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Abstract 

The rising severity and frequency of wildfires in recent years in the U.S. have raised 

numerous concerns regarding the improvement in wildfire emergency response 

management and decision-making systems, which require operational high temporal and 

spatial resolution monitoring capabilities. Satellites are one of the tools that can be used 

for wildfire monitoring. However, none of the currently available satellites provide both 

high temporal and spatial resolution. For example, GOES-17 geostationary satellite has a 

high temporal (5 min) but a low spatial resolution (2 km), and VIIRS polar orbiter 

satellite has a low temporal (~12 h) but high spatial resolution (375 m). This study aims 

to leverage currently available satellite data sources, such as GOES and VIIRS, along 

with Deep Learning (DL) advances to achieve an operational high-resolution wildfire 

monitoring tool. 

This study considers the problem of increasing the spatial resolution of low resolution 

satellite data using high resolution satellite. An Autoencoder DL model is proposed to 

learn how to map GOES-17 geostationary low spatial resolution satellite images to VIIRS 

polar orbiter high spatial resolution satellite images. In this context, several loss functions 

and architectures are implemented and tested to predict both the area of fire and 

corresponding fire radiance values. These models are trained and tested on wildfire sites 

from 2019 to 2021 in the western U.S. The results indicate that DL models can improve 

the spatial resolution of GOES-17 images, leading to images that mimic the spatial 

resolution of VIIRS images. Combined with GOES-17 higher temporal resolution, the 
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DL model can provide high-resolution near-real-time wildfire monitoring capability as 

well as semi-continuous wildfire progression maps. 
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Chapter 1: Introduction 

In recent years, United States has experienced an alarming increase in the number and 

severity of wildfires. The National Interagency Fire Center reports that since the 1980s, 

the number of acres burned by wildfires has been steadily increasing, with a peak in 2015 

of over 10 million acres burned across the country [1]. The western United States, 

especially California, has experienced severe impacts from these devastating fires. One 

example is the Dixie Fire, which burned from July 14 to November 9, 2021. It ravaged 

over 960,000 acres, destroyed more than 1,300 structures, and resulted in a firefighter and 

a civilian causality, with several injuries reported. The estimated cost of Dixie Fire is 

over $637 million [2]. Another instance is the Caldor Fire, which burned from August 14 

to September 22, 2021, consuming over 220,000 acres and destroying more than 1,000 

structures. Moreover, two firefighters and one civilian lost their lives, and several others 

were injured. The cost of Caldor Fire was estimated at over $271 million [3]. Climate 

change, anthropogenic activities, and other factors have exacerbated the frequency and 

severity of wildfires in recent years [4]. Catastrophic wildfire events have significant 

Short- and long-term direct and indirect impacts on social system, economy, human 

health, ecosystem, watersheds, and built environment. Hence, the need for effective 

wildfire monitoring has become more pressing than ever. Real-time monitoring is crucial 

for providing timely and accurate information on the location, size, and intensity of 

wildfires. This data is essential for effective emergency response management efforts and 

for making decisions related to firefighting, public safety, and evacuation orders. 

Automated monitoring systems that can provide real-time data on wildfires can 
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significantly reduce the risks faced by firefighters, enabling them to respond quickly and 

safely. 

Remote sensing provides information such as the location of active fires, rate of spread, 

and radiated energy which can help to analyze wildfire behavior and mitigate its impact 

[5]. Several fire detection and monitoring systems have been developed using remote 

sensing technologies, mainly terrestrial-based systems, aerial-based systems, and 

satellite-based systems [6]. Terrestrial-based systems are generally considered to be more 

efficient than other systems in terms of accuracy and response time to wildfire incidents, 

owing to their high-resolution cameras/sensors, appropriate viewing angles, and 

proximity to wildfire sites. However, their coverage is limited compared to other 

solutions due to their fixed positions, and they are vulnerable to occlusions [7]. Aerial-

based systems typically provide enough resolution to achieve detailed fire progression 

mapping, but their deployment during an emergency may not always be possible due to 

safety and financial constraints. Additionally, they encounter problems such as temporal 

and data processing inconsistency due to the broad range of sensors used for this purpose 

[8][9]. In contrast, the Earth Observation (EO) satellite system monitors fire activity by 

utilizing algorithms that detect the location of fires actively burning at the time of satellite 

overpass over a vast area. This allows the system to quickly detect and identify the 

location of wildfires, even in remote or inaccessible areas. The captured raw data is 

validated to create reliable and consistent data [10]. Despite the many advantages of the 

EO satellite system, it has some limitations compared to other wildfire monitoring 

systems. The spatial and/or temporal resolution of these systems are restricted, which 

means that it may not provide the level of detail needed for emergency response 
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applications. The EO system employs various types of satellites, including those in Low 

Earth Orbits (LEO) and Geosynchronous Equatorial Orbits (GEO). LEO satellites fly 

closer to Earth and provide high spatial resolution but typically capture snapshots of the 

same area at large temporal frequency (e.g., hours of days) [11]. Some examples of LEO 

satellites are Landsat-8/9 and Sentinel-2A/2B sensors, which offer 10 m to 30 m multi-

spectral global coverage [12]. Although satellite images from Sentinel-2 [13] and 

Landsat-8 [14][13] have been used for active fire detection, the revisit interval of 5 days 

for Sentinel-2 and 8 days for Landsat-8/-9 is infrequent to detect active fires reliably [15]. 

Several instruments on board LEO satellites, including the Visible Infrared Imaging 

Radiometer Suite (VIIRS) [16] on the Suomi National Polar-orbiting Partnership (NPP) 

satellite, Sea and Land Surface Temperature Radiometer (SLSTR) on the Sentinel-3 

satellite, and the Moderate Resolution Imaging Spectroradiometer (MODIS) [17] on the 

Terra and Aqua satellites, are commonly used to detect active fire points. These sun-

synchronous orbit satellites provide coarse-resolution data using the medium infrared 

(MIR) band, with twice-daily revisits. Active fire products have been developed using 

these LEO satellites to provide the location and time of active fires on a daily basis [18]. 

For instance, VIIRS offers a 375 m spatial resolution, while MODIS offers a 1 km spatial 

resolution [19][20]. The high spatial resolution of the VIIRS sensor helps detect more 

active fire pixels, as it can detect low-intensity fires [21]. Sentinel-3 SLSTR has a similar 

capture time and spatial resolution as MODIS but can detect fires with lower fire radiance 

power (FRP) [22] than MODIS [18]. On the other hand, GEO sensors provide high 

temporal resolution but lower spatial resolution (2 km) than the previous category due to 

their higher elevation from the Earth [23]. An example of a GEO satellite is the 
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Geostationary Operational Environmental Satellites R Series (GOES-R), which consists 

of two geostationary satellites, GOES-16 and GOES-17, that have constant watch over 

the whole western hemisphere, including North America, South America, the Pacific 

Ocean, the Atlantic Ocean, and Western Africa. However, the GOES-R active fire 

product has been found to be not adequately reliable, with a false alarm rate of around 

60% to 80% for medium and low confidence fire pixels [24]. 

 Given the limitations of both GEO and LEO satellites, a non-physical remote sensing 

tool based on Artificial Intelligence (AI) has the potential to improve temporal and spatial 

accuracy in monitoring wildfires. AI, specifically DL , has been effective in solving 

complex tasks like image classification [25], object detection [26][27], and semantic 

segmentation [28]. Building on these successes, recent research has explored the use of 

DL methods on satellite imagery for tasks such as land-use classification, including the 

extraction of building [29], and urban planning [30][31]. By leveraging AI principles 

such as image segmentation and super-resolution, it may be possible to develop a highly 

accurate wildfire prediction system that can improve our ability to detect and respond to 

wildfire incidents. 

