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Abstract  

Remote sensing technologies are increasingly used in agriculture, primarily focusing on 

crop phenotyping and nondestructive plant health monitoring. Climate change in the 

western United States has led to increasing aridity, and reduced precipitation and thus a 

growing need for emerging varieties of drought-tolerant crops and technology to 

accurately monitor their establishment. Remote sensing technologies have the capability 

of efficiently fulfilling this need.  The utilization of terrestrial laser scanning (TLS), 

ground penetrating radar (GPR) and small unoccupied aerial vehicles (sUAS) allow us 

to monitor and assess plant traits and health metrics. These three technologies were 

employed during the 2021 and 2022 growing seasons of two varieties of drought-

tolerant grain sorghum (Sorghum Bicolor L. Moench) under deficit irrigation.  The red 

and white varieties of sorghum were monitored using a randomized split plot design 

with three levels of deficit irrigation (30%, 60%, and 100%). These plots were replicated 

three times for a total of 18 plots. We hypothesized that crop height and an index of 

plant health: the normalized difference vegetation index (NDVI), would significantly 

decrease and that the sorghum’s belowground biomass (BGB) would increase, as an 

indication of drought tolerance, in response to deficit irrigation. For both the 2021 and 

2022 growing seasons, we measured changes in plant height, NDVI, and below-ground 

root response using a Leica C10 TLS, a MicaSense Altum multispectral camera mounted 

on a DJI Matrice 600 Pro sUAS, and an IDS GeoRadar RIS MF Hi-Mod dual frequency 

(400/900 MHz) GPR, respectively. Our hypotheses of a decrease in above-ground plant 
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traits, i.e., height for both varieties in response to deficit irrigation treatments were 

confirmed. However, for NDVI, the red variety increased with decreasing water 

availability, and the white variety was consistent with our hypothesis. We found 

significant differences in the amplitude response maps, a surrogate of BGB phenology, 

that indicated increasing biomass with increasing deficit irrigation. However, this 

response was not consistent with field measures of BGB that showed the highest BGB at 

60%, then 100%, and then 30%. This indicated that a 30% deficit level exceeded drought 

tolerance for the two varieties. These results support the use of remote sensing 

technologies for field plot-level plant health monitoring and crop phenotyping.   
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Chapter 1 
 

Multitemporal 3D Crop Phenotyping of Above- and 
Belowground Traits of Grain Sorghum using sUAS 
mounted multispectral camera, TLS, and GPR 

  

Abstract: Increasing aridity due to climate change greatly alters soil stability and inhibits crop growth in 

the Southwestern United States. Sorghum [Sorghum bicolor L. Moench] is a key drought-tolerant species 

being used to replace less tolerant crops in drylands. Above- and below-ground crop productivity and 

the efficient use of water resources are critical aspects of sustainable agriculture, particularly in drylands. 

We will conduct a crop phenotyping study using three emerging remote sensing technologies to assess 

the response of above- and below-ground traits of two varieties of grain sorghum to deficit irrigation, i.e., 

drought conditions.  In this chapter, I will provide an introduction and background on 1) the need for 

deficit irrigation in response to dwindling water supplies and increased aridity, 2) drought-tolerant 

sorghum, its origins, use, and establishment in the western US, 3) crop phenotyping through remote 

sensing, and 3) the three emerging remote sensing technologies to be used in this study including 

terrestrial laser scanning (TLS) to non-destructively measure 3-D changes in plant height, ground 

penetrating radar (GPR) to measure changes in root zone 3-D structure, and an airborne drone mounted 

multi-spectral camera that is used to measure changes in plant health. The goal of our study is to measure 

changes in plant traits that are indicative of drought tolerances in response to deficit irrigation. We 

hypothesized that aboveground traits such as height and plant health would decline in response to 

drought and that belowground traits such as root production would increase in response to drought, an 

indication of drought tolerance. We anticipate that our results will demonstrate the promise and efficacy 

of these three technologies for use in hi-throughput crop phenotyping in agriculture and that selectively 

bred sorghum varieties are a viable alternative for future use in dryland agriculture.  

 

Keywords: Agriculture, Remote Sensing  

 

 

 

1. Introduction 
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Approximately 98% of the land area in Nevada is estimated to be drylands [1]. Drylands are 

terrestrial land areas for which water limitations are defined by the aridity index (AI) as ≤ 0.65. The AI is 

calculated as the ratio of mean annual precipitation to mean annual potential evapotranspiration [2-5]. 

Globally and within Nevada, Drylands have been shown to have an increasing trend in temperature, 

aridity, and areal extent [6,7] a combination of which has greatly limited water availability and thus 

arable land for crop agriculture.  

Sorghum [Sorghum bicolor L. Moench] is a drought-tolerant crop that originates in semiarid to 

arid North Africa and is the fifth most grown grain crop worldwide, with the US being the top producer 

[8]. Producers in Nevada report high local demand for food-grade sorghum for products like gluten-free 

food, snacks, and domestic craft brewing and distilling. Water management for this crop will be critical. 

Current water rights in Nevada mandate that newer farmers are the first to be shut off from irrigation 

once a minimum threshold is reached following a petition by producers in Eureka, Nevada[9]. Due to 

this, the development of drought-tolerant breeds of sorghum for Southwestern growers could play a key 

role in improving agriculture in climate-stricken regions. It is critically important for the stability and 

resilience of Nevada agriculture that producers have access to diverse, water-saving options. These 

efforts fulfill the land grant mission of the University of Nevada-Reno (UNR) and will help sustain grain 

sorghum production as it sees further growth. Consequently, the primary goal of this thesis is to compare 

the drought tolerance of two different varieties of grain sorghum under deficit drip irrigation using 

remote sensing technologies to measure the phenotypic response of above- and belowground 

characteristics including plant health, three-dimensional (3-D) structural phenology, and biomass. 

2. Crop Phenotyping & Remote Sensing Technologies 

2.1. TLS 
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TLS or terrestrial laser scanning is a form of ground-based light-detection-and-ranging (LIDAR). 

Lidar is an active sensor system that uses a laser at visible to infrared wavelengths to survey the x, y, and 

range (z) location of objects at adjustable resolutions, i.e., the spacing between scans as low as 0.5-mm, at 

frequencies ranging from 55,000 points per second (pts s-1, e.g., Leica C-10 systems) to nearly 1 million pts 

s-1 depending on which TLS system is being used. TLS are survey-grade instruments with a ranging 

accuracy of ± 2 mm. For, time-of-flight instruments, distance (d) is determined from the detected range by 

measuring the elapsed round-trip time of flight (t) of a laser pulse incident on a survey point to the sensor:  

d = ct / 2       (1) 

where c is the speed of light. Based on the distance and measures of the polar angles: azimuth and zenith 

the x, y, and z location can be calculated for each point and the resulting cluster of x, y, and z points is called 

a point cloud from which an array of 3-D crop structural parameters can be directly and indirectly derived 

including height, density, seed or fruit density, cover, yield, and biomass [10-13]. For example, Delgado 

[13] showed that herbicide-resistant monocot volunteers (wheat) could be mapped and separated from the 

dicot crop (canola) using the crop’s height, green reflectance intensity value (GRI), and the GRI edge effect 

using a 532-nm wavelength TLS [14]. Eitel et al. [15,16] demonstrated that a 532-nm TLS can be used to 

detect chlorophyll a and b, xanthophyll, and the percent nitrogen content of agricultural crops. TLS systems 

at the 1550-nm wavelength are in the water absorption windows and have been used to measure leaf water 

content and this capability suggests that soil moisture could also be detected by this technology [17]. 

Further advances in structure-detecting models show promise for automated individual plant and plant 

parts, e.g.,  stems, leaves, and panicles, segmentation [18]. 

 

2.2. GPR 
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Ground penetrating radar or GPR is a non-destructive field instrument that actively transmits 

electromagnetic radar pulses into the ground to detect the reflected signals from belowground objects, 

including coarse roots (> 2-mm diameter [19]).  Root traits that can be quantified using GPR include root 

depth, density, area, volume, biomass, and productivity [19-22]. For example, Butnor et al. (2001) were 

the first to map and estimate below-ground biomass of lateral roots in tree plantations using GPR, where 

they found a significant relationship (r = 0.55, p = 0.0274) between GPR amplitude reflectance and root 

biomass, thus laying the groundwork for estimation of belowground biomass and productivity using 

GPR in agricultural systems. Most recently, Zhou et al. (2022) [23]demonstrated the use of GPR to 

measure below-ground carbon stocks in savanna systems subject to different fire regimes. Guo et al. 

(2013), Liu et al. (2016), Atkinson et al. (2019), and Yang et al. (2020) [19,24-26] have reviewed the use of 

GPR in agriculture, particularly for crop phenotyping. Delgado et al. (2017, 2019) [22,27] were the first to 

use GPR to estimate below-ground biomass and net primary productivity of a tuber crop, i.e., the bulking 

rate or the accumulation of biomass overtime of cassava (Manihot esculenta C.). Additionally, GPR can be 

used to quantify volumetric soil moisture content from the relative dielectric permittivity  [28,29]. Of 

particular interest to this study, Rodríguez-Robles et al. (2017) [30] were the first to use GPR and electrical 

resistivity tomography (ERT) to track below-ground water use in two competing dryland tree species.  

