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Introduction

Field theories have been at the heart of the development of physical theories
for more than a hundred years. Their natural course of development included
lifting the classical field theories to quantum field theories (QFTs). A very
special class of QFTs are conformal field theories (CFTs), which possess
conformal invariance, that is invariance under local rescalings. CFTs naturally
arise as signposts in the landscape of QFTs, which are present at the ends of
RG flows since the theories at RG flow endpoints have scaling symmetry and
thanks to Polyakov’s conjecture it is enhanced to the full conformal symmetry
under very general conditions. In two dimensions the study of CFTs is
particularly rich since the symmetry algebra becomes infinite-dimensional. A
natural question is whether one can understand the off-critical theories using
CFT data or whether one can use the CFT data of one CFT to characterise
new CFTs. It is conformal perturbation theory that aims at answering this
question in a perturbative setting.

It is natural to ask whether there are any extended objects that can be
added to the bulk CFTs, such objects could embody for example certain
defects and impurities. An example of such extended objects are conformal
boundaries, which break the least amount of conformal symmetry, and the
study of CFTs with their presence is called boundary conformal field theory
(BCFT). The classification of all conformal boundary conditions that can be
added to a fixed CFT is an outstanding problem. The boundary states and
the spectra of boundary fields that live on the conformal boundaries have to
satisfy stringent consistency conditions, which thankfully can sometimes lead
to the classifications of all BCFTs with a fixed CFT in the bulk. One could
again try to find new conformal boundary conditions by having a BCFT that
one understands and perturb it along the boundary. Analogously to the bulk
case, it is boundary conformal perturbation theory that sheds light on this
problem.

Just as the classification of conformal boundary conditions is difficult, so
is conformal perturbation theory both in the bulk and on the boundary. Very
often only leading order results are available, which is in part due to the not
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so practical point-splitting regularisation that is used. This is where string
theory comes in. The different CFTs act as different vacua of string theory
and one might hope that conformal perturbation theory can be rephrased
as a problem in string perturbation theory. We run into a problem with the
conventional string perturbation theory in that it only describes the scattering
of on-shell states, which would correspond only to conformal perturbation
theory of marginal deformations. Clearly a framework that can take string
theory off-shell is of interest.

Now the problems of classifying boundary conditions and taking string
theory off-shell beautifully come together in a very particular framework
called open string field theory (OSFT). It is a field theory formulated on a
fixed boundary condition, but can describe all other boundary conditions as
solutions to its classical equations of motion. Such solutions are string fields
and the KMS correspondence enables one to find the corresponding boundary
states. What is less clear is how the boundary spectrum of the BCFT
described by a given string field looks like. OSFT also consistently takes the
theory of open strings off-shell and so one can hope that it can take boundary
conformal perturbation theory beyond the leading order. This is indeed the
case since for example one does not need to use point-splitting regularisation
but can interpret the divergences as arising from the propagation of tachyons
and zero modes, something which one knows how to handle in OSFT.

In this thesis we construct perturbative solutions to the OSFT equations
of motion corresponding to relevant deformations. These solutions are inves-
tigated in the near-marginal limit where contact with boundary conformal
perturbation theory is made. We reproduce the leading order results and
even extend the computation of the entropy associated with a given boundary
condition to the next-to-leading order. The first step towards understanding
the boundary spectrum of the BCFT described by the perturbative solution is
made. In particular we find that the perturbing operator disappears from the
spectrum in line with RG intuition. This work is based on the collaboration
with Martin Schnabl and will be submitted to PRL [1].

The thesis is organised as follows. First we present four introductory
chapters. In chapter (1), we introduce the basics of scalar QFT and investigate
some consequences of formulating perturbation theory around an unstable
vacuum. Then some RG ideas are sketched. After this in (2) we provide
a sufficiently detailed introduction to bulk CFTs, including bulk conformal
perturbation theory. At the end of this chapter, we introduce the unitary
minimal models and their perturbations together with CFTs that are key
for string theory, namely the free boson and the bc-ghost system. Then in
(3), we briefly introduce the basic objects of study in BCFT, the various
consistency conditions and properties and then finish with boundary conformal
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perturbation theory. The chapter (4) presents the general framework of
Witten’s OSFT and the standard analytic techniques used to solve the classical
equations of motion. It ends with a discussion of two classes of classical
solutions, namely the tachyon vacuum class of solutions and the exactly
marginal perturbations, on which we build the intuition for more general
perturbative solutions. The last chapter (5) presents the original research. We
begin by sketching the general setup for investigating perturbative solutions
and through the OSFT classical action elegantly compute the shift in the
boundary degeneracy g to the next-to-leading order. Going beyond the leading
order requires fixing a gauge and we fix Siegel gauge. The KMS correspondence
also enables us to find the leading order shift in the general boundary state
coefficient. Then we investigate the perturbed boundary spectrum. Lastly we
explore two alternative gauge conditions, namely Schnabl gauge and pseudo-
Schnabl gauge to third order in string perturbation theory. To do so, we
have to learn how to manipulate oblique projectors and handle a zero-mode
present in the Schnabl gauge calculation. We reproduce the leading order
shift in g through the Kudrna-Maccaferri-Schnabl (KMS) correspondence,
giving a nontrivial check on the Schabl gauge solution. We also reproduce this
using pseudo-Schnabl gauge but we think this is a fluke since the presented
pseudo-Schnabl gauge string field violates the equations of motion. We include
two appendices, in (A) we present correlators useful in OSFT and in (B)
we investigate the original Kaluza-Klein theory to gain a little practice with
extra dimensions that show up in string theory and present an interesting
instanton.
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Chapter 1

An introduction to Quantum
Field Theory

In this chapter we provide a brief introduction to quantum field theory (QFT)
as necessary for providing the wider context into which later chapters belong.
It goes without saying that to gain proper exposure, one should consult
monographies on the subject and luckily today many are available. The
monographies we find most exhaustive are Weinberg’s three volumes [2, 3, 4]
for the particle physics setting and Zinn-Justin [5] for applications outside
of particle physics. In this chapter we draw most inspiration from the brief
book of Banks [6] and the lectures of Coleman [7]. As a great first book on
the subject we recommend Zee [8]. Other widely used books include [9, 10,
11, 12]. We follow the path integral approach which is nicely summarized
in the appendix of [13]. As for the more specialised sections, the section on
Euclidean field theory is essentially taken out of [14] and the topic is also nicely
covered in [15]. The section on large order behavior of perturbation series
and instantons is inspired by [16]. Renormalisation group ideas are mainly
inherited from the reviews [17, 18] and the already mentioned book of Banks,
see also [19] for further reading. We note that the mostly plus signature is
used in contrast to most QFT literature. We set units to ℏ = c = 1.

1.1 Motivation
We begin by outlining the motivation for QFT. Following the historic route
we wish to show that QFT naturally emerges when one considers physical
situations in which both quantum mechanical (QM) and relativistic effects
have to be taken into account. Naively one might expect such a theory to
be rather simple since adding Lorentz invariance might simplify matters in
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analogy to how spherical symmetry does. To show why this is not the case,
we first consider a thought experiment by Bohr. Suppose we have a box with
a piston and a particle inside. We then try to locate the particle by squeezing
it with the piston and eventually we locate it within its Compton wavelength
λ. By the defining relation of λ

m = 2π
λ
, (1.1)

where m is the particle’s mass, we see that the uncertainty in momentum
implied by Heisenberg’s uncertainty principle is roughly of the order where
pair production is energetically allowed. The uncertainty in momentum thus
becomes uncertainty in particle number and so our theory must make creation
and annihilation of particles possible. This requirement can also be seen in
the theory of scattering. There what looks like off-shell propagation leading
to scattering on an external potential (turned on only for a brief moment) in
one frame can look like pair production in a boosted frame, see figure (1.1).

(a) Scattering before boost (b) Pair production after boost

Figure 1.1 Scattering boosts into pair production

This situation can happen because in QFT propagators may be nonzero for
spacelike propagation but one shouldn’t confuse it with on-shell propagation.

Having an uncertainty in particle number is not the only complication
that combining QM with relativity enforces. From relativity we know that
information cannot travel faster than light and this is in conflict with the
fact that in QM an observer can measure any observable of choice. The
conflict arises because the noncommutative nature of observables implies that
observation itself may have a physical effect. So having access to an observable
in a distant experiment, one may affect the physics there superluminally.
There is a way out, however. We can associate observables to regions of
spacetime so that for any two spacelike separated regions R1 and R2 we
have [O1,O2] = 0 where O1 can be measured in the region R1 and O2 in
R2. Having encountered Maxwell’s theory we know that there this is realized
on a classical level by introducing local fields Aµ(x) with proper equations
of motion. So we attempt to build our observables out of operator valued
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quantum fields ϕ(x), which satisfy [ϕ(x), ϕ(y)] = 0 for (x− y)2 > 0 ensuring
the analogous condition on observables. We do not a priori give these fields
direct physical meaning, for us they serve the role of auxiliary objects out of
which physical observables are built.

1.2 Multiparticle states
In the last section we showed a need to build a state spaces which can
accommodate a variable number of particles. This state space was introduced
by Fock and is called the Fock space. It is defined as the direct sum H =⨁︁∞

k=0 Hk, where Hk is a k-particle Hilbert space containing three-momentum
eigenstates |p1, . . . ,pk⟩. In Fock space we introduce an inner product

⟨p1, . . . ,pk|q1, . . . , ql⟩ = δkl

∑︂
σ

δ3(p1 − qσ(1)) . . . δ3(pk − qσ(k)), (1.2)

where we specialised to bosonic statistics. The zero particle space H0 contains
the unique normalised state |0⟩ such that ⟨0|0⟩ = 1. By the definition (1.2)
we realise that |p1, . . . ,pk⟩ and |pσ(1), . . . ,pσ(k)⟩ are equivalent. Making
this manifest, we simplify a lot of our computations and it is done so by
introducing creation operators a†(p) such that

|p1, . . . ,pk⟩ = a†(p1) . . . a†(pk) |0⟩ , (1.3)

where
[︂
a†(p), a†(q)

]︂
= 0. One can check that (1.2) is correctly reproduced if

for the hermitian conjugates a(p) one has[︂
a(p), a†(q)

]︂
= δ3(p − q), (1.4)

with a(p) |0⟩ = 0. The operators a(p) are then called annihilation operators
and they commute [a(p), a(q)] = 0. To see that the definition (1.3) is correct,
we make an explicit computation of ⟨p1,p2|q1, q2⟩

⟨p1,p2|q1, q2⟩ = ⟨0| a(p1)a(p2)a†(q1)a†(q2) |0⟩
= ⟨0| a(p1)a†(q1)a(p2)a†(q2) |0⟩ +

δ3(p2 − q1) ⟨0| a(p1)a†(q2) |0⟩
= δ3(p2 − q2) ⟨0| a(p1)a†(q1) |0⟩ +

δ3(p1 − q2)δ3(p2 − q1)
= δ3(p1 − q1)δ3(p2 − q2) +

δ3(p1 − q2)δ3(p2 − q1)
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Since a†(p)a(p) acts as particle number density in momentum space, we may
equip H with generators of the Lorentz group. For example we have for the
four-momentum

P µ =
∫︂

d3p pµa†(p)a(p) (1.5)

The states we have created so far do not have simple transformation properties
under the action of the Lorentz group, which is represented on H by unitary
operators U(Λ), where Λ belongs to the Lorentz group. It is convenient to
work with states |p1 . . . pk⟩, where the momenta are now four-momenta. Up
to a conventional factor of 2π, the correct normalisation is provided by taking

|p⟩ =
√︂

(2π)3
√︂

2ωp |p⟩ , (1.6)

where ωp =
√

p2 +m2 and m is the mass of the particles our momentum
eigenstates represent. To see this we start by building a Lorentz invariant
measure on the mass-shell hyperbola p2 + m2 = 0, p0 > 0. Since the sign
of the time component of a timelike vector is Lorentz invariant and p2 is
also Lorentz invariant, the product δ(p2 +m2)θ(p0) is Lorentz invariant and
restricts p to lie on the future mass-shell hyperbola. The Lorentz invariant
measure is then d4p δ(p2 +m2)θ(p0) and with the definition (1.6) we have the
completeness relation

1 =
∫︂

d3p |p⟩ ⟨p| = 1
(2π)3

∫︂
d4p δ(p2 +m2)θ(p0) |p⟩ ⟨p| (1.7)

This is so by ∫︂ ∞

−∞
dp0

(︂
d3p δ(p2 +m2)θ(p0)

)︂
= d3p

2ωp

(1.8)

and writing

δ(p2 +m2) = δ(−(p0)2 + ω2
p)

= δ
[︂
(ωp − p0)(ωp + p0)

]︂
= δ(ωp − p0)

2ωp

+ δ(ωp + p0)
2ωp

,

which follows from standard delta function identities and only one sign is
chosen by the step function θ(p0). Since the measure on the mass-shell
hyperbola transforms as

d4p δ(p2 +m2)θ(p0) → d4Λp δ(p2 +m2)θ(p0) (1.9)

under Lorentz transformations, one has from (1.7)

U(Λ) |p1, . . . , pk⟩ = |Λp1, . . . ,Λpk⟩ (1.10)
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The kets |p1, . . . , pk⟩ also transform very simply under translations since they
are momentum eigenstates

U(Tx) |p1, . . . , pk⟩ = e−i
∑︁

j
pj · x |p1, . . . , pk⟩ , (1.11)

where x is a four-vector. Taking (1.10) and (1.11) we know how |p1, . . . , pk⟩
transform under the action of the Poincaré group. From the definition (1.6)
it is clear that the creation and annihilation operators in the relativistic
normalisation should be

α†(p) =
√︂

2π3
√︂

2ωp a
†(p) (1.12)

α(p) =
√︂

2π3
√︂

2ωp a(p) (1.13)

These inherit transformation properties from (1.10) and (1.11)

α†(Λp) = U(Λ)α†(p)U †(Λ) (1.14)
α(Λp) = U(Λ)α(p)U †(Λ) (1.15)

e−ip·xα†(p) = e−iP ·xα†(p)eiP ·x (1.16)
eip·xα(p) = e−iP ·xα(p)eiP ·x (1.17)

One may derive these identities by noting that U(Λ) |0⟩ = |0⟩, P |0⟩ = |0⟩
and inserting a clever unit operator U †(Λ)U(Λ) or eiP ·xe−iP ·x before |0⟩. Also
taking P µ to have only one non-zero component, namely the Hamiltonian,
we see that we are working in the Heisenberg picture. Now that we have a
multiparticle state space H and a basis in which Lorentz transformations act
nicely, we may use it to build a quantum field ϕ(x) with the desired Lorentz
transformation properties.

1.3 The scalar field
For simplicity, we are interested in the simplest possible transformation
properties of ϕ(x) under the action of the Poincaré group. That is

ϕ(x− y) = e−iP ·yϕ(x)eiP ·y (1.18)
ϕ(Λ−1x) = U(Λ)†ϕ(x)U(Λ) (1.19)

as appropriate for a scalar field. These transformation properties resem-
ble those of creation and annihilation operators and suggest that ϕ could
be a linear combination of them. This linearity is also supported by the
fact that eventually we would like to couple fields to sources of particles
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as
∫︁

d4xϕ(x)J(x) and do perturbation theory in the small amplitudes for
creation of particles J (multiple actions of J creating multiple particles).
The translation property (1.18) is also guaranteed if we write ϕ as a Fourier
integral. The measure in this integral should be Lorentz invariant to inherit
the transformation properties of creation and annihilation operators. To build
observables it is convenient to make ϕ Hermitean and putting all of these
requirements together naturally leads to

ϕ(x) =
∫︂ d3p

(2π3)(2ωp)

(︄
e−ip·xα(p) + eip·xα†(p)

)︄
. (1.20)

In the motivation section we mentioned that [ϕ(x), ϕ(y)] = 0 for (x− y)2 > 0
by causality. This now needs to be verified for (1.20) and it is convenient
to bring back the original creation and annihilation operators with simple
commutation relations

ϕ(x) =
∫︂ d3p√︂

2π3
√︂

2ωp

(︄
e−ip·xa(p) + eip·xa†(p)

)︄
(1.21)

so that modulo terms that are trivially zero we get using (1.4)

[ϕ(x), ϕ(y)] =
∫︂ d3p

(2π3)(2ωp)

(︄
e−ip·(x−y) − e−ip·(y−x)

)︄
. (1.22)

Because we are integrating two Lorentz scalars and since spacelike vectors
move outside the light cone, one can for (x− y)2 > 0 turn x− y into y − x
with a Lorentz transformation, we have

[ϕ(x), ϕ(y)] =
∫︂ d3p

(2π3)(2ωp)

(︄
e−ip·(x−y) − e−ip·(x−y)

)︄
= 0 (1.23)

as it should. As a consequence of the vanishing of [ϕ(x), ϕ(y)] for (x−y)2 > 0,
choosing a time direction, we have the vanishing of any equal-time commutator

[ϕ(t,x), ϕ(t,y)] = 0 (1.24)

It is also easy to see from (1.22) and the integral representation of the delta
function δ3(x) =

∫︁ d3p
(2π)3 e

ip·x the equal-time commutator[︂
ϕ(t,x), ϕ̇(t,y)

]︂
= iδ3(x − y) (1.25)

It is worth a remark that (1.20) satisfies the Klein-Gordon equation

(−∂2 +m2)ϕ(x) = 0 (1.26)
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by virtue of the mass-shell condition so that one can essentially revert the
entire process, that is postulate an equation of motion (EOM) and derive
(1.20) as a classical solution and from the Fourier modes build H. In the light
of (1.26) the causality condition on the quantum level can be seen as a sort
of preservation of the classical causality, which is almost self-evident since
−∂2 is a wave operator. The Klein-Gordon equation can be derived from the
Lagrangian density

L = −1
2(∂ϕ)2 − 1

2m
2ϕ2 (1.27)

by the usual formula ∂µ ∂L
∂(∂µϕ) − ∂L

∂ϕ
= 0. In the next sections we shall work

with more general, interacting Lagrangian densities

L = −1
2(∂ϕ)2 − V (ϕ), (1.28)

where V is taken to be polynomial in ϕ. The reason why we do not call the
previous theory interacting is the fact that the oscillators, from which H was
built, were uncoupled, leading to for example the additivity of energy.

1.4 Observables and perturbation theory
The quantities we would like to compute are correlation functions of the form

⟨ϕ(x1) . . . ϕ(xn)⟩ = ⟨0|Tϕ(x1) . . . ϕ(xn) |0⟩ , (1.29)

where T denotes time ordering for some chosen time direction, which places
the operators from left to right according to an ordering by largest to smallest
times, so that for example

Tϕ(x1)ϕ(x2) = θ(x0
1 − x0

2)ϕ(x1)ϕ(x2) + θ(x0
2 − x0

1)ϕ(x2)ϕ(x1) (1.30)

These correlation functions are of interest even in ordinary QM as we now
demonstrate by attempting an exercise from [6]. Suppose that we have a
one-dimensional QM problem with a ground state |0⟩ such that H |0⟩ = 0
and as a complete set of commuting observables we take x. Picking a time
ordering we consider correlation functions of the form

⟨0|x(t1) . . . x(tn) |0⟩ (1.31)

we write these out for n = 1, 2, 3.

⟨0|x(t) |0⟩ = ⟨0| e−itHxeitH |0⟩ = ⟨0|x |0⟩ (1.32)
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⟨0|x(t1)x(t2) |0⟩ = ⟨0| e−it1Hxeit1He−it2Hxeit2H |0⟩
=

∑︂
n

|⟨0|x |n⟩|2eit12En (1.33)

⟨0|x(t1)x(t2)x(t3) |0⟩= ⟨0| e−it1Hxeit1He−it2Hxeit2Hxe−it3Hxeit3H |0⟩
=
∑︂
n,m

⟨0|x |n⟩ ⟨n|x |m⟩ ⟨m|x |0⟩ eit12Eneit23Em , (1.34)

where we inserted a complete set of energy eigenstates |n⟩ and tij ≡ ti − tj.
We see for example from (1.33) that the Fourier transformation of correlation
functions encodes the energy levels En. We have shown that eigenvalues of
H can be obtained from correlation functions, but what about H itself? For
this we show that (1.31) contains vacuum expectation values (VEVs) of the
form ⟨0|xmpn |0⟩. To do this, we pick the usual nonrelativistic ansatz for H

H = p2

2m + V (x), (1.35)

and with the formula [f(A), B] = [A,B] ∂f
∂A

valid for the commutator [pn, x]
and the canonical commutation relation [x, p] = i we then have

⟨0|x(t1)x(t2) |0⟩ = ⟨0| e−it1Hxeit1He−it2Hxeit2H |0⟩
= ⟨0|xeit12Hx |0⟩
= ⟨0|x2 |0⟩ + ⟨0|x

[︂
eit12H , x

]︂
|0⟩

= ⟨0|x2 |0⟩ +
∞∑︂

n=0

(it12)n

n! ⟨0|x[Hn, x] |0⟩ (1.36)

where we expanded the exponential. We now simply match the coefficients of
tn12 on the right hand side with the same coefficients in the Taylor expansion
of the left hand side to obtain constraints on various VEVs. Higher point
correlators give further restrictions on the VEVs and enable us to solve for
them. Such VEVs with xs only give moments of the ground state wave
function modulus squared Ψ2

0(x), which by a version of the moment problem
determine Ψ0(x) up to a position dependent phase, which can be fixed by
considering the VEVs with ps. Now that we have the ground state wave
function Ψ0(x), we can calculate the potential V (x) by the time-independent
Schrödinger equation

V (x) = 1
2mΨ0

d2Ψ0

dx2 (1.37)

determining the functional form of H. So in the end we have obtained the
eigenvalues and functional form of H from the correlation functions (1.31).
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In QFT the correlation functions (A) directly lead to the computa-
tion of particle masses by the Källén–Lehmann spectral representation of
⟨0|Tϕ(x1)ϕ(x2) |0⟩ and their scattering amplitudes by the LSZ formula. When
we compute correlation functions, it is usually very convenient to define a
generating functional

Z[J ] ≡ ⟨0|Tei
∫︁

d4xJ(x)ϕ(x) |0⟩ , (1.38)

so that the correlation functions are easily computed once Z is known

⟨0|Tϕ(x1) . . . ϕ(xn) |0⟩ = (−i)n δ

δJ(x1)
. . .

δ

δJ(xn)Z[J ]
⃓⃓⃓⃓
⃓
J=0

, (1.39)

where for the functional derivative, we have δJ(x)
δJ(y) = δ4(x − y). Our task

thus reduces to the computation of Z and we begin by formulating the
equations of motion for it. First we consider the two-point correlator, where
we differentiate by the time x0 twice

∂2
0 ⟨0|Tϕ(x)ϕ(y) |0⟩ = ∂2

0

(︄
θ(x0 − y0) ⟨0|ϕ(x)ϕ(y) |0⟩ +

θ(y0 − x0) ⟨0|ϕ(y)ϕ(x) |0⟩
)︄

By the identity θ′(x) = δ(x) this simplifies to

∂0

(︄
⟨0|T∂0ϕ(x)ϕ(y) + δ(x0 − y0) ⟨0| [ϕ(x), ϕ(y)] |0⟩

)︄

The delta function forces the commutator to be equal-time so it vanishes by
(1.24). Applying the derivative a second time, we get

∂2
0 ⟨0|Tϕ(x)ϕ(y) |0⟩ = ⟨0|T∂2

0ϕ(x)ϕ(y) |0⟩ − δ(x0 − y0)[ϕ(y), ∂0ϕ(x)]
= ⟨0|T∂2

0ϕ(x)ϕ(y) |0⟩ − iδ4(x− y),

where the delta function again made the commutator equal-time and so we
used (1.25). For the higher point correlators the pattern is

∂2
0 ⟨0|Tϕ(x)ϕ(y1) . . . ϕ(yn) |0⟩= ⟨0|T∂2

0ϕ(x)ϕ(y1) . . . ϕ(yn) |0⟩ (1.40)
−i
∑︂

j

δ4(x− yj) ⟨0|Tϕ(y1) . . . ϕ(yj+1) . . . ϕ(yn) |0⟩

Expanding the generating function in sources J will make the following more
transparent

Z[J ] =
∑︂

n

1
n!

∫︂
Zn(x1, . . . , xn)J(x1) . . . J(xn) (1.41)
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First we notice that when multiplying the higher point correlators and inte-
grating over y1, . . . , yn, one source always survives the integration. By the
fact that we can bring down a ϕ(x) by functional differentiation of Z[J ] by
iJ(x) and that EOMs for ϕ read ∂2ϕ = ∂V

∂ϕ
, we then have

∂2 δZ

δ(iJ(x)) =
(︄
∂V

∂ϕ

[︄
δ

δ(iJ(x))

]︄
+ J(x)

)︄
Z[J ] (1.42)

This equation is called the Schwinger-Dyson (SD) equation and we would
like to find a formal solution. We see that we have two derivatives with
respect to J and one explicit factor of J in (1.42). Knowing elementary
Fourier analysis one gets the idea that a simplification will occur when Fourier
transforming. The two functional derivatives turn into multiplication and the
explicit factor of J turns into a derivative creating a first-order PDE for the
Fourier transform. Writing the Fourier ansatz

Z[J ] =
∫︂

Dϕ eiS[ϕ]+iJϕ, (1.43)

where Dϕ is a formal measure on field space, the SD equation (1.42) yields
∫︂

Dϕ
(︄
∂2ϕ− ∂V

∂ϕ
− δS

δϕ

)︄
eiS[ϕ]+iJϕ = 0, (1.44)

where integration by parts was used to obtain a functional derivative of S.
This is satisfied for

S[ϕ] =
∫︂

d4x

(︄
1
2ϕ∂

2ϕ− V (ϕ)
)︄

=
∫︂

d4x

(︄
− 1

2(∂ϕ)2 − V (ϕ)
)︄

=
∫︂

d4xL,

(1.45)
where the correctness of the factor 1

2 is seen a posteriori after doing a per
partes to obtain −1

2(∂ϕ)2. It can also be understood by discretizing spacetime
and interpreting ∂2 as a symmetric matrix, which replaces ∂2ϕ by KABϕ

B.
The integral S of the Lagrangian density is nothing but the classical action.
Integration with the measure Dϕ in (1.43) is then called functional integration
and it has the interpretation of integrating over classical configurations of
the field ϕ weighed by the exponential of the classical action. The resulting
integral is called a path integral.

We will evaluate the generating functional Z[J ] for the case of free (also
called Gaussian for reasons that soon become clear) field theory with

S[ϕ] =
∫︂

d4x

(︄
− 1

2(∂ϕ)2 − 1
2m

2ϕ2
)︄
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The integral (1.43) is oscillating for real m and so we make the Feynman iϵ
prescription m2 → m2 − iϵ to make it convergent. Apart from this issue it is
a simple Gaussian and we evaluate it as a continuum limit of

I(J) =
∫︂
dny e− 1

2 Kijyiyj+iyiJi = e− 1
2 Ji(K−1)ijJj

I(0) (1.46)

The proper generalisation of a matrix inverse K−1 to the continuum case is
the Green function satisfying

i(∂2 −m2 + iϵ)D(x− y) = −δ4(x− y), (1.47)

where D is called the Feynman propagator and it can be expressed in mo-
mentum space

D(x− y) =
∫︂ d4p

(2π)4 e
−ip(x−y) −i

p2 +m2 − iϵ
(1.48)

The Feynman propagator is evaluated by integration along the standard
Jordan semicircle chosen by the imaginary part of p0 needed to make the
integral converge and the iϵ chooses the appropriate signs of p0 based on
the sign of x0 − y0. By the virtue of choosing these appropriate signs, the
equation

D(x− y) = ⟨0|Tϕ(x)ϕ(y) |0⟩ , (1.49)
holds. This can be understood by the fact that the right hand side is also a
Green function for the Klein-Gordon equation by (1.40) and the iϵ prescription
chooses the appropriate time ordering on the left hand side. Combining (1.46)
and (1.47), we have

Z[J ] = e− 1
2

∫︁
d4x

∫︁
d4y J(x)D(x−y)J(y), (1.50)

where we used the fact that Z[0] = 1 by (1.38). The Gaussian theory is
solved.

The correlators (1.29) of the Gaussian theory can be computed using an
important theorem called Wick’s theorem. To formulate the theorem, we
need to define normal ordering of an expression constructed from creation
and annihilation operators. The definition is very simple, we simply move all
annihilation operators to the right of all creation operators. Denoting normal
ordering with a ::, we have for example

:a(p)a†(q): = a†(q)a(p). (1.51)

Now we define the contraction of two fields as

ϕ(x)ϕ(y) = D(x− y) (1.52)
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Abbreviating ϕ(xi) ≡ ϕi, we have Wick’s theorem

T (ϕ1ϕ2 . . . ϕn) = :exp

⎧⎨⎩1
2

n∑︂
i,j=1

ϕ1ϕ2
∂

∂ϕ1

∂

∂ϕ2

⎫⎬⎭ϕ1ϕ2 . . . ϕn: (1.53)

from which the following formula for correlation functions of the Gaussian
theory follows

⟨0|T (ϕ1 . . . ϕn) |0⟩ =
∑︂

pairings

∏︂
{i,j}

ϕiϕj (1.54)

This can be proven from the form of (1.50) and differentiating to get correlation
functions. As an example we have for n = 2

⟨0|T (ϕ1ϕ2) |0⟩ = ϕ1ϕ2 = D(x1 − x2) (1.55)
which is just (1.49) and for n = 3 we get zero, since the VEV of a normal
ordered expression is zero. For n = 4, we find the result

⟨0|T (ϕ1ϕ2ϕ3ϕ4) |0⟩ = ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 (1.56)
= D(x1 − x2)D(x3 − x4) +D(x1 − x3)D(x2 − x4)

+D(x1 − x4)D(x2 − x3)
The importance of Wick’s theorem is for perturbation theory. Suppose we
have S = S0 − g

∫︁
d4xVint(ϕ), where S0 is the free action (1.46) and Vint is

an interaction potential. When we write the generating functional Z by the
path integral

Z[J ] =
∫︂

Dϕ eiS0[ϕ]+iJϕe−ig
∫︁

d4x Vint(ϕ) (1.57)

and expand the exponential with Vint, we get

Z[J ] = I[J ]
I[0] , (1.58)

where

I[J ] =
∞∑︂

n=0

gn

n!

∫︂
Dϕ eiS0[ϕ]+iJϕ

∫︂
d4x1 . . . d4xn Vint(x1) . . . Vint(xn) (1.59)

If Vint is polynomial in ϕ, then the only expressions we need to calculate in
order to find the perturbative generating functional (1.58) are the correlators∫︂

Dϕ eiS0[ϕ]+iJϕϕ(x1) . . . ϕ(xm) (1.60)

These we know how to do by Wick’s theorem and so formally the problem
is solved. In practice one usually develops a diagrammatic calculus of Wick
diagrams, which help organise the perturbative expression (1.58) and give
precise quantitative results by the virtue of Wick’s theorem.
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1.5 Euclidean field theory
Suppose we take the path integral

Z[J ] =
∫︂

Dϕ eiS[ϕ]+iJϕ (1.61)

for general S of the form (4.41) and we analytically continue to imaginary
times t → iτ . For the metric this has the effect of going from a Minkowskian
to a Euclidean metric and so the resulting theory with the partition function

ZE[J ] =
∫︂

Dϕ e−SE [ϕ]+iJϕ (1.62)

and with SE[ϕ] =
∫︁

d4x

(︄
1
2(∂ϕ)2 + V (ϕ)

)︄
is called Euclidean. We again stress

that (∂ϕ)2 is evaluated with a Euclidean metric.
Such field theories naturally arise in the continuum limit of lattice models

of statistical physics. To demonstrate this, we consider the Ising model with
a partition function

Z =
∑︂
{σi}

exp

⎧⎨⎩∑︂
i,j

Jijσiσj +
∑︂

i

hiσi

⎫⎬⎭ (1.63)

with σi ∈ {−1, 1} and the external field hi providing a source. The identity
∫︂ ∏︂

i

dφi exp

⎧⎨⎩−1
4
∑︂
i,j

φiJ
−1
ij φj +

∑︂
i

φiσi

⎫⎬⎭ ∼ exp

⎧⎨⎩∑︂
i,j

Jijσiσj

⎫⎬⎭ (1.64)

for multiple Gaussian integrals lets us rewrite (1.63) as

Z =
∫︂ ∏︂

i

dφi exp

⎧⎨⎩−1
4
∑︂
i,j

(φi − hi)J−1
ij (φj − hj)

⎫⎬⎭∑︂
σi

exp
{︄∑︂

i

φiσi

}︄
(1.65)

modulo a constant. The spins are now decoupled and we can explicitly
perform the sum over spins

∑︂
σi

exp
{︄∑︂

i

φiσi

}︄
=
∏︂

i

(2 coshφi) ∼ exp
{︄∑︂

i

ln coshφi

}︄
(1.66)

For the partition function we have after ϕi → 1
2J

−1
ij ϕj the result

Z = exp

⎧⎨⎩−1
4
∑︂
ij

hiJ
−1
ij hj

⎫⎬⎭
∫︂ ∏︂

i

dφi exp

⎧⎨⎩−
∑︂
ij

Jijφiφj +
∑︂

i

ln cosh 2Jijφj

⎫⎬⎭
(1.67)
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up to a constant. This means that after taking the continuum limit we will
replace the spins σi by a scalar field ϕ. We continue by Fourier expanding

φi = 1√
N

∑︂
k

φ(k)eik·ri (1.68)

Jij = 1
N

∑︂
k

J(k)eik·(ri−rj), (1.69)

where N is the number of sites of our lattice. We then have∑︂
ij

Jijφiφj =
∑︂

k

J(k)|φ(k)|2 (1.70)

and expanding the logarithm

ln cosh 2x ∼ 2x2 − 4
3x

4, (1.71)

the second quadratic term is

2
∑︂

i

(Jijφj)2 = 2
∑︂

k

|J(k)|2|φ(k)|2, (1.72)

so that the quadratic term in (1.67) becomes
∫︂

dDxL0 =
∑︂

k

[︄
J(k) − 2|J(k)|2

]︄
|φ(k)|2, (1.73)

where L0 is the free Lagrangian density. Doing an expansion

J(k) ∼ J0(1 − ρ2k2), (1.74)

and defining ρ by
J0ρ

2k2 = 1
2
∑︂

r

J(r)(k · r)2, (1.75)

one then gets for the quadratic term of (1.73)
∫︂

dDxL0 = J0
∑︂

k

[︄
(1 − 2J0) + (4J0 − 1)ρ2k2

]︄
|φ(k)|2 (1.76)

From elementary statistical mechanics we have for a nearest neighbor interac-
tion

J0 =
∑︂

r

J(r) = 1
2zβ

˜︁J, (1.77)
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where z is the number of neighbors, ˜︁J the coupling between neighbors and β
the inverse temperature. We expect that the ks in (1.76) turn into derivatives,
so the (1 − 2J0) term is a mass term so that critical temperature Tc can be
identified by the condition that the mass term vanishes (more on this in the
section (1.7) on the renormalisation group). This gives

Tc = z ˜︁J (1.78)

Writing 1 − 2J0 = T −Tc

Tc
, we have∫︂

dDxL0 = 1
2
∑︂

k

(︄
T − Tc

Tc

+ ρ2k2
)︄

|φ(k)|2 (1.79)

so that by defining ϕ(x) = ρφ(x) and m2 = 1
ρ2

T −Tc

Tc
in the continuum limit

N → ∞, the result for the free Euclidean action is∫︂
dDxL0 =

∫︂
dDx

[︄
1
2(∂ϕ)2 + 1

2m
2ϕ2

]︄
(1.80)

Computing higher order terms would reveal that the Ising model is equivalent
to the ϕ4 theory with

SE =
∫︂

dDx

[︄
1
2(∂ϕ)2 + 1

2m
2ϕ2 + g

4ϕ
4
]︄

(1.81)

It is curious that m2 < 0 for T < Tc, but this is the physics one would expect
since the potential in (1.81) then has two degenerate minima reflecting the
two ferromagnetic phases of the Ising, see figure (1.2). If we want to continue
along this line of thought, we should interpret ϕ as an order parameter, which
gets nontrivial VEVs when the Z2 symmetry of the Ising model is broken
below Tc. This indicates that we can proceed backwards by postulating an
action for the order parameter with the desired symmetry properties reflecting
the symmetry of the lattice model. We may then calculate correlators in the
lattice theory by performing a path integral.
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Figure 1.2 Plot of V (ϕ) = −1
2ϕ2 ± 1

4ϕ4 for two signs of the ϕ4 term
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1.6 Unstable vacua and instantons
Let us now consider ϕ4 theory in the high-temperature regime with m2 > 0.
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Figure 1.3 Plot of V (ϕ) = 1
2ϕ2 ± 1

4ϕ4 for two signs of the ϕ4 term

From figure (1.3), we see that the physics of (1.81) is dramatically altered
when one passes from the stable regime g > 0 to the unstable regime g < 0
(assuming m2 > 0) since for g < 0 the perturbative vacuum ϕ = 0 is unstable
in the sense that it can decay by tunneling effects. One might expect to be
able to see this change in regimes in perturbation theory. Indeed this is the
case and to illustrate this, we consider the zero-dimensional path integral

I(g) =
∫︂ ∞

−∞
dx e− 1

2 x2− g
4 x4
, (1.82)

which converges for g > 0 and diverges for g < 0. To see the perturbation
theory manifestation of this, we expand e− g

4 x4 = ∑︁∞
n=0(−1)n gn

4nn!x
4n and obtain

I(g) =
∞∑︂

n=0
(−1)n gn

4nn!

∫︂ ∞

−∞
dx e 1

2 x2
x4n =

∞∑︂
n=0

(−1)n (4n− 1)!!
4nn! gn (1.83)

which clearly has zero radius of convergence. This is seen either by using ele-
mentary calculus or using Stirling’s formula to get the asymptotics (−1)n4nn!
of the power series coefficients. We want to emphasize that the zero radius of
convergence of the zero-dimensional perturbation series is physical since if the
perturbation series had nonzero radius of convergence, it would describe both
the stable and unstable theories for g sufficiently small, see [20]. Although it
diverges, the series (1.83) can still be very useful since it is asymptotic in the
following sense.

Consider a function f(g) and a formal power series ∑︁∞
n=0 ang

n, we say
that the series is asymptotic to f(g) if

lim
g→0

1
gN

[︄
f(g) −

N∑︂
n=0

ang
n

]︄
= 0, (1.84)
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which means that the remainder after summing N+1 terms is smaller than the
last retained term for g very small. This usually means that the asymptotic
series gives a good approximation for f(g) when we truncate it for the right
N since eventually its terms become large and the sum deviates from f(g). A
truncation scheme in which we truncate for N such that |an| is at its smallest
for n = N is called the optimal truncation scheme. We estimate how close
this scheme gets us to f(g) for the asymptotic behavior an ∼ 1

Ann!, which we
have already seen for A = −1

4 in the zero-dimensional path integral. We thus
want to minimise

⃓⃓⃓
g
A

⃓⃓⃓n
n! and by using Stirling’s approximation, we estimate

⃓⃓⃓⃓
g

A

⃓⃓⃓⃓n
n! = exp

{︄
n

(︄
lnn− 1 + ln

⃓⃓⃓⃓
⃓Ag
⃓⃓⃓⃓
⃓
)︄}︄

(1.85)

and this implies that for g small the optimal n is N =
⃓⃓⃓

A
g

⃓⃓⃓
displaying the

expected behavior N ∼
⃓⃓⃓

1
g

⃓⃓⃓
. Evaluating (1.85) at the stationary point n = N ,

we get the estimate for the magnitude of near N terms of e−|A
g |, meaning

that the deviation of the optimally truncated small g asymptotic series is of
the magnitude e−|A

g |.
Since the perturbation series obtained by summing Wick diagrams usually

scales factorially as hinted at in the zero-dimensional example, this means
that we might encounter corrections that go like e−|A

g | in addition to the
usual perturbative corrections. These corrections are the symptoms of the
presence of an instability and are nonperturbative in the sense that e−|A

g |
has an essential singularity at g = 0. It is curious that these corrections are
exponentially damped for g small, but nevertheless nonperturbative. Such
corrections arise when one solves the Euclidean EOMs with appropriate
boundary conditions, thus finding a saddle point of the path integral since
the classical EOMs are given by the stationary points of the action. When
having finite action, these solutions are called instantons. We note that in
string theory the analysis of large order behavior leads to nonperturbative
corrections, which don’t have a point particle origin. They can be explained
by the inclusion of D-branes [21]. Investigating to what extend and how the
usual perturbation series contains nonperturbative data is a research program
onto itself [22, 23, 24]. In particular one may see that the asymptotic series
around instantons resurge from the asymptotic series around the perturbative
background.