Few recent studies have proposed DL-based approaches for early wildfire detection from 

streams of remote sensing data. These studies have focused mainly on detecting the 

presence of fire without predicting its intensity. Toan et al. (2019) propose a deep 

convolutional neural network (CNN) architecture for classifying hyperspectral satellite 

images as containing wildfire or not [32]. The study proposes a deep CNN architecture 

that uses patch normalization to augment the training data and reduce the complexity of 
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fully connected networks using a fully connected network at the end. The network is 

trained on a dataset of hyperspectral satellite images (GOES) to classify each pixel as 

either containing wildfire or not. The study demonstrates the potential of using DL 

methods for early wildfire detection and monitoring. In a related study, Toan et al. (2020) 

propose another DL-based approach for the early detection of bushfires using multi-

modal remote sensing data [33]. The proposed approach consists of a DL model that 

incorporates both CNNs and long short-term memory (LSTM) networks. The model is 

designed to process multi-modal remote sensing data at different scales, ranging from 

individual pixels (using CNN) to entire images (using LSTM). The authors report a high 

level of accuracy in detecting outperforming several other state-of-the-art methods. Zhao 

et al. (2022) focuses on the use of time-series data from the GOES-R for early detection 

of wildfires [34]. The study proposes a DL model that incorporates a gated recurrent unit 

(GRU) network to process the time-series data from GOES-R. The model is designed to 

learn the spatio-temporal patterns of wildfire events and predict their likelihood at 

different locations. The authors also use a sliding window technique to capture the 

temporal dynamics of wildfire events. The authors demonstrate that the model can detect 

wildfire events several hours before they are reported by official sources. Finally, 

McCarthy et al. (2021) proposes an extension of U-Net CNNs to geostationary remote 

sensing imagery to improve the spatial resolution of active wildfire detections and enable 

high-resolution active wildfire monitoring from space [35]. The study leverages the 

complementary properties of GEO and LEO sensors and static features related to 

topography and vegetation to inform the analysis of remote sensing imagery with 

physical knowledge about fire behavior. However, the study acknowledges a limitation of 
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the proposed algorithm in terms of false positives and emphasizes the need for further 

research to address this issue. Overall, the four papers reviewed demonstrate the potential 

of DL methods in the early detection and monitoring of wildfires using remote sensing 

data from different sources. They provide insights regarding different approaches that can 

be used to improve the accuracy and efficiency of wildfire detection and monitoring, 

which have practical implications for decision support during rapidly unfolding wildfires. 

However, these works are limited in terms of the number of wildfire events studied and 

are also limited to just detecting the fire and not its intensity. To the best of our 

knowledge, there is no published study that improves the spatial resolution of GOES 

while also predicting fire intensity values. 

This study aims to address the gap in wildfire monitoring and mitigation by presenting a 

framework that utilizes DL techniques to enhance the spatial resolution of GOES-17 

satellite images using VIIRS data. The main objective is to determine the optimal 

solution by conducting an ablation study on four cases, using different loss functions and 

variations in autoencoder architecture. To enable DL models to use contemporaneous 

data that share similar spectral and projection characteristics, a scalable dataset creation 

pipeline is developed, which can accommodate the addition of new sites. This study also 

addresses the challenges of selecting an appropriate evaluation metric to determine the 

optimal solution. Additionally, the proposed system includes a novel streaming data 

feature that can enable proactive monitoring, identification, and reaction to wildfires by 

experts. An automated real-time streaming and visualization dashboard system can utilize 

the proposed framework, which will transform relevant GOES data for the selected 

location into high-resolution images with both high spatial resolution and near-real-time 
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accuracy. The thesis is structured as follows: Chapter 2 provides detailed research 

information. Section 1 of Chapter 2 presents an overview of the satellite used in the study 

and describes the preprocessing steps taken to ensure consistency. Section 2 of Chapter 2 

discusses the model setup, including the autoencoder, loss functions, and evaluation 

metrics used in the study. Finally, Section 3 of Chapter 2 presents the results with 

empirical evaluations. The thesis concludes with Chapter 3.  
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Chapter 2: Research Details 

1. Methodology 

1.1. Data Source 

1.1.1. Geostationary Operational Environmental Satellite (GOES) 

Launched by the National Oceanic and Atmospheric Administration (NOAA), GOES-17 

is operational as GOES-West since February 12, 2019. This Geostationary satellite is 

35,700 km above earth providing constant watch over the pacific ocean and the western 

United States [36]. The Advanced Baseline Imager (ABI) is the primary instrument of the 

GOES for imaging Earth’s weather, oceans, and environment. ABI views the Earth with 

16 spectral bands, including two visible channels (channels 1-2 with approximate center 

wavelengths of 0.47 and 0.64 µm), four near-infrared channels (channels 3-6 with 

approximate center wavelengths of 0.865, 1.378, 1.61, and 2.25 µm), and ten mid- and 

long-wave infrared (IR) channels (channels 7-16 with approximate center wavelengths 

3.900, 6.185, 6.950, 7.340, 8.500, 9.610, 10.350, 11.200, 12.300, and 13.300 µm) [36]. 

These channels are used by various models and tools to monitor different elements on the 

earth’s surface, such as trees and water, or in the atmosphere, such as clouds, moisture, 

and smoke [36]. Dedicated products are available for cloud formation, atmospheric 

motion, convection, land surface temperature, ocean dynamics, vegetation health, and 

flow of water, fire, smoke, volcanic ash plumes, aerosols, air quality, etc. [37]. 

In this study, channel 7 (IR shortwave) of Level 1B (L1B) Radiances product (ABI-L1b-

Rad) is used as input for DL model of this study. The product, with its scan mode six, 

captures one observation every 5 min of the Continental U.S. (CONUS) with a spatial 
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resolution of 2 km [38]. The L1B data product contains measurements of the radiance 

values (measured in milliwatts per square meter per steradian per reciprocal centimeter) 

from the Earth's surface and atmosphere. These radiances are used to identify cloudy and 

hot regions within the satellite’s field of view [39].  

1.1.2. Visible Infrared Imaging Radiometer Suite (VIIRS) 

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is installed on two 

polar orbiter satellites, namely Suomi National Polar-orbiting Partnership (S-NPP) 

operational from 7 March, 2012 [40] and NOAA’s Joint Polar Satellite System (JPSS), 

now called NOAA-20, operational from 7 March, 2018 [41].  These two satellites are 50 

min apart, 833 km above the earth, and revolve around the earth in a polar orbit [41]. For 

each site, these satellites make two passes daily - one during the day and one at night 

[42]. VIIRS features daily imaging capabilities across multiple electromagnetic spectrum 

bands to collect high-resolution atmospheric imagery including visible and infrared 

images to detect fire, smoke, and particles in the atmosphere [43]. The VIIRS instrument 

provides 22 spectral bands, including five imagery 375 m resolution bands (I bands), 16 

moderate 750 m resolution bands (M bands), and one Day-Night Band (DNB band) [44]. 

The I bands include a visible channel (I1), a near-IR (I2), a shortwave IR (I3), a 

mediumwave IR (I4), and a longwave IR (I5) with center wavelengths of 0.640, 0.865, 

1.610, 3.740, and 11.450 µm, respectively. The M bands include five visible channels 

(M1-M5), two near IR channels (M6-M7), four shortwave IR channels (M8-M11), two 

mediumwave IR channels (M12-M13), and three longwave IR channels (M14-M16) with 

center wavelengths of 0.415, 0.445, 0.490, 0.555, 0.673, 0.746, 0.865, 1.240, 1.378, 

1.610, 2.250, 3.700, 4.050, 8.550, 10.763, and 12.013 µm, respectively [44]. VIIRS also 
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hosts a unique panchromatic Day/Night band (DNB), which is ultra-sensitive in low-light 

conditions and is operated on central wavelength of 0.7 µm [45] . 

In this study, VIIRS (S-NPP) I Band Active Fire Near-Real-Time product with 375 m 

resolution, i.e., VNP14IMGTDL_NRT, [46] is used as ground truth to improve the 

spatial resolution of GOES imagery due to its relatively high spatial resolution compared 

to GOES (375 m vs. 2 km). The product’s data are available from January 20, 2012 to 

present [47]. VIIRS shows good agreement with its predecessors in hotspot detection 

[48], and it provides an improvement in the detection of relatively small fires as well as 

the mapping of large fire perimeters [49]. 

