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Introduction
As the High Luminosity LHC project continues to be the predominant program
at CERN, projects aiming to continue improving the state of physics after the
HL-LHC program are being considered. One of the proposals is a new collider
built with a 100 km circumference. The operation of the collider would be divided
into several stages, with the first stage being an electron-positron collider FCC-ee
aiming to improve accuracy of measured properties of heavy vector bosons, the
Higgs boson and the top quark. The following phase FCC-hh would run proton-
proton collisions with maximal luminosity reaching L = 3.1035 cm−2s−1. The
collider would be at the frontier of probing for physics beyond Standard model
and measuring currently known couplings with heretofore unreached precision.

The neutral pions created in collision decay predominantly into two photons,
contributing significantly to electromagnetic showers in the hadronic and elec-
tromagnetic calorimeter. They are an abundant final state product of numerous
processes and their identification is important in subsequent reconstruction of τ
leptons and various hadrons. Due to the Lorentz boost of the pion frame, the
decay products are observed to be highly collimated with the decay angle rapidly
decreasing with growing energy. The resultant showers in the calorimeter largely
overlap and due to this it then becomes challenging to distinguish di-photon
clusters originating from π0 from background of single photons.

Because clustering algorithms tend to group the two decay photons into a
single cluster at higher energies, it becomes necessary to turn to other methods
when seeking satisfactory π0 detection. Aside from cluster information, we can
observe the information provided by calorimetric cells directly that reveal the
internal structure of the cluster and the profile of energy deposition in layers.
The variables characterizing the structure of clusters and energy deposition can
be subsequently analyzed via multivariate analysis methods. In this thesis, we
will work with data containing Monte Carlo simulations of passage of particles
through calorimetric environment at the FCC-ee. Two data samples in the energy
range of 0-100 GeV were used for the study — one consisting of single π0, the
other of single photons — containing information on reconstructed clusters and
cells. We will attempt to define the pions resolved by the clustering algorithm.
Next we will compare two multivariate analysis methods — the Rectangular Cuts
method and Boosted Decision Trees — to determine the reconstruction efficiency
of pions against single photon background.
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1. Neutral pion decay
1.1 Standard Model
The Standard Model is a spontaneously broken non-Abelian gauge theory de-
fined by the local SU(3)×SU(2)×U(1) symmetry. It describes interactions be-
tween elementary spin 1

2 fermions (distinguished by flavor and ordered into three
generations), spin 1 boson fields (W ±, Z, γ, G) and one Higgs scalar field H. A
non-Abelian field theory is a theory, where generators of the appropriate internal
symmetry do not commute. Explicitly, for a transformation of a field Ψ [1]

Ψ′ = SΨ
Ψ′ = ΨS−1 (1.1)

we can write the S as an exponential in the form

S = exp(iαaT a) (1.2)

where generators τa satisfy the commutation relation

[T a; T b] = ifabcT c (1.3)

fabc being the appropriate structure constant of the corresponding Lie group.
For SU(2) group the generators of the corresponding multiplet are conventionally
chosen as normalized Pauli matrices

T a = 1
2σa

and for the SU(3) group the generators become (again normalized) Gell-Mann
matrices

T a = 1
2λa

Whether the parameters αa depend on x or not defines if the theory is local
or global. The imposition of local gauge invariance is the reason behind the
introduction of the covariant derivative Dµ into the Standard Model Lagrangian

Dµ = ∂µ − igAa
µT a (1.4)

which in turn results in an interaction term, turning the otherwise free theory into
an interacting one. Using a perturbation expansion of an S matrix element into
an infinite series of terms containing the interaction term, we can calculate the
corresponding matrix elements for various processes up to an arbitrary order. The
constant g denotes a coupling constant. Aa

µ is a multiplet of vector fields, which
are then responsible for mediating the respective force. These fields transform as
[1]

Aa
µ

′ = Aa
µ − fabcαbAc

µ + 1
g

∂µαa (1.5)
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In a basic gauge theory, the vector bosons are by default massless — the elec-
troweak mediating bosons W and Z acquire mass via interaction with a scalar
Higgs field, which also generates masses of elementary fermions. As the Higgs
field does not directly couple to the photon or the gluon, they keep their zero
masses. A direct consequence of this is that while the weak force mediated by
heavy bosons is a short-range force, the electromagnetic field is long-range, be-
ing mediated by charge neutral massless photons. However, this principle does
not apply to the strong interaction, mediated by massless gluons with non-zero
color charge, which display a phenomenon called "color confinement" at low en-
ergies — confining quarks into hadrons. This phenomenon results in quantum
chromodynamics being unable to perturbatively describe bound states of quarks.

1.2 Properties of the neutral pion
The strong force binding quarks together is mediated by an octet of gluon fields
carrying color charge. Neutral pions (which we will also denote as π0) belong
to the octet of light pseudoscalar mesons and are described in the static quark
model as the bound state of uu and dd quarks, being a superposition [2]

uu − dd√
2

with the mass of mπ0 = (134.9768 ± 0.0005) MeV and the lifetime τπ0 = (8.43
± 0.13)×10−17 s [3]. Lifetime of the charged pions π± is several orders higher,
at (2.6033 ± 0.0005)×10−8 s. The reason for this is, while the decay of charged
pions is mediated via the weak force (primary decay products being µ leptons
and corresponding νµ neutrinos) the neutral pions decay predominantly via the
electromagnetic interaction. The main decay channels of π0 are

π0 −→ γ + γ; BR = 0.98823 ± 0.00034
π0 −→ γ + e+ + e−; BR = 0.01174 ± 0.00035

π0 −→ e+ + e− + e+ + e−; BR = (3.34 ± 0.16)×10−5

where the two-photon decay mode represents the main contribution to the neutral
pion decay width, followed by cases when one of the photon (or both) undergoes
a conversion into an electron-positron pair. Such decays are also known as single
and double Dalitz decays.

π mesons - both charged and neutral pions - play an important role in model-
ing strong nuclear force at low energies. Their existence was first predicted by
Hideki Yukawa and their role was understood to be that of mediators of residual
strong force between nucleons. Nonetheless, pions play an important role at high
energies as well. First direct observations of charged pions came from studying
cosmic radiation in the upper atmosphere, where they are produced in collisions
of high energy protons with the atmosphere. Neutral pions are produced in all
modern hadron colliders, where they form an important part of hadronic showers
in calorimeters and contribute to their electromagnetic portion via the important
double-photon decay. They also play an important role in τ lepton reconstruction,
being a part of multiple τ decay modes.
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1.2.1 Perturbative model of π0 decay via the triangle loop
The quarks making up π0 are confined according to principles of quantum chromo-
dynamics below the scale at which the running strong coupling constant diverges
at the leading order. Due to their inherent non-perturbative nature, neutral
pion decays cannot be fully and accurately described via an infinite perturba-
tive expansion. However, there is still a number of phenomenological models,
which attempt to calculate its decay width with varying degrees of precision. An
example of such model is based on the interaction Lagrangian

L = igΨpγ5Ψpπ (1.6)

describing a pseudoscalar coupling of proton and π0. Proton is considered in this
model to be a point-like fermion, which directly couples to the photon field. The
decay π0 → γγ then proceeds via a closed proton loop, as displayed on figure 1.1

Figure 1.1: A decay of π0 via closed loop with Bose symmetrization explicitly
pictured

As the loop integral is convergent, the final result for the decay width is finite.
In the limit q2 << m2

p, where q is the pion momentum, we get a result

Γ(π0 → γγ) = 1
64π

m3
π0

α2

π2
1
f 2

π

(1.7)

where fπ
.= 93 MeV is an experimentally determined constant also present

in decays of charged pions. Numerically, the above expression is equivalent to
lifetime of approximately 8.58×10−17 s. The result is in a good agreement with
the experimental value, predicting well the order and the approximate value.