 

2.3. sUAS 

Small unoccupied aerial systems (sUAS) are capable of carrying payloads of various passive and 

active sensors that have been used in numerous agricultural studies including for crop phenotyping [26]. 

Multispectral sensor payloads can produce wide-ranging plant phenotyping metrics over a broad area. 

The use of structure-from-motion (SfM) provides the ability to create a 3-D representation of objects 

within a study site without the need for more expensive Lidar sensors [31]. Plant phenotyping structural 

metrics such as canopy cover, density, height, and volume can be derived from these 3-D products [32]. 
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The use of multispectral imaging can provide plant health metrics such as the normalized difference 

vegetation index (NDVI) [33] or the soil adjusted vegetation index (SAVI) [34]  as well as water use 

metrics including measures of evapotranspiration from thermal sensors [35]  The combination of these 

metrics can be used to determine overall plant health and the effects of biotic and abiotic stress levels [32].  

3. Discussion 

 

We conclude that the collection of phenotypic traits via remote sensing is not only 

possible but can be highly efficient. These systems have the capability to produce a complete 3-

D above and belowground phenotypic assessment of vegetation (Table 1).  The application of 

terrestrial laser scanning (TLS) in an agricultural environment can produce a variety of plant 

health metrics such as height, cover, yield, biomass, Nitrogen content, chlorophyll content, and 

even leaf water content (Table 1). Lidar’s versatility in deriving these metrics is limited by the 

wavelength of the laser and the user’s available options in processing. As technological 

advances continue with new models, the application of TLS in the field can only become faster 

and easier. Further accessibility in airborne and UAV lidar will also greatly broaden the 

capabilities of the base technology. The use of ground penetrating radar (GPR) in agriculture is 

still in its infancy. Numerous studies have shown possible applications in coarse root biomass 

estimation as well as root phenotyping and estimating net primary productivity. Active 

application of GPR in an agricultural setting is still largely limited to research purposes due to 

the allowances needed for data collection e.g., wide row spacing and coarse root detection 

capabilities. However, ongoing advances in collection methodologies and the advance of 

airborne mounted GPR units show great promise for increasing the collection capabilities of this 

technology. Further work is being  
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Table 1. Three remote sensing technologies and their related metrics that may be used for crop phenotyping.  

Technology Metric Advantages Limitations References 

TLS Height, 3D volume, 

Biomass, Green 

Intensity  

High resolution 3D 

structure, millimeter 

level accuracy is 

possible 

Prohibitive cost, Small 

landscape data collection, 

Large time investment  

Hosoi and Omasa 

2009 

Leftsky et al 2009 

Eitel et al 2014 

Li et al 20148 

GPR Reflectance, root 

depth, cavernous 

space, water content 

Non-destructive 

belowground metrics, 

high resolution 

product 

Small landscape data 

collection, small body of 

literature 

Butnor et al 2001 

Delgado et al 2017 

Klotzsche et al 2018 

sUAS 

Multispectral  

Imagery 

Height, 3D volume, 

Simple ration, NDVI, 

Evapotranspiration 

Broad ranging sensor 

capabilities, landscape 

scale data collection,  

No sub canopy information 

gathered, Issues with 

airspace usability, 

sunlight/shadows impact 

 Hassan et al 2019  

Senay et al. 2010 

 

undertaken expanding GPR data into fine scale root systems for a broader agricultural 

application. 

3.1. Thesis Goal and Predictions 

The goal of this study is to use these three remote sensing technologies for crop phenotyping to 

detect significant differences in crop traits in response to deficit irrigation, and thus drought stress.  Crop 

producers through the cooperative extension will be able to see firsthand how the use of high-efficiency, 

drought-tolerant sorghum can be used to produce high-yield crops with low water use. In this study, the 

above-and belowground phenotypic traits of grain sorghum in response to deficit irrigation will be 

quantified using a multi-tiered remote sensing approach that includes three emerging technologies: time-
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of-flight terrestrial laser scanning (TLS), dual-channel polarized ground penetrating radar (GPR), and a 

multispectral imaging payload on a UAV. UAV.  

We hypothesized that aboveground traits such as height and plant health would decline in 

response to drought and that belowground traits such as root production would increase in response to 

drought, an indication of drought tolerance. 

These technologies will allow us to evaluate above- and below-ground 3-D structural phenology 

and productivity of an agricultural crop in response to deficit irrigation.  In Nevada, irrigation water 

comes primarily from groundwater sources that recent research via the GRACE satellite has indicated are 

in decline [36]. Groundwater availability is quite limited in Nevada with cutoffs in place to provide 

irrigation water for newer farmers. These combined effects put increased pressure on newer farmers to 

reduce water use as much as possible while still staying profitable.  
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Abstract: Increasing aridity due to climate change is altering soil stability and inhibiting crop growth in 

the Southwestern United States. Sorghum [Sorghum bicolor L. Moench] is a key drought-tolerant species 

being used to replace less drought-tolerant crops in drylands. Above- and below-ground crop 

productivity and the efficient use of water resources are critical aspects of sustainable agriculture, 

particularly in drylands. We conducted a crop phenotyping study using three emerging remote sensing 

technologies to assess the response of above- and below-ground traits of two varieties of grain sorghum 
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to deficit irrigation, i.e., drought conditions. We hypothesized that crop height and an index of plant 

health: the normalized difference vegetation index (NDVI), would significantly decrease and that the 

sorghum’s belowground biomass (BGB) would increase, as an indication of drought tolerance, in 

response to deficit irrigation. We used a randomized block design, with three levels of deficit irrigation 

treatment (100, 60, and 30% of replenishment of soil water depletion to field capacity) as the main plots, 

two hybrids of grain sorghum as the subplot, and three replications. Over the course of the 2021 and 2022 

growing seasons, we measured changes in plant height, NDVI, and below-ground root response 

using a 532-nm terrestrial laser scanner (TLS), a multispectral camera mounted on an airborne 

drone, and a 900 MHz ground penetrating radar, respectively. Our hypotheses of a decrease in 

above-ground plant traits, i.e., height for both varieties and NDVI in the white variety in 

response to deficit irrigation treatments were confirmed. We found significant differences in the 

amplitude response maps, a surrogate of BGB phenology, that indicated increasing biomass 

with increasing deficit irrigation. However, this response was not consistent with field 

measures of BGB that showed the highest BGB at 60%, then 100%, and then 30%. This indicated 

that a 30% deficit level exceeded drought tolerance for the two varieties. These results 

demonstrated that these three technologies have great promise for use in hi-throughput crop 

phenotyping in agriculture and that selectively bred sorghum varieties are a viable alternative for future 

use in dryland agriculture.  

Keywords:  Agriculture, Remote Sensing 
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1. Introduction 

Over 40% of the Earth’s ice-free land area is composed of drylands that act as vital carbon sinks 

[1] and comprise around 31% of the total land area in the United States [2]. Within Nevada, 98% of the 

land is defined as drylands with an aridity index (AI) ≤ 0.65, and some of these landscapes contain arable 

soils that are available for agriculture [3-6]. These drylands have seen an increase in temperature and 

aridity threatening the already limited arable landscape [7,8].  Dryland agriculture comprises a major 

component of Nevada’s economy with alfalfa and wheat being the two primary crops [9]. Globally, 

increasing temperatures, drought, and aridity are greatly affecting agriculture within drylands including 

Nevada [7,8,10]. In Nevada, irrigation water comes primarily from groundwater sources that recent 

research via the gravity recovery and climate experiment (GRACE) satellite has indicated are currently in 

decline [11]. Groundwater availability is quite limited in Nevada with cutoffs in place to reduce water use 

starting with newer farmers[12]. These combined effects put increased pressure on newer farmers to 

reduce water use as much as possible while still staying profitable. 

These issues combined with ongoing water rights create a difficult environment for new farmers 

in Nevada. Unfavorable conditions provide an incentive to select for by crop breeding and plant drought-

tolerant alternative crops such as sorghum. Sorghum is the fifth highest-produced grain crop in the world 

with a diverse genetic pool suitable for creating different breed varieties tolerant to heat and drought 

[13,14]. The development of efficient phenotyping techniques for these new varieties of sorghum is 

critically important. Small unoccupied aircraft systems (sUAS) have become readily available to 

consumers and are in steady use by producers for simple mapping tasks and monitoring. Larger 

corporations have the ability to utilize these devices to a greater extent, but a number of applications have 

yet to be fully adopted. Simple orthomosaics of fields using red, green, blue (RGB) cameras are good for 

continuous monitoring of visible spectral phenotypes, but other specialized metrics such as vegetation 
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health indices and above-ground water use can be difficult to apply due to a lack of introductory 

resources. The rapidly developing world of lidar (light detection-and-ranging) offers even greater 

avenues for 3-D plant structural phenotyping as well as spectral-based metrics for the detection of 

nitrogen levels, chlorophyll content, or even leaf water content [15-17]. The implementation of structure-

detecting models allows for automated plant segmentation and the identification of separate plant organs 

such as leaves, stems, and panicles [18].  The unique capabilities of ground penetrating radar (GPR) in 

agriculture offer the possibility of non-invasive belowground biomass detection and root phenotyping 

[19-21]. Unique to this study will be the simultaneous application of 2 active and 1 passive remote sensing 

technology to crop phenotyping of above- and below-ground plant traits including the use of terrestrial 

laser scanning (TLS), GPR, and a small unoccupied aerial system (sUAS) with a multispectral imaging 

camera payload.  

