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1. Introduction

Historically, there have been two classical frameworks, where the notion of curva-
ture was studied and developed. One of them were regular sets with C2 boundary,
where the prinicipal curvatures (i.e. eigenvalues of so-called second fundamental
form) are well-de�ned at each point of the boundary. In this context we de�ne
total curvatures Ck(A), k = 0, . . . d − 1, d being the dimension of the underlying
space, as an integral of certain symmetric functions of the principal curvatures.
Localizing the integral we then obtain the so-called curvature measures, Ck(A, ·).
The most important of all curvature measures is the measure C0(A, ·), which allows
us to compute the Euler-Poincaré characteristics as

χ(A) = C0(A) =

∫
∂A

C0(A, ·).

This result is usually referred to as the Gauss-Bonnet formula. The main point
is that we are able to compute the global Euler-Poincaré characteristics using the
locally determined quantity C0(A, ·).

The second classical framework, where the total curvatures are well-de�ned, are
the convex sets (in Rd). Unlike the smooth sets, the convex sets can have singular
parts on the boundary (like corners and edges) and the principal curvatures may not
be well-de�ned at each point of the boundary. A completely di�erent approach is
then needed and, for a nonempty compact convex set K ⊂ Rd, the total curvatures
are de�ned via the so-called Steiner formula

volume({x ∈ Rd : dist (x,K) ≤ ε}) =

d∑
k=0

Ck(K)εd−k, ε > 0,

which tells us that the volume of an ε-neighbourhood of a convex can be expressed
as a polynomial of degree d and the total curvatures are (after renormalization) the
coe�cients of that polynomial. Here the 0-th total curvature (i.e. the coe�cient by
εd, after renormalization) is the same for every convex set, which is basically a triv-
ial version of the Gauss-Bonnet theorem (the Euler characteristics of a nonempty
convex set is always 1). The 1-st total curvature (the coe�cient corresponding to
εd−1) can be interpreted as a mean width of the set K, the linear term corresponds
to the area of ∂K and the absolut term Cd(K) is simply the volume of K. The cur-
vature measures Ck(K, ·) are similarly de�ned by a localized version of the Steiner
formula. It is a remarkable fact that, for smooth convex sets, those two completely
di�erent approaches yield the same curvature measures.

Those two rather di�erent historical frameworks were uni�ed by H. Federer in
1959 in his seminal paper [1], which is considered the begining of the modern
curvature theory. The unifying framework, the sets of positive reach, combines
topological �exibility of the smooth sets and a possible singular behaviour of the
convex sets.

A set A ⊂ Rd is said to be of a positive reach if there is some ε0 > 0 such
that every x satisfying dist (x,A) ≤ ε has the unique nearest point in A. The total
curvatures and curvature measures are then again de�ned via the Steiner formula,
which can (in general) no longer hold for every ε > 0, but will still hold if ε > 0 is
small enough.

The key point why the total curvatures make sense in this more general setting
is that the sets of positive reach can only have outward corners and therefore the
singular part of the boundary can only carry a positive curvature and the negative
curvature can be nicely controlled. Both compact convex sets and compact smooth
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sets (i.e. sets with C2 boundary) are of positive reach. Apart from the Gauss-
Bonnet theorem, these curvature measures also satisfy (as proved by Federer) the
so-called Principal Kinematic Formula

∫
Gd
Ck(A ∩ gB) dg =

∑
i+j=d+k

γd,i,jCi(A)Cj(B).

Here, on the left hand side, we integrate the k-th curvature measure of the inter-
section of A and gB, where g runs through all possible rigid movements Gd and the
integration is with respect to the unique Haar measure on Gd. Moreover, γd,i,j are
constants depending only on d, i and j. In particular, the intersection of two sets
of positive reach in general position is again a set of positive reach.

In 1986 M. Zähle discovered (in [15]) that the curvature measures for the sets
of positive reach admit certain current representation (in the sense of the current
theory by Federer and Flemming) and three years later (in [2]) J. Fu proved that
the curvature measures of a set A can be derived from the so-called normal cycle
of A (usually denoted as NA), which is an integral current (again in the sense of
the Federer-Flemming theory of currents) lying in Rd × Sd−1.

In 1994 J. Fu developed a new method for construction of the normal cycle (and
therefore the existence of the curvature measures) and used it to prove the exis-
tence of the normal cycle (as well as the Gauss-Bonnet formula and the Principal
Kinematic Formula for the corresponding curvature measures) for the class of sub-
analytic sets. As the key concepts, his method (which also plays a prominent role in
the context of this thesis) uses the notions of Monge-Ampère functions and weakly
regular values.

