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Abstract: Multi-Model database systems combine the advantages of traditional
and NoSQL database systems. However, the management of these systems is
challenging, as users have to design an appropriate storage strategy for their
data. One of the most influential factors in the storage strategy is the selection of
indexes. Indexes can significantly improve query performance, but they require
additional storage space and maintenance overhead. Index selection problem
is well-studied in the context of single-model Database Management Systems
(DBMSs), but there is a lack of research in the context of multi-model database
systems.

We address this problem by conducting a survey of current state-of-the-art index
selection algorithms and evaluating their applicability to other DBMSs. The
results reveal the strengths and weaknesses of existing algorithms and highlight
the need for specialized algorithms for multi-model database systems. Moreover,
we formulate open questions and suggest future research directions in this field.
Our research provides a foundation for the development of efficient index selection
algorithms for multi-model DBMSs.
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Introduction
The way we store and access data has been changing rapidly over the past few
decades. At first, data was stored in traditional single-node relational databases,
which were designed to handle normalized and structured data. Developers had
to first define the schema of the data and then store it in a structured manner.
However, as the amount of data grew, these databases became too slow and
expensive to scale. Additionally, the need to store denormalized and unstructured
data, such as logs and multimedia data, emerged. This led to the development of
NoSQL databases, which were designed to handle unstructured data and scaled
very well. Parallel to this, many new data models and their underlying DBMSs
emerged. They were designed to handle specific types of data and were often
more efficient at handling that data than other DBMSs.

In recent years, the amount of data generated by various applications and
devices has grown exponentially, resulting in the need for even more advanced
and sophisticated database systems. If developers want to handle their data
efficiently, they need to combine different data models in a single system, i.e.,
they have to deal with so-called multi-model data. Therefore, multi-model DBMSs
have been emerging in recent years.

Multi-model databases are designed to support multiple data models against
a single, integrated backend. Their benefits include storing and accessing data of
different types and consolidating cross-model operations. Modern organizations
are in need of multi-model databases as they process a large amount of data
from various sources and several forms. With these benefits, however, comes the
challenge of designing an appropriate storage strategy. Vigorous research has
been conducted in the field of multi-model databases to find the optimal storage
strategy for given multi-model data [1, 2, 3, 4].

Although choosing the right combination of data models is critical to database
performance, it is not the only factor affecting the performance of DBMS. In-
dex and materialized views selection are other important factors for optimiz-
ing database performance [5]. Index selection involves creating the appropriate
indexes on database attributes to speed up queries and improve performance.
Materialized view selection means precomputing frequently executed queries to
eliminate repetitive computation. Other essential management methods include
database partitioning, which involves dividing a database into smaller, more man-
ageable sections, and query optimization, which involves reorganizing queries to
improve performance. Using these management methods, organizations can op-
timize database performance to meet the demands of their modern workflows.

This thesis focuses solely on index selection and its applicability to multi-
model data. It is a well-studied problem in the field of single-model databases [6,
7, 8, 9, 10, 11] and its influence on the DBMS performance is significant.

Index selection used to be managed by database administrators and required
full-time attention to maintain a satisfactory database state. There has been a
great effort to automate the index selection in recent years. Various index selec-
tion algorithms have been developed, and their performance has been constantly
improving [6].

With the rise of multi-model databases, the index selection problem has be-
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come even more complex and requires even more human involvement. We believe
that MMDBMS management needs a new level of abstraction to optimally select
indexes to maximize its performance.

The main objectives of this thesis can be summarized as follows:

• Analysis of indexing in various DBMSs First, we analyze the most popu-
lar DBMSs, describe their use cases, and compare their typical workloads.
Next, we conduct a comprehensive analysis of indexing strategies these
DBMSs use. We mainly focus on the index types they support and the
data structures they use to implement these indexes.

• Analysis of existing approaches As index selection is already a well-studied
problem in the context of relational databases [6], we first analyze the cur-
rent state-of-the-art algorithms and select the ones that might be suitable
for multi-model data. The algorithms we study vary in their approach,
implementation, and complexity. We also consider machine learning-based
algorithms, which are currently inferior to the other algorithms, but are
extremely promising for the future development of index selection algo-
rithms [5].

• Verification of their broader applicability We consider the applicability of
the selected algorithms to other DBMSs. We also compare the algorithms
and suggest the most promising ones for each database system. In case the
algorithms are not applicable, we analyze the reasons and formulate ideas
for their improvement.

• Definition of open questions Finally, we formulate open questions and chal-
lenges for future research of index selection in multi-model DBMSs.

Outline First, in Chapter 1, we explain popular data models and their underly-
ing DBMSs. We compare the data models based on their real-world applications,
typical queries, advantages, and disadvantages. We also compare the DBMSs
based on their support for different index types. Then, we describe the modern
methods for working with multi-model data and explore the differences between
them. Next, in chapter 2, we describe the index selection problem and its com-
plexity. We also introduce theoretical concepts that are essential for understand-
ing index selection algorithms in a broader context. In Chapter 3, we describe the
current state-of-the-art index selection algorithms and group them according to
their approach, namely machine learning, integer linear programming, and greedy
algorithms. we then compare the selected algorithms based on their applicability
to other data models, the number of supported index types, and the complexity of
the algorithm. Finally, in Chapter 4, we formulate challenges and open questions
for future work in the field of multi-model DBMSs and index selection.
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1. Review of popular database
systems
There exist hundreds of DBMS [12]. Each serves a variety of purposes and is
suitable for different data. If we want to apply the index selection algorithms
to multi-model DBMSs, we need to understand the database systems, supported
data models, their characteristics, and how indexes are used to optimize query
performance.

This chapter will introduce the most popular data models used in multi-model
and NoSQL database systems. In particular, we will describe relational, graph,
key-value, document, and columnar models. For each model, we will provide a
brief overview of real-world applications, typical queries, and how they implement
indexes. We will also select a representative DBMS for each model and specifically
describe its index implementation. Finally, we will compare the different DBMSs
in the context of the data they work with and the index types they use.

1.1 Use of indexes in database systems
A database index is a data structure used to quickly locate data without searching
unnecessarily large portions of the database. This benefit comes at the cost of ad-
ditional write complexity and storage space to maintain the index data structure.
Most modern database systems implement indexes to let developers speed up
their queries and manage their data as efficiently as possible. As popular DBMSs
use different data models, the indexes they use differ as well. Some DBMSs use
them to quickly find relationships between entities, some to find specific values
instantly, and others to enforce strict constraints. The most common use cases
for indexes include fast lookups, data aggregation, sorting, and range queries.

1.2 Relational database systems
The relational model is the most popular data model in the world [12]. It is ideal
for storing normalized and structured data, where information can be organized
into tables with columns and rows. This type of data, for example, includes
financial records, inventory lists, customer information, and more. More gener-
ally, relational databases are ideal for keeping the data consistent (i.e., ACID
transactions are supported) and well-organized.

Typical queries in the relational model involve selecting specific data from one
or more tables, joining multiple tables, filtering data based on certain criteria,
grouping, and aggregating data. Various types of indexes are used for this pur-
pose, including B-trees, hash indexes, and bitmap indexes [13]. Namely, B-trees
are used for range queries and sorting data, hash indexes for fast lookups in large
tables, and bitmap indexes for handling data with boolean operations.

Three representative DBMSs that support the relational model are, e.g.,
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MySQL1, Oracle2, and PostgreSQL3.

Indexes in PostgreSQL PostgreSQL provides several indexes, each with its
own characteristics and use cases. In particular, it supports B-tree, hash, GiST,
GIN, and SP-GiST indexes [14]. B-tree is the default index type used for indexing
simple data types, such as integers, floats, and timestamps. It is well-suited for
range queries and sorting data. The Hash index is used for indexing simple
equality queries on fixed-length data types such as integers. It is implemented
as a hash table, allowing fast lookups for exact matches. However, it does not
support range queries and sorting. GiST index is used for indexing geometric and
text data types and implementing full-text search. GIN index is used for indexing
arrays and composite types, as well as for implementing full-text search. Last but
not least, SP-GiST index is used for efficient range queries on multidimensional
data types such as geographic coordinates and time-series data.

