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Abstract:
Responsive systems, such as block copolymers with solvent-a�ne blocks, can
undergo self-assembly into structures like micelles or vesicles. These assemblies
are highly sensitive to slight changes in external conditions, like pH or tem-
perature, leading to the formation or dissolution of micelles. When one of the
polymer blocks is a weak polyelectrolyte, its degree of ionization depends not
only on the external conditions but also on the association state. This study
focuses on investigating the size and degree of ionization of micellar structures
formed by polymer chains containing thermoresponsive and pH-responsive blocks.
The investigation combines high-resolution transmission electron microscopy and
Hamiltonian Monte Carlo simulations to provide a comprehensive understanding
of these micellar structures.

Keywords:
high resolution transmission electron microscopy; molecular simulations; self-
assembly; responsive systems; block copolymers; weak polyelectrolytes

Abstrakt:
Responzivńı systémy blokových kopolymer̊u, kterých bloky maj́ı r̊uznou afinitu ke
zkoumanému rozpouštědlu mohou vytvářet struktury jako micely nebo vezikuly.
Tyhle struktury jsou senzitivńı ke změnám vněǰśıch podmı́nek jakými jsou pH
a teplota. Tyto změny často vedou k formaci nebo rozkladu micel. Pokud je
jedńım z blok̊u slabý polyelektrolyt, stupeň ionizace záviśı nejenom na vněǰśıch
podmı́nkách, ale taktéž na konformaci řetězc̊u. Táto práce zahrnuje studium
velikosti a stupně ionizace micelárńıch struktur a linearńıch řetězc̊u kopolymeru
obsahuj́ıćıho termosenzitivńı a pH responzivńı bloky pomoćı vysokorozlǐsovaćı
transmisńı elektronové mikroskopie a hamiltonianských Monte Carlo simulaćı.

Kĺıčová slova:
vysoce rozlǐsená transmisńı elektronová mikroskopie; molekulové simulace;
samoskladba; responzivńı systémy; blokové kopolymery; slabé polyelektrolyty
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1. Introduction

Macromolecular and polymer sciences play a significant role in the research of
advanced materials. The key aspect in popularity of macromolecules is their
variability of properties under di�erent sets of conditions. Due to their unique
structure and properties they are widely exploited as possible drug carriers, de-
salination agents, tissue engineering materials [1] and much more.
Typical polymer chains are made up of repeating sections of atoms, or so called
repeating units. If all of the repeating units come from a single type of monomer,
we call them homopolymers. Depending on the actual structure of the repeating
unit, these polymers can achieve di�erent structures which are heavily dependent
on the synthesis of the polymer.
However, if the repeating unit consists of two or more di�erent monomers, that
come from di�erent monomers, we refer to these chains as copolymers [2]. Re-
peating units are often arranged into repeating patterns which are a result of
both interactions between monomers and synthesis conditions.
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B B B B A A A A A
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A A A A AA A A A

B B B B

alternating

statistical

block
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Figure 1.1: Di�erent types of copolymers based on pattern of the chain [2].

One such interesting class of polymers are block copolymers where the repeat-
ing units of each respective monomer are arranged into segments of certain length
and altering after each other as depicted in picture 1.1

1.1 Self-Assembly of copolymers

The structure of copolymer chain implies, that the conformation of such polymer
will depend on properties of the solvent and conditions it is in [3]. Therefore we
expect the chain to assemble in order to minimize the free energy of the system.
Such logical arrangement of chains as a response to external factors is called self-
assembly.
In the case of solvated copolymer we mostly refer to static self-assembly [4], in
which the polymer assembles itself and reaches equilibrium at which the final
arrangement of chains is stable. Important distinction to make however is that
throughout this process there is no energy added to the system and this process
happens only due to the e�ort of minimizing the overall free energy.
In order to achieve the structure that is lowest in energy, the system must balance
out all of the forces and interactions that are between two polymer chains or parts
of the chain interacting with itself.
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1.2 Responsive copolymer systems

Self-assembly of copolymers arranges polymer chains into a stable structure in
equilibrium. If we modify the external conditions by changing the concentration,
pH, temperature, composition of the mixture et cetera, we might find that in
equilibrium, the polymer chains in the system are no longer in the same confor-
mation, but have rearranged as a response to this change. Note that the change
of conformation is reversible and if we were to reverse the change, the polymer
would go back to it’s original arrangement. Copolymers that react to external
stimuli in this manner are referred to as responsive systems. This characteristics
is mainly caused by di�erent properties of the monomers and also depends on the
copolymer pattern. Many of these systems have amphiphilic properties which
directly correlate to their responsivness to pH and temperature.
As stated before, these equilibria depend on external conditions of the system,
therefore the behaviour of copolymer systems might have unpredictable proper-
ties. It is therefore important to study these changes in controlled environments
as to separate the respective e�ects, based on stimuli that caused them.

1.3 pH responsive systems

Due to the amphiphilic nature of copolymer systems with ionizable monomers,
we often observe response to change in environment pH.
Given the standard equation for acid-base equilibrium

HA ≠≠ÔÓ≠≠ H+ + A– ,

we expect equilibrium shifting in relation to the overall acidity or basicity of the
system. We can approach the ionizable segments of copolymer the same way. If
the systems contains carboxylic group, we can rewrite the chemical equation as

R–COOH ≠≠ÔÓ≠≠ R–COO– + H+,

where R denotes the rest of the polymer chain. At neutral conditions, we assume
that carboxylic group will dissociate and reach some degree of dissociation, based
on the strength of the acid group. It is very important to note, that behaviour
of low-molecular acids and the way they dissociate is not comparable to macro-
molecular acids [5]. While for low-molecular acids we can safely approximate the
degree of dissociation from dissociation constant, pKa, for macromolecular sys-
tems the overall dissociation will be highly dependent on the state of surrounding
ionizable chains and their conformation. This phenomena will also be influenced
by the temperature responsivity of the copolymer, due to the change of confor-
mation, as will be further discussed.
These changes in dissociation of the ionizable chains will play into the e�ort of
the system to lower it’s overall energy and such impact the self-assembly of the
copolymer in various ways. Due to these unique properties copolymer systems
often display vast amount of responses to the change of pH. We refer to these
systems as pH responsive and their variability of ionization is widely used in gela-
tion of pH-dependent diblock copolymer systems [6], tissue engineering [7], pH
activated drug release [8] and much more.
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1.4 Temperature responsive systems