The Monge-Ampère functions (de�ned on an open set U ⊂ Rd) are characterized
by the existence of a speci�c integral current on U × Rd (similarly to the normal
cycle), which, for a function f , is denoted df and, roughly speaking, represents the
integration over the graph of the derivative of f . In practice, however, it is usually
enough to work with the following much more simple condition, which de�nes the
so-called strongly approximable functions: f is strongly approximable on an open
set U if there is a sequence f1, f2, ... ∈ C2(U) that converges to f in L1

loc (U) and
such that

(1.1)

∫
K

∣∣∣∣det

(
∂2fk
∂xi∂xj

)
i∈I,j∈J

∣∣∣∣ ≤ C(f,K)

for every K ⊂ U compact and I, J ⊂ {1, . . . , d} of the same cardinality, here
C(f,K) is a constant depending only on f and K. Each strongly approximable
function is Monge-Ampère and although it is not known whether the converse is
true, all known sub-classes of the Monge-Ampère functions (like the subanalytic
functions, the Sobolev spaces Wn

2 (Rn), semiconvex, or delta convex functions) con-
sist of strongly approximable functions.

For a Lipschitz function f , a real number c is called a weakly regular value if
there is an ε > 0 such that the inequality |v| ≥ ε holds whenever c < f(x) < c+ ε
and v ∈ ∂f(x). Here ∂f(x) denotes the usual Clarke subgradient on f at x.

The procedure of constructing the normal cycle of a set A goes as follows: �rst
we need to �nd a Monge-Ampère function f such that f−1((−∞, 0]) = A and that
0 is a weakly regular value of f . Such a function f is called an aura for the set A.
In the next step, we project the current df to A× Sd−1 to obtain the normal cycle
NA.
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Often (but not always) there is a natural choice of an aura for a set A. For
instance, if A is a set of positive reach, the distance function f(x) = dist (x,A)
always works.

Over the following years, J. Rataj and M. Zähle proved the existence of the
normal cycle for two other classes of sets, the so-called UPR sets (in [12]) and also
the Lipschitz manifolds of bounded inner curvatures (in [13]).

One more class was considered as a possible candidate for admitting curvature
measures and that were the delta convex surfaces. A function is called delta convex
if it can be expressed as a di�erence of two convex functions. The key point is
that although the delta convex functions can have (unlike semiconvex functions)
singular parts pointing upwards and downwards (i.e. the delta convex surfaces
can have both outwards pointing corners and inwards pointing corners, which is
forbidden for sets of positive reach).

The �rst result in this direction of research was a 2-dimensional case resolved in
2000 by J. Fu. In general dimension, the case of delta convex functions has been
resolved by D. Pokorný and J. Rataj in a surprising manner, after they discovered
the following determinant formula

det(A−B) =
1

d!

d∑
k=0

(−1)k
(
d

k

)
det((d− k)A+ kB).

The key feature of the formula is that while the left hand side contains a deter-
minant of the di�erence of two matrices A and B, the right hand side consists
of determinants of only positive linear combinations of A and B. This essentially
allows us to reduce the integrability of the Jacobians of the delta convex functions
in (1.1) to the integrability of the Jacobians of certain convex functions, which is
a simple task. This way we can prove that yhe delta convex functions are strongly
approximable and therefore Monge-Ampère.

This led, applying the previously mentioned method of Fu, to the new class of
sets admitting the curvature measures, the so-called WDC sets (sublevel sets of the
delta convex functions at weakly regular values), which, in particular, generalize
the theory of the sets of positive reach.

This thesis consists of �ve papers the aim of which is to develop various aspects
of this new class of sets admitting the classical results of integral geometry. The
particular papers are the following:

• J.H.G. Fu, D. Pokorný, J. Rataj: Kinematic formulas for sets de�ned by
di�erences of convex functions. Adv. Math. 311 (2017), 796�832,

• D. Pokorný, J. Rataj, L. Zají£ek: On the structure of WDC sets. Math.
Nachr. 292 (2019), 1595�1626,

• D. Pokorný, L. Zají£ek: On sets in Rd with DC distance function. J. Math.
Anal. Appl. 482 (2020), No. 1.

• D. Pokorný, L. Zají£ek: Remarks on WDC sets. To appear in Comment.
Math. Univ. Carolin.

• D. Pokorný: Curvature measures for unions of WDC sets. Submitted.

The results of [7] were vastly generalized by J. Fu, D. Pokorný and J. Rataj in
[6] which is the �rst part of this thesis. The paper contains two main results. First
one is a generalization of the classical result by Evald, Larman and Rogers and
reads as follows:

Theorem 1.1. Let K ⊂ Rd be closed and convex. Denote by TK the set of pairs
(v, w) ∈ Sd−1 × Sd−1 with the property that there exists a nondegenerate segment
τ ⊂ ∂K with direction v and lying in a supporting hyperplane of K with outward
normal direction w. Then TK has σ-�nite (d− 2)-dimensional Minkowski content.



5

Even though the above theorem is interesting in its own merits, for our main
goal it is mostly a technical result that has the following corollary:

Corollary 1.2. If f : Rd → R is DC then graph ∂f has σ-�nite d-dimensional
Minkowski content.