1.3 Graph database systems
The graph database system is a particular NoSQL database designed to store
and manage data in the form of nodes and edges (i.e., graph), allowing for effi-
cient management and querying of complex relationships. Graph databases excel
at managing and querying data that has complex relationships, such as social
networks, recommendation engines, and fraud detection systems. They are also
useful for storing data that is constantly changing and evolving.

Typical queries in a graph database include finding the shortest path between
two nodes, identifying patterns in the data, and recommending related nodes
based on common attributes. The advantages of graph databases include high
performance for complex queries and the ability to add or modify relationships
and properties without changing the entire schema. In graph databases, the rela-
tionships are not calculated at query time but are stored as physical connections
between nodes, allowing for faster and more efficient queries that traverse the
relationships between nodes without the need for complex join operations.

The design of graph databases offers a great selection of various indexes [15].
Indexes can be created on node or edge attributes. They can be created on a
single property or multiple properties. Lastly, they can be optimized for range,
exact match, or text queries. Hence, multiple data structures are needed to
support these index types. Graph databases usually use B+ trees, hash tables,
and inverted indexes.

The most popular DBMS implementing the graph model is Neo4j4.

Indexes in Neo4j Neo4j supports range, lookup, text, point, and full-text in-
dexes [15]. It automatically creates lookup indexes for node and edge labels to
eliminate the need to search through all entities when executing a query. Fig-
ure 1.1 illustrates the possible index types in Neo4j. As we can see, only the

1https://www.mysql.com/
2https://www.oracle.com/database/
3https://www.postgresql.org/
4https://neo4j.com/
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node property edge property

single property composite

lookuptext pointfull-text range

Figure 1.1: Possible index properties in Neo4j

lookup and range indexes can be created on multiple properties. The range index
is the most flexible type. It can be used for exact match, range, and sorting
queries. Point indexes only solve predicates operating on points, such as distance
or bounding box queries. The text index is optimized for predicates based on pre-
fixes, suffixes, and other text operations. Full-text index, as the name suggests,
is used for full-text search.

1.4 Key-value database systems
The key-value model is the simplest model for storing data. Each piece of data
is stored as a (key, value) pair, with the key acting as a unique identifier and
the value containing the actual data. It is used for storing semi-structured or
unstructured data, such as user profiles, session data, or shopping cart data. The
advantages of key-value models include faster read and write operations (e.g.,
in-memory), scalability, and the ability to handle large volumes of data with low
latency.

Typical queries in the key-value model involve retrieving specific values based
on their keys, updating or deleting values, and performing basic operations such
as incrementing or decrementing values.

Each key in a key-value DBMS is like a primary key in a relational database
system. In this case, keys are represented as hash tables, allowing fast retrieval of
stored values. In other data models, to query attributes other than the primary
key, users need a secondary index. In the case of key/value model, the values
are typically considered as black boxes, and the only way to query them is by
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assigned keys. The key lookups are usually instantaneous, hence there is no or
very little need for secondary indexes. However, some key-value databases do
support secondary indexes, but users must explicitly define them [16].

The most popular representatives of key-value DBMSs are Redis5 and Riak6.

Indexes in Redis As opposed to other key-value databases, in Redis, values
can contain more complex data types, such as lists, geospatial, and sorted sets.
These values are then more likely to be queried on attributes other than their
keys. Hence, the need for secondary indexes arises. Redis uses hash tables for
primary indexes and sorted sets for secondary indexes. There is no automatic
way to create a secondary index in Redis; the user must explicitly define it by
implementing a new sorted set of the indexed attributes [16]. The sorted list then
maps each attribute to a set of primary keys whose values match the attribute.

1.5 Document database systems
The document model represents data in hierarchically structured aggregates (doc-
uments), which are self-contained units of information. DBMSs that use the doc-
ument model are ideal for storing unstructured or semi-structured data, such
as JavaScript Object Notation (JSON) [17] or eXtensible Markup Language
(XML) [18] formats. In the industry, document DBMSs are used for content
management, social media, and internet of things (IoT) applications. The docu-
ment model allows for flexible schema design and can easily accommodate changes
in data structure over time [19].

Typical queries in the document model involve selecting specific documents
based on their fields, filtering data based on specific values, and sorting doc-
uments based on certain criteria. The advantages of these queries include the
ability to handle complex and dynamic data, faster read and write operations,
and theoretically unlimited scalability.

The most common index types used in the document-oriented DBMSs are
single field, compound, and multi-key indexes [20, 21]. In particular, single field
indexes are used to exact match queries on a specific field and compound in-
dexes to query on multiple fields. Both single field and compound indexes are
represented as B-trees. On the other hand, Hashed indexes are used to look up
data in large collections efficiently and are represented as hash tables. Finally,
document-oriented DBMSs also utilize full-text indexes (e.g., inverted index),
geospatial indexes, and multi-key indexes.

Two representative document-oriented DBMSs are MongoDB7 and Couch-
base8.

Indexes in MongoDB MongoDB is a distributed database system, therefore
the data is stored across multiple nodes. This allows MongoDB to scale horizon-
tally and handle large amounts of data and traffic. As for indexes, several types

5https://redis.io/
6https://riak.com/
7https://www.mongodb.com/
8https://www.couchbase.com/
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are supported, including single field, compound, multi-key, geospatial, text, and
hashed indexes [20]. Moreover, hashed indexes support sharding using shard keys
to determine how the data is partitioned across the cluster [22].

1.6 Columnar database systems
Unlike traditional row-based (relational) models, the columnar model represents
data by column. Rows then correspond to a collection of columns, and tables (also
known as column families) are represented as a collection of rows. Thus, each
row does not need to have the same set of columns as opposed to the relational
model. The columnar database systems are well-suited for storing large amounts
of structured data, such as financial data or log files.

Typical queries in the columnar database systems involve selecting specific
columns and filtering data based on specific values. The advantages of using
the columnar DBMSs for these queries include faster read and write operations,
improved compression and data storage, and the ability to scale horizontally by
adding more servers.

As systems that use the column model are usually distributed databases, their
index architecture differs from other single-node databases. Primary indexes are
comprised of a partition key and a clustering key. The partition key determines
which node the data is stored on, while the clustering key determines the order of
data within a partition. Secondary indexes are hidden tables whose primary key is
the indexed column and whose other columns are the primary key of the original
table and some metadata depending on the index type. Secondary indexes are
co-located with the source data on the same nodes [23]. The partition keys are
represented as hashed tokens, and the indexed column values are stored in B+
trees.

The most popular representatives of columnar database systems are Apache
Cassandra9 and HBase10.

Indexes in Cassandra As Cassandra is heavily optimized for write opera-
tions, it indexes data using Log-Structured Merge Trees (LSMT) [24]. LSMT
might not be as efficient as a B+ tree for read operations, but it can write data
in constant time [25]. Cassandra does not support multi-column indexes, and
indexed columns are not supposed to have high cardinality [26, 27]. Hence, sec-
ondary indexes are not that common in Cassandra. It is more common to modify
the database schema to make it more suitable for the queries being executed.

1.7 Multi-Model data
Multi-model data combines variously logically represented data into a single
dataset. Multi-model data is becoming increasingly common as organizations
generate and store large volumes of diverse data types. For instance, a social
media platform may need to store user profiles using a relational model, the re-
lationships between users using a graph model, and user-generated content using

9https://cassandra.apache.org/
10https://hbase.apache.org/
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a document model. There are generally two approaches to storing multi-model
data: polyglot persistence [28] and multi-model databases [29].

Polyglot persistence Polyglot persistence is an approach that involves using
multiple database systems to store multi-model data [28]. These databases are
then managed by database administrators, who are responsible for ensuring that
the data is stored and managed correctly. The advantages of polyglot persistence
include the ability to use the best-suited storage technology for each type of
data, improved scalability, and better performance. On the one hand, it requires
additional effort and complexity in the design and management of the system. It
may also increase development and maintenance costs.

