
BACHELOR THESIS

Ondřej Kubánek

Improving loop optimization with
histogram profiling

Department of Applied Mathematics

Supervisor of the bachelor thesis: Jan Hubička

Study programme: Bachelor of Computer Science

Study branch: General Computer Science

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to thank my advisor Jan Hubička for his technical help and enthusiasm,
and my family and friends for their patience and support.

iii

iv

Title: Improving loop optimization with histogram profiling

Author: Ondřej Kubánek

Department: Department of Applied Mathematics

Supervisor: Jan Hubička, Department of Applied Mathematics

Abstract: Production compilers use numerous techniques to generate performant
code. One such technique is Profile-guided optimization (PGO). The principle of
this technique is to insert instrumentation during compilation, gather information
about program behaviour with training runs and use this information during
recompilation to improve optimization.

The thesis aims to improve the precision of Loop optimizations in GNU Compiler
Collection (GCC) with PGO. Currently in GCC, only the average iteration count
of a loop is known with PGO. This leads to inefficiencies in both the performance
and size of the binary.

We implement infrastructure for measuring more information about loop itera-
tions and add new counters namely the histogram of iterations and histogram of
iterations modulo its size. With the histogram of iterations, we improve loop peel-
ing and implement a new case of loop versioning optimization. This significantly
improves the performance of the generated code with reasonable overhead.

Keywords: GCC, compiler, loop optimization, profiling

v

vi

Contents

Introduction 3

1 Background 5
1.1 Preliminaries . 5
1.2 Profile-guided optimization . 6
1.3 Loop optimizer . 7

1.3.1 Loop analysis . 8
1.4 Loop optimizations . 9

1.4.1 Induction variable optimizations 9
1.4.2 Simple Loop optimizations 10
1.4.3 Loop transformation optimizations 13

1.5 Loop optimizations benefiting from loop histogram profiling . . 17

2 Implementation 21
2.1 Instrumentation . 21
2.2 Counters . 23

2.2.1 Maintaining counters . 23
2.3 Optimizations . 24

2.3.1 Loop peeling . 24
2.3.2 Loop versioning . 25

2.4 New command-line options . 25

3 Results 27
3.1 Benchmarks . 27

3.1.1 SPEC CPU 2017 . 27
3.1.2 Micro-benchmarks . 29
3.1.3 Peeling . 29
3.1.4 Versioning . 30

3.2 Future work . 31

Conclusion 33

1

Bibliography 35

A Using our work 37
A.1 Reproduction . 37
A.2 Attachments . 38

2

Introduction

Profile-guided optimization (PGO) consists of three phases. During the first compi-
lation, the compiler inserts instrumentation. Second, the user trains the generated
binary on a representable inputs, which allows the instrumentation to measure
interesting properties of the code and save them to the disk. Last, the code is
recompiled and the saved data is loaded into the compiler, which influences the
decisions of individual optimization passes. One particularly interesting type
of optimization is Loop optimization. Since the behaviour of loops is heavily
dependent on the runtime values, PGO offers an alluring option to assess their
behaviour.

In production compilers, PGO accounts for up to 15% of additional perfor-
mance on SPEC CPU 2017 benchmarks compiled with -O2 [1]. Currently, the
most common approach is to measure the Edge profile [2] to approximate the
behaviour of a loop.

This approach is not perfect since the only information we can get about
iteration counts of a loop is their average. The average count of iterations of a
loop does not offer any information on the distribution of iterations of the loop.
This leads to suboptimal optimizations, e.g. in cases where the average and the
most common case diverge. This can lead to both performance and binary size
issues since the compiler can either choose way too aggressive optimizations
that worsen the size of the binary or the compiler can give up and abandon some
performance.

This thesis approaches this problem by establishing infrastructure to measure
other properties of loops. We also implement a histogram of iterations and a
histogram of iterations modulo its size. We then use the histogram of iterations
to improve the behaviour of the loop peeling optimization and introduce a new
case of the loop versioning optimization.

This thesis is organized as follows. In the first chapter, we will introduce
the related terms. In the second chapter, we will describe concrete details of our
implementation and in the last chapter, we will show our results and discuss
future work.

3

4

Chapter 1

Background

1.1 Preliminaries
Our compiler of interest is GNU Compiler Collection (GCC)1. In particular, we
are interested in Loop optimizations and profiling.

We are also interested in interprocedural optimization, since some loop opti-
mizations happen during it. However, as this procedure does not broadly change
our approach we will omit further details [3]. For the entire thesis, we will be
working with the GIMPLE intermediate language which is the high-level interme-
diate language used in GCC. Further in [4].

We briefly review standard terminology used in this thesis.
Basic block is a sequence of statements with a beginning and an end whose

each execution must enter through its beginning and leave through its end. That
means there are no jumps from or into the middle. In this thesis, the statements
are the GIMPLE statements.

Each function is represented as a Control flow graph (CFG). A CFG is a directed
graph, its vertices are basic blocks and its edges represent the control flow (such
as jumps...) between the end of one basic block and the beginning of another one.
Each CFG also has its own Entry and Exit block.

Most static compilers including GCC use intermediate languages in the SSA-
form. SSA-form is a property of the intermediate language which demands that
every variable has a single definition [5, 6]. This property can be established by
simple renaming for every CFG which consists only of basic blocks with at most
one incoming edge. The problem comes when two edges into the same basic
block have different definitions of a variable. Φ-nodes are needed in this case.
Φ-node is a special statement that can only be at the beginning of a basic block, its
parameters correspond to incoming edges, and it defines a variable whose value

1https://gcc.gnu.org/

5

https://gcc.gnu.org/

during execution is equal to the parameter of the Φ-node corresponding to the
edge taken by the execution. In other words, Φ-nodes merge runtime definitions
into a single variable. As shown in Figure 1.1. See e.g. [5, 6] for details.

Figure 1.1 CFG showing a while loop for the variable a

Another important definition is the Dominance relation. We say that the basic
block A dominates the basic block B if every path from Entry to B contains A. The
dominance relation can be computed fast [7, 8].