1.2. Data Pre-Processing 

DL models require two sets of images: input images (i.e., GOES images herein) and 

ground truth or reference images (i.e., VIIRS images herein). The prediction of DL model 

and ground truth are compared pixel-by-pixel, and the difference between the prediction 

and ground truth (i.e., loss function value) is used by the model to learn its parameters via 

backpropagation. Hence, the input and ground truth should have the same size, 

projection, time instance, and location. However, the initial format of GOES and VIIRS 

data are different. The VIIRS has vector data in CSV format [38][50] whereas the GOES 

data are raster data in NetCDF format [51][52]. They differ in the way they represent 

geographic features; vector data represents features as points or lines, while raster data 

represents them as pixels arranged in a grid. Additionally, vector data needs to be 

converted into a pixel-based format, while raster data are already in the correct format for 

display [53]. Furthermore, GOES images contain a snapshot of both fire and background 
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information, whereas VIIRS's CSVs contain the location and radiance value of globally 

detected fire hotspots. Therefore, data pre-processing is required to make the initial 

formats and projections of these data consistent. 

The pre-processing pipeline aims to create a consistent dataset of images from multiple 

wildfire sites, with standardized dimensions, projections, and formats. Each processed 

GOES image in the dataset will correspond to a processed VIIRS image representing the 

same region and time instance of a wildfire event. To facilitate this process, a 

comprehensive list of wildfire events in the western U.S. between 2019 and 2021 is 

compiled from multiple sources [54][55] (see Appendix A). This wildfire property list 

(WPL) plays a crucial role in several pre-processing steps, such as defining the region of 

interest (ROI) for each wildfire site. To obtain the four corners of the ROI, a constant 

value is added/subtracted from the central coordinates specified in the WPL. For each 

wildfire event defined by its ROI and duration mentioned in the WPL, the pre-processing 

pipeline conducts the following four steps. 

• Step 1: Extracting wildfire event data from VIIRS and identifying timestamps. The 

pipeline first extracts the records from the VIIRS CSV to include fire hotspots 

that fall within the ROI and duration of wildfire event. The pipeline also identifies 

unique timestamps from the extracted records. 

• Step 2: Downloading GOES images for each identified timestamp. In order to 

ensure a contemporaneous dataset, the pre-processing pipeline downloads GOES 

images with captured times that are near to each VIIRS timestamp identified in 

Step 1. GOES have a temporal resolution of 5 minutes, meaning that there will 
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always be a GOES image within 2.5 minutes of the VIIRS capture time, except in 

cases where the GOES file is corrupted [56]. It should be noted that Steps 3 and 4 

are halted if the respective GOES file is corrupted. 

• Step 3: Creating processed GOES images. The GOES images obtained in Step 2 

cover the western U.S. and Pacific Ocean and have a projection different from 

VIIRS. In this step, the GOES images are cropped to match the site's ROI and 

reprojected into a standard coordinate reference system (CRS). 

• Step 4: Creating processed VIIRS images. The VIIRS records obtained in Step 1 

are grouped by timestamp and rasterized, interpolated, and saved into GeoTIFF 

images using the same projection as the one used to reproject GOES images in 

Step 3. 

These steps are explained in more detail in the following subsections. Once these steps 

are completed, the GOES and VIIRS images will have the same image size and 

projection. An example of the processed GOES and VIIRS images is shown in Figure 1a 

and 1b, respectively. In Figure 1c, where the VIIRS image is overlaid on the GOES 

image, the VIIRS fire region almost completely covers the GOES fire region, which 

verifies the data pre-processing pipeline. It should be noted that in Figure 1a, the GOES 

image includes both fire pixels and background information, while in Figure 1b, the 

output VIIRS image only contains fire pixels and no background information. 
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(a)  (b)  (c)  

Figure 1: An illustration of data pre-processing outcomes for Kincade fire site at 2019-10-27 9:49 UTC (a) 

processed GOES image, (b) processed VIIRS image, (c) overlapped GOES and VIIRS images, where 

radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness temperature’s units are K. 

 

1.2.1. GOES Pre-Processing 

The NOAA Comprehensive Large Array-data Stewardship System (CLASS) repository 

[3] is the official site for accessing GOES products. ABI fire products are also available 

publicly in Amazon Web Services (AWS) S3 Buckets [4]. The Python s3fs [5] library, 

which is a filesystem in user space (FUSE) that allows mounting an AWS S3 bucket as a 

local filesystem, is utilized in this study to access the AWS bucket “NOAA-GOES17”. 

As previously mentioned, the downloaded GOES images cover the western U.S. and 

Pacific Ocean, and need to be cropped to the specific wildfire site's ROI. Additionally, 

the unique projection system of GOES, known as the "GOES Imager Projection" [57] 

must be transformed to the standard CRS to make it comparable with VIIRS. For this 

study WGS84 system (latitude/longitude) is used as the standard CRS. The projection 

conversion is achieved using Satpy python library [58], which is specifically designed for 

reading, manipulating, and writing data from earth-observing remote sensing instruments. 

Specifically, the Satpy scene function [59] is utilized to create a GOES scene from the 

downloaded GOES file, which allows the transformation of the GOES CRS to the 
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WGS84 system [60]. The Satpy area definition [61] is then applied to crop the GOES 

scene to match the ROI. 

1.2.2. VIIRS Pre-Processing 

Annual summaries of VIIRS-detected fire hotspots in CSV format, are accessible by 

country through the Fire Information for Resource Management System (FIRMS) [51], 

which is a part of NASA’s Land Atmosphere Near-Real-time Capability for Earth 

Observing System (LANCE) [52]. In this study, annual summaries from 2019 to 2021 are 

utilized since corresponding GOES-17 files are only available from 2019. The CSVs 

contain the I-4 channel brightness temperature (3.55-3.93 µm) of the fire pixel measured 

in K, referred to as b-temperature I-4, along with the acquisition date, acquisition time, 

and latitude and longitude fields. Notably, the annual summary files are exclusively 

available for S-NNP. 

The VIIRS-detected fire hotspot vector data are available in CSV format, with each 

record containing details about the intensity of a fire hotspot and other relevant 

information (satellite name, day-night flag, etc.) at a specific time and location. The 

longitude and latitude coordinates of each fire hotspot define its location at the center of a 

375 by 375 m pixel. To ensure its compatibility with GOES data for the DL model, the 

vector data is converted into a pixel-based format through rasterization [62]. This process 

involves mapping the vector data to pixels, resulting in an image that can be displayed 

[63]. This process involves three main steps: defining the ROI, defining the grid system 

over the ROI, and mapping the fire data to the pixels. The process is illustrated 

schematically in Figure 2. 
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The first step involves defining the ROI for the wildfire site. To accomplish this, a 

constant value C = 0.6 degrees is added/subtracted from the center coordinates of the fire 

site, as defined in the WPL, to obtain the four corners of the ROI. Figure 2a shows the 

defined ROI around the center of fire hotspot represented by the red dots. The second 

step is to overlay grid system over the ROI. Each cell in the grid system corresponds to a 

single pixel in the output image, and a specific cell size of 375 by 375 m is selected to 

match the resolution of the VIIRS hotspot detection. The process involves transforming 

the entire ROI from longitude/latitude (degree) space to northing/easting or distance 

space, using PyProj's transformation function [64]. Once the ROI is in the distance space, 

it can be segmented into cells of the desired size, thereby creating a grid system with the 

required resolution, as illustrated in Figure 2b. The final step is to map the fire locations 

from the CSV file to the corresponding pixels. If the central coordinates of fire hotspot 

fall within a cell associated with a pixel, that pixel is activated and assigned a value based 

on the b-temperature I-4 value from VIIRS CSV. Figure 2c illustrates this process by 

showing the activation of pixels without displaying their actual values, for simplicity. 