1.2.2 Kinematics of the π0 decay
When observing the π0 → γγ decay, it is often the case that the angle between
the two photons is very small, which poses a challenge for most modern detectors.
The reason behind such small angle and its dependence on π0 energy can be easily
described by a simple boost from center-of-mass (CMS) frame to the laboratory
frame. In the CMS frame, the angle between the decay products is equal to θ′ = π;
the direction of flight of both photons is oriented opposite to each other alongside
a randomly oriented axis. The energy of the decay products is ECMS

γ = mπ/2 in
order to conserve total energy. The photon momenta then form a sphere with a
diameter equal to mpi0 . If the z axis is taken to be identical to the direction of π0

movement, then working in spherical coordinates we can write the four-momenta
of the decay products in the CMS frame as

6



P CMS
± = mπ

2 (1, ± sin θ cos ϕ, ± sin θ sin ϕ, ± cos θ) (1.8)

Where we set Eγ = p and ϕ = arctan(y/x), θ = arccos(z/r), r =
√

x2 + y2 + z2 =
mπ/2. The number of photons per space angle Ω displays a constant distribution
for ϕ and θ given by

dNγ

dΩ = dNγ

d(cos θ)dϕ
= C (1.9)

Via Lorentz transformation we then boost the P CMS
± four-momenta into the labo-

ratory frame, which then results in the observed decay angle α being the angle be-
tween the transformed momenta p±⃗

′. The minimal decay angle αmin corresponds
to a decay symmetric around the z axis in the CMS frame — when θ = π/2. The
angle is then equal to

sin αmin

2 = mπ

Eπ

(1.10)

Dependence of the minimal decay angle on π0 energy is explicitly displayed on the
graph 1.2. As per (1.9) the distribution of Nγ reaches a maximum for θ = π/2, a
majority of the decay angles observed will be in the immediate vicinity of αmin.
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5
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]° [
m
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α 

Figure 1.2: Dependence of αmin on pion energy E
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2. Future Circular Collider
Future Circular Collider - FCC - is an option being considered to take over after
the operation of HL-LHC at CERN comes to an end. It offers significant improve-
ment on results and bigger available phase space for processes both investigated
currently, as well as being part of yet unprobed physics. The circular collider
with a circumference of 100 km is projected to operate at maximal center of mass
energy of p-p collisions reaching

√
s = 100 TeV and a maximal luminosity of L =

3.1035 cm−2s−1. This corresponds to O(20) ab−1 per experiment. The initial stage
of operation is projected to be a lepton collider FCC-ee [4] expected to gather
data on Z and H bosons and the strong interaction at maximal

√
s = 365 GeV

with a possible intermediate step of a lepton-hadron FCC-eh collider [5]. The
final stage of the FCC operation consists of a hadron collider FCC-hh [6] aiming
to study new potential interactions, rare decay modes and hypothetical heavy yet
undiscovered particles.

2.1 Coordinate system and unit definition
When working in the calorimetric environment it is useful to use the (r, ϕ, η)
coordinate system and identify the collision vertex as the coordinate zero point.
The ϕ and r coordinates determine the transverse plane, defined as the plane
orthogonal to the beam axis, which we identify as the z axis, when working in
Cartesian or cylindrical coordinates. The third coordinate, η, is then defined by
the equation

η = − ln tan
(︄

θ

2

)︄
(2.1)

where θ is the angle between the positive z axis and a momentum vector p, for
θ ∈ [π/2; 0] is η ∈ [0; ∞]. In the (η × ϕ) space, a distance is then given by the
relation

∆R =
√︂

(∆η)2 + (∆ϕ)2 (2.2)

When working with a particle momentum p we also define the transverse momen-
tum

pT =
√︂

p2
x + p2

y = |p| sin θ (2.3)

During an experiment we measure the transverse momentum and the (η, ϕ)
coordinates. To obtain the Cartesian momenta we can transform the measured
physical quantities according to the set of equations

px = pT sin ϕ

py = pT cos ϕ

pz = pT sinh η

|p| = pT cosh η

(2.4)
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2.1.1 Resolution of a calorimeter and sampling parameter
For the sake of energy reconstruction and particle identification, a calorimeter
is segmented in (∆η, ∆ϕ) that characterize its cell size (and subsequently gran-
ularity). Granularity can be homogeneous throughout the entire volume of the
calorimeter or vary through several layers. Along with granularity we use the
energy resolution of the calorimeter, defined as

σE

E
≈ a√

E
⊕ b

E
⊕ c (2.5)

where a is called the stochastic term that determines the contribution of statis-
tical fluctuations, b is the noise term accounting for electronic noise and c is a
constant term, that counts in any other random contributions to the measure-
ment uncertainty (such as material inhomogeneities). ⊕ represents a quadratic
summation. [7].
When working with sampling calorimeters, deposited energy is registered in the
active layers. Due to design of the calorimeter, however, this represents only a
fraction of the true shower energy, denoted as fsampl; thus the calorimeter needs
to be calibrated to account for this partial loss. The basic equation for the re-
constructed cell energy Erec reads

Erec = Edep

fsampl

(2.6)

where Edep is the energy deposited in the active material.

2.2 Physics at the FCC-ee
As a first stage of the proposed FCC program, the main objective of the circu-
lar e+e− collider is to measure properties of the Standard Model with previously
unattained precision and probe for deviations that would point to either very rare
couplings or high energy scales. The center of mass energy will be in the range
of 88-365 GeV to cover the electroweak sector along with the Higgs boson and
the top quark [4]. The FCC-ee will particularly focus on processes at center-of-
mass energies around the Z pole (91 GeV), the WW pair threshold (161 GeV),
ZH threshold (240 GeV) and tt̄ threshold (340-365 GeV) with the CMS energy
calibration precision reaching 100 keV level at the Z and WW scales. The cur-
rent state of measurements points to observable quantities in the electroweak
sector agreeing with the Standard model predictions within current uncertain-
ties. Therefore, it is of interest to reduce those uncertainties as much as possible
to uncover potential deviations from the SM predictions that would lead to new
physics. At the Z pole, luminosity will be increased by a factor of O(105) when
compared to LEP, which would decrease statistical uncertainties by a factor of
O(300). Aside from quantities such as the Z mass and decay width, we would im-
prove measurement of sin2 θeff

W by measuring forward-backward asymmetry AF B

in the e+e− → Z → µ+µ−. Last, but not least, we would be able to reduce ex-
perimental uncertainty on αS(mZ) by a factor of O(10) by measuring ratio Rl of
the Z hadronic width to the Z leptonic width. The Z also figures in e+e− → Zγ
process that will be used to study the decay of Z to neutrinos by measuring its
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invisible decay width, enabling us to directly test the unitarity of the neutrino
mixing matrix and search for right-handed quasi-sterile neutrinos.

At the WW and tt̄ production threshold, it is imperative to reduce the un-
certainties in measuring the W and t mass, as well as their electroweak coupling
values, as they play part in electroweak radiative corrections. Finally in the Higgs
sector, FCC-ee is expected to improve significantly on the data yet gathered by
the LHC - because higher order corrections to Higgs couplings are at the order
of few percent, measurements need to reach precision at least a few per mil. To
achieve such precision, at least 106 H bosons need to be produced with the most
productive channels being e+e− → HZ and e+e− → WW → H. Finally, the
FCC-ee is expected to reach precision of ±12% when measuring the Higgs trilin-
ear coupling (combined with measurements from HL-LHC and when only κλ is
allowed to vary). The luminosity parameters expected for working points of the
FCC-ee are displayed in the table 2.1.