While the a�ormentioned changes in ionization contribute greatly to the charac-
ter of self-assembly process, the behaviour of polymer in solvent is dependent on
several other factors as well. First and foremost is the solvent quality in which
the polymer is solvated. For the purpose of this work we will distinguish between
good solvent, poor solvent and theoretical ◊-solvent.
In the conditions of the good solvent, the behaviour of the polymer chain is
mostly dictated by interactions between solvent and chain itself (polymer-solvent
interaction), whereas in the poor solvent the behaviour is given by interaction of
the polymer chains with themselves (polymer-polymer interaction). Theoretical
◊-solvent is a hypothetical solvent in which the polymer-solvent and polymer-
polymer interactions contribute to the overall behaviour of the system equally
[9], [10] .
Solvent quality is often strongly influenced by temperature. This depends mainly
on the combination of solvent and polymer system. In these systems we observe
phase transition based on temperature. This temperature can be either described
as lower critical solution (LCST) temperature or upper critical solution temper-
ature (UCST). LCST refers to a critical temperature below which the polymer is
fully soluble in given solvent while UCST refers to a critical temperature beyond
which the polymer is fully soluble in given solvent. This phenomena is described
by Flory-Huggins solution theory which in addition to describing change in free
energy in terms of entropy of mixing also takes into account di�erence between
molecular sizes of solvent and polymer and their respective interactions with each
other[11]. It also defines Flory interaction parameter which can be a useful tool
for predicting the behaviour of polymer solutions [9].

1.5 Morphology of block copolymers aggregates

One of the most heavily studied copolymer systems are block copolymers mostly
due to their segmented nature which can be exploited for multitude of purposes.
Amphiphilic block polymers arguably show the most promise. This is mostly
due to the the nature of attractions and repulsions between hydrophobic and hy-
drophilic segments of the polymer chains interacting with each other.
Micelle formation is an important property that is commonly observed in be-
haviour of block copolymers. Morphology of micelles can range from singular
spherical micelles through cylindrical micelles to interconnected micelle networks.
The main driving force behind micelle formation in polar solvent is the attraction
between hydrophobic segments of the copolymer chains which tend to closely pack
themselves into a dense hydrophobic core, which is surrounded by hydrophilic
corona. Likewise in nonpolar solvent we can expect hydrophilic core and hy-
drophobic corona. The overall free energy is minimized and system reaches stable
conformation in which interactions of hydrophilic and hydrophobic parts are min-
imized. This phenomena happens in dilute solutions of block copolymers above
concentration that is refered to as critical micelle concentration (cmc) and fixed
temperature refered to as critical micelle temperature (cmt). In higher concen-
trations micelles can further aggregate into gels and corresponding concentration
is refered to as critical gel concentration (cgc).
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Figure 1.2: Micelle formation at di�erent concentrations. Left picture depicts lone
polymer chains in solvent, middle picture depicts formation of micelles above the
critical micelle concentration while picture on the right depicts micelles above
critical gel concentration.

Micelle formation is often a�ected by the systems responsivity to di�erent stim-
uli. Thermo-responsive systems in which micelles are formed can undergo several
di�erent conformational changes based on temperature ranging from interlinking
or formation of cylindrical micelles to complete breakdown of the micelles. These
changes of conformation are studied because of the ability to solvate or coat oth-
erwise insoluble particles. They are also exploited as potential drug-carries due to
their possible thermal breakdown resulting in release of the drug. pH responsive
systems can o�er structural changes based on electrostatic interactions caused by
hydrophilic segments. For example micelles with acidic groups can often undergo
swelling as a result of high hydration of carboxylic groups. These properties are
exploited a potential desalination agents.

Figure 1.3: Possible micelle structures based on medium in which polymer is
solvated.[12]
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1.6 Cryo electron microscopy

Gaining insights into the structural properties of soft matter systems has posed
significant challenges. While methods like dynamic light scattering provide valu-
able information regarding the particle size and shape, cryo electron microscopy
has emerged as a central imaging technique in recent years. This method enables
the direct imaging of aggregate-specific details in soft matter systems, which often
contain water and pose di�culties for conventional electron microscopy, mainly
due to the presence of vacuum in the microscope chamber. In many cases, the
crucial information would be gained only in case of the analysis of the sample at
the same conditions as in solution, which is possible after rapid freezing of it in
cryo conditions [13], [14].
In classic electron microscopy, the imaged specimen must endure the vacuum
chamber’s low pressure and the energy transmitted by the electron beam. As
mentioned beofre, this frequently results in sample deformation and inaccurate
images. Cryo electron microscopy addresses this issue by rapidly freezing the
sample using liquid nitrogen, creating a thin layer of vitreous ice. This quick
freezing process e�ectively immobilizes the structures in place without changing
of their size and shape compared to the real-life conditions. The benefits of this
method were recognized by recieving Nobel prize in biology in 2017.[15] The ap-
plication of cryo electron microscopy is particularly advantageous for studying the
self-assembly of soft matter systems. It allows researchers to observe the struc-
tures frozen, and thus stabilized under various conditions that may exist within
the sample. By examining di�erent sets of conditions, such as pH, temperature,
concentrations, etc., a more comprehensive understanding of these systems can be
achieved. Cryo electron microscopy is a powerful method for studying soft matter
systems, however it necessitates meticulous sample preparation under controlled
conditions [16].

The success of cryo electron microscopy relies on precise sample handling and
preparation. The specimen needs to be carefully prepared in a way that pre-
serves its native structure and composition. This involves subjecting the sample
to rapid freezing in a controlled environment to form thin, transparent to elec-
trons layer of vitreous ice. This process is called cryo plunging. The freezing
process must be fast enough to prevent the formation of ice crystals, which could
distort the delicate structures of the soft matter system.The controlled conditions
during sample preparation are crucial to ensure the accuracy and reliability of
the resulting images. Any variations or inconsistencies in the freezing process
or sample handling can lead to artifacts or distortions that may compromise the
interpretation of the data [17].

Therefore, researchers employing cryo electron microscopy must exercise great
care in every step of the sample preparation process, from sample selection to
vitrification, to obtain high-quality images that reliably represent the structural
properties of the soft matter system under investigation.
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2. Methods

Our research focused on the study of self-assembly and properties of a block
copolymer known as Poly(acrylic acid-block-N-isopropylacrylamide)
(PAA-PNIPAm). We aimed to understand how this copolymer undergoes self-
assembly under varying polymer concentrations and meso-tetrakis(N-methyl-4-
pyridyl)porphine tetrakis(p-toluenesulfonate) salt content. To achieve this, we
conducted experimental work using electron microscopy. Specifically, we com-
pared samples of PAA-PNIPAm in sodium hydroxide solution at di�erent temper-
atures. Additionally, we employed computer simulations for theoretical analysis,
exploring the e�ects of di�erent stimuli on the system. In the following chapter,
we will provide a detailed description of the methods used throughout our study.

Figure 2.1: Structure of block copolymer PAA-PNIPAm

2.1 Experimental

2.1.1 Scanning Transmission Electron Microscopy

Scanning Transmission Electron Microscopy (STEM) involves scanning a focused
electron beam through a thin sample specimen in a raster pattern. During this
process, the beam interacts with the sample, and the transmitted electrons carry
valuable information about this interaction [18]. The transmitted electrons are
collected by a detector positioned below the sample, where they generate a signal
used to form an image. By detecting and recording these transmitted electrons,
STEM enables the creation of detailed images that reveal the structure and prop-
erties of the sample. STEM also allows for acquisition of multiple types of signals
as secondary electrons, backscattered electrons, and characteristic X-rays emitted
by the specimen [19].