1.2 Profile-guided optimization
Profile-guided optimization (PGO) consists of three phases.

Instrumentation First, the compiler inserts instrumentation into the binary to
measure data. In GCC, we compile with the flag:

-fprofile - generate

GCC will also link the program with a special runtime library libgcov that
will be responsible for saving the measured data [9].

Training run Then the user trains the generated binary on representative inputs.
During the execution, the inserted instrumentation measures the profile
and saves it to the disk. In case of GCC, it is the file with the gcda extension
which belongs to the binary.

Recompilation Lastly, we recompile the same project with the same optimiza-
tion settings as used during the instrumentation. During the compilation,
the compiler will read the saved values and perform optimizations based
on the gathered data. In GCC, we use the -fprofile-use flag.

6

Profiling instrumentation can be broadly divided into 4 distinct types [9].

Function profiling measures various properties of functions. GCC does not
profile the number of executions of a function since Edge profiling has better
accuracy. However, GCC does implement profiling of times of the first
execution of functions [10]. The first example is helpful for inlining. The
second one is helpful, if the compiler sorts the functions in the binary based
on the time of their first execution, it increases performance significantly.

Edge profiling measures the relative number of execution counts of each edge
in a CFG of a function. This allows the compiler to significantly improve,
e.g. register allocation, loop unrolling and many other optimizations [9, 2].

Value profiling measures properties of concrete variables or expressions, e.g.
estimating the value of b in the a/b expression. If b equals some value val
most of the time. The compiler can test if b equals the value and in that
case, return a/val and otherwise a/b. This allows for further optimization.
GCC does implement it for various other types of counters.

Path profiling measures properties of concrete acyclic control flow paths [11].
This allows the compiler to optimize each path separately. The drawback of
this technique is that there are too many different paths so the optimization
decisions and the maintenance of the profile get very complex. For this
reason, GCC does not implement it.

Loop histogram profiling, discussed in this thesis, falls in between Edge profil-
ing and Value profiling. This is because we are profiling an edge but are interested
in the properties of the loop represented by the edge.

1.3 Loop optimizer
Loop optimizer is a set of independent optimization passes focused on a special
kind of loop called the natural loop. We call an edge N → M a back edge if M
dominates N . For a non-empty set of all back edges with the same target T a
natural loop is the set of T and all basic blocks on the paths in the reverse direction
from their sources not containing T . Note that all of the edges from the outside of
the loop must end in T of the back edges otherwise they would not be back edges.
Not all strongly connected subgraphs of CFG are natural, and thus some loops are
not optimized, e.g. if a goto is used or the empty graph. There are four important
definitions when talking about natural loops as shown in Figure 1.1 [4].

Header is the basic block that is a target of the back edges.

7

Latch edge is a back edge and its target is the header of the loop.

Body are all of the basic blocks in a natural loop.

Exit is any edge from a basic block inside of the loop to a basic block outside of
the loop.

The loop optimizer further requires that each loop has only one latch. This
does not hold in general, but natural loops can be transformed to satisfy the
requirement. Also, the loop optimizer mostly performs transformations only on
the inner-most loops since otherwise the code could grow fast.

1.3.1 Loop analysis
Natural loop analysis finds natural loops. The portion of the loop determined
by a latch edge N → M contains N , M and blocks that are on paths against the
direction of the edges from N and do not contain M . If there was another entry
into the body of the loop avoiding M , N would not be dominated by M since
there would be a path avoiding it. Since there can be multiple latches in a loop
we take the union of their respective portions as the body of the whole loop [12].

Natural loop analysis computes the natural loops from the dominance relation
and determines for each basic block which is the inner-most loop it is a part of. In
GCC, this information is maintained in a persistent tree data-structure for most
of the compilation.

Scalar evolution analysis (SCEV) sorts scalar variables used in a loop into
those that are invariant under its iterations, induction variables and variant
variables. This can help with other optimizations. An induction variable is a
variable going through arithmetic progression as the loop iterates. The value of
a invariant variable is the same in an execution for all the iterations of the loop.
Lastly, the rest of the variables are variant [4].
int l;
for (int i=0; i<k; ++i){

l=b[i];
b[i]=b[l];

}

In this loop k is invariant, i is an induction variable and l is variant.

Dependence analysis determines dependencies between computations in
loops. It enables several loop transformations including vectorization, loop inter-
change, distribution and jamming, discussed in Section 1.4.3. See [12] for a more
detailed description.

8

1.4 Loop optimizations
Since loop optimizer is organized as a set of independent optimization passes
here is a brief overview of some of them. Most of them can be found in Kennedy
and Allen [13], Muchnick et al. [12], and Dvořák [14].

1.4.1 Induction variable optimizations
We will start with induction variable optimizations. The goal is to find the
lowest number of induction variables so that induction variable updates and
computations with them are cheap. In GCC, Induction variable canonicalization
can be found in the tree-ssa-loop-ivcanon.cc file and the rest are combined
into one pass in the tree-ssa-loop-ivops.cc file.

Induction variable canonicalization adds a new induction variable that starts
at 0 and is incremented by 1. This can help with other optimizations on
induction variables and simplify some calculations.

Induction variable elimination replaces all computations with an induction
variable by computations with another one. This decreases register pressure
and if chosen well, performance does not suffer. Since we have finitely
many registers and loads are expensive, removing an intermediate variable
can reduce the number of unnecessary loads and stores.

For example:

int j=3;
for (int i=0; i<k; ++i){

b[i]=b[j];
++j;

}

↓

for (int i=0; i<k; ++i){
b[i]=b[i+3];

}

Induction variable strength reduction replaces an expensive computation in
the loop by a cheap computation with a new induction variable. This
increases register pressure, but improves performance.

For example:

9

for (int i=0; i<k; ++i)
b[i]=b[i*2];

↓

int j=0;
for (int i=0; i<k; ++i){

b[i]=b[j];
j+=2;

}

1.4.2 Simple Loop optimizations
The second type of optimizations GCC implements are optimizations that do not
depend much on dependence analysis and do not change the structure of the loop
drastically.

Loop peeling copies the body of the loop multiple times and sequentially redi-
rects latch edges to the next copy or the loop itself. If the compiler knows
that the loop mostly iterates few times, it can peel the corresponding amount.
This enables further optimizations and improves speculative execution. In
GCC, loop peeling is in the tree-ssa-loop-ivcanon.cc file.