Table 2.1: Design parameters of the CLD detector

Working point Tot. lum./year [ab−1/year] Run [years] Goal [ab−1]
Z pole
(88-94 GeV) 24 2 150
Z pole
(88-94 GeV) 48 2

WW threshold
(∼ 161 GeV) 6 1-2 10

ZH threshold
(∼ 240 GeV) 1.7 3 5

tt̄ threshold
(340-350 GeV) 0.20 1 0.2

tt̄ threshold
(∼ 365 GeV) 0.34 4 1.5

2.3 Detectors at the FCC-ee
To satisfy the requirements put onto the FCC-ee program regarding angular and
energy resolution, particle identification, missing energy resolution and tracking,
strict constraints are put on criteria the detectors must satisfy. The colliding
electron and positron bunches cross at an angle of 30 mrad via crab waist collision
scheme with the time between bunch crossings ranging from a minimum of 20 ns
to a maximum of 7 µs. High production of synchrotron photons and electron-
positron pairs in the general vicinity of the interaction region is to be expected
due to high luminosities, the first of these is to be addressed with tungsten masks
(see 2.1). Regarding the pair production, simulations indicate that most of the
resulting particles do not reach the detector and the background is therefore
moderate enough to be remedied using high readout electronics. Several detector
designs have been proposed and studied for FCC-ee, which I will present in the
subsections below.
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Figure 2.1: Scheme of the interaction point with the tungsten masks displayed
in blue. From point (a) to (b) the shielding is 0.1 mm thick, being replaced by a
15 mm thick tungsten cone (d) behind absorber (c) [4]

2.4 CLD detector
CLD, meaning "CLIC-Like Detector", is a design using a Si tracker and a 3D-
imaging calorimeter with high granularity. The dimensions of the CLD detector
are displayed in a table 2.2 with the layout displayed in figure 2.2

Figure 2.2: CLD detector layout with the transversal plane displayed on the left
and the longitudinal cut of the upper right quadrant pictured on the right, with
hadronic and electromagnetic calorimeters shown around the central tracking
region [4]
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Table 2.2: Design parameters of the CLD detector

Vertex inner radius [mm] 17
Tracker outer radius [m] 2.1
Tracker half length [m] 2.2
ECAL thickness [X0] 22
HCAL thickness [λI ] 5.5
Overall height [m] 12.0
Overall length [m] 10.6
Solenoid field [T] 2

The CLD detector follows the model designed for CLIC with the inner vertex
region consisting of a cylindrical silicon pixel vertex detector and a silicon tracker
followed by highly granular calorimeters. The vertex detector itself is divided into
a cylindrical barrel consisting of three double layers and disks covering the forward
regions, also divided into three double layers. The silicon tracker is divided into
the inner tracker built out of three barrel layers and sever forward disks. Beyond
that is located the outer tracker which completes the tracking region with three
barrel layer and four forward disks. Single-point resolution of the tracking system
is assumed to be 3 × 3 µm2 for the vertex detector, 5 × 5 µm2 for the first disk
of the inner tracker and 7 × 90 µm2 for the remaining layers of the inner and
outer tracker. Tracking efficiency for such configuration has been determined to
be 100 % for muons with pT > 1 GeV, remaining high even for lower energies
(eg. 96 % at pT > 0.1 GeV). The transverse momentum resolution σ(1/pT ) is
expected to be lower than 5 × 10−5 GeV−1 for high-momentum muons.

2.4.1 Calorimetry at the CLD detector
As pictured on 2.2, detection beyond the tracking region will be covered by an
electromagnetic calorimeter ECAL and a hadronic calorimeter HCAL. The base-
line option for the ECAL is a silicon-tungsten sampling calorimeter. The choice is
motivated by the particle flow method that is to be used at CLD, which individ-
ually reconstructs each particle and thus optimizes jet energy resolution [8]. The
ECAL is divided into 40 identical Si-W layers with segmentation of 5×5 mm2.
The segmentation has been chosen as to adequately resolve energy deposited by
particles in neighboring jets. The chosen number of layers has been found to
give the best γ energy resolution. Depth of the ECAL of 22 X0 has been then
determined to limit leakage into the HCAL.

Simulations have shown that when combining silicon tracker with high gran-
ularity calorimetry and particle flow reconstruction, jet energy resolution reaches
4.5 % for energies at 50 GeV, decreasing further down to 4 % at 100 GeV and
higher [8]. For single photons, stochastic term in the formula 2.5 has a value of
15%/

√︂
E(GeV ) for energies of 5-100 GeV.
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2.5 IDEA detector
IDEA, meaning "Innovative Detector for Electron-positron Accelerators", is an-
other proposition for a detector at FCC-ee. The proposal approaches detector
design differently than CLD and consists of a silicon pixel vertex detector with
the tracking region being a large volume short-drift wire chamber surrounded by
a layer of silicon micro-strip detectors. The vertex detector is based on a very
light design planned for the ALICE ITS upgrade, which features 5 µm resolution
and low dark-noise rate. Beyond that a pre-shower detector is located, which
ultimately leads to a dual-readout calorimeter. The relevant parameters of the
IDEA detector design are located in the table 2.3 along with a layout displayed
at 2.3.

Figure 2.3: IDEA detector layout [4]

Table 2.3: Design parameters of the IDEA detector

Vertex inner radius [mm] 17
Tracker outer radius [m] 2.0
Tracker half length [m] 2.0
DR calorimeter inner radius [m] 2.5
DR calorimeter outer radius [m] 4.5
DR calorimeter thickness [λI ] 7
Overall height [m] 11
Overall length [m] 13
Solenoid field [T] 2

The motivation behind using a wire drift chamber (DCH), as opposed to a
silicon tracker, is the low material budget of the DCH. The magnetic field to be
used in the wire chamber has a value of 2T and the chamber extends from inner
radius of 0.35 m to an outer radius of 2 m with length along the beam axis of
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4 m. The DCH consists of 112 co-axial layers arranged into 24 azimuthal sectors
with alternating sign stereo angles. This arrangement results in an approximately
square-shaped cell with an edge of 12.0-14.5 mm. The gas mixture within the
chamber is 90%He and 10%iC4H10 which together with the cell size amounts to a
maximal drift time of ≈400 ns. The ancestor of this design, MEG2 drift chamber
for the KLOE experiment, has reached a spatial resolution of 100 µm, which is
the conservative estimate also for the IDEA drift chamber. Together with cluster
counting/timing techniques, we expect improvement of the spatial resolution —
also resulting from longer drift distances, when compared to the MEG2. The
drift chamber is surrounded by a layer of silicon micro-strip detector to provide
additional position measurement. Coefficients in transverse momentum resolution
σ(1/pT ) = a⊕b/pT are expected to reach a ≃ 3×10−5 GeV−1 and b ≃ 0.6×10−3.

The drift chamber is followed by a preshower detector consisting of two alter-
nating layers of Micro Pattern Gas Detector (MPGD) chambers and absorbers.
In the barrel region, the magnetic coil acts as the first absorber and the second
absorber is made from lead. In the forward region, both absorber layers are lead
ones. The preshower detector further improve tracking resolution and accurately
determine impact point of charged particles and photons. They also aid in π0

identification by identifying the corresponding decay photon pairs.

2.5.1 Calorimetry at the IDEA detector
The calorimeter design for the IDEA detector is a lead-fibre dual-readout (DR)
environment with a thickness of approximately 7λI . A dual-readout design offers
many advantages over a sampling calorimeter design proposed for the CLD, as it
boasts excellent electromagnetic and hadronic shower energy resolution and par-
ticle discrimination. The calorimeter collects signals from scintillators (S) and
Cherenkov detectors (C) and combines them to reach resolution, which simula-
tions estimate at 10%/

√
E for electrons and 30%/

√
E for pions, constant terms

being negligibly small. For isolated particles, the DR calorimeter displays good
discrimination between muons, electrons, photons and hadrons using variables
such as the C/S ratio, lateral shower profile, charge-to-amplitude ratio and start-
ing time of the signal. The intrinsic discrimination ability will be paired with
fine transverse granularity to allow for good shower separation and aid particle-
flow reconstruction by matching showers to tracks from the inner region and to
muon tracks. Longitudinal segmentation of the calorimeter is an open problem
as of now, with multiple proposals being studied to optimize resolution of signals
produced by overlapping electromagnetic and hadronic showers.
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2.6 Detector concept with noble liquid calorime-
try at FCC-ee

Noble liquid calorimetry has been adapted to many experiments, such as NA48
[9], ATLAS [10], SLD [11] and others, with the ATLAS experiment at the LHC
being the latest example. It has been chosen for its energy resolution, linearity
of response and radiation hardness, among other advantages. A noble liquid LAr
calorimeter with high granularity is being studied for the FCC-hh detector due to
the harsh radiation environment expected at collisions with center-of-mass energy
reaching 100 TeV. For the purpose of a lepton collider, radiation hardness is not
a concern — however, the requirements of uniform and linear response, stability
and excellent resolution have led to proposals for a noble liquid calorimeter to be
used at the FCC-ee as well. A design of such detector is displayed on figure 2.4.