2.1.2 Scanning Transmission Electron Microscopy in cryo

conditions

STEM, while a powerful imaging technique for many systems, presents challenges
when imaging a PAA-PNIPAm solution. STEM utilizes a focused beam of high-
energy electrons that scans the sample in a raster pattern. However, this high-
energy beam is likely to cause destruction or alteration of the composition of our
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system. Since our system is a solution and our main objective is to study its
behavior in solution, conventional STEM imaging is unsuitable for our purposes.

To address this issue, we will employ cryogenic conditions in conjunction with
STEM. This method involves rapidly freezing the sample in liquid nitrogen, ef-
fectively preserving the structures in their current conformations and encasing
the specimen in a thin layer of vitreous ice. Subsequently, we will conduct STEM
imaging on this cryo-preserved sample while maintaining a low temperature (ap-
proximately -173 ¶C) within the sample chamber. By doing so, we can obtain the
most accurate representation of our sample without compromising its integrity.

The sample preparation method involves usage of a mist chamber to prepare
the sample in moist environment. A small amount of PAA-PNIPAm solution
is applied onto a carbon mesh within the chamber. The mesh, along with the
sample, is then automatically blotted against a filter paper to ensure that the
prepared specimen is thin enough for imaging. Subsequently, the sample is left
undisturbed for approximately two minutes to allow for relaxation [17].

After the relaxation period, the sample is vitrified by plunge freezing it in
liquid ethane. The vitrified specimen is loaded into a cryo holder, which was
previously regenerated to ensure good isolation properties and filled with liquid
nitrogen. Throughout the imaging process the prepared sample is maintained at
a temperature of -173 ¶C.

For our experimental set-up scanning transmission electron microscopy im-
ages were acquired using a JEOL NEOARM 200 F microscope equipped with a
Schottky-type field emission gun at an accelerating voltage of 200 kV. Samples
were prepared by rapid freezing using a Leica EM GP2 cryo plunger. Carbon
coated copper grids were loaded into the specimen chamber under humid con-
ditions to avoid sample drying. Grids were glow-discharged using a Leica EM
ACE600 vacuum sputter coater prior to sample loading. A drop of sample so-
lution was placed on the grid, blotted 10 times by automatic blotting arm, and
then rapidly plunged into the liquid ethane kept at the temperature of liquid ni-
trogen. Sample was transferred to Fischione Cryo Transfer Tomography Holder
Model 2550 and then inserted into the electron microscope. The cryo holder de-
war was refilled with liquid nitrogen during the whole time of the sample imaging
to ensure the optimum cooling conditions.

2.2 Computer simulations

2.2.1 Coarse modelling of polymer system

Simulating complex macromolecular systems at the atomic scale is computation-
ally demanding, primarily due to the intricate nature of large polymer chains.
The properties observed in these macromolecular chains are a direct consequence
of their atomic composition. The ideal approach to simulate such systems would
be to recreate the chain as reliably as possible down to the atomic level, comput-
ing the interactions between all atoms to determine the overall energy. However,
several challenges hinder this approach. The primary obstacle is the absence of a
suitable model that can e�ectively account for the attractive and repulsive forces
between all atoms in the system while still being computationally feasible. The
sheer scale of macromolecular simulations makes it impractical to implement such
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a detailed model. Consequently, we employ a series of approximations to reduce
computational time while maintaining a reasonable level of detail [20]. The spe-
cific approximations employed depend on the purpose of the simulations.
One such method is coarse grained modeling [21]. The fundamental concept be-
hind this approach is to simplify the complexity of the system by reducing the
level of detail in the representation, while still ensuring that the essential charac-
teristics and behavior of the segment are accurately captured [22]. In the context
of copolymer chains, this approach involves approximating segments that share
similar properties by using simpler representations while preserving the essential
characteristics of the segment. We approximate the repeating units of the same
type within the copolymer chain as soft spheres, ensuring that their dissociative,
electrostatic, and other defining properties (or suitable approximations) remain
intact. The overall model for computing repulsive and attractive forces along
with dissociation of ionizable segments will be discussed in following sections.

2.2.2 Monte Carlo

Basics

The Monte Carlo method is a computational technique employed for solving
problems characterized by inherent non-determinism. It leverages random num-
ber generation to sample values within specified ranges for variables of interest.
Through iterative cycles, these randomly generated values are used to perform
deterministic calculations, allowing for the evaluation of observable phenomena
[23]. In the most basic Monte Carlo algorithm we can describe the process of
computing as follows. The first step involves identifying the variables that are
relevant to the problem at hand and determining their specific ranges or possi-
ble values. Once these variables and their ranges are defined, the next step is
to generate random values for each variable. Generated values are then used in
deterministic calculations. This is done over many iterative cycles, while col-
lecting large amount of data which is then used to determine average values of
properties depending on studied matter at hand [24]. One simple example would
be computing roll of two dice by generating two random numbers in range from
1 to 6 and then saving the overall sum. For each of the possible outcomes (2-
12) a counter would increase by one whenever this outcome occurs. We would
then compute this behaviour over many iterative cycles. After certain amount
of dice rolls (cycles) we would see that the results begin to resemble probabil-
ity distribution of all of the possible outcomes. We see that even with random
number generation we can observe some of the inherent behaviours of the system.

Importance sampling

The aforementioned algorithm for generating random values within an acceptable
range for variables, or also sometimes referred to as brute force Monte Carlo, is
however flawed for simulating large systems of molecular interactions. Let us
consider an example system of n atoms. We can safely assume that the overall
energy of such system will be a function of coordinates of all of the atoms U(ri),
where ri denotes the vector of coordinates for corresponding atoms ri = (xi, yi, zi).
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Figure 2.2: Proposed roll of two dice over 1 million iterative cycles. Columns
represent counts of each outcome. Probabilities would be simply calculated by
dividing the number of occurences by number of cycles.

If we take into account only repulsive and attractive forces between atoms that
are dependent solely on distance, we can write equation for overall energy as

U =
i=nÿ

i=0

j=nÿ

j=i+1
U(ri, rj), i ”= j, (2.1)

where we sum the overall energy over all possible pairings of atoms. Now we will
generate random values by which we will change the coordinates of the atoms and
therefore move the particles around. Even in this simple example we can find a
fatal flaw. This algorithm doesn’t in any way di�erentiate between configura-
tions that are energetically favourable and configurations that are energetically
unfavourable. In this particular system, there is no concept of equilibrium as the
probabilities of the system being in any specific state are equal across all states
[25]. To fix this, we deploy Metropolis Method [26].