Multi-model database systems Multi-model DBMSs are designed to sup-
port multiple data models against a single, integrated backend [29]. The system
can automatically process multi-model data without the need for manual inter-
vention. Data is consistent and can be queried by a single (possibly extended)
query language that supports querying across all involved data models. One of
the disadvantages of multi-model databases is that they are complex to design
and implement. Similarly to NoSQL systems, multi-model DBMSs are also quite
immature compared to traditional database systems, which means that they are
still evolving and may miss some features that are available in relational systems.

Two representatives of multi-model DBMSs are, e.g., ArangoDB11 and Ori-
entDB12.

Indexes in multi-model databases In a multi-model database system, in-
dexes work similarly to how they work in single-model databases. Based on
our observation, the most significant difference is that MMDBMS must support
a broader range of index types than single-model databases. The multi-model
system must support the main index types depending on the supported data
models to ensure efficient query processing. Another difference is that multi-
model databases require more complex query optimization to determine which
secondary index to use for a given query.

1.8 Comparison of selected database systems
Table 1.8 provides a comparison of selected popular DBMSs. Each data model
is represented by a single representative. As we can see, most of the modern
database systems are built to store semi-structured and unstructured data. This
trend is caused by the large volumes of data that is unfeasible to store in a
structured form. Relational (PostgreSQL) and columnar (Cassandra) DBMSs
are on the other hand designed to store structured data.

When it comes to indexing strategies, the DBMSs optimize for fast read oper-
ations with the exception of Cassandra, which takes into account write operations
as well. The most common index types are range and lookup indexes. They are

11https://www.arangodb.com/
12http://orientdb.org/
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Table 1.1: Comparison of different DBMSs

PostgreSQL1 Neo4j Redis1 MongoDB1 Cassandra

Model Relational Graph Key-value Document Columnar
Data type Structured Semi-structured,

unstructured
Semi-structured,
unstructured

Semi-structured,
unstructured

Structured

Indexed attribute Columns Node/edge
properties

Keys Fields Columns

Range indexes B-tree, SP-GiST B+ tree Sorted set B-tree LSMT
Fast lookups Hash, B-tree Hash, B+ tree Hash Hash, B-tree Hash
Composite indexes Yes Yes No2 Yes No
Text indexes Yes Yes No Yes Yes
Other indexes GiST, BRIN Point No Multi-key, Geospatial No

1 This DBMS supports multiple models; in our case, we consider it to represent the selected data model.
2 Neither secondary indexes nor composite indexes are supported in Redis. However, we can construct composite indexes using sorted sets.
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usually implemented using B-trees and hash tables, respectively. MongoDB, Post-
greSQL, and Neo4j support various index types ranging from geo-spatial to array
indexes. With a proper index selection, these DBMSs can efficiently process a
wide range of queries, but the complexity of the index selection process increases.
Another pattern that we can observe is the limited or non-existent support for
secondary indexes in columnar and key-value DBMSs. For these DBMSs, it is
recommended to modify the database schema instead of using secondary indexes.

Generally, the DBMSs share common indexing strategies, but they differ in
the implementation details and supported index types.
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2. Index selection problem
A proper selection of database indexes, referred as index selection problem (ISP),
can have a significant impact on the performance of the database system. When
chosen and used correctly, indexes can speed up query execution [6]. However,
selecting the right indexes requires careful consideration of the data model, query
patterns, and application workload. Adding too many indexes can slow down
write performance and increase storage requirements, while not having enough
indexes can lead to slow query performance. Therefore, it is important to carefully
evaluate the trade-offs between the performance benefits of indexes and their
associated costs in terms of storage and write performance. Much effort has been
put into automating the index selection process [9, 30, 8, 7, 10, 11].

However, the index selection is an NP-complete problem [31]. Finding the
optimal solution is, therefore, computationally expensive, and algorithms must
balance the solution’s quality and the time needed to find it. Not only is the set of
possible index combinations exponential, but indexes interact with each other, so
the benefit of one index is affected by the presence of another one [32]. This makes
the problem even more complex. Additionally, the benefit of an index can only
be computed by calling the database API, which is a time-consuming operation.
Despite these challenges, many algorithms achieve commendable results. We will
describe a selection of them in the next chapter.

2.1 Definitions & Notation
In this section, we introduce the basic definitions and notation that will be used
throughout the thesis. There are many different notations used in the literature,
therefore we use the notations that are most common in the papers we refer to.

Workload The set of queries that are executed on the database. Workload will
be denoted as W throughout the thesis.

Constrains In the context of index selection, constrains are the stop conditions
for the algorithms. They are usually defined as a storage budget, time limit or
the number of indexes. We denote a set of constrains as K.

Index candidate An index that is considered for the index selection. It is
usually picked from the set of all possible indexes by a heuristic that is applied to
the workload. A set of candidates which we denote as I is usually a subset of the
set of all possible indexes. Most of the time I is too big to satisfy the constrains
of the algorithms.

Configuration A set of index candidates, usually denoted as C. It represents
a possible index selection.

Cost A measure of the performance of a query. We will use the term cost to
refer to the execution time of a query. It is a function of the query and the

12



configuration. The units of the cost are usually milliseconds but it can be any
other unit. The cost for a query q and a configuration C is denoted as cost(q, C).

what-if call A call to the database optimizer that asks for the cost of a query
with a given configuration. The so-called virtual indexes are created and the
optimizer uses them to estimate the cost of the query.

Workload Monotonicity Let S1 be an arbitrary index set and S2 be a subset
of S1. Then for an arbitrary query q from the workload, it holds cost(q, S1) ≤
cost(q, S2).

Offline index selection The index selection is executed on presumably fixed
workload and database.

Online index selection The index selection is executed on a changing work-
load and database. It creates and drops indexes on the fly. Additionaly, it can
base its decisions on the past experience.

Query optimizer A component of the database management system (DBMS)
that is responsible for the query execution plan selection. It can approximate the
cost of executing a query with a given configuration.

Data partitioning A technique that is used to distribute the data across mul-
tiple machines in a cluster.

Inverted index An index that maps a value to a set of records that contain
the value. It is mostly used for efficient full-text search in text-based documents.
The implementation of an inverted index involves parsing and tokenizing each
document and creating a term-to-document mapping.

Horizontal Scaling A technique that is used to increase the performance of
a database by adding more machines to the cluster. Each machine then handles
a subset of the overall workload, potentially providing better efficiency than a
single high-speed high-capacity server.
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3. Index selection algorithms
After it had been proved that the problem is NP-complete [31], further effort in
this area was mostly shifted toward heuristic algorithms rather than algorithms
attempting to find the optimal solution [30, 8, 7, 33, 10, 11]. As a consequence,
modern index selection algorithms approximate the solution. However, it is also
hard to approximate the optimal solution [34]. Hence, the index selection problem
is continuously being researched and new algorithms are being developed.

3.1 General formulation of ISP algorithms
Despite the great variety of index selection algorithms, most of them share some
key traits. As illustrated in Figure 3.1, we can construct a general architecture
that will help us understand the main concepts and will be used to describe the
algorithms in the following chapters.

 

Workload analysis

Candidate selection

Configuration
enumeration &

evaluation

What-if 

Best  that
satisfies 

Database system

Query optimizer

Figure 3.1: General architecture of the index selection algorithms

As the efficient use of indexes depends on the queries executed on the database,
the queries are the main input of the index selection algorithms. The set of input
queries is called the workload. Additionally, the database systems that require
ISP algorithms are usually robust, and indexing all attributes is not feasible.
Therefore, the algorithms must also be able to handle constraints. There are
multiple ways to constrain the index selection process. The most common con-
straints are, for instance, the number of indexes, the index storage space, and the
algorithm execution time.