Figure 2.4: Detector concept for the FCC-ee with a LAr calorimeter [12]

The full detector concept is a modified design of the IDEA detector, with a
common drift chamber concept that together with a silicon pixel vertex detector
makes up the inner tracking region. The surrounding and forward regions are cov-
ered by ECAL and HCAL barrels together with respective endcaps and a HCAL
extended barrel calorimeter HEB. The proposed detector combines a liquid argon
(LAr) sampling electromagnetic calorimeter (ECAL) with an ATLAS TileCal-like
hadronic calorimeter made of scintillating tiles and steel absorbers, with signal
read out by silicon photomultipliers [8].The baseline idea for the absorber material
of ECAL is lead, with alternative proposals for the absorber being tungsten and
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liquid krypton or xenon considered as alternative active media[13]. The advan-
tage of such alternatives is smaller radiation length and Molière radius, which will
lead to more contained showers and better separation of close-laying clusters. The
baseline idea of a LAr calorimeter with 1.2 mm thickness of sensitive gaps near
the inner radius and 1.8 mm thick straight lead absorbers would have a thickness
of ∼ 22 X0 and a Molière radius of RM ≈ 4 cm. The absorbers are azimuthally
inclined by approximately 50◦. A cross-section of a sampling-calorimeter concept
for the FCC-ee is displayed on figure 2.5.

Figure 2.5: LAr calorimeter transversal cross-section [14]

The calorimeter is to be divided into twelve longitudinal layers with granu-
larity of the cells equal to ∆θ × ∆ϕ = 0.57◦ × 0.47◦ [13] which will result in a
typical cell size of about 2×2×3 cm3 [14]. Due to the inclination of the layers (as
seen on figure 2.5), sampling fraction fsampl of the calorimeter will be increasing
with depth. The effect of this will be combated by the longitudinal segmenta-
tion and energy calibration changing with depth. The first layer will be built
without absorber plates and will act as a presampler to correct for energy loss
upstream. A second strip layer has granularity brought further down to ∆θ ×∆ϕ
= 0.14◦ × 0.47◦ (corresponding to a cell size of 5.4 mm × 17.7 mm) and is aimed
at reconstruction of π0 and other particles decaying into a pair with very small
angle between the decay products. A sampling term of 8 % and a constant term
of 0.68 % has been achieved in performance studies for electrons and photons,
when considering leas absorbers and LAr active material. The sampling term has
been brought further down to 7 % when studying configuration with LKr or LXe,
or tungsten absorbers.
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2.7 Clustering at the FCC
Reconstructed cells are grouped together to create clusters that are used for
particle reconstruction and identification. There are two methods of clustering
used at the FCC, which we will introduce below.

2.7.1 Sliding window algorithm
The sliding window works with cell granularity in the η ×ϕ, without taking longi-
tudinal layers into consideration. It is used mostly for reconstruction of electrons
and photons. The starting point is building a tower in the radial direction, while
the dimensions in the η × ϕ space are kept constant — for illustration, see figure
2.6. In the simplest case, the tower size in η × ϕ is 1 × 1. The energy of the tower
is equal to the sum of cell energies in the tower [6].

Figure 2.6: Depiction of towers with fixed η ×ϕ dimensions in the sliding window
algorithm. The shaded area is a window that scans the towers for local energy
maxima [6]

The towers are then scanned by a window of a fixed size Nη × Nϕ centered
symmetrically around one tower that searches for local maxima. If the sum of
energies of towers in the window is above a preselected cut Ecut

T , a pre-cluster
is created with position being determined as a weighted average of cells in the
window [15]. It is possible for multiple pre-clusters to overlap, out of them only
the one containing the most energy is kept. Finally, the tower containing the
pre-cluster coordinates is selected as the central tower, around which is the final
cluster built. The cluster is located again within a fixed window with constant
η × ϕ dimensions; the size of the final window is selected to limit lateral shower
leakage and suppress noise contribution at the same time.
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2.7.2 Topological clustering
The topological clustering works instead with variable cluster size by grouping
together cells containing significant energies, when compared to the overall noise
levels. It is an iterative procedure that grows clusters procedurally in the out-
ward direction from the seed [15]. In contrast to the sliding window method,
topoclustering works in the radial dimension as well. The cells are topologically
connected together to form clusters while signals originating from noise contribu-
tion are rejected. Cell significance ξcell is then defined as [6]

ξcell =
⃓⃓⃓⃓
⃓ Ecell

σnoise
cell

⃓⃓⃓⃓
⃓ (2.7)

where σnoise
cell is the expected noise level in the cell (determined as the standard

deviation of a Gaussian noise distribution). The first step is searching for seeds,
which are defined as cells with significances above a cut ξcell ≥ S. The seeds are
then ordered by energy and every seed is assigned a protocluster. For each seed,
the neighboring cells are added to the protocluster if their significance is above
a set threshold T and if they haven’t been selected as seed cells. After being
included in the protocluster, they are considered as seeds and their neighbors are
considered next. If the neighboring cell is already assigned to another cluster and
its significance is above T or P , the two protoclusters are merged. Alternatively,
if T or P is set to 0, the cell will be assigned to the more energetic cluster of the
two, without merging. This step is repeated until there are no more neighbors
with significance above T . Finally, the cluster growing process is finished by
adding all neighboring cells on the immediate outer perimeter of the protocluster
with significance above a third cut P . Thus a cluster is created with irregular
shape, that is characterized typically by a core of cells containing highly significant
signals and a surrounding shell of cell with smaller energy deposits. In the case
of clusters being merged, it is possible to observe a cluster with more seeds. The
topological clustering is used for reconstruction of jets, for example.

2.8 Event simulations
The simulation of events in our thesis was carried out using Geant4 within
FCCSW, which is a set of packages, tools and standards to coordinate vari-
ous FCC studies, compare their results and avoid duplicate works [16]. Geant4
is an open toolkit for simulating passage of particles through matter that in-
cludes all aspects of the simulation process, such as tracking, system geometry,
physics models and processes governing the interactions, storage of events, hit
management, visualization [17] etc. Scales covered by the physics models of-
fered by Geant4 vary from 250 eV up to several PeV. The programming language
used in Geant4 is C++ and the simulation of processes is based on the Monte
Carlo method of random sampling. The interface for the generation of primary
particles that define a physics event is provided by the event category, which con-
tains the primary particles and vertices. The geometry category then describes
the detector geometry. Transportation of particles and representation of phys-
ical processes by characteristics such as "at rest", "along step" and "post step"
is handled by the tracking category. The physical properties of particles and
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materials are implemented in the particles and materials categories necessary
for the simulation of particle-matter interaction. Finally, the physics category
describes the physical processes, divided into several subcategories: particle de-
cay, electromagnetic physics, hadronic physics, transportation, optical physics,
photolepton-hadron physics and parametrization. When the simulation propa-
gates a particle through matter, the transportation is carried out in steps (in
units of time or length, depending on whether the process happens at rest or not)
determined by physics processes or by the detector geometry. While traversing
the detector, hits are recorded as snapshots of physical interactions in a sensitive
detector component. The hits are created using information provided in the cur-
rent step (for example energy loss), while the detector response is given by the
user. For the sake of the performance, cuts are applied on particle generation
in interactions (mainly to suppress the generation of large numbers of soft elec-
trons and photons when simulating passage of charged particles through matter).
When simulating a calorimeter, hits located inside a cell are summed with the
result being the whole energy deposited inside the cell, cell position and cell ID.
After simulating particle passage and energy deposition, the cells become input
for clustering algorithm. In this way, we obtain a full set of data that contains
information on the initial particle state along with the final detector output.
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3. Multivariate analysis
Multivariate analysis can be defined as a statistical study of data with simulta-
neous observation and analysis of multiple variables. It is used in experiments
when working with multiple measurements made on each experimental unit [18].
In physical experiments, this usually means using multiple variables (referred to
as discriminating variables) to test hypotheses about events present in the ex-
periment. Discriminating variables are provided by detectors (or calculated from
data provided) and are selected for their discriminating power for specific anal-
yses. The discriminating power is determined by the overlap of their respective
probability distribution functions (or "pdf"). In our thesis, the hypothesis be-
ing tested is a question, whether the signature is a signal (a neutral pion) or a
background (photon). The first case will be denoted as a null hypothesis H0, the
latter case then an alternate hypothesis H1.
A success of an analysis test can be characterized by quantities ϵS and rB. The
first quantity is the signal efficiency defined as the probability to accept a signal
event. It is related to the type I error α of the test as [19]

ϵS = 1 − α (3.1)

The latter quantity is the background rejection — the probability to reject a
background event, equal to

rB = 1 − β (3.2)

where β is the type II error of the test. A successful analysis displays the highest
possible rB for ϵS, which is the goal of multivariate analysis. The dependence
of the background rejection on signal efficiency constitutes a receiver operating
characteristic, or an ROC curve. A typical shape of an ROC curve is displayed
on figure 3.1.