 

Figure 2: VIIRS data rasterization process, (a) region of interest in longitude/latitude (Ln, Lt) space, 

(b) grid over region of interest in Northing/Easting space, and (c) output image. 

(b) (c) (a) 
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Following the rasterization process, nearest neighbor interpolation [65] is performed for 

non-fire pixel with neighboring fire pixel. This interpolation method is used to eliminate 

any artificial patches in and around the fire region, as shown in Figure 3a, and to ensure 

that the output image, as shown in Figure 3b, accurately represents the extent and 

intensity of the wildfire. Finally, the created raster is saved in GeoTIFF format using the 

GDAL library [66]. 

(a)   (b)  

Figure 3: VIIRS data interpolation process (a) pre-interpolation VIIRS output, (b) post-interpolation 

VIIRS output, where brightness temperature’s units are K. 

 

2. Model Setup 

2.1. Autoencoder 

Autoencoder is a popular DL architecture for image super-resolution [67]. It takes the 

low-resolution image as input, learns to recognize the underlying structure and patterns, 

and generates a high-resolution image that closely resembles the ground truth [68]. 

Autoencoder has two main components: the encoder, which extracts important features 

from the input data, and the decoder, which generates an output based on the learned 

features. Together, they effectively distill relevant information from input and reproduce 

it as output [68]. 
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In this study, an autoencoder was tasked with distilling the relevant portions of the input 

GOES-17 imagery to reproduce an output with increased resolution and removed 

background noise (such as reflections from clouds, lakes, etc.) to mimic VIIRS imagery. 

The model's encoder component is composed of five two-dimensional convolutional 

layers with a kernel size of three and a padding of one, followed by a Rectified Linear 

Unit (ReLu) activation layer [69]. This architecture allows the model to recognize 

important features in the low-resolution input images while preserving their spatial 

information. The use of ReLu activation layers after each convolutional layer helps to 

introduce non-linearity, which is critical for the network's ability to learn complex 

patterns in the input images. Additionally, the second and fourth convolutional layers are 

followed by max pool layers, which help to down-sample the feature maps and reduce the 

spatial dimensions of the data. Meanwhile, the decoder component consists of two 

blocks, each containing one transposed convolutional layer [70] and two normal 

convolutional layers with a kernel size of three. The use of transposed convolutional 

layers in the decoder allows the model to up-sample the feature maps and generate a 

high-resolution output image that closely resembles the ground truth image. The normal 

convolutional layers that follow the transposed convolutional layers help to refine the 

features and details in the output image. The decoder ends with a final convolutional 

layer that produces the final output image. To arrive at this particular architecture in this 

study, several modifications were tested, such as altering the activation functions, adding 

or removing convolutional layers, and increasing the number of blocks. The final 

architecture was chosen based on its ability to produce high-quality output images that 

accurately represent the ground truth images while minimizing the computational 
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resources required for training. Figure 4 shows the graphical representation of this 

architecture along with dimensions of each layer. 

 

Figure 4: Proposed Autoencoder architecture. 

 

2.2. Loss Functions and Architectural Tweaking 

The objective of the study is to enhance GOES-17 imagery by improving its spatial 

resolution and removing background information, as well as predicting improved 

radiance values. To achieve this, an ablation study is conducted on four cases, which 

involve variations in loss functions and autoencoder architecture, in order to determine 

the optimal solution. The four loss functions, global root mean square error, global plus 

local root means square error, Jaccard loss, global root mean square error plus Jaccard 

loss, are explained in detail in following sections. 

2.2.1. Global Root Mean Square Error (GRMSE) 

Root mean square error (RMSE) is a regression loss function that is commonly used in 

image reconstruction and denoising tasks [71], where the goal is to minimize the 

difference between the original and ground truth values. In this study, the autoencoder 
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model is initially trained using the RMSE loss function on the entire input image, 

globally, to predict the radiance value for each input image pixel based on the VIIRS 

ground truth data. This is referred to as the global RMSE (GRMSE) (Eq. 1) to distinguish 

it from other RMSE-based losses, which will be discussed in the next section. 

 GRMSE = √
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

𝑛
 (1) 

where 𝑦𝑖 represents the radiance value at the ith pixel in the VIIRS ground truth image, 𝑦𝑖̂ 

represents the radiance value at ith pixel in the predicted image, and n represents the total 

number of pixels in the VIIRS/predicted image. In the rest of the paper, this setup will be 

referred to as the GRMSE model. 

2.2.2. Global Plus Local RMSE (GLRMSE) 

Since the background area is significantly larger than the fire area (e.g., see Fig 1c), it 

dominates the RMSE calculation. For this reason, a local RMSE (LRMSE) is defined. 

The LRMSE applies only on the fire area of ground truth, i.e., where pixel’s radiance 

value is non-zero. 

 LRMSE = √
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1 ⋅ 𝐼

∑ 𝐼𝑛
𝑖=1

 𝐼 = {
1, 𝑦𝑖 ≠ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

where I is the identifier variable, which is one for fire area and zero for background. 

Based on this, the RMSE is calculated only for fire region of VIIRS ground truth image. 

The LRMSE is used in addition to global RMSE to result in global plus local RMSE loss 

function as defined below. 
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GLRMSE =  𝑊𝐺  * GRMSE + WL * LRMSE (3) 

where 𝑊𝐺 is a weight factor for Global RMSE and 𝑊𝐿 is a weight factor for Local 

RMSE. These weights are determined through hyperparameter optimization as will be 

discussed later. In the rest of the paper, this setup will be referred to as the GLRMSE 

model. 

2.2.3. Jaccard Loss (JL) 

For effective wildfire monitoring, it is crucial to not only minimize discrepancies in 

radiance values but also to predict the wildfire perimeters. This is enabled by binary 

segmentation. Binary segmentation assigns a binary value to each pixel based on its 

category, partitioning the image into foreground (i.e., fire region) and background regions 

[72]. The Jaccard loss function (Eq. 4) is a prevalent loss function utilized in the field of 

image segmentation [74]. It aims to evaluate and improve the similarity between the 

predicted and ground truth binary masks (also referred to as segmentation masks). 

JL  =   −  
∑ 𝑦𝑏,𝑖 .  𝑦̂𝑏,𝑖

𝑛
1

∑ 𝑦𝑏,𝑖 𝑛
1 +   ∑   𝑦̂𝑏,𝑖

𝑛
1   − ∑ 𝑦𝑏,𝑖 .  𝑦̂𝑏,𝑖 𝑛

1

 (4) 

where 𝑦𝑏,𝑖 represents the presence (1) or absence (0) of fire in the VIIRS ground truth 

image at ith pixel, and  𝑦̂𝑏,𝑖 represents the probability of fire in the predicted image at ith 

pixel. 

In order to employ the Jaccard loss function for autoencoder training, the VIIRS ground 

truth is transformed into a binary mask by setting the radiance value of all fire pixels to 

one, while keeping the radiance value of background pixels at zero [73]. Additionally, the 

final activation layer of the autoencoder is modified from ReLu to sigmoid [74], 
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generating a probability map for every pixel in the output image. The map assigns a score 

between zero and one to each pixel, indicating the probability of that pixel belonging to 

the fire region. Once the model is properly trained, the resulting predicted probability 

map will be converted to binary values. Therefore, we can use this probability map to 

accurately identify the fire region and distinguish it from the surrounding environment. In 

the rest of the paper, this setup will be referred to as the JL model. 