Let us now find some instantons, which nicely illustrate the process of
tunneling from false to true vacua. To do this, we choose to work with the
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family of potentials

V (ϕ) = 1
2ϕ

2 − 1
2ϕ

3 + α

8ϕ
4, 0 < α < 1 (1.86)

which are plotted in figure (1.4). These potentials have a false vacuum ϕ+ = 0
and a true vacuum ϕ− = 3

2α
+

√
9−8α
2α

1 2 3

-1.0

-0.5

0.5

Figure 1.4 The potential (1.86) for α = 0.8, 0.9 and 1 from bottom to top

Separating the Euclidean time τ , so that ϕ = ϕ(τ,x), we want to solve
the Euclidean EOM

−
(︄
∂2 + d2

dτ 2

)︄
ϕ+ V ′(ϕ) = 0, (1.87)

where ∂2 is a d− 1 dimensional Laplacian. Since we integrate over the entire
Euclidean space in the action S and this action has to be finite, we need to
impose the following boundary conditions at infinity

ϕ(±∞,x) = ϕ+ (1.88)
ϕ(τ,x) = ϕ+, |x| → ∞

When we write ϕ = ϕ+ + δ we understand why these solutions are called
instantons. Their deviations δ from ϕ+ are localised in space explaining the
particle suffix -on and localised in time explaining the instant. One can unify
the boundary conditions and simplify the EOM by the virtue of V being
rotationally symmetric by picking a rotationally invariant ansatz

ϕ = ϕ

(︄√︂
τ 2 + |x|2

)︄
≡ ϕ(r) (1.89)
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so that limr→∞ ϕ(r) = ϕ+. This leads to the EOM
d2ϕ

dr2 + d− 1
r

dϕ
dr = V ′(ϕ) (1.90)

We will be interested in studying the limit α ∼ 1 corresponding to the so-
called thin-wall approximation, in which the separation between the two
minima of (1.86) is small since a simple calculation gives V (ϕ+) − V (ϕ−) =
2(1 − α) + O((1 − α)2). It turns out that in this limit neglecting the first
derivative term in (1.90) gives sensible results so that the thin-wall EOM is

d2ϕ

dr2 = V ′
0(ϕ), (1.91)

where V0 is V evaluated at α = 1. The EOM (1.91) can be solved using
integral of motion techniques from elementary classical mechanics, where r
plays the role of time. Recalling these techniques, one obtains

1
2

(︄
dϕ
dr

)︄2

− V0(ϕ) = 0, (1.92)

where the integral of motion was fixed by the fact that V0(ϕ±) = 0 and that
ϕ approaches a constant at large r. The differential equation (1.92) with
boundary conditions ϕ(r → ±∞) = ϕ± is now easy to solve remembering
that in (1.92) r can be negative since it formally plays the role of time, but
for us the physical region is r > 0. One obtains the exact solution

ϕ(r) = 2
1 + er−r̄

, (1.93)

where r̄ is defined so that ϕ(r̄) = 1
2(ϕ+ + ϕ−) and it turns out that r̄ ∼ 1

1−α
.

In particular one easily checks that ϕ(r → ∞) = ϕ+ = 0 and that ϕ(r →
−∞) = ϕ− = 2, where we used ϕ± with α = 1. The solution (1.93) with r̄
large enough to have α ∼ 1 is plotted for three values of r̄ in figure (1.5).

50 100 150 200 250

0.5

1.0

1.5

2.0

Figure 1.5 The solution (1.93) for r̄ = 100, 125 and 150 from left to right

27



One may interpret the solution (1.93) as a bubble of true vacuum ϕ−
centered at the origin of radius approximately r̄ separated by a thin wall from
the false vacuum ϕ+. We would now also like to interpret the solution in
spacetime. To do this, we rotate back to Minkowski spacetime and introduce
a field in spacetime

Φ(t,x) = ϕ

(︄
r =

√︂
−t2 + |x|2

)︄
(1.94)

This field satisfies the wave equation(︄
− ∂2 + d2

dt2

)︄
Φ + V ′(Φ) = 0, (1.95)

by the virtue of (1.87) with the boundary conditions Φ(0,x) = ϕ(|x|) and
d
dt

Φ(t,x)
⃓⃓⃓
t=0

= 0, the latter being obtained by simple differentiation of (1.94).
So from the instanton ϕ, we have a new solution (1.94) to the wave equation
(1.95). Its interpretation is actually quite clear, it describes the spherically
symmetric expansion of the bubble of true vacuum ϕ− starting at time t = 0.
At later times, when the bubble has expanded to be much larger than its
initial radius R at t = 0 it expands almost at the speed of light as can be
seen from

|x|2 = t2 +R2, (1.96)
as satisfied by the boundary of the bubble from the standard wave ansatz.
We conclude by mentioning that in (B.3) we analyse a famous instanton of
Kaluza-Klein theory as discovered by Witten [25] admitting a similar bubble
picture. See also the essay [26] on bubbles.

1.7 The renormalisation group
An essential physicist’s know-how is to select a description that is precisely
fit to the problem under study. One uses hydrodynamics to describe fluid
dynamics and not quantum mechanics of water molecules, even though
these are more fundamental. We say that one uses an effective description
whose validity is usually demarcated by length scales. In order for the
reductionist program in physics to be justified, we need a way of obtaining
the effective macroscopic theories from the microscopic. We have no final
theory of everything, so these microscopic theories are actually effective, too.
So in reality we need to find the same macroscopic behavior from classes
of microscopic theories that differ by one another by deformations affecting
physics in the unknown and to have any hope in doing so, we need universality.
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Universality is the phenomenon of different microscopic theories having the
same macroscopic limit.

The key feature we want to have when passing from the microscopic to
the macroscopic is the reduction in the number of degrees of freedom (DOFs)
needed. One can also imagine reducing the number of DOFs in the opposite
way. For example if we consider a large amount of gas, we may ask what is the
smallest pocket of gas having the same properties? This question makes sense,
because the gas is roughly translationally symmetric. The characteristic size
of such a small pocket is the correlation length ξ, which depends on the state
of the system. For ξ very small, we need to consider only a very limited
number of DOFs and by symmetry extend their dynamics to the entirety of
the gas. So in the end in this very specific limit, we might have simplified the
system by going from the macroscopic to the microscopic.

The lesson is that with ξ very small, the physics can be described in
the microscopic and possibly extrapolated, while for ξ in the other regimes,
we need to integrate out the many microscopic DOFs to obtain an effective
macroscopic theory. Examples with many microscopic DOFs are plentiful,
for instance we can think of describing the dynamics of a field, then in any
pocket of characteristic size ξ we have an infinite continuum of DOFs. We can
also consider critical phenomena, in which the characteristic length ξ grows
without bounds. In any case, we want to generate a sequence of theories
that gives the same physics we’re interested in, only with progressively more
efficient DOFs.

To give an example on producing an effective description, we consider the
iconic block spins. Consider the lattice partition function

Z =
∑︂
{c}

exp
{︂
−βH{g}{c}

}︂
(1.97)

with {c} the different DOFs, for example the spin variables of (1.63), {g} a
collection of couplings in the Hamiltonian H. We now consider transforming
the DOFs {c} → {C} so that

exp
{︂
−βH ′

{g}{C}
}︂

=
∑︂
{c}

f({c}, {C}) exp
{︂
−βH{g}{c}

}︂
(1.98)

with the function f satisfying∑︂
{C}

f({c}, {C}) = 1 (1.99)

which guarantees that the partition function doesn’t change under the trans-
formation, preserving the physics. An example of such a transformation
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occurs in the case where the {c} are spins and we uniformly separate the
lattice into blocks of spin. To each such block we assign a block spin C that is
given by the average of spins in that block. In this way we effectively increase
the magnitude of the lattice spacing

a′ = λa, (1.100)

moving into the macroscopic. It is clear that the transformed Hamiltonian
H ′

{g} can have additional interactions not present in H{g}. When the Hamilto-
nian H{g} contains all the interactions allowed by the symmetry of the lattice,
then no additional interactions get generated and we can describe the trans-
formation as a change in the couplings {g} → {g′} such that H ′

{g} = H{g′}.
We write

{g′} = R{g} (1.101)
where our aim is to find the transformation R acting in the space of couplings.
The equations (1.98), (1.99), (1.100) and (1.101) specify the structure of
the renormalisation (semi)group (RG). Now the RG transformations may be
iterated until the lattice spacing reaches approximately the correlation length
ξ and when the correlation length is infinite, as it happens to be in critical
phenomena, we may do an infinity of iterations. The most common behavior
is that under this infinity of iterations, we end up with a fixed point {g∗} in
the space of interactions such that

{g∗} = R{g∗} (1.102)

meaning that we end up with the fixed point Hamiltonian H∗ which doesn’t
change under the RG transform H ′

{g∗} = H{g∗} ≡ H∗. The fixed point theory is
invariant under scaling and in the next chapter we show that under reasonable
conditions this scale invariance becomes conformal invariance so that the
fixed point theory is described by a conformal field theory (CFT).

In the end, we expect the description to get simpler so only a few couplings
should be relevant. To make this idea more precise, we consider the deviation
δ from the fixed point coupling

δ = g − g∗, (1.103)

which under the RG changes to

δ′ = g′ − g∗ (1.104)

Remembering that we have all allowed interactions turned on, it should be
possible to choose a convenient basis in the space of couplings such that these
basis elements are eigenvalues of the RG, meaning

δ′ = λyδ (1.105)
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One then classifies all these eigenvectors by their eigenvalues. In particular
those with y > 0 are called relevant, since from (1.105), we see that they
are relevant in the infrared (IR) limit λ >> 1. Analogously we call the
couplings y < 0 irrelevant, since they are important in the ultraviolet (UV)
limit λ << 1. The couplings with y = 0 are called marginal, such couplings
parametrise lines of fixed points. When we study deformations of fixed point
theories, then turning on new relevant couplings drives us away from the
fixed points, whereas turning on new irrelevant couplings simply moves us on
a so-called critical surface and under the RG the theory flows into the same
fixed point.

To illustrate these ideas, we demonstrate how one can estimate the rel-
evancy of couplings based on dimensional analysis (we neglect interactions
in this analysis, its just a free field dimensional analysis). The action is
dimensionless and since S =

∫︁
dDxL, then L has mass dimension D. Now

we specialise to scalar field theory. Every derivative gives a mass dimension
1 and every scalar gives a D−2

2 . This is so because the kinetic term has two
derivatives and two fields. The coupling λm,n of a term with m derivatives
and n fields then has mass dimension D −m− D−2

2 n. From (1.105) one sees
that for example in D = 4, we have two marginal couplings to (∂ϕ)2, ϕ4 and
two relevant couplings to ϕ2, ϕ3. The reason why the mass and not length
dimension of couplings is relevant for our discussion is that we understand
RG scalings in a passive sense.
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Chapter 2

Conformal field theory

Having gained some introductory knowledge of QFTs in chapter (1), we study
a particular class of QTFs called conformal field theories (CFTs), whose study
is absolutely essential for all of our later developments. There are countless
sources on CFTs, the ones which inspired us most are [27, 28, 29]. Since CFTs
are foundational for string theory, they are discussed in many string theory
books [13, 30, 31, 15, 32, 33]. Useful review articles are among others [34,
35, 36, 37, 38]. Detailed accounts of the applications of CFTs to statistical
physics include [14, 39]. Some historically key papers are Polyakov’s [40],
which conjectured the enhancement of scale to conformal symmetry in critical
phenomena and the BPZ paper [41] realising that two-dimensional CFTs are
exceptional, enabling the exact solution of the so-called minimal models. To
make a connection to our own work, we introduce conformal perturbation
theory (CPT) in the bulk before moving the more relevant boundary case
in the next chapter. A foundational paper in this area is [42], where the
c-theorem was first proved. Another discussion on bulk CPT can be found in
[14, 39].

2.1 Conformal transformations

2.1.1 Arbitrary dimension

We begin by studying the mathematics of conformal transformations. Confor-
mal transformations are coordinate transformations xµ → x′µ which preserve
angles, meaning

g′
µν(x′) = Ω(x)gµν(x) (2.1)
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On an infinitesimal level this means that for a transformation generated by a
vector field ϵµ, the conformal Killing equation

Lϵgµν = ∇µϵν + ∇νϵµ = c(x)gµν (2.2)

holds, where for simplicity the connection ∇ is Levi-Civita and the solution
ϵµ is called a conformal Killing vector (CKV) field. Contracting both sides
of (2.2) with gµν , we easily obtain that c(x) = 2

D
(∇ · ϵ). Specialising to the

flat case g = η with arbitrary signature (p, q) and using the fact that the
coordinate derivative provides a Levi-Civita connection for the flat metric,
we have the equation

ϵµ,ν + ϵν,µ = 2
D

(∂ · ϵ)ηµν (2.3)

Acting with a ∂µ on both sides of (2.3),we find

□ϵν+
(︄

1 − 2
D

)︄
∂ν(∂ · ϵ) = 0 (2.4)

Another useful equation is obtained by acting with a □ on (2.3)

∂ν□ϵµ + ∂µ□ϵν = 2
D
ηµν□(∂ · ϵ) (2.5)

Plugging (2.4) into (2.5) gives(︄
ηµν□ + (D − 2)∂µ∂ν

)︄
∂ · ϵ = 0 (2.6)

which indicates that the case D = 2 might be special, which we will confirm
shortly. In the meantime, we want to find the CKVs present in any dimension
D ≥ 2. Contracting (2.6) with ηµν , we get

(D − 1)□(∂ · ϵ) = 0 (2.7)

which shows that ϵµ is at most quadratic in the coordinates xµ. We proceed
with the ansatz

ϵµ = aµ + bµνx
ν + cµνρ x

νxρ (2.8)
with cµνρ = cµ(νρ). Since ϵ appears in the Killing equation only when differen-
tiated, then aµ is arbitrary and the associated transformation is a translation
with the generator being the familiar momentum Pµ = −i∂µ. To constrain bµν ,
we need to plug ϵµ into the linear equation (2.3) and set cµνρ = 0, obtaining

bµν + bνµ = 2
D

(︄
ηλρ bρλ

)︄
ηµν (2.9)
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from which we see, that bµν can be split into its symmetric and antisymmetric
part

bµν = λ ηµν + ωµν (2.10)
with ωµν = ω[µν]. It is easy to see that the term λ ηµν corresponds to
dilatations x′µ = (1 + λ)xµ with the generator D = −i(x · ∂) (simple not to
confuse with the dimension D from the context) and the term ωµν to rotations
x′µ = xµ + ωµ

ν x
ν with the rotation generators Jµν = i(xµ∂ν − xν∂µ). To fix

cµνρ, we differentiate (2.3) a permute indices

∂ρ∂µϵν + ∂ρ∂νϵµ = 2
D
ηµν∂ρ(∂ · ϵ) (2.11)

∂ν∂ρϵµ + ∂µ∂ρϵν = 2
D
ηρµ∂ν(∂ · ϵ) (2.12)

∂µ∂νϵρ + ∂ν∂µϵρ = 2
D
ηνρ∂µ(∂ · ϵ) (2.13)

Adding (2.11) to (2.12) and subtracting (2.13), we obtain

2∂µ∂νϵρ = 2
D

(−ηµν∂ρ + ηρµ∂ν + ηνρ∂µ)(∂ · ϵ) (2.14)

and plugging in (2.8), the equation for cµνρ becomes
∂ · ϵ = bµ

µ + 2cµ
µρx

ρ (2.15)
and differentiating by ∂ν , the resulting equation is

∂ν(∂ · ϵ) = 2cµ
µν (2.16)

and is solved by
cµνρ = ηµνbρ + ηµρbν − ηνρbµ (2.17)

with bµ ≡ 1
D
cν

νµ. And as in the previous cases we easily identify the infinites-
imal form of the transformation x′µ = xµ + 2(x · b)xµ − x2bµ called the special
conformal transformation (SCT) with the generator Kµ = −i(2xµ(x·∂)−x2∂µ).
The finite conformal transformations found for general D ≥ 2 and their gen-
erators are found in table (2.1).

The generators in (2.1) satisfy the commutation relations[︂
Jµν , Pρ

]︂
= −i(ηµρPν − ηνρPµ) (2.18)

[Pµ, Kν ] = 2i(Jµν + ηµνD) (2.19)
[Jµν , Jρσ] = −i(ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ) (2.20)
[Jµν , Kρ] = −i(ηµρKν − ηνρKµ) (2.21)
[D,Kµ] = −iKµ (2.22)
[D,Pµ] = iPµ (2.23)

[Jµν , D] = 0 (2.24)
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Name Transformation Generator
Translation xµ → xµ + aµ Pµ = −i∂µ

Dilatations xµ → λxµ D = −i(x · ∂)
Rotations xµ → Rµ

νx
ν , Rµν = R[µν] Jµν = i(xµ∂ν − xν∂µ)

SCT xµ → xµ−x2bµ

1−2(b·x)+b2x2 Kµ = −i(2xµ(x · ∂) − x2∂µ)

Table 2.1 Finite conformal transformations with generators

For D ≥ 3, these generate all conformal transformations, while for D = 2
we have an infinite number of generators, see (2.1.2). Let us now count the
number of generators in table (2.1). We have 1 dilatation generator, D(D−1)

2
rotation generators, D SCT generators and D translation generators. Adding
these up numbers up, we have a total of D(D+1)

2 generators. This is exactly
the number of generators of SO(p + 1, q + 1) with p + q = D so we have a
suspicion that the conformal group of Rp,q is SO(p+ 1, q + 1), for D = 2 this
group gets further augmented. To confirm this, we construct the generators

Mµν = Jµν (2.25)

M−1,µ = 1
2(Pµ −Kµ) (2.26)

M0,µ = 1
2(Pµ +Kµ) (2.27)

M−1,0 = D (2.28)

from which together with the commutation relations (2.18)-(2.24)

[Mmn,Mrs] = i(ηmsMnr + ηnrMms − ηmrMns − ηnsMmr) (2.29)

holds (here m,n = −1, 0, 1, . . . , D and ηmn has signature (p+ 1, q + 1)) and
these are exactly the required Lie algebra commutation relations for the group
SO(p+ 1, q + 1) with p+ q = D. Observing this, we realise that embedding
R

p,q into R
p+1,q+1 simplifies the action of conformal transformations. For

our further purposes it is enough to specialise to (p, q) = (D, 0), meaning
that we embed Euclidean space R

D,0 ≡ R
D into Minkowski space R

D+1,1.
The conformal transformations in R

D can then be realised using Lorentz
transformations in R

D+1,1. To choose an embedding, we need to get rid of
the two extra coordinates and denoting the embedding space coordinates as
X−1, X0, X1, . . . , XD with Xµ = xµ, we first restrict to the lightcone

X2 = 0 (2.30)

which is preserved by the action of the Lorentz group. Next we do a section

X+ = f(Xµ) (2.31)
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of the lightcone, where we defined the lightcone coordinate X+ = X−1 +X0

accompanied by X− = X−1 − X0. The Lorentz transformations reduce to
conformal transformations as follows: a point xµ on the section (2.31) defines
a light ray that gets moved by the Lorentz transform to another ray, which
we identify with x′µ. With (2.30) and (2.31), we get the section metric

ηsec = dx2 − dX+dX−|
X+=f(Xµ),X−= x2

X+
(2.32)

and the condition of having conformal transformations that preserve a flat
metric in RD gets translated into the flatness condition on the section metric.
It is certainly flat for f(Xµ) = 1 and we finally obtain that our Euclidean
section is (X+, X−, Xµ) = (1, x2, xµ). This projective null cone formalism
will prove very useful in investigating conformal kinematics since then we
just perform relativistic kinematics in the embedding space and then perform
a lightcone section. To do so, we must convert Lorentz invariants into
expressions involving only xµ. One such example is

X · Y = XµYµ − 1
2
(︂
X+Y − +X−Y +

)︂
(2.33)

= xµyµ − 1
2
(︂
Y − +X−

)︂
= xµyµ − 1

2
(︂
y2 + x2

)︂
= −1

2(x− y)2

2.1.2 Two dimensions
Looking back at the equation (2.3) and setting D = 2, we get

ϵµ,ν + ϵν,µ = (∂ · ϵ)δµν , (2.34)

where µ, ν = 1, 2 and we are starting to write η → δ, since as already
mentioned, we specialise to Euclidean space. The equation (2.34) decomposes
into two independent equations ∂1ϵ1 = ∂2ϵ2 and ∂1ϵ2 = −∂2ϵ1 which we
recognise as the Cauchy-Riemann equations. We complexify R

2 → C
2 by

introducing the coordinates z, z̄ which become conjugate under a real section
z̄ = z∗, so that after performing this section, we write z = x1 + ix2 and
z̄ = x1 − ix2, recovering C ≃ R

2. Often one performs calculations in the
independent complex coordinates z, z̄ and only at the end returns to R2. We
also write ϵ = ϵ1 + iϵ2 and ϵ̄ = ϵ1 − iϵ2 so that in the complex coordinates, the
Cauchy-Riemann equations become ∂ϵ̄ = ∂ϵ = 0 where we abbreviated ∂z =
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1
2(∂1 − i∂2) ≡ ∂ and ∂z̄ = 1

2(∂1 + i∂2) ≡ ∂, meaning that ϵ is holomorphic and
ϵ̄ is antiholomorphic. The mathematics is the same for the holomorphic and
antiholomorphic sectors, so we sometimes write equations in the holomorphic
sector only to avoid repetition.

In the complex coordinates the infinitesimal conformal transformation
becomes z → z + ϵ with ϵ holomorphic, since z + ϵ is then also holomorphic,
we have that a transformation z → f(z) is conformal for f holomorphic. The
metric in complex coordinates is

δ = dzdz̄ (2.35)

and so the associated scale factor is Ω = |∂f |2. Laurent expanding ϵ

ϵ = −
∑︂
n∈Z

ϵnz
n+1, (2.36)

we have for infinitesimal transformations

z′ = z +
∑︂
n∈Z

(−ϵnz
n+1), (2.37)

meaning that for a particular n we identify a generator ln ≡ −zn+1∂. Together
with ln ≡ −z̄n+1∂, we have the Lie algebra

[ln, lm] = (m− n)lm+n (2.38)[︂
ln, lm

]︂
= (m− n)lm+n (2.39)[︂

ln, lm
]︂

= 0 (2.40)

as can be trivially verified. This Lie algebra is infinite-dimensional and is
called the Witt algebra. It is easy to see that the ln are well defined at the
origin z = 0 only for n ≥ −1. To study its regularity at ∞, we write z = − 1

w

and then

ln = −
(︄
− 1
w

)︄n−1

∂w (2.41)

The point z = ∞ corresponds to w = 0 and from (2.41) we have that for ln
to be well-defined at infinity, we need n ≤ 1. This means that the globally
well-defined and invertible conformal transformations of the Riemann sphere
are generated by l−1 = −∂, l0 = −z∂, l1 = −z2∂. It is easy to see that
l−1 corresponds to translations and since l0 generates z → az, a ∈ C and
multiplication by a complex number corresponds to a rotation and a dilatation,
we expect to be able to construct dilatation and rotation generators from l0
and l̄0. To see this, write z = reiϕ, then l0 + l̄0 = −r∂r and i(l0 − l̄0) = −∂ϕ so
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that l0 + l̄0 is a generator of dilatations and i(l0 − l̄0) a generator of rotations.
As for l1, we simply notice that it sends z → −ϵz2, which is an infinitesimal
form of the SCT z → z

ϵz+1 , meaning that l1 generates SCTs. In summary,
we have found that the group of conformal transformations of the Riemann
sphere that are everywhere well-defined and invertible is the Möbius group
PSL(2,C) = SL(2,C)/Z2 of transformations

z → az + b

cz + d
(2.42)

with a, b, c, d ∈ C satisfying ad − bc = 1 as per the invertibility condition
(by scaling the determinant is brought to 1) and there is a Z2 equivalence
(a, b, c, d) ∼ (−a,−b,−c,−d). These transformations are distinguished by
the fact that they transform circles to circles and that it can map any three
points to 0, 1 and ∞. It is not a surprise that the Möbius group is isomorphic
to SO(3, 1), which appears in our previous analysis of arbitrary dimension.

2.2 Polyakov’s conjecture

Polyakov conjectured in [40] that a local theory invariant under translations,
rotations and dilatations is also invariant under the larger conformal group.
We have already encountered scale invariance in our discussion of fixed point
theories in (1.7). Most RG flows end in such fixed points so the enhancement
of their symmetry is of great significance for the study of the space of QFTs.
Suppose we have a local theory with an action S and a stress tensor Tµν (that
is, our charges come from integrals of the stress tensor), which is defined as
the susceptibility of the action with respect to an infinitesimal change in the
metric, meaning that using (2.2), we have

δS = 1
(2π)D−1

∫︂
dxDTµν∇µϵν (2.43)

Choosing ϵµ = aµ for translations, we get by integrating by parts the conser-
vation law ∂µT

µν = 0. The rotations ϵµ = Rµ
νx

ν with R antisymmetric imply
that Tµν = Tνµ. Finally scaling ϵµ = λxµ implies that T µ

µ meaning that T is
traceless. From this (classical) conformal invariance follows since we can do a
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sequence of steps

δS = 1
(2π)D−1

∫︂
dxDTµν∇µϵν

= 1
(2π)D−1

1
2

∫︂
dxD(Tµν + Tνµ)∇µϵν

= 1
(2π)D−1

1
2

∫︂
dxDTµν(∇µϵν + ∇νϵµ)

= 1
(2π)D−1

1
D

∫︂
dxDT µ

µ (∇ · ϵ)

= 0

where (2.3) was used together with the tracelessness of T .

2.3 Operator spectrum and correlators
In the following we shall concern ourselves with scalar fields only. Such fields
ϕ are characterised by their conformal dimension (weight) ∆, which encodes
their response to global scaling x → λx

ϕ′(λx) = λ−∆ϕ(x) (2.44)

Since conformal transformations are local rescalings, inspired by (2.44), we
define the so-called primary fields V by the property that they transform
under an arbitrary conformal transformations x → x′ as

V ′(x′) = b(x)−∆V (x) (2.45)

for b(x) =
√︂

Ω(x) with Ω(x) the familiar scale factor of (2.2). In D = 2 there
is a peculiarity that formally the field may be taken to depend on both z and
z̄, so that for z → f(z), (2.45) lifts to

V ′(z, z̄) =
(︄

df
dz

)︄h(︄df̄
dz̄

)︄h̄

V (f(z), f̄(z̄)) (2.46)

while we used the before derived relation between Ω and f . Such a primary is
said to have a conformal dimension (h, h̄). Another specialty of two dimensions
is that there are infinitely many conformal transformations, but only finitely
many that form the conformal group. If a field transforms like (2.46) for
f in the conformal group, it is called quasiprimary (primaries are always
quasiprimaries). Other fields are called secondary.
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The correlation functions of primaries are heavily kinematically con-
strained. To begin, they have to be covariant with respect to conformal
transformations, meaning

⟨V (x′) . . . V (y′)⟩ = b(x)−∆ · · · b(y)−∆⟨V (x) . . . V (y)⟩ (2.47)

Luckily, we have developed the projective null cone, which enables us to build
correlators that are automatically covariant in the sense (2.47). Consider two
scalar fields V (X) and V (Y ) of weight ∆ living in the embedding space, then
by X2 = 0 and Y 2 = 0 and the right behavior under scaling, we must have

⟨V (X1)V (X2)⟩ ∼ 1
(X1 ·X2)∆ , (2.48)

where the covariance is ensured by X ·Y being a Lorentz invariant. By (2.34),
we then have

⟨V (x1)V (x2)⟩ = 1
|x12|2∆ , (2.49)

where we normalised the fields so that 1 appears in the numerator and defined
xij ≡ xi − xj. It can be shown that for different fields Vi, Vj, we can rotate
the field basis so that

⟨Vi(x1)Vj(x2)⟩ =
δij

|x12|2∆ (2.50)

Analogously, the three-point function for three ϕi with weight ∆i must be

⟨V1(X1)V2(X2)V3(X3)⟩ ∼ 1
(X1 ·X2)α123(X1 ·X3)α132(X2 ·X3)α231

, (2.51)

where from covariance under scaling, we must have

α123 + α132 = ∆1

α123 + α231 = ∆2

α132 + α231 = ∆3

which is solved by
αijk = ∆i + ∆j − ∆k

2 (2.52)

so that from (2.34)

⟨V1(x1)V2(x2)V3(x3)⟩ = C123

|x12|∆1+∆2−∆3|x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1
, (2.53)
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where the C123 is called a structure constant of the CFT. For a scalar CFT,
these together with conformal weights specify the CFT data. The formula
(2.53) essentially gave birth to the study of CFTs since Polyakov [40] used
it to compute the ϵσσ correlator in the critical Ising and got a match with
Onsager’s solution. In this work, the only four-point function of interest will
be for identical fields, and using the same techniques as before, it is easy to
see that

⟨V (x1)V (x2)V (x3)V (x4)⟩ = G(ξ)
4∏︂

i<j

|xij|−
2
3 ∆ (2.54)

is indeed correct by having the proper scaling behavior and it is built from
projected Lorentz invariants. We call G the invariant part of the four-point
function and ξ is called the cross-ratio and is given by

ξ = x12x34

x13x24
(2.55)

The cross-ratio itself is also invariant in the sense that it is an SL(2,C)
invariant. The just derived forms of correlators hint at the fact that CFTs are
very different from the usual QFTs. For example, their power-like behavior
implies that their Fourier transforms have no isolated poles in the p2 plane
(contrast this with the mass-shell pole in (1.48) resulting from the exponential
damping of the Feynman propagator) and so when one tries to compute
scattering amplitudes by the LSZ formula, which gets contributions from
poles of momentum space correlators, one gets zero. In D = 2 the exact same
formulae as (2.50), (2.53) and (2.54) hold for quasiprimaries with potentially
being lifted when the field has dependence on both z and z̄, for example

⟨Vi(z1, z̄1)Vj(z2, z̄2)⟩ =
δij

|z12|2h|z̄12|2h̄
, (2.56)

otherwise, we just replace ∆ → h and x → z for purely holomorphic (chiral)
fields V (z) and analogously for purely antiholomorphic (antichiral) fields.
Having exploited the general D connection to the Lorentz group, we will
restrict ourselves to D = 2 and complex coordinates only from now on. This
does not mean, however, that many of our formulae do not have a general D
analog. We also work with chiral fields to avoid repetition.

First we would like to know how primaries respond to infinitesimal confor-
mal transformations. To do so, we expand

(︄
df
dz

)︄h

= 1 + hϵ+O(ϵ2), (2.57)
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so that using V (z + ϵ) = V (z) + ϵ∂V (z) +O(ϵ2), we have

δϵV (z) = (h∂ϵ+ ϵ∂)V (z), (2.58)

where δϵV (z) is the change in V . From the energy-momentum Tµν tensor,
we can construct the conserved currents jµ = Tµνϵ

ν and from the proof
of Polyakov’s conjecture (2.2), we see that these correspond to conformal
transformations. By this, we would expect δϵV (z) to be computable from
T (z)ϵ(z). We show this later after quantising, but first need to see how the
T (z) arises. From a simple change of coordinates, we have from the tensorial
properties of T

Tzz = 1
4(T00 − T11 − 2iT10)

Tz̄z̄ = 1
4(T00 − T11 + 2iT10)

Tz̄z = Tzz̄ = 1
4(T00 + T11)

and from the tracelessness condition T00 +T11 = 0, we see that in the complex
coordinates the stress-energy tensor is diagonal. Rewriting the conservation
law ∂µT

µν for T to complex coordinates, we get ∂Tzz = ∂Tz̄z̄ = 0 meaning
that Tzz is holomorphic and Tz̄z̄ is antiholomorphic justifying the notation
T (z) ≡ Tzz, T̄ (z̄) ≡ Tz̄z̄.

2.4 Radial quantisation
In equation (A), we computed correlation functions as time ordered VEVs. For
this we had to pick a Lorentz frame (time direction) and then we had access
to a canonical structure (see (1.24), (1.25)) on the Hilbert spaces defined
at constant times. Such Hilbert spaces can be connected by an evolution
operator given by exponentiating the Hamiltonian. In other words, we found
it advantageous to choose a foliation of spacetime by constant time surfaces
that respected Poincaré invariance and define Hilbert spaces on such surfaces.

In CFT, we have scale invariance so it is tempting to foliate the Euclidean
space by spheres of constant radius. Our evolution operator should then be
constructed by exponentiating the generator of dilatations D = −z∂. Then
on each sphere a Hilbert space of states lives and an ordering by time becomes
an ordering by the radius of such spheres. We will build up our Hilbert
space by acting with modes of conformal fields. To do this, we consider the
conformal map z = ew from the cylinder to the plane, with w = τ + iσ, τ ∈ R
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and σ ∼ σ+ 2π. Here τ has an interpretation of Euclidean time and a Fourier
expansion of a primary Vcyl living on the cylinder

Vcyl =
∑︂
n∈Z

Vne
−n(τ+iσ) =

∑︂
n∈Z

Vnz
−n (2.59)

becomes an expansion
V =

∑︂
n∈Z

Vnz
−n−h (2.60)

on the plane. We see that the limit τ → −∞ corresponds to z → 0 so we
define the so-called asymptotic in-states

|V ⟩ = lim
z→0

V (z) |0⟩ (2.61)

with |0⟩ being the SL(2,C) invariant vacuum. For the definition (2.61) to
make sense, we need Vn |0⟩ = 0 for n > −h. This means that

|V ⟩ = V−h |0⟩ (2.62)

The correspondence between Euclidean time τ and Minkowskian time t is
τ = it so that Hermitean conjugation changes τ → −τ , meaning that in the
plane coordinates, it has the effect z → 1

z̄
. This means that the Hermitean

conjugate of a conformal field on the plane should be defined as

V †(z̄) = z̄−2hV

(︄
1
z̄

)︄
(2.63)

so that
V †(z) =

∑︂
n∈Z

zn−hVn (2.64)

corresponding to V †
n = V−n. The asymptotic out-states are then defined as

⟨V | = lim
z→0

⟨0|V †(z) = lim
w→∞

w2h ⟨0|V (w) (2.65)

meaning that ⟨0|Vn = 0 for n < h so we have

⟨V | = ⟨0|Vh (2.66)

as expected by the Hermitean conjugation properties of modes.
We should be able to act with conformal symmetry generators on our

Hilbert space so that δϵV (z) = [Q, V ] for some charge Q. As usual, such
a charge is built from an integral over a constant radius (time) slice. This
means that

Q = 1
2πi

∮︂
C

dz T (z)ϵ(z) (2.67)
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where C is a circle and by the holomorphicity of the integrand, we don’t need
to specify its radius. Since ϵ is any holomorphic function, we have an infinity
of conserved charges, this is what makes two-dimensional CFT so powerful.
For the change in V , we have

δϵV (w) = 1
2πi

∮︂
C

dz [T (z)ϵ(z), V (w)] (2.68)

To make sense of the commutator, we need to define radial ordering

R(ϕ(z)χ(w)) =

⎧⎨⎩ϕ(z)χ(w) if |z| > |w|,
χ(w)ϕ(z) if |w| > |z|

(2.69)

so that ∮︂
C

dz[T (z)ϵ(z), V (w)] =
∮︂

|z|>|w|
dz ϵ(z)

[︄
T (z)V (w)

]︄
(2.70)

−
∮︂

|z|<|w|
dz ϵ(z)

[︄
V (w)T (z)

]︄

Using the fact that the difference of two contour integrals as in (2.71) can
be deformed into a countour integral over the contour Cw encircling the
intermediate point w, see figure (2.1), we get

δϵV (w) = 1
2πi

∮︂
Cw

dz ϵ(z)R(T (z)V (w)) (2.71)

Figure 2.1 The difference of two contours turns into one contour

We observe that (2.71) can be satisfied if we make the expansion around
the point w

R(T (z)V (w)) ∼ h

(z − w)2V (w) + 1
z − w

∂V (w) (2.72)

This is an example of an operator product expansion (OPE) of the stress-
energy tensor T with a primary V . Such expansions appear in ordinary QFTs
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as well, encoding the UV behavior as operators approach one another. But
since ordinary QFTs have a mass scale, the OPEs are merely asymptotic
meaning that they cannot be easily extended beyond the UV region. Such
an extension is provided by performing RG transforms and is nontrivial. In
CFTs the OPEs have a finite radius of convergence enabling us to extend the
short-distance behavior of the theory to larger distances. In general OPEs
have the form

ϕi(z)ϕj(w) =
∑︂

k

Cijk(z − w, ∂w)ϕk(w) (2.73)

where we wrote an equality emphasizing the finite radius of convergence. By
dimensional analysis (∂ adds to the conformal dimension, see (2.23)), we
conclude that

Vi(z)Vj(w) ∼
∑︂

k

Cijk
Vk(w)

|z − w|hi+hj−hk
(2.74)

holds for primaries with |z − w| small, with the Cijk being the structure
constants that appear in (2.53). The OPEs can be iteratively inserted into
correlation functions enabling one to reduce any correlator to one-point
functions. The order in which one performs the OPEs shouldn’t matter. This
is called the associativity of the OPE and it leads to stringent consistency
conditions on the correlators often enabling one to bootstrap the theory.

We conclude this section by stating the state-operator correspondence. As
we’ve already shown, one can build a Hilbert space from states of the form
|V ⟩ created by an operator located at the origin z = 0 acting on the vacuum
|0⟩. This is the operator → state mapping and it is essentially automatic.
What is nontrivial is the state → operator mapping. Suppose we have some
dilatation eigenstates

D |Vi⟩ = hi |Vi⟩ (2.75)

corresponding to operators of definite weight. Now we want to compute the
correlators of the corresponding operators Vi(zi) using the path integral. We
cut out holes Bi centered at zi and glue the states |Vi⟩ to their boundaries.
This means that the fields ϕ in path integral measure now have support only
outside of these holes, giving us

⟨V1(z1) . . . Vn(zn)⟩ =
∫︂ n∏︂

i=1
DϕSi

⟨ϕSi
|Vi⟩

∫︂
ϕ∂Bi

=ϕSi

Dϕ(z /∈ Bi)e−S (2.76)

where we still have to integrate over the boundary values at ∂Bi. The scale
invariance comes into play in that the Vi(zi) have to be far enough apart for
the Bi not to overlap, which would lead to overcounting. We haven’t specified
the radii of the holes so this is a real problem, in a sense the construction
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shouldn’t depend on the radii. This is achieved only if we can always move
the zi away from one another and this is precisely achieved by the covariance

⟨V1(z1) . . . Vn(zn)⟩ = λ
∑︁

i
hi⟨V1(λz1) . . . Vn(λzn)⟩ (2.77)

Taking the radii very small, we essentially do not change the support of ϕ
and thus specify an insertion of a local operator at the center of a ball. We
have thus shown that states of definite conformal weight correspond to local
operators.