Figure 3.1: An ROC curve displaying multiple tests with varying performance
[20] (edited for the purposes of this thesis)
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The final value of ϵS and rB is obtained by choosing a particular working point
(also known as WP) on the ROC curve. The conditions determining the choice
of the working point vary between experiments; we can work with ϵS at a re-
quired value of rB or we can demand that the working point maximizes the signal
significance.
An integral of the ROC curve (known also as AUROC, meaning "area under the
ROC") is often used to compare multiple analyses; the optimal test usually being
the one with the highest AUROC. This is connected to the fact, that a test with
the highest power is a test that maximizes likelihood λ(x⃗), defined as [21]

λ(x⃗) = S(x⃗)
B(x⃗) > cα (3.3)

where x⃗ is a set of discriminating variables and S and B are the probability dis-
tribution functions for signal and background respectively. cα is then a constant,
that determines the final signal efficiency (and size of the test α). As the shape
of a probability distribution function corresponding to a discriminating variable
in a real experiment is not exactly known, they are approximated by numerical
approaches that encompass various MVA methods.

3.1 Rectangular cuts
A simple MVA method is the method of rectangular cuts. The method consists
of applying a cut on each discriminating variable separately and identifying all
events excluded by the cut as background. The cuts are optimized by maximizing
the expected significance, which is done by fitting using a specific fitting method.
The fitters used most commonly for rectangular cuts are eg. Monte Carlo, Genetic
Algorithm and Simulated Annealing.

Figure 3.2: A simple visualization of rectangular cuts imposing a boundary be-
tween signal and background events [22]
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3.1.1 Monte Carlo
Monte Carlo approach consists of randomly sampling the fit parameters and
choosing the cuts that maximise the rB value for a given ϵS. The drawback of
this method is that for a large value of discriminating variables nvar, smoothness
of the ROC curve drops and the required number of MC samples to correctly
analyze data grows with powers of 2nvar. The main parameter influencing the
MC performance is the number of events in the toy sample.

3.1.2 Genetic Algorithm
The Genetic Algorithm finds approximate solutions to optimization problems
by modelling a population of genomes (abstract representations) of individuals
(possible solutions). The population then evolves towards an optimal solution of
the relevant problem by selecting individuals with good fitness to produce the next
generation and randomly changing (mutating) their parameters. The process is
repeated in a preselected number of steps, until the optimization converges. The
fitness of an individual is determined by a fitness function, that either returns a
value representing the fitness of an individual, or compares two individuals and
returns the better performing one. The parameters involved in GA algorithm are
the population size, number of steps for convergence and number of independent
cycles of fitting. Of these, population size is the most important value when
it comes to determining the quality of the results, at the cost of increasing the
optimization time.

3.1.3 Simulated Annealing
Simulated annealing aims to solve an optimization problem with several local or
global minima. The algorithm evolves the problem slowly to reach a convergence
with multiple solutions in a process inspired by a slow cooling (annealing) of met-
als, wherein atoms move slowly towards the state of the lowest energy. To avoid
possible local minima, parameters are perturbed with a probability proportional
to exp (−∆E/T ), where ∆E is an energy shift and T is an ambient temperature.

3.2 Boosted Decision Trees
A more advanced method of multivariate analysis is via Boosted Decision Trees
(BDT). Decision tree is, similarly to a rectangular cut, a binary classifier ana-
lyzing events and assigning them as a signal or a background by a sequence of
decisions on single variables, until the phase space is split into separate hyper-
cubes of signal/background events. The data used in training BDT algorithm
is weighted such that the sums of background and signal events respectively are
normalized to one. When building a decision tree, multiple cut values are tested
on every discriminating variable and then optimal splitting is selected by defining
a splitting index — the most common (and the one used in our analysis) being
the Gini index defined as [19]

G = p(1 − p) (3.4)
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where p is the signal purity of a phase space Φ defined as

p = NS

NS + NB

; S, B ∈ Φ (3.5)

Ni being the number of background/signal events contained in Φ. The optimal
cut is then determined as the one corresponding to maximum of the difference C:

C = N0G0 − N1G1 − N2G2 (3.6)

Indices 1 and 2 designate two nodes created by a single branching of one root node
with index 0, the Gini indices in the equation are weighted by the total number of
events in each corresponding phase space. The final nodes are called leaves, which
are then collectively designated as signal or background — the decision tree can
be then after training applied on a test sample to check its performance, when
events pass through the tree and are classified as signal or background according
to their location among the final nodes. With enough branchings during the
training phase, we could split the phase space of events and background into two
sets of hypercubes containing pure signal and background — the result of such
process would be an extremely overtrained decision tree with very little testing
power. The boundary between background and signal would encompass any
statistical fluctuations present in the distribution of the two types of events, to
which decision trees are already sensitive. To reduce the effect of this sensitivity
on performance and to enhance classification performance, decision trees undergo
boosting or bagging. Boosting involves growing a large number of decision trees
in order to counter statistical fluctuations. The number of trees being grown
during boosting is a basic free parameter of the algorithm which determines the
precision of classification, however with higher number of trees we risk quickly
overtraining the boosted decision tree; other free parameters are maximum depth
of the tree that limits number of branchings and leaf size that puts upper limit
on the percentage of the original sample to be contained in the final node. Below
we will introduce two most common boosting algorithms.

3.2.1 Adaptive Boost
Adaptive Boost, or AdaBoost, is an algorithm that works by modifying weights
of events misclassified by a preceding decision tree. The misclassified events are
reweighted by a higher weights (with the rest of the events being reweighted
so that the sum of weights remains constant) and the modified sample is used
to train the next decision tree. The magnitude of reweighting is determined by
parameters α and β with α being given by the misclassification rate ϵ of a previous
decision tree

α = 1 − ϵ

ϵ
(3.7)

The β parameter is the learning rate of the AdaBoost algorithm that works by
modyfing the boost parameter as α −→ αβ and it is a free parameter of the BDT
algorithm. By lowering β we can reduce overtraining at the expense of lower
sensitivity to event misclassification during the training period. The modified
weight of the misclassified j-th event in the i-th tree is then equal to
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wi,j = wi−1,jαj−1

∑︁
i wi−1,j∑︁

i wi,j

(3.8)

The final output is the BDT score t(x⃗) and it is given as the sum [23]

t(x⃗) =
∑︁

i ln(αi)ti(x⃗)
N

(3.9)

where ti(x⃗) = 1 for an event identified as signal and ti(x⃗) = −1 for an event iden-
tified as background. To classify events as signal or background (and determine
final signal efficiency or background rejection), the algorithm applies a cut on
t(x⃗), classifying events below (above) the cut as background (signal). Adaptive
boost performs well when combined with weak classifiers characterized by small
maximum depth and large leaf size to prevent overtraining, boosting their per-
formance significantly. Combined with β chosen suitably for a specific sample,
the AdaBoost algorithm makes for a powerful boosting tool.