2.2.4. RMSE Plus Jaccard Loss Using Two-Branch Architecture 

RMSE and Jaccard loss are combined to accurately predict the shape, location as well as 

radiance values of fire. However, as these loss functions require different activation 

layers, combining them in a single network necessitates architectural changes. To address 

this issue, a two-branch architecture is employed, where the first branch uses ReLu as the 

last activation layer to predict images with radiance values, while the second branch uses 

a sigmoid activation layer to predict the fire probability map. The resulting architecture 

combines two loss functions (Eq. 5) to enhance the learning and improve predictions. The 

two-branch architecture, illustrated in Figure 5, branches out before the final 

convolutional layer. The outputs from the two branches are compared with different 

ground truth values to calculate individual losses, which are then combined to train the 

model. This approach enables the weight updating (learning) process to utilize 

information from both branches, resulting in a more effective training process. As a 

result, the output from the RMSE branch, which captures both the predicted location and 

radiance value of the wildfire, is considered the primary output of the model. In this 

context, RMSE refers to the globally applied GRMSE (Eq. 1). In the rest of the paper, 

this setup will be referred to as the TBL model. 
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TBL =  𝑊𝑅 ∗ 𝐺𝑅𝑀𝑆𝐸 + 𝑊𝐽 ∗ 𝐽𝐿 (5) 

where 𝑊𝑅 is weight for GRMSE, 𝑊𝐽 is weight for JL, and TBL is two-branch loss which 

is weighted sum of both losses. These weights are determined through hyperparameter 

optimization. 

 

Figure 5: Two-branch autoencoder architecture. 

 

2.3. Evaluation 

2.3.1. Pre-Processing for Evaluation: Removing Background Noise 

Accurate prediction evaluation requires taking noise into account. Although such noise 

may not have significant physical relevance, due to their very low radiance compared to 

actual fire, it can still impact the accuracy of the evaluation metrics. To mitigate this 

issue, the Otsu thresholding method is used to effectively remove background noise and 

improve the evaluation process. The method automatically determines the optimal 

threshold level that separates the foreground (relevant data) from the background (noise) 

[75]. This is accomplished by calculating the variance between two classes of pixels 

(foreground and background) at different threshold levels and selecting the threshold 
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level that maximizes the variance between these two classes. Figure 6 shows the process 

of using Otsu's thresholding to remove background noise from the prediction (Figure 6a) 

and create a post-thresholding prediction (Figure 6b) that is compared to the ground truth 

(Figure 6c) to evaluate the performance of the model. The successful removal of 

background by Otsu's thresholding improves the alignment between the evaluation metric 

and visual inspection.  

(a)  (b)  (c)  

Figure 6: Illustration of Otsu’s thresholding on model prediction (a) model prediction, (b) post-thresholding 

model prediction, (c) ground truth. 

 

2.3.2. Evaluation Metrics  

The performance of DL models is evaluated using two metrics: intersection over union 

(IOU) and intersection's point signal-to-noise ratio (IPSNR), which is a modified version 

of PSNR used in this study. These metrics will be explained in this section.  

IOU (Eq. 6) measures the agreement between the prediction and ground truth by 

quantifying the degree of overlap of the fire area between them. 

𝐼𝑂𝑈 =  
∑ 𝑦𝑏,𝑖 .  𝑦̂𝑏,𝑖

𝑛
1

∑ 𝑦𝑏,𝑖 𝑛
1 +   ∑   𝑦̂𝑏,𝑖

𝑛
1   − ∑ 𝑦𝑏,𝑖 .  𝑦̂𝑏,𝑖 𝑛

1

 (6) 

The terms used in this equation are already defined following Eq. 4. However, the Eq. 6 

and Eq. 4 differ in sign. To compute the IOU metric, both the post-thresholding 

prediction and ground truth images are converted into binary masks. This is achieved by 
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setting all non-zero radiance values in the images to one, effectively binarizing the image. 

This step is necessary to simplify the IOU calculation (Eq. 6). By representing the images 

as binary masks, the IOU can be calculated as the intersection of the two masks divided 

by their union, providing an accurate measure of the overlap between the predicted fire 

region and the ground truth fire region. 

On the other hand, IPSNR (Eq. 7) quantifies the similarity in radiance values in the 

intersection of the fire areas between the prediction and its ground truth images. Here the 

intersection is defined as the region of images where both prediction and VIIRS ground 

truth have non-zero radiance (Eq. 8). 

𝐼𝑃𝑆𝑁𝑅  =   𝑙𝑜𝑔10(𝑚𝑎𝑥𝑣𝑎𝑙/𝐼𝑅𝑀𝑆𝐸)   (7) 

 

 IRMSE = √
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1 ⋅ 𝐼

∑ 𝐼𝑛
𝑖=1

 𝐼 = {
1, 𝑦𝑖 . 𝑦𝑖̂  ≠ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

where maxval is maximum radiance value of pixels in the VIIRS image and IRMSE is 

RMSE computed solely for the intersecting fire area using identifier variable I which is 

assigned a value of one for areas where the predicted fire intersects with the VIIRS 

ground truth, and zero for all other areas. 

The motivation for utilizing IPSNR stems from the difficulty of evaluating a model's 

performance based on the similarity of radiance values, given that the fire area typically 

occupies only a small portion of the image. If the model's prediction is incorrect, most of 

the background still appears similar to the ground truth, resulting in higher PSNR values 

that do not necessarily reflect accurate performance. Therefore, to obtain more reliable 

evaluation metrics, it is crucial to focus on accurately assessing only the predicted fire 
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area that matches the ground truth (Eq. 8) when calculating PSNR. It should be noted that 

the underlying principle of IPSNR is different from that of LRMSE. IPSNR evaluates the 

quality of the corrected predicted fire area (i.e., pixels predicted as fire, that are also 

present in ground truth) by considering the RMSE for the intersecting area of prediction 

and VIIRS ground truth (as described in Eq. 8), while LRMSE is a loss function which 

focuses on reducing the RMSE specifically for the VIIRS ground truth fire area (as 

described in Eq. 2). 

2.3.3. Dataset Categorization for Evaluation 

In addition, to obtain a more accurate and precise evaluation of a model's performance, 

it's important to account for the diversity of input and ground truth samples. Factors such 

as fire orientation, location, background noise percent coverage, fire size, and the 

similarity between input and ground truth can vary significantly and have a considerable 

impact on the model's performance. Relying solely on evaluating the model's 

performance on the entire testing set may not provide an accurate assessment, as will be 

shown later, since the average evaluation may be biased towards the majority of sample 

types. To overcome this limitation, the dataset is divided into four categories based on 

two factors: the total coverage of distinguishable foreground in GOES image as well as 

the initial IOU between the distinguishable foreground in GOES input and VIIRS ground 

truth. 

To achieve this, Otsu thresholding is used again to eliminate background information 

from the original GOES image (Figure 7a), resulting in a post-thresholding GOES image 

(Figure 7b) with distinguishable foreground information that is used to compute coverage 
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and initial IOU. Coverage is determined by calculating the ratio of non-zero radiance 

pixels to the total number of pixels in the post-thresholding image. This metric indicates 

the degree of foreground presence in the GOES image. Meanwhile, the initial IOU is 

calculated between the binarized post-thresholding GOES input and binarized VIIRS 

ground truth. This provides an indication of the degree of foreground area similarity 

between the two images. It is important to note that the foreground identified by Otsu in 

the GOES input image may not always accurately indicate the fire region, unlike the 

prediction image. In some cases, the radiance value of the background may be 

comparable to, or even greater than, that of the actual fire region, making it difficult to 

identify the fire accurately. Additionally, the coverage calculation involves a single 

iteration of Otsu thresholding, which is used to determine the true coverage of GOES. On 

the other hand, calculating IOU requires multiple iterations of Otsu thresholding to 

accurately assess only the fire area. The final IOU result is obtained by selecting the 

highest IOU value obtained from all iterations, ensuring that only the fire area is 

considered for evaluation. 

 (a)  (b)  

Figure 7: Otsu’s thresholding on original GOES (a) input GOES image, (b) post-thresholding GOES image. 

 

The dataset for evaluation is categorized into four groups based on the calculated 

coverage and IOU. These groups are low coverage with high IOU (LCHI), low coverage 

with low IOU (LCLI), high coverage with high IOU (HCHI), and high coverage with low 
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IOU (HCLI). Threshold values for coverage and IOU are determined through visual 

inspection of the results and are provided in Table 1. By categorizing the dataset, we can 

perform a more accurate evaluation of the model's performance and identify its strengths 

and weaknesses in various scenarios. 

