Figure 18 and Figure 19, it is observed that there are similar trends,

indicating a direct correlation between the solvation percentage and chemical shift. It

can be concluded that the temperature effect can be disregarded for dehydrated zeolites

and models with only one water molecule per unit cell, as any change in chemical shift

is solely due to the change in solvation. However, the observed decrease in chemical shift

with increasing temperature in the models with 17 water molecules cannot be explained

by solvation effects. This is because at such high water loadings, the proton is essen-

tially fully solvated at all temperatures, rendering the applied definition of solvation less

informative in explaining this observed trend.

The relationship between the solvation effect and chemical shift is complex, as the for-

mer is primarily determined by the number of water molecules present in the unit cell. As

previously noted in section 4.4.1, the chemical shift decreases with an increasing number

of water molecules, which is contrary to the presented effect of solvation percentage on

the chemical shift.

The observed solvation effects on the chemical shift are specific to a given BAS and

cannot be generalized to all BAS with 1 Al atom per unit cell or even to BAS connected

to one T-site. The lack of correlation between solvation percentage and chemical shift

for all BAS supports this conclusion. A plot of chemical shift as a function of solvation

percentage for 1 water molecule per unit cell systems is presented in Figure 20. This

suggests that other factors, such as the local environment and position of the Al atom,

play a stronger role in determining the chemical shift than the solvation effect alone.
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Figure 19: Solvation dependence on temperature for 1, 2 and 3 water molecules per unit
cell.
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Figure 20: Chemical shift dependence on solvation percentage for all possible BAS with
1 Al atom per unit cell in MFI. BAS are colored based on what T-site they are

connected to.

4.5 Comparing to experiment

As described in section 2.2, the experimental NMR measurements can only be obtained

from fully hydrated zeolites. Therefore, to attribute the experimental NMR peaks to

specific T-sites, the calculated chemical shifts at hydrated zeolites are considered. The

chemical shift values for each T-site at water loading of 17 water molecules per unit cell

calculated by the KRR method are provided in Table 4.

Table 4: Computed chemical shift for each T-site in hydrated zeolites using the KRR
method.

T-site �(17w) [ppm]

T1 61.33
T2 60.79
T3 62.23
T4 60.91
T5 62.29
T6 61.79

T-site �(17w) [ppm]

T7 60.37
T8 61.17
T9 63.75
T10 61.56
T11 60.31
T12 61.04

27Al is a quadrupolar nucleus, resulting in a significant broadening of spectral peaks

in ZSM-5. Full line widths are ranging from 0.9 to 2.3 ppm at 14.1 T.5 The broadening
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and overlapping of signals make it difficult to assign each experimental signal to a specific

calculated chemical shift value obtained by the KRR method. This is due to the fact

that most T-sites would exhibit overlapping signals, with the exception of T9, which has

the highest chemical shift value.

Numerous research studies have attempted to assign experimental NMR peaks to

specific T-sites by utilizing Lippmaa’s correlation between TOT angle and chemical shift

in Equation (5).2,5,19 The chemical shifts at 17 water molecules per unit cell calculated by

the Lippmaa’s approximation are in Table 5. Despite the existence of some signal overlap,

experimental NMR peaks could be assigned to a small group of T-sites, according to

these results. Holzinger et al.5 also reached a similar conclusion by employing Lippmaa’s

correlation and angles obtained from X-ray diffraction to calculate the 27Al chemical

shift for each T-site. They assigned experimental 27Al NMR peaks to a groups of T-sites

through this method. However, as demonstrated in section 4.2, chemical shift calculated

solely from the TOT angle is not appropriate for the determination of 27Al chemical shift.

Table 5: Computed chemical shift for each T-site in hydrated zeolites using the Lippmaa
method.

T-site �(17w) [ppm]

T1 59.50
T2 60.57
T3 60.42
T4 57.87
T5 60.48
T6 59.26

T-site �(17w) [ppm]

T7 59.41
T8 58.42
T9 61.11
T10 60.25
T11 58.51
T12 59.40

Holzinger et al.5 and Sklenak et al.4 are the only studies that have computed chemical

shift values for every T site and compared them to experimental 27Al NMR in H-MFI

type zeolites. Both studies performed their calculations and measurements on H-ZSM-5.