2.5 Virasoro algebra
To further investigate the character of the stress-energy tensor T , we do a
Laurent expansion

T (z) =
∑︂
n∈Z

z−n−2Ln, (2.78)

where by the tensorial nature of T , we anticipate hT = 2. Let us now look at
the family of charges Qn with ϵ = −zn+1ϵn. These can be easily evaluated by
the residue theorem

Qn = −ϵn

∑︂
m∈Z

1
2πi

∮︂
C

dz Lmz
n−m−1 = −ϵnLn (2.79)

Does this mean that Ln = ln for ln in the Witt algebra (see (2.37))? In
a classical theory this would be the case, but in the quantum theory the
symmetry develops an anomaly. In a sense this is a good thing, since the
resulting representation theory is richer. The resulting algebra is then called
the Virasoro algebra and it can be motivated in several ways. For example,
we could restrict the form of the TT OPE and from a contour argument get
the commutation relations, since

Ln = 1
2πi

∮︂
dz zn+1T (z) (2.80)

We motivate it by the fact that the Witt algebra doesn’t possess unitary
irreducible representations, so that in a quantum theory a central extension
is needed, see [43]. Luckily such a central extension is unique and closely
following [28] we may write the ansatz

[Lm, Ln] = (m− n)Lm+n + p(m,n) c (2.81)

with c an element of the Lie algebra center called the central charge. An
initial trivial consistency condition is p(m,n) = −p(n,m). We then define
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the modified Virasoro generators

L̂n = Ln + p(n, 0)
n

c, n ̸= 0

L̂0 = L0 + p(1,−1)
2 c (2.82)

It is rather simple to compute[︂
L̂n, L̂0

]︂
= nLn + p(n, 0) c = nL̂n[︂

L̂1, L̂−1
]︂

= 2L0 + p(1,−1) c = 2L̂0

implying that we can always redefine the generators so that p(1,−1) =
p(n, 0) = 0. We do this redefinition and drop the hats from now on. We
continue by computing the Jacobi identity

0 = [[Lm, Ln], L0] + [[Ln, L0], Lm] + [[L0, Lm], Ln]
= (m− n)p(m+ n, 0) c+ np(n,m) c−mp(m,n) c
= (m+ n)p(n,m) c (2.83)

from which we see that p(n,m) = 0 for n ̸= m. Another interesting Jacobi
identity is

0 = [[L1−n, Ln], L−1] + [[Ln, L−1], L1−n] + [[L−1, L1−n], Ln]
= 0 + (n+ 1)p(n− 1, 1 − n) c+ (n− 2)p(−n, n) c

from which we get the recursion identity

p(n,−n) = n+ 1
n− 2 p(n− 1, 1 − n) = 1

12(n3 − n) (2.84)

which we solved in the normalisation p(2,−2) = 1
2 which will give c = 1 for a

theory of a single free boson (2.8.3). In summary, we found that the unique
central extension of the Witt algebra is

[Lm, Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n,0 (2.85)

There is an antiholomorphic copy of the Virasoro algebra, where we simply
perform Lm → L̄m with

[︂
Lm, L̄n

]︂
= 0. For this second copy there is in

general a different central charge c̄. It is interesting to see that the conformal
group did not get an anomaly since the L−1, L0 and L1 still have the same
commutation relations. To prove that no nontrivial representations exist for
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c = 0, we compute the norm of L−m |0⟩ for m > −2 (in a Hermitean product
sense)

∥L−m |0⟩∥2 = ⟨0|LmL−m |0⟩ = c

12(m3 −m) (2.86)

where we used the algebra (2.85) and that Lm |0⟩ = 0 since T has weight 2. So
for c = 0, all states created from the vacuum by the action of the conformal
generators Lm with m ≤ 1 have zero norm leading to trivial representation
theory (these Virasoro generators act as raising operators as we’ll see later).
It is trivial to reverse-engineer the TT OPE from the Virasoro algebra (2.85)
by using

[Lm, Ln] =
∮︂ dz

2πi

∮︂ dw
2πiz

m+1wn+1[T (z), T (w)] (2.87)

and going through similar steps that led to (2.72) with an ansatz reflecting
that T is bosonic, meaning T (z)T (w) = T (w)T (z). This leads to

T (z)T (w) ∼ c

2(z − w)4 + 2T (w)
(z − w)2 + ∂T (w)

z − w
(2.88)

where we dropped the radial ordering and we see consistency with the ex-
pansion (2.78) since (2.88) tells us that T has weight 2. It is interesting to
investigate the transformation properties of T . From (2.67) and writing the
Laurent expansion

ϵ(z) = ϵ(w)+∂ϵ(w)(z−w)+ 1
2∂

2ϵ(w)(z−w)2+ 1
3!∂

3ϵ(w)(z−w)3+. . . , (2.89)

we get for the change in T

δϵT (z) = c

12∂
3ϵ(z) + 2T (z)∂ϵ(z) + ϵ(z)∂T (z) (2.90)

where we renamed w → z. This can be exponentiated to the full conformal
transformation z → f(z) under which T → T ′ as

T ′(z) =
(︄
∂f

∂z

)︄2

T (f(z)) + c

12S(f)(z) (2.91)

with S(f) being the Schwarzian derivative

S(f) = ∂3f

∂f
− 3

2

(︄
∂2f

∂f

)︄2

(2.92)

The textbook procedure is now to expand the Schwarzian for an infinitesimal
transformation

S(z + ϵ) = ∂3ϵ

1 + ∂ϵ
− 3

2

(︄
∂2ϵ

1 + ∂ϵ

)︄2

∼ ∂3ϵ (2.93)
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to recover (2.90) and then verify that the conformal transforms compose
correctly

T ′′(u) =
(︄
∂u

∂w

)︄2

T ′(w) + c

12S(u)(w)

=
(︄
∂u

∂w

)︄2[︄(︄
∂w

∂z

)︄2

T (z) + c

12S(w)(z)
]︄

+ c

12S(u)(w)

=
(︄
∂u

∂z

)︄2

T (z) + c

12S(u)(z)

where we used a composition property of the Schwarzian

S(g ◦ f) = (∂f)2S(g) ◦ f + S(f) (2.94)

this means that S(f) doesn’t transform like a function, but rather like a
quadratic differential. We show that the Schwarzian of a Möbius transforma-
tion is zero

S

(︄
az + b

cz + d

)︄
(z) = 6c2

(cz + d)2 − 3
2

4c2

(cz + d)2 = 0 (2.95)

meaning that T is a quasiprimary operator. The interpretation is that the
Schwarzian S(f) measures how much a map f doesn’t preserve circles. We
could ask why is the Schwarzian derivative called a derivative? To see this, we
define a cross-ratio in a slightly different convention suited for this computation

[x1, x2;x3, x4] ≡ x13x24

x12x34
(2.96)

We then want to see how much f changes the cross-ratio meaning that we
compare [f(z), f(z + ϵ); f(z + 2ϵ), f(z + 3ϵ)] with [z, z + ϵ; z + 2ϵ, z + 3ϵ] = 4.
Expanding the f(z + nϵ) to third order, we get

[f(z), f(z + ϵ); f(z + 2ϵ), f(z + 3ϵ)] − 4 = −2S(f)(z)ϵ2 +O(ϵ3) (2.97)

We note that the choice of points z, z+ϵ, z+2ϵ, z+3ϵ was purely for simplicity,
the result (2.97) is general but the prefactor of the Schwarzian may change.
Another way of seeing why the Schwarzian must appear is that the CFT
consistency conditions (2.94) and (2.95) determine it uniquely [44]. We are
not too satisfied with simply verifying that the Schwarzian works, in particular
we will explicitly make it appear in the free boson (2.8.3) following [45], where
many other properties of the Schwarzian can be found.

One can compute how T changes by going from the plane to the cylinder,
corresponding to f(z) = ln z. Equation (2.91) then gives

Tcylinder(w) = z2Tplane(z) + c

24 (2.98)
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with w = ln z. This means that there is a shift in the zero mode of T so that
L0 → L0 − c

24 and since the plane Hamiltonian is just the dilatation operator
D = L0 (see the discussion under (2.41) to see the form of D), we must have
for the cylinder frame Hamiltonian

H = L0 − c

24 (2.99)

We see a Casimir energy appear and this is so because we introduced a length
scale by giving a finite circumference 2π to our cylinder.

The nontrivial transformation properties of T give rise to a conformal
anomaly in the trace

T µ
µ = − c

12R (2.100)

with R being the Ricci scalar of the complex two-manifold on which we define
our CFT. This formula can be understood by noting that for c = 0, we expect
the anomaly to vanish and by dimensional analysis we conclude that the RHS
of (2.100) has to contain a scalar with no more than two derivatives.

2.6 Representation theory
By the usual procedure, we need to identify ladder operators and a Cartan
subalgebra. We take this subalgebra to consist of L0, this is so because it
essentially plays the role of energy by D = L0. The ladder operators will be
given by appropriate Laurent modes, which we recall to satisfy Vn |0⟩ = 0
for n > −h. Our first step is to derive a commutation relation between the
Virasoro generators and Vn. To do so, we compute

[Lm, Vn] =
∮︂ dz

2πi

∮︂ dw
2πiz

m+1wn+h−1T (z)V (w)

=
∮︂ dz

2πi

∮︂ dw
2πiz

m+1wn+h−1
[︄

h

(z − w)2V (w) + 1
z − w

∂V (w)
]︄

=
∮︂ dw

2πi

[︄
(m+ 1)wn+m+h−1hV (w) + wn+m+h∂V (w)

]︄

=
∮︂ dw

2πi

[︄
(m+ 1)h− (n+m+ h)

]︄
wn+m+h−1V (w)

= ((h− 1)m− n)Vm+n (2.101)

where we used the expansion (2.60) with (2.80) and the OPE (2.72). From
(2.101), we see that

[L0, Vn] = −nVn (2.102)
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leading to
L0Vn |0⟩ = −nVn |0⟩ (2.103)

where we used L0 |0⟩ = 0. We thus have that Vn for n > −h are the
annihilation operators since they annihilate |0⟩ and Vn for n ≤ −h are the
creation operators. Now we can define a normal ordering analogously to our
previous definition in chapter (1), that is to move annihilation operators to
the right of the creation operators. On the level of fields we write

ϕ(z)χ(w) − sing. =
∞∑︂

n=0

(z − w)n

n! :χ∂nϕ: (w) (2.104)

where sing. are the singular terms as z → w. One can then show that

(:χϕ:)n =
∑︂

k>−hϕ

χn−kϕk +
∑︂

k≤−hϕ

ϕkχn−k (2.105)

for the modes of :χϕ: and these are normal ordered in the usual sense. By
differentiation

∂ϕ(z) = ∂
∑︂

n

z−n−hϕn =
∑︂

n

(−n− h)z−n−(h+1)ϕn (2.106)

another useful relation

(:χ∂ϕ:)n =
∑︂

k>−hϕ−1
(−hϕ − k)χn−kϕk +

∑︂
k≤−hϕ−1

(−hϕ − k)ϕkχn−k (2.107)

easily follows.
We now build the highest weight representations (HWRs) of the Virasoro

algebra, also called Verma modules corresponding to a primary V . The state
V−h |0⟩ ≡ h satisfies

Ln |h⟩ = [Ln, V−h] |0⟩ = (h(n+ 1) − n)V−h+n |0⟩ = 0 (2.108)

where n > 0 and we used (2.101) and the fact that V−h+n acted as an
annihilation operator. This means that new nontrivial states are obtained
from |h⟩ only when we act with the negatively moded Virasoros, obtaining the
so-called descendant states. Minus the sum of labels of the acting Virasoros
is then called the level, for example L−1L−1 |0⟩ and L−2 |0⟩ both correspond
to level 2. The number of states P (N) at each level N is then given by the
number of partitions of N for which the generating function is

∞∏︂
n=1

1
1 − qn

=
∞∑︂

N=0
P (N)qN = 1 + q + 2q2 + 3q3 + . . . , (2.109)
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which can be checked by expanding the individual terms 1
1−qn into a geometric

series. The Hardy-Ramanujan formula gives the large N asymptotics

P (N) ∼
exp

{︂
π
√︂

2N
3

}︂
4
√

3N
(2.110)

which indicates a rapid growth of the number of states at each level. Because
of this, we will only work out the first few levels explicitly. We start by
computing the action of L−1 on V

(L−1V )(z) =
∮︂ dw

2πiT (w)V (z)

= ∂V (z)

where we used (2.80) and the OPE (2.72), meaning that L−1 acts as a
derivative on fields. From this we find at level 1 the state L−1 |h⟩ corresponding
to the operator ∂V . At level 2, we can act with L−1 twice, finding a state
L−1L−1 |h⟩ corresponding to the operator ∂2V . We can also act with L−2 and
to see the corresponding operator, we consider the normal ordered product

:V T : =
∑︂
n∈Z

z−n−2−h(:V T :)n, (2.111)

meaning that to obtain a state, we act on the vacuum only with the n = −2−h
mode. From equation (2.105), we have

(:V T :)−2−h =
∑︂

k>−2
V−2−h−kLk +

∑︂
k≤−2

LkV−2−h−k (2.112)

and when acting on |0⟩, only the term L−2V−h |0⟩ survives, meaning that
L−2 |h⟩ corresponds to the operator :V T :. At level 3, we again have
L−1L−1L−1 |h⟩ corresponding to ∂3V , from the previous level, we have that
L−2L−1 |h⟩ corresponds to :∂V T :. There is one more state L−3 |h⟩, which we
investigate with the help of the formula (2.107). Consider

:V ∂T : =
∑︂
n∈Z

z−n−3−h(:V ∂T :)n, (2.113)

so that only the n = −3 −h mode contributes when acting on |0⟩. The modes
are now expressed by (2.107) as

(:V ∂T :)−3−h =
∑︂

k>−3
(−2 − k)V−3−h−kLk +

∑︂
k≤−3

(−2 − k)LkV−3−h−k (2.114)

meaning that only L−3ϕ−h |0⟩ survives when acting on the vacuum. We
summarise our findings below in table (2.2). In general our results seem to
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Level State Operator
0 |h⟩ V
1 L−1 |h⟩ ∂V
2 L−1L−1 |h⟩ ∂2V
2 L−2 |h⟩ :V T :
3 L−1L−1L−1 |h⟩ ∂3V
3 L−2L−1 |h⟩ :∂V T :
3 L−3 |h⟩ :V ∂T :

Table 2.2 Verma module up to level 3

indicate that the Verma module is reflected on the operator side by using
derivatives and normal ordering with T on the primary V , building an entire
conformal family of descendants having a common ancestor V in the process.
It would be great if the correlators of descendants were obtainable from the
correlators of primaries that we worked out before. That this should be
the case can be seen by thinking about the corresponding problem on the
Verma module side, there one can get rid of all L−n in VEVs by using the
commutation relations (2.85) and (2.101), leaving only a VEV with the modes
ϕm behind. The computation is rather simple, involving only the OPE (2.72)
and some contour pulling with the result

⟨L−nV (w)V1(w1) . . . VN(wN)⟩ = L−n⟨V (w)V1(w1) . . . VN(wN)⟩, (2.115)

where the differential operator L−n is given by

L−n =
N∑︂

i=1

[︄
(n− 1)hi

(wi − w)n
− 1

(wi − w)n−1∂wi

]︄
(2.116)

An immediate consequence is that if two primaries are orthogonal, then the
conformal families that they generate are also orthogonal. This hints at the
fact that the OPE should also stay within a conformal family, indeed the
equation

Vi(z)Vj(w) =
∑︂

k

∑︂
{m}

Cijk

β
{m}

ijkV
{m}

k (w)
(z − w)hi+hj−hp−M

, (2.117)

where the multi-index {m} on the field V labels all descendant fields

{L−m1 . . . L−mn}Vk(w)

with M = ∑︁
i mi and the β{m}

ijk numbers holds. This notation means for
example that L−2V = :V T : by table (2.2).
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We may ask whether the Hermitean inner product is positive definite in
the HWR. We first try to eliminate some negative norm states by extending
the computation of (2.86) to obtain

∥L−m |h⟩∥2 = 2mh+ c

12(m3 −m) (2.118)

giving us the constraint c > 0 for nontrivial unitary theories (simply consider
m large enough) and also h ≥ 0 (simply consider m small enough). After
obtaining these basic constraints, we proceed by eliminating the zero-norm
states, which also indicate the reducibility of a HWR since they are orthogonal
to the physical states in a HWR. The presence of a zero-norm state at level
N is indicated by the root of the Kač determinant detMN(h, c) of a level N
Gram matrix MN(h, c) with entries

⟨h|
∏︂

i

Lki

∏︂
j

L−mj
|h⟩

with ∑︁
i ki = ∑︁

j mj = N . This is so, because such roots indicate zero
eigenvalues of the Gram matrix. The reason why we can separate the total
Gram matrix into the blocks MN(h, c) by level is that states with different
levels have vanishing overlaps since only annihilation or only creation operators
survive the commuting in the expectation value (2.119). We continue by
computing the Gram matrices for level 1 and level 2 with the level 1 being
trivial

M1(h, c) = ⟨h|L1L−1 |h⟩ = 2h = detM1(h, c) (2.119)

where we used the formula (2.118) and we see that the level 1 root h1,1(c) is
zero. The same formula also gives for a diagonal term at level 2 ⟨h|L2L−2 |h⟩ =
4h+ c

2 . For the second diagonal term we get by the use of the Virasoro algebra
(2.85)

⟨h|L1L1L−1L−1 |h⟩ = 4h(2h+ 1)

The offdiagonal terms at level 2 are

⟨h|L1L1L−2 |h⟩ = ⟨h|L2L−1L−1 |h⟩ = 3 ⟨h|L1L−1 |h⟩ = 6h

where we commuted L1 and L−2 and used L1 |h⟩ = 0. Putting this together,
we have

M2(h, c) =
(︄

4h+ c
2 6h

6h 4h(2h+ 1)

)︄
(2.120)

so that
detM2(h, c) = 32h

(︂
h2 + c− 5

8 h+ c

16
)︂

(2.121)
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where the two new roots defined by

detM2(h, c) = 32
(︂
h− h1,1(c)

)︂(︂
h− h1,2(c)

)︂(︂
h− h2,1(c)

)︂
(2.122)

are given by

h1,2(c) = 5 − c

16 − 1
16
√︂

(1 − c)(25 − c)

h2,1(c) = 5 − c

16 + 1
16
√︂

(1 − c)(25 − c)

so that given c, we can expect null vectors at level 2 for Verma modules
generated by |h1,2(c)⟩ and |h2,1(c)⟩ and we project these out. We see that the
root h1,1 is still present at level 2 and this turns out to be a general feature
as embodied by the general formula for the Kač determinant guessed by Kač
[46]

detMN(h, c) = αN

∏︂
0<p,q≤N

(︄
h− hr,s(c)

)︄P (N−rs)

, (2.123)

where the roots are given by

hr,s(m) =

(︂
(m+ 1)r −ms

)︂2
− 1

4m(m+ 1) (2.124)

with m(c) = −1
2 ± 1

2

√︂
25−c
1−c

, where the sign is chosen (for c < 1, our case of
interest) so that m is positive by convention. Apart from removing the null
states, we then also have to allow only for the regions in the (h, c) plane,
where the Kač determinant is nonnegative (remember that MN(h, c) is a
Gram matrix). Doing this it can be shown that in theories with c > 1 all
HWRs with h ≥ 0 are unitary with no need to remove null states. For the
degenerate case c = 1, we have zeros at hn = n2

4 with the Kač determinant
remaining positive in between, meaning that we only have to remove the null
states and our theory becomes unitary for h ≥ 0. The case 0 < c < 1 is more
involved and is analysed as an example (2.8.1).

2.7 Bulk conformal perturbation theory
In general, the fixed point described by a CFT may have unstable directions,
which enable us to trigger an RG flow by a deformation by a relevant operator
with y = D − h > 0 (see the end of section (1.7)). We may then follow the
RG flow perturbatively and obtain information about the off-critical theory,
enabling us to see where the RG flow ends. Ideally, we would then like to be
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able to describe the off-critical theory using the CFT data. It may be the
case that the flow ends in a new CFT or perhaps that the theory acquires
mass, which should be seen by the IR limit of the off-critical correlators (they
will either obey a power law or be exponentially damped). Below we analyse
general RG flows in D = 2 and then prove the c-theorem, which elucidates
the meaning of the central charge c.

Let us begin by studying the response of a correlator

⟨A1(x1) . . . An(xn)⟩ =
∫︂

DϕA1(x1) . . . An(xn)e−S[ϕ] (2.125)

to an infinitesimal conformal transformation x → x+ ϵ. By the exact same
steps that lead to the proof of Polyakov’s conjecture (2.2), we then have the
Ward identity

n∑︂
i=1

⟨A1(x1) . . . Ai(xi) . . . An(xn)⟩ = 1
2

∫︂
d2x⟨Θ(x)(∂ · ϵ)(x)A1(x1) . . . An(xn)⟩

(2.126)
where Θ(x) ≡ T µ

µ (x) is the trace of T . Specialising to the case of a global
dilatation and writing δA(x) = ϵ

(︂
1
2x · ∂ +D

)︂
A(x), where D̂ is an operator

encoding the possible dependence on internal indices. Substituting the change
in A under the global dilatations to (2.126), we get the special case

n∑︂
i=1

⟨A1(x1) . . .
(︂1

2x ·∂+D̂
)︂
Ai(xi) . . . An(xn)⟩ =

∫︂
d2x⟨Θ(x)A1(x1) . . . An(xn)⟩

(2.127)
Second, we analyse the dependence of correlators on various couplings gi

present in our action. Writing S =
∫︁

d2xL and restricting only to the
interaction of scalars, we have a local scalar field belonging to the tangent
space of couplings

ϕa(x) = ∂L
∂ga

(2.128)

If the fields Ai(x) respond to the change in couplings as ∂Ai(x)
∂ga

= B̂aAi(x), we
then have from (2.125)

∂

∂ga

⟨A1(x1) . . . An(xn)⟩ =
n∑︂

i=1
⟨A1(x1) . . . B̂aAi(xi) . . . An(xn)⟩(2.129)

−
∫︂

d2x⟨ϕa(x)A1(x1) . . . An(xn)⟩

Since the trace Θ(x) is also a scalar, it should be possible to expand it as

Θ(x) =
∑︂

a

βa({g})ϕa(x), (2.130)
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where the coefficients βa(g) are called the beta-functions. This can be realised
by considering the transformation x → (1 + dt)x, under which Θ(x) = ∂L

∂t

and using chain rule, we have

Θ(x) =
∑︂

k

∂L
∂ga

∂ga

∂t
=
∑︂

k

∂ga

∂t
ϕa(x), (2.131)

meaning that the beta-functions encode the dependence of couplings on the
length scale βa({g}) = ∂ga

∂t
. Plugging the expansion (2.130) into the Ward

identity (2.127) and using (2.130), we obtain the Callan-Symanzik equation

⟨
n∑︂

i=1

(︂1
2xi · ∂i + γ̂(i)(g)

)︂
A1(x1) . . . An(xn)⟩ =

∑︂
a

βa(g) ∂

∂ga

⟨A1(x1) . . . An(xn)⟩,

(2.132)
where we defined the matrix of analomalous dimensions

γ̂(g) = D̂ + βa(g)B̂a (2.133)

whose diagonalisation tells us about operator mixing (the eigenvalues corre-
sponding to anomalous dimensions). What we know for certain is that the
trace Ω(x) does not mix with other operators under RG since T is a conserved
current, this leads to

γ̂(g)Θ = 2Θ (2.134)
since T has dimension 2. Using the expansion (2.130), we then have

γ̂ϕa ≡ γb
aϕb =

(︄
2δb

a − ∂βb

∂ga

)︄
ϕb, (2.135)

meaning that if we know the derivatives of beta-functions, we can read off γ̂
acting on scalars.

We would now like to compute the beta-function of an RG flow triggered
by deforming S0 to S

S = S0 +
∑︂

i

λi

∫︂
d2xVi (2.136)

using only CFT data. Note that we use an opposite sign convention for λ
to that used in CPT, such a sign convention is used in string field theory
(SFT). We write λi = gia

−2(1−∆i), where gi is dimensionless and a acts as a
UV cutoff. We then expand the partition function

Z =
∫︂

Dϕ exp
{︄

−S0 −
∑︂

i

gi

∫︂ d2x

a2(1−∆i)
Vi(x)

}︄
= (2.137)

Z0

[︄
1 − gi

∫︂ d2x

a2(1−∆i)
⟨Vi(x)⟩ + 1

2
∑︂
i,j

gigj

∫︂
x12>a

⟨Vi(x1)Vj(x2)⟩
d2x1

a2(1−∆i)
d2x2

a2(1−∆j) + . . .

]︄
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We now move into the IR without changing the physics (see (1.7), this is
analogous with the block spins). This is done by rescaling a → (1 + dt)a and
compensating by the corresponding change in couplings. The rescaling has
an effect in two places since a appears both in the integration bounds and in
integrands. The change in a in the integrands is trivially compensated by

gi → (1 + dt)2(1−∆i)gi ∼ gi + 2(1 − ∆i)gidt (2.138)

To see the effect of the rescaling on the integral bounds, we schematically
have ∫︂

x12>a(1+dt)
=
∫︂

x12>a
−
∫︂

a<x12<a(1+dt)
, (2.139)

where the first RHS contribution just gives the original integral. Since x12
is now roughly a in the second term on the RHS of (2.139), we perform an
OPE, obtaining the contribution

∑︂
k

Cijka
2(∆k−∆i−∆j)

∫︂
a<x12<a(1+dt)

⟨Vk(x2)⟩
d2x1

a2(1−∆i)
d2x2

a2(1−∆j) , (2.140)

with the minus coming from (2.139). We see that we can explicitly perform
the x1 integration to get 2πa2dt, which is an area of an infinitesimal annulus.
After performing this integration, x2 can be any point in R2. We thus get the
change in the partition function

−πdt
∑︂
ijk

Cijkgigj

∫︂
⟨Vk(x)⟩ d2x

a2(1−∆k) , (2.141)

where the various powers of a combined. Looking at the linear term in (2.137),
we see that this change can be compensated by

gk → gk − π
∑︂
i,j

Cijkgigjdt (2.142)

Taking the two scale dependences (2.138) and (2.142) together, we have

dgk

dt = βk(g) = 2(1 − ∆k)gk − π
∑︂
ij

Cijkgigj + . . . (2.143)

The first term in (2.143) corresponds to repulsion from a fixed point since we
consider ∆k < 1, while the second term gives nonzero curvature to the flow
meaning that we can again end up in a situation with gk = 0 at the end of
an RG flow. To this order, the flow in the space of couplings is a gradient
flow, since

dgk

dt = ∂

∂gk

C̃(g) (2.144)
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with
C̃ =

∑︂
i

(1 − ∆i)g2
i − π

3
∑︂
ijk

Cijkgigjgk (2.145)

These expressions can be trusted only for deformations with weakly relevant
operators with yi = 2(1−∆i) much smaller than 1 since then the corresponding
couplings are of the same order and it is plausible to neglect the next-to-
leading corrections to (2.143). In this case, we might see a new fixed point in a
very close proximity. The computation of the next-to-leading corrections is in
general very involved and we haven’t found a computation for a generic setup
in the literature, however some next-to-leading results for particular theories
are available, for example for the perturbations Mm → Mm−1 considered in
(2.8.2).

We now prove the Zamolodchikov’s c-theorem, which states that for a
unitary two-dimensional field theory with a stress tensor, there exists a
function C({g}), which decreases along the RG flows, being stationary only
at fixed points g = g∗, where it coincides with the central charge c of the
fixed point CFT. The first step it to define the functions F , G and H so that

⟨T (z, z̄)T (0, 0)⟩ = F (τ)
z4 (2.146)

⟨T (z, z̄)Θ(0, 0)⟩ = G(τ)
z3z̄

(2.147)

⟨Θ(z, z̄)Θ(0, 0)⟩ = H(τ)
z2z̄2 , (2.148)

where τ ≡ ln(zz̄) and T is no longer holomorphic since

∂T + 1
4∂Θ = 0 (2.149)

∂T̄ + 1
4∂Θ = 0 (2.150)

Overlapping these two equations with T and Θ gives two equations

Ḟ + 1
4
(︂
Ġ− 3G

)︂
= 0 (2.151)

Ġ−G+ 1
4
(︂
Ḣ − 2H

)︂
= 0 (2.152)

where the dot means a τ derivative. If we define

C = 2F −G− 3
8H, (2.153)
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then (2.151) and (2.152) give

Ċ = −3
4H (2.154)

which is nonpositive in a unitary theory so that C is decreasing and at the
critical point, we have Θ = 0, meaning that C = 2F there. Looking at
the OPE (2.88) and the definition (2.146), we see that at the critical point
C = 2F = c, which completes the proof. The interpretation is that c measures
the degree of instability of a fixed point, which has to decrease along RG flows
thanks to the reduction in DOFs. One can then picture the theory space as
having a height function C with relevant flows going downhill. Integrating
equation (2.154) and realising that zz̄ = r2 in polar coordinates, we obtain
the sum rule

∆c = −3
4

∫︂
d(r2)r2⟨Θ(r)Θ(0)⟩

= − 3
4π

∫︂
d2r r2⟨Θ(r)Θ(0)⟩

= −3
2

∫︂
dr r3⟨Θ(r)Θ(0)⟩, (2.155)

where ∆c is the difference between central charges of the UV and IR fixed
points (a massive theory corresponds to cIR = 0). For perturbative purposes,
it is useful to rewrite (2.155). To do this, we consider a perturbation S0 →
S = S0 +λ

∫︁
d2xV , where V has weight ∆ and we are dropping the distinction

between g and λ from now on. Then we have for the expectation value of the
holomorphic stress tensor

⟨T (z) . . .⟩λ = ⟨T (z) . . .⟩0 − λ
∫︂

d2z1⟨T (z)V (z1) . . .⟩ + . . . , (2.156)

where the subscript λ means evaluation with the perturbed action and the
subscript 0 means evaluation with the unperturbed action. We expand the
OPE T (z)V (z1, z̄1) around z instead of around z1 to obtain

T (z)V (z1) = ∆
(z − z1)2V (z, z̄) + 1 − ∆

z − z1
∂V (z, z̄) + . . . , (2.157)

which gives that the integral (2.156) is divergent and we regularise by point-
splitting, meaning that we insert the step function θ(|z − z1|2 − a2) into it.
Since in the critical theory, we have ∂T = 0, differentiating (2.156) by ∂ gives

∂T = −λ
∫︂

d2z1
1 − ∆
z − z1

(z − z1)δ(|z − z1|2 − a2)∂V (z, z̄)

= −πλ(1 − ∆)∂V (2.158)
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where the ∂ hit the step function θ turning it into δ and the most singular
term in the OPE (2.157) gave zero upon integration. Additionally a factor 1

2
came from the delta function δ(r2 − a2) = δ(r−a)

2a
which effectively holds for

a, r > 0. From the off-critical conservation law for T , we then have

Θ = 4πλ(1 − ∆)V + . . . = 2πλyV + . . . (2.159)

so that

∆c = −6π2λ2y2
∫︂ 1

0
dr r3⟨V (r)V (0)⟩ + . . .

= −3
2π

2λ2y + . . . , (2.160)

where we used the generic two-point function (2.50). Remember that we are
still in the off-critical theory, where λ is not a fixed point coupling so that
∆c = C(λ) − c in (2.160). Now we observe that C(λ) − c and C̃ from (2.145)
should be proportional to one another to at least the first order since they
have the same stationary points, leading to

C(λ) − c = αC̃ (2.161)

and comparing (2.145) for one perturbing operator with (2.160), we have
α = −6π2. In the case of one perturbing operator V , the vanishing of (2.143)
for the coupling λ as required at a fixed point gives the fixed-point coupling

λ∗ = y

πCV V V

+O(y2) (2.162)

Plugging (2.162) into (2.145), we have C̃ = y3

6π2C2
V V V

+O(y4) so that

∆c = − y3

C2
V V V

+O(y4) (2.163)

is the difference between the UV central charge and the IR charge charge. In
this generic setup, the result (2.163) was first written down by Cardy and
Ludwig [47], but for minimal models was also derived in the independent
work of Zamolodchikov [42]. The derivation here was in the spirit of [39].
From (2.163), we can see the c-theorem perturbatively since for relevant
deformations with y > 0 gives that ∆c < 0 to first order.

2.8 Examples
Below we study concrete examples of CFTs, starting with unitary minimal
models and their perturbations. After this we move into CFTs that are very
important for string theory, namely the free boson and the bc-ghost system.
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2.8.1 Unitary minimal models Mm

The Kač determinant (2.123) for 0 < c < 1 was studied in [48] and the results
can be summarised by saying that there is only a discrete series of unitary
theories (called the unitary minimal models Mm) with the central charges

c(m) = 1 − 6
m(m+ 1) (2.164)

with m ≥ 3. Moreover in these theories only a discrete class of conformal
families exists with ancestors of weight

hr,s(m) =

(︂
(m+ 1)r −ms

)︂2
− 1

4m(m+ 1) , (2.165)

with (1 ≤ r ≤ m, 1 ≤ s ≤ m+1) with the symmetry (r, s) ∼ (m−r,m+1−s).
The simplest unitary minimal model M2 corresponds to the critical point of
the 2D Ising. In this theory, there are three primaries 1, σ and ϵ of weights

h1 = h1,1 = h2,3 = 0

hσ = h1,2 = h2,2 = 1
16

hϵ = h1,3 = h2,1 = 1
2 ,

which immediately imply the correct two-point a three-point correlators of
Onsager’s solution, here simply obtained from (2.50) and (2.53).

We now need to remove null states, since (2.165) coincides with (2.124),
this will force correlators to obey various identities thanks to (2.115). Starting
at level 2, we have the general ansatz for a null state L−2 |h⟩+aL−1L−1 |h⟩ = 0.
By acting with L1 on it and using the Virasoro algebra (2.85) with L1 |h⟩ = 0,
we get

0 = [L1, L−2] |h⟩ + a[L1, L−1L−1] |h⟩ =
(︂
3 + 2a(2h+ 1)

)︂
L−1 |h⟩ , (2.166)

leading to a = − 3
2(2h+1) . By applying L2 to the null state, we obtain similarly

0 = [L2, L−2] |h⟩ + a[L2, L−1L−1] |h⟩ =
(︂
4h+ c

2 + 6ah
)︂

|h⟩ , (2.167)

leading to

c = 2h(5 − 8h)
2h+ 1 (2.168)
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This will help us identify to which Verma module the resulting null state(︂
L−2 − 3

2(2h+ 1)L−1L−1
)︂

|h⟩ (2.169)

belongs. It belongs to the Verma module generated by V2,1 because by looking
at h2,1, we find that

m = 3
4h2,1 − 1

and plugging it into (2.164) gives (2.168). The fact that (2.169) is a null state,
gives the following differential equation coming from (2.115) for a generic
three-point correlator with V2,1

0 =
(︄ 2∑︂

i=1

(︄
hi

(wi − w)2 − 1
wi − w

)︄
− 3

2(2h2,1 + 1)∂
2
w

)︄
⟨V2,1(w)V1(w1)V2(w2)⟩

(2.170)
Plugging in the generic form of the three-point correlator (2.53) gives the
nontrivial constraint

2(2h2,1 + 1)(h2,1 + 2h2 + 1) = 3(h2,1 + h2 − h1)(h2,1 + h2 − h1 + 1) (2.171)

which has the solutions

h2 = 1
6 + h2,1

3 − h1 ± 2
3

√︄
h2

2,1 + 3h2,1h1 − h2,1

2 + 3h1

2 + 1
16 (2.172)

It is a miracle that for h1 = hr,s, the plus branch gives h2 = hr+1,s and the
minus branch h2 = hr−1,s. This means that for the OPE of V2,1 and Vr,s, we
have schematically [︂

V2,1
]︂

×
[︂
Vr,s

]︂
=
[︂
Vr+1,s

]︂
+
[︂
Vr−1,s

]︂
(2.173)

This is an example of a fusion rule and working our the consequences of
having null vectors at higher levels, one has the general fusion rule

[︂
Vr1,s1

]︂
×
[︂
Vr2,s2

]︂
=

r1+r2−1∑︂
k=1+|r1−r2|
k+r1+r2 even

s1+s2−1∑︂
l=1+|s1−s2|
l+s1+s2 odd

[︂
Vk,l

]︂
(2.174)

As an example, we work out the fusion of two sigmas in the Ising. Since
σ = V1,2 = V2,2, we have from (2.174)

[︂
V2,2

]︂
×
[︂
V2,2

]︂
=

3∑︂
k=1

k+4 even

3∑︂
l=1

l+4 odd

[︂
Vk,l

]︂
=
[︂
V2,1

]︂
+
[︂
V2,3

]︂
(2.175)
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We have that 1 = V2,1 and ϵ = V2,3, from which we can then write

[σ] × [σ] = [1] + [ϵ]

The other fusion rules of the Ising are

[1] × [σ] = [σ]
[1] × [ϵ] = [ϵ]
[ϵ] × [ϵ] = [1]
[ϵ] × [σ] = [σ]

The fusion rules are often written in the form of a fusion algebra[︂
Vi

]︂
×
[︂
Vj

]︂
=
∑︂

k

Nk
ij

[︂
Vk

]︂
(2.176)

with the numbers Nk
ij representing how many times a given conformal family

appears (if we have degeneracies in h, a given conformal family may appear
multiple times). In unitary minimal models, we have Nk

ij ∈ {0, 1}. By the
requirement of OPE associativity, one has∑︂

l

N l
kjN

m
il =

∑︂
l

N l
ijN

m
lk (2.177)

We have seen that the unitary minimal models are highly constrained.
Furthermore, the differential equations for correlation functions can often be
solved (notably for the four-point case), see the work of Dotsenko and Fateev
[49]. When one has the four-point correlators, one can compute the structure
constants since one already knows the general OPE structure from (2.174).
These structure constants will be important in the next subsection, when we
study weakly relevant perturbations of Mm.

2.8.2 Perturbations Mm → Mm−1

We will consider the Zamolodchikov’s perturbations (see [42]) of Mm in the
large m limit since then there are two series of near-marginal operators. The
first is given by

hn,n+2 = 1 − n+ 1
m

+O
(︂ 1
m2

)︂
(2.178)

and the second by
hn+2,n = 1 + n+ 1

m
+O

(︂ 1
m2

)︂
(2.179)

We see that the series hn,n+2 corresponds to weakly relevant operators and
hn+2,n to weakly irrelevant operators. We deform by the least relevant operator
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V1,3 with weight h1,3 = 1− 2
m

+O
(︂

1
m2

)︂
. The operator V1,3 has a second crucial

property and that is its fusion rule[︂
V1,3

]︂
×
[︂
V1,3

]︂
=
[︂
V1,1

]︂
+
[︂
V1,3

]︂
+
[︂
V1,5

]︂
(2.180)

with V1,5 being irrelevant since h1,5 = 4 − 6
m

+O
(︂

1
m2

)︂
. This means that the

(1, 3) deformation doesn’t turn on any other near-marginal operators and so
we can reliably use the part of results of (2.7) obtained for a single operator
deformation. Thanks to the weak relevance of V1,3, for m large enough, we
should be within the validity of the previously obtained results from (2.7). In
particular, we would like to begin by computing the shift ∆c in the central
charge between Mm and the IR theory to which it flows. To do so, we need
the structure constant C(1,3)(1,3)(1,3) obtainable by the methods of [49]. We
simply quote the large m result from Zamolodchikov’s paper

C(1,3)(1,3)(1,3) = 4√
3
(︂
1 − 3

4y
)︂

+O(y2) (2.181)

with y = 2(1 − h1,3) = 4
m+1 , so that from (2.163), we immediately have

∆c = − 3
16y

3 +O(y4) = − 12
m3 +O

(︂ 1
m4

)︂
(2.182)

Expanding the difference between central charges (2.164) of Mm and Mm+δ,
we have

cm+δ − cm = δ
12
m3 +O

(︂ 1
m4

)︂
(2.183)

meaning that, we observe the flow Mm → Mm−1 corresponding to δ = −1.
We may now ask questions about operator mixing leading to the analysis of
the matrix of anomalous dimensions. As shown by (2.135), in order to learn
about which operator V1,3 turns into, we need to compute the derivative of
the beta function (2.143) of the coupling λ to V1,3 at the critical point. The
result is easily computed to be

∂β

∂λ

⃓⃓⃓⃓
⃓
λ∗

= −y +O(y2) (2.184)

where we plugged in the fixed point coupling (2.162). From (2.180), we see
that V1,3 doesn’t mix with other operators so that the matrix of anomalous
dimensions (2.135) is simply a number

γ̂V1,3 =
(︂
2 + y

)︂
V1,3 +O(y2) = 2

(︂
1 + 2

m

)︂
V1,3 +O

(︂ 1
m2

)︂
(2.185)
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From (2.179), we have that V1,3 → V3,1, where the V3,1 lives in Mm−1. Next,
we investigate the renormalisation of the diagonal fields Vn,n, which satisfy
the fusion rule with V1,3[︂

Vn,k

]︂
×
[︂
V1,3

]︂
=
[︂
Vn,k

]︂
+
[︂
Vn,k+2

]︂
+
[︂
Vn,k−2

]︂
(2.186)

with k = n and for the k = n case, the relevant structure constant is given by

C(n,n)(1,3)(n,n) = n2 − 1
32

√
3
y2 +O(y3) (2.187)

Moreover, we have

hn,n = n2 − 1
4m(m+ 1) = n2 − 1

64 y2
(︂
1 + y

4
)︂

+O(y4) (2.188)

meaning that they are strongly relevant. Since only operators of comparable
conformal dimensions mix at leading order, we have from (2.186) that to
this order the Vn,n do not mix. Then using the formula (2.135) and easily
computing the beta-function for the coupling to Vn,n, we have

γ̂Vn,n =
(︂
2hn,n + 2πC(n,n)(1,3)(n,n)λ∗

)︂
Vn,n + . . . (2.189)

= 2n
2 − 1
64 y2

(︂
1 + 3

4y
)︂
Vn,n +O(y4) = n2 − 1

4m(m− 1)Vn,n +O(y4),

where we expanded
C(1,3)(1,3)(1,3)

C(n,n)(1,3)(n,n)
= n2 − 1

128 y2 +O(y3) (2.190)

In conclusion, we see that Vn,n → Vn,n from the formula (2.188) with m →
m− 1. As an example with a nontrivial matrix of anomalous dimensions, we
consider the mixing of Vn,n−1 and Vn,n+1. The mixing is obvious from (2.186)
and the fact that they have dimensions close to one another since

hn,n+1 = 1
4 − 2n+ 1

16 y +O(y2) (2.191)

and
hn,n−1 = 1

4 + 2n− 1
16 y +O(y2) (2.192)

The relevant structure constants are

C(n,n−1)(1,3)(n,n+1) =
√
n2 − 1√

3n
+O(y) (2.193)

C(n,n−1)(1,3)(n,n−1) = n− 2
2
√

3n
+O(y) (2.194)

C(n,n+1)(1,3)(n,n+1) = n+ 2
2
√

3n
+O(y) (2.195)
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From which we simply obtain

γ̂ =
(︄
hn,n+1 0

0 hn,n−1

)︄
+ 2π√

3
λ∗

(︄
n+2
2n

√
n2−1
n√

n2−1
n

n−2
2n

)︄
+ . . . (2.196)

=
(︄
hn,n+1 0

0 hn,n−1

)︄
+ y

2

(︄
n+2
2n

√
n2−1
n√

n2−1
n

n−2
2n

)︄
+O(y2) (2.197)

where we used (2.135) and (2.143). The eigenvalues of this matrix are

λ1 = 1
4 + 2n+ 1

16 y +O(y2)

λ2 = 1
4 − 2n− 1

16 y +O(y2)

and by comparison with

hn+1,n = 1
4 + 2n+ 1

4
1
m

+O

(︄
1
m2

)︄
(2.198)

and
hn−1,n = 1

4 − 2n− 1
4

1
m

+O

(︄
1
m2

)︄
, (2.199)

we see that schematically

{Vn,n+1, Vn,n−1} → {Vn+1,n, Vn−1,n}

Other mixings are investigated in [42]. The next-to-leading order corrections
to ∆c and the mixings of [42] were obtained by R. Poghossian [50]. Poghossian
found a match with the all-order mixing proposed by Gaiotto [51], who got
the mixing by constructing an RG domain wall linking DOFs between the
UV and IR. These mixings are dependent on the regularisation scheme, see
[52], which clarifies the specifics of Zamolodchikov’s scheme. See also [53] for
additional leading order mixings.