For example:
for (int i=0; i<k; ++i){

b[i]+=1;
}

↓

if (k >0){
b [0]+=1;
if (k >1){

b [1]+=1;
for (int i=2; i<k; ++i)

b[i]+=1;
}}

Complete loop peeling handles the case when the compiler knows that the
number of iterations of a loop is bounded by some small constant c. The
compiler then can peel c times to eliminate the loop, which allows us to
delete the loop thus regaining mostly sequential execution. In GCC, it is in
the tree-ssa-loop-ivcanon.cc file.

10

For example:

for (int i=0; b[i]==3 && i <2; ++i){
b[i]+=1;

}

↓

if (b [0]==3){
b [0]+=1;
if (b [1]==3)

b [1]+=1;
}

Copy header copies the header of the loop before its body. This can help with
further optimizations if the first loop condition behaves differently, and
allows for one less jump. In GCC, it is in the tree-loop-ssa-ch.cc file.

For example:

for (int i=0; i<k; ++i){
b[i]+=1;

}

↓

int i=0;
if (i<k)

do {
b[i]+=1;
++i;

} while(i<k);

As we can see it transforms a for-loop into a do-loop. It also effectively
peels the loop one time without copying its body.

SCEV constant propagation can determine whether a variable is constant after
the loop execution. This is not the case for the classic constant propagation.
Typically, it helps when an induction variable in a well-behaved loop is
limited by some invariant expression (i<10). SCEV constant propagation al-
lows the compiler to determine the value of i after the loop. This allows for
more optimizations down the line. In GCC, it is in the tree-ssa-loop.cc
file.

For example:

11

for (int i = 0; i < 10; i++)
;

return i;

↓

for (int i = 0; i < 10; i++)
;

return 10;

Prefetching instructs the processor to fetch memory locations before their usage.
The use of this optimization has decreased since modern CPUs implement
hardware prefetching. In GCC, it is in the tree-ssa-loop-prefetch.cc
file.

Loop invariant motion moves iteration invariant computation outside of the
loop, which increases register pressure but decreases repeated computation.
In GCC, it is in the tree-ssa-loop-im.cc file.

For example:
for (int i=0; i<k; ++i){

int p=k+1;
b[i+p]+=12;

}

↓

int p=k+1;
for (int i=0; i<k; ++i){

b[i+p]+=12;
}

Loop unrolling duplicates the body of the loop several times. If the loop iter-
ates a constant amount of times, the compiler can eliminate all unused exit
conditions inside of the body, which leads to fewer branches and better
performance. If we can determine the number of iterations at runtime,
we can also eliminate the exit conditions, but it requires more computa-
tions. In these two cases there may be iterations left after the unrolled
loop finishes, if so the compiler inserts an epilogue after the unrolled loop.
An epilogue is mostly the copy of the original loop, but in the vector-
izer even the epilogue may benefit from vectorization. For more general
loops, loop unrolling can lead to further optimization. How much GCC

12

unrolls is dictated by the flags -funroll-loops which unrolls loops and
-funroll-all-loops also unrolls loops without an induction variable. In
GCC, it is in the loop-unroll.cc file.

For example:

for (int i=0; i<k; ++i){
b[i]+=12;

}

↓

int i=0;
for (; i<k -3; ++i){

b[i]+=12;
++i;
b[i]+=12;
++i;
b[i]+=12;
++i;
b[i]+=12;

}
// epilogue
for (; i<k; ++i){

b[i]+=12;
}

1.4.3 Loop transformation optimizations
The last category are more complicated loop transformations.

Auto-vectorization allows us to utilize vector units of the processor. Vector
units execute multiple instructions at once. If the body of the loop is
independent from its other iterations, this optimization can transform the
loop to use the vector unit. In other words multiple iterations are executed
at the same time. The drawback is that sometimes the compiler must also
add a prologue because older processors require memory alignment for
their vector units and an epilogue is also sometimes needed since most
vector units are incapable of executing fewer instructions than they are
designed for. This is not the case for newer processors that allow masking,
but it can be also slow. Prologue and epilogue behave like the loop, but
are not necessarily its copies. It can be useful to also vectorize them or
transform them into a more optimized form. Vectorization is similar to

13

loop unrolling with pattern matching for the vector instructions. Auto-
vectorization allows for a massive speed increase, but also increases the
size of the generated binary. More in [15]. In GCC, the vectorizer is located
in multiple files, the main being tree-vectorizer.cc.

Loop unswitching works for loops whose body contains conditionals that are
invariant under loop iteration. The optimization transforms the loop into a
conditional with two branches where each branch has a copy of the loop
modified based on the result of the conditional. The invariance is deter-
mined by SCEV. With this transformation the compiler removes repeated
conditional jumps. In GCC, it is in the tree-ssa-loop-unswitch.cc file.

For example:

for (int i=0; i<j; ++i){
if (k >0)

b[i]+=2;
else

b[i] -=1;
}

↓

if (k >0)
for (int i=0; i<j; ++i)

b[i]+=2;
else

for (int i=0; i<j; ++i)
b[i] -=1;

Loop distribution works for loops whose body has several independent com-
putations, e.g. writing into two different arrays. The compiler can
divide the loop into multiple. Each corresponds to one independent
computation. Since the loops themselves are smaller it reduces regis-
ter pressure and encourages auto-vectorization. In GCC, it is in the
tree-loop-distribution.cc file.

For example:

for (int i=0; i<k; ++i){
b[i]+=12;
a[i]+=2;

}

14

↓

for (int i=0; i<k; ++i)
b[i]+=12;

for (int i=0; i<k; ++i)
a[i]+=2;

Loop splitting is in general a transformation which splits the loop into multiple
consecutive loops over the same index range. In the simple case, there is a
conditional inside of a loop where the compiler knows that the conditional
holds from the start of the loop up to some constant c and then it never
holds again. The compiler can simulate it by two loops, one until c and the
other one from this point on. Loop splitting can simplify control flow and
reduce conditional jumps. In GCC, it is in the tree-ssa-loop-split.cc
file.