3.2.2 Gradient Boost
Gradient boost is an algorithm that works by minimizing the classification error
from the previous tree. When growing trees, each tree is assigned a base function
f(x; ai), the final output being characterized by a function

F (x⃗) =
∑︂

i

bifi(x; ai) (3.10)

The boosting algorithm then adjusts parameters ai, bi such that the deviation
between the model function F (x⃗) and the value y obtained from training is min-
imized. The deviation is characterized by a loss function L(F, y), defined for
classification by the Gradient Boost algorithm as [23]

L(F, y) = ln(1 + exp(−2yF (x⃗))) (3.11)

Similarly to AdaBoost algorithm, Gradient Boost performs best for shallow
decision trees to prevent overtraining. In analogy to the β parameter of AdaBoost,
the resistance to overtraining can be enhanced by controlling the Shrinkage pa-
rameter, which determines the weight of individual trees and controls the learning
rate of the algorithm.

3.2.3 Bagging
Aside from boosting, there is another technique to enhance the performance of
decision trees and reduce overtraining. Bagging refers to a procedure, when the
original training sample is resampled into a new training sample with possible
replacement — a possibility that an event occurs multiple times in the new train-
ing sample. A classifier is then repeatedly trained using new samples, growing a
large number of individual trees. The final combined classifier is a combination
of individual trees. In contrast to boosting, bagging does not enhance the perfor-
mance of weak trees, rather it aims to counter statistical fluctuations present in
individual trees by cancelling and averaging them out by summing over a large
number of trees with resampled training events.
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3.3 TMVA Package in ROOT
The TMVA package in ROOT provides an environment for multivariate analysis
— classification and regression — of data using numerous methods designed for
use mainly in high-energy particle physics. The methods encompassed in TMVA
package are [23]

1. Rectangular cuts

2. Projective likelihood method (PDE range-search, PDE-foam)

3. k-NN classifier

4. H-matrix discriminant

5. Linear discriminant analysis

6. Function discriminant analysis

7. Artifical neural networks

8. Deep learning methods (deep neural networks, convolutional neural net-
works, recurrent neural networks)

9. Boosted decision trees

10. Support vector machine

11. Predictive learning RuleFit

12. PyTMVA - Keras

Algorithms listed above all function by supervised learning, meaning that they
are trained on data with known signal/background distribution to determine the
phase space distribution which classifies events during testing as signal/background.
During training the discriminating variables are analyzed to estimate their dis-
criminating power, assess their linear correlation coefficients and for classification
the package is able to decorrelate the variables by eg. transforming them into a
normalized Gaussian shape. After classification, information is given along with
calculated ROC curve and AUROC — which is also used by the TMVA to rate
different MVA methods on their performance. The package provides tools that
enable the user to optimize the parameters of MVA methods and in the case of
decision trees provides information on overtraining via applying the Kolmogorov-
Smirnov test onto a randomly selected subsample from the testing data.

In this thesis, we opted for using the Rectangular cuts method and Boosted
decision trees to compare their performance and highlight the superior perfor-
mance of BDT algorithm when used to discriminate between largely overlapping
signal and background events. As a tool, the TMVA package is useful for practi-
cal analysis as well as an introduction to multivariate analysis due to its simple
use and quick learnability for people already familiar with ROOT.
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4. Pion identification
4.1 Source data statistics
For the study of neutral pion resolution the calorimetric environment was sim-
ulated in FCCSW software. The calorimeter was simulated using two separate
granularity designs. The granularity settings of the designs were ∆θ × ∆ϕ =
0.57◦ × 0.47◦ as the lower granularity setting and ∆θ × ∆ϕ = 0.14◦ × 0.47◦ as
higher granularity. The motivation behind studying higher granularity environ-
ment is the inclusion of a strip layer in the detector design described in section
2.6. Using Geant4 we simulated signal of 100 000 neutral pions. As a background
we simulated 100 000 photons. For the purposes of this thesis we worked in the
energy range of 0 to 100 GeV. The distribution of η, ϕ and energy E of the initial
state photons is displayed on figures 4.1, 4.2 and 4.3. The entire statistic along
with pions can be found in Appendix A.1.
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Figure 4.1: Distribution of η for photons
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Figure 4.2: Distribution of E for photons
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Figure 4.3: Distribution of ϕ for photons
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4.2 Clustering
The clusters in the final state were reconstructed by both the sliding window
algorithm and the topological clustering. The size of the sliding window used in
our data was 9 × 17 cells in η × ϕ and the energy threshold for soft particle pro-
duction in showers was 0.05 GeV. Using the sliding window method, we typically
obtained a low number of clusters for pions, with very few events containing more
than 2 clusters. On the other hand, using the topological clustering we obtained
a number of low-energy clusters for every event, in addition to a main cluster
containing the majority of energy of the mother particle. The distribution of the
number of clusters created by the respective methods is displayed on figures 4.4
and 4.5.

0 1 2 3 4 5 6
C N

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

 E
ve

nt
s

0 5 10 15 20 25 30 35 40 45
T N

0

1000

2000

3000

4000

5000

6000

 E
ve

nt
s

Figure 4.4: The number of clusters generated by the sliding window method NC

and topological clustering NT for π0 with lower granularity
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Figure 4.5: The number of clusters generated by the sliding window method NC

and topological clustering NT for γ with lower granularity

The difference between sliding window and topological clustering is clearly
visible on the histograms above. The number of clusters created by the sliding
window algorithm is small and equal to one for an overwhelming majority of the
events, with a small minority of events being reconstructed with two clusters in
the final states. The two-cluster final states could be identified with pion decays;
however in order to be precise we would have to reconstruct the invariant mass
of those two clusters and check whether it corresponds to the pion rest mass.
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However, even then the efficiency of neutral pion identification would be very
low, as we observed in section 4.3. On the other hand, the topological clustering
method created a large number of clusters in the final state. The difference
between working with lower and higher granularity was negligible in terms of
sliding window cluster distributions. For topological clustering the number of
created clusters per event was increased by a factor of O(10) when working with
smaller cell size.

4.3 Identification of resolved π0s
Our first task was to identify events, where the clustering mechanism was able
to reconstruct the photon pair as a pair of sliding window clusters. In order to
correctly identify cluster pairs corresponding directly to the pion decay we com-
puted the invariant mass m of two sliding window clusters. The full distribution
of m is shown on figure 4.6, with what can be interpreted as the neutral pion
mass peak visible at 0.149 GeV. To reject events beyond this peak, a cut was
employed that accepted events with m ≤ 0.230 GeV. We then calculated ratio of
accepted events to all events in an energy bin to obtain a dependence displayed
on figure 4.7.
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Figure 4.6: Sliding window cluster invariant mass distribution with the cut at
E=0.230 GeV indicated
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Figure 4.7: Dependence of resolved π0 identification efficiency ϵS on pion energy
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We observed that regardless of the calorimeter granularity, the probability drops
off sharply between 0-10 GeV, beyond which it slowly tends to zero at E >
70 GeV. This is caused by the fact that our clustering algorithm was not optimized
for π0 identification. Minimal angle separating two decay photons at E = 10 GeV
(beyond which the ϵS rapid descend slows and gradually tends to zero) is αmin =
1.59◦. To compare this with cell size of ∆θ × ∆ϕ = 0.57◦ × 0.47◦, the separation
of photons is only ∼3 cells at this energy for lower granularity and ∼12 cells for
higher granularity. Compared with the size of our sliding window — 9 × 17 cells
in η×ϕ — we can immediately identify the reason behind cluster merging beyond
E ∼ 10 GeV.