2.8.3 Free boson
The free boson is a CFT with an action

S = 1
2π

∫︂
dz dz̄ ∂X∂X, (2.200)

where the integration is over a complex two-manifold on which the free boson
lives. For now, we consider the free boson on a plane. From (2.200), it is very
easy to see that the EOM for X reads

∂∂X(z, z̄) = 0 (2.201)
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The two-point function ⟨X(z, z̄)X(w, w̄)⟩ is obtained as a Green’s function of
the EOM (2.201), meaning that

∂∂⟨X(z, z̄)X(w, w̄)⟩ = −πδ(2)(z − w), (2.202)

where ∫︂
dz dz̄ δ(2)(z, z̄) = 1 (2.203)

The solution to (2.202) is known from two-dimensional electrostatics and is

⟨X(z, z̄)X(w, w̄)⟩ = −1
2 ln |z − w|2 (2.204)

Comparing (2.204) to (2.50), it is clear that X is not a primary and to identify
primaries, we look at the EOM (2.201). It tells us that there is a holomorphic
current j(z) ≡ i

√
2∂X and an antiholomorphic current j̄(z̄) ≡ i

√
2 ∂X. These

currents correspond to a global U(1) translation symmetry of (2.200). From
the requirement of classical scaling symmetry of (2.200), these have weights 1
since X has weight 0. By differentiation of (2.204), we easily infer that

⟨j(z)j(w)⟩ = 1
(z − w)2 (2.205)

as corresponds to a holomorphic weight 1 primary from (2.50). With j having
weight 1, the corresponding Laurent expansion has the form

j(z) =
∑︂
n∈Z

jn

zn+1 , (2.206)

where the jn are often written as αn in string theory, where they play the
role of unconventionally normalised oscillators, since

[jn, jm] = mδm+n,0 (2.207)

as follows from the fact that the jj OPE contains only the identity from
symmetry and a standard contour argument. We would now like to find the
stress-energy tensor of the free boson, which is essentially the simplest theory
of abelian currents. In theories of currents, the stress-energy tensor is given
as a current bilinear via the so-called Sugawara construction, which enables
one to intertwine the current symmetry with a conformal symmetry. The
ansatz for a such a bilinear is

T (z) = γ :jj: (z), (2.208)

69



where we normal ordered with respect to the z coordinate system

:jj: (z) = lim
w→z

(︄
j(z)j(w) − 1

(z − w)2

)︄
(2.209)

to make the jj product well-defined. To find out γ, we simply compute an
OPE via Wick’s theorem (remember that this theory is free)

T (z)j(w) ∼ 2γj(z)j(z)j(w) = 2γ j(z)
(z − w)2 ∼ 2γ j(w)

(z − w)2 , (2.210)

from which γ = 1
2 follows from (2.72) and the fact that j has weight 1.

In section (2.5), we promised that we would make the Schwarzian appear
explicitly (inspired by [45]). To do so, imagine that we normal order (2.209)
with respect to another coordinate system with z → f(z), then the fac-
tor − 1

(z−w)2 = ∂z∂w ln |z − w|2 turns into ∂z∂w ln |f(z) − f(w)|2. We now
calculate the w → z limit

lim
w→z

∂z∂w ln |f(z) − f(w)|2 = lim
w→z

∂z∂w ln
(︂
f(z) − f(w)

)︂
(2.211)

by explicitly writing the ∂z and ∂w via their definitions

lim
w→z

∂z∂w ln
(︂
f(z) − f(w)

)︂
= lim

w→z
lim
ϵ→0

1
ϵ2

[︄
ln
(︄(︂
f(z + ϵ) − f(w + ϵ)

)︂(︂
f(z) − f(w)

)︂
(︂
f(z) − f(w + ϵ)

)︂(︂
f(z + ϵ) − f(w))

)︄]︄

= lim
w→z

lim
ϵ→0

1
ϵ2 ln

[︄
f(z), f(z + ϵ); f(w), f(w + ϵ)

]︄
,

where we used the cross-ratio definition (2.96). Since a cross-ratio appears, it
doesn’t surprise us that similarly to the computation of (2.97), we have after
performing the limits

lim
w→z

∂z∂w ln
(︂
f(z) − f(w)

)︂
= lim

w→z

1
(z − w)2 + 1

6S(f)(z) (2.212)

We see that physically the Schwarzian appears thanks to the presence of
normal ordering in the sense that a coordinate transformation changes the
coordinate system with respect to which we normal order. The next calculation
in line is to find out the central charge of the free boson. To do so, we simply
compute the TT OPE via Wick’s theorem

T (z)T (w) ∼ 2
4

(︄
j(z)j(w)

)︄2

+ 4
4 :j(z)j(w): j(z)j(w) (2.213)

∼ 1
2(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
z − w

, (2.214)
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where we used (2.205) and the derivative term came from Taylor expanding
around w and we divided it by 2 since there are two terms in T , on which the
derivative acts. By comparison with (2.88), we find that c = 1 (remember,
this why we normalised the Virasoro algebra (2.85) the way we did) and that
T constructed as a current bilinear really is a stress-tensor.

Aside from the U(1) currents, there is a very important continuum of
primaries of the form Vk ≡ :eikX : with k ∈ R. To show that they are primaries,
we need to compute their OPE with T and match it to the general form
(2.72). We start by expanding

:eikX : (z) = 1 + ikX(z) − k2

2 :XX: (z) + . . . (2.215)

and by Wick’s theorem, we have

T (z)Vk(w) = − :∂X∂X: (z)(1 + ikX(w) − k2

2 :XX: (w) + . . .)

= 2
8(z − w)2k

2 + ik
2

2(z − w)∂X(z) − 4
4(z − w)k

2 :(∂X)X: (z) + . . .

from which we guess the general pattern

T (z)Vk(w) ∼ k2

4(z − w)2Vk(w) + ik

z − w
:∂XeikX : (w)

= k2

4(z − w)2Vk(w) + ∂Vk(w)
z − w

meaning that from (2.72) Vk has weight k2

4 . The operators Vk are called vertex
operators and correspond to momentum eigenstates in string theory. To see
this, we realise that they are charged under the U(1) translation current j

j(z)Vk(w) = j(z)(1 + ikX(w) + . . .) ∼ k√
2(z − w)

+ . . . ∼ k√
2(z − w)

Vk(w)

(2.216)
Thanks to this, they enable us to create physical states in string theory, that
is states that satisfy appropriate mass-shell conditions (we essentially tune
the conformal weight of our state to 1 by tensoring with a Vk).

Despite its simplicity, the free boson contains some very interesting physics.
To illustrate, we consider the free boson compactified on a circle of radius R

X ∼ X + 2πmR (2.217)

with m ∈ Z. To make most out of this symmetry, we no longer work on the
complex plane, but on a torus with complex coordinates w = σ1 + τσ2 and
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w̄ = σ1 + τ̄σ2, where σ1, σ2 ∈ [0, 1] such that σ1 ∼ σ1 + 1 and σ2 ∼ σ2 + 1 and
τ is a leftover parameter of the complex torus metric known as the modulus

g = 1
τ2

|dσ1 + τdσ2|2 = dw dw̄
τ2

(2.218)

with τ = τ1 + iτ2, τ2 ≥ 0. It is trivial to see that the torus is invariant under
τ → τ + 1 and with a little bit more work, one can show that it is invariant
under the modular group PSl(2,Z) generated by τ → τ + 1 and τ → − 1

τ
.

Our objective is to compute the torus partition function Z and read off
the spectrum from it. To do this, we first realise that the torus can be thought
of as a cylinder with its ends joined. From (2.4), we know that the coordinate
along the cylinder can be thought of as a Euclidean time and thus to get
a torus with modulus τ = τ1 + iτ2, we need to twist the ends of a cylinder
propagator e−2πτ2H , where H is the cylinder Hamiltonian (2.99). The twist is
obtained by exponentiating the momentum P = (L0 − c

24) − (L̄0 − c̄
24). The

joining of ends turns into a Hilbert space trace and thus

Z = Tr
{︂
e−2πτ2He2πiτ1P

}︂
= Tr

{︂
qL0− c

24 q̄L̄0− c̄
24
}︂

(2.219)

with q = e2πiτ . Evaluating this trace (a Virasoro character) in a Verma
module generated by an ancestor of weight h gives an enormous amount of
overcounting since

χh ≡ Tr
{︂
qL0− c

24
}︂

=
∞∑︂

N=0
#h+Nq

N+h− c
24 , (2.220)

where #h+N is the number of independent states at level N and we denote
the characters by χh. Using the generating function (2.109), we can write

χh = qh+ 1−c
24

η(q) , (2.221)

where η defined by
1
η(q) = q− 1

24

∞∏︂
n=1

1
1 − qn

(2.222)

is the Dedekind eta function.
The strategy is to compute the partition function using the path integral

and then match it to (2.219) to obtain the spectrum. To compute the path
integral, we first want to find some instantons to expand the path integral
around. Recall that earlier, we had the EOM (2.201), which was the Laplace
equation on the plane (a Euclidean wave equation). Now we solve the Laplace
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equation ∆X = 0 on the torus with ∆ = 1
τ2

|τ∂1 − ∂2|2 as derivable by per
partes from the free boson action on the torus

S = 1
4π

∫︂
d2σ

√
ggij∂iX∂jX = 1

4πd2σ
1
τ2

|τ∂1X − ∂2X|2 (2.223)

where gij are the σ-coordinate components of the metric (2.218). The instan-
tons we find have to be compatible with (2.217) and with the periodicity
of the torus itself. Thus they are maps from S1 × S1 to S1 and such maps
depend on two integers n,m that tell us how many times X winds around
each torus cycle. From this and the quadratic nature of ∆ it is not too difficult
to guess the family of instantons

Xm,n(σ1, σ2) = 2πR(nσ1 +mσ2), (2.224)

which are trivially compatible with the torus periodicity conditions, which
read Xm,n(σ1 + 1, σ2) ∼ Xm,n(σ1, σ2), Xm,n(σ1, σ2 + 1) ∼ Xm,n(σ1, σ2) due to
(2.217). The action (2.223) evaluated on the instanton (2.224) trivially gives

Sm,n = πR2

τ2
|m− nτ |2, (2.225)

which is finite and thus we really found instantons, see (1.6). Expanding the
action around instantons, we have

Z =
∑︂

m,n∈Z

∫︂
Dχ e−Sm,n−S(χ) =

∑︂
m,n∈Z

e−Sm,n

∫︂
Dχ e−S(χ), (2.226)

where we introduced the fluctuation field χ. Since the Laplacian is quadratic
operator, we use the usual Gaussian methods to evaluate the path integral
over χ. We write χ = χ0 + δχ, where χ0 ∈ [0, 2πR] is a constant zero-mode
and then as usual δχ is expanded into the torus Laplacian eigenfunctions ψ
such that

∆ψ = −λψ (2.227)
It is trivial to see that we have an entire family of such eigenfunctions labeled
by integers m1,m2

ψm1,m2 = e2πi(m1σ1+m2σ2) (2.228)
with eigenvalues

λm1,m2 = 4π2

τ2
|m1τ −m2|2 (2.229)

By writing δχ = ∑︁
(m1,m2 )̸=(0,0) Am1,m2ψm1,m2 (we omit m1 = m2 = 0 since

from (2.228) this is the constant mode) and using the fact that S(χ0) = 0,
we have

S(χ) = 1
4π

∑︂
(m1,m2 )̸=(0,0)

λm1,m2 |Am1,m2|2 (2.230)
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Using the fact that the ψm1,m2 give an orthonormal basis (as one can see from
elementary Fourier analysis) on field space, we have by standard Gaussian
integration ∫︂

Dχ e−S(χ) = 2πR√︃∏︁
(m1,m2 )̸=(0,0)

λm1,m2
(2π)2 ,

(2.231)

where the factor 2πR comes from the integration over χ0 and we recognise
the usual square root of an operator determinant. Note that the factor
of 1

2π
in (2.230) that is different from the conventional Gaussian exponent

normalisation contributes to the divison by (2π)2. The determinant in (2.231)
can be beautifully evaluated using ζ-function regularisation, where the zeta
function is defined as ζ(s) ≡ ∑︁∞

n=1 n
−s and we have ζ ′(s) = −∑︁

n=1 n
−s lnn.

By assigning ζ(−1) = − 1
12 , ζ(0) = −1

2 and ζ ′(0) = −1
2 ln(2π), the formulae

∞∏︂
n=−∞

a = a2ζ(0)+1 = 1 (2.232)

∞∏︂
n=1

nα = e−αζ′(0) = (2π)α
2 (2.233)

∞∏︂
n=−∞

(n+ a) = a
∞∏︂

n=1
(−n2)

(︄
1 − a2

n2

)︄
= 2i sin(πa), (2.234)

easily follow, where in the last equality we also used the famous Euler product
formula for the sine

sin x = x
∞∏︂

n=1

(︄
1 − x2

n2π2

)︄
, (2.235)

which is easily seen by recalling the roots of the sine. The following computa-
tion is then possible∏︂
(m1,m2 )̸=(0,0)

λm1,m2

(2π)2 =
∏︂

(m1,m2 )̸=(0,0)

4π2

τ2(2π)2 |m1τ −m2|2

= τ2

(︄ ∞∏︂
m2 ̸=0

m2
2

)︄ ∏︂
m1 ̸=0,m2

(m1τ −m2)(m1τ̄ −m2)

= 4π2τ2
∏︂

m1>0,m2

(m2 + τm1)(m2 − τm1)(m2 + τ̄m1)(m2 − τ̄m1)

= 4π2τ2
∏︂

m1>0
4 sin2(πτm1) sin2(πτ̄m1)

= 4π2τ2
∏︂

m1>0
(qq̄)−m(1 − qm)2(1 − q̄m)2

= 4π2τ2(qq̄)
1

12
∏︂

m1>0
(1 − qm)2(1 − q̄m)2

= 4π2τ2η
2η̄2 (2.236)
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so that taking into account the sum over instantons

Z = R
√
τ2|η|2

∑︂
m,n∈Z

e
− πR2

τ2
|m−nτ |2 (2.237)

Finally using the special case of a Poisson resummation formula

a− 1
2
∑︂
m∈Z

e− π(m−b)2
a =

∑︂
m∈Z

e−πam2+2πibm (2.238)

in m, we find

Z = 1
|η|2

∑︂
m,n∈Z

e
−πτ2

(︂
m2
R2 +n2R2

)︂
+2πiτ1mn = 1

|η|2
∑︂

m.n∈Z
qhm,n q̄h̄m,n , (2.239)

where by comparison with (2.221) and the fact that c = 1, we identified the
numbers hm,n, h̄m,n as conformal weights

hm,n = 1
4

(︄
m

R
+ nR

)︄2

(2.240)

h̄m,n = 1
4

(︄
m

R
− nR

)︄2

(2.241)

It can be checked that the partition function (2.239) is invariant under the
modular group thanks to the transformation properties η(τ+1) = ei π

12η(τ) and
η(− 1

τ
) = (−iτ) 1

2η(τ) of the weight 1
2 modular form η. As a note, we have just

also solved the non-compact free boson on a torus since in the limit R → ∞,
only the m = n = 0 contribution survives and one has Z ∼ R√

τ2|η|2 → V
2π

√
τ2|η2| ,

where V is the non-compact volume.
The formula (2.240) can be interpreted with the help of the Kaluza-Klein

point-particle spectrum (B.5). The 1
R

term can be interpreted as being present
due to quantisation of momentum in the compact direction. When dealing
with string theory, it is present due to the fact that the center of mass (COM)
of a string has point-like behavior. But the string as a whole is extended, so
a term proportional to R arises. This term has the interpretation of coming
from the elastic energy of a string winding around the compact direction (the
larger the direction, the bigger the energy). Thus n is called the winding
number.

From (2.240), we see that the weights are symmetric under R → 1
R

provided that m → n, n → m. This tells us that the spectra of two theories,
one compactified on a circle of radius R and the second of radius 1

R
are

equivalent provided that winding in one theory becomes COM momentum
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in the other and vice versa. This extends to a full duality of theories called
T-duality. We immediately see that there exists a self-dual theory having
radius R = 1, this theory is very interesting, because there is an enhancement
of the U(1) current algebra to an SU(2) current algebra. To see this, we
write hm,n = 1

4(m + n)2 and h̄m,n = 1
4(m − n)2 and thus there are two

states with h1,1 = h−1,−1 = 1 in the holomorphic sector and two states with
h̄1,−1 = h̄−1,1 = 1 in the antiholomorphic sector. In the holomorphic sector,
these can be written as the vertex operators

j1 = 1√
2
V2 (2.242)

j2 = 1√
2
V−2, (2.243)

which can be understood by the fact that the weight of Vk is k2

4 . Defining
j3 ≡ 1√

2j with j the U(1) current, we have the SU(2) current algebra satisfying
for example from (2.216)

j3(z)j1(w) ∼ j1(w)
z − w

(2.244)

j3(z)j1(w) ∼ − j2(w)
z − w

(2.245)

The products j1j1 and j2j2 are regular and

j1(z)j2(w) ∼ 1
2(z − w)2 + j3(w)

z − w
(2.246)

Thus we see an enhancement of the abelian U(1) symmetry to a non-abelian
SU(2) symmetry. Moving away from R = 1, the symmetry is broken to U(1)
and the massless currents acquire a mass. This is the Brout-Englert-Higgs-
Migdal-Polyakov effect. T-duality can be seen as a discrete remnant of the
R = 1 enhanced gauge symmetry since at R = 1 it’s a discrete symmetry of
the antiholomorphic current algebra that acts by swapping two currents.

2.8.4 bc-ghost system
The bc-ghost system is a CFT of two anticommuting fields b and c with the
action

S = 1
2π

∫︂
d2zb∂c (2.247)

In order to have classical scale invariance, we need b to have weight λ and c
weight 1 − λ. We may proceed for general λ, but for our purposes only the
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λ = 2 case is of interest (such a CFT arises from gauge fixing the bosonic
string). Thus we have hb = 2 and hc = −1, which is a little surprising since
these weights look appropriate for a boson rather than a fermion. The action
(2.247) has the classical U(1) symmetry b → b− iϵb, c → c+ iϵc, which says
there is a conservation of ghost number. The b and c ghosts are assigned ghost
numbers −1 and 1, respectively. The U(1) symmetry develops (apart from
the case λ = 1

2) an anomaly, which turns into the fact that ghost correlation
functions are nonvanishing only when [31]

total ghost number = 2λ− 1
2 χ, (2.248)

where χ is the Euler number of the surface on which we put the ghost CFT.
For us the relevant case will be the sphere with χ = 2 and also λ = 2, so that
correlators will be nonzero only at ghost number 3.

The EOMs from (2.247) read

∂b = ∂c = 0, (2.249)

so that b = b(z) and c = c(z). From antisymmetry and proper scaling
behavior, we then have

⟨b(z)c(w)⟩ = 1
z − w

, (2.250)

so that b(z)c(w) ∼ 1
z−w

. One also has the regularity of bb and cc OPEs
b(z)b(w) = O(z−w) = c(z)c(w). Even though the so-called free fermion case
λ = 1

2 is not directly relevant for our purposes, in this theory one trivially finds
U(1) currents (which develop an anomaly for λ ̸= 1

2 by creating two distinct
fields b and c) jmn = i :ψmψn:. Since in this case one has regular currents,
one constructs a stress-tensor proportional to :ψm∂ψm: via the Sugawara
construction. This inspires us to make an ansatz

T = α :b∂c: +β :c∂b: (2.251)

Then we fix α and β analogously as in the free boson, that is by requiring
the proper weights of b and c with the result

T = −2 :b∂c: − :c∂b: (2.252)

Computing the TT OPE then gives the central charge c = −26, which shows
us that this theory is not unitary. Expanding into modes

b(z) =
∑︂
n∈Z

bn

zn+2 (2.253)

c(z) =
∑︂
n∈Z

cn

zn−1 , (2.254)
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we can compute the anticommutation relation

{bm, cn} =
∮︂ dz

2πi

∮︂ dw
2πiz

m+1wn−2b(z)c(w)

=
∮︂ dz

2πi

∮︂ dw
2πiz

m+1wn−2 1
z − w

=
∮︂ dz

2πiz
m+n−1

= δm+n,0 (2.255)

The b0, c0 algebra generates two ground states |↓⟩ and |↑⟩ such that b0 |↓⟩ = 0,
b0 |↑⟩ = |↓⟩ and c0 |↓⟩ = |↑⟩ , c0 |↑⟩ = |↓⟩ and they are annihilated by bn and
cn for n > 0. But we know that in every CFT there is a unit operator, which
gives us the vacuum |0⟩. Is there a relation linking these two ground states
to the vacuum? From the weights of b and c, we have that bn |0⟩ = 0 for
n ≥ −1 and cn |0⟩ = 0 for n ≥ 2 and so the algebraically unique expression
is |0⟩ = b−1 |↓⟩ since one has b−1 |0⟩ = 0 from b2

−1 = 0 and the vanishing of
cn |0⟩ for n ≥ 2 follows from the anticommutation of such c modes with b−1
and cn |↓⟩ = 0 for n ≥ 2. The ghost Hilbert space is thus obtained by acting
with bm and cn on the vacuum, where m < −1 and n < 2. Finally, we can
use the state-operator mapping to obtain

b−n |0⟩ → 1
(n− 2)!∂

n−2b(0), n ≥ 2 (2.256)

c−n |0⟩ → 1
(n+ 1)!∂

n+1c(0), n ≥ −1 (2.257)

This is very simply obtained from the behavior of modes when acting on the
vacuum state and realising that the state-operator mapping maps |0⟩ to the
unit operator, which has trivial OPEs with the ghosts. For example

b−n =
∮︂ dz

2πiz
−n+1b(z) = 1

(n− 2)!∂
n−2b(0), n ≥ 2 (2.258)

so that

b−n |0⟩ →
∮︂ dz

2πiz
−n+1b(z)1 = 1

(n− 2)!∂
n−2b(0), n ≥ 2 (2.259)

and
b−n |0⟩ →

∮︂ dz
2πiz

−n+1b(z)1 = 0, n < 2 (2.260)

from the holomorphicity of b.
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Chapter 3

Boundary conformal field theory

In this chapter we study boundary conformal field theories (BCFTs), that is
CFTs with an addition of a boundary. We mostly follow the concise reviews
[54, 55] and the textbook [56]. Some attention to BCFTs is also given in the
textbooks [27, 28]. In its early stages the theory was largely developed by
Cardy [57, 58, 59, 60]. The thesis [61] provides an accessible introduction to
boundary CPT. In boundary CPT we are often interested in the change of
the g-function first defined in [62]. The g-function obeys a theorem analogous
to the c-theorem, which was conjectured in [63] after a perturbative argument
and proved nonperturbatively in [64]. Boundary perturbations of Cardy
boundary conditions in unitary minimal models by the least relevant operator
are investigated to leading order in [65]. For these a crucial input is given
by the structure constants worked out by Runkel in the thesis [66]. These
developments of boundary CPT are reviewed in [67].

3.1 Gluing conditions and Ishibashi states
In BCFT, we are interested in boundary conditions whose presence breaks
the least amount of the bulk CFT symmetry. In particular this always means
that they break only half of the conformal symmetry. It is clear that this
places stringent conditions on the BCFT and the more symmetry we have
in the bulk, the less conformal boundaries can exist for a given CFT. After
finding such a boundary condition, the local properties embodied by the OPE
are still the same away from the boundary and this gives us a chance of using
our bulk CFT knowledge to understand BCFTs. However, globally the bulk
theory is modified and this results in a change of bulk correlators

⟨ϕ1ϕ2 . . .⟩a = ⟨0|ϕ1ϕ2 . . . ||Ba⟩⟩ , (3.1)
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where ||Ba⟩⟩ is called the boundary state of the boundary condition a. We
now derive the restrictions on the boundary state called the gluing conditions
coming the conditions that it preserves some symmetry. For simplicity let us
assume that the boundary lies along the real axis, meaning we work on the
upper half-plane (UHP) and suppose we have a symmetry algebra in the bulk
with quasiprimary generators W and W̄ with h = h̄ including T and T̄ . The
condition that we break the least amount of symmetry possible translates
into a condition on the real axis z ∈ R

W (z) = Ωa

(︂
W (z)

)︂
, (3.2)

which relates W and W . The Ωa is an ultralocal (commutes with mode expan-
sions) symmetry algebra automorphism, which always leaves T invariant (acts
trivially on T ). This is motivated by the fact that the only Möbius transforma-
tions leaving the real axis (boundary) fixed are the SL(2,R) transformation,
which satisfy f(z̄) = f̄(z), which turns into

T (z) = T̄ (z̄) (3.3)

on the boundary. Nontrivial automorphisms Ωa are present for example in
the free boson (2.8.3) that has U(1) symmetry. On the U(1) current, we can
have the nontrivial condition

j(z) = −j̄(z̄) (3.4)

corresponding to a Neumann boundary condition for X. The trivial automor-
phism in this case turns out to be the Dirichlet boundary condition for X,
both being compatible with the trivial automorphism acting on T via the
Sugawara construction.

From radial quantisation, we know that states naturally live on circles
and so in order to restrict ||Ba⟩⟩, we make an invertible transformation from
the UHP to the unit disc

ξ(z) = i− z

i+ z
, (3.5)

satisfying ξ′(z) = i
2(ξ − 1)2 and ξ̄

′(z̄) = − i
2(ξ̄ − 1)2. For our generators, the

condition (3.2) then translates to(︄
1
2(ξ − 1)2

)︄h

W (ξ) =
(︄

− 1
2(ξ̄ − 1)2

)︄h

Ωa

(︂
W (ξ̄)

)︂
(3.6)

since they are quasiprimaries of h = h̄ and the real axis is mapped to |ξ| = 1.
Since for |ξ| = 1 one has ξ̄ = ξ−1, then

(ξ − 1)2h = (ξ − ξξ̄)2h = ξ2h(1 − ξ̄)2h, (3.7)
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so that (3.6) turns into

ξ2hW (ξ) − (−1)hΩa

(︂
W (ξ̄)

)︂
= 0 (3.8)

After expanding in modes

W (z) =
∑︂
n∈Z

Wn

zn+h
, (3.9)

this becomes ∑︂
n∈Z

ξh−n

(︄
Wn − (−1)hΩa

(︂
W−n

)︂)︄
= 0, (3.10)

where we again used that for |ξ| = 1 one has ξ̄ = ξ−1. Since (3.10) holds for
every ξ with |ξ| = 1, we must have when acting on the boundary state the
gluing conditions (︂

Wn − (−1)hΩa

(︂
W−n

)︂)︂
||Ba⟩⟩ = 0 (3.11)

For these gluing conditions to be nontrivial (remember, n ∈ Z), clearly ||Ba⟩⟩
must be a coherent state, that is it isn’t a local finite energy Fock state. An
example of the gluing condition is (jn + j̄−n) ||Ba⟩⟩ = 0 for the Neumann
condition in the U(1) theory and (jn − j̄−n) ||Ba⟩⟩ = 0 for the Dirichlet
condition. The resulting boundary state is then called a D-brane, in particular
we often consider tensor copies of the free boson so that when having p+ 1
Neumann boundary conditions and the rest Dirichlet, we call it a Dp-brane.
Another example is that for the always present trivially glued T , we get(︂

Ln − L̄−n) ||Ba⟩⟩ = 0 (3.12)

so that only one half of the Virasoro algebra survives.
In diagonal CFTs, that is CFTs in which the Hilbert space H =⨁︁

i,j NijHi ⊗ H̄j decomposed into irreps of the symmetry algebra Hi satisfies
Nij ̸= 0 only for i = j with the chiral and antichiral symmetry algebras being
equal, one can find explicit solutions to the gluing conditions. These are
given by the Ishibashi states [68], which have for the case of Ωa trivial (we
thus specialise W → T ) the form

||i⟩⟩ =
∞∑︂

N=0
|i, N⟩ ⊗ U |i, N⟩ , (3.13)

where is U is an antiunitary operator on the chiral hilbert space Hch = ⨁︁
i Hi

satisfying
ULn = (−1)hLnU (3.14)

81



The {|i, N⟩} is an orthonormal basis of the chiral representation at level N
corresponding to a spinless (that is with h = h̄) primary |i⟩. The Ishibashi
state can be generalised to the nontrivial Ωa case as well, see [56], but we
will present the proof that the gluing conditions hold only for the trivial case.
The proof is carried out by realising that for (3.11) to be satisfied, it suffices
if it is satisfied when projected onto the orthonormal basis and one also uses
the antiunitarity of U and its commutation property (3.14)

∞∑︂
N=0

⟨k,M | ⟨k,M |U⋆
(︂
Ln − (−1)hL−n

)︂
|i, N⟩ ⊗ U |i, N⟩ =

∞∑︂
N=0

[︄
⟨k,M |Ln |i, N⟩ ⟨k,M |U∗U |i, N⟩

−(−1)h ⟨k,M |i, N⟩ ⟨k,M |U∗L−nU |i, N⟩
]︄

=

∞∑︂
N=0

[︄
δk,iδM,N ⟨k,M |Ln |i, N⟩

−(−1)hδk,iδM,N(−1)−h ⟨k,M |U∗UL−n |i, N⟩
]︄

=

⟨i,M |Ln |i,M⟩ − ⟨i,M |Ln |i,M⟩ = 0,

where in the last line we used the fact that Ln acting on the chiral sector the
same as Ln acting on the antichiral sector and we used the star notation for
a BPZ conjugate operator to differentiate from Hermitean conjugation. Our
considerations are still a little formal since we haven’t specified the operator
U , but it can be shown by acting with the Virasoros as in (3.12) that one can
write an Ishibashi state

||i⟩⟩ =
∑︂
IJ

M IJ(h)L−IL̄−J |i⟩ , (3.15)

where M IJ(h) is an inverse of the Gram matrix MIJ(h) = ⟨i|LIL−J |i⟩ with
I, J multiindices. This allows us to write a trivial Ishibashi state level by
level

||i⟩⟩ =
(︂
1 + 1

2hL−1L̄−1 + 1
c(2h+ 1) + 2h(8h− 5)

[︂
(3.16)

2(2h+ 1)L−2L̄−2 − 3(L−2L̄
2
−1 + L2

−1L̄−2) + c+ 8h
4h L2

−1L̄
2
−1

]︂
+ . . .

)︂
|i⟩ ,

by simply inverting (2.119) and (2.120).
The gluing conditions (3.11) solved by the Ishibashi states are not enough

to uniquely specify the boundary state ||Ba⟩⟩. This is so because additional
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selections among the irreps of the symmetry algebra are made by considering
various consistency conditions like the Cardy conditions [60] (analogue of
modular invariance, see (2.8.3) for the discussion of modular invariance)
or sewing relations [69, 70]. Nevertheless, it is true that after appropriate
selections, we can write the boundary state as a superposition of Ishibashi
states

||Ba⟩⟩ =
∑︂

i

Bi
a ||i⟩⟩ (3.17)

The Ishibashi state (3.13) satisfies the important property
⟨j ||i⟩⟩ = ⟨j|i⟩ = δi,j (3.18)

since |i⟩ is the unique state at level 0 in the conformal family generated by
|i⟩. This means that we can read off the boundary state coefficients Bi

a as
one-point functions with spinless bulk primaries

Bi
a = ⟨i ||Ba⟩⟩ (3.19)

Before we try to find some boundary states, we investigate the boundary
spectrum.

3.2 Boundary fields
Looking at (3.3), we realise that an UHP correlator with T̄ at a point specified
as (z, z̄) can be rewritten as a correlator on the entire plane using the so-called
doubling trick, where by analytic continuation the boundary acts as a mirror
that transports T̄ at (z, z̄) to a T at the mirror point (z̄, z), which is no longer
on the UHP. This means in particular that as T approaches the boundary
from the UHP, it finds a singularity since there is another T moving towards
it, which near the boundary, where T = T̄ this is like a T̄ moving towards it
and then we have a nontrivial OPE. From purely UHP point of view, this
looks like an interaction with the boundary itself, that is with boundary fields.
These boundary fields can be organised into irreps of the reduced symmetry
algebra on the boundary, for example we have only chiral fields living at the
boundary since only one half of the Virasoro algebra remains. In general
because of the reduced symmetry, the boundary operator content can look
quite different from the bulk. We write the state space of the boundary theory
as Ha = ⨁︁

i n
i
aHi, where the leftover symmetry algebra irreps Hi in general

occur with nontrivial multiplicities ni
a.

The interaction of bulk with boundary fields can be locally summarised
by the bulk-boundary OPE

ϕi(z, z̄) ∼
∑︂

j

Ba
ij(2y)hj−∆iVj(x) (3.20)
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where Ba
ij is a bulk-boundary structure constant and z = x+ iy. From now on

we also deploy the convention that we write bulk fields as ϕ and boundary
fields as V . This is so because the machinery built in (2), where we usually
write V , often purely chiral for simplicity, translates to purely chiral fields on
the boundary that we’ll encounter more than bulk fields from now on.

Since the boundary theory is also a CFT, a fundamental role is played by
the boundary OPE

Vi(x1)Vj(x2) ∼
∑︂

k

Ca
ijk|x12|hk−hi−hjVk(x2), (3.21)

with Ca
ijk being a boundary structure constant. On the UHP we have the

correlators of a chiral field

⟨Vi(x1)Vj(x2)⟩UHP = ⟨1⟩aδij

x2h
12

(3.22)

and

⟨Vi(x1)Vj(x2)Vk(x3)⟩UHP =
⟨1⟩aC

a
ijk

x
hk−hi−hj

12 x
hj−hi−hk

13 x
hi−hj−hk

23
(3.23)

From (3.20) and (3.22), we can very simply derive by approaching the bound-
ary the form of the UHP bulk-boundary two-point function on the UHP

⟨ϕi(z, z̄)Vj(r)⟩UHP =
⟨1⟩aB

a
ij

(2y)∆i−hj ((x− r)2 + y2)hj
(3.24)

for z = x+ iy.
Boundary fields living on a given boundary can be generalised to the

so-called boundary condition changing operators (BCCOs). The motivation to
consider this generalisation comes from studying BCFT on an infinite strip,
which we position parallel to the real axis and give it height π. On this strip,
nothing prevents us from having different boundary conditions on its two
sides. Mapping this strip with coordinate w back to the UHP via z = ew, we
find that its two ends get mapped to the negative and positive real semi-lines
respectively. After the mapping, we see two boundary conditions meet at
the origin z = 0 and this produces a singularity. This singularity is a signal
of the presence of a BCCO V ab, which can be thought of as changing the
boundary condition a to b. The generalised boundary Hilbert space is then
Hab = ⨁︁

i n
i
abHi with the a = b diagonal terms corresponding to the original

Ha and the most singular |i⟩ for which ni
ab ≠ 0 is the BCCO. We note that

in Hab for a ̸= b we don’t have the vacuum |0⟩ since this would correspond to

84



a smooth transition between a and b. The generalised OPEs of BCCOs have
the form

V ab
i (x1)V cd

j (x2) ∼
∑︂

k

δb,c C
abc
ijkx

hk−hi−hj

12 V ad
k (3.25)

with the δb,c being there for consistency since BCCOs have to fit together.
The boundary condition index structure is similar to matrix multiplication
and plays an important role in string theory, where it enables one to associate
Chan-Paton factors to open string endpoints and in result produce gauge
symmetries in the effective theory of open strings.

3.3 Cardy conditions and Cardy states
Let us begin by considering the cylinder partition function of the boundary
theory

Zab(q̃) = TrHab
e− 2πT

L
Hab =

∑︂
i

ni
abχi(q̃), (3.26)

where we write q̃ ≡ e− 2πT
L with L being the length of the cylinder and T

measuring its circumference. The χi is a character of Hi, which occurs with
multiplicity ni

ab due to definition of Hab. The same partition function can be
calculated by putting the boundary states ||Ba⟩⟩ and ||Bb⟩⟩ on the cylinder
ends and evolving for a time L via a bulk hamiltonian H. This amount to
swapping the space and time directions and after writing τ ≡ iL

T
corresponds

to the modular transformation τ → − 1
τ
. One can then write q̃ = e− 2πi

τ and
q = e2πiτ , after which

Zab(q̃) = ⟨⟨Ba|| e− 2πL
T

H ||Bb⟩⟩ =
∑︂

i

Bi
a

∗Bi
b χi(q), (3.27)

where we expanded the boundary state into Ishibashi states and used a
normalisation of the highly non-normalisable Ishibashi states of the form

⟨⟨i|| e− 2πL
T ||j⟩⟩ = δijχi(q) (3.28)

This normalisation is possible thanks to the damping factor inserted in
between. In CFTs with a finite number of conformal families (rational CFTs),
the characters transform linearly under the modular transform τ → − 1

τ
, that

is they get multiplied by a symmetric and unitary S-matrix

χi(q) =
∑︂

j

Sijχj(q̃) (3.29)
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Inserting this into (3.27) and equating (3.26) with (3.27), one easily finds the
Cardy conditions

ni
ab =

∑︂
j

Bj
a

∗Bj
bSij, (3.30)

which gives the boundary field operator content after knowing the boundary
state and the S-matrix. Multiplying (3.30) with an S from the right gives

Bi
a

∗Bi
b =

∑︂
j

nj
abSij (3.31)

thanks to the unitarity of S. Since ni
ab ∈ N0, we see from both (3.30) and

(3.31) that the boundary state is highly restricted by the Cardy conditions.
The Cardy conditions implies that one cannot just scale the boundary state
at will, one can only scale it by an integer. The boundary states solving (3.30)
thus form a positive cone of a lattice, meaning that one can take positive
integer combinations of the solutions of (3.30) to obtain another solution.
One can ask whether there is a sort of basis in this lattice, which generates
all other solutions by the positive integer combinations and indeed such a
basis is believed to be characterised by∑︂

a

Bi
a

∗Bj
a = δij

S0i

(3.32)

where the S0i is unique by the uniqueness of |0⟩. Using this relation, one
can find an algebra that the multiplicities ni

ab obey thanks to the Verlinde
formula [71]

Nk
ij =

∑︂
m

S∗
kmSimSjm

S0m

, (3.33)

where the Nk
ij are the fusion rules (2.176). It enables us to carry out the

computation ∑︂
b

ni
abn

j
bc =

∑︂
b

∑︂
lm

Bl
a

∗Bl
bSil B

m
b

∗Bm
c Sjm

=
∑︂
lm

δlmB
l
a

∗Bm
c

SilSjm

S0l

=
∑︂

l

Bl
a

∗Bl
c

SilSjl

S0l

=
∑︂
lkm

Bl
a

∗Bl
cSkl

S∗
kmSimSjm

S0m

=
∑︂
km

nk
acS

∗
kmS0mSimSjm

=
∑︂

k

nk
acN

k
ij ,
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meaning that the multiplicities ni
ab form a representation of a fusion algebra,

called the non-negative integer matrix representation (NIM-rep). It is sugges-
tive that there should be theories with the ni

ab being the fusion coefficients.
Using (3.33) in (3.30), one sees that such a choice of a NIM-rep indicates the
form of the boundary state

||Bi⟩⟩ =
∑︂

j

Sij√︂
S0j

||j⟩⟩ , (3.34)

meaning that there would be as many boundary conditions as there are irreps
in the CFT. It indeed turns out [60] that (3.34) provides the lattice basis for
diagonal rational CFTs and the states (3.34) are called Cardy states. A special
case occurs in the minimal models Mm, see (2.8.1), where boundary conditions
are given by Kac labels (a1, a2) such that 1 ≤ a1 ≤ m and 1 ≤ a2 ≤ m+ 1,
labelling the chiral representations. The resulting states are given by the
formula

||a1, a2⟩⟩ =
∑︂
(r,s)

S(a1,a2)(r,s)√︂
S(1,1)(r,s)

||r, s⟩⟩ , (3.35)

where in the minimal models, the S-matrix has the explicit form

S(r,s)(r′,s′) =
√︄

8
m(m+ 1)(−1)1+rs′+sr′ sin

(︂
π
m+ 1
m

rr′
)︂

sin
(︂
π
m+ 1
m

ss′
)︂

(3.36)
For example, this allows us to write all boundary states of the critical two-
dimensional Ising with m = 3

⃓⃓⃓⃓⃓⃓
B(1,1)

⟩︂⟩︂
≡ ||+⟩⟩ = 1√

2
||1⟩⟩ + 1√

2
||ϵ⟩⟩ + 1

4
√

2
||σ⟩⟩ (3.37)⃓⃓⃓⃓⃓⃓

B(1,3)
⟩︂⟩︂

≡ ||−⟩⟩ = 1√
2

||1⟩⟩ + 1√
2

||ϵ⟩⟩ − 1
4
√

2
||σ⟩⟩ (3.38)⃓⃓⃓⃓⃓⃓

B(2,2)
⟩︂⟩︂

≡ ||f⟩⟩ = ||1⟩⟩ − ||ϵ⟩⟩ (3.39)

The boundary states (3.37) and (3.38) are identified as the boundary conditions
with all spins up or down since they differ only by a sign in front of an ||σ⟩⟩. The
third boundary state (3.39) is then interpreted as a free boundary condition
since it doesn’t contain a ||σ⟩⟩. From the primary OPEs, one can read off
the fusion coefficients and thus the boundary operator content. It can be
summarised by stating that on all three boundary conditions a 1 can live and
in fact it is the only operator on ||+⟩⟩ and ||−⟩⟩. On ||f⟩⟩ we also have an ϵ.
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3.4 Boundary entropy
The partition function (3.27) can be thought of as a partition function of
a one-dimensional quantum system on an interval of length 2πL at inverse
temperature T ≡ β (remember, T here is time, not temperature). In the
thermodynamic limit of 2πL

β
large, the ground state |0⟩ gives a dominant

contribution, so that

Zab ∼ ⟨⟨Ba|| 0⟩⟨0 ||Bb⟩⟩ e
πcL
12β , (3.40)

where we assumed that the ground state energy is zero and used the form of
the cylinder Hamiltonian (2.99). The free energy is then given by

Fab = −β−1 lnZab ∼ −β−1
(︂πcL

12β + ln ⟨⟨Ba|| 0⟩ + ln⟨0 ||Bb⟩⟩
)︂
, (3.41)

so that the entropy is

Sab = β2∂Fab

∂β
∼ πcL

6β + ln ⟨⟨Ba|| 0⟩ + ln⟨0 ||Bb⟩⟩ , (3.42)

where apart from the extensive contribution πcL
6β

, one finds a universal contri-
bution of the zero-temperature boundary entropies ln⟨0 ||Ba⟩⟩ and ln⟨0 ||Bb⟩⟩
(the phase of |0⟩ is chosen so that ⟨0 ||Ba⟩⟩ ∈ R+). These boundary entropies
can be interpreted as logarithms of the ground state degeneracy

ga ≡ ⟨0 ||Ba⟩⟩ , (3.43)

called the g-function, so that the boundary entropy associated with a given
boundary condition is Sa = ln ga. We note that these ground state degenera-
cies do not have to be integers a priori. The equation (3.43) means that the
g-functions are disc (the cylinder has a disc on each end) one-point functions
of the identity operator in the presence of a or equivalently the coefficients of
the identity in Ba. In diagonal rational CFTs, we have

gi = Si0√
S00

, (3.44)

which becomes explicit for the minimal models

g(a1,a2) =
(︄

8
m(m+ 1)

)︄ 1
4 sin

(︂
πa1
m

)︂
sin

(︂
πa2

m+1

)︂
(︄

sin
(︂

π
m

)︂
sin

(︂
π

m+1

)︂)︄ 1
2

(3.45)

88



For the Ising this gives g(1,1) = g+ = g(1,3) = g− = 1√
2 and g(2,2) = gf = 1 as

can be read off from (3.37)-(3.39). From (3.31) and (3.44), one reads off

gigj =
∑︂

k

nk
ijS0k =

√︂
S00

∑︂
k

nk
ijgk (3.46)

This means that for example in the Ising we have

g+g− = 1√
2
g−

g+gf = 1√
2
gf

g−gf = 1√
2
gf

g+g+ = 1√
2
g+

g−g− = 1√
2
g+

gfgf = 1√
2

(g+ + g−)

as can be verified from the values of the Ising g-functions (see the Ising
fusion rules in (2.8.1) to read off the fusion coefficients and we also note that
S00 = 1√

2 for the Ising).