For example:

for (int i=0; i<k; ++i){
if (i <50)

b[i]+=12;
else

b[i]+=2;
}

↓

int i=0;
for (; i <50 && i<k; ++i)

b[i]+=12;

for (; i<k; ++i)
b[i]+=2;

Loop versioning makes multiple versions of the loop based on the properties of
the particular execution. In GCC, it is in the gimple-loop-versioning.cc
file.

In this example, if the conditional holds, the loop is easy to vectorize.

for (int i=0; i<k; ++i)
b[i*s]+=8;

15

↓

if (s==1)
for (int i=0; i<k; ++i)

b[i]+=8;
else

for (int i=0; i<k; ++i)
b[i*s]+=8;

Loop jamming works if there are two independent loops over the same iteration
space. The compiler can merge their bodies. This can lead to better locality
for memory access. It is the opposite of loop distribution. In GCC, it is in
the gimple-loop-jam.cc file.

For example:
for (int i=0; i<k; ++i)

b[i]+=12;

for (int i=0; i<k; ++i)
a[i]+=b[i];

↓

for (int i=0; i<k; ++i){
b[i]+=12;
a[i]+=b[i];

}

Loop interchange exchanges the inner loop with the outer loop. This is done
in order to increase memory locality. For example, it is better to traverse 2D
arrays first by row than by column for memory locality. This can be fixed
with loop interchange. In GCC, it is in the gimple-loop-interchange.cc
file.

For example:
for (int row =0; rows <rows; ++ row)

for (int col =0; cols <col; ++ col)
b[col][row]+=2;

↓

for (int col =0; cols <col; ++ col)
for (int row =0; rows <rows; ++ row)

b[col][row]+=2;

16

Predictive commoning aims to reduce the number of redundant computations
in loops. This is achieved with dependence analysis. For example, when
eliminating reads, the compiler looks which parts of the statements were
already computed in previous iterations and makes new variables to store
the results of the reads from the corresponding iterations. This obviously
increases performance but increases register pressure. In GCC, it is in the
tree-predcom.cc file.

For example:
for (int i=2; i <50; ++i)

b[i]=b[i -2]

↓

int tmp0=b[0];
int tmp1=b[1];
for (int i=2; i <50; ++i){

int tmp2;
tmp2=tmp0;
b[i]= tmp0;
tmp0=tmp1;
tmp1=tmp2;

}

Graphite is an experimental loop optimization framework based on polyhedral
optimization. The aim of polyhedral optimization is to change the loop so
that traversal through the dependence polyhedra is the most efficient. It is
off by default in GCC since it can cause worse performance. In GCC, its
main file is graphite.cc [16].

Autoparallelization tries to execute independent computations in parallel. It
is also off by default since it is tricky to pick the right kind of loop. In GCC,
it is in the tree-parloops.cc file.

1.5 Loop optimizations benefiting from loop his-
togram profiling

There are numerous optimizations in which iteration histogram can be used. We
will delve into more detail for the most important ones. Note that prefetching,
loop jamming, loop distribution, and loop interchange are also good candidates
for using loop histogram since their performance is determined by whether the
computation fits into the cache.

17

Loop peeling consists of copying the body of the loop multiple times in front of
the loop itself. It is hard to determine the right amount of peeling since iteration
counts of loops are heavily dependent on runtime values. In GCC, the amount is
either determined by a static guess or the edge profile. The static guess is either
an upper bound on iterations or that most loops iterate a lot, which is the default
guess. As for edge profiling, we can get the average iteration count from the
count of the latch edge divided by the sum of the counts of the exits. Therefore,
we try to peel the average iteration count. This works on some types of loops
and does not on others. Here is a brief overview of some types of loops.

• If the loop only iterates a lot, we do not want to peel it either way.

• If the loop mostly iterates a certain amount of times, the average will
correspond to the amount so the edge count peels the right amount of
iterations.

• If the loop has a normal distribution of iterations, the average would only
peel half of them, but if we peeled just few more, we could peel most of the
iterations.

• If the loop mostly iterates few times, but sometimes a lot, the average count
will be skewed to the higher side so GCC would peel either way too many
or not at all since the peeling would exceed the instruction limit.

By adding a histogram of iterations and using it for peeling and versioning,
the compiler can behave better in all of the cases.

Copy header copies the header of the loop in front of the loop so that execution
can be sequential during the first iteration. In the future, we can adjust the
heuristic for copy header since we know how often does the loop exit without
iterating. However, since this optimization is used on most of the loops, it is
mildly pointless.

Loop versioning If a loop iterates mostly a certain amount of times and the
iteration amount is precisely determined by an invariant variable, we can read
it from the iteration histogram. This allows us to introduce a new case for loop
versioning in which we test if the variable equals the probable iteration count. If
so, use a completely peeled version of the loop, and if not, use the copy of the
loop.

18

Listing 1 Usage of the optimization on a loop that mostly iterates 2 times.

for (int i=0; i<k; ++i)
b[i]+=8;

↓

if (k==2){
b [0]+=8;
b [1]+=8;

}
else

for (int i=0; i<k; ++i)
b[i]+=8;

In the future, we could also measure different loop properties, such as the rate
of entrance of the vectorizable loop in Section 1.4.3.

Auto-vectorization improves the performance of loops with larger iteration
counts, however for small iteration counts it may decrease performance. For this
reason, GCC implements heuristics determining the lowest number of iterations
necessary to enter the vectorized loop.

Other concrete considerations are the vector size of the processor, e.g. the
ARM architecture, does not guarantee the size of their vectors. In GCC, the cost
model determines whether vectorization is worth it or not. Here are some of the
information that determine the cost of vectorization.

• Is a prologue necessary, and if so, how large?

• Is a epilogue necessary, and if so, how large?

• Which optimizations should be used on prologue and epilogue? (e.g. peeling,
vectorization, loop versioning)

• How large is the vector size if the compiler knows it?

• How fast are vector operations on the CPU?

• Does the CPU support masking?

• Can the CPU only read continuous blocks of memory, or does it have scatter
and gather operations?