4.4 Discriminating variables
In an ideal case, we would be able to reconstruct the π0 decay as a pair of
clusters, each corresponding to the relevant decay photon. In reality however,
the electromagnetic showers caused by these photons largely overlap, a problem
that becomes more pronounced when dealing with π0 particles at higher energies
(as discussed in section 1.2.2). To discriminate between π0 and γ showers, we
need to study the shower substructure using the energy deposition in cells. We
chose a number of discriminating variables that represent the energy distribution
in an electromagnetic shower. The variables are defined as:
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1. Emax - The energy contained in a cell with the largest energy deposit in the
second layer of the calorimeter

2. E2max - The second largest energy deposit in the second layer of the calorime-
ter

3. Eocore - Energy deposited in cells surrounding the shower centre defined as

Eocore = E(3) − E(1)
E(1) (4.1)

where E(n) is the total energy deposited in ±n cells surrounding the cell
with the highest energy deposit

4. En as the sum of energy contained in the first n layers of the calorimeter

5. Ei1 - Energy deposited in the ith layer of the calorimeter divided by energy
deposited in the first layer

Ei1 = Ei

E1
(4.2)

6. EiT - Energy deposited in the ith layer of the calorimeter divided by the
total energy deposited in the calorimeter

EiT = Ei

E
(4.3)

7. Wnl - variable determining shower width in a calorimeter layer l, defined as
a normalized sum of energy over ±n cells in the η coordinate and ±1 cells
in ϕ, weighted by the distance in the η × ϕ space

Wnl =
∑︁n

i=1 Ei × ∆R2∑︁n
i=1 Ei

(4.4)

where ∆R is defined as

∆R2 = (η − ηmax)2 + (ϕ − ϕmax)2 (4.5)

Variable Ei1 was calculated for i = 2, i = 3. The variable EiT was calculated for
i = 1, i = 1 and i = 3. Finally, Wnl was calculated in the third layer for n = 3.
The distribution was calculated for multiple energy bins in order to observe the
effect of particle energy on the distribution shape. A selection of the variables
is displayed on figure 4.8 for the energy range E = 30-50 GeV. The whole set of
discriminating variables’ distribution for various intervals of energy is displayed
in Appendix A.2. The variables were also calculated separately for higher and
lower granularity. In order to account for possible singularities, events with zero
energy deposit for any layer were discarded, leading to a partial loss of events in
the range of 0-15 GeV.
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Figure 4.8: Distribution of discriminating variables for pion and photon showers
at energies of E = 30-50 GeV in a lower granularity environment

4.5 Rectangular cuts
At the beginning the question was how to choose optimal cuts that would reject
a significant portion of the background without loosing too much of the signal.
The first simplest trial was to impose cuts by hand when using a small sample of
discriminating variables — Emax, E2max and Eocore. We worked with data in a bin
of 10-30 GeV. The variables were divided into a grid with points corresponding
to cut values, for which we calculated ϵS, rB and significance s defined as

s = S√
S + B

(4.6)

where S(B) is the number of signal(background) events passing the cut. Out
of the points we selected the optimal set of cuts as the set with maximal signif-
icance. This manual approach was compared with the TMVA Rectangular cuts
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(henceforth also "Cuts") method, the main advantage of this method being its
ease of use, transparency and robustness when it comes to overtraining. We also
aimed to compare its performance to latter use of Boosted Decision Trees. For
the multivariate parameter fitter we opted to use the Genetic Algorithm method.
When compared to Monte Carlo method used for the Cuts MVA method, opti-
mization by Genetic Algorithm exhibited higher AUROC values and significantly
better ROC curve smoothness at the cost of longer run times. The parameters
with which we configured the performance of the General Algorithm were pop-
ulation size for the GA PopSize, number of steps for convergence Steps and
the number of independent cycles for fitting Cycles, the chosen values for our
optimization are displayed in the table 4.1

Table 4.1: The selected configuration options for TMVA Cuts method

PopSize 800
Steps 40
Cycles 5 %

The cuts chosen by us and by the Cuts algorithm when finding a working point
with maximal significance are compared in table 4.2. The agreement between the
cut values was very good and the resultant value of cuts also hinted at the E2max

variable as being the weakest classifier out of the three. Nevertheless, the variable
was kept, as the next phase of analysis included a wider set of discriminating
variables.

Table 4.2: The selected configuration options for TMVA Cuts method

Manual Cuts TMVA Cuts
ϵS 0.87 0.87
rB 0.50 0.50
Emax 0.020 0.020
E2max 0.000 0.001
Eocore 0.712 0.704

In the next analysis the full set of variables from the section 4.4 was used
for training and testing. To evaluate performance at multiple energy scales the
data has been split into discrete energy bins and the Cuts algorithm has been
trained and tested on each bin to determine pion identification efficiency. We also
analyzed separately the efficiency ϵS for configuration with higher granularity and
configuration with lower granularity. The value of ϵS was extracted for rB = 0.8.
ϵS was normalized to the set of unresolved pions in an energy bin and the events.
By unresolved pions we mean our statistic without events that were deemed
accepted in section 4.3. The results of the analysis are displayed on the figure
4.9.
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Figure 4.9: Dependence of π0 identification efficiency ϵS on pion energy E

At lower energies, we observe the identification efficiency rising to a maximum
located in the bin of E = 15-20 GeV after which efficiency drops gradually. The in-
fluence of higher granularity or ϵS is clearly visible for energies above E ≈ 25 GeV,
where the efficiency drops noticeably more slowly when working with smaller cells
in the calorimeter. The dependence calculated for lower granularity drops more
rapidly, reaching a presumably spurious plateau at energies corresponding to ap-
proximately 70 GeV. At these energies, the angle between two decay photons
reaches merely 0.22 ◦ and the resulting electromagnetic showers overlap signif-
icantly. Considering the finite cell size, the efficiency is expected to continue
falling for increasing neutral pion energies, instead of remaining constant.

4.6 Boosted Decision Trees

4.6.1 Optimization of BDT hyperparameters
To increase reconstruction efficiency and check whether the efficiency drop for
low-energy pions persists, we turned to the BDT algorithm. In order to optimize
BDT performance, we had to set a combination of parameters that maximized
the area under the ROC curve (further referred to also as AUROC). In order
to find a suitable combination we observed the dependence of AUROC on the
number of trees in the BDT, or NTrees, β parameter of the AdaBoost algorithm
AdaBoostBeta, minimum node size (or MinNodeSize) and maximal allowed depth
of the decision tree MaxDepth. The parameters were first set to their default value
and then successively optimized in that order. The default values provided by the
TMVA package are displayed in the table 4.3 and the dependence of AUROC on
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the respective hyperparameters on figures 4.10, 4.11, 4.12, 4.13. The dependence
for all energy bins can be found in Appendix A.3.

Table 4.3: The default values of BDT hyperparameters

NTrees 800
AdaBoostBeta 0.5
MinNodeSize 5 %

MaxDepth 3
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Figure 4.10: AUROC dependence on NTrees hyperparameter for E = 20-60 GeV
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Figure 4.11: AUROC dependence on AdaBoostBeta hyperparameter for E = 20-
60 GeV
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Figure 4.12: AUROC dependence on MinNodeSize hyperparameter for E = 20-
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Figure 4.13: AUROC dependence on MaxDepth hyperparameter for E = 20-
60 GeV

Along with the dependence of AUROC we also checked the value of the Kolmogorov-
Smirnov test to prevent overtraining of the decision tree. Final parameters were
chosen separately for data with lower granularity and data with higher granu-
larity, as the parameters selected for one set of events led to overtraining, or
underperformance in the other set. The final set of parameters is displayed in the
table 4.4.

Table 4.4: The optimized values of BDT parameters

Higher granularity Lower granularity
NTrees 250 200

AdaBoostBeta 0.5 0.5
MinNodeSize 1.5 % 1.5 %

MaxDepth 3 2

The values were also compared to optimal values obtained by ROOT via
using the OptimizeTuningParameters method. The parameters recommended
by ROOT were identical for both lower granularity and higher granularity settings
as shown in 4.5.
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Table 4.5: Optimal hyperparameters chosen by the ROOT optimization algorithm

NTrees 1000
AdaBoostBeta 0.4
MinNodeSize 1 %

MaxDepth 4

However, the parameters were in reality suboptimal, as even though they
maximized the available AUROC, they failed to account for overtraining. At the
end we instead opted for parameters chosen previously by our method.