ISP algorithms then process the workload and analyze its contents. Based on
the analysis, they select a set of indexes that might improve the workload’s perfor-
mance. This set of indexes is called the candidate set. The candidates form sets
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called configurations. A configuration is a subset of the candidate set that satis-
fies the given constraints. It represents a possible solution to the index selection
problem. The configurations are then evaluated, and the best one is selected as
the final result. As enumerating through all the possible configurations is usually
not possible, the algorithms use heuristics to select the best configuration.

Heuristics differ based on the given constraints. Usually, the evaluation is done
by estimating the cost of the workload execution with the selected configuration.
In order to save time and not alter the state of the database, the algorithms
usually use what-if calls to the query optimizer to estimate the execution cost of
a query for the given configuration.

Although most algorithms use the same general architecture, they differ in
many aspects. The following sections introduce three groups of algorithms that
solve the index selection problem. Each group has a few selected representatives
that will be described in detail.

3.2 Linear Programming based algorithms
The main idea of the index selection problem is to minimize the query execution
cost by implementing appropriate indexes that satisfy the given constraints.

Let q ∈ W where W represents the workload. Let I be the set of index
candidates. The cost of the query q for a configuration C ⊆ I is cost(q, C).
Weight fq represents the frequency of the query q in the workload. To find the
optimal solution, the algorithm must consider all constraint-satisfying subsets of
the index candidates I and return the set whose cumulative cost is the lowest.

arg min
C

{
∑︂

q∈W

fqcost(q, C)|C ⊆ I}

Constraints such as the storage budget and the number of indexes can be easily
formulated by a set of linear inequalities. By selecting proper variables, the whole
model can be then interpreted as a linear program.

3.2.1 CoPhy
A representative of algorithms that solve the index selection problem by linear
programming is CoPhy [9]. CoPhy’s core is based on a binary integer program
(BIP). It works with multi-column indexes and allows multiple indexes per query.
CoPhy is originally built to be constrained by the storage space but the LP nature
allows us to use any kind of linear constraints. Index candidates are selected for
each query and then merged into a single set. The main difference between CoPhy
and other LP algorithms is the way it constructs its variables.

CoPhy considers configurations in the context of a query, i.e., multiple config-
urations are created for each query. In order to minimize the number of what-if
calls, configurations are set to be atomic. This means that each configuration
contains only one or zero indexes per table. The set of configurations for a query
q is denoted as Aq. Index candidates that belong to the same table Tj are grouped
together into a single set Sj. Binary variables xq,C indicate whether the given
configuration is used for the query q. Variables yq,j,s,C ensure the atomicity of the
configurations. Binary variables zi model whether a specific index i ∈ I is used.
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The program constraints ensure that the following four conditions are met: (1)
each query must use a single C. (2) C must be an atomic configuration. (3) Each
zi that is included in a used C must be set to 1, and (4) the storage constraint
must be satisfied as well. The size of an index i is denoted by size(i). The storage
budget is denoted as B. The model is represented by the equation illustrated in
Figure 3.2.

minimize: ∑︂
q∈W

∑︂
C∈Aq

xq,C · cost(q, C)

subject to: ∑︂
C⊆I

xq,C = 1 ∀q ∈ W

∑︂
i∈Sj∪I∅

yq,j,i,C = xq,C ∀q ∈ W, j ∈ T, C ∈ Aq

zi ≥ yq,j,i,C ∀q ∈ W, j ∈ T, i ∈ Sj ∪ I∅, C ∈ Aq∑︂
i∈I

zi · size(i) ≤ B

parameters:
W, Aq∈W , T, Sj∈T , B

variables:
xq,C ∈ {0, 1}, yq,j,i,C ∈ {0, 1}, zi ∈ {0, 1}

Figure 3.2: CoPhy binary integer program

CoPhy partly follows the general architecture of the index selection algo-
rithms. It generates index candidates per query using well-known heuristics from
the literature [35]. However, it creates configurations for each query separately.
The cost of a query is estimated by calling the query optimizer. The binary pro-
gram is then constructed and solved by a selected BIP solver. The modularity of
CoPhy is a great architectural choice. In case a module becomes obsolete, it can
be easily replaced by its superior version. CoPhy, along with other LP algorithms
guarantees optimal solutions for any storage budget at the cost of exhaustively
enumerating all relevant candidate combinations. Hence it is a good choice for
systems with a small number of index candidates. When using CoPhy on large
workloads, a strict candidate selection is required. Otherwise, the number of
configurations can be too large to be handled by the BIP solver.
Example 1. Let’s consider a simple database structure. As illustrated in Fig-
ure 3.3, we have tables Company and Building. The former table contains at-
tributes name, revenue and profit, and the latter table consists of attributes
city, street and price. Moreover, each one contains some basic information
that is then queried.

The workload consists of three queries:

1. SELECT * from Company WHERE profit <= 10 AND revenue > 20;

2. SELECT Name from Company WHERE revenue = 200;
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Company

name (String)

revenue (Integer)

profit (Integer)

Building

city (String)

street (String)

price (Integer)

Figure 3.3: Example database structure

3. SELECT count(*) from Company, Building where profit > price;

Cophy’s first module creates a set of index candidates for each query. The
sets are based on the columns used in the queries. The exhaustive list of indexes
that influence the query cost is used. { } represents a set of indexes, ( ) represents
a single multi-column index, and [ ] represents an atomic configuration. In this
particular case, the index candidates look like this:

• Candidates for q1: { (profit, revenue), profit, revenue }

• Candidates for q2: { revenue }

• Candidates for q3: { (profit, revenue), profit, price }

Hence, the set of candidates is:

I := {(profit, revenue), profit, revenue, price}

And the workload is:
W := {q1, q2, q3}

Cophy then constructs atomic configurations for each query:

A1 := {[], [profit], [revenue], [(profit, revenue)]}
A2 := {[], [revenue]}
A3 := {[], [profit], [profit, price], [price],

[(profit, revenue), price]}

We then compute costs for each candidate combinations (see Table 3.1 for A1,
Table 3.2 for A2, and Table 3.3 for A3) and the query it is used for. We used
PostgreSQL and executed the queries on 100000 rows in each table. The costs
are in milliseconds. Storage consumption are as listed in Table 3.4. The values
are in kilobytes. Finally, our storage budget B is 3000.

We then construct the BIP according to the model illustrated in Figure 3.2,
minimizing the execution cost while satisfying the budget constraint. If we set
the same weights for each query, the optimal solution would be: {price}. Even
though the profit is helpful in more queries, price lowers the cost the most in
Q3 which is the most expensive query.
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Table 3.1: Table of costs for A1

Configuration Cost

[ ] 35
[profit] 3
[revenue] 18
[(profit, revenue)] 2

Table 3.2: Table of costs for A2

Configuration Cost

[ ] 20
[revenue] 5

Table 3.3: Table of costs for A3

Configuration Cost

[ ] > 100000
[profit] 1985
[price] 1648
[profit, price] 1232
[(profit, revenue), price] 1762

Table 3.4: Table of storage consumptions
Index Storage consumption

revenue 920
profit 920
(profit, revenue) 2208
price 2100

3.2.2 Summary
There are multiple algorithms that solve the index selection problem using lin-
ear programming, namely CoPhy [9], Generalized Uncapacitated Facility Loca-
tion Problem (GUFLP) [36], and Integer Linear Program from Ailamaki et al.
(ILP) [37]. GUFLP, however, allows only a single index per query which makes
it unsuitable for modern workloads. ILP, on the other hand, is similar to CoPhy
but it creates substantially more variables which leads to a longer solving time.
Thus, CoPhy is the best-performing algorithm in this category [9].

3.3 Greedy algorithms
In modern database systems, the number of potential index combinations can be
prohibitively large, making it impossible to search the entire space of possible
index selections. To address this challenge, researchers have proposed various
greedy algorithms [30, 8, 7, 33]. These algorithms can produce results that are
close to the optimal solution while running significantly faster than the optimal
algorithms. Despite not being guaranteed to find the optimal solution, they
provide an efficient way to approximate the best index selection. Hence they are
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widely used in practice [7]. In this section, we explore the application of greedy
algorithms, including their characteristics, different types, and their limitations.