Metropolis method

In the Metropolis method, we take into account the probability distribution of the
potential states that our system can occupy. As a result, during the simulation, we
include a step where we make a decision regarding whether to accept a proposed
transition. If we continued in the simple example of atoms mentioned previously.
We can calculate the overall change in system energy that resulted from movement
of the atoms. If this change of energy is negative, we would simply accept such
configuration. If however the energy of the proposed configuration was higher,
we can use Boltzmann factor defined as

pi

pj
= exp

�E
kbT , (2.2)

and accept the proposed change with this probability.
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2.2.3 Molecular Dynamics

An alternative strategy for simulating molecular systems involves treating them
as classical many-body systems. This approach becomes feasible for su�ciently
large systems, where concerns regarding rotational and vibrational motions, which
would introduce quantum e�ects and compromise the accuracy of our results, can
be disregarded. This methodology is known as molecular dynamics. By adopting
a classical framework, we utilize Newton’s laws of motion to describe the behavior
of the simulated molecular systems. Through numerical integration, we calculate
the relevant data necessary for addressing the specific problem at hand. This
method can be simplified into 4 steps. First, we generate the initial positions and
velocities of the bodies, such as atoms or other representations. While random
generation can be used, it is preferable to implement a mechanism that ensures the
generated particles are not in very close proximity to each other or overlapping.

Next, we compute the forces acting on the bodies. There are various versions
of force field approximations that can be employed for this purpose. These models
compute the potential energy of two atoms (or other representations) based on
distance between them. As an example, we can consider force field model based
on the Lennard-Jones potential [24] (see figure 2.3) Force fields typically involve
the introduction of a cuto� distance. This distance is used to limit the calculation
of the potential beyond a certain point, thus avoiding unnecessary computations
that do not significantly contribute to the overall force.

By following these steps, we can simulate the behavior and interactions of the
particles within the system..

Figure 2.3: Lennard-Jones potential model for non-bonding force of neutral
atoms. V (r) denotes potential energy and r denotes separation of two atoms.

Once the forces a�ecting the bodies are computed, we can proceed to integrate
Newton’s second law of motion and predict the positions of the particles at a new
time. One commonly used integration method is the Verlet method [25], which
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can be expressed mathematically as follows:

rį(t + h) = 2rį(t) ≠ rį(t ≠ h) + h2 fį(t)
mi

, (2.3)

where rį(t) denotes position of particle i at a time t, h denotes one time step and
fį, mi denote forces a�ecting the particle and mass of the particle respectively.
The process is repeated until equilibrium is attained, and at that point, we can
extract data that o�ers valuable insights into the system’s properties.

2.2.4 Hamiltonian Monte Carlo

The Monte Carlo method, while valuable for generating insights into complex sys-
tems, relies on random walk behavior for proposing configuration changes. How-
ever, this random walk behavior can be improved by sampling from a probability
distribution and evaluating the acceptance probability of configuration changes.
Despite these enhancements, Monte Carlo simulations can still be computation-
ally demanding and may only explore the system to a limited extent. In contrast,
Hamiltonian Monte Carlo o�ers a more e�cient approach for proposing config-
uration changes, leading to enhanced exploration of the system and improved
computational performance. The fundamental distinction between the Monte
Carlo method and Hamiltonian Monte Carlo lies in the generation of propos-
als for the Metropolis criterion. While the classic Monte Carlo method employs
random number generators for generating proposals, Hamiltonian Monte Carlo
generates proposals by implementing molecular dynamics time evolution. This
time evolution is calculated through the same process discussed earlier in the
section on molecular dynamics, involving a specified number of steps using a cho-
sen integrator. This integration procedure incorporates the system’s dynamics,
including positions and velocities, to produce meaningful proposals for configu-
ration changes. This utilization of molecular dynamics-based proposals enables
Hamiltonian Monte Carlo to explore the system more e�ectively and generate
samples that better represent the target distribution compared to traditional
Monte Carlo methods relying solely on random number generators [27].

2.2.5 Reaction Monte Carlo

To simulate the dissociation reaction R–COOH ≠≠ÔÓ≠≠ R–COO– + H+ in a Monte
Carlo simulation, the traditional canonical ensemble Monte Carlo method faces a
challenge due to the fixed number of molecules in the system. To overcome this
problem e�ciently, the reaction ensemble Monte Carlo method can be employed.
This method involves modifying the Monte Carlo algorithm to incorporate reac-
tion moves alongside translational moves [28].

The reaction ensemble Monte Carlo method starts by randomly selecting
whether the next move will be a translational move or a reaction move. If a trans-
lational move is chosen, the basic Monte Carlo algorithm proceeds by proposing
a new configuration based on the movement of molecules within the system.

On the other hand, if a reaction move is chosen, the algorithm randomly
determines whether it will be a forward reaction move or a backward reaction
move. In a forward reaction move, a randomly selected non-ionized monomer
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becomes ionized, and an H+ ion is inserted into the simulation box at a random
position. In a backward reaction move, a randomly selected H+ ion is removed,
and a randomly selected monomer is de-ionized.

The acceptance of a reaction move is determined by a probability criterion

P › = min
3

1, V ‹›�› exp (≠—�U)
Ÿ

i=1

N0
i !

(N0
i + ‹i›)!

4
, (2.4)

where �U is the change of interaction energy, — = 1
kbT , ‹i is negative (for reac-

tants) or positive (for products) stoichiometric coe�cient of species i, ‹ = q
‹i, V

is simulation box volume. Extent of reaction › connects intial number of species
i to the current number Ni as

Ni = N0
i + ‹i› (2.5)

� can be written out as
� = KA

1 p

NAkbT

2‹
, (2.6)

where NA is Avogadro number and p is pressure [29].

2.2.6 Proposed model for computer simulations

Polymer model

In our polymer approximation, we employ a coarse-grained model, wherein in-
dividual monomers are represented as soft spheres. These monomers interact
through various forces, including Coulombic interactions, bonding interactions,
and non-bonding interactions. It’s worth noting that the particles belonging to
the PAA and PNIPAm blocks exhibit distinct non-bonding interactions and reac-
tion capabilities. The solvent in our simulation is considered to be structureless,
and its properties are determined by its relative permittivity. All particles are
contained within a simulation box, which adheres to periodic boundary condi-
tions, ensuring a continuous and consistent environment for the system.
Bonding potential for the beads is harmonic potential

Ub = ‘b(r ≠ r0)2, (2.7)

where ‘b = 80.0kBT is the strength of massless spring, r denotes the instantenous
distance between two beads and r0 = 0.3 nm is the distance at which the potential
energy Ub is at minimum. We compute non-bonding potential energy Unb as

Unb = ‘nb
(r ≠ rc)2

r2 , r < rc, (2.8)

where ‘nb = 1.0 kBT , r is the distance between two beads and rc = 2r0 is cut-o�
distance beyond which Unb = 0.
To simulate di�erent solvent conditions we modify hydrophobicity of PNIPAm
beads as follows :

Unb = U(attr.) + U(rep.), (2.9)
where U(rep.) is standard repulsive potential calculated in eqn. 2.8 and U(attr.)
is calculated as

U(attr.) = ‘nb·p
(r ≠ 2rc)2

r2 , r < rc, (2.10)
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where ·p is the parameter scaling the properties of the solvent, where athermal
solvent corresponds to ·p = 0 and theta solvent is approximately ·p = 0.068
[30]. Overall electrostatic interactions were evaluated by Ewald summation [31].