Table 1: Condition for each dataset category 

Category LCHI LCLI HCHI HCLI 

Condition 
Coverage < 20% 

IOU > 5% 

Coverage < 20% 

IOU < 5% 

Coverage > 20% 

IOU > 5% 

Coverage > 20% 

IOU < 5% 
 

3. Result 

3.1. Training 

In this study, the western U.S. wildfire events that occurred between 2019 and 2021 

(listed in Appendix A) are utilized to create contemporaneous images of VIIRS and 

GOES using the preprocessing steps explained in Section 2. The preprocessed images are 

then partitioned into windows of size 128 by 128 pixels, resulting in a dataset of 5,869 

samples, which are used as input and ground truth for the DL model. These samples are 

split with ratio of 4 to 1 to obtain training and testing dataset (i.e., 80% for training and 

20% for testing). The training set is further split with 4 to 1 ratio to get training and 

validation set. After splitting the dataset, the training, validation, and testing set include 

3756, 939, and 1174 samples, respectively. The validation set is used to monitor for 

overfitting during the training process, while the testing set is kept aside for evaluating 

the final performance of the model. Additionally, to improve the diversity of the training 

data and prevent overfitting, data augmentation techniques are utilized. In particular, at 

each epoch, the training samples undergo random horizontal and vertical flips, leading to 
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greater variability in the training data and improving the model's generalization to new 

and unseen data. 

Hyperparameter tuning is done using weights and biases (WAB) tool [76], to estimate the 

optimal hyperparameters through random sampling from the hyperparameter space. After 

training is completed on each subset of hyperparameters, the validation loss results, and 

overfitting analysis are evaluated to determine the best performing hyperparameters. he 

hyperparameter subset that leads to the smallest validation loss and overfitting are then 

chosen as the final hyperparameters. When autoencoder models combine two losses, such 

as GLRMSE and the TBL model, the weights of each loss function are also considered as 

hyperparameters and are determined through the same hyperparameter tuning process. 

Based on the hyperparameter tuning, all four cases of autoencoder model, outlined in 

Section 3.2, are trained for 150 epochs and batch size of 16 using Adam optimizer with 

learning rate of 3×10-5 [77]. A learning rate decay based on validation loss plateau, with 

weight decay of 0.1, threshold of 1×10-5, and patience of 10 epoch, is used during 

training to help in both optimization and generalization[78]. Moreover, for the GLRMSE 

case, the best results are achieved when the weights of the local RMSE and global RMSE 

are set to 1 and 9. Meanwhile, for the TBL model, the best results are obtained when the 

weights of RMSE and Jaccard loss are set to 3 and 1 for combining the two losses. The 

DL model is developed using Pytorch [79] (v. 1.12) Python package and trained on an 

Nvidia RTX 3090 Graphical Processing Unit (GPU) with 24 GB of Video RAM 

(VRAM). Figure 8 depicts the training curve for all four cases along with individual 
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losses function of GLRMSE and TBL model. As can be seen, the loss functions are 

converging to a plateau with small to no overfitting. 

   

  

   

Figure 8: Training curves (i.e., Loss vs Epoch) of (a) GRMSE, (b) JL, (c) GLRMSE, (d) individual global 

and local for GLRMSE loss, (e) TBL, (f) individual RMSE and Jaccard loss for TBL. 

 

 

 

(b) 
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(d) 

(e) (f) 
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3.2. Testing 

To evaluate the performance of the four samples, IOU and IPSNR are used as the 

evaluation metrics, and the results are presented in Table 2 for the entire testing set. The 

TBL model is found to produce the best results in terms of IOU of prediction and ground 

truth (VIIRS) while GLRMSE produces the best results in terms of IPSNR. This suggests 

that the TBL model is influenced by both its loss function (i.e., Jaccard loss for the fire 

shape and GRMSE for radiance values) resulting in a higher IOU. On the other hand, 

GLRMSE improves the radiance values prediction in the fire area by adding local (i.e., 

fire area of ground truth) RMSE calculation resulting in a higher IPSNR. However, as 

discussed earlier in Section 3.3, there is a possibility of evaluation bias towards the 

majority of the sample types. Therefore, the evaluation is further carried out on the four 

categories, namely LCHI, LCLI, HCHI, and HCLI. Within each group, an analysis is 

conducted on three distinct samples to examine the sample’s performance visually, and 

the average evaluation score for each category is also provided. This process can lead to a 

more comprehensive understanding of the strengths and weaknesses of each model.  

Table 2: Evaluation of total testing sample for four models 

Evaluation Matrix GRMSE GLRMSE JL TBL 

IOU 0.1285 0.1242 0.1244 0.1320 

IPSNR 40.5120 42.8047 N/A 40.8669 

 

3.2.1. LCHI: Low Coverage with High IOU 

Figure 9 depicts the image captured by GOES and VIIRS along with the results of the 

four models for Windy Fire on 2021-09-18 at 21:36 UTC. Due to the small size of the 

distinguishable pixels found after applying Otsu thresholding, this sample is classified as 
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having low coverage. Furthermore, the initial IOU between the fire areas in the GOES 

and VIIRS images is relatively high indicating a significant overlap in the fire area 

captured by both satellites. This type of scenario is generally less challenging for the DL 

models to handle, as there is a clear and visible overlap between the fire areas in both 

images. 

As can be seen, the main observation of this sample is that the JL model performs better 

than the GRMSE and GLRMSE models in accurately predicting the location of fires, 

with an IOU score of 0.420, compared to 0.390 and 3.760, respectively. The visual results 

demonstrate that the JL can predict concavity in the shape of fires, a feature that the 

GRMSE and GLRMSE models cannot capture likely due to their loss function that 

focuses more on the radiance values. However, in terms of predicting radiance values, the 

GLRMSE model outperforms other models, with an IPSNR of 57.54, followed by the 

GRMSE model at 55.11 and the TBL model at 54.05. The visual results confirm that the 

radiance values predicted by the GLRMSE model are higher than other models and hence 

closer to the ground truth. Furthermore, the TBL improves the prediction accuracy 

compared to the JL, achieving an IOU score of 0.435. Although this improvement comes 

at the cost of a lower IPSNR score, the TBL model provides a compromise between 

predicting radiance values and accurately capturing the shape of wildfires. 

(a) 

 

(b) 

 

(c) 
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Figure 9: Windy Fire on 2021-09-18 21:36 UTC (a) GOES input, (b) VIIRS ground truth, and results 

from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL models, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and 

brightness temperature’s units are K. 

 

Figure 10 depicts the image captured by GOES and VIIRS along with results from the 

four models for Monument Fire on 2021-08-29 at 21:12 UTC. In contrast to the previous 

sample, the JL model has lower IOU score of 0.162 while the GRMSE and GLRMSE 

models achieved higher IOU scores of 0.199 and 0.200, respectively. This can be due to 

the GOES fire in this sample having a relatively low radiance value or VIIRS fire 

spanning across multiple clusters, unlike the previous sample. In this sample, the TBL 

model's IOU score is 0.179, which is lower than that of the GRMSE model. Notably, the 

TBL model's performance in this sample is consistent with the performance of the JL 

model, highlighting that the low radiance fire of GOES or multiple cluster shape of the 

VIIRS fire can negatively affect the performance of the Jaccard model. However, it is 

worth noting that the GLRMSE model achieved an IPSNR of 52.41, which is still higher 

than the IPSNRs of both the GRMSE (50.37) and TBL (50.39) models. Figure 9 supports 

this observation, showing that the GLRMSE model produced higher radiance values than 

the other models. 
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Figure 10: Monument Fire on 2021-08-29 21:12 UTC (a) GOES input, (b) VIIRS ground truth, and results 

from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness 

temperature’s units are K. 