Consequently, in this study, the above-and belowground phenotypic traits of grain sorghum in 

response to deficit irrigation will be quantified using a multi-tiered remote sensing approach that 

includes three emerging technologies: time-of-flight TLS, dual-channel polarized GPR, and a 

multispectral imaging camera payload that is mounted on an sUAS. These technologies will allow us to 

evaluate above- and below-ground 3-D structural phenology and productivity of an agricultural crop in 

response to deficit irrigation.   

1.1 Goal and Hypotheses 

The goal of this study is to use 3 remote sensing technologies for crop phenotyping to detect 

significant differences in crop traits in response to three levels of deficit irrigation (30%, 60%, 100%), and 

thus drought stress. We hypothesized that the remotely-sensed aboveground metrics, including crop 

height and a plant health metric, would exhibit a decline and that belowground metrics, including root 
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structure and/or biomass, would exhibit an increase in response to drought, i.e., deficit irrigation, indicating 

evidence of drought tolerance.  

2. Materials and Methods  

2.1. Study Site  

The experimental plots were established in 2021 and 2022 at the 11-ha University of Nevada’s 

College of Agriculture, Biotechnology & Natural Resources Valley Road Field Laboratory (UNR CABNR-

VRFL) in Reno, Nevada (Figure 1). Weather data for the study site was collected from an onsite weather 

station [22]. Mean high temperatures for the growing season (June – October) range from 20- 27°C with 

lows ranging from 4-14°C. Mean precipitation is low ranging between 0-20 mm. The VRFL’s soils are an 

Orr gravelly loam and Orr sandy loam (Fine-loamy mixed, superactive, mesic Aridic 

Argixerolls,)[23]. Field data was collected starting directly before planting and continued until harvest 

(approximately early June to the first week of October).   
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Figure 1. The experimental plot designs for the remote sensing crop phenotyping study that was conducted in 2021 

(A) and 2022 (B) at the University of Nevada CABNR Valley Road Field Laboratory in Reno, Nevada. A randomized 

block design was used with 3 levels of deficit irrigation treatments X 2 hybrid varieties of grain sorghum X 3 

replications for 18 total 6 m X 3 m field plots. TLS = Terrestrial Laser Scanner and TDR = Time Domain Reflectance. 
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2.2 2021 and 2022 Field Experimental Design  

In June of 2021, two varieties of sorghum (Richardson Seeds Early Red Hybrid and Early White 

Hybrid) were planted. We used a randomized block design, with three levels of deficit irrigation 

treatments (100, 60, and 30% of replenishment of soil water depletion to field capacity) as the main plots, 

two hybrids of grain sorghum as the subplot, and three replications. A total of 18 6-m X 3-m plots were 

generated by this experimental design.  A single 6-m X 3-m plot contains 4 X 6 m rows with 76 cm (30 in) 

spacing between rows each of which was sowed to one of the varieties of sorghum at 15-cm spacing. This 

may produce an estimated 40 plants per row and a total of 160 plants per plot.  The row spacing of 76 cm 

was set to allow ground penetrating radar (GPR) collections for each plot of sorghum. Total water use 

(100%) was determined with time domain reflectometry (TDR) for establishing a deficit irrigation system. 

Three sets of drip irrigation treatments (100%, 60%, 30%) were established for each sorghum variety 

creating six plots which were then replicated three times (Figure 1 A and B).   

In mid-July of 2022 when the sorghum panicle had reached the grain-filling stage of growth, wild 

bird depredation began to occur primarily from Mourning doves (Zenaida macroura) and what appeared 

to be starlings. In response to these granivores, we placed bird netting over all 18 plots in early August 

2022, which had to be removed weekly for remote sensing data collection. 

2.3. TLS Plant Height Measurements & Processing 

The TLS survey period for the 2021 season began on 6/30/21 and ran until the first week of 

October (10/05/21). The 2022 field season took place from 6/08/22 until 10/12/22. These time frames 

captured the entire growth cycle of both sorghum varieties. Terrestrial laser scanning (TLS) was 

conducted using a Leica C10 532 nm green laser capable of up to 50,000 points/sec that emits a time of 
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flight-based laser for distance calculations. A full list of TLS specifications can be found in Table 1. A 

preliminary scan was taken shortly after planting to act as a reference for a bare earth scan for the 

generation of a raster canopy height model (CHM) of a field plot. Subsequent scans were taken weekly 

following crop emergence with a total of 9 usable dates collected during the 2021 growing season and 12 

during the 2022 season. In each instance of data collection, a minimum of 15 scan positions were taken at 

a height of 2 meters above the ground to capture all plots thoroughly and to minimize obstructions. 

Reflective sphere targets were placed across the field in positions that were visible from all scan locations 

in order to assist with scan-to-scan registration.  The scan positions for the 2021 and 2022 field seasons are 

shown in Figure 1.  

The overall workflow for TLS processing is shown in Figure 2. TLS postprocessing consisted of 

(1) registration of all scans and point-to-point merging, (2) the clipping out of extraneous points and stray 

point filtering, (3) conversion to raster and extraction of regions of interest (ROI), and (4) statistical 

analysis of derived metrics. Scan registration was performed using Leica Register 360™ automatic 

registration. Here, corresponding tie points are identified by the algorithm and theoretical scan positions 

are displayed for manual approval. Any scan positions that can’t be automatically placed are then 

manually positioned using the visual alignment tool in Leica Register 360 before automatic registration is 

performed again.  

The merged point clouds still contain noise and excess data caused by dust particles and regions 

outside the experimental zone. All point clouds were reduced down to only the study site using the 

software CloudCompare’s segment tool to remove the majority of stray points and reduce file size [24]. 

Further filtering was performed using the Point Data Abstraction Library’s (PDAL) filters.outlier function 

[25]. Point clouds were then gridded into 5 cm raster files using PDAL’s inverse distance weighted (IDW) 

writers.gdal function [26] to create digital surface models for canopy height model (CHM) generation. 
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CHM’s are generated using a gridded bare earth scan functioning as a digital terrain model (DTM) and 

georegistered to digital surface models (DSM) from the TLS data. Raster subtraction of the DSM minus 

the DTM was conducted using QGIS software raster calculator [27]. The resulting CHM contains only 

height data. A ROI vector coverage was digitized of the experimental plots (Figure 1) and used for data 

extraction.  Each of the weekly 18 X  5 cm pixel resolution rasters of a field plot was then analyzed in a 

time series by plotting the mean height values over time. A one-way analysis of variance was performed 

after increasing the raster resolution to 20 cm to reduce file size and spatial autocorrelation. A Tukey’s 

post hoc test was then performed to detect differences between treatment plots.  

 

Figure 2.  TLS post-processing workflow for CHM generation and analysis of the UNR-CABNR Valley Rd Laboratory 

sorghum plots in Reno, NV. 

 

Table 1. Specification of TLS Leica C10 used in the study of the UNR-CABNR Valley Rd Laboratory sorghum plots in 

Reno, NV. 

Characteristic Description 

Wavelength  Green, 532 nm visible  

Range  300 m @ 90%; 134 m @ 18% albedo   

Scan Rate   Up to 50,000 points/sec   
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Scan Resolution   At a range between 0 – 50 m: Spot Size: from 

4.5 mm (FWHM-Based); 7 mm (Gaussian 

based)  

Point Spacing: Fully selectable horizontal 

and vertical; < 1 mm minimum spacing, 

through full range; single point dwell 

capacity  

Field-of-View   Horizontal: 360° (maximum)  

Vertical: 270° (maximum)  

 

2.4. GPR Data Collection, Depth Calibration, & Processing  

In 2021, on 9 different occasions during the sorghum growing season, ground penetrating radar 

(GPR) amplitude reflectivity maps (scans) were made of the 18 field plots of grain sorghum (Figure 3). In 

2022, on 10 different occasions during the growing season, GPR scans were collected. These collections 

were made using an IDS GeoRadar RIS MF Hi-Mod dual channel (400 /900 MHz) system with 

horizontal transmit and horizontal receiving polarization (HH) (Table 2).  Only the 900 MHz amplitude 

returns were considered for the 2021 and 2022 experiments due to the small diameter and shallow rooting 

depth of the two varieties of grain sorghum. Previous research had established that higher frequency 

antennas produce higher resolution imaging on belowground structures compared to lower frequency 

antennas [20,28,29]. GPR data geolocation was established using two Emlid Reach RS2 (a base station and 

a rover) multi-band real-time kinematic (RTK) global positioning systems (GPS). The attachment of the 

rover GPS to the GPR cart absolved the need for wheel-measured transects commonly used in GPR data 

collection and allowed freedom of movement that is helpful to field application. GPR data acquisition 

was accomplished using IDS GeoRadar’s OneVision™ collection software whereby the GPR was 

systematically rolled in a cart up down/up rows parallel to the plants forming a bidirectional grid (Figure 
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3). This was repeated across all plots and replicates on a weekly basis beginning in late May before 

planting and continuing from June to October of 2021 and 2022.  