3.3.1 Drop heuristics
Drop heuristics [30] is one of the oldest index selection algorithms. It does not
guarantee the optimal solution but is fast and easy to implement. The main
idea behind Drop heuristics (see Algorithm 1) is to consider all possible index
candidates and then eliminate indexes that are not helpful for query processing.
It works in a series of iterations, where in each iteration, it drops the index that
contributes the least to the query processing performance. The main drawback
of this algorithm is that it only considers single-column indexes. The original
version drops indexes until there is no cost reduction in the workload execution
time. However, this is not suitable for modern, heavy-read workloads. Therefore,
a modified version of this algorithm has been introduced. It drops indexes until
a certain size of the index set is reached [6].

Algorithm 1: Modern Drop Heuristics
Input: W – list of queries (workload)

I – list of all index candidates
k – number of indexes to be selected

1 RESULT := I
2 while length of RESULT > k do
3 lowest_cost := ∞
4 index_to_drop := None
5 for index in RESULT do
6 cost := calculate_cost(W, RESULT − {index})
7 if cost < lowest_cost then
8 lowest_cost := cost
9 index_to_drop := index

10 RESULT := RESULT − {index_to_drop}
11 return RESULT

Example 2. Let’s consider the same database structure and workload as in Ex-
ample 1. Once again, we have two tables, namely Company and Building, and
queries q1, q2, and q3.

Drop algorithm starts with the exhaustive set of all index candidates:

I = {profit, revenue, price}

We want to select 2 indexes, i.e., k = 2. The algorithm 1 starts with the
candidate list I and iteratively drops the least helpful index until the desired
number of indexes is reached. The first iteration considers the configurations
listed in Table 3.5.

The configuration from Table 3.5 is then used by the calculate_cost function.
Algorithm 1 then greedily drops the least helpful index. In this case, it is revenue.
Hence the resulting index configuration is {profit, price}. The algorithm then
reaches the required index count and stops.
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Table 3.5: Costs for configurations of size |I| − 1
Configuration Q1 cost Q2 cost Q3 cost W cost

{profit, revenue} 3 5 1985 1993
{profit, price} 3 20 1232 1255
{revenue, price} 18 5 1648 1671

3.3.2 AutoAdmin
AutoAdmin algorithm [8] follows the general architecture of index selection al-
gorithms. The main difference is that it starts with single-column indexes and
then iteratively increases the index width until the required number of indexes is
reached or the cost of the index set cannot be reduced any further. AutoAdmin
architecture is shown in Figure 3.4. Although there are several versions of this
algorithm [38, 7], the original version uses the number of indexes as the main
constraint.
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Figure 3.4: AutoAdmin architecture

The algorithm (see Algorithm 2) first determines index candidates for each
query and then merges them into a single candidate set. The candidate selection
is implemented in Algorithm 3. The algorithm considers potential candidates for
each query, performs greedy enumeration and merges them into the final candi-
date list. The algorithm then greedily selects the best indexes from the candidate
set until the required number of indexes is reached or the cost stops decreasing (see
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Algorithm 2: AutoAdmin
Input: W – list of queries (workload)

max_index_count – number of indexes to be selected
max_naive – size of naive enumeration
max_index_width – maximum index width

1 P := {}
2 S := {}
3 for w ∈ [1, . . . , max_index_width] do
4 I := select_index_candidates(W , P )
5 S := enumerate_configurations(W , I)
6 if w < max_index_width then
7 P := S ∪ create_multicolumn_indexes(W , S)

8 return S

Algorithm 3: AutoAdmin – function select_index_candidates()
Input: W – list of queries (workload)

P – list of potential candidates
1 function select_index_candidates(W, P):
2 S := {}
3 for q ∈ W do
4 // Select only those candidates from P that belong to q
5 Pq := filter_candidates_for_query(P , q)
6 S := S ∪ enumerate_configurations(W , Pq)
7 return S

Algorithm 4). The second iteration of the algorithm uses the index set from the
previous iteration to build multi-column indexes of +1 width (see Algorithm 7).
To reduce the number of new multi-column candidates, only indexes from the
previous set can be the leading columns of the new multi-column indexes. In
addition to approximating the query cost, AutoAdmin uses two interesting tricks
to improve its performance. First, it uses a naive enumeration of index candi-
dates for small configuration sizes (see Algorithm 5). Second, in the candidate
selection phase, it uses the index selection algorithm itself to determine the best
candidates for a single query(see Algorithm 3). It then performs a union of them.

Algorithm 4: AutoAdmin – function enumerate_configurations()
Input: W – list of queries (workload)

I – list of index candidates
1 function enumerate_configurations(W, I):
2 temp_indexes := enumerate_naive(W , I)
3 indexes := enumerate_greedy(W , temp_indexes, I − temp_indexes)
4 return indexes

Example 3. Let’s have the same database structure and workload as in Example 1.
We would like to select two indexes for this structure (i.e., max_index_count =
2), and set the other parameters to max_naive = 0, max_index_width = 2.
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Algorithm 5: AutoAdmin – function enumerate_naive()
Input: W – list of queries (workload)

I – list of candidates that need to be enumerated
1 function enumerate_naive(W, I):
2 n := min(max_naive, |I|)
3 best_configuration := {}
4 best_cost := ∞
5 for i ∈ [1, . . . , n] do
6 for C ∈

(︁I
i

)︁
do

7 cost := calculate_cost(W , C)
8 if cost < best_cost then
9 best_configuration := C

10 best_cost := cost

11 return best_configuration

Algorithm 6: AutoAdmin – function enumerate_greedy()
Input: W – list of queries (workload)

I – list of already enumerated candidates
C – list of candidates that must be enumerated

1 function enumerate_greedy(W, I, C):
2 index_number := min(max_index_count, |I|)
3 best_index := None
4 best_cost := ∞
5 initial_cost := calculate_cost(W , I)
6 if length of I ≥ index_number then
7 return I

8 for index ∈ C do
9 cost := calculate_cost(W , I ∪ {index})

10 if cost < best_cost then
11 best_index := index
12 best_cost := cost

13 if best_cost < initial_cost then
14 C := C − {best_index}
15 I := I ∪ {best_index}
16 return enumerate_greedy(W , I, C)
17 return I

We start the algorithm by finding proper single-column index candidates. We
do that for each query independently:

• Candidates for q1: {profit, revenue}

• Candidates for q2: {profit}

• Candidates for q3: {profit, price}
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Algorithm 7: AutoAdmin – function create_multicolumn_indexes()
Input: W – list of queries (workload)

S – list of indexes on top of which we will build multi-column indexes
1 function create_multicolumn_indexes(W, S):
2 multicolumn_candidates := {}
3 for index ∈ S do
4 indexable_columns := get_indexable_columns(index.table())
5 indexable_columns := indexable_columns \ index.columns()
6 for column ∈ indexable_columns do
7 new_index := index ∪ {column}
8 multicolumn_candidates := multicolumn_candidates ∪

{new_index}

9 return multicolumn_candidates

Next, we make a union of all candidates and get the set of candidates I which
is {profit, revenue, price}. We then run the greedy algorithm to select the
best indexes from I. We can use the cost values from the Tables 3.1,3.2, and 3.3,
to compute the total cost of each index. Index profit achieves the cost of 2008,
index revenue achieves the cost > 100000, and index price achieves the cost of
1703. AutoAdmin selects the index price as the best candidate. We then run
the greedy algorithm again to select the second index. In this case, we select the
index profit. The total cost of {price, profit} according to Table 3.5 is 1255.

The algorithm then generates two-column candidates. We have a single can-
didate (profit, revenue). It does not lead to any greedy improvement, so by
another set of iterations, we get the final solution {price, profit}.