 

Figure 11 depicts the image captured by GOES and VIIRS along with results from the 

four models for French Fire on 2021-09-17 at 8:54 UTC. This sample is very similar to 

the sample in Figure 9, with GOES and VIIRS fire area concentrated in one region with 

good initial overlap. The TBL model exhibits superior performance in terms of IOU, 

followed by the JL, then GRMSE, and finally GLRMSE model. Meanwhile, the 

GLRMSE model outperforms other models in terms of IPSNR, followed by the GRMSE 

model and then the TBL model. These results closely follow the pattern observed for the 

sample in Figure 9. 

(a) 

 

(b) 

 

(c) 
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Figure 11: French Fire on 2021-09-17 8:54 UTC (a) GOES input, (b) VIIRS ground truth, and results 

from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness 

temperature’s units are K. 

 

Table 3 presents the evaluation results for 281 LCHI testing samples, and the findings 

reveal a similar pattern to what is observed in the complete dataset. While there may be 

some exceptions, such as the sample shown in Figure 10, the pattern observed in Figures 

9 and 11 appears to be generally consistent with the bulk statistics of this category.  

Table 3: Evaluation of LCHI testing sample for four losses 

Evaluation Matrix GRMSE GLRMSE JL TBL 

IOU 0.2766 0.2637 0.2694 0.2825 

IPSNR 52.2926 55.3788 N/A 52.7992 

 

Therefore, it can be concluded that, for most of the samples in this category, the model’s 

performance follows a similar pattern. Specifically, the TBL model performs the best 

among the models in terms of IOU, indicating better agreement between the predicted 

and actual fire areas. This can be attributed to the fact that this model is trained based on 

both fire shape and radiances based on its loss function. Meanwhile, the GLRMSE model 

has the highest IPSNR, indicating better performance in predicting radiance values. This 

suggests that the GLRMSE model can predict radiance values closer to the VIIRS, likely 

due to the focus of the local term of its loss function on the fire area. 
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3.2.2. LCLI: Low Coverage with Low IOU 

Figure 12 depicts the image captured by GOES and VIIRS along with results from the 

four models for Jack Fire on 2021-07-21 at 20:00 UTC. In this sample, all models 

produce an IOU score of zero due to the small size of the VIIRS fire and the lack of 

significant overlap between the GOES and VIIRS images. This is expected as there is no 

underlying pattern in these types of samples that the DL model can learn from. 

(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

 

(e)  (f) 

 

 

Figure 12: Jack Fire on 2021-07-21 20:00 UTC (a) GOES input, (b) VIIRS ground truth, and results from 

(c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness 

temperature’s units are K. 

 

Figure 13 depicts the image captured by GOES and VIIRS along with results from the 

four models for Antelope Fire on 2021-08-21 at 20:18 UTC. In this sample, the VIIRS 

fire area is relatively small but larger compared to the previous sample. Although there 

are small clusters of fire, they are in close proximity to each other compared to the LCHI 

sample from Figure 10. Making this case even more challenging, the GOES image does 

not show any visible fire area. Despite these difficult conditions, all four models show 

reasonable performance in predicting the fire location. Among these models, the JL 

model demonstrates a significant improvement over the GRMSE model, with an IOU 
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score of 0.148 compared to 0.07. The TBL shows little improvement with an IOU score 

of 0.08. Even though the TBL model is not the best in terms of IOU, it still show 

improvement over GRMSE. The GLRMSE model shows the best radiance value 

prediction in terms of IPSNR.  

(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

 

(e)  (f) 

 

 

Figure 13: Antelope Fire on 2021-08-21 20:18 UTC (a) GOES input, (b) VIIRS ground truth, and results 

from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness 

temperature’s units are K. 

 

Figure 14 depicts the image captured by GOES and VIIRS along with results from the 

four models for Monument Fire on 2021-08-08 at 21:00 UTC. In this sample, the 

distinguishable area in the GOES image has low coverage and is dissimilar in shape and 

orientation to the VIIRS fire. Additionally, the VIIRS fire area is scattered into multiple 

clusters, similar to the LCHI sample from Figure 10. As a result, accurately predicting the 

fire location posed a challenge for all four models. The JL model produced an IOU score 

of only 0.040, lower than the GRMSE model's score of 0.090, a pattern similar to the one 

observed in the sample of Figure 10. These results suggest that the JL model may not be 

effective in samples where the VIIRS fire area is scattered and dispersed. Nonetheless, 

like previous results GLRMSE has the best radiance value prediction. 
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Figure 14: Monument Fire on 2021-08-08 21:00 UTC (a) GOES input, (b) VIIRS ground truth, and results 

from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness 

temperature’s units are K. 

 

 

Table 4 presents the evaluation results for 47 LCLI testing samples, revealing a pattern 

similar to what is observed in the complete dataset. Specifically, the TBL model exhibits 

better IOU and GLRMSE demonstrates superior IPSNR performance compared to other 

models. However, for some samples where there is no overlap between GOES and VIIRS 

fire areas or where VIIRS fire areas are scattered in clusters, the TBL model is not the 

best performing model. In some cases, the GLRMSE model demonstrates better IOU 

results than other models. This finding is also supported by Table 4, where the IOU from 

GLRMSE is better than the GRMSE and JL models and close to TBL model. 

Table 4: Evaluation of LCLI testing sample for four losses 

Evaluation Matrix GRMSE GLRMSE JL TBL 

IOU 0.0376 0.0401 0.0346 0.0416 

IPSNR 36.2735 37.7168 N/A 35.2053 
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3.2.3. HCHI: High Coverage with High IOU 

Figure 15 depicts the image captured by GOES and VIIRS along with results from the 

four models for Windy Fire on 2021-09-14 at 21:06 UTC. In this sample, the GOES 

image is considered to have high coverage due to the large area of background 

information with high radiance values that are not removed by Otsu thresholding. 

However, the actual fire in GOES still has good overlap with VIIRS. The predictions of 

all models remove most of the background information and predict the fire area similar to 

the ground truth. Although the JL model results in a lower IOU score of 0.287 compared 

to the GRMSE model's score of 0.310, the TBL model achieves an IOU score of 0.317, 

suggesting that the JL model does not need to perform better than GRMSE for TBL to 

perform best, as observed in previous samples. Similar to previous samples, GLRMSE 

performs best in terms of IPSNR. 

(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

 

(e)  (f) 

 

 

Figure 15: Windy Fire on 2021-09-14 21:06 UTC (a) GOES input, (b) VIIRS ground truth, and results 

from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness 

temperature’s units are K. 

 

Figure 16 depicts the image captured by GOES and VIIRS along with results from the 

four models for CZU (Cal Fire designation for its San Mateo–Santa Cruz Unit) Lighting 
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Complex Fire on 2020-08-20 at 21:18 UTC. In this sample, the JL model had a lower 

IOU score of 0.181 compared to the GRMSE model's score of 0.313. This difference in 

performance may be because the VIIRS fire area is a scatter region as discussed 

previously. The TBL model, however, achieved the highest IOU score of 0.354. 

Although the visual results for the GRMSE and TBL models appear similar, the 

evaluation results suggest that the TBL model is better able to reduce background noise, 

resulting in a higher IOU score. However, evident from visual inspection as well as 

IPSNR evaluation, the GLRMSE proved to be predicting better radiance values. 

(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

 

(e)  (f) 

 

 

Figure 16: CZU lighting complex Fire on 2020-08-20 21:18 UTC (a) GOES input, (b) VIIRS ground 

truth, and results from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are  
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness temperature’s units are K. 

 

Figure 17 depicts the image captured by GOES and VIIRS along with results from the 

four models for French Fire on 2021-08-22 at 20:00 UTC. In this sample, the JL model 

achieved the highest performance with an IOU score of 0.238, while the GRMSE and 

TBL models had an IOU score of 0.200. The GLRMSE model also performed close to 

the JL model with an IOU score of 0.232. The GLRMSE model still demonstrates the 

highest IPSNR score. 
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Figure 17: French Fire on 2021-08-22 20:00 UTC (a) GOES input, (b) VIIRS ground truth, and results 

from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness 

temperature’s units are K. 
 