4.6.2 Training and testing
After the optimal hyperparameters were obtained we trained and tested the de-
cision tree on our data. The data was randomly split into two separate groups to
compare its performance and keep overtraining in check. We split the data into
energy intervals and calculated signal efficiency for every bin to obtain depen-
dence of efficiency on energy. The dependence is displayed on 4.14. The signal
efficiency was obtained from a chosen working point at the ROC curve calculated
for a fixed value of background rejection equal to 0.8.
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Figure 4.14: Dependence of π0 identification efficiency ϵS on pion energy E

The identification efficiency displays a significant improvement over the ef-
ficiency obtained using the Cuts method, with the maximum located at E ∼
15 GeV rising from ∼0.7 to ∼0.9 and the general efficiency also being higher.
The behaviour at low energies, however still displays rapid dropping. This could
be remedied by optimizing the clustering algorithm, which should be able to
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identify neutral pions at low energies thanks to the large decay angle between the
corresponding photons, however, it is still desirable to increase the performance of
the method used. An option was to try invariant mass distribution reconstructed
from the topological clusters, defined as:

1. mcc as the invariant mass of the two clusters with the highest energy deposits
reconstructed by topological clustering

The variable differs from the rest of the set by being obtained from clusters,
rather than from the energy distribution in cells and layers of the calorimeter.
The analysis was repeated with mcc included. The results are displayed on 4.15.
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Figure 4.15: Dependence of π0 identification efficiency ϵS on pion energy E with
mcc

When including mcc in the analysis, there is a visible difference for low energy
pions. The identification efficiency reaches a maximum instead the dropping
behaviour exhibited by 4.14. This behaviour can be attributed to a fact that for
low energy pions, the mcc variable distribution contains a prominent peak, which
is located around value µ = 0.130 GeV for lower granularity and µ = 0.125 GeV
for higher granularity. The value can be interpreted as corresponding to the π0

mass, which is well resolved from the photon mcc distribution as seen on 4.16
and 4.17. For higher energies, the two distributions rapidly overlap and merge,
so that the mcc variable has very little discriminating power when it comes to
high energy pions and the energy dependence of π0 resolution efficiency above
E ∼ 15 GeV is identical regardless of mcc inclusion in our analysis. The overall
comparison of identification efficiency obtained by Cuts and BDT algorithm is
summarized in table 4.6 by an average of the efficiency curve ⟨ϵS⟩.
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Table 4.6: ⟨ϵS⟩ for the Cuts method and for BDT calculated for low granularity
(LG) and high granularity (HG)

Cuts BDT
mcc excluded mcc included

⟨ϵLG
S ⟩ 0.432 0.540 0.563

⟨ϵHG
S ⟩ 0.546 0.658 0.684

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 [GeV]cc m

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

 E
ve

nt
s

Pions Mean = 0.082

Photons Mean = 0.022

 [0,10] GeV∈E 

Figure 4.16: mcc distribution for low-energy pions in low granularity environment
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Figure 4.17: mcc distribution for low-energy pions in high granularity environment
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Conclusion
In this thesis our task was to explore methods of neutral pion identification in a
noble liquid calorimeter deisgned for the FCC-ee. We worked with Monte Carlo
simulations from Geant4 as part of FCCSW package that simulated passage of
photons and neutral pions through the calorimeter. The energy range we worked
with was 0-100 GeV and the calorimeter was simulated with lower and higher
granularity. During the course of the thesis, we introduced mechanisms of the
neutral pion decay (π0 → γγ), described the FCC-ee project and introduced
several detector designs and then explained basics of multivariate methods that
were used in our analysis.

In our analysis we first explored the possibility of identifying neutral pions
against a single photon background using information from sliding window clus-
tering. We found that the identification efficiency decreased rapidly with rising
energy of the pions irrespective of granularity. This we attributed to the cluster-
ing algorithm being unoptimized for shower resolution. The topological clustering
method could be used for neutral pion identification when paired with a merging
algorithm, that would combine the large number of low-energy clusters created
during clustering.

Next we used information on energy deposition in cells of the calorimeter to
characterise events using a set of discriminating variables. We worked with the
Rectangular cuts method and Boosted Decision Trees. By choosing a working
point at background rejection equal to 0.8 we calculated identification efficiency
against pion energy. We observed a dropping of efficiency in the range of E ∼
0 − 15 GeV for both Rectangular cuts and BDT, although the BDT method
displayed higher overall efficiency. We also observed that the higher granularity
setting consistently led to a higher efficiency. This demonstrates the importance
of including a strip layer with smaller segmentation in the real calorimeter that
aims to identify precisely neutral pions and other particles decaying into particles
with a very small angular separation. Note that for the purposes of our thesis,
the granularity was constant across all layers. The real design would have varying
segmentation because of the strip layer, thus to accurately simulate the detector
response it is necessary to simulate the calorimeter with segmentation differing
across layers as well.

To counter the drop in efficiency at lower energies, we introduced a new vari-
able mcc, obtained from topological clustering. The variable was shown to have
a very good discriminating power at low energies, which successfully reversed
the low-energy dropping. As the variable distribution for pions quickly merges
with the distribution for photons, it becomes a rather weak classifier for pions at
higher energies. It is therefore imperative to employ different variables at these
energies, paired with a calorimeter design, that would enable us to study and
resolve even highly overlapping electromagnetic showers such as those created by
decaying high-energy neutral pions.
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A. Attachments
A.1 Initial state distributions
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Figure A.1: Distribution of η, E and ϕ for photons (left) and pions (right) with
lower granularity
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Figure A.2: Distribution of η, E and ϕ for photons (left) and pions (right) with
higher granularity
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A.2 Discriminating Variables

A.2.1 Discriminating variables for lower granularity
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Figure A.3: Distribution of Emax for cells with lower granularity
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Figure A.4: Distribution of E2max for cells with lower granularity
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Figure A.5: Distribution of Eocore for cells with lower granularity
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Figure A.6: Distribution of E1T for cells with lower granularity
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Figure A.7: Distribution of E2T for cells with lower granularity
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Figure A.8: Distribution of E3T for cells with lower granularity
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Figure A.9: Distribution of E21 for cells with lower granularity
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Figure A.10: Distribution of E31 for cells with lower granularity
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Figure A.11: Distribution of W33 for cells with lower granularity
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Figure A.12: Distribution of E2 for cells with lower granularity
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Figure A.13: Distribution of E3 for cells with lower granularity
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Figure A.14: Distribution of E4 for cells with lower granularity
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Figure A.15: Distribution of E5 for cells with lower granularity
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Figure A.16: Distribution of mcc for cells with lower granularity
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A.2.2 Discriminating variables for higher granularity
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Figure A.17: Distribution of Emax for cells with higher granularity
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Figure A.18: Distribution of E2max for cells with higher granularity
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Figure A.19: Distribution of Eocore for cells with higher granularity
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Figure A.20: Distribution of E1T for cells with higher granularity
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Figure A.21: Distribution of E2T for cells with higher granularity
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Figure A.22: Distribution of E3T for cells with higher granularity
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Figure A.23: Distribution of E21 for cells with higher granularity
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Figure A.24: Distribution of E31 for cells with higher granularity
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Figure A.25: Distribution of W33 for cells with higher granularity
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Figure A.26: Distribution of E2 for cells with higher granularity
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Figure A.27: Distribution of E3 for cells with higher granularity
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Figure A.28: Distribution of E4 for cells with higher granularity
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Figure A.29: Distribution of E5 for cells with higher granularity
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Figure A.30: Distribution of mcc for cells with higher granularity
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A.3 BDT hyperparameters optimization graphs
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Figure A.31: AUROC dependence on NTrees hyperparameter for E = 0-20 GeV
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Figure A.32: AUROC dependence on NTrees hyperparameter for E = 20-60 GeV
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Figure A.33: AUROC dependence on NTrees hyperparameter for E = 60-100 GeV
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Figure A.34: AUROC dependence on AdaBoostBeta hyperparameter for E =
0-20 GeV
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Figure A.35: AUROC dependence on AdaBoostBeta hyperparameter for E =
20-60 GeV
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Figure A.36: AUROC dependence on AdaBoostBeta hyperparameter for E =
60-100 GeV
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Figure A.37: AUROC dependence on MinNodeSize hyperparameter for E = 0-
20 GeV
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Figure A.38: AUROC dependence on MinNodeSize hyperparameter for E = 20-
60 GeV
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Figure A.39: AUROC dependence on MinNodeSize hyperparameter for E = 60-
100 GeV
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Figure A.40: AUROC dependence on MaxDepth hyperparameter for E = 0-
20 GeV
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Figure A.41: AUROC dependence on MaxDepth hyperparameter for E = 20-
60 GeV
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Figure A.42: AUROC dependence on MaxDepth hyperparameter for E = 60-
100 GeV
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