Figure 2.4: Potentials dependent on distance of the two beads r for di�erent ·p

parameters and pure repulsive potential also dependent on distance r.

To represent the ratio of the PAA beads and PNIPAm beads we used exper-
imental findings which can be found in figure 2.5. In this study, we made
certain assumptions based on these findings. First we calculated the ratio of
PAA/PNIPAm segments based on polymer used in these results. We assumed
the ratio of poly(acrylic acid) (PAA) to poly(N-isopropylacrylamide) (PNIPAm)
in the copolymer to be 0.4/0.6. The copolymer chain length was fixed at 60
beads, which translates to 24 beads of PAA and 36 beads of PNIPAm. We then
investigated the behavior by varying the parameter ·p in the range from 0.01 to
0.1. Our aim was to understand the e�ects of temperature on the copolymer, and
we approximated the temperature change by increasing hydrophobic properties
of the PNIPAm segments present in the PAA-PNIPAm copolymer. By changing
·p parameter we increased the attraction of hydrophobic chains which we used as
an approximation of behaviour of PNIPAm blocks in the real polymer with rising
temperatures. For the PAA segments of the polymer chain we use pKA = 4.5 [33],
which was recalculated according to the section 2.2.5. To mimic basic conditions
pH = 9 we calculate � parameter with pKA = 2.5 to maintain the di�erence in
pH

We conducted a study on two di�erent architectures. Initially, we examined
linear copolymer chains with varying concentrations and salt levels. Subsequently,
we approximated the structure of micelles by creating a star architecture, wherein

14



(a) (b)

Figure 2.5: DLS measurements of hydrodynamic radius of PAA-PNIPAm solution
with meso-tetrakis(N-methyl-4-pyridyl)porphine tetrakis(p-toluenesulfonate)
(TMPyP) salt content of 7.41 · 10≠6 (a) concentration of polymer 1.0 g/l (b)
concentration of polymer 0.2 g/l ¶C [32]

the PNIPAm blocks were connected to a central bead serving as the origin point.
Each star architecture comprised 10 copolymer chains, with each chain consisting
of 60 beads.
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2.2.7 Simulation protocol

We conducted all of simulations by using Hamiltonian Monte Carlo in reaction
ensemble. We used Hamiltonian Monte carlo implementation by Soft Matter
Theory research group from Charles University in Prague [34]. The algorithm
for these simulations is as follows. Initially, a choice is made with equal proba-
bility between a conformational step or a reaction step. In the conformational
step, a proposal for the Metropolis criterion is generated by performing multiple
molecular dynamic steps. In our case, we have selected 100 steps for one Monte
Carlo proposal, where each step is 0.05 time simulation units. This proposal
is then evaluated using the Metropolis criterion, and acceptance or rejection is
determined based on the probability derived from Boltzmann’s probability dis-
tribution. In the reaction step, a direction for the reaction is randomly chosen
with equal probability. Depending on the selected direction, one of two actions
is taken. If the chosen direction is to ionize, a random non-ionized PAA bead is
selected, and an H+ bead is inserted at a random location within the simulation
box. If the chosen direction is to de-ionize, a random ionized PAA bead is se-
lected, and the corresponding H+ bead is removed. These actions are performed
based on the specified direction and the type of bead (ionized or non-ionized)
selected randomly. Then the proposal is passed to the Metropolis criterion and
evaluated in the same way as conformational step.

2.2.8 Data collection and evaluation

In simulations such as Hamiltonian Monte Carlo, data collection and evaluation
require careful consideration due to the presence of correlation in the generated
data. The commonly used method of calculating standard deviation, ‡X , given
by

‡2
X = È(X ≠ ÈXÍ)2Í, (2.11)

is not applicable in this case. To address this issue, we employ the block method
for estimating the standard deviation. This approach involves dividing the data
into blocks based on their correlation time, which represents the number of steps
at which the data exhibits significant changes. More precisely, the correlation
time can be mathematically defined as

· =
Œÿ

k=1
ck, (2.12)

where
ck = È�Xi�Xi+kÍ

È�X2Í . (2.13)

Here, �Xi denotes the deviation of a data point Xi from its mean, and can be
approximated as �Xi ƒ Xi ≠ X, and ck represents the correlation coe�cient
between two data points separated by k steps [35]. Statistical calculations are
then done on these blocks. By employing the block method and considering
the correlation time, we can e�ectively handle the correlation in the data and
accurately estimate the standard deviation.It is crucial to emphasize that data
collection was specifically focused on states where the system reached equilibrium.
This deliberate selection aims to minimize potential errors during data processing.
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By exclusively considering equilibrium states, we enhance the reliability of the
collected data and ensure its suitability for subsequent analysis and calculations.
Small preview of the sampling data of radius of gyration time evolution, where
we investigate the validity of the data, can be found in attachment 4.1 .
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3. Results and discussion

In the subsequent chapter, we aim to present our findings from both computer
simulations and electron microscopy imaging. In the computer simulations sec-
tion, we will provide measured values along with their variability under various
conditions. Specifically, we investigate changes influenced by concentration and
salt content as stimuli and changes influenced by initial architecture as approxima-
tion of linear chains and micelles. Additionally, we briefly discuss the qualitative
results regarding the influence of solution pH, although it was not the primary
focus of our study. In the end we qualitatively verify the predictions made by
star architecture by simulating clusters of PAA-PNIPAm chains.

In the electron microscopy section, we compare images captured at temper-
atures of 25 ¶C and 50 ¶C in a sodium hydroxide solution. Furthermore, we
compare the size distributions of particles observed at these two temperatures.

3.1 Concentration dependence

We conducted investigations on two simulation sets, where the primary di�erence
was the concentration of the solution. One set was carried out at a concentration
of 1.0 g/l, and the other at 0.1 g/l. Within each concentration, we examined two
possible architectures: linear chain and star. Both sets contained poly(acrylic
acid) segments; we further split the simulations into two more sets, with di�ering
pKA values of 4.5 for the first set, and 2.5 for the second set. The first set approxi-
mates the standard pKA of poly(acrylic acid) in a polymer chain, while the second
set approximates a highly ionized polymer chain under basic conditions. These
simulations were carried out with di�erent initial architectures to investigate the
behaviour of linear chains and micelles (approximated as star architecture). We
simulate over range of ·p parameter from 0.01 to 0.1 as an approximation of
temperature, where we associate rise in ·p with rise in temperature.