3.3.3 Anytime Database Tuning Advisor
Anytime Database Tuning Advisor (DTA) [7] is an extended version of AutoAd-
min. DTA also selects index candidates for each query but it does it once including
multi-column indexes. Then it considers indexes that might not be useful in the
context of a single query but might be useful in the context of the workload. Then
it greedily selects the most useful indexes. These indexes are then processed by a
combination of multiple greedy algorithms. Indexes are ordered by their benefits
so any time the process is stopped, the program returns the current best solution.

3.3.4 Extend algorithm
Extend [33] is one of the most recent greedy algorithms for index selection. It
criticizes the premature candidate pruning that occurs in the candidate selec-
tion step of the general architecture (Figure 3.1). Although the pruning makes
the algorithms faster, it usually leads to suboptimal selections, since the pruned
candidates may appear useful. Therefore, the Extend algorithm does not follow
the general architecture but uses a step-wise constructive approach. The pruning
of the candidates occurs as late as possible in order to maximize the chances
of finding the optimal solution. This approach allows the Extend algorithm to
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consider a larger pool of candidates and make better-informed decisions during
the selection process.

In each step of the algorithm, Extend considers adding a single-column index
to the current set of indexes S or extending one of the existing indexes in S
with a new attribute. It does so by calculating the ratio of the execution cost
and the memory consumption of the new index set. The original paper [33]
also considers the reconfiguration cost of the new index set, which is denoted as
R(S∗, S). In this context, S∗ is the new index set, and S is the current index set.
The reconfiguration cost is the cost of changing the current index set to the new
one. The final ratio for an index i is described by Equation 3.1.

R(S, ∅) +∑︁
q∈W cost(q, S) −∑︁

q∈W cost(q, S ∪ {i}) − R(S ∪ {i}, ∅)
size(S ∪ {i}) − size(S) (3.1)

The index that has the best ratio is added to the current set of indexes S.
The complete algorithm is shown here:

1. Start with an empty set S.

2. Find an index from the set of single-column candidates I that minimizes
the ratio of its cost and memory consumption. Add the index to the set S.

3. For each column in I and each element from S, consider the following
options:

(a) Add the index to the set S.
(b) Append the selected attribute from I to an element from S to form a

multi-column index.

This will result in a new set S∗.

4. From all S∗ sets created in step 3, select the set that maximizes the Ra-
tio 3.1. This set becomes the new S.

5. Repeat steps 3 and 4 until the budget is reached or no improvement can be
made.

This algorithm can also be used for online index selection. However, being
focused on offline index selection, we do not consider reconfiguration cost.
Example 4. We will once again use the example from Example 1. Let our storage
budget B be 3000.

Table 3.6: Table of single-column index candidates
Index candidate Total cost Storage size Benefit ratio

profit 2008 920 ∼ 107
revenue > 100000 920 ∼ 0
price 1703 2100 ∼ 46
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The algorithm first compares different benefit ratios of single-column index
candidates (see Table 3.6). The first selected index is profit. Other algorithms
would pick price because it minimizes the total cost. However, Extend prefers
indexes with a higher benefit per storage unit.

The current cost of S is 2008 and the current storage size is 920. So we move
to step 3, construct new index configurations, and compute the benefit ratios
relative to the current S (see Table 3.7).

Table 3.7: Benefit ratios of extended index candidate sets
Index candidate Total cost Storage size Benefit ratio

{profit, revenue} 1993 1840 0.02
{profit, price} 1255 3020 0.35
{(profit, revenue)} 2208 2022 -0.01

Although {profit, price} has the highest relative benefit ratio, it exceeds
the storage budget. Therefore, we select {profit, revenue} as the next index.
This leads to a suboptimal solution, since {price} would have been a better
choice.

3.4 Reinforcement Learning based algorithms
Reinforcement Learning (RL) is a branch of machine learning that focuses on
how an agent can learn to maximize its reward in a given environment. In RL,
an agent interacts with the environment and receives rewards or punishments
based on the actions it takes. In the index selection problem, we use query
costs to measure the performance of the system and sequentially improve the
performance by selecting new combinations of indexes. RL models can use these
costs to optimize decisions and adjust their behavior accordingly, making them
well-suited for the index selection problem.

3.4.1 NoDBA
Researchers from Saarland Informatics Campus introduce a deep reinforcement
learning (DRL) algorithm called NoDBA [10] that learns to select indexes for a
given workload. On a high level, it simulates the work of database administrators
(DBAs) who change the parameters of the database based on the rewards or
punishments they receive from the system. The main components of the DRL
algorithm are:

• Input to the neural network: workload and the current index configu-
ration

• Actions that agent can take: create a secondary index

• Reward function: total workload run-time improvement after adding the
index

• Hyper parameters: the number of hidden layers, neurons, iterations, etc.
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The essential part of the algorithm is the learning process (see Figure 3.5)
which uses the main ideas of RL. It is an iterative process where each step i is
described as follows:

1. Based on the workload and the current index configuration Ci, the neural
network predicts the next action a.

2. The predicted action a is applied to the current index configuration. A new
configuration Ci+1 is created.

3. Reward r is computed using the reward function f on the new configuration
Ci+i.

4. The neural network is trained using Ci, Ci+1, a and the reward r. The
program then returns to step 1.

Training

Figure 3.5: NoDBA learning process

Input to the network is represented as a matrix of size n × m where n is the
number of queries and m is the number of columns in the database. Each cell then
describes the selectivity of a column based on the current query. It is the ratio
of selected rows based on the column predicate versus the total number of rows
in the table where the column is located. If the query does not select a specific
column, the value is 1. The current index configuration is also included in the
network input and encoded as a bit list of size m. As could be already inferred, the
algorithm only considers single-column indexes. Although it is possible to encode
multi-column indexes, the combination of the current design and the increased
index width leads to extremely high learning times [11].

Limited experiments show that the algorithm performs well on highly selective
workloads [10]. It however does not scale well to bigger workloads and has many
limitations. For example, no support for multi-column indexes and long training
times. This was however the first paper to use RL for index selection, so it is a
good starting point for further research.
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3.4.2 Budget-aware RL algorithm
Despite the great complexity of ISP algorithms, the majority of their run-time
is spent on what-if calls. Experiments show that what-if calls take between 75%
and 93% of the total execution time of modern ISP algorithms [39]. Hence, there
has been a recent interest in budget-aware algorithms that can limit the number
of database optimizer calls. A novel paper uses reinforcement learning to select
indexes while satisfying the budget [11]. It works with the general architecture 3.1
of the cost-based index selection algorithm and focuses on rebuilding the candi-
date enumeration component. Therefore it assumes that index candidates are
already selected, and it only needs to select the best combination of indexes.

In order to lower the number of what-if calls, it uses an upper bound ap-
proximation of the actual query costs. The algorithm assumes that the index
configuration costs are monotone, thus the approximation is computed as the
minimum cost over all subset configurations of the current configuration. This
approximation is called derived cost:

derived(q, X) = min
X′⊆X

cost(q, X ′)

The main goal of the algorithm is to decide what configurations should be
approximated and what configuration costs should be calculated by the database
optimizer. The information about the known what-if costs is stored in the Budget
allocation matrix. It is a n × m matrix where n is the number of queries and m
is 2|I| − 1 where I is the set of index candidates. Cell with a value of 1 means
that the cost of the query q with the configuration X is known and 0 means that
the cost must be approximated.

To set values in the matrix the algorithm must find a balance between al-
locating the budget to configurations that contain the best indexes so far and
configurations that do not contain the best indexes but contain unexplored in-
dexes with similar costs. This problem is known as the exploration vs exploitation
dilemma and is solved by formulating it as MDP. The algorithm then uses MCTS
to find actions that maximize the expected reward.