• Does it iterate a lot? (average iterations are high)

19

From the modulo histogram, we can get the number of peelings for the epi-
logue. From the iteration histogram, we can estimate whether it is worth it to
vectorize the loop and what vector size should we use since low iteration counts
with big vector sizes result in the vectorized body being unused. In addition, if the
prologue or epilogue is vectorized we know that their iteration count is probably
low so they are good targets for peeling.

Loop splitting If we have a loop suitable for splitting, we can add histogram
counters of whether the execution stayed in one index range. If the majority of
runs of the loop did, we do not want to split the loop since the branch predictor
of the CPU can predict it more efficiently, and we save some space.

20

Chapter 2

Implementation

In this chapter, we will describe and discuss the design decisions that we used.
Some bugs in GCC have been fixed as a result of this thesis. Mostly concerning
the copy header optimization which did not maintain information about loops
and vectorizer12.

2.1 Instrumentation
We need to build infrastructure to insert the instrumentation as in Section 1.2.
This starts by identifying natural loops that are suitable for instrumentation.
First, we check if the loop has a real exit. There are also fake edges in the CFG
which represent e.g. function calls. Since loops mostly return from function calls,
counting them would lead to an inaccurate histogram. We also check whether we
know the number of iterations of the loop. If so, there is no need to instrument
the loop since the histogram would not contain more information than we already
have.

We extend the form the loop optimizer uses over the profiling part so that
every loop has one latch.

Since our interest lies in the number of iterations of a loop we need to insert
instrumentation on the latch edge of the loop. Then we create a new induction
variable starting from zero and incremented by one on the latch edge and push the
created histogram_value to the list of all instrumented values. This happens in
the gimple_histogram_values_to_profile function.

After that, the profiler starts to instrument the values which in our case are
loops. We first build a call to the function that will save the induction variable
to the designated location from the libgcov runtime. In our case, it is the

1https://gcc.gnu.org/PR109690
2https://gcc.gnu.org/g:cda246f8

21

https://gcc.gnu.org/PR109690
https://gcc.gnu.org/g:cda246f8

__gcov_histogram_profiler function Listing 2. We insert a call to it on all
real exit edges of the loop.

Listing 2 Part of the__gcov_histogram_profiler function which adds new
iteration count to the counter. value in this case refers to the value of the
induction variable and counters is the array of the profiling counters during
runtime.

// add to the regular histogram
if (value < lin_size) {
counters [value]++;
} else {
gcov_type_unsigned pow2 = floor_log2 (value);
gcov_type_unsigned lin_pow2 = floor_log2 (lin_size - 1);
if (lin_size < tot_size && pow2 == lin_pow2) {

counters [lin_size]++;
} else {

if ((lin_pow2 - lin_size) + tot_size > pow2) {
counters [pow2 + (lin_size - lin_pow2) - 1]++;

} else {
counters [tot_size - 1]++;

}
}
}
// add to the modular histogram
counters [tot_size + (u_value \% mod_size)]++;

This symbolically transforms the instrumented loop like this:
while (! end ()){

foo ();
}

↓

int i=0;
while (! end ()){

foo ();
++i;

}
__gcov_histogram_profiler (counters , i);

The rest of the instrumentation is handled by the libgcov runtime that then
merges the computed counters with the previous runs, which are saved on the disk.
We then have to read the saved histograms in the compute_value_histograms
function in the profile.cc file [9].

22

2.2 Counters
Our histogram is represented as a vector of counters. The vector has three
sections one is the Linear section, another is the Exponential section, and the other
is the Modulo section. Each counter in the linear portion represents precisely the
runs with iteration counts equal to the index of the counter in the vector. The
exponential part, on the other hand, stores all the higher iterations that do not
fit in the linear section. If an iteration count does not fit in the linear portion,
its binary logarithm determines its place. The modulo part then stores iteration
counts modulo its length.

We chose this division since it aids us with optimizations and is easy to
maintain throughout the compilation. At the moment the histogram portion sizes
are GCC parameters that can be changed by the user with command line options
in the format –param=parameter-name=value.

They are profile-histogram-size-lin, profile-histogram-size-exp
and profile-histogram-size-mod respectively. We will use l, e and m for
their values.

2.2.1 Maintaining counters
We save the loaded histogram in the structure representing the histograms loop.
GCC maintains loops in a tree data-structure from the start of profiling until the
end of the compilation.

Since the optimizations happen sequentially, we need to maintain a reasonable
approximation of the histograms or decide to deallocate them. The transforma-
tions fall into two categories, either we decrease the iteration counts (peeling,
copy header) or divide the iteration counts (unrolling, vectorization). We achieve
this with the two functions histogram_counters_minus_upper_bound and
histogram_counters_div_upper_bound.

Linear portion is easy to maintain. In the case of the minus function, we
remove the iterations that decrease below zero, naturally adjust the rest of the
linear portion and truncate the linear portion so all counters have real values. As
for the div function, we take the roof of the division since even partial iterations
are still iterations, and again truncate the counters without real values.

Exponential portion is more difficult to maintain. We assume that the dis-
tribution of iterations on each exponential interval is uniform. For the minus
function we take the bottom portion of the exponential interval in powers of
two (one half, quarter . . .) so that the highest iteration in the interval changes
index after the decrement. We then move the corresponding portion of the index

23

to the new counter. We do not move iterations from the exponential part to
the linear portion since it is better to have accurate information. For the div
function, we take the middle of the interval and put all of the iterations to the
index corresponding to the division of the half point by the divisor. We again do
not try to fill the end of the linear portion with the corresponding exponential
part. In general, we do not change the count of the last exponential counter
because it typically contains huge iteration counts. These solutions are simple
rather than optimal.

Modulo histogram is tricky. For the minus function we just rotate the his-
togram by the difference, which trivially corresponds to modulo arithmetic. As
for the div function, it is possible to recover the histogram fully if the divisor is
coprime with the size of the histogram because we have unique multiplicative
inverses in the modulo arithmetic. Otherwise, powers of two which is the typical
case we can recover the histogram but for a lesser modulo size.

Most of the changes are straightforward with these functions except for copy
header optimization and auto-vectorization. The copy header optimizations can
happen multiple times since the header of the loop changes, e.g. if we have a
logical conjunction, the compiler must decide how many parts of the conjunction
it wants to copy since they become sequentially the new headers. We then decide
if it is probable that the first run exited through one of the copied headers. If
so, we perform the same maintenance as if peeling one time, otherwise, we do
nothing. We do not try to maintain the loop in the vectorizer as it is complicated.