3.1.1 Change of radius of gyration induced by change in

concentration

Linear chain architecture

In the case of linear chains, we observed similar behavior for both concentrations,
0.1 g/l and 1.0 g/l. As expected, we noticed a decrease in the square of radius
of gyration (R2

g) as the ·p parameter increased. Measured data can be viewed in
figure 3.1.
It is worth noting that the data set exhibited a relatively large standard deviation.
However, this can be attributed to the fact that at low ·p, which we associate
with low temperature, the chains did not exhibit any specific preferred conforma-
tion. This limitation did not hinder our ability to study the mean values of the
radius of gyration in which we observed said trends and believe to be accurate
representation of the system.
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Figure 3.1: R2
g in relation to increasing ·p parameter at pKA = 4.5. L60 denotes

linear chains consisting of 60 beads. In yellow is concentration of 1.0 g/l and in
black is concentration of 0.1 g/l

As we increased the ·p values, the system exhibited a preference for conforma-
tions characterized by small hydrophobic PNIPAM segments forming cores. To
provide visual clarity, we have included snapshots that depict the typical poly-
mer chain conformation at di�erent ·p values in the system in figure 3.2. For
future reference we used gray color for un-ionized bead, blue color for ionized
bead, yellow color for salt beads and green color for H+ beads as representations
in snapshots from simulations.

(a) (b) (c)

Figure 3.2: Snapshots of linear chains at di�erent ·p parameters and pKA = 4.5
(a) ·p = 0.01 (b) ·p = 0.05 (c) ·p = 0.1
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Figure 3.3: R2
g in relation to increasing ·p parameter in basic solution approxi-

mated as pKA = 2.5. L60 denotes linear chains consisting of 60 beads. In yellow
is concentration of 1.0 g/l and in black is concentration of 0.1 g/l

In the simulations of the system with lower pKA values, approximating an
ionized chain in basic conditions, we observed ever so slight increase in the av-
erage value of the R2

g. This can be primarily attributed to the ionization of the
PAA segments, which causes them to stretch out and contribute to the increased
size of the polymer chain.

(a) (b)

Figure 3.4: Snapshots of linear chains at di�erent pKA values at ·p = 0.01 (a)
pKA = 4.5 (b) pKA = 2.5
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Star architecture

In the case of the star architecture, we observed similar trends of radius of gyration
values for both 0.1 g/l and 1.0 g/l concentrations. Considering the nature of
the star architecture, it is expected that the measured values would be larger in
magnitude compared to linear chains. The slight increase in the radius of gyration
observed in the simulation with a concentration of 0.1 g/l can be attributed to
higher ionization within the less concentrated system. As a result, the polymer
chains stretch more, leading to an increase in their overall size. We observed a

Figure 3.5: R2
g in relation to increasing ·p parameter and pKA = 4.5. S10x60

denotes star architecture consisting of 10 chains with 60 beads each. In green is
concentration of 1.0 g/l and in blue is concentration of 0.1 g/l

decrease in R2
g as the ·p parameter increased. This trend resulted in the formation

of dense cores, particularly at high ·p values, which we associate with higher
temperatures. We interpret this core formation as indicative of a transition from
a solvated state.
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(a) (b)

(c)

Figure 3.6: Snapshots of stars at di�erent ·p parameters (a) ·p = 0.01 (b) ·p =
0.05 (c) ·p = 0.1
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In the simulations with decreased pKA, we observed a significant increase in
the radius of gyration. Additionally, we noticed a greater increase in the radius
of gyration for the 0.1 g/l concentration. We attribute this observation to the
higher possibility of ionization, which in turn leads to the stretching out of the
polymer chains. We demonstrate this in figure 3.8

Figure 3.7: R2
g in relation to increasing ·p parameter and pKA = 2.5. S10x60

denotes star architecture consisting of 10 chains with 60 beads each. In green is
concentration of 1.0 g/l and in blue is concentration of 0.1 g/l

(a) (b)

Figure 3.8: Snapshots of linear chains at di�erent pKA values at ·p = 0.01 (a)
pKA = 4.5 (b) pKA = 2.5
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3.1.2 Change of degree of ionization induced by concen-

tration

We examined the same simulations to analyze the influence of change in con-
centration on the degree of ionization. The outcomes obtained align with our
anticipated expectations. As anticipated, we observed an elevation in the degree

Figure 3.9: Degree of ionization in relation to ·p parameter at pKA = 4.5. S10x60
denotes star architecture consisting of 10 chains with 60 beads each and L60
denotes linear chains of 60 beads each. Color scheme remains the same as previous
plotted data.

of ionization for both linear chains and star architectures as the concentration
decreased from 1.0 g/l to 0.1 g/l. However, an interesting finding emerged when
examining the star architecture with an increase in the ·p parameter. In this case,
we noticed a slight decrease in the overall degree of ionization. We attribute this
phenomenon to the formation of hydrophobic cores, which restrict the movement
of the PAA segments. Consequently, the influence of the chains on each other
becomes more pronounced, leading to the observed decrease in degree of ioniza-
tion.
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As for simulations with lower pKA value, we again arrive at the same conclu-
sion. With the distinction that a�ormentioned changes become more pronounced
as a direct consequence of higher degree of ionization.

Figure 3.10: Degree of ionization in relation to ·p parameter at pKA = 4.5.
S10x60 denotes star architecture consisting of 10 chains with 60 beads each and
L60 denotes linear chains of 60 beads each. Color scheme remains the same as
previous plotted data.

3.2 Salt presence dependence

In our continued investigation, we conducted simulations using two di�erent sets
of concentrations: 1.0 g/l and 0.1 g/l. The purpose was to examine the e�ects
of introducing salt into the solution. In these simulations, we added 4+ ions to
the system. It’s worth noting that there was a di�erence in salt concentrations
between the two sets of simulations. At a concentration of 1.0 g/l, the salt con-
centration was set to 10≠4 M. For the 0.1 g/l concentration, the salt concentration
was set to 10≠6 M. This choice was made because simulations at 1.0 g/l concen-
tration proved to be computationally challenging when using a salt concentration
that matched the 0.1 g/l set. Additionally, we modified this set of simulations
similarly to the concentration-dependent set by adjusting the pKA to 2.5. This
alteration was made to approximate a basic solution. Now, we will compare the
results obtained from these simulations.
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3.2.1 Change of radius of gyration induced by salt pres-

ence

Linear chain architecture

We observed that the introduction of salt into the solution did not result in any
significant changes in R2

g for the linear chains. Numerically, there was a slight
decrease, indicating a potential wrapping of ionized PAA segments around the
salt ions. However, due to the nature of the data and its standard deviation, it
is not possible to confirm this e�ect conclusively.