MDP formulation is quite straightforward. States S are defined as all index
configurations in the search space. Precisely, it is a set of all subsets of the index
candidates I. Actions A(s) for a state s ∈ S, are defined by the missing indexes
in the current state. Hence, from a single state whose configuration size is k,
we can get to all index candidates subsets of size k + 1. As the transitions are
deterministic, transition probabilities P of the actions are set in this manner:
Pr(from state s by action a to state s ∪ {a}) = 1. The expected return
of a state s is the expected cumulative reward when starting from s and taking
actions according to some policy. The algorithm computes the expected return
as the expected percentage improvement of all configurations that contain the
indexes of the state s as a subset. The percentage improvement of a state s
represented by the configuration X is computed as:(︄

1 −
∑︁

q∈W derived(q, X)∑︁
q∈W derived(q, ∅)

)︄
× 100

The goal of RL is to find an optimal policy that maximizes the expected return
when starting from the initial state ∅.
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MCTS is then used to find the optimal action selection strategy. It is a
tree search algorithm that uses a Monte Carlo method to traverse the tree. A
part of the MCTS is based on a random sampling of the index candidates. The
authors’ implementation chooses actions randomly but assigns higher probability
to actions that have a lower average cost. To optimize the number of what-if calls
even more, the cost for a configuration X picked in an episode is approximated
by derived costs, and a what-if cost is called for only a single query q. The
probability of selecting a specific query is proportional to its derived cost. The
final cost is then:

cost(q, X) +
∑︂

q′∈W \{q}
derived(q′, X)

3.5 Comparison of the algorithms
All of the algorithms presented in this chapter were originally developed and
tested on the relational model. Our goal in this section is to list the key features
relevant to multi-model databases and determine which algorithms are suitable
for other data models.

Table 3.8 illustrates the comparison of the algorithms and their properties that
are relevant for multi-model databases. As we can see, most of the researched
algorithms belong to the greedy family since the index selection problem is NP-
complete, and searching for the optimal solution is not feasible [31]. One of the
crucial properties of the described algorithms is whether they follow the general
architecture 3.1. We can see a pattern across the table that the algorithms that
follow the general architecture are more flexible and can be easily adapted to
other data models.

Each of the algorithms we compared supports single-column indexes, which
is also applicable to other data models since all of them support the concept of
an indexable attribute. However, the algorithms such as Drop and NoDBA do
not support multi-column indexes. This causes a loss of performance in rela-
tional models and makes them less suitable for other data models that support
multi-attribute indexes. None of the algorithms support partitioning keys. It is
understandable since the authors developed them solely for single-node relational
databases. However, it poses a problem for distributed DBMSs such as, e.g.,
document and columnar stores.

Moreover, the algorithms do not consider multiple index types, a crucial fea-
ture of many DBMSs. We can solve this problem, e.g., in the candidate selection
phase by selecting multiple index types for a single attribute and then enumerat-
ing the candidates.

Another important feature of the researched algorithms is how they select
the candidates. Some older proposals, such as AutoAdmin and CoPhy, select
candidates based on individual queries, whereas the newer algorithms, such as
NoDBA and DTA, select candidates based on the workload. Both approaches
have their advantages and disadvantages. The workload-based approach is more
complex but can find beneficial indexes for the whole workload. On the contrary,
the query-based approach is more straightforward but can miss indexes that are
not beneficial for individual queries but are beneficial for the whole workload.

Some of the non-essential traits are the support of anytime property and the
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Table 3.8: Comparison of index selection algorithms
CoPhy [9] Drop [30] AutoAdmin

[8]
DTA [7] Extend [33] NoDBA [10] MCTS [11]

Approach type ILP Greedy Greedy Greedy Greedy ML ML
Follows architecture 3.1 Yes No Yes Yes No No Yes
Main constraint Storage Indexes Indexes Many1 Storage Indexes What-if calls
Single-column indexes Each algorithm supports single-column indexes
Multi-column indexes Yes No Yes Yes Yes No Yes
Index types B-Tree, Hash, B+ Tree, Bitmap, Inverted index
Best index type No No No No No No No
Partitioning keys No No No No No No No
Optimal solution Yes2 No No No No No No
Stop any time Yes No Yes Yes Yes No No
Candidates context Query Workload Query Workload Workload5 Workload Depends
Online selection No No No No Yes Yes No
Relational DBMSs Yes Partial Yes Yes Yes Partial Yes
Graph DBMSs Yes3 Partial Yes4 Yes4 Partial Partial Yes4

Key/Value DBMSs None of the algorithms supports manual construction of secondary indexes
Document DBMSs Yes3 Partial Yes Yes Yes3 Partial Yes
Columnar DBMSs Each algorithm supports single-column indexes

1 DTA can be configured to use many constraints at the same time. It supports indexes, storage, and running time.
2 CoPhy does find the optimal solution based on the candidates that were provided. Usually, the number of candidates is limited.
3 Generally supports the data model but is not suitable for it.
4 Generally supports the data model, however, at least three components of the algorithm need to be adjusted.
5 Extend does not contain a candidate selection phase. However, it considers potential indexes in the context of the workload.
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support of online selection. The anytime property ensures that the algorithm
can stop at any time and still produce a valid solution. This is quite useful for
NoSQL and multi-model DBMSs since they may work with large datasets, and
the index selection process can take a long time. The online selection feature
allows the algorithm to select indexes on the system where the workload and the
database architecture constantly change. The algorithm must then consider the
changes and drop or add indexes depending on the current workload. From the
algorithms we discussed, only NoDBA and Extend support online selection.

Index selection in Relational DBMSs As all of the researched algorithms
were developed for relational DBMSs, they are highly optimized for this specific
model. Drop and NoDBA, however, have some limitations when considering
multi-column indexes. Otherwise, there are no main downsides to using these
algorithms for the relational model. We must consider minor alterations when
implementing the algorithms with specific database systems, such as PostgreSQL,
Oracle, or MySQL.

Index selection in Graph DBMSs Graph model also groups data into in-
dependent units, but in this case, the units are represented as nodes instead of
rows in a table. We can then easily add edges, allowing for more flexible and
expressive modeling of complex relationships.

We can still use the researched algorithms for graph models. However, we
need to make some adjustments based on the general architecture from Figure 3.1.
First, we need to change the workload analysis phase. Graph databases, such as
Neo4j, use a query language called Cypher. It is a declarative language that allows
us to express complex graph traversals in a single query. This is a significant
difference from the relational model, where we need to use multiple queries to
express complex relationships. Hence the query analysis component must be
adjusted to support the parsing of node and edge property predicates, such as
the following example:

MATCH
(t:Actor {name:"Tom"})-[:ACTED_IN]->(m)<-[:ACTED_IN]-(p:Actor)

WHERE
p.gender = "male" AND p.born <= 1985

RETURN
DISTINCT p.name

Second, we need to adjust the candidate selection phase. The scenario is
similar to the document DBMSs, where we need to add new index types and take
into account their limitations in order to avoid generating invalid candidates.
Lastly, the candidate enumeration does not need to be changed, except for the
algorithms that do not follow the general architecture, such as Extend, Drop, and
NoDBA. The crucial change that influences each one of the researched algorithms
is cost estimation. The cost estimation in graph DBMSs is more complicated than
in other systems since the queries can be based on graph traversals and complex
relationships between nodes. However, Neo4j provides a sufficient API for cost
estimation [40]. The query plan does not provide the expected execution plan
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but provides all operations that the query will perform. After the aforementioned
adjustments, we can use any of the algorithms for graph models. As the number of
candidate indexes might be large, CoPhy has to implement a more strict candidate
selection phase. That will however lead to suboptimal solutions, making CoPhy
less suitable for graph models.

Index selection in Key-Value DBMSs Key-value stores are the simplest
of all the database systems we discuss. Therefore, there is little need for sec-
ondary indexes, since queries are usually based on the primary key. However,
some key-value databases, such as Redis, support more complex data structures,
which might require secondary indexes. Secondary indexes can be manually im-
plemented by suitable data structures (hash tables, sorted sets). Hence, the index
selection problem is replaced by the problem of choosing the right data structures
and altering the queries to fit them. Although we might be able to find a bijection
between the index selection problem and the data structure selection problem,
the researched algorithms are not originally designed for this problem. Thus, it
is out of the scope of this thesis to create a new algorithm that would construct
the data structures and alter the queries.