If interprocedural optimization is enabled, we have to stream the counters
into it, this is handled in the lto-streamer-in.cc and lto-streamer-out.cc
files.

2.3 Optimizations
In this section, we will describe our optimizations improving upon standard
techniques. In particular, we will describe our approach to peeling and preserving
the histogram through optimizations.

2.3.1 Loop peeling
Currently, GCC uses the average amount of iterations of a loop to determine the
number of times to peel. This is insufficient since if a loop mostly iterates little and
once in a while a lot, the average will be high even though the compiler should
peel little. There are three main parameters that GCC uses to determine whether
to peel or not. It uses max-peel-insns which limits the amount of instructions

24

generated by peeling, max-peel-times which limits how many iterations can
be peeled (16 is the default) and max-peel-branches which is the maximum
amount of branches on the path through the peeled sequence.

We have implemented the linear portion of the histogram to tackle this prob-
lem. Since its size is 16 by default, we lose relevant information only when there
are optimizations prior to peeling. Our approach is controlled by a parameter
profile-histogram-peel-prcnt further p used to denote the percentage of
the loop iterations that must be peeled away for each copy of the loop body. We
consider peeling k times if the partial sum of iterations since the last peeling
candidate i is at least (k − i) ∗ p percent of the total iteration count.

This prevents us from peeling iterations succeeding an iteration with a high
percentage. We then choose the biggest peeling that does not exceed the GCC
instruction limits and iteration limits. We further require that the estimated
peeled iterations to instruction ratio of our peeling is better than if it took us
the whole instruction limit to peel the whole linear portion for p ∗ l percent of
iterations peeled. This ensures that giant loops are not peeled 1 time just because
their body is lesser than the instruction limit and it has p iterations.

We also do not peel if we do not peel at least the percentage of the total
iterations set by the parameter: profile-histogram-peel-overall-prcnt

After this, we also adjust the probabilities of the edges of the peeled copies
since we know them from our histogram.

2.3.2 Loop versioning
The new optimization pass that this thesis presents is histogram-powered loop
versioning. Let us say that we have a loop with one exit, and its iteration count
is determined by a variable t. If the loop also iterates mostly a certain amount
of times k, we can perform our optimization. We require the loop to have only
one exit so we will not have exits after peeling. We make a conditional with two
copies of the loop. The compiler sets the condition to test the equality of t and k.
If so, we completely peel the loop k times. We know that the loop cannot exit any
other way and that every run does exactly this. This reduces conditional jumps
and improves optimizations downstream. The other branch contains the regular
loop. As shown in Listing 1.

We do this if a single iteration in the linear portion of the iteration histogram
has at least loop-versioning-histogram-prcnt percent of the total iterations.

2.4 New command-line options
We have also added new command-line options to control the peeling:

25

-fprofile-loops combined with -fprofile-generate or -fprofile-use instructs the
compiler to profile loop histograms. -fno-profile-loops must be passed to
both instrumentation stage (-fprofile-generate) and recompilation (-fprofile-
use) to not profile loop histograms.

-fuse-histograms-in-peeling combined with -fprofile-use instructs the com-
piler to use loop iteration histograms to determine the optimal number of
copies in the loop peeling pass.

-fversion-loops-using-histograms combined with -fprofile-use instructs the
compiler to use loop iteration histogram to perform the new case of the
loop versioning optimization.

-fpeel-loops-without-histogram combined with -fprofile-use instructs the
compiler to peel loops using their edge profile if they do not have a his-
togram.

With profile feedback these flags are on by default but they can be turned off
by using -fno- instead of -f.

26

Chapter 3

Results

3.1 Benchmarks
We will measure micro-benchmarks and the SPEC CPU 2017 benchmarks. We will
further analyze overhead of our technique on the SPEC CPU 2017 benchmarks.

In our benchmarks, we disable vectorization and unrolling since the logic
updating histograms after these transformations is not fully implemented.

3.1.1 SPEC CPU 2017
SPEC CPU 2017 are industry standard benchmarks published by: Standard Per-
formance Evaluation Corporation (SPEC), which is a non-profit corporation that
publishes a variety of industry-standard benchmarks to evaluate performance
and other characteristics of computer systems. Its latest suite of CPU-intensive
workloads, SPEC CPU 2017, is often used to compare compilers and how well
they optimize code with different settings because the included benchmarks are
well-known and represent a wide variety of computation-heavy programs [1].

SPEC specifies a base runtime for each benchmark and defines a rate as the
ratio of the base runtime and the median measured runtime (this rate is a separate
concept from the rate metrics). The overall suite score is then calculated as the
geometric mean of these ratios. The bigger the rate or score, the better it is [1].

We run the benchmark on 8-core AMD Ryzen 7 5800X in single thread and
report median of 3 iterations. Since we are interested in comparing code quality,
we have not met all requirements for reportable runs according to the SPEC CPU
2017 standards.

The flags used for the benchmarks were

• The flags common between both of the compilations were:
-Ofast -march = native -mtune = native

27

• The extra flag in the instrumentation was: -fprofile-generate

• And the extra flags for the recompilation were:

-fprofile -use -fno -tree -loop - vectorize \
-fno -unroll - loops

We have measured the SPEC CPU 2017 benchmarks, the improvement in the
geometric mean was 1% over normal peeling. The measurement files are in the
attachment.

Since GCC is a production compiler, huge upswings in performance are un-
realistic as it is already heavily optimized. In [1] we can see that progress from
GCC 7.5 to 11.2 improved the SPEC CPU 2017 benchmarks by about 10%, which
took four years of development. Main contribution to this improvement was the
hardware support of AMD EPYC 7543P processor, which happened between GCC
7 and GCC 11, especially with respect to the vector code generation".