GPR post-processing was performed using GPR-Slice software [30] of which the data processing 

steps are shown in Figure 4. These steps are as follows: (1) digitize amplitude millivolts to 16-bit and 

apply a batch gain-wobble, (2) set the ground level to time 0 using the Scan-by-Scan method, (3) radar 

spectra hi/lo cut-off points are set as half above and below the 900 MHz frequency (450/1350 MHz) and an 

Automatic Gain Control (AGC) gain is applied, (4) apply a bandpass filter to the data followed by a 

Hilbert transformation, (5) the radargram of the amplitude returns was then XYZ-orientation sliced at 10 

slices with 15% overlap, and these slices were then IDW gridded to 5 cm pixel resolution radar amplitude 

reflectance rasters for image analysis. Due to the shallow rooting depth of the sorghum roots for both 

varieties, only the first slice was used for analysis as that is where the bulk of the root mass was located. 

Raster analysis was performed using QGIS [27] open-source software for ROI extraction and time series 

analysis by plotting the mean amplitude reflectivity values over time. ROIs of each treatment plot were 

extracted and resampled to 20 cm pixel resolution before being converted into R data frames for analysis 

in the R statistical package [31]. Each GPR cart turnaround section of the data collection was removed 

from the data frame as these resulted in high-velocity returns as the GPR was partially lifted for the 180° 

turns. A one-way analysis of variance (ANOVA) and Tukey’s post hoc test using R’s stat module [31] 

were conducted on the split-plot experimental design using the GPR’s amplitude reflectivity values as the 

response variable to 3 levels of deficit irrigation.  
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Figure 3. Example of the recorded GPS positions of the GPR during data acquisition of a surrogate of belowground 

biomass for eighteen plots of two varieties of grain sorghum in a systematic bidirectional grid pattern at the UNR 

CABNR Valley Road Laboratory,  Reno, NV. 
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Figure 4.  GPR-Slice step-by-step methods were used for the post-processing of GPR data for eighteen plots of two 

varieties of grain sorghum at the UNR CABNR Valley Road Laboratory,  Reno, NV. 

Table 2. The product specifications of an IDS GeoRadar RIS MF Hi-Mod dual frequency GPR used for detecting 

belowground 3D structure including biomass of eighteen plots of two varieties of grain sorghum at the UNR CABNR 

Valley Road Laboratory,  Reno, NV. 

 

Characteristic Description 

Footprint   38 x 43 cm (Single antenna)   

Channels   2 (up to 8)  

Frequency   400 MHz / 900 MHz  

Polarization   Horizontal (HH)  

Antenna Spacing   50 cm   

Samples/scan  512  

2.5. sUAS-Mounted Multispectral Camera NDVI Collection & Processing  
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Multispectral data of the 18 field plots were collected for the 2021 and 2022  field seasons using a 

MicaSense Altum 6 band (red, green, blue, red edge, near-infrared (NIR), and short wave infrared 

(SWIR)) camera that was mounted on an sUAS DJI Matrice 600. Four flights on four different occasions 

were collected in 2021 and 5 flights were conducted between early July to late September in 2022. Flight 

parameters for both field seasons can be found in Table 3 and camera specifications are provided in Table 

4. Only 5 flights could be made in 2022 because of a lowering of the drone-accessible flight deck to zero 

elevation over the University by the local FAA. The allowed flights for both years were conducted using 

Pix4D Capture flight planning and processing software at a height of 15 meters above ground level at a 

slow speed (2 m/s). A 70% frontal and 60% side image overlap was used for the 2021 season and an 80% 

front and side for the 2022 season. The low altitude and slow flight speed were required to ensure proper 

overlap of images. Despite these measures, some flights from the 2021 field season failed to fully process 

due to camera errors. This problem was corrected for the 2022 season by slowing the camera capture rate 

and increasing flight plan overlap according to MicaSense’s recommendations. Three ground control 

points were established across the field for each flight using Emlid RS2 RKT GPS rover and base units. 

Image processing was performed using Pix4D Mapper’s agriculture settings to generate multispectral 

orthomosaics and the NDVI spectral index [32].  NDVI was calculated as: 

NIR – R / NIR + R     (2) 

Spectral orthomosaics were output at 0.6 cm pixel resolution. Each plot was extracted using ROI’s and 

mean NDVI values were plotted over time. The data was resampled to 20 cm pixel resolution and analyzed 

using a one-way ANOVA and Tukey’s post hoc analysis to determine differences in treatments.  

Table 3. sUAS flight parameters used for both the 2021 and 2022 field seasons for the remote sensing crop phenotyping 

study on eighteen plots of two varieties of grain sorghum at the UNR CABNR Valley Road Laboratory,  Reno, NV. 

Software Altitude Front/Side overlap Resolution 
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Pix4D 15m 70/60% 

85/85%  

0.6 cm 

Table 4. Specifications for the MicaSense Altum camera that was mounted on the airborne drone for this remote 

sensing crop phenotyping study on eighteen plots of two varieties of grain sorghum at the UNR CABNR Valley Road 

Laboratory,  Reno, NV. 

 Parameters Multispectral   Thermal   

CCD Size    3.45 µm  12 µm  

Resolution   2064 x 1544 px  

(3.2 MP x 5 imagers)  

160 x 120 px  

(0.01 K)  

Aspect ratio   4 : 3   4 : 3   

Sensor size   7.12 x 5.33 mm   

(8.9 mm diagonal)   

1.92 x 1.44 mm  

Focal length   8 mm   1.77 mm  

Field of view (h x v)  48° x 36.8°  57° x 44.3°  

Thermal sensitivity   N/A  < 50 mK  

Thermal accuracy   N/A   +/- 5 K   

Output bit depth   12-bit   14-bit  

GSD @ 120 m (~400 ft)   5.2 cm   81 cm    

GSD @ 60 m (~200 ft)   2.6 cm   41 cm  

 

2.6. Biomass Collections 

When the 2022 crop was ready for harvest, in each of the 3 m X 6 m X 18 plots, a 0.5 m2 sub-plot 

was established at the center of each plot for each sorghum variety and a sample of pannicles were 

collected to later estimate grain yield. Each of the full plots was mowed around these center plots and the 

mowed plants were simultaneously weighed by the mower’s scale for above-ground wet biomass. After 

the mowing, the 0.5 m2 sub-plots were then excavated using a backhoe to collect both above and below-

ground biomass. The mowed sorghum plants from the subplot were then washed of all soil, partitioned 

into pannicles, stems, and roots, and weighed for wet above- and below-ground biomass, and dried at 



25 
 

49°C for 48 hours. The sub-plot’s estimates of above-ground wet biomass were then added to the wet 

biomass of the corresponding full plot for an estimate of the total plot wet above-ground biomass. The 

wet-to-dry above- and below-ground biomass conversion factor was estimated. The 0.5 m2 below-ground 

wet and dry biomass samples were then scaled to the individual 6 m rows X 4 rows/plot to estimate the 

total plot below-ground biomass/variety.  

2.7. Random Forest Model and Linear Regression for biomass estimation  

A Random Forest (RF) is a machine learning tool that is an ensemble of regression trees that are 

recursively generated to produce best-fit regression models [33]. An RF model that used the field plot 

spatial data was used in this study using the R statistical software’s caret classification and regression 

package to try to predict the best-fit models for estimates of above-ground biomass in each of the 

sorghum fields in 2022. The variables used as predictors included the 2022 mean CHM, mean NDVI, and 

mean red-edge NDVI. The red edge NDVI was created using the R statistics program [31] and the 

equation (3) below:  

𝑹𝑬−𝑹

𝑹𝑬+𝑹
              (3) 

 The above-ground biomass response variable spatial layer was created by generating a 0.5-m X 

0.25 m pixel resolution raster along the 18 field plot’s 4 X 6 m rows and evenly distributing the estimated 

wet above-ground biomass values for the corresponding plot to these pixels.  

3. Results 

3.1. TLS 2021 

Mean heights derived from the canopy height model show the phenological development of both 

varieties of sorghum over the course of the growing season (Figure 6). Mean height increased rapidly 

until late July before plateauing in height.  
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Figure 5. The 2021 TLS-generated mean canopy height model (CHM) for the white (A) and red (B) varieties of sorghum 

in response to 3-levels of deficit irrigation versus TLS collection dates indicate the phenology of the two varieties. This 

crop phenotyping study was conducted at the UNR CABNR Valley Road Laboratory,  Reno, NV. 