Index selection in Document DBMSs Workloads in document DBMSs do
not use relations among collections, making the queries generally simpler than
in relational DBMSs. On the other hand, document DBMSs use new kinds of
indexes, such as inverted indexes and geospatial indexes, which are not explicitly
supported by any of the algorithms. Hence, when using the algorithms for doc-
ument DBMSs, we must make them aware of these new index types. We can do
that, for instance, by changing the candidate selection phase to include the new
types. Additionally, index types such as hash and text indexes do not support
multi-attribute indexes. Hence we must modify Extend algorithm to skip these
indexes when extending the existing candidates. Drop and NoDBA only support
single-field indexes, making them impractical for document stores. AutoAdmin
and DTA support multi-attribute indexes and follow the general architecture,
making them the most suitable for document stores. CoPhy can also be applied
to the document DBMSs, but the increased number of index types makes the
candidate enumeration phase more expensive. With proper candidate selection,
we can also use MCTS for document stores. It might be a good choice since the
what-if calls are expensive in document models, and MCTS can reduce their num-
ber. ML-based algorithms also show great potential for document models since
there are a lot of index types and they can learn strategies to avoid unsuitable
ones.

Index selection in Columnar DBMSs Distributed column-based systems
use distributed indexes that store a partitioning key along with the indexed value.
The key is used to partition the data across the cluster. This poses a challenge to
index selection algorithms because they do not support data partitioning. Many
modern distributed columnar databases solve this problem by partitioning the
data based on the primary key. Secondary indexes are then co-located with the
original data across the cluster [23]. Thus, the index selection algorithms do not
have to consider data partitioning. However, one problem that the algorithms
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need to address is that they can no longer rely on cost estimates because the dis-
tributed nature of the system cannot guarantee the same performance for every
execution of the same query. Queries in the columnar model are much simpler
than in the relational model, which makes the index selection problem easier.
Additionally, Cassandra does not support multi-column indexes. Therefore al-
gorithms such as DTA, MCTS, and NoDBA may even be deemed excessive or
disproportionate for this kind of database systems. Drop and CoPhy, on the other
hand, are a great fit for the columnar DBMSs. Drop only considers single-column
indexes, and CoPhy can quickly find the optimal solution for the relatively small
number of index candidates.
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4. Open questions and challenges
Our analysis of the state-of-the-art index selection algorithms and their appli-
cability to different data models revealed several open questions and challenges.
In this chapter, we discuss these questions and challenges and propose possible
directions for future research. We group the questions and challenges into five
categories: general, workload parsing, candidate selection, query cost, and candi-
date enumeration. The last four categories are based on the key components of
the general architecture of ISP algorithms (Figure 3.1).

• General questions and challenges

– With the rise of big data, the iterative methods for index selection
are becoming increasingly impractical due to their high computational
cost and time-consuming nature. We discovered that CoPhy [9] is
unsuitable for most of the researched DBMSs. Its time complexity
rapidly rises with the number of index types. DRL algorithms, such
as NoDBA [10], although just partially successful, are a promising
direction for future research.

– In columnar and key-value DBMSs, such as Cassandra and Redis,
designing an appropriate schema rather than using secondary indexes
is more important [23, 16]. Hence, multi-model ISP algorithms should
be able to recommend a schema for the database. This is a challenging
task because schema design is a complex process that requires a deep
understanding of the data model and the workload. Another solution
might be to find a bijection between the recommended secondary index
and the schema. In Cassandra, for example, a multi-column index can
be interpreted as a composite primary key.

• Workload parsing

– Many DBMSs use different query languages such as Cypher, Cassandra
Query Language (CQL), and MongoDB query language. We need to
be able to parse the queries and extract index candidates from them.
This can be solved, for instance, by using a specific query parser for
each query language and then passing the potential index candidates
to the candidate selection component.

• Candidate selection

– The algorithms we researched officially do not differentiate between
various index types. This poses a challenge for DBMSs that support a
wide variety of index types, and their workload can significantly benefit
from using them. Algorithms should be able to find proper index types
for each candidate. We can solve this problem, e.g., by generating a set
of candidates for each attribute according to the available index types.
It will, however, increase the number of candidates, thus increasing the
computational cost of the algorithm as well. Therefore, ML algorithms
might be a good fit for these DBMSs as they can learn the strategies
for preferring certain index types over others.
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• Query cost

– Query cost computation is the main challenge of the index selection
problem. It requires the indexes to be built and the query to be ex-
ecuted. This is a time-consuming process, and executing it for every
index configuration is not feasible. The current state-of-the-art algo-
rithms speed up the process by approximating the query cost using the
what-if calls and virtual indexes. These tools are available in relational
DBMSs, but their availability in other database systems is limited. To
use these algorithms in other DBMSs, we first need to research the
possible ways of estimating the query cost for each model.

– Even if we had tools to estimate the query cost, they would still be
slow and not accurate enough. Hence, algorithms that are optimized
for minimizing the number of what-if calls, such as MCTS [11], would
be a great choice. Additionally, we can try to use a novel approach
that uses machine learning to predict the query cost [41]. This might
be the best solution, as the modern DBMSs have robust schemas, so
the learning time can easily match the time needed to execute all the
what-if calls.

– All of the algorithms we researched assume that the workload is read-
heavy, and they do not optimize for writing time. Some of them, such
as Extend consider reconfiguration cost [33]. As columnar DBMSs are
write heavy, we might need to consider write cost as well and include
the insertion queries and their weights in the workload.

• Candidate enumeration

– The enumeration is the part that is the easiest to be generalized for
all the models. It just receives a set of candidates and their costs and
returns the optimal configuration. The only challenge is finding the
most optimal enumeration algorithm for each model. Some models
might benefit from a greedy approach that selects the candidate with
the absolute highest cost reduction, while others might benefit from a
more sophisticated approach such as the benefit ratio presented in Ex-
tend [33]. Additionally, as the enumeration component closely works
with the query cost, we need to minimize the number of what-if calls.
Therefore, MCTS [11] might be a good choice for this component as
well.
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Conclusion
In this thesis, we made a step further towards the development of efficient and
possibly autonomous multi-model DBMSs, as envisioned in [1]. We did so by
analyzing the state-of-the-art index selection algorithms which are currently used
in relational DBMSs. We then considered their applicability to other database
systems, namely graph, key-value, document, and columnar DBMSs. Thanks
to the analysis, we were able to formulate open questions, challenges, and ideas
that might help in the future development of index selection algorithms for multi-
model database systems. We conclude our work by summarizing the main con-
tributions of this thesis and outlining future work.

• Analysis of indexing in various DBMSs We thoroughly described five most
common data models and selected one representative DBMS for each of
them. We then analyzed their indexing strategies. The analysis revealed
that the indexing strategies differ in the implementation details and sup-
ported index types.

• Analysis of existing approaches We analyzed seven pioneering index selec-
tion algorithms and grouped them into three categories based on their ap-
proach: linear programming, greedy, and machine learning. We then formu-
lated a general architecture of an index selection algorithm that generalizes
the key components of the analyzed algorithms. Moreover, we provided a
comprehensive explanation of how each algorithm works and what are its
advantages and disadvantages.

• Verification of their broader applicability We statically analyzed whether
the algorithms can be used for other DBMSs and what measures would be
needed to make them applicable.

• Definition of open questions Our research revealed that several algorithms
might be suitable for multiple data models. However, some challenges and
open questions still need to be solved to develop an efficient index selection
algorithm for multi-model DBMSs.

Future work
In our future work, we plan to solve the open questions that we formulated in
chapter 4. Our main focus will be on the challenges that are closely related to
the general architecture of ISP algorithms, since they affect the key components
of the researched algorithms. Once we solve these challenges, we will be able to
implement the algorithms and test their performance on various DBMSs. We
will then iteratively refine a single algorithm that performs well on multi-model
database systems.
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