3.5 Boundary conformal perturbation theory
Let us consider a setup, where we deform the boundary theory by boundary
operators inserted along the unit disc boundary, that is Sboundary → Sboundary +∑︁

i λi

∫︁
dθ Vi and observe an RG flow of the boundary condition. Immediately

we see that the beta-function can be obtained for free from the bulk result by
replacing (for dimensional reasons) a2 → a and the annulus area 2πa2dt →
2adt in the procedure that lead to (2.143). After adding an appropriate
boundary index a, it is easy to see that this results in the leading order
beta-function

βa
k(λ) = (1 − hk)λk −

∑︂
ij

Ca
ijkλiλj + . . . = ykλk −

∑︂
ij

Ca
ijkλiλj, (3.47)

so that for a deformation by a single operator V , we have the fixed point
coupling

λ∗ = y

Ca
V V V

+O(y2) (3.48)
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Now we try to reproduce the leading order shift in the g-function after
perturbing with a single V , first calculated by Affleck and Ludwig [63].
To do so, we compute the leading order shift in the one-point function of
the identity on a disc and for this purpose, we reintroduce the cutoff a
into the coupling, so that we write the deformation as ah−1λ

∫︁
dθ V . Since

ga′ = ⟨1⟩a′ = ⟨1e−Sboundary−ah−1λ
∫︁

dθ V ⟩a, we have for the shift ∆ga in the
g-function when flowing from the boundary condition a to a′ the equation

∆ga = −ah−1λ
∫︂

dθ ⟨V (θ)⟩a (3.49)

+ 1
2!a

2(h−1)λ2
∫︂

dθ1dθ2⟨V (θ1)V (θ2)⟩a (3.50)

− 1
3!a

3(h−1)λ3
∫︂

dθ1dθ2dθ3⟨V (θ1)V (θ2)V (θ3)⟩a + . . . (3.51)

The contribution (3.49) vanishes since in the boundary theory, one has
⟨V ⟩a = 0 for all V ̸= 1. The other correlators on the disc are given by
transforming (3.22) and (3.23) to the disc by f(w) = i1−w

1+w

⟨V (θ1)V (θ2)⟩a = ga

⃓⃓⃓⃓
⃓2 sin θ12

2

⃓⃓⃓⃓
⃓
−2h

(3.52)

⟨V (θ1)V (θ2)V (θ3)⟩a = gaC
a
V V V

⃓⃓⃓⃓
⃓8 sin θ12

2 sin θ13

2 sin θ23

2

⃓⃓⃓⃓
⃓
−h

(3.53)

Expanding the correlator (3.52) in y, we have

⟨V (θ1)V (θ2)⟩a ∼ ga

⃓⃓⃓⃓
⃓2 sin θ12

2

⃓⃓⃓⃓
⃓
−2

+ ga

ln
⃓⃓⃓
2 sin θ12

2

⃓⃓⃓
2
⃓⃓⃓
sin θ12

2

⃓⃓⃓ y +O(y2) (3.54)

and similarly (3.53) gives

⟨V (θ1)V (θ2)V (θ3)⟩a = gaC
a
V V V

⃓⃓⃓⃓
⃓8 sin θ12

2 sin θ13

2 sin θ23

2

⃓⃓⃓⃓
⃓
−1

+O(y), (3.55)

where we only needed to expand to zeroth order. To evaluate (3.50), we need
to calculate an integral by substituting θ1 → θ1, θ1 − θ2 → θ and using the
fact that θ1 and θ2 are separated by at least the cutoff a, we have

∫︂
dθ1dθ2

⃓⃓⃓⃓
⃓2 sin θ12

2

⃓⃓⃓⃓
⃓
−2h

= π

2

∫︂ 2π−a

a
dθ
(︄

sin−2
(︂θ

2
)︂

+ 2
ln
(︂
2 sin θ

2

)︂
sin θ

2
y

)︄
+O(y2)

= 4π
a

+
(︄

32π(1 + ln a)
a

− 2π2
)︄
y +O(a, y2) (3.56)
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For the contribution (3.51), we need to evaluate the integral

∫︂
dθ1dθ2dθ3

⃓⃓⃓⃓
⃓8 sin θ12

2 sin θ13

2 sin θ23

2

⃓⃓⃓⃓
⃓
−h

=

∫︂
dθ1dθ2dθ3

⃓⃓⃓⃓
⃓8 sin θ12

2 sin θ13

2 sin θ23

2

⃓⃓⃓⃓
⃓
−1

+O(y) (3.57)

by substitution θ13 → θ1, θ23 → θ2, θ3 → θ3 and trivially integrating over θ3
to get 2π. After doing so, we observe a residual permutation symmetry on θ1
and θ2 giving an extra factor of 2, after which

∫︂
dθ1dθ2dθ3

⃓⃓⃓⃓
⃓8 sin θ12

2 sin θ13

2 sin θ23

2

⃓⃓⃓⃓
⃓
−1

=

4π
∫︂ 2π

0
dθ1

∫︂ θ1

0
dθ2

⃓⃓⃓⃓
⃓8 sin θ12

2 sin θ1

2 sin θ2

2

⃓⃓⃓⃓
⃓
−1

=

π
∫︂ 2π

0
dθ1

[︄
ln sin θ2

2 − ln sin θ12
2

sin2 θ1
2

]︄θ2→θ1

θ2→0
(3.58)

We choose to apply the cut-off on both bounds, this somewhat arbitrary
choice (we could impose a cut-off only on the divergent terms) changes only
cut-off dependent terms

π
∫︂ 2π

0
dθ1

[︄
ln sin θ2

2 − ln sin θ12
2

sin2 θ1
2

]︄θ2→θ1−a

θ2→a

=

π
∫︂ 2π−a

a
dθ1 csc2

(︄
θ1

2

)︄(︄
ln
(︄

− sin
(︄
a− θ1

2

)︄)︄
+

ln
(︄

sin
(︄
a− θ1

2

)︄)︄
− ln

(︃
− sin a2

)︃
− ln

(︃
sin a2

)︃)︄
=

4π
(︂
ln(−a) − ln

(︂
−a

2

)︂
+ 3 ln(2)

)︂
a

− 4π2 +O(a) (3.59)

Adding (3.58) with (3.59) together with appropriate prefactors as in (3.52)
and (3.53) gives the universal cut-off independent contribution to the shift
∆ga at the leading order

∆ga = ga

(︄
1 − π2λ2y − 2π2

3 λ3Ca
V V V

)︄
+O(y4), (3.60)

since no poles in y in structure constants occur, there are not further contri-
butions at the leading order and thus (3.60) is exact. After plugging in the
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fixed point coupling (3.48), we have the wanted result of Affleck and Ludwig

∆ga

ga

= −π2

3
y3(︂

Ca
V V V

)︂2 +O(y4) (3.61)

An alternative form can be obtained from ex = 1 + x+ . . .

∆ ln ga = −π2

3
y3(︂

Ca
V V V

)︂2 +O(y4) (3.62)

From the form of (3.61), we see that an analogue of the c-theorem holds
perturbatively for g (compare with (2.163)) as well. This is known as the
perturbative g-theorem. Affleck and Ludwig conjectured that it also holds
nonperturbatively [63], which was proved by Friedan and Konechny [64], see
also [72]. Physically this can be interpreted as saying that when going to
IR, we see more and more gaps in the spectrum since they appear larger and
larger compared to our scale and these gaps remove degeneracies.

One can also obtain the leading order correction ∆Bϕ
a to an arbitrary

boundary state coefficient of ||ϕ⟩⟩ ̸= ||1⟩⟩. To do so, we compute the perturbed
one-point function of a bulk insertion at the center of a disc r = 0. The generic
form of the one-point function of a bulk insertion on a unit disc is easily read
off from the bulk-boundary OPE (3.20) and going to disc coordinates via the
previously used f

⟨ϕ(r, θ)⟩a =
gaB

a
ϕ1

(1 − r2)∆ , (3.63)

so that
⟨ϕ(0)⟩a = gaB

a
ϕ1 = Bϕ

a , (3.64)
where we used [56]

Ba
ϕ1 = Bϕ

a

ga

(3.65)

Now we just need to compute

Bϕ
a′ = Bϕ

a − ah−1λ
∫︂

dθ ⟨ϕ(0)V (θ)⟩a + . . . (3.66)

Transforming (3.24) to the unit disc, we have [61]

⟨ϕ(r, θ1)V (θ2)⟩a = Ba
ϕV ga(1 − r2)−∆

(︄
1 − r2

1 − 2r cos θ12 + r2

)︄h

(3.67)

so that
⟨ϕ(0)V (θ)⟩a = Ba

ϕV ga (3.68)
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This makes the angular integration trivial so it simply gives 2π, leading
to (the term depending on the cut-off gets absorbed into the higher order
contributions)

Bϕ
a′ = Bϕ

a − 2πλBa
ϕV ga + . . . (3.69)

so that we have
∆Bϕ

a

ga

= −2πλBa
ϕV + . . . (3.70)

After plugging in the fixed point coupling (3.48), we obtain the final result

∆Bϕ
a

ga

= −2π
Ba

ϕV

Ca
V V V

y +O(y2) (3.71)

consistent with the absence of a O(y) correction to ga since Ba
1V = 0. We

haven’t found the result (3.71) in the CFT literature, but we shall confirm it
using open string field theory (5.2.3).

To give an example of boundary RG flows, we investigate perturbations of
pure Cardy boundary conditions a = (a1, a2), a2 > 1 in the unitary minimal
models Mm for m large by the least relevant operator V(1,3) ≡ V , see [65] and
also [73] for a more general setup, where superpositions of Cardy boundary
conditions are deformed. Following [65], we work with non-normalised two-
point functions in which there is an extra Ca

V V 1 in (3.62). Recall from (2.8.2)
that for this deformation, we have y = 2

m
, so that from (3.62)

∆ ln ga = −π2

3
Ca

V V 1(︂
Ca

V V V

)︂2
8
m3 +O

(︂ 1
m4

)︂
(3.72)

The needed Runkel’s structure constants [66] are given in [65] so that the
authors obtain after expanding in 1

m

Ca
V V 1(︂

Ca
V V V

)︂2 = 1
8(a2

2 − 1) +O
(︂ 1
m

)︂
(3.73)

for a = (a1, a2). This gives

∆ ln ga = −π2

3 (a2
2 − 1) 1

m3 +O
(︂ 1
m4

)︂
(3.74)

Expanding the ratio of two g-functions ga and gb with a = (a1, a2) and
b = (b1, b2) given by (3.45), one has

ln gb

ga

= ln b1b2

a1a2
+ π2

6 (a2
1 +a2

2 − b2
1 − b2

2)
1
m2 + π2

3 (a2
1 − b2

1)
1
m3 +O

(︂ 1
m4

)︂
, (3.75)
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so that comparing with (3.74), we must have

a1a2 = b1b2 (3.76)
a2

1 + a2
2 = b2

1 + b2
2 (3.77)

b2
1 − a2

1 = a2
2 − 1 (3.78)

This has a pure Cardy state solution for a1 = 1 given by a flow a = (1, r) →
b = (r, 1). To obtain flows from more general boundary conditions, one needs
to consider superposition ∑︁k b

k = ∑︁
k(bk

1, b
k
2) of Cardy states in the IR. Then

one has for the superposition g-function gsup

ln gsup

ga

= ln σ + π2

6
(︂
a2

1 + a2
2 −

∑︂
k

sk

σ
((bk

1)2 + (bk
2)2)

)︂ 1
m2

+π
2

3
(︂
a2

1 −
∑︂

k

sk

σ
(bk

1)2
)︂ 1
m3 +O

(︂ 1
m4

)︂
, (3.79)

where sk ≡ bl
1bl

2
a1a2

and σ ≡ ∑︁
k sk. Again comparing with (3.74), we have

σ = 1 (3.80)∑︂
k

sk

(︂
(bk

1)2 + (bk
2)2
)︂

= a2
1 + a2

2 (3.81)∑︂
k

sk(bk
2)2 = 1 (3.82)

From these one reads off that necessarily bk
2 = 1 so the final boundary

state is a superposition of Cardy states bk = (bk
1, 1). One can confirm that

the superposition of the form bk = (bk
1, 1) with bk

1 = a1 + a2 + 1 − 2k for
k = 1, . . . ,min(a1, a2) is a generic solution. There exist other non-generic
solutions, but their number gets reduced by studying shifts of other boundary
state coefficients or possibly going to higher order. In summary, we have
identified the perturbative flow

a = (a1, a2) → b =
min(a1,a2)⨁︂

k=1
(a1 + a2 + 1 − 2k, 1) (3.83)

from a pure Cardy state in the UV to a superposition of Cardy states in the
IR.
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Chapter 4

Open string field theory

Open string field theory (OSFT) [74] is a theory of conformal boundary
conditions. A major impetus for the development of OSFT was to obtain
an understanding of nonperturbative phenomena in string theory, such as
tachyon condensation [75, 76]. There has been a lot of numerical progress in
this direction [77, 78, 79, 80], see also the thesis [81] for the state of the art. An
analytic solution to OSFT EOMs describing tachyon condensation was found
by Schnabl [82] by observing that the star product behaves supraadditively
in a basis of wedge states [78, 83] with local operator insertions. This
solution initiated a flurry of analytic work [84, 85, 86, 87, 88, 89, 90], see the
reviews [91, 92, 93] (we draw mostly from [91]) and the textbook [33] for a
broader exposition. In this thesis we are mostly interested in applications of
perturbative analytic methods [85, 86, 94, 95] to BCFT. For applications of
OSFT to BCFT a major milestone is the KMS correspondence [96] building
on the work of [97, 98, 99]. It enables one to search for new boundary states
using OSFT [100, 101, 81, 95, 102], sometimes this may even inspire one to
find the exact boundary state [103, 104].

4.1 Hilbert space
OSFT is formulated in the BCFT Hilbert space H = Hm ⊗ Hgh, where Hm

is a matter Hilbert space of a cm = 26 BCFT and Hgh is a ghost Hilbert space
of a BCFT corresponding to the bc-ghost system (2.8.4) of central charge
cgh = −26 in the bulk. Since one is not always interested in the cm = 26 BCFT
itself a further decomposition of Hm = Hm1 ⊗ Hm2 so that cm1 + cm2 = 26 is
often done. The boundary condition on ghosts is the trivial one

b(x) = b̄(x) (4.1)
c(x) = c̄(x), (4.2)
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for x ∈ R, so that the doubling trick can be used in exactly the same way as
for T , see (3.2). The ghost Hilbert space naturally provides a gradation to
H because b and c are anticommuting. In bosonic theories, we then have for
elements of H

Grassmann parity = ghost number mod 2,

with Grassmann parity 1 and 0 meaning anticommuting and commuting
respectively. The Grassmann parity of A being denoted as |A|. The total
product BCFT has central charge 0 as required for the vanishing of the
conformal anomaly (2.100). This means that the total stress tensor T =
Tm +T gh is a primary of weight 2. Such a product structure arises in bosonic
string theory after fixing reparametrisation invariance playing the role of a
gauge symmetry. After this gauge fixing, a residual symmetry remains and
that is BRST symmetry, which is generated by a ghost number 1 holomorphic
current

jB(z) = cTm(z)+ :bc∂c: (z) + 3
2∂

2c(z) (4.3)

with its antiholomorphic counterpart and on the real axis we again have
trivial gluing so that using the doubling trick, we may write a BRST charge

Q =
∮︂ dz

2πijB(z) (4.4)

It is a very rewarding exercise to show that Q is nilpotent, meaning Q2 = 0,
if and only if cm = 26. One may compute BRST variations of local operators
by surrounding them with the contour from (4.4)

QV (x) =
∮︂

x

dz
2πijB(z)V (x) (4.5)

By employing the appropriate OPEs, one can show that

Qb(z) = T (z) (4.6)
QT (z) = 0 (4.7)
Qc(z) = c∂c(z) (4.8)
QV (z) = c∂V (z) + h∂cV (z), (4.9)

where V is a weight h matter primary. We note that (4.6) readily implies the
very important anticommutator

{Q, bn} = Ln (4.10)
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We see that the action of Q doesn’t change the conformal dimension, but
shifts the ghost number by a +1. The BRST charge obeys the graded Leibniz
rule Q(AB) = (QA)B + (−1)|A|A(QB), so that

Q(cV )(z) = c∂cV (z) − c2∂V (z) − hc∂cV (z) = (1 − h)c∂cV (z), (4.11)
where we used c2 = 0.

The total Hilbert space H naturally comes endowed with a physical
structure so that we call a ghost number 1 state |Ψ⟩ such that Q |Ψ⟩ = 0 a
physical state. We say that this state is BRST closed. We observe that since
Q2 = 0, BRST closed states are defined only up to a BRST exact state Q |Λ⟩,
such that we have the physical equivalence

|Ψ⟩ ∼ |Ψ⟩ +Q |Λ⟩ (4.12)
This BRST exact state is trivially closed and so the space of physically distinct
nontrivially closed physical states is the cohomology of Q at ghost number 1,
that is the space

H1(Q) = {|Ψ⟩ : Q |Ψ⟩ = 0}/ ∼ (4.13)
where we mod by the physical equivalence (4.12). After using the state-
operator correspondence, an example of a physical state would be |Ψ⟩ = cV |0⟩
for V marginal since (4.11) holds. The state-operator correspondence also
justifies calling the |Ψ⟩ ∈ H as string fields since they correspond to fluctuation
fields of the conformal boundary condition (for example fluctuations fields of
a D-brane when Hm is the free boson, see (3.1) for the definition of D-branes).
To emphasize the fluctuation nature of |Ψ⟩, we often drop the ket.

To justify the nomenclature for physical fields, we Fourier expand the
string field on a Dp-brane up to level k2 (see [91, 92, 33] for details on the
following computations)

Ψ =
∫︂ dp+1k

(2π)p+1

[︄
T (k)c1 + Aµ(k)αµ

−1c1 + ϕa(k)αa
−1c1 + i√

2
β(k)c0 + . . .

]︄
|kµ⟩ ,

(4.14)
where the |kµ⟩ is a tensor product of the vertex operators Vk acting on b−1 |0, ↓⟩
with µ = 1, . . . , p, a = 1, . . . , 25 − p. Then we want to extract EOMs for the
fluctuation fields in momentum space by imposing QΨ = 0. To do so, one
expands Q in modes

Q = c0L0 − b0M + Q̂ (4.15)
with

Q̂ =
∑︂
m̸=0

c−mL
m
m − 1

2
∑︂

m,n ̸=0
m+n̸=0

(m− n) :c−mc−nbm+n: (4.16)

M =
∑︂
m̸=0

mc−mcm (4.17)
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Up to higher level contributions, one can truncate M → 2c−1c1, Q̂ → c1L
m
−1 +

c−1L
m
1 and Lm

1 → α0α1, Lm
−1 → α0α−1. The result are the position space

EOMs

(∂2 + 1)T = 0 (4.18)
∂2Aµ − ∂µβ = 0 (4.19)

∂2ϕa = 0 (4.20)
β − ∂ · A = 0, (4.21)

from which we see for example Maxwell’s equations

∂2Aµ − ∂µ

(︂
∂ · A

)︂
= 0 (4.22)

for the gauge potential A or the tachyonic massive Klein-Gordon equation
with m2 = −1 for the tachyon T and the massless Klein-Gordon equation for
the fields ϕa, which get interpreted as giving the position of the D-brane. The
tachyon T indicates an unstable direction of the perturbative D-brane Ψ = 0
with all fluctuation fields turned off (see the analogy with figure (1.2)). To see
where the theory ends up after turning on such a tachyon is the problem of
tachyon condensation in OSFT. The equivalence Ψ ∼ Ψ+QΛ gets interpreted
as gauge invariance since after expanding

Λ =
∫︂ dp+1k

(2π)p+1

[︄
iλ(k) + . . .

]︄
|kµ⟩ (4.23)

we can read off from the change of Ψ the equivalence relation of the momentum
space fluctuation fields T ∼ T,Aµ ∼ Aµ + ∂µλ, ϕa ∼ ϕa, β ∼ β + ∂2λ, which
gives the expected gauge transformation properties.

By having chosen the BCFT on which we formulate OSFT, we have lost
manifest background independence. However, we can see that Ψ contains
an infinite tower of fields, which often have nontrivial gauge transformation
properties despite being massive (for example β). This means that we
expect a massive redundance in our description, which gives us hope that
with so many DOFs, we can make them rearrange themselves to DOFs of
any other BCFT consistent with a given CFT by an appropriate dynamical
principle. It is akin to being given Einstein’s equations evaluated on g ≡ η+h,
being told that h = 0 is a solution and wanting to prove that the resulting
theory actually describes much more than linearised fluctuations around a
Minkowski background. Miraculously, such a proof for OSFT is given by the
Erler-Maccaferri solution [89, 90], which given two BCFTs with the same bulk
CFT, establishes a connection within OSFT formulated on one of them. In
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particular it implies that OSFT can go against the RG flow and find boundary
conditions of higher g-functions.

Apart from Z2 gradatation and the physical structure, the OSFT Hilbert
space carries a real structure. To show this, we first define the BPZ product

⟨V1, V2⟩ ≡ ⟨I(V1(0))V2(0)⟩UHP , (4.24)

where I(z) = −1
z

is an inversion, which moves a unit half-disc into its UHP
complement. In this sense the BPZ product corresponds to the gluing of a
unit half-disc to its complement, which gives a number. Since I2 is the identity
and I leaves the correlator invariant (it is a real Möbius transformation), one
can show that

⟨V1, V2⟩ = ⟨I
[︂
I(V1(0))V2(0)

]︂
⟩UHP

= ⟨V1(0)I(V2(0))⟩UHP

= (−1)|V1||V2|⟨V2, V1⟩ (4.25)

so that the BPZ product is graded symmetric. One can then define the BPZ
conjugate V ⋆ of an operator V by

⟨V1, V V2⟩ = (−1)|V ||V1|⟨V ⋆V1, V2⟩ (4.26)

Extending BPZ conjugation from operators to states, we have |V ⟩⋆ ≡ ⟨V ⋆|,
so that

⟨V1, V2⟩ = ⟨V ⋆
1 |V2⟩ (4.27)

We will often suppress the star and simply write ⟨V1|V2⟩ by which we from
now on mean the BPZ product and not the Hermitean product (unless stated
otherwise). One should be careful about thinking of the BPZ product or of
the Hermitean product as if they were inner products since in H negative
norm states exist (for Hgh this is obvious since the theory is not unitary).
Despite not being an inner product, the BPZ product is nondegenerate in
the sense that if ⟨V1, V2⟩ = 0 for all V2, then V1 = 0. BPZ conjugation can be
shown to have the following properties

V ⋆⋆ = V (4.28)
(a1V1 + a2V2)⋆ = a1V

⋆
1 + a2V

⋆
2 (4.29)

(V1V2)⋆ = (−1)|V1||V2|V ⋆
2 V

⋆
1 , (4.30)

with a1, a2 ∈ C so that a⋆ = a, a ∈ C. Expanding V in modes, one can easily
verify by performing an inversion that

V ⋆
n = (−1)n+hV−n, (4.31)
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which one can compare to V †
n = V−n, see (2.4). After having defined BPZ

conjugation, we can define the reality conjugation as

V ‡ = V †⋆, (4.32)

which has the properties

V ‡‡ = V (4.33)
(a1V1 + a2V2)‡ = a∗

1V
‡

1 + a∗
2V

‡
2 (4.34)

(V1V2)‡ = (−1)|V1||V2|V ‡
2 V

‡
1 , (4.35)

as can be verified from the standard Hermitean conjugation properties

V †† = V (4.36)
(a1V1 + a2V2)† = a∗

1V
†

1 + a∗
2V

†
2 (4.37)

(V1V2)† = V †
2 V

†
1 , (4.38)

together with the ones for BPZ conjugates. BPZ conjugation and Hermitean
conjugation map H into their respective dual spaces, but the reality conjuga-
tion maps H → H so that it enables us to say which elements of H we call
real.

4.2 Interactions
One can see that the physical state condition QΨ = 0 arises from an action

S0[Ψ] = −1
2⟨Ψ, QΨ⟩, (4.39)

where Ψ is at ghost number 1 (as required for the nonvanishing BPZ product),
by employing the usual variational techniques

δS0 = −1
2
[︂
⟨δΨ, QΨ⟩ + ⟨Ψ, QδΨ⟩

]︂
= −1

2
[︂
⟨δΨ, QΨ⟩ + ⟨QΨ, δΨ⟩

]︂
= −⟨δΨ, QΨ⟩, (4.40)

where by the nondegeneracy of the BPZ product, we conclude that QΨ = 0
and we also used Q⋆ = −Q since its given by a zero mode of a h = 1 field,
see (4.31) together with the gradation of the BPZ product. One also easily
sees that the action (4.39) has a gauge invariance Ψ → Ψ +QΛ.
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Now we would like to extend the action (4.39) off-shell in the sense that
we also want to describe for example relevant deformations of boundary
conditions, for which h ̸= 1. This extension also has to follow the stringent
condition of being able to consistently take string theory off-shell, see [105,
106]. Such an extension was found by Witten [74]

S[Ψ] = −1
2 Tr{ΨQΨ} − 1

3 Tr
{︂
Ψ3
}︂
, (4.41)

where we have the following consistency conditions on the trace, Ψ ∈ H and
Q, see [91],

1. Grading:

(a) gh(QV ) = gh(V ) + 1
(b) gh(V1V2) = gh(V1) + gh(V2)
(c) Tr{V } = 0 if gh(V ) ̸= 3

2. Ghost number: ghΨ = 1

3. Reality: Ψ = Ψ‡ with Tr
{︂
Ψ‡
}︂

= Tr{Ψ}∗

4. Nilpotency: Q2 = 0

5. Derivation property: Q(V1V2) = (QV1)V2 + (−1)|V1|V1(QV2)

6. Associativity: V1(V2V3) = (V1V2)V3

7. Integration by parts: Tr{QV } = 0

8. Cyclicity: Tr{V1V2} = (−1)|V1||V2| Tr{V2V1}

9. Nondegeneracy: If Tr{V1V2} = 0 for all V2, then V1 = 0

With these conditions, the EOMs

QΨ + Ψ2 = 0 (4.42)

follow by doing the same procedure as for (4.39)

δS = −⟨δΨ, QΨ⟩ − 1
3
(︂
⟨δΨ,Ψ2⟩ + ⟨Ψ, δΨΨ⟩ + ⟨Ψ2, δΨ⟩

)︂
= −⟨δΨ, QΨ⟩ − ⟨δΨ,Ψ2⟩
= −⟨δΨ, QΨ + Ψ2⟩ (4.43)
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The solutions to (4.42) represent other BCFTs with Ψ = 0 representing the
perturbative vacuum, that is the BCFT on which our OSFT is formulated.
One can show that

δΨ = QΛ + [Ψ,Λ] (4.44)
is a gauge invariance for Λ at ghost number 0. We do so at the level of EOMs

δ(QΨ + Ψ2) = Q(QΛ + [Ψ,Λ]) + Ψ(QΛ + [Ψ,Λ]) + (QΛ + [Ψ,Λ])Ψ
= Q(ΨΛ − ΛΨ) + Ψ(QΛ + ΨΛ − ΛΨ) + (QΛ + ΨΛ − ΛΨ)Ψ
= Q(ΨΛ − ΛΨ) + Ψ(QΛ + ΨΛ − ΛΨ) + (QΛ + ΨΛ − ΛΨ)Ψ
= Q(Ψ)Λ − ΨQ(Λ) −Q(Λ)Ψ − ΛQ(Ψ)

+Ψ(QΛ + ΨΛ − ΛΨ) + (QΛ + ΨΛ − ΛΨ)Ψ
= Q(Ψ)Λ − ΛQ(Ψ) + Ψ(ΨΛ − ΛΨ) + (ΨΛ − ΛΨ)Ψ
= −Ψ2Λ + ΛΨ2 + Ψ2Λ − ΨΛΨ + ΨΛΨ − ΛΨ2

= 0 (4.45)

The reality condition on Ψ is imposed so that the action is real

S∗ = −1
2 Tr

{︂
(ΨQΨ)‡

}︂
− 1

3 Tr
{︂
(Ψ3)‡

}︂
= −1

2 Tr
{︂
(QΨ)‡Ψ‡

}︂
− 1

3 Tr
{︂
(Ψ‡)3

}︂
= −1

2 Tr
{︂
Q(Ψ‡)Ψ

}︂
− 1

3 Tr
{︂
Ψ3
}︂

= S (4.46)

One immediately sees that the two-vertex should be given by the BPZ product
Tr{ΨQΨ} = ⟨Ψ, QΨ⟩ as in (4.39), but what about the three-vertex ? In
order to define the three-vertex, we need to understand what state Ψ2 is,
since Tr{Ψ3} = ⟨Ψ2,Ψ⟩. That is, we need to understand the star product
of string fields (one sometimes writes Ψ2 = Ψ ∗ Ψ). These products can be
given a not so practical functional integral definition, for which we represent
the string field as a wave functional in the Schrödinger representation (we
assume the matter sector to be a free boson) Ψ[x(σ)] in which the string field
is a function of the curve representing a string. Splitting the string into two
halves l(σ), r(σ) at the midpoint, we have Ψ[x(σ)] = Ψ[l(σ), r(σ)]. It is then
easy to define the star product

V1V2[l(σ), r(σ)] =
∫︂

Dw(σ)V1[l(σ), w(σ)]V2[w(σ), r(σ)], (4.47)

which represents the gluing of two strings along their halves. The trace is
then

Tr{V } =
∫︂

Dw(σ)V [w(σ), w(σ)], (4.48)
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so that we glue the string onto itself by folding it at the midpoint.
This definition provides the right intuition but is too formal, we need

a definition that uses the CFT data of H. To do so, recall that when we
represent a string field as an UHP BPZ in-state, we think of it as a half-disc
with an insertion of an operator at the origin. This half-disc is easily split
into left and right halves so that the midpoint is at i. Now we make a
coordinate transformation from the half-disc with the coordinate ξ to the
sliver coordinate frame with the coordinate

z = fS(ξ) = 2
π

arctan ξ (4.49)

The image is then a semi-infinite vertical strip Im z ≥ 0 and Re z ∈ [−1
2 ,

1
2 ]

with the origin getting mapped to z = 0 and the midpoint ξ = i getting
mapped to i∞. Under this transformation we have the origin insertion
mapped as V (0) → fS ◦ V (0). Since the left half gets mapped to Re z = 1

2
and the right half to Re z = −1

2 , we have that the star product V1V2 creates
a strip of width 2 with the operator insertions T1 ◦ fS ◦ V1(0) and fS ◦ V2(0),
where Ta(z) = z + a is just a translation by a. This means that we have put
the operator V2 in the origin so that the total strip spans Re z ∈ [−1

2 ,
3
2 ]. If

we want to map this star product back to the half-disc, it would no longer be
described by a half-disc with an insertion of a local operator at the origin, in
fact the star product produces a nonlocal state (we have a strip of length 1
inserted between the two insertions). To compute Tr{V1V2}, we simply realise
that the self-gluing operation that a trace is, simply calculates a cylinder
correlator (glue the ends of a vertical strip together to produce a cylinder)

Tr{V1V2} = ⟨
(︂
T1 ◦ fS ◦ V1(0)

)︂(︂
fS ◦ V2(0)

)︂
⟩C2

= ⟨
(︂
C−1

2 ◦ T1 ◦ fS ◦ V1(0)
)︂(︂
C−1

2 ◦ fS ◦ V2(0)
)︂
⟩UHP , (4.50)

where C−1
L maps a cylinder of length L to the UHP

C−1
L = L

π
tan πz

L
(4.51)

We now evaluate the composition

gL,a(ξ) = C−1
L ◦ Ta ◦ fS(ξ) = C−1

L

(︂ 2
π

arctan ξ + a
)︂

= L

π
tan

(︂ 2
L

arctan ξ + πa

L

)︂
(4.52)
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It is very simple to compute

gL,a(0) = L

π
tan aπ

L
(4.53)

dgL,a

dξ (0) = 2
π

1
cos2 aπ

L

(4.54)

so that

Tr{V1V2} =
(︄

2
π

1
cos2 π

2

)︄h1(︂ 2
π

)︂h2⟨V1
(︂ 2
π

tan π2
)︂
V2(0)⟩UHP

=
(︄

2
π

1
cos2 π

2

)︄h1(︂ 2
π

)︂h2
g0δ1,2

(︂π
2
)︂2h1 1

tan2h1 π
2

= g0δ1,2

= ⟨V1, V2⟩ (4.55)

meaning that we indeed reproduce the expected BPZ product of two primaries
(note the cavalier cancellation of infinities). Our next next task is to compute
the three-vertex

Tr{V1V2V3} = ⟨
(︂
g3,2 ◦ V1(0)

)︂(︂
g3,1 ◦ V2(0)

)︂(︂
g3,0 ◦ V3(0)

)︂
⟩UHP

=
(︄

2
π

1
cos2 2π

3

)︄h1(︄ 2
π

1
cos2 π

3

)︄h2(︂ 2
π

)︂h3⟨V1
(︂

− 3
√

3
π

)︂
V2
(︂3

√
3

π

)︂
V3(0)⟩UHP

=
(︄

8
π

)︄h1(︄ 8
π

)︄h2(︂ 2
π

)︂h3
g0C123

(︂
23

√
3

π

)︂h3−h1−h2(︂3
√

3
π

)︂h2−h1−h3(︂3
√

3
π

)︂h1−h2−h3

= g0C123K
−h1−h2−h3 , (4.56)

where K ≡ 3
√

3
4 and we have suppressed boundary condition indices and g0 is

the g-function of the perturbative vacuum. Higher vertices are constructed
analogously. The two vertices (4.55) and (4.56) lie at the heart of the cubic
OSFT with the action (4.41), since one can reduce even vertices involving
descendants to them via the so-called conservation laws, see [78, 81]. Thus
when one expands Ψ into some basis given by the Verma modules of H, one can
at least in principle evaluate for example the action S[Ψ]. We consider it a bit
of a miracle that OSFT, whose vertices use only CFT data, correctly encodes
the dynamics of conformal boundary conditions, which satisfy nontrivial
global conditions such as the Cardy conditions (3.30). On the other hand,
one would expect this to be the case by the uniqueness of consistent string
interactions.

We have defined the star product geometrically as gluing slivers together,
but what about its non-geometrical definition? To define it non-geometrically,
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we consider a BPZ-orthonormal Fock space basis ⟨Vi, Vj⟩ = δi,j, so that we
resolve the identity 1 = ∑︁

i |Vi⟩ ⟨V ⋆
i |. This simply gives us

V1V2 =
∑︂

i

|Vi⟩ ⟨Vi, V1V2⟩

=
∑︂

i

|Vi⟩ Tr{ViV1V2}, (4.57)

which uses only BCFT correlators. The equation (4.57) defines the star
product via an expansion into Fock states. It is nontrivial that this is
equivalent to the manifestly associative gluing of surfaces [107, 108] for the
free boson or a general BCFT for that matter [109].

4.3 Observables
In this section we list some of the most notable observables of OSFT.

4.3.1 The action
The OSFT action (4.41) evaluated on a classical solution Ψ∗ to the EOMs
(4.42) was conjectured [76] and later proved [82, 89] by others to encode the
informations about a shift in the g-function between the perturbative vacuum
and the BCFT described by Ψ∗. The correspondence is as follows, consider
the on-shell value of the action

S[Ψ∗] = −1
2 Tr{Ψ∗QΨ∗} − 1

3 Tr
{︂
Ψ3

∗

}︂
= −1

6 Tr{Ψ∗QΨ∗}, (4.58)

then we have
∆g = −2π2S[Ψ∗] = π3

3 ⟨Ψ∗, QΨ∗⟩ (4.59)

The value of the OSFT action appeared famously in Sen’s first conjecture
[76], which says that when one constructs an effective potential V (T ) for
the tachyonic mode introduced in (4.1) from the action, there exists a local
minimum T = T∗ such that V (0) − V (T∗) = 1

2π2 . This means that at the
endpoint of tachyon condensation, we end up in the tachyon vacuum of zero
energy, which represents the nothing an unstable D-brane decays into. Note
that this statement is independent of the underlying matter BCFT since T
lives in the Verma modules of the identity. This can be rephrased at the level
of the tachyon vacuum solution Ψtv as requiring that S[Ψtv] = g0

2π2 , where g0
is the perturbative vacuum’s g-function, giving ∆g = −g0 as required for a
cancellation. A representant of such a class of solutions was found by Schnabl
[82] thus proving Sen’s first conjecture.
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4.3.2 Linearised fluctuations around a solution
Given a solution Ψ∗, one can take it to be the new perturbative vacuum and
formulate an OSFT around it. The action of this OSFT (expressed in the old
Hilbert space) is constructed by plugging Ψ = Ψ∗ + ψ into the action (4.41)

S[Ψ∗ + ψ] = −1
2 Tr{(Ψ∗ + ψ)Q(Ψ∗ + ψ)} − 1

3 Tr
{︂
(Ψ∗ + ψ)3

}︂
= −1

2 Tr{Ψ∗QΨ∗ + ψQΨ∗ + Ψ∗Qψ + ψQψ}

−1
3 Tr

{︂
Ψ3

∗ + Ψ∗ψΨ∗ + ψΨ2
∗ + ψ2Ψ∗ + Ψ2

∗ψ + Ψ∗ψ
2 + ψΨ∗ψ + ψ3

}︂
= −1

2 Tr{Ψ∗QΨ∗ + 2ψQΨ∗ + ψQψ} − 1
3 Tr

{︂
Ψ3

∗ + 3ψΨ2
∗ + 3ψ2Ψ∗ + ψ3

}︂
= S[Ψ∗] − 1

2 Tr
{︂
ψQψ + 2ψ3Ψ∗

}︂
− 1

3 Tr
{︂
ψ3
}︂

= S[Ψ∗] − 1
2 Tr{ψQΨ∗ψ} − 1

3 Tr
{︂
ψ3
}︂

(4.60)

where we defined the shifted kinematic operator QΨ∗ ≡ Q + [Ψ∗, ·], where
the commutator is graded (an anticommutator at ghost number 1). The QΨ∗

can be understood as the BRST charge in the new background, we show the
crucial part of nilpotency

QΨ∗QΨ∗ψ = QΨ∗

(︂
Qψ + Ψ∗ψ + ψΨ∗

)︂
= Q

(︂
Qψ + Ψ∗ψ + ψΨ∗

)︂
+
(︂
Ψ∗Qψ + Ψ2

∗ψ + Ψ∗ψΨ∗
)︂

−
(︂
Q(ψ)Ψ∗ + Ψ∗ψΨ∗ + ψΨ2

∗

)︂
=

(︂
Q(Ψ∗)ψ − Ψ∗Qψ +Q(ψ)Ψ∗ − ψQΨ∗

)︂
+
(︂
Ψ∗Qψ + Ψ2

∗ψ + Ψ∗ψΨ∗
)︂

−
(︂
Q(ψ)Ψ∗ + Ψ∗ψΨ∗ + ψΨ2

∗

)︂
= Q(Ψ∗)ψ − ψQΨ∗+Ψ2

∗ψ−ψΨ2
∗

= 0, (4.61)

where in the last step we used the EOMs for Ψ∗. This means that the
spectrum of linearised fluctuations around Ψ∗ is described as the ghost
number 1 cohomology of QΨ∗ . The spectrum of such fluctuations played a
key role in Sen’s third conjecture, which says that the cohomology of QΨtv is
empty, as required for Ψtv describing the leftover nothing after D-brane decay.
Schnabl and Ellwood [84] proved this by constructing a so-called homotopy
operator A such that QΨtvA = 1, where 1 is the identity string field such that
Ψ1 = 1Ψ = Ψ. The idea is that then

ψ = 1ψ = (QΨtvA)ψ = QΨtv(Aψ) (4.62)
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for ψ QΨ-closed, from which one deduces that ψ closed implies ψ exact and
thus the cohomology is empty.