 

3.1.1 White  
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TLS analysis of variance (ANOVA) results showed significant differences in the first week of 

scans between each treatment, however plant heights at this time were between 10-15 cm tall, and 

differences in height are likely due to wind effects on the developing plants. A reliable significant 

difference (p-value of near zero for 100-60/30) in height between the 100% deficit irrigation when 

compared to the 60% level and 100% to the 30% began on the second week of scanning 7/13/2021, one 

month after planting. No significant difference in height between 60% and 30% was detected until 

8/10/21. Beyond that point in the season, all three treatments showed significant differences in height (p-

value < 0.05) as seen in Appendix A1.  

3.1.2 Red  

The TLS ANOVA results for the red variety showed a divergence in treatments earlier in the 

growing season than the white. Significant differences in heights were detected by the second week of 

data collection (7/13/2021) with p-values of 0, 0, 0.008 for the 100-60, 100-30, 60-30% irrigation, 

respectively (Appendix A2). Significant differences (p-value near 0) in height across all treatments were 

detected from week 2 until the end of the season showing the divergence in plant height across irrigation 

treatments for the majority of the growing season. Tables 5 A and B show the results of the ANOVA and 

Tukey’s test for the sorghum maturity-stage CHM that was collected on 10/05/21.   

Table 5.   

A. The maturity stage TLS-generated mean canopy height model (CHM) ANOVA of the white and red varieties of 

sorghum in response to 3 levels of deficit irrigation. This crop phenotyping study was conducted at the UNR CABNR 

Valley Road Laboratory,  Reno, NV. 

  

Source: 

White 

Red 

DF SS MS F P 

Treatment 2 

2 

71.5 

63.6 

35.76 

31.81 

533.2 

647.4 

2e-16 

2e-16 

Residuals 12120 

11669 

812 

573.3 

0.07 

0.05 
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B. Tukey Honest Significant Differences (HSD) test showing adjusted p-values.  

Variety Treatment  DF LWR UPR P-Adj 

White 

Red 

100-60 

100-60 

0.132 

0.124 

0.119 

0.113 

0.146 

0.136 

0 

0 

White 

Red 

100-30 

100-30 

0.183 

0.177 

0.169 

0.165 

0.197 

0.189 

0 

0 

White 

Red 

60-30 

60-30 

0.051 

0.053 

0.038 

0.041 

0.064 

0.065 

0 

0 

 

 

3.2 TLS 2022 

The 2022 mean CHM phenology for the growing season shows a similar, but slightly different 

growth pattern than the 2021 season (Figure 7 A and B). Both varieties showed two periods of rapid 

growth before plateauing in mid to late August.  

 

 



29 
 

 

Figure 6.  The 2022 TLS-generated mean canopy height model (CHM) for the white (A) and red (B) varieties of sorghum 

in response to 3-levels of deficit irrigation versus TLS collection dates indicate the phenology of the two varieties. The 

July 22, 2022 “dip” is probably reflective of the impact of wild bird granivores. This crop phenotyping study was 

conducted at the UNR CABNR Valley Road Laboratory,  Reno, NV. 

 

3.2.1 White 

TLS ANOVA results of the white variety for 2022 showed no significant differences in height 

across any treatments until scan 7 on 7/12/22. Significant differences in height were detected for both the 

100-30% and 60-30% treatments. All 3 treatments showed a divergence in height (p-values < 0.05) on the 

following scan on 7/22/22. This trend continued until the end of the season. ANOVA and Tukey’s results 

for the final data collection of 10/12/22 are displayed in Table 6. The full section of ANOVAs for each 

collection can be found in Appendix A3.  

3.2.2 Red 

TLS ANOVA results for the red variety of 2022 showed a slight divergence in height differences 

of the 100-60% irrigation on 6/24/22, but these differences in height then disappeared after this point and 

did not show up again until 7/8/22 where all three treatments displayed significant differences in height. 
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Height differences across treatments would then fluctuate until the end of the season where clear 

differences in height were apparent. ANOVA and Tukey’s results for the final data collection of 10/12/22 

in Table 6 show a clear difference in mean height across all three treatments. The full section of ANOVAs 

for each week of scanning can be found in Appendix A4.  

Table 6.  

A. The maturity stage TLS-generated mean canopy height model (CHM) ANOVA of the white and red varieties of 

sorghum in response to 3 levels of deficit irrigation. This crop phenotyping study was conducted at the UNR CABNR 

Valley Road Laboratory,  Reno, NV. 

Source: 

White 

Red 

DF SS MS F P 

Treatment 2 

2 

19.1 

14.08 

9.566 

7.041 

177.5 

213.1 

2e-16 

2e-16 

Residuals 6199 

6485 

334.1 

214.3 

0.054 

0.033 

  

 

B. Tukey Honest Significant Differences (HSD) test showing adjusted p-values.  

Variety Treatment  Diff LWR UPR P-Adj 

White 

Red 

100-60 

100-60 

0.09 

0.05 

0.073 

0.037 

0.107 

0.063 

0 

0 

White 

Red 

100-30 

100-30 

0.135 

0.115 

0.117 

0.102 

0.152 

0.128 

0 

0 

White 

Red 

60-30 

60-30 

0.045 

0.065 

0.027 

0.052 

0.062 

0.078 

0 

0 

 

3.3 GPR 2021 

Mean amplitude reflectivity shows higher values for the 30% irrigation treatment and trends 

downward for the 60% and 100% (Figure 8 A and B). A possible growth curve is noted beginning on 

7/28/21 as values trend upwards overall.  
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Figure 7. Ground penetrating radar (GPR) mean amplitude reflectivity of the white (A) and red (B) varieties of 

sorghum’s root zone over the 2021 growing season in response to 3 levels of deficit irrigation. This crop phenotyping 

study was conducted at the UNR CABNR Valley Road Laboratory,  Reno, NV. 

 

3.3.1 White 

GPR (ANOVA) showed a significant difference (p-value of near zero) between each treatment 

plot for the white varieties on the first week of data collection and continued for each consecutive week. 

Table 7 shows the results of the final GPR collection at the above-ground maturity stage of sorghum on 
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10/5/21 with strong differences in mean amplitude reflectivity. Repeated measures ANOVAs for the 

entire growing season for the 2021 white variety can be found in Appendix A5.  

3.3.2 Red 

Similar to the white variety, radar reflectance for the red variety of sorghum showed an 

immediate difference beginning at week 1 and continuing for the duration of the season. ANOVA results 

are reported for the 10/5/21 red variety in Table 7. ANOVAs for the entire growing season for the 2021 

red variety can be found in Appendix A6. 

Table 7.  

A. The 2021 GPR mean amplitude reflectivity ANOVA at the maturity stage of growth for the red and white varieties 

of grain sorghum in response to 3 levels of deficit irrigation. This crop phenotyping study was conducted at the 

UNR CABNR Valley Road Laboratory,  Reno, NV. 

  

Source: 

White 

Red 

DF 

 

SS 

 

MS 

 

F 

 

 

P 

 

Treatment 2 

2 

3.18e+09 

9.467e+09 

1.59e+09 

4.73e+09 

1780 

6546 

0 

0 

Residuals 5521 

5099 

4.94e+09 

3.69e+09 

8.95e+09 

7.23e+05 

  

 

B. Tukey Honest Significant Differences (HSD) test showing adjusted p-values.  

Variety Treatment  Diff LWR UPR P-Adj 

White 

Red 

100-60 

100-60 

-1198.196 

-1898.615 

-1269.515 

-1968.252 

-1126.878 

-1828.977 

0 

0 

White 

Red 

100-30 

100-30 

-1764.136 

-3213.327 

-1837.084 

-3279.539 

-1691.188 

-3147.115 

0 

0 

White 

Red 

60-30 

60-30 

-565.9402 

-1314.713 

-645.432 

-1384.878 

-486.448 

-1244.547 

0 

0 

 

3.4 GPR 2022 
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Figure 9 shows a similar pattern of GPR reflectance values for 2022 to 2021. The three treatments 

diverge with 30% having highest reflectance followed by 60% then 100%. A similar curve appears in the 

data beginning on 8/10/22 trending upwards.  

 

 

 

Figure 8.  Ground penetrating radar (GPR) mean amplitude reflectivity of the white (A) and red (B) varieties of 

sorghum’s root zone over the 2022 growing season in response to 3 levels of deficit irrigation. This crop phenotyping 

study was conducted at the UNR CABNR Valley Road Laboratory,  Reno, NV. 

 

3.4.1 White 
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The ANOVA results for the 2022 white variety show an immediate significant difference at the 

first week of collection. These statistical differences continue over the growing season and can be viewed 

in Appendix A7. Table 8 shows the results of the ANOVA for the above-ground maturity stage of 

sorghum data collection on 10/05/22 

3.4.2. Red 

Statistical analysis of the red variety for the 2022 season follows the same trend as the white 

variety with significant differences detected in the first week of data collection and continuing on for the 

course of the season. Appendix A8 shows the results of each ANOVA. The results of the final data 

collection on 10/05/22 are displayed alongside the white variety in table 8.  