Figure 3.11: R2
g in relation to increasing ·p parameter at pKA = 4.5. L60 de-

notes linear chains consisting of 60 beads. Transparent colors represent results
presented in figure 3.1 and are used as controls. Full colors represent simulations
with salt. In yellow is concentration of 1.0 g/l and in black is concentration of
0.1 g/l.

The simulations with a lowered pKA value yielded similar results. Although
we still observed a higher overall R2

g, there were no significant changes observed
upon introducing salt into the solution.

26



(a) (b)

Figure 3.12: Snapshots of linear chains at pKA = 4.5 and ·p = 0.01 (a) no salt
(b) 10≠6M salt content

Figure 3.13: R2
g in relation to increasing ·p parameter at pKA = 2.5. L60 de-

notes linear chains consisting of 60 beads. Transparent colors represent results
presented in figure 3.1 and are used as controls. Full colors represent simulations
with salt. In yellow is concentration of 1.0 g/l and in black is concentration of
0.1 g/l.
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Star architecture

The investigation into the star architecture yielded similiar results. There was
only a slight decrease in R2

g upon introducing salt into the solution. We attribute
this mostly to the PAA segments wrapping around the salt.

Figure 3.14: R2
g in relation to increasing ·p parameter with pKA = 4.5. S10x60

denotes star architecture consisting of 10 chains with 60 beads each. Transparent
colors denote the data depicted in figure 3.5. Full colors represent simulations
with salt. In green is concentration of 1.0 g/l and in blue is concentration of 0.1
g/l

Simulations with a lower pKA value exhibited a similar pattern. Despite
the higher degree of ionization, resulting in higher values of R2

g, there were no
significant changes observed in R2

g upon introducing salt into the solution. In
both cases, the salt ions were incorporated into the star architecture without
significantly a�ecting the conformation of the chain.
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(a) (b)

Figure 3.15: Snapshots of stars at pKA = 2.5 and ·p = 0.01 (a) no salt (b) 10≠6

M salt content

Figure 3.16: R2
g in relation to increasing ·p parameter in basic solution with

pKA = 2.5. S10x60 denotes star architecture consisting of 10 chains with 60
beads each. Transparent colors denote the data depicted in figure 3.5. Full colors
represent simulations with salt. In green is concentration of 1.0 g/l and in blue
is concentration of 0.1 g/l
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3.2.2 Change of degree of ionization induced by salt pres-

ence

During our investigation, we examined the impact of introducing salt on the
degree of ionization. We observed a consistent increase in the overall degree of
ionization across all systems. This rise in ionization was attributed to the stabiliz-
ing e�ect of salt ions on the ionized chain, resulting in a reduction in the system’s
overall energy. These findings were in line with our expectations. Subsequently,

Figure 3.17: Degree of ionization in relation to ·p parameter at pKA = 4.5.
S10x60 denotes star architecture consisting of 10 chains with 60 beads each and
L60 denotes linear chains of 60 beads each. Color scheme remains the same as
previous plotted data.

we obtained nearly identical results from the system with a decreased pKA. The
degree of ionization showed a consistent increase, similar to the previous sys-
tems. This similarity can be attributed to the salt ions still e�ectively stabilizing
the ionized chain, resulting in a reduction in the system’s overall energy. These
findings were consistent with our earlier observations.
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Figure 3.18: Degree of ionization in relation to ·p parameter at pKA = 2.5.
S10x60 denotes star architecture consisting of 10 chains with 60 beads each and
L60 denotes linear chains of 60 beads each. Color scheme remains the same as
previous plotted data.
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3.3 Polymer clusters approximations

The main prediction from the simulation of the star architecture PAA-PNIPAm
is the formation of a hydrophobic core at high values of ·p, which corresponds
to an increase in temperature. However, in this particular case, the polymer
chains are connected at the center bead, and breaking this bond is not allowed
in the simulation. It is expected that linear chains would behave similarly, but
this is highly unlikely. At concentrations of 1.0 g/l and 0.1 g/l, it is statistically
improbable for a core consisting of more than two chains to form, as the simulated
chains tend to separate from each other due to the amphiphilic nature of the chain.

To acknowledge the limitations of our simulations, we conducted a separate
simulation set with the aim of approximating the behavior of linear chains in clus-
ters. In solution, the polymer is not uniformly distributed but can form clusters.
In these cluster formations, concentration calculations no longer provide mean-
ingful results. We approximated the clustering of polymer chains by simulating
linear polymer chains at concentrations of 64 g/l, 100 g/l, and 200 g/l. These
simulations were carried out at a ·p value of 0.1 to simulate a highly hydropho-
bic environment, which we associate with high temperature. These simulations
were carried out with salt content of 10≠6 M. We then qualitatively assessed the
tendencies displayed by the system.
In all of our simulations, we noticed the emergence of sizable hydrophobic cores,
mirroring the behavior observed in star architectures. To illustrate this, a compar-
ison between the pre-simulation and post-simulation states is depicted in figure
3.19. As the concentration increased, the cores exhibited a noticeable growth,

(a) (b)

Figure 3.19: Snapshots of simulations approximating cluster behaviour at pKA =
4.5 and ·p = 0.1 and concentration of 64 g/l (a) before simulation (b) after
simulation

frequently intertwining with each other. This phenomenon can be approximated
as a phase transition from a dissolved state to a solid state.
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(a) (b)

(c) (d)

Figure 3.20: Snapshots of simulations approximating cluster behaviour at pKA =
4.5 and ·p = 0.1 (a) 64 g/l (b) 100 g/l (c) 200 g/l (d) 500 g/l
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3.3.1 Cryo STEM

We conducted cryo STEM imaging on specimen of PAA-PNIPAm in a sodium
hydroxide solution. The specimens were prepared at di�erent temperatures while
maintaining the same concentration of 1.0 g/l. The first specimen was prepared
at 25 ¶C, while the second specimen was prepared at 50 ¶C. Before the specimen
preparation each sample was visually investigated. While specimen kept at 25 ¶C
was a clear solution, the specimen after heating at 50 ¶C was visually less trans-
parent, and can be described as slightly cloudy. To prepare the specimens, we
used a cryo plunging method. Mist chamber was kept at 25¶C with a relative hu-
midity of 98%. A small drop of the solution was applied to a copper grid mounted
on the tweezer placed in the chamber. Afterward, each specimen was automati-
cally blotted five times on each side of the grid using filtration paper. Following
the blotting process, the samples were left undisturbed for approximately 2 min-
utes to allow for relaxation and creation of thin water layer. Subsequently, the
samples were rapidly plunged into liquid ethane that allowed instant freezing of
the specimens. They were then transferred to a cryo station, and then on the
cryo holder which had been kept under liquid nitrogen. The dewar of the cryo
holder was continuously kept refilled with liquid nitrogen to sustain operating
temperature below -175 ¶C. The samples were kept at a low temperature by
submerging them in liquid nitrogen throughout the process until the holder was
inserted into the microscope. Finally, both specimens were imaged using STEM,
and the results were analyzed by measuring the size of representative number of
particles and generating the size distributions histograms. Upon visual investi-
gation we found small clusters of our sample forming at temperature of 25 ¶C.
Contrary, sample plunged at 50 ¶C was found to form large aggregates throughout
specimen. Comparison of representative STEM images obtained for these struc-
tures is presented in figure 3.21. Then, using obtained images we measured the
size of imaged particles and plotted it as a size distributions graphs of particles
at two di�erent temperatures for comparison. Size distributions histograms are
presented in figure 3.22.
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(a) (b)