4.3.3 Scattering amplitudes
In order to obtain the propagator, we have to fix the gauge. The standard
choice is Siegel gauge b0Ψ = 0, which projects out states containing c0. The
propagator then takes the form

b0

L0
= b0

∫︂ 1

0

ds
s
sL0 , (4.63)

as can be deduced from [Q, b0] = L0, which follows from (4.6) and Schwinger
parametrising

1
L0

=
∫︂ 1

0

ds
s
sL0 (4.64)

The scattering amplitudes are then given by gluing propagators at the three-
vertex (4.56) as for example in Tr

{︂
Ψ b0

L0
Ψ2
}︂
. An alternative gauge choice

called B0-gauge or Schnabl gauge for the definition of scattering amplitudes
is given by B0Ψ = 0, where B0 ≡ fS ◦ b0 is a sliver frame analogue of Siegel
gauge. An advantage of the Schnabl gauge propagator B0

L0
with L0 ≡ fS ◦ L0

is that its action on star products is simpler. One may also study scattering
around a solution Ψ∗ by defining the shifted Hamiltonian HΨ∗ ≡ {QΨ∗ , b0},
so that the new shifted Siegel gauge propagator is b0

HΨ∗
.

Thus far, we have only studied the boundary degrees of freedom but we
know that in BCFT, bulk fields can interact with the boundary. Thus we
also consider open-closed amplitudes (in string theory, open strings end on
boundaries and closed strings make up the bulk). One such amplitude is the
closed string tadpole, which is given by Ellwood invariant [97]

Trϕ Ψ ≡ ⟨I| ϕ̃(i) |Ψ⟩ = ⟨ϕ̃(i)f ◦ Ψ(0)⟩UHP = ⟨ϕ̃(i∞)fS ◦ Ψ(0)⟩C1 (4.65)

where Ψ(0) is an insertion at the half-disc origin and ϕ̃ is a weight (1, 1)
spinless matter primary ϕ dressed with ghosts ϕ̃ = cc̄ϕ such that it is Q-
invariant. We have also made use of the identity string field |I⟩ = U †

f |0⟩,
where Uf generates the finite transformation f via

f ◦ Ψ = UfΨU †
f (4.66)

and the scaled (a matter of convention, the correlator is scale-invariant)
one-vertex f is given as (4.52)

f(ξ) ≡ πg1,0(ξ) = 2ξ
1 − ξ2 (4.67)
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The Elwood invariant is gauge invariant under (4.44) and to show this, we
need to show that Trϕ QΛ = Trϕ [Ψ,Λ] = 0, which is done a follows

Trϕ QΛ = ⟨Q[ϕ̃(i)f ◦ Ψ(0)]⟩UHP = 0, (4.68)

where we used the fact that ϕ̃ is Q-invariant and the residual BRST-invariance
of amplitudes. The second term vanishes from cyclicity of the Ellwood
invariant

Trϕ ΨΛ = Trϕ ΛΨ, (4.69)
since one can rotate the boundary fields around the bulk insertion at cylinder
infinity. Given a solution Ψ∗ to the EOMs (4.42), the Ellwood invariant is
conjectured to compute the shift of the on-shell closed string tadpole between
the BCFT described by Ψ∗ and the perturbative vacuum

⟨I| ϕ̃(i) |Ψ∗⟩ − ⟨I| ϕ̃(i) |Ψtv⟩ = 1
2πi⟨ϕ⟩∗ = − 1

4πi ⟨I| ϕ̃(i)c−
0 ||BΨ∗⟩⟩ , (4.70)

where we used that
⟨0| c−1c̄−1c

−
0 ||Bgh⟩⟩ = −2 (4.71)

for c−
0 ≡ c0 − c̄0, see appendix C of [96], and ||BΨ∗⟩⟩ is the boundary state

described by Ψ∗ and ||Bgh⟩⟩ its trivial universal ghost part. We also used
that the disc one-point function vanishes at the tachyon vacuum (no bound-
ary to interact with) 1

2πi
⟨ϕ⟩tv = 0, hence the term with Ψtv cancelling the

perturbative vacuum contribution.

4.3.4 The boundary state
Remembering that the disc one-point functions calculate boundary state
coefficients, one can see from (4.70) that the Ellwood invariant probes the
on-shell part of the Boundary state ||BΨ∗⟩⟩ described by the solution Ψ∗. Can
one generalise it to the off-shell part as well ? Such a generalisation was
provided by KMS [96], who generically found an auxiliary BCFT with central
charge 0, which supports fields w with ⟨w⟩∗ = 1 that can make an insertion
cc̄ϕ with ϕ of weight (h, h) physical. That is, the tensor product cc̄ϕw is
physical. If one has the splitting Hm = Hm1 ⊗ Hm2 and studies the dynamics
of Hm1 , one simply tensors Hm2 with the auxiliary CFT and doesn’t see a
difference in the theory restricted to Hm1 . Using the fact that w has a unit
one-point function, we can write

Bϕ
Ψ∗ = ⟨I|ϕ(i) ||BΨ∗⟩⟩ = ⟨I|ϕw(i) ||BΨ∗⟩⟩ (4.72)

= −1
2 ⟨0| c−1c̄−1c

−
0 ||Bgh⟩⟩ ⟨I|ϕw(i) ||BΨ∗⟩⟩ = −1

2 ⟨I| ϕ̃w(i)c−
0 ||BΨ∗⟩⟩
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and using (4.70), which is valid since we have a physical insertion, we find

Bϕ
Ψ∗ = 2πi ⟨I| ϕ̃w(i) |Ψ∗ − Ψtv⟩ = 2πi ⟨I| ϕ̃(i) |Ψ∗ − Ψtv⟩ (4.73)

Thus given a solution Ψ∗, we can probe it with bulk operators to get the full
off-shell boundary state (of the BCFT one is restricted to). In (4.73) Ψtv can
be any representant of the tachyon vacuum class of solutions and we note that
when we don’t write it, the perturbative vacuum factor doesn’t get cancelled
and we are computing the shift in the boundary state

∆Bϕ
Ψ∗ = 2πi ⟨I| ϕ̃(i) |Ψ∗⟩ (4.74)

4.4 Wedge states with insertions
A very useful family of states in the universal sector are the wedge states [83].
These wedge states are naturally represented in the sliver coordinate frame
as strips with no operator insertions. The simplest wedge state Ω is just the
scaled vacuum

Ω = |0⟩ , (4.75)

whose strip representation has width 1. We can also conceive of strips with
different lengths and thus we form an entire family of wedge states Ωα with
α ≥ 0, whose the star product is abelian

ΩαΩβ = Ωα+β = ΩβΩα (4.76)

with the zero-width wedge state being that star algebra identity Ω0 = 1. Since
the trace can be interpreted as computing cylinder correlators, we naturally
have

Tr{V Ωα} = ⟨fS ◦ V (0)⟩Cα+1 = ⟨C−1
α+1 ◦ fS ◦ V (0)⟩UHP = ⟨gα+1,0 ◦ V (0)⟩UHP

(4.77)
from which we can read off Ωα = U †

gα+1,0 |0⟩, where

gα+1,0(ξ) = α + 1
π

tan
(︂ 2
α + 1 arctan ξ

)︂
(4.78)

so that indeed Ω1 = Ω since g2,0(ξ) = 2
π
ξ as is consistent with (4.75) since the

vacuum is Sl(2,R) invariant. One can also represent wedge states on the unit
disc and finds that they correspond to wedges of angle 2π

α+1 , hence justifying
their name. One may anticipate the existence of a wedge state generator
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since they are exponential in nature and such a generator should be seen by
taking derivatives of wedge states so that

d
dαΩα ≡ −KΩα (4.79)

By studying the α dependence of (4.77), one can show [110, 91] that

K =
∫︂ i∞

−i∞

dx
2πiT (x), (4.80)

where the total stress-energy tensor T is vertically integrated over the imagi-
nary direction. We need not specify the real part of the contour since K is
topological because the integrand vanishes at strip infinity. Since Ω0 = 1, we
can integrate (4.79) to obtain

Ωα = e−αK (4.81)

Since the string fields we are most interested in are at ghost number 1,
we need to generalise the ghost number 0 wedge states to the so-called wedge
states with insertions. In their most basic form they are defined by inserting
an operator transformed to sliver frame to the middle of the real boundary
of a unit strip as in

√
ΩV

√
Ω. One may of course generalise this to shift the

operator insertion away from the middle Ωα1V Ωα2 with α1 +α2 = 1. Relaxing
the unit strip constraint, one may visualise the operator insertion itself as a
wedge state with insertion V = Ω0V Ω0. Taking star products of such general
states, we have

Ωα1V1 . . .ΩαiVi . . .ΩαnVnΩαn+1 (4.82)
From the point of view of the ansatz

√
ΩV

√
Ω, the product (4.82) may contain

a nonlocal state. We may ask how such a nonlocal state looks like on the
UHP and as a simplest example we take, see [91]

Ωα =
√

ΩΩα−1
√

Ω =
√

Ωe−(α−1)K
√

Ω (4.83)

so that by transforming K we can transform the entire nonlocal state Ωα−1

with the result

Ωα(0) =
∞∑︂

n=0

1
n!

(︄
− π

2

∫︂ i

−i

dξ
2πi(1 + ξ2)T (ξ)

)︄n

, (4.84)

where we expressed K on the UHP (see next section detailing the transfor-
mation of operators)

K = π

2

∫︂ i

−i

dξ
2πi(1 + ξ2)T (ξ) (4.85)

As expected, (4.84) contains an infinite number of Virasoro insertions that
distort the geometry of the unit disc.
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4.5 Operators in sliver frame
Operators which look simple when inserted in one frame are often complicated
in another. To show this, we consider the sliver frame primary Ṽ of weight h,
such that

Ṽ (z) =
∞∑︂

n=−∞

Ṽ n

zn+h
, (4.86)

with z the sliver frame coordinate. From this, we have

Ṽ n = f−1
S ◦

∮︂ dz
2πiṼ (z)zn+h−1

=
∮︂ dξ

2πi
2
π

1
1 + ξ2

(︂π
2 (1 + ξ2)

)︂h
V (ξ)

(︂ 2
π

arctan ξ
)︂n+h−1

=
∮︂ dξ

2πi
(︂
1 + ξ2

)︂h−1
V (ξ)

(︂ 2
π

)︂n(︂
arctan ξ

)︂n+h−1
(4.87)

where we used dz = 2
π

dξ
1+ξ2 and f−1

S (z) = tan
(︂

π
2 z
)︂

with the transformation
properties of a primary. A concrete example would be

c̃−1 =
∮︂ dξ

2πi
(︂
1 + ξ2

)︂−2
c(ξ)

(︂ 2
π

)︂−1(︂
arctan ξ

)︂−3

=
∮︂ dξ

2πic(ξ)
(︂ 2
π

)︂−1
(ξ−3 − ξ−1 + . . .) = π

2 (c−1 − c1) + . . . (4.88)

so that c̃−1 |0⟩ = π
2 (c−1 +c1) |0⟩. To give an example where the correspondence

between different coordinates is simple, consider a near marginal operator
with y = 1 − h small so we can write

Ṽ 0 =
∮︂ dξ

2πiV (ξ) +O(y) = V0 +O(y) (4.89)

meaning that to leading order we see no transformation of the zero-mode.
From the nontrivial transformation (4.87), we deduce that if a Hilbert space
basis is BPZ-orthonormal on the UHP, it ceases to be so after its transport
(put a tilde on everything) to the sliver. For us this will have the important
consequence that we’ll have to deal with oblique projectors when working in
sliver frame instead of the usual orthogonal projectors familiar from QM.

We have seen that sliver frame operators act non-transparently on the
UHP, but we would expect them to act simply in sliver frame. To investigate
this further, consider (see [91] for details on derivations)

L0 =
∫︂ dz

2πizT (z) = L0 + 2
3L2 − 2

15L4 + . . . , (4.90)
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which has the BPZ conjugate

L⋆
0 = L0 + 2

3L2 − 2
15L4 + . . . , (4.91)

with which we form the BPZ even and odd combinations

L+ = L0 + L⋆
0 (4.92)

L− = L0 − L⋆
0 (4.93)

The BPZ even part is expressible by K

L+V = KV + V K (4.94)

What is more interesting is the scaled BPZ odd part

1
2L− =

∫︂ i∞

−i∞

dz
2πizT (z + l) −

∫︂ i∞

−i∞

dz
2πizT (z + r), (4.95)

which expresses 1
2L− acting on a strip, whose left edge intersects the real axis

at l and right edge at r. From this geometrical intuition, one has by inserting
an intermediate pair of contours in between V1, V2 that L− is a derivation of
the star algebra

L−(V1V2) = (L−V1)V2 + V1(L−V2) (4.96)
The 1

2L− acts as a generator of scale transformations on the cylinder. By
deforming the two opposite vertical contours from (4.95) to a circle, we easily
see that

1
2L−V = hV (4.97)

on a weight h primary V by the OPE (2.72). One can further show that
1
2L−K = K by the TT OPE (2.88), implying that K has scaling dimension 1
as one would expect since its an integral of a dimension 2 field. Since 1

2L− is
a derivation of the star algebra, we know how it acts on wedge states

1
2L−Ωα = 1

2L−e−αK = −αKΩα, (4.98)

which is integrated to
λ

1
2 L−Ωα = Ωλα (4.99)

Since we also know how it acts on local operator insertions, we know how its
action on wedge states with insertions

λ
1
2 L−Ωα1V1 . . .ΩαiVi . . .ΩnVnΩn+1 = (4.100)

λ
∑︁n

k=1 hkΩλα1V1 . . .ΩλαiVi . . .ΩλαnVnΩλαn+1 (4.101)
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From (4.92), (4.93) and (4.94), we have

L0V = 1
2L−V + 1

2(KV + V K), (4.102)

which lets us express L0 on a wedge with insertions

L0(
√

ΩV
√

Ω) =
(︂1

2L−
√

Ω)V
√

Ω +
√

Ω
(︂1

2L−
)︂
V

√
Ω +

√
ΩV

(︂1
2L−

√
Ω
)︂

+1
2KV

√
ΩV

√
Ω + 1

2V K
√

ΩV
√

Ω

=
√

Ω
(︂1

2L−V
)︂√

Ω, (4.103)

where in the last line we used (4.98). The relation (4.103) is very useful since
it reduces determining the action of L0 to pure scaling analysis

L0
√

ΩcV
√

Ω = (h− 1)
√

ΩcV
√

Ω, (4.104)

with V a primary of weight h.
Analogously to L0, one can study the sliver frame analogue of the b-ghost

zero mode b0

B0 =
∮︂ dz

2πizb(z) = b0 + 2
3b2 − 2

15b4 + . . . (4.105)

since both b and T are of weight 2. The only difference is in the occasional
fermionic sign and the different OPEs. To summarise, one has

B0V = 1
2B−V + 1

2(BV + (−1)|V |V B) (4.106)

B0
√

ΩV
√

Ω =
√

Ω1
2B−V

√
Ω (4.107)

1
2B−K = B (4.108)
1
2B−B = 0 (4.109)
1
2B−c = 0 (4.110)

with B being an analogue to K.

4.6 KBc subalgebra
From the real string fields K,B and c introduced earlier one can form a
universal closed subalgebra of the star product algebra. Why one should have

113



a K of ghost number 0 is obvious since it generates wedge states, which are
needed to give the solution a nonzero width as required for cylinder correlators
to make sense. The c is introduced since it is the universal tachyon, see (4.14),
and makes creation of ghost number 1 string fields possible. In the EOMs
(4.42), we have an action of Q, which would be problematic after imposing
Siegel gauge b0Ψ = 0 because {Q, b0} = L0 and the star products of L0 are
not transparent. One is thus lead to consider Schnabl gauge B0Ψ = 0, from
which we have the nicely controlled {Q,B0} = L0. Because of this we add the
field B, which has ghost number -1 meaning that we can now have multiple
insertions of c. We note that sometimes one adds other operators to the KBc
algebra since by itself it only describes universal physics.

We have the commutation relations

[K,B] = 0 (4.111)
{B, c} = 1 (4.112)

with the trivial B2 = c2 = 0 from anticommutation. From (4.6)-(4.8), we
have

QK = 0 (4.113)
QB = K (4.114)
Qc = cKc = c∂c, (4.115)

where the last line follows from ∂c = [K, c] as one trivially sees from the OPE
(2.72). One can now play around with finding solutions to (4.42), for example
Ψ = −cK is a solution

Q(−cK) + (−cK)2 = −cKcK + cKcK = 0

or Ψ = c(1 −K) is

Q
(︂
c(1 −K)

)︂
+
(︂
c(1 −K)

)︂2
= cKc(1 −K) + c(1 −K)c(1 −K)
= cKc− cKcK − cKc+ cKcK = 0

with the second solution actually being a tachyon vacuum (it is too singular
to verify Sen’s first conjecture, however since it doesn’t contain a surface).
This is so because a homotopy operator A = B exists

QΨB = QB + {c(1 −K), B} = K + c(1 −K)B +Bc(1 −K)
= K + cB +Bc− cKB −BcK = 1 +K − cKB −BcK

= 1 +K − cBK −BcK = 1 +K −K = 1

In order to get the much needed practice, we will consider more solutions in
(4.7). For those, various correlators, often involving the elements of the KBc
algebra, are needed, see the appendix (A).
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4.7 Examples of analytic solutions
In this section we study two analytic solutions, first we analyse the tachyon
vacuum for its general importance (notice that for example (4.3.4) uses its
universal properties) and the fact that it corresponds to a (nonperturbative)
relevant deformation. We also study exactly marginal deformations, which
serve as the simplest example of perturbative solutions, which we’ll generalise
in the next chapter.

4.7.1 Tachyon vacuum
We shall study the simple tachyon vacuum [87] obtained by performing a
(singular) finite gauge transformation (see (4.44)) of the perturbative vacuum
[110]

Ψ = UQU−1 (4.116)

with U = 1 − FBcF with F = F (K) an appropriate function [93] of K. One
can invert U with a geometric series

U−1 = 1 +
∞∑︂

n=1
(FBcF )n−1FBcF

= 1 +
∞∑︂

n=1
(F 2)n−1FBcF

= 1 + 1
1 − F 2FBcF (4.117)

so that

QU−1 = 1
1 − F 2 (FKcF − FBcKcF ) = 1

1 − F 2FcBKcF, (4.118)

which gives the solution

Ψ = (1 − F 2 + FcBF ) 1
1 − F 2FcBKcF = FcBKcF + FcB

F 2

1 − F 2KcF

= FcB
(︂
1 + F 2

1 − F 2

)︂
KcF = FcB

1
1 − F 2KcF, (4.119)

which is the Okawa ansatz [110]. One may rewrite this by F →
√
F to have

a form which looks more like a wedge with an insertion

Ψ =
√
FcB

1
1 − F

Kc
√
F (4.120)
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This solution is in dressed Schnabl gauge

B√
F ,

√
F Ψ =

√
F

1
2B−

(︂ 1√
F

Ψ 1√
F

)︂√
F = 0 (4.121)

as can be trivially verified since when 1
2B− hits a K it annihilates with a

B, see (4.108)-(4.110). For F =
√

Ω one has the usual Schnabl gauge and
the solution reduces to Schnabl’s solution [82]. In order for Ψ not to be in
the gauge orbit of the perturbative vacuum, the gauge transformation must
be singular. Looking at K

1−F
one realises that this is the case if and only if

F (0) = 1 and we want F ′(0) ̸= 0 to avoid a pole [111] (observe that this is
the case for Schnabl’s solution).

We will now show that under these conditions Ψ has empty cohomology.
We do so by proving that A = B 1−F

K
is a homotopy operator

QΨA = QA+ {Ψ, A}

= K
1 − F

K
+

√
FcB

1
1 − F

Kc
√
FB

1 − F

K
+B

1 − F

K

√
FcB

1
1 − F

Kc
√
F

= 1 − F +
√
FcB

√
F +

√
FBc

√
F = 1 − F + F = 1 (4.122)

When 1−F
K

= F , one obtains the simple tachyon vacuum with F = 1
1+K

Ψs = 1√
1 +K

c(1 +K)Bc 1√
1 +K

(4.123)

For the next calculations a different form of the solution is useful

Ψs = 1√
1 +K

c
1√

1 +K
+Q

(︄
1√

1 +K
Bc

1√
1 +K

)︄
, (4.124)

since Q-exact terms don’t contribute to neither the Ellwood invariant or the
action which we’re about to calculate. We start with the Ellwood invariant,
see (4.3.3), and by cyclicity and Schwinger parametrisation we have

Trϕ c
1

1 +K
=

∫︂ ∞

0
dαe−α Trϕ cΩα =

∫︂ ∞

0
dαe−α⟨ϕ̃(i∞)c(0)⟩Cα

=
∫︂ ∞

0
dαe−αα⟨ϕ̃(i∞)c(0)⟩C1 = ⟨ϕ̃(i∞)c(0)⟩C1

= 1
2πi⟨cc̄ϕ(0)c(1)⟩disc = − 1

2πi⟨ϕ⟩0, (4.125)

where we have also mapped the cylinder to the unit disc via f(z) = e2πiz. By
the Ellwood conjecture, this computes the shift in the closed string tadpole but
since there is no nonzero term besides the perturbative vacuum contribution
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in (4.125), we conclude that Ψ describes a background where the boundary
has disappeared.

Now we prove Sen’s first conjecture, see (4.3.1), by inserting (4.124) to
the on-shell value of the action (4.58), which gives

S[Ψs] = −1
6 Tr

{︄
1√

1 +K
c

1√
1 +K

1√
1 +K

cKc
1√

1 +K

}︄

= −1
6 Tr

{︃ 1
1 +K

c
1

1 +K
cKc

}︃
= −1

6

∫︂ ∞

0
dα

∫︂ ∞

0
dβe−α−β Tr

{︂
ΩαcΩβcKc

}︂
, (4.126)

we continue by calculating the trace

Tr
{︂
ΩαcΩβcKc

}︂
= − lim

γ→0

d
dγ Tr

{︂
ΩαcΩβcΩγc

}︂
= − lim

γ→0

d
dγ ⟨c(β + γ)c(γ)c(0)⟩Cα+β+γ

= −g0
(α + β)2 sin2

(︂
πβ

α+β

)︂
π2 (4.127)

where we used the correlator (A.16) and didn’t forget that we also have a
matter part to our CFT, which gives a g0. Thus the action is reduced to the
integral

S[Ψs] = g0

6

∫︂ ∞

0
dα

∫︂ ∞

0
dβ e−α−β

(α + β)2 sin2
(︂

πβ
α+β

)︂
π2 , (4.128)

which gives by elementary analysis

S[Ψs] = g0

2π2 (4.129)

as required by Sen’s first conjecture.

4.7.2 Exactly marginal deformations
Perturbative methods of solving (4.42) originate from the observation that
we are dealing with a quadratic equation in infinitely many variables and we
know how to solve quadratic equations perturbatively. Suppose we are given
the quadratic equation

qx+ x2 = qx0 (4.130)
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This is formally solved by x = −q−1x2 and the ansatz x = x0 + . . . with the
source term on the RHS of (4.130) needed for the equation to be satisfied to
O(x0). To second order one has

x = x0 − q−1x2
0 + . . . , (4.131)

where the correction is present to account for the nonlinearity of (4.130). We
recursively go to higher orders

x = x0 − q−1x2
0 − q−1

(︂
x0(−q−1x2

0) + (−q−1x2
0)x0

)︂
− q−1(−q−1x2

0)2

−q−1
(︄
x0(−q−1)

(︂
x0(−q−1x2

0) + (−q−1x2
0)x0

)︂
+(−q−1)

(︂
x0(−q−1x2

0) + (−q−1x2
0)x0

)︂
x0

)︄
+ . . . (4.132)

One notices that the number of terms at each order is given by the Catalan
numbers Cn: C1 = 1, C2 = 1, C3 = 2, C4 = 1 + 4 = 5. These have the
asymptotics

Cn ∼ 4n

n
3
2
√
π
, (4.133)

so that the number of contributions grows exponentially. Since numbers
commute, (4.132) simplifies to

x = x0 −q−1x2
0 +2q−2x3

0 −5q−3x4
0 + . . . = x0(1−q−1x0 +2q−2x2

0 −5q−3x3
0 + . . .)
(4.134)

From this we see that this series converges for 4x0
q

≤ 1, meaning that we either
have to have an almost linear equation with q large or we have to guess the
solution close to 0, which is a solution even if the quadratic part in (4.130) is
relevant. This result makes sense when one considers the exact solutions

x± = −q

2
(︂
1 ±

√︄
1 + 4x0

q

)︂
(4.135)

and a Taylor expansion of x− gives (4.134).
We have a similar situation for exactly marginal deformations [85, 86], that

is we make the sliver frame ansatz Ψ = λ
√

ΩcV
√

Ω+ . . . with Q(
√

ΩcV
√

Ω) =
0 and the V V OPE regular. Since Q(

√
ΩcV

√
Ω) = 0, we don’t need to add a

source term as in (4.130), which is exactly what we need since (4.42) has no
source term. For relevant deformations we’ll get rid of the source term by
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properly tuning the SFT coupling λ. To third order, we have

Ψ = λ
√

ΩcV
√

Ω − λ2Q−1(
√

ΩcV
√

Ω)2 −
λ3Q−1

{︂
−Q−1(

√
ΩcV

√
Ω)2,

√
ΩcV

√
Ω
}︂

+ . . .

≡ Ψ1 + Ψ2 + Ψ3 + . . .

= Ψ1 −Q−1Ψ2
1 −Q−1{Ψ2,Ψ1} + . . . (4.136)

We’ll write Q−1 = B0
L0

since for a Ψ in Schnabl gauge, we then have

Q−1QΨ = B0

L0
QΨ = 1

L0
B0QΨ = 1

L0
L0Ψ = Ψ, (4.137)

where we used {Q,B0} = L0. We were a little bit formal with the division
by L0 but in our case Q−1 acts only on states which are included in the V V
OPE and since it’s regular, there are no states of levels less than or equal
to 0 so the division is well defined (the less than zero levels are problematic
for Schwinger parametrisation). Since Q−1 encounters no subtleties, the full
EOMs (4.42) are satisfied and not just their projection to a gauge subspace,
as will be clear in the next chapter.

Now we evaluate the second order contribution Ψ2 to (4.136)

Ψ2 = −λ2Q−1(
√

ΩcV
√

Ω)2 = −λ2 B0

L0

√
ΩcV ΩcV

√
Ω

= −λ2
∫︂ 1

0

ds
s
sL0

(︂
−

√
ΩcBV ΩcV

√
Ω
)︂

= λ2
∫︂ 1

0

ds
s
s
√

ΩcBV ΩscV
√

Ω

= λ2
√

ΩcBV 1 − Ω
K

cV
√

Ω, (4.138)

where we Schwinger parametrised the inverse of L0

1
L0

=
∫︂ 1

0

ds
s
sL0 , (4.139)

and used the integral ∫︂ 1

0
ds e−sK = 1 − e−sK

K
(4.140)

In the computation of Ψ2 we’ve seen that the width of an intermediate wedge
state Ωs ranged from 0 to 1. If we have operator collisions between the two
V s, this causes problems and one needs to regularise. When we have only
two operator collisions, this is rather simple because we can introduce an
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analogue of normal ordering. At higher orders, where collisions of more than
two V s occur, one needs a generalisation of normal ordering to a situation
where multiple operators collide at the same time. We shall develop this
generalisation in the next chapter. The regularisation method will be based
on expanding operator products in the collision limit, from which we identify
states which contribute to singularities and subtract them.

At third order, we have (notice the anticommutation pattern in the
expansion (4.136))

Ψ3 = −Q−1{Ψ2,Ψ1} = −λ3 B0

L0

{︃∫︂ 1

0
ds

√
ΩcBV ΩscV

√
Ω,

√
ΩcV

√
Ω
}︃

= −λ3
∫︂ 1

0
ds 1

L0

√
ΩcBV

(︂
ΩsV Ω + ΩV Ωs

)︂
cV

√
Ω

= −λ3
∫︂ 1

0
ds
∫︂ 1

0

dt
t
t2

√
ΩcBV

(︂
ΩstV Ωt + ΩtV Ωst

)︂
cV

√
Ω

= −λ3
∫︂ 1

0
ds
∫︂ 1

0
dt t

√
ΩcBV

(︂
ΩstV Ωt + ΩtV Ωst

)︂
cV

√
Ω

= −λ3

2!

∫︂ 1

0
du
∫︂ 1

0
dv

√
ΩcBV

(︂
ΩuV Ωv + ΩvV Ωu

)︂
cV

√
Ω

= −λ3
√

ΩcBV
(︂1 − Ω

K
V
)︂2
c
√

Ω, (4.141)

where we substituted u = st, v = t and used the u → v, v → u symmetry
of the integrand to produce a 1

2! instead of an integration over a triangle as
would be usual in path ordering. This symmetry is present only for marginal
deformations, the integrals can’t be done explicitly for relevant deformations
as we’ll see in the next chapter. At higher orders one finds a pattern (we
checked this to fifth order)

Ψn+1 = (−λ)n+1
√

ΩcV B
(︂1 − Ω

K
V
)︂n
c
√

Ω, (4.142)

for n ≥ 1, which sums up to

Ψ = λ
√

ΩcV B

1 + 1−Ω
K
λV

c
√

Ω (4.143)

via a geometric series. We find it very interesting that all Cn terms combine
to a single term at each order, something we haven’t been able to do for
relevant deformations (postponing regularisation to the very end) by the lack
of symmetry of the integrals.
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We can now try to evaluate the shift in the boundary state, which is to
first order, see (4.74)

∆Bϕ
Ψ1 = 2πi⟨ϕ̃(i∞)Ψ1⟩C1 = 2πiλ⟨ϕ̃(i∞)ΩcV ⟩C1

= 2πiλ⟨ϕ̃(i∞)
(︂ ∫︂ 1

0
dtΩ1−tcV Ωt

)︂
⟩C1

= 2πiλ⟨ϕ̃(i∞)
(︂ ∫︂ 1

0
dtΩ1−tcV Ωt

)︂
{B, c}⟩C1

= 2πiλ⟨ϕ̃(i∞)
(︂ ∫︂ 1

0
dtΩ1−tV Ωtc

)︂
⟩C1

= 2πiλ⟨ϕ̃(i∞)
(︂ ∫︂ 1

0
dt V (t)

)︂
c(0)⟩C1

= 2πiλ 1
2πi⟨cc̄ϕ(0)

(︂ ∫︂ 2π

0
dθ V (θ)

)︂
c(1)⟩disc

= −λ⟨ϕ(0)
(︂ ∫︂ 2π

0
dθ V (θ)

)︂
⟩disc (4.144)

where we mapped the cylinder to the unit disc via f(z) = e2πiz and used
cyclicity of the Ellwood invariant. This is exactly the leading order result one
would expect from conformal perturbation theory (see (3.5)), where

∆Bϕ
Ψ = ⟨ϕ(0)

[︂
e−λ

∫︁ 2π

0 dθ V (θ) − 1
]︂
⟩disc (4.145)

and indeed this is the result one obtains to all orders [112]. We see that the
SFT coupling λ which is a sort of normalisation of the string field is here equal
to all orders in perturbation theory to the CFT coupling (unambiguously
defined since for exactly marginal deformations one doesn’t need to regularise).
Notice also the naturally emerging convention in SFT (which we adopted in
CPT) that one deforms the action by λ

∫︁ 2π
0 dθ V and not −λ

∫︁ 2π
0 dθ V as is

more usual in CFT.
An interesting example of exactly marginal deformations is the lightlike

deformation of Schnabl and Hellerman [113] with V (x) = eX+(x) and the
OPE eX+(x)eX+(0) = e2X+(0) + . . .. The field is made marginal by turning
on a nontrivial linear dilaton background. This solution describes lightlike
propagation of an instability, which decays the unstable D-brane and leaves
behind the tachyon vacuum, which is similar in spirit to the computations of
(1.6) and (B.3).
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Chapter 5

Relevant deformations in open
string field theory

In this chapter we explore perturbative solutions of OSFT corresponding to
relevant deformations. The material is divided into five sections

1. The general framework for perturbative solutions is summarised. We
work in Siegel gauge for simplicity but the procedure can be generalised
to other gauges. That the out-of-gauge equations of motion are satisfied
is proved using a fixed-point argument due to Schnabl [1]. This section
simply provides a slightly different perspective on [94].

2. We explore relevant deformations to leading order where no gauge fixing
is required. In the near-marginal limit, we reproduce the result of
Affleck and Ludwig (3.61) by using the correspondence between the
OSFT action and ∆g. We also validate our result (3.71) for ∆Bϕ

a by
invoking the KMS correspondence. These results, which hold for a
perturbation by a single operator are then easily generalised to the
case of multiple perturbing operators. After this, we investigate the
spectrum of linearised fluctuations around the perturbative solution.
We show that the perturbing operator is removed from the cohomology
after flowing to the IR.

3. After fixing Siegel gauge, we use the Berkovits-Schnabl trick [114] to
derive a completely new result in CPT, which is the next-to-leading
correction to ∆g for a generic weakly relevant perturbation by a single op-
erator. The result is expressed by a regularised off-shell zero-momentum
four-point amplitude of open string tachyons in the on-shell limit and
we discuss how the entire moduli space is covered. We note that a dras-
tic cancellation between the auxiliary OSFT factors such as K = 3

√
3

4

123



occurs, hinting at possible simple all-order prescriptions. The result
was tested on a theory of a nontrivial c = 2 free boson and we got a
high precision match with [104].

4. In Schnabl gauge, we derive a closed form for the up to third order
perturbative solution corresponding to relevant deformations. We en-
counter a technical obstacle in that projectors in sliver frame are not
orthogonal but oblique, which leads us to developing a method of level
expanding star products of an arbitrary number of singular operator
insertions. By using the KMS correspondence, we check the result by
reproducing (3.61). Together with the result of section (5.3), it appears
that OSFT provides a consistent framework for doing CPT calculations
to all orders.

5. This is the most experimental of the five sections. We discuss what
a solution analogous to (5.4) in pseudo-Schnabl gauge [86, 115] might
look like. Our guess gives the correct leading order result (3.61), but
violates the equations of motion in the sense that we don’t know how
the coupling is to be tuned for source terms to disappear. We think
this match is because of gauge invariance and cyclicity of the Ellwood
invariant through which we compute ∆g.

The work is based on collaboration with Martin Schnabl and the first three
sections are available in preprint [1] (with the exception of (5.2.4)).

5.1 The general framework
We have seen in the solution (4.134) of the quadratic equation (4.130) that
the perturbative solution is dominated by a single contribution x0 receiving
higher order corrections. To do something similar in solving (4.42), we split
the string field

Ψ = R +X, (5.1)

where R = ∑︁
i λicVi |0⟩ is the leading order contribution corresponding to a

boundary deformation by ∑︁i λi

∮︁
Vi with the X being higher order corrections.

To solve (4.130), we fix Siegel gauge b0Ψ = 0 and by acting with b0 on (4.130)
and using {Q, b0} = L0, one has

L0Ψ + b0Ψ2 = 0 (5.2)
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If we introduce a projector P such that PΨ = R and a projector P̄ = 1 − P
such that P̄Ψ = X, we can split the EOMs into two sets

R + b0

L0
P (R +X)2 = 0 (5.3)

X + b0

L0
P̄ (R +X)2 = 0, (5.4)

where we also required that the projectors commute with Q. The equations
(5.4) can be solved perturbatively

X = ∆R2 + ∆
{︂
∆R2, R

}︂
+ . . . , (5.5)

where the propagator is

∆ = − b0

L0
P̄ (5.6)

In Feynman-diagrammatic language (5.5) is given by a sum over binary
diagrams with vertices meaning star multiplication, internal lines an action of
∆ and external lines an R. At a given order n, the number of such diagrams
is Cn so their number grows exponentially as 4n. This implies that R must
be small enough in some sense with an action of ∆ not producing divergences.
Since we Schwinger parametrise the action of 1

L0
, such divergences come from

states of h ≤ 1 and these are projected out by P̄ (if there are operators of
h ≤ 1 in the ViVj OPEs not contained in R, they need to be included in there
since they are turned on by the other perturbing operators). Actually weakly
irrelevant operators have to projected out as well despite strictly speaking
not producing divergences in 1

L0
since they have h > 1. This is so because

in the near-marginal limit their contributions appear as poles, same as with
weakly relevant operators.

In the following, we consider relevant deformations, which don’t turn on
marginal or weakly irrelevant terms so we don’t need to worry about the case
h ≥ 1. In this case, for the validity of the perturbative approach, we must
have for all SFT couplings λi = O(y) with y being the RG eigenvalue of the
least relevant field since schematically 1

L0
→ 1

hi−1 ∼ 1
yi

. Once we have the
solution X to (5.4), we can plug it into (5.3) to obtain a set of polynomial
equations for the couplings λi. To leading order these polynomial equations
are actually independent of X and so independent of the gauge since X is
second order. This can be seen by realising that (5.3) is equivalent to

QR + P (R +X)2 = QR + PR2 +O(R3) = 0 (5.7)
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This equivalence follows from acting with Q on (5.3)

QR +Q
(︂ b0

L0
P (R +X)2

)︂
= 0 = QR + P (R +X)2 + b0

L0
Q
(︂
P (R +X)2

)︂
= QR + P (R +X)2 (5.8)

and seeing that P when acting at ghost number 2 projects to Q-exact states
c∂cVi |0⟩. One may ask whether the full EOMs (4.42) are satisfied and not
only their projection to Siegel gauge. The equivalence of (5.3) and (5.7) means
that this statement needs to be verified for the P̄ projected equations (5.4).
One then finds after using the splitting (5.1)

QΨ + Ψ2 = b0

L0
P̄Q(Ψ2) = b0

L0
P̄ [QΨ,Ψ]

= b0

L0
P̄

[︄
b0

L0
P̄Q(Ψ2),Ψ

]︄
= . . . , (5.9)

where we used that QΨ + Ψ2 = b0
L0
P̄Q(Ψ2) and [Ψ2,Ψ] = 0. Assuming that

Ψ is parametrically small, this turns into a fixed-point argument showing
that the full EOMs are satisfied. The fixed-point argument works only if the
repeated action of ∆ on exact states at ghost number 3 is not divergent. This
is indeed the case since the problematic weight 0 ghost number 3 state c∂c∂2c
is not exact. The states c∂c∂2cV are irrelevant so they pose no problem if
they are not continuously connected to the identity (we should have a gap
between the h = 0 identity and the next most relevant operator).

In the following, we write Ψ = Ψ1 + Ψ2 + . . ., where Ψn = O(yn) with y
being the RG eigenvalue of the least relevant operator (this will become clear
after we prove λi = O(y) in (5.2.1)). In this notation one has R = Ψ1 and
X = Ψ2 + . . ..