This, �nally, is the main ingredient for the main goal of the paper, which is the
proof of the kinematic formula for pairs of the WDC sets:

Theorem 1.3. Let A,B ⊂ Rd compact WDC sets and let 0 ≤ k ≤ d. Then∫
Gd
Ck(A ∩ gB) dg =

∑
i+j=d+k

γd,i,jCi(A)Cj(B).

Here γd,i,j are constants depending only on d, i and j.

Even though the WDC sets have a relatively simple de�nition it is not clear
whether they allow any simple geometric description (which is in fact also true for
the sets of positive reach). The second part of the thesis, which is a paper by
D. Pokorný, J. Rataj and L. Zají£ek [8], is therefore devoted to the study of the
structure of the WDC sets.

A set A ⊂ Rd will be called a Lipshitz (DC) manifold if it can be locally expressed
as an isometric copy of the graph of a Lipschitz (DC) mapping from Rk to Rd−k.
Similarly, a Lipshitz (DC) domain is a set that can be locally expressed as an iso-
metric copy of the subgraph of a Lipschitz (DC) function. The main non-technical
results of the paper are the following:

Theorem 1.4. For each closed locally WDC set M ⊂ Rd, its boundary ∂M can be
locally covered by �nitely many DC hypersurfaces.

Theorem 1.5. Let a closed set A ⊂ Rd be a Lipschitz manifold of dimension
0 < k < d. Then A is a locally WDC set if and only if A is a DC manifold of
dimension k.

Theorem 1.6. Let A ⊂ Rd be a closed Lipschitz domain. Then A is locally WDC
if and only if A is a closed DC domain.

When working with the WDC sets there is often one technical obstacle: we don't
know how to construct an aura for a given WDC set M . Recall that, for the sets
of positive reach, which form a subclass of the WDC sets, the distance function is
always an aura. The study of the properties of the WDC sets has been therefore
continued later in two papers [9] and [10] by D. Pokorný a L. Zají£ek which are
dedicated to the following question: is the distance function x 7→ dist (x,M) always
an aura for any WDC set M?

The main point proven in [9] is

Theorem 1.7. Let f : R → R be a DC function. Then the distance function
d := dist (·, graph f) is DC on R2.

This leads to the result from [10]

Theorem 1.8. Let M 6= ∅ be a closed locally WDC set in R2. Then the distance
function dM is a DC aura for M . In particular, M is a WDC set.

Note that the last part of the theorem tells us that the locally WDC sets and
the WDC sets are the same class in R2, which is still unknown for the higher
dimensions.

The key consequence is that we now have a natural choice of an aura for the
WDC sets in R2, which for instance can be used to prove the following:
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Theorem 1.9. The class of all nonempty compact WDC sets in R2 is an Fσδσ
subset of the metric space of nonempty compact WDC sets in R2 (equipped with the
usual Hausdor� metric).

The importance of this result is the fact that it suggests that (at least in R2) a
theory of point processes on the space of the compact WDC sets (analogous to the
concept of point processes on the space of sets of positive reach introduced in [14])
can be build.

The goal of the last section, which corresponds to the paper by D. Pokorný [11],
is to push the curvature theory of the WDC sets a little bit further. Its purpose is
twofold: �rst to develop the curvature theory for UWDC sets similar to the theory
of UPR sets developed by J. Rataj and M. Zähle, and second to obtain a natural
candidate for a maximal integral geometric regularity class (in the sense of [6] and
[5]) in dimension 2.

A set M ⊂ Rd is a UWDC set if for every x ∈ M there is a neighbourhood U

of x and sets M1, . . . ,Mj such that M ∩ U = U ∩
⋃j
i=1Mi and such that each set⋂

i∈I
Mi, I ∈ Σj , is WDC. The main results of this section are:

Theorem 1.10. Each compact UWDC set admits the normal cycle.

and the kinematic formula for pairs of the WDC sets:

Theorem 1.11. Let M and K be two compact UWDC sets in Rd and let 0 ≤ k ≤
d− 1. Then M ∩ g(K) is WDC for almost every g ∈ Gd and

(1.2)

∫
Gd
Ck(M ∩ gK,U ∩ gV ) dg =

∑
i+j=d+k

γd,i,jCi(M,U)Cj(K,V ),

where γd,i,j are constants depending only on d, i and j.

Also we prove the following geometric characterisation of the WDC sets in di-
mension 2:

Theorem 1.12. Let M ⊂ R2 be a compact set. Then the following conditions are
equivalent.

(1) M is UWDC ,
(2) M c has �nitely many connected components and ∂M is a union of �nitely

many DC graphs.

Here by a DC graph we mean a set that is an isometric copy of a graph of a
DC function over an interval. Moreover, we prove that in dimension 2 all known
classes of compact sets that admit the normal cycle are contained in the class of the
WDC sets. This and othere results mentioned in the paper suggest that the class
of UWDC sets is a natural candidate for a maximal integral geometric regularity
class in R2 (in the sense of Fu [5]).
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