Table 8.  

B. The 2022 GPR mean amplitude reflectivity ANOVA at the maturity stage of growth for the red and white varieties 

of grain sorghum in response to 3 levels of deficit irrigation. This crop phenotyping study was conducted at the 

UNR CABNR Valley Road Laboratory,  Reno, NV. 

Source: 

White 

Red 

DF 

 

SS 

 

MS 

 

F 

 

 

P 

 

Treatment 2 

2 

5.259e+09 

3.473e+09 

2.629e+09 

1.736e+09 

1700 

1331 

2e-16 

2e-16 

Residuals 6867 

7240 

1.062e+10 

9.443e+09 

1.547e+06 

1.304e+06 

  

 

B. Tukey Honest Significant Differences (HSD) test showing adjusted p-values.  

Variety Treatment  Diff LWR UPR P-Adj 

White 

Red 

100-60 

100-60 

-2040.373 

-1544.438 

-2125.877 

-1620.205 

-1954.8695 

-1468.671 

0 

0 

White 

Red 

100-30 

100-30 

-452.548 

-185.871 

-538.213 

-263.225 

-366.784 

-108.516 

0 

0 

White 

Red 

60-30 

60-30 

1587.825 

1358.567 

1500.438 

1280.195 

1675.212 

1436.94 

0 

0 
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3.5. Time series NDVI 2021 

The Mean NDVI value time series for each variety of sorghum over the course of the growing 

season displayed rapid growth to peak values that then plateaued in late September as the panicles 

reached the maturity stage and the leaf blades began to dry out (Figure 9). NDVI values were greater in 

the 100% irrigation treatment with comparable though a lower performance at the 60% irrigation and a 

noticeable increase in NDVI at the maturity growth stage at the 30% irrigation level.   
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Figure 9. The mean normalized difference vegetation index (NDVI) of the white (A) and red (B) varieties of sorghum’s 

canopy over the 2021 growing season in response to 3 levels of deficit irrigation. This crop phenotyping study was 

conducted at the UNR CABNR Valley Road Laboratory,  Reno, NV. 

3.5.1 White 

ANOVA results for the 2021 white variety of NDVI collected on 9/22/21 are displayed below 

(Table 9). These results show significant differences across all three treatments.  

3.5.2 Red 

Much like the white variety, the 2022 red variety of sorghum showed significant differences in 

NDVI values between the three treatments for the final NDVI data collection on 9/22/21. Table 9 shows 

the full ANOVA for the red variety alongside the white.  

Table 9.  

A. The 2021 normalized difference vegetation index (NDVI) ANOVA at the maturity stage of growth for the red and 

white varieties of grain sorghum in response to 3 levels of deficit irrigation. This crop phenotyping study was 

conducted at the UNR CABNR Valley Road Laboratory,  Reno, NV. 
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Source: 

White 

Red 

DF 

 

SS 

 

MS 

 

F 

 

 

P 

 

Treatment 2 

2 

44.9 

36.3 

22.44 

18.168 

563.1 

383.4 

2e-16 

2e-16 

Residuals 14156 

13421 

564.1 

635.9 

0.04 

0.047 

  

 

B. Tukey Honest Significant Differences (HSD) test showing adjusted p-values.  

Variety Treatment  Diff LWR UPR P-Adj 

White 

Red 

100-60 

100-60 

0.104 

0.076 

0.094 

0.066 

0.113 

0.087 

0 

0 

White 

Red 

100-30 

100-30 

0.133 

0.127 

0.123 

0.116 

0.143 

0.138 

0 

0 

White 

Red 

60-30 

60-30 

0.029 

0.050 

0.02 

0.04 

0.039 

0.061 

0 

07 

 

3.6. Time series NDVI 2022 

Figure 10 shows the time series of mean NDVI values collected over the two varieties of sorghum over the 

course of the growing season. Much like the previous season of 2021, each NDVI value rapidly increased in response 

to the drought treatments before plateauing by August. Differences in the three NDVI values in response to the 

drought treatments are visible by August and are maintained for the duration of the season, with the exception of the 

red variety. At sorghum’s maturity stage in the growing season, the red variety shows a rapid increase in NDVI 

overtaking the other 2 treatments.  
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Figure 10. The mean normalized difference vegetation index (NDVI) of the white (A) and red (B) varieties of sorghum’s 

canopy over the 2022 growing season in response to 3 levels of deficit irrigation. This crop phenotyping study was 

conducted at the UNR CABNR Valley Road Laboratory,  Reno, NV. 

 

3.6.1 White  

The 2022 NDVI ANOVA results for the white variety of sorghum showed significant differences 

only between the 100 % and 30% deficit irrigation treatments, but not for the other treatments (Table 10).  
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3.6.2 Red 

The 2022 NDVI ANOVA results for the red variety of sorghum were strikingly different from the 

white variety with significant differences across all three levels of deficit irrigation (Table 10 B).  

Table 10.  

A. The 2022 normalized difference vegetation index (NDVI) ANOVA at the maturity stage of growth for the red and 

white varieties of grain sorghum in response to 3 levels of deficit irrigation. This crop phenotyping study was 

conducted at the UNR CABNR Valley Road Laboratory,  Reno, NV. 

Source: 

White 

Red 

DF 

 

SS 

 

MS 

 

F 

 

 

P 

 

Treatment 2 

2 

0.32 

1.08 

0.158 

0.538 

4.22 

15.01 

0.015 

3.1e-07 

Residuals 5710 

5713 

213.70 

204.80 

0.037 

0.036 

 

 

 

 

B. Tukey Honest Significant Differences (HSD) test showing adjusted p-values.  

Variety Treatment  Diff LWR UPR P-Adj 

White 

Red 

100-60 

100-60 

0.013 

-0.017 

-0.001 

-0.031 

0.03 

-0.003 

0.091 

0.013* 

White 

Red 

100-30 

100-30 

0.018 

0.017 

0.003 

0.003 

0.033 

0.031 

0.015* 

0.015* 

White 

Red 

60-30 

60-30 

0.005 

0.034 

-0.01 

0.02 

0.02 

0.049 

0.716 

1.0e-05* 

 

3.7 True Biomass 

The 100% deficit irrigation treatment had the greatest aboveground wet biomass for the red (~65 

kg) and white (~78 kg) varieties followed by the 60% treatment (red = 55 kg and white = 68 kg) and then 

the 30% ((red = 45 kg and white = 54 kg, Figure 11). The belowground wet biomass showed a different 

response pattern from the above-ground findings where 60% irrigation had the highest biomass followed 

by the 100% then 30% (Figure 12).  
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Figure 11. Total aboveground biomass in wet weight for the red and white varieties of grain sorghum in response to 3 

levels of deficit irrigation. This crop phenotyping study was conducted at the UNR CABNR Valley Road Laboratory,  

Reno, NV. 

 

 

 

Figure 12.  Estimated total belowground wet biomass for the red and white varieties of grain sorghum in response to 

3 levels of deficit irrigation. This crop phenotyping study was conducted at the UNR CABNR Valley Road Laboratory,  

Reno, NV. 
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The results of the random forest spatial modeling to predict above ground biomass showed 

moderate capability. Of the 3 predictor variables used, mean CHM or plant height had the highest 

influence,  followed by NDVI, and finally the red edge index (Figure 12). The best model fit resulted in an 

R2 of 0.133, a root mean square error (RMSE) of 32.8, and an the mean absolute error (MAE) of 25.1. These 

results indicate that this particular RF model had a poor correlation with actual aboveground biomass 

with a mean difference between predicted and actual biomass of 25 g.  

Figure 13.  The Importance and MSE plots for the random forest model’s 3 remote sensing predictors, two from the 

multispectral camera (NDVI and red edge NDVI) and one from the TLS, i.e., the canopy height model (CHM) at the 

maturity growth stage of sorghum. The predictors are used to predict biomass across the two varieties. This crop 

phenotyping study was conducted at the UNR CABNR Valley Road Laboratory,  Reno, NV. 

4. Discussion 



42 
 

4.1. TLS 

The time series analysis of vegetation height phenology for this study accurately tracked the 

response of sorghum crop height for the two varieties in response to deficit irrigation over two growing 

seasons using the Leica C10 laser scanner. We predicted that differences in vegetation height would be 

detectable across the three treatments and that the heights would decrease in accordance with deficit 

irrigation and this trend was confirmed. Our results showed a clear difference in plant height between the 

control (100%) and both deficit treatments (60%,30%), proving the capability of TLS to accurately monitor 

plant height and structure. The canopy height models (CHM) were able to measure plant height over 

both growing seasons and even captured the loss in vegetation height that occurred due to the bird 

granivores that occurred in late July for both field seasons, particularly the 2022 season. Terrestrial laser 

scanning provides a highly accurate means for plant monitoring over a broad range of health metrics.  