Benchmark No Peeling Standard Peeling Histogram Peeling Difference

500.perlbench_r 8.65 8.91 9.07 1.8%
502.gcc_r 10.6 10.6 10.6 0.0%
505.mcf_r 8.43 8.37 8.38 0.1%
520.omnetpp_r 6.16 6.04 6.51 7.8%
523.xalancbmk_r 6.49 6.58 6.66 1.2%
525.x264_r 8.00 7.97 8.21 3.0%
531.deepsjeng_r 6.61 6.54 6.46 -1.2%
541.leela_r 5.82 5.78 5.81 0.5%
548.exchange2_r 24.7 24.8 24.1 -2.8%
557.xz_r 5.34 5.58 5.55 -0.5%

Geometric mean 8.13 8.16 8.24 1%

Table 3.1 The table shows the SPEC CPU 2017 benchmark rates for our peeling opti-
mizations and the difference in peeling between the Standard Peeling and Histogram
Peeling

Overhead is important when evaluating whether an optimization is reasonable.
We measured the change of size of the optimized binaries and of the .gcda files.
We also measured the difference in the performance of instrumented binary with
and without our technique. The setup used for measuring has not changed from
the performance measurements.

The average size of a PGO-optimized binary currently increases by 1.2% when
using standard peeling, and when using our technique, it only increases by 0.7%.
The relative decrease of our technique in comparison to the standard technique

28

is 0.5%. This means that our technique not only improves the performance of the
generated code but also modestly the size of the optimized binaries.

The number of counters increased by 50% on average. This also includes the
32 counters for the modulo histogram that is currently not used for optimization.
So to achieve our performance increase, we only need a third of the counters
since the rest of the histogram has 17 counters. This can also be improved by
adding smarter heuristics for choosing loops to profile, e.g. if a loop calls printf,
optimizing it will not help much.

From Table 3.1 we know that currently, the geometric mean of rates with PGO
is 8.16. We have measured that the instrumented binary without histogram has a
geometric mean of 5.55, and with it, the geometric mean is 4.94. This means that
the instrumented binary without our technique runs 12% faster than the binary
without it. In some types of programs, worsening performance can change how
the program operates, e.g. programs with a lot of user interaction, such as games,
change their behaviour. For these types of programs, it might be better to turn
off the usage of histograms with -fno-profile-loops.

3.1.2 Micro-benchmarks
We have also designed microbenchmarks which show that in some cases our
optimizations can improve the performance of the generated binary by a lot.

3.1.3 Peeling
The first one takes an argument and randomly generates the field b with either
100 or a number between 0 and 8 and then the behaviour of the inner loop in the
inc function is determined by the current b[i]. In this case, we want to peel 8
times while the average is usually 5.

include <stdlib .h>
int a [100];
int b [10000];
void
inc(int n)
{

for (int i = 0; i < n; i++)
{

for (int j = 0; j < b[i]; j++)
a[j]++;

}
}
int
main(int argc , char ** argv)
{

29

int n = atoi (argv [1]);
b[0] = 100;
for (int i = 1; i < n; i++)

if (!(rand () \% 100))
b[i] = 100;

else
b[i] = (rand () \% 5) * 2;

for (int i = 0; i < 100000000; i++)
inc (n);

}

We compile on AMD Ryzen 9 7900X 12-Core Processor and standard compila-
tion flags for a PGO build. Using histogram, peeling performs 100% better than
without it. In addition, we used flags:
-O2 -fno -tree - vectorize -fno -unroll -loops

3.1.4 Versioning
For the second micro-benchmark, we have a benchmark for the loop-versioning
optimization. In this case, the gnu::noipa attribute forbids inlining the loop
function so GCC cannot be sure that n is equal to three at the time of execution of
the function. Thus, it cannot be completely peeled. We can see from the histogram
that the loop iterates only three times and version it.
int a [100];
int m=3;

[[gnu :: noipa]]
void loop ()
{

int n = m;
for (int i = 0; i < n; i++)

a[i]+=a[i];
}
int
main ()
{

for (int j = 0; j < 1000000000; j++)
loop ();

return 0;
}

We compile on AMD Ryzen 9 7900X 12-Core Processor and use standard
compilation flags for a PGO build. Histogram versioning performs 40% better. In
addition, we used flags:
-O2 -fno -tree - vectorize -fno -unroll - loops

30

3.2 Future work
One of the original motivations for introducing loop histogram profiling was
improving loop vectorizer decisions and prologue/epilogue code generation (for
which we plan to use currently unused modulo information). This is not fully
implemented, since vectorizer implements many strategies for loop prologue and
epilogue code generation and for each of them a special treatment of histogram
is needed.

During our experiments, we encountered problems with the current imple-
mentation of loop heuristics which treats badly loops with low iteration counts1.
The core of the problem is that until now, the vectorizer never had very good
knowledge about the loop iteration histograms necessary to make precise esti-
mates about the benefits of individual transformations. Consequently, heuristics
were never fine-tuned for such scenarios (some important problems are being
worked on actively2). We plan to solve this in cooperation with the maintainers of
the loop vectorizer after the initial infrastructure is contributed to the compiler.

Another not fully solved problem is maintaining loop histograms through
less frequent optimizations affecting loop iteration counts (such as loop splitting)
and keeping them intact until loop unrolling (which is performed late in the
optimization queue once instruction selection is done). While GCC has persistent
loop information, it turns out that in several important cases the loops are lost
and rediscovered. We identified and fixed the most common issue in loop header
copying, but other problems remained, e.g. during the RTL expansion phase.

We did not do any thorough experimentation about optimal sizes of his-
tograms, since this depends on the planned usage of the infrastructure in the loop
vectorizer.

Histograms can also be applied in heuristics controlling various extra opti-
mization passes such as loop splitting, jamming or prefetch code generation.

It is also possible to measure additional properties of the loops, such as the
strides of arrays walked, to make more informed decisions in the loop versioning
pass.

1https://gcc.gnu.org/PR109690
2https://gcc.gnu.org/PR108410

31

https://gcc.gnu.org/PR109690
https://gcc.gnu.org/PR108410

32

Conclusion

The goal of the thesis was to implement infrastructure for loop profiling and use it
to improve the precision of loop optimizations with Profile-guided optimizations.
We implemented a histogram of loop iterations and extended loop peeling and
loop versioning heuristics to use the information. This improved performance for
our microbenchmarks by 100% and 40%, respectively. The SPEC 2017 benchmarks
improved by 1% while decreasing the size of the optimized binary when compared
to the same optimization level. This shows that our approach improves precision
of loop peeling and loop versioning. Note that the yearly rate of improvement of
GCC on the SPEC benchmarks is typically around 2.5% for PGO.