5.2 No gauge fixing
In this section we first analyse the perturbation with R = Ψ1 = λcV |0⟩
inserted to the unit half-disc of weight h with RG eigenvalue y = 1 − h
to leading order. The operator V is assumed to have a two-point function
normalised to unity. First the EOMs are solved, giving the SFT couplings
and then ∆g and ∆BϕV are computed in the small y limit, obtaining a
correspondence with CPT (3.61), (3.71). We also provide a generalisation to
multiple perturbing operators.
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5.2.1 The equations of motion
The leading order equations of motion for a perturbation by R = λcV |0⟩ are
simply given by plugging the perturbation into (5.7)

λQ(cV ) + λ2P (cV )2 + . . . = 0 (5.10)

using

Q(cV ) = −yc∂cV (5.11)

P (cV )2 = 1
g0

⟨cV, cV 2⟩c∂cV = 1
g0

⟨cV, cV, cV ⟩c∂cV

= −CV V VK
−3yc∂cV, (5.12)

where we used (4.11), the three-vertex (4.56) and the ghost vertex ⟨c, c, c⟩ =
−1. The equation (5.10) then becomes

λ(y − λCV V VK
−3y)c∂cV + . . . = 0 = λ(y − λCV V V ) +O(y2), (5.13)

with the nontrivial λ ̸= 0 solution

λ = y

CV V V

+O(y2) (5.14)

which to leading order matches the BCFT result (3.48).
The generalisation to multiple perturbations is simple, since one simply

has as many equations as projectors and sums over all fields that give a
nonzero OPE

λiyi −
∑︂
jk

λjλkCijkK
−yi−yj−yk = λiỹiy −

∑︂
jk

λjλkCijkK
(−ỹi−ỹk−ỹl)y

= λiyi −
∑︂
jk

λjλkCijk +O(y2) = 0(5.15)

where we denoted yi = ỹiy with y being the smallest RG eigenvalue serving
as a common expansion parameter. This gives a coupled set of quadratic
equations.

5.2.2 The g-function
We now plug Ψ = Ψ1 + . . . into the g-function formula (4.59) to obtain

∆g = π2

3 ⟨Ψ1, QΨ1⟩ + . . . (5.16)
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and using ⟨V, V ⟩ = g0 and ⟨c, c∂c⟩ = −1, we have

∆g = −π2

3 g0yλ
2 + . . . (5.17)

Using the fixed-point SFT coupling (5.14), we simply have

∆g
g0

= −π2

3
y3

C2
V V V

+O(y4), (5.18)

which is the result (3.61) of Affleck and Ludwig. It is astonishing how much
simpler the OSFT calculation is compared to the boundary CPT one. This
inspired us to extend this calculation to the next-to-leading order, see (5.3),
which would be very difficult in CPT and so far nobody else calculated ∆g to
O(y4) as far as we know (although see [116] for some next-to-leading results).
The leading order result can also be reproduced by level truncating the string
field to level less than zero state Ψ1 and evaluating the off-shell action of Ψ1,
which gives it as a function of λ

S[Ψ1](λ) = −1
2yλ

2⟨cV, c∂cV ⟩ − 1
3λ

3⟨cV, cV, cV ⟩ = 1
2yλ

2 − 1
3λ

3CV V VK
3y

(5.19)
Finding an extremum with respect to λ gives λ∗ = K−3yy

CV V V
= y

CV V V
+ O(y2),

which gives the extremal value

S[Ψ1](λ∗) = 2−1+12y3−1−9yy3

CV V V

= y3

6CV V V

+O(y4) (5.20)

One can also check this result by setting y = 1 as appropriate for the universal
tachyon, which then gives 211

310 . This is the well-known first approximation to
the value of the tachyon vacuum action.

The generalisation to multiple perturbing operators is very simple by the
BPZ-orthogonality ⟨Vi, Vj⟩ = g0δi,j

∆g
g0

= −π2

3
∑︂

i

yiλ
2
i + . . . , (5.21)

where we just plug in the couplings obtained by solving the quadratic equations
(5.15).
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5.2.3 The general boundary state coefficient
For the shift in the general boundary state coefficient ∆BϕV , we invoke the
KMS correspondence (4.74)

∆BϕV = 2πi ⟨I| ϕ̃(i) |Ψ1⟩ + . . .

= 2πiλ2i2∆−22h−1⟨ϕ(i)V (0)⟩ + . . .

= 2πiλ2i2∆−22h−1 g0BϕV

2∆−h
+ . . .

= −πλ22h−1g0BϕV + . . . , (5.22)

where we used that |I⟩ = U †
f |0⟩ with f = 2

1−z2 and the correlators (A.3),(A.16).
Plugging in the fixed point coupling (5.14) gives

∆BϕV

g0
= −2π BϕV

CV V V

+O(y2) (5.23)

as derived by CPT (3.71). The generalisation to multiple perturbing operators
is again simple

∆BϕVi

g0
= −π

∑︂
j

λj22hj−1BϕVj
+ . . . , (5.24)

where we plug in the solution of (5.15).

5.2.4 The spectrum of linearised fluctuations
We would now like to investigate the cohomology of the shifted kinetic operator
QΨ, see (4.3.2), for Ψ the perturbative solution described in (5.1). Such a
computation should give one access to the operator mixings and perhaps
may open a way to study shifts in operator dimensions via diagonalising the
shifted Hamiltonian HΨ. We first want to see which states A are closed in
the new background and to do this, we have to solve

QΨA = QA+ {Ψ, A} = 0 (5.25)

We make the ansatz A = A0 + δA, where A0 is a member of the ghost number
1 cohomology of the undeformed background, meaning QA0 = 0, A0 ̸= QΛ.
We split δA by a projector P such that PδA = δAR and P̄ δA = δAX . This
projector projects on the near-marginal states, which are contained in the
OPE of A0 and Ψ1 analogously as before when we projected on the states
contained in the OPE of Ψ1 and Ψ1. Thus the equation (5.25) can be split
into two

QδAR + P{Ψ, A} = 0 (5.26)
QδAX + P̄{Ψ, A} = 0, (5.27)
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where we used QA0 = 0. We solve (5.27) by fixing Siegel gauge (can be
extended to other gauges just as in (5.1)) b0δAX = 0. We can fix a gauge
because we have the linearised gauge invariance A → A + QΨΛ, which is
completely fixed by choosing Siegel gauge. The solution to (5.27) then becomes

δAX = − b0

L0
P̄{Ψ, A} (5.28)

We now have to check that the full equations of motion (5.25) are satisfied.
To do so, we again use a fixed point argument since

QA+ {Ψ, A} = − b0

L0
P̄Q{Ψ, A} (5.29)

and one has

Q{Ψ, A} = (QΨ)A− ΨQA+ (QA)Ψ − AQΨ
= −Ψ2A+ [QA,Ψ] + AΨ2

= −Ψ2A− [{Ψ, A},Ψ] + AΨ2 −
[︄
b0

L0
P̄Q{Ψ, A},Ψ

]︄

= −
[︄
b0

L0
P̄Q{Ψ, A},Ψ

]︄
(5.30)

Since the propagator acts on exact states at ghost number 3 as in (5.1), there
are no divergences from 1

L0
and since Ψ is small, the fixed point argument

is complete. Note that there was a cancellation needed for the fixed point
argument to go through in contrast with (5.1). In fact we’ll get an even more
surprising cancellation trying to solve the equation

A = QΨB, (5.31)

where B is at ghost number 0. If the equation (5.31) has a solution, the
string field A0 flows to a trivial member of the cohomology of QΨ. We could
again try to solve (5.31) perturbatively by writing B = B0 + δBR + δBX ,
where QB0 = A|y=0 and δBR = PB, δBX = P̄B, where P projects onto the
near-marginal fields in the OPE of B0 and Ψ1. We note that the equation for
B0 need not be the contradicting QB0 = A0 (remember, A0 is a nontrivial
member of the cohomology of Q) since δAR may be O(1). On the other hand
if one has δAR = O(y), we immediately know that A0 stays in the cohomology.
We again split (5.31) into two

PA = QPB + P [Ψ, B] (5.32)
P̄A = QP̄B + P̄ [Ψ, B] (5.33)
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Now we solve (5.33) by fixing the gauge

P̄B = b0

L0
P̄
(︂
A− [Ψ, B]

)︂
(5.34)

and we again employ a fixed point argument to show that (5.31) is solved

A− (QB + [Ψ, B]) = − b0

L0
P̄Q

(︂
A− [Ψ, B]

)︂
(5.35)

where we use

Q[Ψ, B] = (QΨ)B − ΨQB − (QB)Ψ −BQΨ
= −Ψ2B − {QB,Ψ} +BΨ2

= −Ψ2B + {[Ψ, B],Ψ} − {Ψ, A} +BΨ2 +
{︄
b0

L0
P̄Q

(︂
A− [Ψ, B]

)︂
,Ψ
}︄

= −{Ψ, A} +
{︄
b0

L0
P̄Q

(︂
A− [Ψ, B]

)︂
,Ψ
}︄
, (5.36)

so that

− b0

L0
P̄Q

(︂
A− [Ψ, B]

)︂
= − b0

L0
P̄

{︄
− b0

L0
P̄Q

(︂
A− [Ψ, B]

)︂
,Ψ
}︄
, (5.37)

where we used the equation of motion (5.25) for A. The propagator acts at
ghost number 2 and we may encounter contributions from the problematic
Q-exact states c∂cV |0⟩ for V near-marginal but not marginal. We are saved
by the fact that QcV |0⟩ = yc∂cV |0⟩ with y = 1 − h small for such states so
when the problematic states arise by the action of Q they are accompanied
by y. Thus these potentially problematic contributions are actually O(1) and
don’t spoil the fixed point argument.

We now use the formalism built above to show that the perturbing operator
vanishes from the cohomology when flowing to the IR, a result that can be
obtained without gauge fixing. To do this, we consider the simplest case
Ψ1 = λcV |0⟩, λ = y

CV V V
+ O(y2) with [V ] × [V ] = [1] + [V ]. The operator

in the cohomology A0 will be the cV |0⟩ but tensored with an appropriate
exponential to make it weight 1 so that its physical

A0 ∼ cV eikX |0⟩ (5.38)

This means that [A0] × [Ψ1] = [c∂ceikX ] + [c∂cV eikX ], where c∂ceikX is not
nearly marginal so that P at ghost number 1 projects onto cV eikX , that is
onto A0. This means that

δAR ∼ A0 ∼ cV eikX |0⟩ (5.39)
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and the P projected equation (5.26) is

QδAR + P{Ψ, A} = 0, (5.40)

which becomes
P{Ψ1, A0 + δAR} +O(y2) = 0, (5.41)

where we used QδAR = 0 as is specific to this setup. Since the projector is
nontrivial because of the OPE structure of A0 and Ψ1, we must have

A0 + δAR = O(y), (5.42)

which gives δAX = O(y2) because of (5.28). But then one has A0 + δAR =
O(y2) since δAX contributes as O(y3) in (5.41). Repeating this argument we
have A0 + δAR = O(y∞) = 0 so that also δAX = 0. Taken together, we have
A = 0 so that the perturbing tachyon is not present in the QΨ cohomology. A
similar phenomenon was observed in the unitary minimal models [65], where
the boundary flow triggered by the least relevant operator leads to a stable
boundary condition with no nontrivial relevant operators present. This should
not be confused with Zamolodchikov’s bulk flows [42], which present a chain
of least relevant bulk perturbations.

5.3 Siegel gauge
We now fix Siegel gauge b0Ψ = 0 meaning that the propagator is ∆ = − b0

L0
P̄

just as in (5.1). The equation (5.7) for the coupling then becomes

QΨ1 + PΨ2
1 + P{Ψ2,Ψ1} + . . . = 0, (5.43)

with Ψ2 = − b0
L0
P̄ . After defining the four-point amplitude

A ≡ ⟨cV ∗ cV, b0

L0
P̄ cV ∗ cV ⟩

= ⟨cV (−
√

3)cV (
√

3)U3
(︂ b0

L0
P̄
)︂
U †

3cV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
, (5.44)

where Un implements the transformation z → tan
(︂

2
n

arctan z
)︂
, the equation

(5.46) becomes

λ(y − λCV V VK
−3y − 2λ2A)c∂cV + . . . = 0, (5.45)

which is just (5.13) with A added. This is solved by

λ = y

CV V V

+ 1
CV V V

(︄
2A
C2

V V V

− lnK3
)︄
y3 +O(y4) (5.46)
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The g-function to the next-to-leading order has the form

∆g = π2

3

(︄
⟨Ψ1, QΨ1⟩ + ⟨Ψ2, QΨ2⟩

)︄
+ . . . , (5.47)

and one can write

⟨Ψ2, QΨ2⟩ = −⟨Ψ2, P̄Ψ1 ∗ Ψ1⟩ = −⟨Ψ2,Ψ1 ∗ Ψ1⟩ = −λ4A, (5.48)

so that after plugging in the coupling (5.46), we get

∆g
g0

= −π2

3

(︄
y3

(CV V V )2 +
(︄

3 A
g0C4

V V V

− 6
C2

V V V

lnK
)︄
y4
)︄

+O(y5), (5.49)

all that is left is to evaluate the four-point amplitude A. We evaluate it
using the Berkovits-Schnabl trick [114], that is we use the Hodge-Kodaira
decomposition

1 =
{︄
Q,

b0

L0
P̄

}︄
+ P (5.50)

behind the factor U †
3 in (5.44). Taking note of the fact that Q(cV ) = O(y),

we then have

A = ⟨cV
(︂
−

√
3
)︂
cV

(︂√
3
)︂
U3P̄U

†
3

(︄
b0

L0
P̄

)︄
cV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
⟩

+ ⟨cV
(︂
−

√
3
)︂
cV

(︂√
3
)︂
U3

(︄
b0

L0
P̄

)︄
U †

3PcV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
⟩ +O(y)

(5.51)
In the second term we use the Berkovits-Schnabl trick again, but this time
behind the U3

⟨cV
(︂
−

√
3
)︂
cV

(︂√
3
)︂
U3

(︄
b0

L0
P̄

)︄
U †

3PcV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
⟩ =

⟨cV
(︂
−

√
3
)︂
cV

(︂√
3
)︂
PU3

(︄
b0

L0
P̄

)︄
U †

3PcV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
⟩ +

⟨cV
(︂
−

√
3
)︂
cV

(︂√
3
)︂(︄ b0

L0
P̄

)︄
U3P̄U

†
3PcV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
⟩, (5.52)

where we used that QP = 0 with P acting at ghost number 2 together with{︂
Q, b0

L0

}︂
= 1. Using BPZ conjugation, we bring together the first term of
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(5.51) and the second term of (5.52)

A = ⟨cV
(︂
−

√
3
)︂
cV

(︂√
3
)︂

(1 + P )U3P̄U
†
3

(︄
b0

L0
P̄

)︄
cV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
⟩

+ ⟨cV
(︂
−

√
3
)︂
cV

(︂√
3
)︂
PU3

(︄
b0

L0
P̄

)︄
U †

3PcV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
⟩ +O(y)

(5.53)
Now we use P̄U †

3 P̄ = U †
3 P̄ , which follows from PU †

3 P̄ = 0 as can be seen
by BPZ conjugating P̄U3P = 0, which holds because primaries transform to
primaries under conformal transformations. This gives

A = ⟨cV
(︂
−

√
3
)︂
cV

(︂√
3
)︂

(1 + P )U3U
†
3

(︄
b0

L0
P̄

)︄
cV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
⟩

+ ⟨cV
(︂
−

√
3
)︂
cV

(︂√
3
)︂
PU3

(︄
b0

L0
P̄

)︄
U †

3PcV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
⟩ +O(y)

(5.54)
Focusing on the second term of (5.54), we first compute

PcV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
= −CV V V

(︄
2√
3

)︄1−h

c∂cV |0⟩ , (5.55)

as follows from the OPE

cV (x)cV (−x) ∼ −
∑︂
V ′
CV V V ′

c∂cV ′(0)
(2x)2h−h′−1 , (5.56)

where V ′ are relevant operators (not weakly relevant since we are considering
perturbation by a single operator V ). The second term then becomes

C2
V V V

(︃4
3

)︃y

⟨c∂cV |U3
b0

L0
P̄U †

3 |c∂cV ⟩ (5.57)

since we use the projection (5.55) twice. Now we split the projector in (5.57)
as P̄ = 1 − P , after which we use

PU †
3 |c∂cV ⟩ =

(︃2
3

)︃h−1
|c∂cV ⟩ , (5.58)

in which we made U †
3 act on the left, where it acts on a primary giving the

scale factor
(︂

2
3

)︂h−1
. Then we use the Berkovits-Schnabl trick again

C2
V V V

(︃4
3

)︃y

⟨c∂cV |U3
b0

L0
U †

3 |c∂cV ⟩ = C2
V V V

(︃4
3

)︃y

⟨c∂cV |U3U
†
3
b0

L0
|c∂cV ⟩ ,

(5.59)
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and commuting the U factors, see [83]

U3U
†
3 = U †

8
3
U 8

3
, (5.60)

we have by performing the conformal transformation implemented by the Us

− g0C
2
V V V

(︃4
3

)︃y 1
y

(︄(︃3
4

)︃−2y

−
(︃2

3

)︃−2y
)︄

= g0C
2
V V V ln 81

64 +O(y)
(5.61)

Maccaferri conjectured [117] that there exists a geometric constant γ inde-
pendent of the underlying matter CFT such that

⟨c∂cV |U3

(︄
b0

L0
P̄

)︄
U †

3 |c∂cV ⟩ = γ ⟨c∂cV | b0 |c∂cV ⟩ (5.62)

and we have proved by (5.61) that γ = ln 81
64 which agrees with level truncation

[117] to seven decimal places. This computation was made possible by the
fact that our field was not marginal making intermediate expressions such as

1
h−1 well-defined. That is, we do not rely on P̄ to make 1

L0
well-defined, it is

present only for power counting purposes so that no poles in y occur.
We continue with the first term in (5.54) and to do this we first calculate

U 8
3

b0

L0
P̄ cV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
|0⟩ =

U 8
3

b0

L0
P̄

(︄
cV

(︄
1√
3

)︄
cV

(︄
− 1√

3

)︄
±
∑︂
V ′
CV V V ′

(︄
2√
3

)︄1+h′−2h

c∂cV ′(0)
)︄

|0⟩ ,

(5.63)
where the plus-minus notation means that we add and subtract the same
term. For this the OPE (5.56) was used so that we can Schwinger parametrise
the action of L0 as

1
L0

=
∫︂ 1

0

ds

s
sL0 (5.64)

meaning that we use the Schwinger parametrisation on the plus branch and
we explicitly divide by weight on the minus branch. Doing so we obtain∫︂ 1

0
ds

[︄(︄
dµ
ds

)︄2h−1
s2h−2
√

3
(c (µ) + c (−µ))V (µ)V (−µ)

−
∑︂

V ′ ̸=V

CV V V ′

(︄
2√
3

)︄1+h′−2h (︃4
3

)︃1−h′(︄ 1
s2−h′ + 1

1 − h′

)︄

cV ′(0) − CV V V

(︄
2√
3

)︄1−h (︃4
3

)︃1−h 1
s2−h

cV (0)
]︄

|0⟩

(5.65)
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where µ(s) = tan 3
4 arctan s√

3 is present since U 8
3

implements the conformal
transformation z → tan 3

4 arctan z. The subterm in the first term of (5.54)
containing P can then be calculated as

− CV V V

(︄
8

3
√

3

)︄1−h

⟨c∂cV |
∫︂ 1

0
ds
[︄(︄

dµ
ds

)︄2h−1
s2h−2
√

3
(c (µ) + c (−µ))V (µ)V (−µ)

−
∑︂

V ′ ̸=V

CV V V ′

(︄
2√
3

)︄1+h′−2h (︃4
3

)︃1−h′(︄ 1
s2−h′ + 1

1 − h′

)︄

cV ′(0) − CV V V

(︄
2√
3

)︄1−h (︃4
3

)︃1−h 1
s2−h

cV (0)
]︄

|0⟩

= g0C
2
V V V ln 4√

3
a+O(y)

(5.66)

where a ≡ tan π
8 =

√
2 − 1 and we used the orthogonality ⟨c∂cV |cV ′⟩ = 0.

The final term to calculate is then
⟨cV

(︂√
3
)︂
cV

(︂
−

√
3
)︂
U∗

8
3∫︂ 1

0
ds
[︄(︄

dµ
ds

)︄2h−1
s2h−2
√

3
(c (µ) + c (−µ))V (µ)V (−µ)

−
∑︂

V ′ ̸=V

CV V V ′

(︄
2√
3

)︄1+h′−2h (︃4
3

)︃1−h′(︄ 1
s2−h′ + 1

1 − h′

)︄
cV ′(0)

− CV V V

(︄
2√
3

)︄1−h (︃4
3

)︃1−h 1
s2−h

cV (0)
]︄
⟩

=
∫︂ 1

0
ds

[︄
4√
3a

(︃ 1
a2 − µ2

)︃ dµ
ds ⟨V

(︃
−1
a

)︃
V
(︃1
a

)︃
V (µ)V (−µ)⟩

− g0
∑︂

V ′ ̸=V

C2
V V V ′

(︂√
3a
)︂h′−1

(︄
1

s2−h′ + 1
1 − h′

)︄
− C2

V V V

g0

s

]︄
+O(y)

(5.67)

It turns out that a tremendous simplification occurs when we use the generic
form of the four-point function (2.54)∫︂ 1

0
ds

[︄
4√
3a

(︃ 1
a2 − µ2

)︃ dµ
ds ⟨V

(︃
−1
a

)︃
V
(︃1
a

)︃
V (µ)V (−µ)⟩

]︄

=
∫︂ 1

2

0
dξ ⟨V |V (1)V (ξ) |V ⟩

, (5.68)
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with the cross-ratio being explicitly given by

ξ(s) = 4a µ(s)(︂
1 + aµ(s)

)︂2 (5.69)

What is left to do is to perform the integral over the subtractions in (5.67).
Doing the integral in the s variable is complicated but one can use a trick. We
imagine employing an auxiliary cutoff ϵ̃ on the manifestly finite contribution
(5.67) to separate the integral into two, one containing the four-point function
and the other the subtractions. After we calculate the integral over the
subtractions, we get a function of ϵ̃ and then we take ϵ = ξ(ϵ̃) to zero. We
have

ϵ̃(ϵ) =
√︄

1 + 2
√

2
3 ϵ+

√︄
1
4 + 1

3
√

2
ϵ2 +O(ϵ3) (5.70)

Integration over the subtractions in (5.67) is then straightforward and yields

∑︂
V ′ ̸=V

C2
V V V ′

(︂√
3a
)︂h′−1 ϵ̃h′−1

h′ − 1 + C2
V V V ln ϵ̃

=
∑︂

V ′ ̸=V

C2
V V V ′

(︄
ϵh′−1

h′ − 1 + 1
2δh′=0

)︄

+ C2
V V V (ln ϵ+ ln

√
2 + 1√

3
) +O(ϵ)

(5.71)

The integral over the cross-ratio ξ has the cutoff ϵ (without the tilde) and we
can regulate it by the OPE structure of (5.56)

∫︂ 1
2

ϵ
dξ

(︄
⟨V |V (1)V (ξ) |V ⟩ − g0

∑︂
V ′
C2

V V V ′
1

ξ2−h′

)︄

+ g0
∑︂

V ′ ̸=V

C2
V V V ′

(︄
21−h′

h′ − 1 − ϵh′−1

h′ − 1

)︄
+ g0C

2
V V V (ln 2 − ln ϵ)

(5.72)

We see that the divergent terms of (5.71) and (5.72) cancel each other out
and we can take ϵ → 0.
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Putting all the contributions together we obtain

A =
∫︂ 1

2

0
dξ

(︄
⟨V |V (1)V (ξ) |V ⟩ − g0

∑︂
V ′
C2

V V V ′
1

ξ2−h′

)︄

+ g0
∑︂

V ′ ̸=V

C2
V V V ′

(︄
21−h′

h′ − 1 + 1
2δh′=0

)︄

+ g0C
2
V V V

(︄
ln

√
2 + 1√

3
+ ln 81

64 + ln 4a√
3

)︄
+O(y)

(5.73)

For convenience we add subtractions in 1 − ξ (they are not needed when
ξ ∈ [0, 1

2 ])

A =
∫︂ 1

2

0
dξ

(︄
⟨V |V (1)V (ξ) |V ⟩ − g0

∑︂
V ′
C2

V V V ′

(︂ 1
ξ2−h′ + 1

(1 − ξ)2−h′

)︂)︄

+ g0
∑︂

V ′ ̸=V

C2
V V V ′

(︄
1

h′ − 1 + 1
2δh′=0

)︄

+ g0C
2
V V V

(︄
ln

√
2 + 1√

3
+ ln 81

64 + ln 4a√
3

)︄
+O(y)

(5.74)

As a trivial illustration of this formula we can take the exactly marginal free
boson, see (2.8.3), V = ∂X for which

⟨∂X| ∂X (1) ∂X (ξ) |∂X⟩ = 1 + 1
ξ2 + 1

(1 − ξ)2 (5.75)

so that the four-point amplitude vanishes

A
g0

=
(︄∫︂ 1

2

0
dξ
)︄

− 1 + 1
2 = 0, (5.76)

where we used C∂X∂X∂X = 0 and that the only V ′ over which we sum is the
identity with h′ = 0. This vanishing is expected since A gives a nonzero term
to the equation for λ, but for exactly marginal deformation we expect λ to be
unrestricted and thus the equation for λ schematically has the form λ0 = 0.
See also [118] for Sen’s evaluation of this amplitude with the same result,
where in that context ∂X is associated with the collective degrees of freedom
of a D-instanton. Sen passes from the worldsheet to SFT by transforming
from the ξ coordinate to the s coordinate, where we know how to handle
divergences. We go the other way around since we want to make contact with
CPT which is naturally formulated on the worldsheet.
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We see a lot of numerical factors in the result (5.78), but what is astonishing
is that they all cancel in ∆g, see (5.49)

∆g
g0

= −π2

3

(︄
y3

C2
V V V

+ 3 Ã
C4

V V V

y4
)︄

+O(y5), (5.77)

where

Ã =
∫︂ 1

2

0
dξ

(︄
1
g0

⟨V |V (1)V (ξ) |V ⟩ −
∑︂
V ′
C2

V V V ′

(︂ 1
ξ2−h′ + 1

(1 − ξ)2−h′

)︂)︄

+
∑︂

V ′ ̸=V

C2
V V V ′

(︄
1

h′ − 1 + 1
2δh′=0

)︄ (5.78)

We note that the four-point correlator in (5.78) can be calculated in the
near-marginal limit y → 0, that is to this order we can take the zeroth term in
its Taylor expansion in y. At first sight it is not clear that the entire moduli
space of the four-point amplitude is covered since we have three main regions
of ξ: ξ ∈ [0, 1], ξ ∈ [1,∞] and ξ ∈ [−∞, 0] and the ξ ∈ [0, 1

2 ] makes a sixth
of this moduli space. However, we have a factor of three in (5.49) and we
are working to second order and this gives a 1

2! from CPT. Thus together,
we actually have a 1

2!6Ã in the result (5.77), thus covering the entire moduli
space. It is possible to extend the result to manifestly cover the entire moduli
space, that is to have an integral over ξ ∈ [−∞,∞]. This is where additional
subtractions are needed, for example we need the 1 − ξ subtractions to extend
the integral to ξ ∈ [0, 1]. We won’t present the result here since it’s not
particularly illuminating.

We note that K does not decouple from the expression (5.46) for the SFT
coupling

λ = y

CV V V

+ 1
CV V V

(︄
2Ã
C2

V V V

+ lnK
)︄
y3 +O(y4) (5.79)

This is expected since λ is just an auxilliary normalisation factor, which is
heavily scheme dependent.

5.4 Schnabl gauge
We work in Schnabl gauge B0Ψ = 0 and consider the deformation by a single
weakly relevant operator with Ψ1 = λ

√
ΩcV

√
Ω, which is expressed in sliver

frame. For simplicity we assume that the only relevant operators contained
in the V V OPE are 1 and V .
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5.4.1 Oblique projectors
Since we work in sliver frame, we can no longer compute action of the projector
P by BPZ projecting as we’ve done so far, see for example the nontrivial
operator transformation properties (4.88), which break BPZ orthogonality.
This means that P is an oblique and not orthogonal projector. To deal with
this, we invent a method of identifying the level expansion (from which we
read off the projection) of an arbitrary number of singular operators from
correlators. To do this, we consider the elementary identity

L0 = d
dz z

L0

⃓⃓⃓⃓
z=1

, (5.80)

which means that level expansion can be read off by reading powers of z
after scaling with zL0 . This becomes clear after considering an example of
projecting onto the ghost number 2 state

√
Ωc∂cV

√
Ω, where the projection

of a ghost number 2 state Φ is

P (Φ) = − 1
g0

(︃
π

2

)︃2h−2 (︃ 1
zh−1 Tr

{︂√
ΩcV

√
Ω(zL0ϕ)

}︂)︃ ⃓⃓⃓
z=0

√
Ωc∂cV

√
Ω (5.81)

To see why this is the correct definition, we put Φ =
√

ΩcV ΩcV
√

Ω, which
we know should contain a −CV V V c∂cV by the V V OPE (this will be shown
in more detail in (5.4.2)) and now we use scaling

zL0
√

ΩcV ΩcV
√

Ω = z2h−2
√

ΩcV ΩzcV
√

Ω (5.82)

Then the overlap of (5.82) with
√

ΩcV
√

Ω is

−z2h−2 Tr
{︂√

ΩcV ΩcV ΩzcV
√

Ω
}︂

= −CV V V g0

(︃
π

2

)︃2−2h

zh−1 +O(zh), (5.83)

which which one sees that after properly normalising, we have

P (
√

ΩcV ΩcV
√

Ω) = −CV V V

√
Ωc∂cV

√
Ω (5.84)

as it should. From this calculation it is clear that the projector formula works
only if there is only one state of weight h that has nonzero overlap with cV .
If this is violated, one would try to remove this degeneracy by considering
products with operators that differentiate between the degenerate states, but
this won’t be necessary for our purposes. After using (5.84), the equation
(5.7) then becomes

λ(y − λCV V V )
√

Ωc∂cV
√

Ω + . . . = 0, (5.85)
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so that λ = y
CV V V

+ O(y2). It is interesting to compare (5.13) to (5.85),
which are different but at the leading order give the same λ as they should
since we haven’t fixed a gauge yet and (4.89) establishes leading order frame
independence. It is interesting that the equation (5.85) is the same as the
vanishing of the beta function (3.47). This correspondence shouldn’t be taken
too literally since the renormalisation procedures are different in OSFT and
CFT so only the leading order matches meaning that we are not computing
the usual CPT beta functions in some conventional scheme.

5.4.2 Second order string field
Since we fixed Schnabl gauge, we have

Ψ2 = −B0

L0
P̄Ψ2

1, (5.86)

where the star product is

Ψ2
1 = λ2

√
ΩcV ΩcV

√
Ω (5.87)

We now need to level expand (5.87) in order to be able to work with the
oblique projector P̄ . We do so in two ways: first we use the V V OPE, which
is viable only to second order, where we have only two V insertions and thus
further motivate the projectors of (5.4.1), which work to all orders and then
as a second way we use the projectors analogous to the one in (5.4.1) as a
shortcut.

As for the first way, inspired by the V V OPE containing only 1 and V ,
we write

Ψ2
1 = λ2

(︂√
ΩcV ΩcV

√
Ω ∓

√
ΩcΩc

√
Ω ∓ CV V V

√
ΩcΩcV

√
Ω
)︂

(5.88)

We then Taylor expand the wedge state

Ω = e−K = 1 −K + 1
2!K

2 − . . . (5.89)

and collect the terms of weight less than or equal to zero with the rest
reabsorbed into the previous form (5.88) obtaining

Ψ2
1 = λ2

(︃√
ΩcV ΩcV

√
Ω ∓

√
Ω(−cKc+ 1

2!cK
2c)

√
Ω ± CV V V

√
ΩcKcV

√
Ω
)︃

(5.90)
We observe that a weight zero state

√
ΩcK2c

√
Ω emerges. This zero weight

state is in Schnabl gauge so formally one encounters an expression 0
0 . This
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means that the solution cannot be found in Schnabl gauge [91]. A slight
modification of the gauge to account for the zero mode solves this issue. To
see this, we rewrite the weight zero state by a chain of identities

√
ΩcK2c

√
Ω = Q

√
Ω
(︄
BcKc+ cKcB +Q(. . .)

)︄√
Ω (5.91)

{B, c} = 1 (5.92)
√

ΩcK2c
√

Ω = Q
√

Ω
(︄

{K, c} − 2cKBc+Q(. . .)
)︄√

Ω (5.93)
√

ΩcKBc
√

Ω = Q
√

ΩBc
√

Ω (5.94)
√

ΩcK2c
√

Ω = Q
√

Ω
(︄

{K, c} +Q(. . . )
)︄√

Ω (5.95)

Fixing our gauge so that the Q-exact term Q(. . .) is absent one obtains for
Ψ2 after explicitly diving by Q on the weight zero state the expression

Ψ2 = −λ2P̄

(︄
B0

L0

(︄√
ΩcV ΩcV

√
Ω +

√
Ω
(︂

∓ (−cKc) − 1
2!cK

2c
)︂√

Ω

± CV V V

√
ΩcKcV

√
Ω
)︄

+ 1
2!

√
Ω{K, c}

√
Ω
)︄ (5.96)

Which after the action of B0 and use of the anticommutator (5.92) takes the
form

Ψ2 = −λ2P̄

(︄
1

L0

(︂√
ΩcBV ΩcV

√
Ω +

√
Ω(∓c+ cKBc)

√
Ω

∓ CV V V

√
ΩcV

√
Ω
)︂

+ 1
2!

√
Ω{K, c}

√
Ω
)︄ (5.97)

We now use explicit division by L0 on the plus branch of the states with ∓
in front and use (4.139) on the rest (remembering that L0 is a dilatation
generator) and get

Ψ2 = −λ2P̄

(︄∫︂ 1

0

ds

s

(︂
s2h−1

√
ΩcBV ΩscV

√
Ω −

√
Ω(s−1c− cKBc)

√
Ω (5.98)

−CV V V s
h−1

√
ΩcV

√
Ω
)︂

−
√

Ωc
√

Ω + 1
h− 1CV V V

√
ΩcV

√
Ω + 1

2!
√

Ω{K, c}
√

Ω
)︄

Applying the projector and using the identity (5.94) we get the final expression
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for the second order string field

Ψ2 = −λ2
(︄∫︂ 1

0

ds

s

(︂
s2h−1

√
ΩcBV ΩscV

√
Ω −

√
Ω
(︄
s−1c−Q(Bc)

)︄√
Ω

− CV V V s
h−1

√
ΩcV

√
Ω
)︂

−
√

Ωc
√

Ω + 1
2!

√
Ω{K, c}

√
Ω
)︄

(5.99)
and this is essentially a generalisation of the KORZ result [85] for the marginal
case.

The level zero state is a peculiarity of Schnabl gauge. To show how this
state emerges let us consider a family of gauges containing Schnabl gauge as
a limit with propagators of the form

h = −P̄ B0 − δB⋆
0

L0 + ϵ
= −P̄ (1 − δ)B0 + δB−

L0 + ϵ
(5.100)

where δ and ϵ are parameters. We now act with this propagator on the term
−

√
ΩcKc

√
Ω which in the previous analysis turned into a tachyon subtraction.

The interest is in seeing whether the states at level 0 emerge from this term
by action of the propagator in Schnabl gauge limit since this is the only
subtraction relevant for other gauges (one does not subtract level zero states).
We start by applying the numerator of (5.100)

−
(︂
(1 − δ)B0 + δB−

)︂√
ΩcKc

√
Ω =

√
Ωc

√
Ω + δ

2
{︂
B,

√
ΩcKc

√
Ω
}︂

(5.101)

so that dividing by L0 + ϵ (remember, B commutes with K) and taking the
limit δ → 0+ with δ and ϵ equal (this is an ambiguity, the level zero state
emerges only for δ = O(ϵ)) gives

1
ϵ− 1

√
Ωc

√
Ω + δ

2ϵ
{︂
B,

√
ΩcKc

√
Ω
}︂

→

−
√

Ωc
√

Ω + 1
2

√
Ω
(︄

{K, c} − 2Q(Bc)
)︄√

Ω (5.102)

where we have used (5.92) and (5.94). Which is precisely the subtraction
outside the integral in (5.99) modulo a Q-exact term which we can again
gauge fix.

Now we show the alternative way of finding the regular string field Ψ2
based on (5.80). We can simply use (5.81) which means repeating (5.82) and
(5.83) to see that one should subtract −CV V V

√
ΩcV

√
Ω from Ψ2

1. For the
tachyon subtraction we analogously compute

−z2h−2 1
g0

(︃
π

2

)︃−2
Tr
{︂√

ΩcΩcV ΩzcV
√

Ω
}︂

= −z−1 − z0 +O(z1) (5.103)
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where the normalisation was chosen such that the projection of
√

Ωc
√

Ω onto
c∂c has coefficient one. The previous analysis immediately lets us interpret
(5.103) as the apperance of states

√
ΩcKc

√
Ω and

√
ΩcK2c

√
Ω that were

present in Ψ2
1 with the correct coefficients. This is so because

Tr
{︂√

ΩcΩcK2c
√

Ω
}︂

= lim
α→0

d2

dα2 Tr
{︂√

ΩcΩcΩαc
√

Ω
}︂

= 2
(︂ 2
π

)︂2
(5.104)

shows that
√

ΩcK2c
√

Ω is present with a 1
2 in front. This motivates the

definition of ghost number 2 projectors T onto the tachyon and T̂ onto its
level zero descendant.

T (Φ) = − 1
g0

(︃
π

2

)︃−2 (︂
zTr

{︂√
Ωc

√
Ω(zL0Φ)

}︂)︂ ⃓⃓⃓⃓
z=0

√
Ωc∂c

√
Ω (5.105)

T̂ (Φ) = 1
2g0

(︃
π

2

)︃−2 (︂
Tr
{︂√

Ωc
√

Ω(zL0T̄ (Φ))
}︂)︂ ⃓⃓⃓⃓

z=0

√
ΩcK2c

√
Ω (5.106)

One may check that with the explicit expressions for projectors P (Ψ2) holds as
required for the consistency of our perturbative procedure (Q has to commute
with P ).

5.4.3 Third order string field

For the higher order calculation we need to regularize a product of at least
three V s. Since our theory is not free, one would use something like the
generalised Wick theorem [27] in order to guess how to subtract singular
states. We will not follow this route in the present paper since we do not
yet have a satisfactory string field normal ordering and besides we have 1

L0

acting on products like
√

ΩcV ΩcV ΩcV
√

Ω which means that we have three
insertions going together simultaneously and we are not sure whether the
generalised Wick theorem and a satisfactory string field normal ordering
would be enough to regularise such a product. Instead we will continue using
the trick based on (5.80).