Our lidar-derived CHMs proved to be highest in importance for estimating plant biomass and 

significant differences between treatments were detected. The CHM derived from the final data collection 

of the 2022 season appears to correlate with the harvested aboveground biomass (Figure 14). This work 

reinforces the capability of lidar for vegetation monitoring. 

 

Figure 14. The mean plant height by treatment and mean biomass by treatment. 

 



43 
 

4.2. GPR  

We predicted that differences in radar reflectance would be detectable across the three irrigation 

treatments, and that larger root masses would be detected in the 30% to 60% deficit irrigation treatments. 

Following the principle that relative permittivity is inversely related to radar velocity, our results showed 

greater biomass levels in the 100% and 60% than the 30% irrigation. Our ground sampled root biomass 

reflects a similar pattern with 60% having the highest biomass levels followed by the 100% and then 30%. 

Figure 16 shows radar reflectance and sampled biomass allowing a side-by-side comparison. These 

results indicate that drought-stressed sorghum bicolor does produce greater root masses as we predicted, 

but there is a limit or threshold  before the plants begin to struggle to grow entirely. The 60% irrigation 

treatment had the greatest root biomass though this difference wasn’t fully detected in the radar 

reflectance.  The results of the mean radar reflectance over time show that we successfully were able to 

detect changes in belowground biomass as the plants matured.  

Statistically significant differences were detected across all three treatments, but this could be due 

to the use of ANOVAs. This level of significant difference from the first week of scanning is possibly due 

to the ANOVA’s sensitivity to population size. Small levels of variance within a population can be 

amplified by the sheer volume of occurrences creating artificially small p-values despite the coarsening of 

data to 20 cm resolution which was judged to be close to the mean diameter of a sorghum root mass The 

high resolution of the radar data inflates the population size for each treatment, despite the data being 

coarsened to 20 cm resolution. The 20 cm grid size was chosen as it closely matched the mean diameter of 

the sampled mature root mass. Further work must be done to evaluate differences in the radar data at 

coarser and finer scales to estimate how well the GPR is laterally detecting the root masses. Analyzing the 

mean amplitude reflectivity data gives us a better understanding of how drought stress affects the root 

masses and their detection in the radar data. The 100% and 60% irrigation treatments commonly had 
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similar amplitude values with the 100% being consistently lower than the 60%. This would indicate that 

larger root masses are being detected in the 100% irrigation as radar velocity is inversely proportional to 

relative permittivity and root water content. Further analysis of the 100% and 60% deficit irrigation 

treatments  in conjunction with field sampled belowground biomass is ongoing.  

 

Figure 15. Mean radar reflectance for 10/05/22 and sampled belowground biomass. 

 

4.3. UAV Multispectral  

The spectral dataset provided by the MicaSense Altum camera allowed us to generate extremely 

high-resolution orthomosaics of several different spectral indices. The two primary indicators used were 

the NDVI and a red edge index based on the same formula used for NDVI. Both indices target the near-

infrared (NIR) region of the electromagnetic spectrum, though the red edge band is specifically designed 

to target the region of the highest NIR reflectance in vegetation. UAV photogrammetry can also be used 

to derive 3D structural datasets through the use of structure from motion (SfM) methodology, though this 

was not needed for our study in addition to the Lidar datasets.  

We predicted that higher NDVI values would be detected in the 100% irrigation and would 

decrease accordingly as irrigation was decreased. The resulting NDVI values of our UAV data accurately 

tracked the crop growth cycle over time and was capable of detecting differences in NDVI across the 
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three treatments following our expectations. The 100% irrigation showed the highest NDVI values over 

the course of the growing season for both years and decreased in levels in accordance with % irrigation, 

though less so in the red variety. Mean NDVI values for the final data collection on 9/22/22 show the 

expected 100-60-30% downward trend for the white variety. The red variety showed a near equal level for 

100% and 60% and an increase in the 30% irrigation. Mean NDVI and total aboveground biomass show 

how NDVI can be useful for vegetation monitoring, but does not always equivalate to biomass (Figure 

17). NDVI was second in importance in the random forest biomass estimation indicating its potential for 

modelling on broader scales.  

 

 

Figure 16.  Mean NDVI for 9/22/22 and aboveground biomass by % irrigation. 

 

4.4 sUAS flight issues 

The launch version of the Micasense Altum struggles at capturing photos faster than a 2 second 

interval when flown at low altitude, which was unknown during the first season of data collection. The 

recommended flight altitude for the Micasense Altum is no lower than 30 meters above ground level 

(AGL), however, altitudes above 15 m did not generate high enough resolution pixels for our purposes. 

Further issues with airspace clearance occurred during the 2022 field season. Airspace access was 
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extremely limited during this time due to a change in airspace from 30m AGL to 0 m by the Federal 

Aviation Administration (FAA). This required us to file waivers through the FAA weekly for manual 

approval by Reno air traffic control. Because of these changes, fewer flights were employed than were 

preferred.  

4.5. Biomass predictive models 

A random forest model for predicting aboveground biomass was created using the canopy height model 

(CHM), the UAV-derived normalized difference vegetation index (NDVI), and a Red Edge vegetation 

index as predictive variables. Previous studies have used UAV-based multispectral vegetation indices 

such as NDVI for biomass prediction with limited accuracy [34]. Other studies have used airborne lidar-

derived metrics such as height and crown diameter for tree biomass prediction with some success [35]. 

We predicted that the lidar-derived CHM would most accurately reflect biomass and that the red edge 

band would perform better than traditional NDVI given its purpose in vegetation monitoring. Our model 

employed both vegetation height as well as two vegetation indices with limited results. A low R2 of 0.133 

indicates poor correlation of predictors to actual and MAE of 25.1 showing that our predictor model was 

unable to accurately predict above-ground biomass to a high degree of accuracy. Plant height had the 

greatest importance in the model followed by NDVI and then the red edge index. This comes as a 

surprise as the red edge band is designed to target the rapid change in near-infrared reflectance of 

vegetation [36,37]. Further work utilizing other machine learning algorithms and other predictor 

variables is required to accurately model plant biomass.  

4.6 Linear modeling of belowground biomass using GPR 

The simple linear regression was not statistically significant and did not linearly correlate radar 

reflectance and belowground biomass. This was not overly surprising as our methods for radar 

processing were primarily aimed at plot level estimates and the belowground biomass was harvested 
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only over 0.5 m2 areas. A full accounting of plot level belowground biomass regressed against plot level 

radar reflectance would hopefully show a better relationship, but retrieving that much biomass requires a 

time investment currently unavailable to us.  

5. Conclusions 

Terrestrial laser scanning has been used numerous times to accurately assess a whole host of 

vegetation monitoring such as plant height [38], cover, yield, and biomass to name a few [15,39,40]. Other 

uses of Lidar for vegetation monitoring have been employed through the use of airborne vehicles such as 

Asner’s 3D vegetation structure and height monitoring [41].  

The lidar-derived CHM’s accurately tracked plant height over the entire growing season. The 

utility of high-resolution lidar for collecting several different structural metrics out of a single dataset is 

incredibly useful for all types of vegetation monitoring. Airborne lidar has been applied for broadscale 

vegetation monitoring at high resolution in African savannas [41] to great success. Terrestrial lidar, while 

more limited in scope, can produce extremely high-accuracy 3D models of the subject matter that can be 

used to determine plant height as well as other metrics such as volume and structure.  

Ground penetrating radar’s use in agriculture is still largely in its infancy. There have been 

several cases of its use in detecting coarse tree roots or tubers [20,21] where the GPR was moved over 

these coarse roots in different directions creating a hyperbolic response in the raw radargram data. This 

method allows researchers to relate the size of each hyperbolic response to a known amount of biomass 

and works well for roots above a certain diameter. For roots smaller than that limit, or in the case that the 

GPR cannot be moved directly over the root mass, new methods of data processing must be employed. 

For this study, we relied on the wide swath width of the GPR to detect changes over time in the root mass 

from a lateral view. 
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The use of ground penetrating radar in agriculture is still largely nascent. Some of the earliest 

publications by Butnor in 2001 [21] on coarse root detection established the methodology that would be 

used by numerous other researchers in the years since. This methodology relies on hyperbola detection of 

objects large enough to generate such a response. Our system of lateral root detection on smaller root 

diameters required the development of a novel approach utilizing the gridded (Velocity or amplitude) 

measures from a minimally filtered radargram. Our results show that we were successful in detecting 

root changes over time, but firmly establishing total biomass through these methods remains 

problematic. Further research is required to broaden the capabilities of this technology, though the recent 

use of airless GPR systems could possibly remove many of the obstacles present in air-sensitive systems. 