The overhead of our technique was 50% more counters and 12% slower execu-
tion of the instrumented binary. Since only a third of the counters was used for
optimization, there is potential for more optimization justifying the overhead.

There are several optimizations that can further benefit from this infrastruc-
ture, e.g. Auto-vectorization, loop jamming and loop splitting.

We believe that the thesis has achieved its goal. We plan to contribute the
infrastructure to the upstream GCC compiler. The improvement of benchmarks
with reasonable instrumentation overhead indicates that it should be accepted to
main-line GCC.

33

34

Bibliography

[1] Martin Jambor et al. Advanced Optimization and New Capabilities of GCC
11. Tech. rep. SUSE Best Practices, 2022.

[2] Thomas Ball and James R Larus. “Optimally profiling and tracing programs”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS)
16.4 (1994), pp. 1319–1360.

[3] Jan Hubička. “Interprocedural optimization framework in GCC”. In: GCC
Developers Summit. Citeseer. 2007.

[4] Richard M Stallman. “GNU compiler collection internals”. In: Free Software
Foundation (2002).

[5] Mark N Wegman and F Kenneth Zadeck. “Constant propagation with
conditional branches”. In: ACM Transactions on Programming Languages
and Systems (TOPLAS) 13.2 (1991), pp. 181–210.

[6] Ron Cytron et al. “An efficient method of computing static single assign-
ment form”. In: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. 1989, pp. 25–35.

[7] Robert Tarjan. “Finding dominators in directed graphs”. In: SIAM Journal
on Computing 3.1 (1974), pp. 62–89.

[8] Thomas Lengauer and Robert Endre Tarjan. “A fast algorithm for find-
ing dominators in a flowgraph”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 1.1 (1979), pp. 121–141.

[9] Jan Hubička. “Profile driven optimisations in GCC”. In: GCC Summit Pro-
ceedings. Citeseer. 2005, pp. 107–124.

[10] Martin Liška. “Optimizing large applications”. Master’s thesis. Charles
University, 2014.

[11] Thomas Ball and James R Larus. “Efficient path profiling”. In: Proceedings
of the 29th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 29. IEEE. 1996, pp. 46–57.

35

[12] Steven Muchnick et al. Advanced compiler design implementation. Morgan
kaufmann, 1997.

[13] Ken Kennedy and John R Allen. Optimizing compilers for modern archi-
tectures: a dependence-based approach. Morgan Kaufmann Publishers Inc.,
2001.

[14] Zdeněk Dvořák. “A New Loop Optimizer for GCC”. In: GCC Developers
Summit. 2003, p. 43.

[15] Dorit Naishlos. “Autovectorization in GCC”. In: Proceedings of the 2004 GCC
Developers Summit. Citeseer. 2004, pp. 105–118.

[16] Sebastian Pop et al. “GRAPHITE: Polyhedral analyses and optimizations for
GCC”. In: proceedings of the 2006 GCC developers summit. Vol. 6. Citeseer.
2006, pp. 90–91.

36

Appendix A

Using our work

A.1 Reproduction
To run the thesis, a Linux machine with a working C++ compiler is needed.

To access our work execute the commands in a suitable directory:

> git clone git: // gcc.gnu.org/git/gcc.git git
> cd git
> git config --add remote . origin .fetch \

+refs/ users / kubaneko /tags/ ThesisTag :refs/tags/ ThesisTag
> git pull
> git checkout ThesisTag

To compile GCC it is best to follow the instructions in this tutorial since com-
piling GCC is, in general, difficult. Please use the following configuration flags for
generating the Makefile: –disable-multilib –enable-languages=c,c++,
since they are tested.

Once we are finished with the previous step we can use the modified GCC.
Listing 3 is a minimal example to compile
The flags to use for the instrumentation are: -O3 -fprofile-generate

-fno-tree-vectorize
For the recompilation it is sufficient to change -fprofile-generate to

-fprofile-use and add -fopt-info flag to dump the optimizations.

37

https://gcc.gnu.org/install/

Listing 3 The amount of iterations in the inner loop is determined by the elements of
the b field. Since the average amount of iteration is 3.5 the compiler would usually peel
four times. But with our modification, it peels six times. The loop is also impacted by the
Copy header optimization so the compiler peels one less time than it would normally.

int a [1000];
int b[]={1 ,1 ,1 ,1 ,6 ,6 ,6};
int
main ()
{

for (int i = 0; i < sizeof (b) / sizeof (int); i++) {
for (int j = 0; j < b[i]; j++)
{

a[j]++;
}

}
return 0;

}

Reproducing the example should be similar to:

> ./ gcc -O3 -fprofile - generate -fno -tree - vectorize
> ./a.out
> ./ gcc -O3 -fprofile -use -fopt -info -fno -tree - vectorize \

p_test .cc

p_test .cc :11:22: optimized :
peeled loop 2, 6 times with histogram , 100% of executions
(without histogram would try to peel
4 times , 57% of executions ; header execution count 0)

A.2 Attachments
The histogram.patch file contains our modifications to the GCC source code; the
patch was taken against the commit:

5592679df783547049efc6d73727c5ff809ec302
Additionally, the SPEC CPU 2017 benchmark results for optimized and

instrumented binaries are available inside separate directories, namely the
OptimizedPerformance and InstrumentationPerformance directories, re-
spectively.

38

	Introduction
	Background
	Preliminaries
	Profile-guided optimization
	Loop optimizer
	Loop analysis

	Loop optimizations
	Induction variable optimizations
	Simple Loop optimizations
	Loop transformation optimizations

	Loop optimizations benefiting from loop histogram profiling

	Implementation
	Instrumentation
	Counters
	Maintaining counters

	Optimizations
	Loop peeling
	Loop versioning

	New command-line options

	Results
	Benchmarks
	SPEC CPU 2017
	Micro-benchmarks
	Peeling
	Versioning

	Future work

	Conclusion
	Bibliography
	Using our work
	Reproduction
	Attachments