Continuing with our perturbative procedure we have for the third order
string field the expression

Ψ3 = −P̄ B0

L0
{Ψ1,Ψ2} (5.107)

144



We start evaluating it by writing down the anticommutator

{Ψ1,Ψ2} = −λ3
(︄∫︂ 1

0

ds

s

(︄
s2h−1

{︂√
ΩcV

√
Ω,

√
ΩcBV ΩscV

√
Ω
}︂

− s−1
{︂√

ΩcV
√

Ω,
√

Ωc
√

Ω
}︂

−
{︂√

ΩcV
√

Ω,
√

ΩQ(Bc)
√

Ω
}︂

− CV V V s
h−1

{︂√
ΩcV

√
Ω,

√
ΩcV

√
Ω
}︂)︄

−
{︂√

ΩcV
√

Ω,
√

Ωc
√

Ω
}︂

+ 1
2!
{︂√

ΩcV
√

Ω,
√

Ω{K, c}
√

Ω
}︂)︄

(5.108)
and we continue by writing down the projections needed to regularise

P

(︄{︂√
ΩcV

√
Ω,

√
ΩcBV ΩscV

√
Ω
}︂)︄

≡ −Υ(s)
√

Ωc∂cV
√

Ω =

− 2
g0

(︃
π

2

)︃2h−2 (︃ 1
zh−1 z

3h−2 Tr
{︂√
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√

Ω
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√
Ωc∂cV

√
Ω

T

(︄{︂√
ΩcV

√
Ω,

√
ΩcBV ΩscV

√
Ω
}︂)︄

= −2CV V V

(︄
s(s+ 1)

)︄−h√
Ωc∂c

√
Ω

T̂

(︄{︂√
ΩcV

√
Ω,

√
ΩcBV ΩscV

√
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= −CV V V
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s
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s(s+ 1)
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ΩcK2c

√
Ω

P
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√
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√
Ωc

√
Ω
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√

Ωc∂cV
√

Ω

T

(︄{︂√
ΩcV

√
Ω,

√
Ωc

√
Ω
}︂)︄

= T̂

(︄{︂√
ΩcV

√
Ω,

√
Ωc

√
Ω
}︂)︄

= 0

P

(︄{︂√
ΩcV

√
Ω,

√
ΩQ(Bc)

√
Ω
}︂)︄

= T

(︄{︂√
ΩcV

√
Ω,

√
ΩQ(Bc)

√
Ω
}︂)︄

= T̂

(︄{︂√
ΩcV

√
Ω,

√
ΩQ(Bc)

√
Ω
}︂)︄

= 0

P

(︄{︂√
ΩcV

√
Ω,

√
ΩcV

√
Ω
}︂)︄

= −2CV V V

√
Ωc∂cV

√
Ω

T

(︄{︂√
ΩcV

√
Ω,

√
ΩcV

√
Ω
}︂)︄

= −2
√

Ωc∂c
√

Ω

T̂

(︄{︂√
ΩcV

√
Ω,

√
ΩcV

√
Ω
}︂)︄

= −
√

ΩcK2c
√

Ω

P

(︄{︂√
ΩcV

√
Ω,

√
Ω{K, c}

√
Ω
}︂)︄

= T

(︄{︂√
ΩcV

√
Ω,

√
Ω{K, c}

√
Ω
}︂)︄
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= T̂

(︄{︂√
ΩcV

√
Ω,

√
Ω{K, c}

√
Ω
}︂)︄

= 0

(5.109)

Now (5.108) can be rewritten as

{Ψ1,Ψ2} = −λ3
(︄∫︂ 1

0
ds

(︄
s2h−2

{︂√
ΩcV

√
Ω,

√
ΩcBV ΩscV

√
Ω
}︂

−s−2
{︂√

ΩcV
√

Ω,
√

Ωc
√

Ω
}︂

− s−1
{︂√

ΩcV
√

Ω,
√

ΩQ(Bc)
√

Ω
}︂

−CV V V s
h−2

{︂√
ΩcV

√
Ω,

√
ΩcV

√
Ω
}︂

± sh−2
(︄
CV V V (s+ 1)1−h − 1

)︄√
ΩcK2c

√
Ω

±
(︄
s2h−2Υ(s) − 2s−2 − 2 (CV V V )2 sh−2

)︄√
Ωc∂cV

√
Ω
)︄

±2CV V V s
h−2

(︄
(s+ 1)−h − 1

)︄√
Ωc∂c

√
Ω
)︄

−
{︂√

ΩcV
√

Ω,
√

Ωc
√

Ω
}︂

± 2
√

Ωc∂cV
√

Ω + 1
2!
{︂√

ΩcV
√

Ω,
√

Ω{K, c}
√

Ω
}︂)︄

so that after properly applying the propagator as in the second order case
one obtains

Ψ3 = λ3
∫︂ 1

0
dt
∫︂ 1

0
ds

(︄
t3h−2s2h−2

√
ΩcB

(︄
V ΩtV ΩstV + V ΩstV ΩtV

)︄
c
√

Ω

−th−2(s−2 + 1)
√

ΩcB
{︂
V,Ωt

}︂
c
√

Ω − th−1s−1
√

ΩcB
{︂
V,KΩt

}︂
c
√

Ω

−2CV V V t
2h−2sh−2

√
ΩcBV ΩtV c

√
Ω − 2CV V V (t−2 + 1)sh−2

(︄
(s+ 1)−h − 1

)︄√
Ωc

√
Ω

−th−1
(︄
s2h−2Υ(s) − 2(s−2 + 1) − 2 (CV V V )2 sh−2

)︄√
ΩcV

√
Ω
)︄

−2CV V V s
h−2

(︄
(s+ 1)1−h − 1

)︄√
Ω
(︄
t−1Q(Bc) + {K, c}

)︄√
Ω

+ 1
2!t

h−1
√

Ω
(︄
cV Ωt[c, B] − [c, B]ΩtcV + cBV Ωt{K, c} + {K, c}ΩtBcV

)︄√
Ω
)︄

(5.110)

where we brought everything under the t-integral since
∫︁ 1

0 dt = 1.

5.4.4 Ellwood invariant
We calculate the shift in the g-function using the KMS correspondence (4.74),
where we use the fact that the g-function is the coefficient of 1, giving
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∆g = Tr1 Ψ. In the calculation we use the following identities

Trϕ

√
ΩcBΩnc

√
Ω = Trϕ

√
Ωc

√
Ω (5.111)

Trϕ

√
ΩΩnKc

√
Ω = − 1

n+ 1 Trϕ

√
ΩΩnc

√
Ω, (5.112)

which follow from the fact that the Ellwood invariant is invariant under the
action of B− and L−. Taking the solution (5.99) and using Q-invariance
(the terms with Q(Bc) give a zero contribution) and cyclicity (the term with
1
2!{K, c} gives the same contribution as with Kc) of the Ellwood invariant we
get with the help of (5.111),(5.112) the expression

g (Ψ2) = −2πiλ2 i

2π

(︄∫︂ 1

0

ds

s

(︂
s2h−1⟨V

(︃
−s

2

)︃
V
(︃
s

2

)︃
⟩Cs+1 − g0s

−1−

− CV V V s
h−1⟨V ⟩C1

)︂
− g0 − g0

)︄
,

(5.113)

where g (Ψ2) means the contribution of Ψ2 to the shift of the g-function.
Using the correlator (A.11) and the vanishing of the 1-pt function of V we get

g (Ψ2) = g0λ
2
(︄∫︂ 1

0

ds

s

(︄
s2h−1

(︃
csc
(︃
πs

s+ 1

)︃
π

s+ 1

)︃2h

− s−1
)︄

− 2
)︄

(5.114)

expanding in y one finds

g (Ψ2) = g0
1

(CV V V )2

(︄∫︂ 1

0
ds

(︄(︃
csc
(︃
πs

s+ 1

)︃
π

s+ 1

)︃2
− s−2

)︄
− 2

)︄
y2 +O(y3)

= O(y3) (5.115)

where a cancellation of divergences occured in the coefficient of y2 as the
integral gave zero as is needed for consistency with (3.61). Notice that the
zero-mode of L0 gave a nontrivial contribution.

We begin by extracting the term in (5.115) proportional to y3 by writing
down the next term in the expansion. The result is

g (Ψ2) = −2g0
1

(CV V V )2

(︄∫︂ 1

0
ds

(︃
csc
(︃
πs

s+ 1

)︃
π

s+ 1

)︃2
ln
(︃
πs

s+ 1 csc
(︃
πs

s+ 1

)︃)︃)︄
y3 +

+O(y4) (5.116)

and it is finite giving further credit to the regularity of Ψ2.
Now we need to consider the contribution from Ψ3, concretely we plug in

(5.110) into the g-function obtaining with the use of equations (A.11), (A.12),
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(5.111), (5.112)

g (Ψ3) = −2g0λ
3CV V V

[︄ ∫︂ 1

0
dt

∫︂ 1

0
ds t3h−2s2h−2π3h

(︄(︃ 1
1 + t+ st

)︃3
csc

(︃
πt

1 + t+ st

)︃
csc

(︃
πst

1 + t+ st

)︃
csc

(︄
π(1 + s)t
1 + s+ st

)︄)︄h

− π2ht2h−2sh−2
(︄

1
t+ 1 csc

(︄
πt

t+ 1

)︄)︄2h

− (t−2 + 1)
(︄
s2h−2(s(s+ 1))−h − sh−2

)︄

+ 2sh−2
(︄

(s+ 1)1−h − 1
)︄]︄

(5.117)
Combining (5.116) with (5.117) and expanding in y while plugging in the
fixed point SFT coupling (5.13) we find for the O(y3) contribution to the
g-function the result

− 2g0
1

(CV V V )2

[︄ ∫︂ 1

0
dt

∫︂ 1

0
ds

(︄
π3t csc

(︂
πt

1+t+st

)︂
csc

(︂
πst

1+t+st

)︂
csc

(︂
π(s+1)t
1+t+st

)︂
(1 + t+ st)3 −

π2 csc2
(︂

πt
t+1

)︂
s(t+ 1)2 + 1

s+ 1(t−2 + 1)
)︄

+
∫︂ 1

0
ds

(︃
csc
(︃
πs

s+ 1

)︃
π

s+ 1

)︃2
ln
(︃
πs

s+ 1 csc
(︃
πs

s+ 1

)︃)︄]︄
y3 = −g0

π2

3
y3

(CV V V )2

(5.118)
reproducing (3.61).

We could have proceeded differently and used the fact that the divergence
structure is very indicative of the structure of subtractions. Such an approach
would effectively lead to regularisation by analytic continuation as done
for example in [115]. We start by writing down the contribution without
subtractions

g
(︂
Ψsingular

3

)︂
= 2πiλ3 i

2π

[︄ ∫︂ 1

0
dt t3h−2

∫︂ 1

0
ds s2h−2

(︂
⟨V (0)V (st)V (t)⟩C1+t+st

+⟨V (0)V (t)V (st)⟩C1+t+st

)︂]︄
= −2g0λ

3CV V V

(︄∫︂ 1

0
dt t3h−2

∫︂ 1

0
ds s2h−2

π3h

[︄(︂ 1
1 + t+ st

)︂3
csc

(︃
πt

1 + t+ st

)︃
csc

(︃
πst

1 + t+ st

)︃
csc

(︄
π(1 + s)t
1 + s+ st

)︄)︄h]︄

Asymptotically expanding around s ∼ 0 we see that the following subtraction
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in the s-channel should be made

g
(︂
Ψsingular

3

)︂
= −2g0λ

3CV V V

[︄(︄ ∫︂ 1

0
dt

∫︂ 1

0
ds t3h−2s2h−2π3h

(︄(︃ 1
1 + t+ st

)︃3
csc

(︃
πt

1 + t+ st

)︃
csc

(︃
πst

1 + t+ st

)︃
csc

(︄
π(1 + s)t
1 + s+ st

)︄)︄h

∓ π2hsh−2t2h−2
(︃ 1
t+ 1 csc πt

t+ 1

)︃2h
]︄

= −2g0λ
3CV V V

[︄ ∫︂ 1

0
dt

∫︂ 1

0
ds t3h−2s2h−2π3h

(︄(︃ 1
1 + t+ st

)︃3
csc

(︃
πt

1 + t+ st

)︃
csc

(︃
πst

1 + t+ st

)︃
csc

(︄
π(1 + s)t
1 + s+ st

)︄)︄h

− π2ht2h−2sh−2
(︄

1
t+ 1 csc

(︄
πt

t+ 1

)︄)︄2h]︄
(5.119)

where we used the fact that the plus branch of the subtraction should be
set to zero. This is easily seen by realising that this subtraction comes from
the

√
ΩcV

√
Ω in (5.99) which has the corresponding

√
ΩcV

√
Ω outside the

integral projected out. This result is effectively given by the following analytic
continuation ∫︂ 1

0
ds

1
s

= 0 (5.120)

We note that in the context of [118, 119, 120], this continuation corresponds
to keeping path integration over D-instanton collective coordinates last. We
continue by regularising in the t-channel by making an asymptotic expansion
around t ∼ 0 of the s− t integrand to obtain

g
(︂
Ψsingular

3

)︂
= −2g0λ

3CV V V

[︄ ∫︂ 1

0
dt

∫︂ 1

0
ds t3h−2s2h−2π3h

(︄(︃ 1
1 + t+ st

)︃3
csc

(︃
πt

1 + t+ st

)︃
csc

(︃
πst

1 + t+ st

)︃
csc

(︄
π(1 + s)t
1 + s+ st

)︄)︄h

− π2ht2h−2sh−2
(︄

1
t+ 1 csc

(︄
πt

t+ 1

)︄)︄2h

∓ 1
t2

(︄
s2h−2(s(s+ 1))−h − sh−2

)︄]︄
(5.121)

Using the in SFT well-known analytic continuation∫︂ 1

0
dt

1
t2

= −1 (5.122)
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which can be motivated by realising that it is the Schwinger parametrisation
of 1

L0
on level −1 states, we obtain the regularised result

g
(︂
Ψsingular

3

)︂
= −2g0λ

3CV V V

[︄ ∫︂ 1

0
dt

∫︂ 1

0
ds t3h−2s2h−2π3h

(︄(︃ 1
1 + t+ st

)︃3
csc

(︃
πt

1 + t+ st

)︃
csc

(︃
πst

1 + t+ st

)︃
csc

(︄
π(1 + s)t
1 + s+ st

)︄)︄h

− π2ht2h−2sh−2
(︄

1
t+ 1 csc

(︄
πt

t+ 1

)︄)︄2h

− (t−2 + 1)
(︄
s2h−2(s(s+ 1))−h − sh−2

)︄]︄
(5.123)

Which is (5.117) up to an O(y4) contribution from zero modes. It is not clear
to us how to obtain the zero mode contribution by asymptotically expanding
since there is a mixing between the contributions of descendants which makes
the procedure less transparent for non-leading singularities. We continue with
pseudo-Schnabl gauge where the zero modes are absent so the regularisation
by analytic continuation does not encounter such subtleties.

5.5 Pseudo-Schnabl gauge
In (5.3), we have seen the usefulness of the Berkovits-Schnabl trick to evaluate
the amplitude A. The idea behind the Berkovits-Schnabl trick is to have
a propagator acting on a string of local operator insertions. Writing the
general ansatz (see [115]) Ψ = ∑︁

n=1 Ûn+1Ψ̂n |0⟩, the equations of motion
(4.42) become (︂

QÛ2Ψ̂1 +QÛ3Ψ̂2 + Û3Ψ̂
2
1 + . . .

)︂
|0⟩ = 0, (5.124)

where the Û3Ψ̂
2
1 |0⟩ is a shorthand for Û2Ψ̂1 |0⟩ ∗ Û2Ψ̂1 |0⟩. Having the propa-

gator act behind the U factors amounts to the gauge fixing B0Ψ̂n = 0, which
is pseudo-Schnabl gauge. For the propagator acting in a well-defined way, we
should split the equation (5.124) using projectors(︂

QÛ2P Ψ̂1 +QÛ3P Ψ̂2 + Û3P Ψ̂
2
1 + . . .

)︂
|0⟩ = 0 (5.125)(︂

QÛ2P̄ Ψ̂1 +QÛ3P̄ Ψ̂2 + Û3P̄ Ψ̂
2
1 + . . .

)︂
|0⟩ = 0 (5.126)

Using P̄ Ψ̂1 = 0 and P Ψ̂2 = 0, we have(︂
QÛ2Ψ̂1 + Û3P Ψ̂

2
1 + . . .

)︂
|0⟩ = 0 (5.127)(︂

QÛ3Ψ̂2 + Û3P̄ Ψ̂
2
1 + . . .

)︂
|0⟩ = 0 (5.128)
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We can solve (5.128) thanks to the pseudo-Schnabl gauge condition and the
commuting of Q and wedges

Ψ̂2 = −B0

L0
P̄ Ψ̂

2
1, (5.129)

but this leaves (5.127) unsolved, which is now not a single equations but an
infinity of equations thanks to the different wedge lengths present. This means
that we can’t simply determine the coupling λ by solving a single equations.
We thus see that simply moving propagators behind wedge states doesn’t give
a solution to (5.124). We note that for exactly marginal deformations, where
we don’t need projectors and QΨ̂1 = 0, pseudo-Schnabl gauge gives a perfectly
fine solution [86, 115]. We are not sure to what extend the pseudo-Schnabl
gauge string field can be modified to give a proper solution, but we now
demonstrate that despite being anomalous, it gave us the correct g-function
(3.61). To show why this might happen, we consider the shift in the g function
Tr1 Ψ, where Ψ is the Schnabl gauge solution and we start applying the
Berkovits-Schnabl trick to it order by order. We start with the contribution
g(Ψ2)

g(Ψ2) = Tr1 Ψ2 = − Tr1
B0

L0
P̄ Û3Ψ̂

2
1 = − Tr1

B0

L0
P̄ Û3P Ψ̂

2
1

− Tr1
B0

L0
P̄ Û3

{︃B0

L0
P̄ , Q

}︃
Ψ̂

2
1 = − Tr1

B0

L0
P̄ Û3

{︃B0

L0
P̄ , Q

}︃
Ψ̂

2
1

= − Tr1
B0

L0
P̄ Û3

B0

L0
P̄QΨ̂

2
1 − Tr1

B0

L0
P̄ Û3Q

B0

L0
P̄ Ψ̂

2
1

= − Tr1
B0

L0
P̄ Û3Q

B0

L0
P̄ Ψ̂

2
1 = − Tr1 Û3

B0

L0
P̄ Ψ̂

2
1,

where we used
Tr1

B0

L0
P̄ Û3P Ψ̂

2
1 = 0, (5.130)

since ⟨V ⟩ = 0 and

Tr1
B0

L0
P̄ Û3

B0

L0
P̄QΨ̂

2
1 = Tr1

B0

L0
P̄ Û3

B0

L0
P̄
[︂
QΨ1̂,Ψ1̂

]︂
= 0, (5.131)

as follows from the cyclicity of the Ellwood invariant. Also in

Tr1
B0

L0
P̄ Û3Q

B0

L0
P̄ Ψ̂

2
1 = Tr1 Û3

B0

L0
P̄ Ψ̂

2
1,

one acts with Q to the left and uses the fact that the bulk insertion is physical
due to dressing. Thus we have proved that given the same coupling λ, the
Schnabl gauge and the pseudo-Schnabl gauge string field give the same g-
function at second order. We continue by constructing the pseudo gauge
string fields and then compute the shift in the g-function.
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5.5.1 Second order string field
By the general formula for star products of wedges with insertions (can be
seen geometrically)

Û rΨ(x) |0⟩ ∗ Û sϕ(y) |0⟩ = Û r+s−1Ψ
(︃
x+ s− 1

2

)︃
ϕ
(︃
y − r − 1

2

)︃
|0⟩ (5.132)

and by our perturbative construction (5.5) we have

Ψ2 = −λ2Û3

(︃
P̄

B0

L0
cV

(︃1
2

)︃
cV

(︃
−1

2

)︃)︃
|0⟩ ≡ Û3Ψ̂2 |0⟩ (5.133)

We use the OPE (5.56), twist symmetry and taylor expansion around zero to
regularise as

cV (x)cV (−x) = cV (x)cV (−x) ± c∂c(0)
(2x)2h−1 ± CV V V

c∂cV (0)
(2x)h−1 (5.134)

Using the identities derived by contour methods in sliver frame (b(z)c(w) ∼
1

z−w
)

[B0, c(w)] =
∮︂
w

dz
2πi zb(z)c(w) = w (5.135)

[B0, ∂c(w)] =
∮︂
w

dz
2πi zb(z)∂c(w) = 1 (5.136)

one has

Ψ2 = −λ2Û3

(︄
P̄

1
L0

(︂1
2

(︃
c
(︃1

2

)︃
+ c

(︃
−1

2

)︃)︃
V
(︃1

2

)︃
V
(︃

−1
2

)︃

∓ c(0) ∓ CV V V cV (0)
)︂)︄

|0⟩

and using explicit division by L0 on the plus branch and (4.139) on the rest
while projecting out the contribution to a y-pole we get the final expression
for the second order string field in pseudo-Schnabl gauge

Ψ2 = −λ2Û3

(︄∫︂ 1

0

ds

s

(︃
s2h−1 1

2

(︃
c
(︃
s

2

)︃
+ c

(︃
−s

2

)︃)︃
V
(︃
s

2

)︃
V
(︃

−s

2

)︃

− s−1c(0) − CV V V s
h−1cV (0) − c(0)

)︄
|0⟩

(5.137)

The same result can be obtained by using previously defined projectors P
and T . In contrast to Schnabl gauge, these projectors now act on unit wedges

152



with insertions so that on these states the general expressions (5.81) and
(5.105) simplify to

P (Φ |0⟩) = − 1
g0

(︃
π

2

)︃2h−2 (︃ 1
zh−1 ⟨cV (1)zL−Φ⟩C2

)︃ ⃓⃓⃓⃓
z=0

c∂cV |0⟩(5.138)

T (Φ |0⟩) = − 1
g0

(︃
π

2

)︃−2 (︂
z⟨c(1)zL−Φ⟩C2

)︂ ⃓⃓⃓⃓
z=0

c∂c |0⟩ (5.139)

where Φ is a ghost number two string of insertions of local operators. For
this order the relevant subtractions are given in (5.134) which is consistent
with the expressions (5.138) and (5.139) giving

P

(︄
cV

(︃1
2

)︃
cV

(︃
−1

2

)︃
|0⟩
)︄

= −CV V V c∂cV |0⟩ (5.140)

T

(︄
cV

(︃1
2

)︃
cV

(︃
−1

2

)︃
|0⟩
)︄

= −c∂c |0⟩ (5.141)

5.5.2 Third order string field

We now continue with the third order calculation beginning with the expression
generated by our perturbative procedure

Ψ3 = Û4Ψ̂3 |0⟩ = −Û4P̄
B0

L0

[︄[︄
λcV (0), Ψ̂2

]︄]︄
(2,3)

|0⟩ (5.142)

where we have defined a graded commutator-like symbol following [115]

[︄[︄
Ψ(x), ϕ(y)

]︄]︄
(r,s)

≡ Ψ
(︃
x+ s− 1

2

)︃
ϕ
(︃
y − r − 1

2

)︃

−(−1)|Ψ||ϕ|ϕ
(︃
y + r − 1

2

)︃
Ψ
(︃
x− s− 1

2

)︃
(5.143)
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which is motivated by (5.132). We begin by calculating the graded commutator
of λcV |0⟩ and Ψ̂2[︄[︄

λcV (0), Ψ̂2

]︄]︄
(2,3)

= −λ3
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so that after applying the projectors (5.138) and (5.139) we get

Ψ3 = λ3Û4
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5.5.3 Ellwood invariant
Plugging (5.137) into the Ellwood invariant, we immediately find

g (Ψ2) = −2πiλ2 i

2π2
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0
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With the use of (A.11) this becomes

g (Ψ2) = 2g0λ
2
(︄∫︂ 1

0

ds

s
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− 1
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and expanding in powers of y we get

g (Ψ2) = 2g0
1

(CV V V )2
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= O(y3) (5.148)

in accordance with (3.61).
Expanding (5.147) to third order one gets the finite contribution

g (Ψ2) = −g0
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(5.149)
The finiteness gives credit to the regularity of (5.137) and one may observe
that numerically this is the same as the analogous Schnabl gauge contribution
(5.116) which agrees with our discussion at the beginning of the section.

We continue by calculating the contribution from the third order string
field (5.145)

g (Ψ3) = −9g0λ
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where we used the cyclicity of the Ellwood invariant and correlators (A.11),
(A.12) on a cylinder of circumference 3. Combining (5.149) with (5.150)
while expanding in y gives the result for the third-order contribution to the
g-function
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as was to be reproduced by (3.61). The integrals are somewhat simpler than
in Schnabl gauge since we work with cylinders of fixed length.

We can also proceed by an analytic continuation regularisation similarly to
the Schnabl gauge case and we obtain for the contribution without subtractions
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Asymptotically expanding around s ∼ 0 we must make the following subtrac-
tion
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Where as for Schnabl gauge there is no plus branch of the subtraction since
the subtraction comes from cV |0⟩ in (5.137) and thus it is projected out by
P̄ . Again this argument corresponds to the analytic continuation (5.120).

Asymptotically expanding around t ∼ 0 we subtract and add a tachyonic
singularity while using analytic continuation (5.122) in the same way as for
Schnabl gauge with the result
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and since the zero modes are not present, this is precisely the contribution
(5.151) which was obtained from a regular string field.
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Conclusion

After providing exposure to field theoretic ideas in (1), we reviewed aspects
of (mostly two-dimensional) conformal field theory in (2). In this chapter we
also introduced conformal perturbation theory in the bulk, which serves as
a basis for the study of boundary conformal perturbation theory in (3). In
our context we used boundary conformal perturbation theory to compute
shifts in boundary state coefficients. Boundary states characterise a given
conformal boundary condition, which can be seen as having dynamics of its
own thanks to the presence of boundary fields.

We introduced Witten’s open string field theory as a very particular
framework for the study of conformal boundary conditions in (4). The
solutions of its classical equations of motion correspond to such boundary
conditions, which can be seen from the KMS correspondence [96] giving a
map between solutions to the classical equations of motion and boundary
states. We reviewed the basic analytic tools used to find solutions to the
classical equations of motion.

In the last chapter (5) we presented the research based on the collaboration
with Martin Schnabl of the perturbative classical solutions corresponding
to relevant deformations. In particular, we were interested in the limit
where the operators triggering such deformations are weakly relevant. In
this limit, we reproduced the leading order results of boundary conformal
perturbation theory. In particular, we reproduced the boundary degeneracy
g result of Affleck and Ludwig through a very simple computation of the
action and the shift of the general boundary state coefficient through the
Ellwood invariant. These results together with a remarkably simple formula
for the next-to-leading correction to the shift of g obtained in Siegel gauge
are to be submitted to PRL [1]. We also laid the groundwork for the study
of the spectrum of linearised fluctuations around these perturbative solutions.
The presented framework is illustrated on an example where we observe the
perturbing operator disappearing from the cohomology. Then we constructed
the perturbative solution in Schnabl gauge to third order. In doing so, we had
to tackle the very important issue that in the perturbative solutions we often
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used projectors were oblique and we also had to modify Schnabl gauge to
account for a zero mode. The correct definition of the oblique projectors and
the appropriate handling of the zero mode was verified by reproducing the
leading order correction to g through the Ellwood invariant. We concluded
by presenting an argument why a naive attempt at a pseudo-Schnabl gauge
solution violates the equations of motion, but thanks to the properties of
observables may accidentaly give the correct result. This was explicitly shown
by constructing the third order pseudo-Schnabl gauge string field and again
reproducing the leading order correction to g with the use of the Ellwood
invariant.

A natural future direction would be to extend the computation of observ-
ables to higher orders. In particular, we might compute the next-to-leading
order shift to the general boundary state coefficient or even extend the com-
putation of g. One would hope to see a pattern in such high order results
and perhaps even make contact with on-shell string theory since we work in
the near-marginal limit. It seems difficult to carry out the calculation beyond
the next-to-leading order in Siegel gauge and that’s where the solution in
Schnabl gauge may come useful. Another direction would be to compute
other observables relevant for conformal perturbation theory such as shifts
in structure constants, conformal weights and the operator mixings. We
think that diagonalising the shifted Hamiltonian and computing the spectrum
of linearised fluctuations will be useful for this purpose. One might also
try to investigate solutions corresponding to weakly irrelevant deformations,
which go against the RG flow, something that was already observed in level
truncation [100]. Perhaps the perturbative framework can prove itself useful
in the study of the tachyon vacuum of the noncubic closed string field theory,
a first step might be to rephrase the result of [121].
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Appendix A

A list of useful correlators in
OSFT

Below we list some correlators that one finds useful in the study of OSFT.
See [61, 91] and (3) for more details.

A.1 Upper half-plane
On the UHP we have the following correlators of primary boundary fields as
fixed by conformal invariance

⟨Vi(x1)Vj(x2)⟩UHP = g0δij

x2h
12

(A.1)

⟨Vi(x1)Vj(x2)Vk(x3)⟩UHP = g0Cijk

x
hk−hi−hj

12 x
hj−hi−hk

13 x
hi−hj−hk

23
(A.2)

with g0 being the g-function of the perturbative vacuum, hi being conformal
weights and we suppress boundary condition indices on the boundary structure
constant Cijk. For an insertion of a single bulk field ϕ, we have

⟨ϕ(x+ iy, x− iy)⟩UHP = g0Bϕ1(2y)−∆, (A.3)

with ∆ being the weight of ϕ, and the bulk-boundary correlator

⟨ϕi(x+ iy, x− iy)Vj(r)⟩UHP = g0Bij

(2y)∆i−hj ((x− r)2 + y2)hj
, (A.4)

where Bij is a bulk-boundary structure constant. A special case is the
three-ghost correlator

⟨c(x1)c(x2)c(x3)⟩UHP = x12x13x23 (A.5)
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A.2 Disc frame
To get correlators in disc frame, we simply transform those on the UHP by
the map f(z) = i1−z

1+z
, to obtain the boundary correlators

⟨Vi(θ1)Vj(θ2)⟩disc = g0δij⃓⃓⃓
2 sin

(︂
θ12
2

)︂⃓⃓⃓2h (A.6)

⟨Vi(θ1)Vj(θ2)Vk(θ3)⟩disc =
g0Cijk⃓⃓⃓

2 sin
(︂

θ12
2

)︂⃓⃓⃓hk−hi−hj
⃓⃓⃓
2 sin

(︂
θ13
2

)︂⃓⃓⃓hj−hi−hk
⃓⃓⃓
2 sin

(︂
θ23
2

)︂⃓⃓⃓hi−hj−hk
(A.7)

and the bulk one-point function

⟨ϕ(r, θ)⟩disc = g0Bϕ1

(1 − r2)∆ , (A.8)

with the bulk-boundary correlator

⟨ϕ(r, θ1)V (θ2)⟩disc = g0BϕV (1 − r2)−∆
(︄

1 − r2

1 − 2r cos θ12 + r2

)︄h

(A.9)

The three-ghost correlator becomes

⟨c(θ1)c(θ2)c(θ3)⟩disc = 8 sin θ12

2 sin θ13

2 sin θ23

2 (A.10)

A.3 Cylinder frame
To get correlators on the cylinder of length L, we simply transform those on
the UHP by the map C−1

L (z) = L
π

tan πz
L

, to obtain the boundary correlators

⟨Vi(z1)Vj(z2)⟩CL
=
(︂π
L

)︂2h g0δij

sin
(︂

πz12
L

)︂2h (A.11)

⟨Vi(z1)Vj(z2)Vk(z3)⟩CL
=(︂π

L

)︂hi+hj+hk g0Cijk

sin
(︂

πz12
L

)︂hk−hi−hj sin
(︂

πz13
L

)︂hj−hi−hk sin
(︂

πz23
L

)︂hi−hj−hk
(A.12)

The bulk one-point function becomes

⟨ϕ(z, z̄)⟩CL
=
(︂π
L

)︂∆
g0Bϕ1 sin−∆

(︂π
L

|z − z̄|
)︂

(A.13)
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and the bulk-boundary correlator is

⟨ϕi(z1, z1̄)Vj(z2)⟩CL
=
(︂π
L

)︂∆
g0Bij sin−hj

(︂π
L
z12
)︂

sin−∆i+hj

(︂π
L

(z1 − z̄1)
)︂

(A.14)
The three-ghost correlator can be written in two ways

⟨c(z1)c(z2)c(z3)⟩CL
=

(︃
L

π

)︃3
sin
(︃
π

L
z12

)︃
sin
(︃
π

L
z13

)︃
sin
(︃
π

L
z23

)︃
(A.15)

= 1
4

(︃
L

π

)︃3 (︃
sin
(︃2πz12

L

)︃
− sin

(︃2πz13

L

)︃
+ sin

(︃2πz23

L

)︃)︃
We will also need correlators with the B ghost

⟨c(z1)c(z2)c(z3)B(z4)⟩CL
= L2

4π2

(︄
z14 sin

(︃2πz23

L

)︃
+ z23 sin

(︃2πz14

L

)︃
− z13 sin

(︃2πz24

L

)︃

−z24 sin
(︃2πz13

L

)︃
+ z12 sin

(︃2πz34

L

)︃
+ z34 sin

(︃2πz12

L

)︃)︄
(A.16)

Sometimes one encounters correlators involving K, for those it is useful to
imagine inserting a wedge state Ωα = e−αK , differentiating the correlator
without a K but with the wedge inserted with respect to α and setting α → 0.
An example would be

Tr
{︂√

ΩcΩcK2c
√

Ω
}︂

= lim
α→0

d2

dα2 Tr
{︂√

ΩcΩcΩαc
√

Ω
}︂

= lim
α→0

d2

dα2 ⟨c(1 + α)c(α)c(0)⟩C2+α = 8
π2 (A.17)
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Appendix B

Kaluza-Klein reduction on S1

In this appendix we study the Kaluza-Klein theory with compactification on
a circle S1. This means that we consider a product spacetime M × S1 and
observe the U(1) symmetry of S1 turning into a U(1) gauge symmetry of an
effective theory. The metric of this spacetime is generally parametrisable as

G = gµνdxµdxν + χ2(dxd + Aµdxµ)2, (B.1)

with gµν = gµν(xµ, xd), χ = χ(xµ, xd) and Aµ = Aµ(xµ, xd). In addition one
has xd ∼ xd + 2πR, R being the radius of S1.

B.1 The spectrum
We consider a massless scalar field Φ and for simplicity we have χ = 1. By
the compactness of the d-direction we have the usual quantisation of the
momentum in this direction

pd = n

R
, (B.2)

where n is an integer. From the periodicity we can expand

Φ(xµ, xd) =
∞∑︂

n=−∞
Φn(xµ) exp

{︃
−ixd n

R

}︃
(B.3)

and the Klein-Gordon equation (1.26) gives

∂2Φn = n2

R2 Φn, (B.4)

where ∂ is in the xµ coordinates. This means that the mass of the scalar in
the d dimensions becomes parametrised by n

m2
d = n2

R2 (B.5)
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giving rise to an infinite tower of massive states. For small enough R,
these are so heavy that we observe only the massless n = 0 mode so that
Φ(xµ, xd) = Φ0(xµ).

In general, the massless modes of Kaluza-Klein theory are characterised
by the effective D = d+ 1 dimensional metric

Geff = gµνdxµdxν + χ2(dxd + Aµdxµ)2, (B.6)

with gµν = gµν(xµ), χ = χ(xµ) and Aµ = Aµ(xµ). This ansatz is the most
general one with translation invariance in the d-direction, reflecting that
n = 0. Reparametrisation invariance enforces that Aµ is a gauge potential
since xd ∼ xd + Λ(xµ) enforces Aµ ∼ Aµ − ∂µΛ(xµ). We remark that Aµ has
nontrivial dynamics even in the case when it is constant since a compact
direction is present. Seeing this gauge invariance, we think that the Maxwell
theory should appear in the action describing the spacetime dynamics of Geff .
This is indeed the case as we show in the next section.

B.2 The Ricci scalar
We begin by calculating the Ricci scalar R of the Levi-Civita curvature
associated to the metric (B.6). The computation serves as a nice exercise in
Cartan’s formalism. We rewrite the metric (B.6) in an orthonormal frame

Geff = ηmne
men + eded, (B.7)

where ηmn is the Minkowski metric whose indices go from 0 to d− 1 and

ed = χ(dxd + A) (B.8)

Using the definition of the curvature form F = dA we have

ded = ∂k lnχek ∧ ed + χ

2Fkl e
k ∧ el (B.9)

By the first Cartan’s equation of structure deK + ωK
L ∧ eL = 0, where we

use the convention that the uppercase letter goes over the lowercase ones and
d, we find

ωd
k = ∂k lnχed + χ

2Fkl e
l (B.10)

We continue by writing out the structure equation for dek

dek = −ωk
L ∧ eL = −ωk

l ∧ el − ωk
d ∧ ed (B.11)
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By ωKL = ω[KL] and (B.10) we have ωk
d ∧ ed = χ

2F
k
l e

l ∧ ed. Using this together
with (B.11) and the fact that we could have computed dek for the metric
without the d-direction (quantities refering to this metric we denote with a
tilde) we get

ωk
l = ω̃k

l − χ

2F
k
l e

d (B.12)

Now we write out the second Cartan’s equation of structure ΩK
L = dωK

L +
ωK

M ∧ ωM
L for the lowercase directions

Ωk
l = dωk

l + ωk
m ∧ ωm

l + ωk
d ∧ ωd

l (B.13)

With some foresight we now neglect terms containing ek ∧ ed since these do
not contribute to R (this is denoted by ≃) and we then find

Ωk
l ≃ Ω̃k

l − χ2

4

(︃
F k

l Fmn + 1
2(F k

mFln − F k
nFlm)

)︃
em ∧ en (B.14)

Another curvature two-form that we need to compute is Ωd
m

Ωd
m = dωd

m + ωd
n ∧ ωn

m (B.15)

≃
(︄
∂mo lnχ+ (∂m lnχ)(∂o lnχ) − χ2

4 F
n
mFno

)︄
eo ∧ ed (B.16)

where we neglected a term ∂n lnχed ∧ ω̃n
a since it gets traced out in R. This

is forced by the symmetry properties of ω.
From the curvature two-forms we find the necessary components of the

Riemann tensor R by comparison with ΩM
N = 1

2R
M

KL Ne
K ∧ eL so that

R m
kl n ≃ ˜︁R m

kl n − χ2

2

(︄
Fm

n Fkl + 1
2(Fm

k Fnl − Fm
l Fnk)

)︄
(B.17)

R d
dk l ≃ −

(︄
∂lk lnχ+ (∂k lnχ)(∂l lnχ) − χ2

4 F
n
l Fnk

)︄
(B.18)

Now using the definition of the Ricci tensor RicKL = R M
MK L we have

Rickl = ˜︃Rickl − χ2

4

(︄
F n

l Fnk + F n
k Fnl

)︄
− ∂lk lnχ− (∂k lnχ)(∂l lnχ) (B.19)

What is left is the computation of Ricdd but this is straightforward with the
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use of cyclicity of R

Ricdd = R n
nd d (B.20)

= ηmnRndmd (B.21)
= ηmnRdndm (B.22)
= ηmnR d

dn m (B.23)

≃ −ηmn

(︄
∂mn lnχ+ (∂m lnχ)(∂n lnχ) − χ2

4 F
o
mFon

)︄
(B.24)

≃ −
(︄
∂n∂

n lnχ+ (∂n lnχ)2 − χ2

4 F
mnFmn

)︄
(B.25)

Using the definition of the Ricci scalar R = ηABRicAB and writing invari-
ants in the original coordinates xµ we have the result

R = R̃ − 2∇2χ

χ
− χ2

4 F
µνFµν (B.26)

where ∇2 is the Beltrami Laplacian. We confirm our suspicion, the Maxwell
Lagrangian indeed appears.

B.3 The instanton
We specialise to the Kaluza-Klein theory with d = 4 and the spacetime
manifold M4 × S1, M4 being the four-dimensional Minkowski space, with
the metric

G = −dt2 + dx2 + dy2 + dz2 + dϕ2 (B.27)
where we renamed x5 ≡ ϕ. It is trivial to see that G is a solution to Einstein’s
equations just as M5 is. We show that the spacetime corresponding to G
is unstable due to the presence of an instanton, see the section (1.6) for the
necessary background and references. Analogously to the procedure outlined
in the section on instantons, we begin with the Euclidean theory with t = iτ
and the metric

G = dτ 2 + dx2 + dy2 + dz2 + dϕ2 = dr2 + r2dΘ2
3 + dϕ2 (B.28)

where the latter form is obtained by switching to spherical coordinates and
there dΘ2

3 is a line element of S3. We continue by considering a solution
to the vacuum Euclidean Einstein’s equations (a rotated five-dimensional
Schwarzschild solution)

g = dr2

1 − α
r2

+ r2dΘ2+
(︄

1 − α

r2

)︄
dϕ2 (B.29)
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which asymptotically approaches (B.28) so we see a potential for interpretation
as an instantonic solution connecting the original M4 × S1 to some other
vacuum. The solution (B.29) seems to be singular at the point r =

√
α, but

this is not the case because it is just a coordinate singularity analogous to
ρ = 0 in dρ2 + ρ2dϕ2. We would like to rewrite (B.29) so that near r =

√
α it

looks similar to the metric in polar coordinates near ρ = 0. To do this, we
consider an ansatz

ρ = c

(︄
1 − α

r2

)︄β

(B.30)

so that with some algebra

dr2

1 − α
r2

= α

4c2β2

(︄
ρ

c

)︄ 1−2β
β dρ2(︄

1 − (ρ
c
)

1
β

)︄3 (B.31)

To avoid the singularity we need this to look like dρ2 near ρ = 0, which forces
us to take β = 1

2 and c =
√
α. The periodic part of (B.29) can then be

rewritten (︄
1 − α

r2

)︄
dϕ2 = ρ2

α
dϕ2 (B.32)

showing that ϕ should be periodic with the period of 2π
√
α so that α = R2.

With this the instanton (B.29) becomes

g = dr2

1 − (R
r
)2 + r2dΘ2

3+
[︄
1−
(︄
R

r

)︄2]︄
dϕ2 (B.33)

Since ρ starts at 0, then by (B.30) we have r ≥ R. We wish to rotate the
instanton to Minkowski space to find its spacetime interpretation, in particular
we want to rotate dr2 + r2dΘ2

3 → dx2 + x2dΘ2
2 − dt2. To do so, we write

dΘ2
3 = dθ2 + sin2 θ dΘ2

2 (B.34)

Introducing the coordinates

x = r coshψ (B.35)
t = r sinhψ (B.36)

with θ = π
2 + iψ, we indeed have dr2 + r2dΘ2

3 = dx2 + x2dΘ2
2 − dt2 by virtue

of
dΘ2

3 = −dψ2 + cosh2 ψ dΘ2
2 (B.37)
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Finally using (B.37), the rotated instanton becomes

grot = dr2

1 − (R
r
)2 + r2(−dψ2 + cosh2 ψ dΘ2

2)+
[︄
1−
(︄
R

r

)︄2]︄
dϕ2 (B.38)

We may finally interpret the result and to do so, we observe that by the
definitions (B.35) and (B.36) we have r2 = x2 − t2 and since r ≥ R the metric
grot is defined only outside the hyperboloid

x2 − t2 ≤ R2 (B.39)

From the perspective of an observer in M4 a hole of radius R forms at t = 0
and then its boundary expands according to

x2 = t2 +R2 (B.40)

The boundary is accelerated uniformly and soon it expands at the speed
of light. So the region of space in which grot is defined shrinks and the
Kaluza-Klein vacuum M4 × S1 decays into nothing. In the light of section
(1.6), this is quite shocking since we would expect a false vacuum to decay
into some other true ground state.
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