Therefore a direct comparison of the calculated chemical shift values by KRR method

is not feasible due to the fact that ZSM-5 has a monoclinic cell structure. This is in

contrast to the orthorhombic cell structure of MFI, which contains only 12 T-sites as

opposed to ZSM-5’s 24 T-sites. To compare the results from their experimental data to
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the results obtained by KRR, one can examine the range of chemical shift values. The

range of experimental values provided by Sklenak is about 10 ppm in H-ZSM-5, while

Holzinger’s work provides a range spanning approximately 6 ppm. The acquired range

from combining MD simulation with the KRR method of calculating chemical shift is

approximately 3.5 ppm, as displayed in section 4.4.1. One can relate the high range

of experimental values from Sklenak’s study to the low Si/Al ratio in their samples.

Although the authors stated that their samples did not contain aluminum pairs based

on the use of Co2+ exchange experiments, it is highly unlikely that this is the case. The

Co2+ exchange method is effective only when the aluminum atoms are located within the

same ring, thereby allowing for the possibility of NNNN pairs being present.41

To test the hypothesis that the high range of experimental values provided by Sklenak

may be attributed to the low Si/Al ratio in their samples, a series of 45 models were

constructed. These 45 models contained randomly placed aluminum atoms with Si/Al

ratios ranging from 15 to 23 and were subsequently loaded with 17 water molecules per

unit cell, to accurately mimic the conditions of hydrated experimental samples. The

resulting range of calculated chemical shift values was found to be 11 ppm, which closely

approximates the experimental range reported in Sklenak’s study. Based on these findings

it is suggested that high range of experimental 27Al chemical shift can be attributed to

presence of close Al atoms in the framework, especially for low Si/Al models.

Holzinger et al.5 have conducted a thorough study using ZSM-5 samples with a Si/Al

ratio of 140, which has a high probability of containing only isolated Al atoms. The range

of experimental values observed was slightly over 6 ppm, which is closer to the 3.5 ppm

reported in this thesis. However, the higher range reported in Holzinger’s work may still

be attributed to a small presence of aluminum pairs.
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5 Conclusion

The comparative analysis of the performance of various methods of calculating chemical

shift with respect to the reference DFT values demonstrated the superior performance

of the 2-parameter equation over the simplistic correlation between the TOT angle and

chemical shift originally proposed by Lippmaa.18 These results suggest that the bond

length of aluminum and oxygen is a crucial factor in determining the chemical shift of
27Al NMR in zeolites, contrary to findings from Liu et. al.21 However, the most advanced

machine learning approach, the KRR method, was found to outperform all other tested

methods for hydrated zeolites by more than 0.5 ppm. For lower water loadings, the

experimentally less important scenario, the KRR performance deteriorates, however, it

does exhibit similar trends to DFT with some offset that is dependent on both the BAS

and water loading.

The data revealed that the quantity of water present in the zeolite system has an

impact on the observed chemical shift, with the magnitude of the effect varying depending

on the specific T-site. This observation strongly suggests that the presence of water

molecules has a significant impact on the local aluminum environment, contradicting one

of the rationales for using a background charged and dehydrated models.4

It was proposed that for lower water loadings (i.e., 0-3 water molecules) 27Al chemical

shift is not directly affected by temperature, but rather through solvation percentage,

which is observed to decrease with increasing temperature. In addition, it has been shown

that in the fully hydrated zeolite framework the 27Al chemical shift generally decreases

with increasing temperature. This behavior cannot be attributed to solvation change with

temperature, as at high water loadings (i.e., 17 water molecules per unit cell), the proton

is fully solvated at all temperatures. Other factors, such as water dynamics or proton

mobility, may contribute to this observed phenomenon and require further investigation

for a complete understanding.

The Si/Al ratio has been demonstrated to play a crucial role in the determination of

chemical shift values, as the presence of a pair of aluminum in the unit cell can cause a

change in the chemical shift value by more than 3 ppm from the value for a single isolated

aluminum.

41



The comparison to the previous experimental and computational studies is not

straightforward as H-ZSM-5 zeolite is commonly used in these studies, which has a

different symmetry than MFI. Further, comparing to experimental chemical shift values

can be challenging due to the possibility of the presence of aluminum pairs in experi-

mental ZSM-5 samples. Hence, it is concluded that the full assignment of calculated

chemical shift values to experimental measurements is expected to be difficult due to

the narrow separation between the calculated chemical shift shifts, which would lead to

spectral overlap in the experimental data.
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