Figure 3.21: Images recorded with cryo STEM imaging. (a) sample at 25 ¶C (b)
sample at 50 ¶C

(a) (b)

Figure 3.22: Size distribution of structures observed in PAA-PNIPAm sample in
solution of sodium hydroxide (a) sample at 25 ¶C (b) sample at 50 ¶C
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4. Study limitations and future

perspectives

We will now present our view on limitations of this study and possible future
perspectives.

Approximating the polymer chain

It is important to note that in our simulation, we focused on copolymer chains
comprising 60 beads with a PAA/PNIPAM ratio of 0.4/0.6. While the block ratio
is based on real observations, the chosen chain length is arbitrary. Although a
60-monomer chain can be considered a polymer in its essence, this may impose
limitations on fully exploring the behavior of these chains. For future investiga-
tions, it would be advantageous to simulate copolymer chains of various lengths
to gain a more comprehensive understanding of their properties.

Varying the solution pH

Although not the primary objective of our study, we observed that adjusting the
pKA of the PAA segments, as an approximation of di�erent solvent pH levels,
resulted in an increase in the size of the simulated chains. These findings raise
intriguing questions about the potential outcomes when exploring a wider range
of pKA values. We believe that conducting studies over a broader spectrum of
pKA would greatly contribute to a deeper understanding of the intricacies within
this system.

Star architectures

Our investigation focused on star architecture PAA-PNIPAm chains, employing
a model comprising 10 copolymer chains, each consisting of 60 beads. This model
was chosen for it’s relative computational cheapness and because the real associa-
tion number is unknown. While this model provides a reasonable approximation
of a micelle structure, we recognize the potential to enhance our understanding of
the system by exploring variations in these architectures and studying the trends
observed.

Approximating polymer clusters

We conducted a study on polymer systems in rather extreme concentrations as an
approximation of polymer clusters in solution. We simulated this in solvent at ·p

value of 0.1 which approximates solution at high temperature. This confirmed the
ability of linear chains to form dense hydrophobic cores. However by simulating
over the whole range of ·p as was done with other simulations, we could explore
this behaviour more closely. While these simulations have proven themselves to
be computationally di�cult, we believe that future research could possibly yield
interesting results.
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Cryo imaging

In our Cryo-STEM imaging of PAA-PNIPAm in a sodium hydroxide solution,
we primarily focused on temperature as the parameter of interest. However, to
deepen our understanding of this system, further investigation by varying these
parameters is needed. We propose conducting imaging experiments that compare
the di�erences observed when altering the concentration of the sample and the pH
level. Additionally, we suggest exploring the system’s temperature dependence
in a more precise manner. These proposed variations in parameters have the
potential to provide valuable insights into the behavior of the polymer system.
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Conclusion

We conducted as study on stimuli responsive copolymer system of poly(acrylic
acid-block-N-isopropylacrylamide) in solution. Theorethical study was done us-
ing hamiltonian Monte Carlo simulations in reaction ensamble. We used coarse
grained model for our simulations using two distinct architectures one being linear
chains and the second being polymer stars. We investigated the e�ect of varying
concentration of the polymer(0.1 g/l and 1.0 g/l) and presence of meso-tetrakis(N-
methyl-4-pyridyl)porphine tetrakis(p-toluenesulfonate) as well as varying ·p pa-
rameter in range from 0.01 to 0.1 as an approximation of temperature change.
We then investigated e�ects of these stimuli on mean value of R2

g and degree of
ionization. In the simulations investigating the e�ect of concentration we found
no significant di�erence in mean values of R2

g between the two concentrations
in both architectures. We observed sharp decrease in mean value of R2

g with
increase of ·p parameter. This was in line with our expectations that stemmed
from experimental data in current literature, from which we draw the conclusion
that observed decrease in size was corresponding to the phase transition that
the polymer undergoes when exposed to temperatures above 32 ¶C. We observed
higher degree of ionization in simulations conducted at lower concentration of
polymer (0.1 g/l) which is in line with current understanding of acid dissociation.
We failed to see any statistically significant change in mean value of R2

g upon
introducing salt into the system in both polymer architectures. We attribute this
to the fact that studied salt is multivalent (4+) and therefore the e�ect of in-
creased ionization that would ultimately lead to stretching of the polymer chain
is diminished by conformation of the chain around the salt particle as opposed
to monovalent salt, where we would expect overall increase in size. We observed
an increase in overall degree of ionization upon introduction of salt, which was in
line with our expectations.
Knowing these insights, we proposed simulations reflecting the real specimen
studied by cryo-STEM. It was performed by the replication of the exact same
simulation set with change of the pKA value to 2.5. In this way we reached
the approximation of basic solution. As expected this lead to higher degree of
ionization, however we also observed relatively large increase in mean values of
R2

g. We explain this as stretching of highly ionized chains. Same as with previ-
ous simulation we saw no statistically significant changes in size upon changing
concentration of the polymer or presence of salt. Additionally we conducted sim-
ulations approximating polymer clusters in solution at high temperature, where
we observed formation of large hydrophobic core, which sizes rose with the con-
centration. This was in line with the observations of cryo-STEM imaging, where
we compared a sample of the polymer in solution of sodium hydroxide at 25 ¶C
and consequently at 50¶C. At lower temperature we observed formations of small
clusters ranging from 30 nm to 90 nm, with the most common sizes being in
range from 40 - 60 nm. At higher temperature we observed formation of large
aggregates of the polymer with size ranging from 200 nm to 1400 nm, with the
most common sizes being 500-700 nm. This was in line with what experimental
data acquired by dynamic light scattering predicted.
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[2] Luboš Běhálek. Struktura polymer̊u a jej́ı vliv na vlastnosti, 2015.

[3] Models of Polymer Chains, chapter 1, pages 1–67. John Wiley Sons, Ltd,
2002.

[4] George M. Whitesides and Bartosz Grzybowski. Self-assembly at all scales.
Science, 295(5564):2418–2421, 2002.
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Figure 4.1: Time evolution of Rg. (a) Rg time evolution of chains (b) Rg time
evolution of stars
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