Multispectral imagery in agriculture is of particular use due to the ease of access and efficiency of 

the technology. A single UAV can collect several different vegetation monitoring metrics at high 

resolution over multiple acres of landscape. This creates an easy point of entry for wide-scale vegetation 

monitoring, though there is the potential for difficulty as previously noted. The implementation of 

incorrect technology for the use case can create obstacles in data analysis and restrictions on airspace can 

be cumbersome to overcome. 
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Appendix 1 

Week Treatment (White) p-value 

1 100-60 

100-30 

60-30 

0 

0 

0.0000008 

2 100-60 

100-30 

60-30 

0 

0 

0.205 

3 100-60 

100-30 

60-30 

0 

0 

0.955 

4  100-60 

100-30 

60-30 

0 

0 

0.146 

5  100-60 

100-30 

60-30 

N/A 

N/A 

N/A 

6 100-60 

100-30 

60-30 

0 

0 

0.000002 

7 100-60 

100-30 

60-30 

0 

0 

0.02 

8 100-60 

100-30 

60-30 

0 

0 

0 

9  100-60 

100-30 

60-30 

0 

0 

0 

10 100-60 

100-30 

60-30 

0 

0 

0 

 

Table A1. 2021 TLS post hoc Tukey HSD of white variety reported p-values of each scan. 

Week Treatment (Red) p-value 
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1 100-60 

100-30 

60-30 

0 

0 

0.994 

2 100-60 

100-30 

60-30 

0 

0 

0.008 

3 100-60 

100-30 

60-30 

0 

0 

0 

4  100-60 

100-30 

60-30 

0 

0 

0 

5  100-60 

100-30 

60-30 

N/A 

N/A 

N/A 

6 100-60 

100-30 

60-30 

0 

0 

0 

7 100-60 

100-30 

60-30 

0 

0 

0 

8 100-60 

100-30 

60-30 

0 

0 

0 

9  100-60 

100-30 

60-30 

0 

0 

0 

10 100-60 

100-30 

60-30 

0 

0 

0 

 

Table A2. 2021 TLS post hoc Tukey HSD of red variety reported p-values of each scan. 

 

Week Treatment (White) p-value 

1 100-60 0.639 
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100-30 

60-30 

0.277 

0.499 

2 100-60 

100-30 

60-30 

0996 

0.368 

0.385 

3 100-60 

100-30 

60-30 

0.777 

0.121 

0.33 

4  100-60 

100-30 

60-30 

0.449 

0.822 

0.186 

5  100-60 

100-30 

60-30 

0.831 

0.0001 

0.0008 

6 100-60 

100-30 

60-30 

2.5e-05 

3.15e-012 

1.45e-10 

7 100-60 

100-30 

60-30 

0 

0 

0 

8 100-60 

100-30 

60-30 

3.56e-12 

3.53e-12 

4.28e-08 

9  100-60 

100-30 

60-30 

0 

0 

1.97e-09 

10 100-60 

100-30 

60-30 

0 

0 

8.59e-09 

11 100-60 

100-30 

60-30 

1.62e-13 

1.62e-13 

3.21e-09 

Table A3. 2022 TLS ANOVA of white variety reported p-values of each scan. 

 

Week Treatment (Red) p-value 
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1 100-60 

100-30 

60-30 

0.728 

0.999 

0.707 

2 100-60 

100-30 

60-30 

0.037 

0.086 

0.739 

3 100-60 

100-30 

60-30 

0.777 

0.121 

0.33 

4  100-60 

100-30 

60-30 

4.83e-09 

4.81e-09 

0.002 

5  100-60 

100-30 

60-30 

3.24e-08 

3.23e-08 

0.002 

6 100-60 

100-30 

60-30 

2.97e-07 

0.731 

1.88e-05 

7 100-60 

100-30 

60-30 

0.867 

0 

0 

8 100-60 

100-30 

60-30 

7.89e-06 

0 

0 

9  100-60 

100-30 

60-30 

7.94e-08 

3.84e-12 

3.87e-12 

10 100-60 

100-30 

60-30 

0.0001 

0 

0 

11 100-60 

100-30 

60-30 

0 

0 

0 

Table A4. 2022 TLS ANOVA of red variety reported p-values of each scan. 
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Week Treatment (White) p-value 

1 100-60 

100-30 

60-30 

3.32e-08 

0.273 

3.31e-08 

2 100-60 

100-30 

60-30 

0.007 

3.47e-08 

3.47e-08 

3 100-60 

100-30 

60-30 

3.51e-08 

3.51e-08 

3.51e-08 

4  100-60 

100-30 

60-30 

0 

0 

0 

5  100-60 

100-30 

60-30 

3.32e-08 

3.32e-08 

3.32e-08 

6 100-60 

100-30 

60-30 

1.39e-09 

1.39e-09 

1.39e-09 

7 100-60 

100-30 

60-30 

0 

0 

0 

8 100-60 

100-30 

60-30 

0 

0 

0 

9  100-60 

100-30 

60-30 

1.01e-12 

1.01e-12 

1.01e-12 

Table A5. 2021 GPR ANOVA of white variety reported p-values of each scan. 

 

Week Treatment (Red) p-value 

1 100-60 

100-30 

60-30 

0 

0 

0 

2 100-60 0 
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100-30 

60-30 

0 

0 

3 100-60 

100-30 

60-30 

0 

0 

0 

4  100-60 

100-30 

60-30 

0 

0 

0 

5  100-60 

100-30 

60-30 

1.55e-13 

1.55e-13 

1.55e-13 

6 100-60 

100-30 

60-30 

1.15e-08 

1.15e-08 

1.15e-08 

7 100-60 

100-30 

60-30 

0 

0 

0 

8 100-60 

100-30 

60-30 

6.10e-09 

6.10e-09 

6.10e-09 

9  100-60 

100-30 

60-30 

0 

0 

0 

Table A6. 2021 GPR ANOVA of red variety reported p-values of each scan. 

 

Week Treatment (Red) p-value 

1 100-60 

100-30 

60-30 

7.74e-12 

7.74e-12 

0.02 

2 100-60 

100-30 

60-30 

2.63e-12 

2.63e-12 

4.09e-05 

3 100-60 

100-30 

60-30 

4.04e-12 

4.01e-12 

0.001 
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4  100-60 

100-30 

60-30 

0 

0 

0 

5  100-60 

100-30 

60-30 

4.36e-08 

1.50e-07 

0.001 

6 100-60 

100-30 

60-30 

7.96e-06 

4.36e-08 

4.36e-08 

7 100-60 

100-30 

60-30 

5.68e-12 

0.0004 

5.68e-12 

8 100-60 

100-30 

60-30 

2.64e-12 

2.64e-12 

2.64e-12 

9  100-60 

100-30 

60-30 

3.72e-12 

3.72e-12 

3.72e-12 

10 100-60 

100-30 

60-30 

6.77e-12 

6.79e-12 

6.77e-12 

11 100-60 

100-30 

60-30 

7.26e-12 

7.29e-12 

7.26e-12 

12 100-60 

100-30 

60-30 

7.26e-12 

7.29e-12 

7.26e-12 

13 100-60 

100-30 

60-30 

3.87e-12 

3.87e-12 

3.87e-12 

Table A7. 2022 GPR ANOVA of white variety reported p-values of each scan. 

 

Week Treatment (Red) p-value 

1 100-60 

100-30 

1.76e-12 

0.903 
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60-30 1.76e-12 

2 100-60 

100-30 

60-30 

1.98e-12 

1.98e-12 

1.98e-12 

3 100-60 

100-30 

60-30 

1.13e-12 

0.003 

1.13e-11 

4  100-60 

100-30 

60-30 

4.68e-12 

4.72e-12 

4.68e-12 

5  100-60 

100-30 

60-30 

3.84e-08 

0.064 

3.84e-08 

6 100-60 

100-30 

60-30 

2.64e-08 

2.64e-08 

2.64e-08 

7 100-60 

100-30 

60-30 

7.94e-12 

0.002 

7.94e-12 

8 100-60 

100-30 

60-30 

2.02e-12 

0.323 

2.20e-12 

9  100-60 

100-30 

60-30 

9.10e-12 

9.10e-12 

9.10e-12 

10 100-60 

100-30 

60-30 

7.29e-12 

0.396 

7.29e-12 

11 100-60 

100-30 

60-30 

6.46e-12 

0.348 

6.46e-12 

12 100-60 

100-30 

60-30 

6.46e-12 

0.348 

6.46e-12 

13 100-60 9.62e-12 



57 
 

100-30 

60-30 

5.52e-08 

9.62e-12 

Table A8. 2022 GPR ANOVA of the red variety’s reported p-values for each scan. 

 

 

Week Treatment (White) p-value 

1 100-60 

100-30 

60-30 

0.041 

0.176 

6.59e-05 

2 100-60 

100-30 

60-30 

1.80e-05 

0 

0 

3 100-60 

100-30 

60-30 

0.004 

3.08e-12 

3.10e-12 

4  100-60 

100-30 

60-30 

0.092 

0.015 

0.716 

Table A9. 2022 NDVI ANOVA of white variety reported p-values 

 

Week Treatment (Red) p-value 

1 100-60 

100-30 

60-30 

0.075 

4.48e-05 

0.084 

2 100-60 

100-30 

60-30 

0.706 

0 

0 

3 100-60 

100-30 

60-30 

0.2 

0 

0 

4  100-60 

100-30 

60-30 

0.013 

0.015 

1.34e-07 

Table A10. 2022 NDVI ANOVA of red variety reported p-values 
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