Table 5 presents the evaluation results for 267 HCHI testing samples. Although the 

results demonstrate a consistent pattern of GLRMSE's superior performance in terms of 

IPSNR compared to other models, but the TBL model falls slightly short compared to the 

JL model in terms of IOU. Although some samples are found where JL models IOU is 

significantly lower than other models contradicting the average evaluation (Table 5) for 

this category, which suggests a need for more precise categorization. 

Table 5: Evaluation of HCHI testing sample for four losses 

Evaluation Matrix GRMSE GLRMSE JL TBL 

IOU 0.1754 0.1656 0.1814 0.1802 

IPSNR 51.1771 54.0146 N/A 51.5460 
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3.2.4. HCLI: High Coverage with Low IOU 

Figure 18 depicts the image captured by GOES and VIIRS along with results from the 

four models for Antelope Fire on 2021-08-17 at 21:36 UTC. In this sample, while the 

initial overlap between GOES and VIIRS is visually hard to detect, the four models 

accurately predicted the general location of the fire based on the ground truth. The JL 

model branch exhibited the best performance with an IOU score of 0.14, compared to 

GRMSE's score of 0.11, GLRMSE's score of 0.09, and TBL's score of 0.11. The 

GLRMSE model still demonstrates the highest IPSNR score. 

(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

 

(e)  (f) 

 

 

Figure 18: Antelope Fire on 2021-08-17 21:36 UTC (a) GOES input, (b) VIIRS ground truth, and results 

from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness 

temperature’s units are K. 

 

Figure 19 depicts the image captured by GOES and VIIRS along with results from the 

four models for Magnum Fire on 2020-06-16 at 20:00 UTC. In this sample, the JL model 

had the lowest predicted IOU score of 0.060, compared to 0.170 for both the GRMSE and 

GLRMSE models, and 0.160 for the TBL model. The inferior performance of the JL 

model may be attributed to the dispersed and scattered fire area in VIIRS. Despite this, 

the GLRMSE model still demonstrated the highest IPSNR score. 
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Figure 19: Magnum Fire on 2020-06-16 20:00 UTC (a) GOES input, (b) VIIRS ground truth, and results 

from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness 

temperature’s units are K. 

 

Figure 20 depicts the image captured by GOES and VIIRS along with results from the 

four models for Beachie Fire on 2020-09-13 at 20:30 UTC. In this sample, the high 

coverage and absence of overlap among the fires result in all models predicting a zero 

IOU score, indicating incorrect predictions compared to the ground truth. This outcome 

was expected due to the small size of the fires in the VIIRS data. However, it is worth 

noting that all the models successfully removed most of the background information, 

except for the areas where GOES recorded high radiance values.  

(a) 

 

(b) 

 

(c) 
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Figure 20: Beachie Fire on 2020-09-13 20:30 UTC (a) GOES input, (b) VIIRS ground truth, and results 

from (c) GRMSE, (d) GLRMSE, (e) JL, and (f) TBL, where radiance’s units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness 

temperature’s units are K. 

 

Table 6 presents the evaluation results for 579 HCLI testing samples. Although the 

results demonstrate a consistent pattern of GLRMSE's superior performance in terms of 

IPSNR compared to other models, the TBL model falls slightly short compared to the 

GLRMSE loss model in terms of IOU evaluation. 

Table 6: Evaluation of HCLI testing sample for four losses 

Evaluation Matrix GRMSE GLRMSE JL TBL 

IOU 0.0424 0.0442 0.035 0.0441 

IPSNR 30.2206 31.9460 N/A 30.6110 

 

 

3.3. Blind Testing 

To evaluate the performance of the trained model in real-world situations, the best 

performing model (i.e., the TBL model based on earlier results as seen in section 4.1) is 

used for blind testing on two wildfire events, namely the 2020 Bear fire and the 2021 

Caldor fire. The term "blind testing" refers to the fact that the DL model has never been 

exposed to data from these sites during training. To conduct the blind testing, GOES 

images are downloaded at its operational temporal frequency (i.e., 5 min) for the entire 

duration of the testing. The preprocessing pipeline as outlined in Section 2.2.1 is then 

applied to these images, and then fed to the trained DL as input. The output of the DL, 
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which are enhanced GOES images, are then postprocessed (combining back windows of 

image, which were created to be used as input for DL model) for visualization. These 

predicted images are validated against high resolution (i.e., 250 m spatial and 5 min 

temporal resolution) fire perimeters estimated from NEXRAD reflectivity measurements 

[80]. 

Figure 21 shows four instances during the 2020 Bear Fire from September 8 to 9, 2020, 

with the blue boundaries representing the radar-estimated fire perimeter and color 

shading representing the output of the DL model. As of 2020-09-08 19:35 UTC, the 

model’s results have good agreement with radar data, but are not completely matching. 

However, by 2020-09-08 22:25 UTC, the DL model’s predictions are comparatively 

within the radar parameters. As the fire area expands, by 2020-09-09 02:30 UTC, it is 

still confined by radar parameters, with some area outside. Even as the fire begins to fade 

and only remains at the boundaries, by 2020-09-09 03:55 UTC, it is still comparatively 

inside the radar parameters. It should be noted that fitting a fire perimeter to the DL 

output is out of the scope of this study and will be addressed in future research. 
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Figure 21: Validation Model prediction with Radar data for Bear Fire at 4 instances, where radiance’s 

units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness temperature’s units are K. (left column) shows GOES imagery and 

(right column) network prediction. Blue boundary depicts radar estimated fire perimeter. 
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Similarly, Figure 22 depicts four instances during the 2021 Caldor Fire from August 16 

to 17, 2021. Reasonable agreement between the fire pixel and predicted boundaries can 

be observed in results however not as accurate as in case of Bear fire. At 2021-08-17 

17:05 UTC, the network’s prediction is aligned with general location of the radar 

parameters, with no visible fire in the bottom half and overprediction in the top half. 

From 2021-08-17 20:30 UTC to 2021-08-17 23:55 UTC, the network’s prediction is 

consistently confined by the radar parameters, with some fire area outside, but the overall 

shape is similar to the radar parameter. 
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Figure 22: Validation Model prediction with Radar data for Caldor Fire at 4 instances, where radiance’s 

units are 
𝑚𝑊

𝑚2𝑠𝑟(𝑐𝑚−1)
 and brightness temperature’s units are K. (left column) shows GOES imagery and 

(right column) network prediction. Blue boundary depicts radar estimated fire perimeter. 

 

The findings suggest that the DL model’s predictions closely align with the radar data, 

indicating that it has the potential to be a valuable tool for predicting wildfires in real-

time. It is worth mentioning that both GRMSE and GLRMSE models yielded similar 

visual results. 
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Chapter 3: Conclusions 

The primary objective of this study was to develop a DL model to improve the spatial 

resolution of GOES images as well as predicting radiance values, similar to VIIRS 

ground truth. To achieve this objective, an autoencoder was trained using GOES data as 

input and VIIRS data as ground truth. An ablation study was conducted to assess the 

performance of four models, created based on different loss functions and architectural 

variations in the autoencoder, namely global root mean square error, global plus local 

root mean square error, Jaccard loss, two-branch loss. The study provided details on the 

training process and hyperparameters used, along with a comprehensive explanation of 

the performance and the results obtained from each model. The architecture of the 

autoencoder, along with the different loss functions used, was discussed in detail, 

including the mathematical formulas for each loss function. Furthermore, the study 

addressed the difficulties of assessing model performance and proposed an evaluation 

metric that aligned with the physical interpretation of results. It was suggested that 

assessing different scenarios based on coverage and initial IOU was more meaningful 

than evaluating the entire dataset. The study also explained the process of creating the 

dataset in detail, including the download procedure for GOES and VIIRS. The challenge 

of ensuring consistency between the initial GOES and VIIRS downloaded files regarding 

location, time, and projection was also explained. Additionally, the process of 

transforming VIIRS data from vector to raster format was explained in detail, making the 

framework more robust. 
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After evaluating the entire dataset, two observations were made. Firstly, the TBL model 

outperformed other models in terms of IOU. Secondly, the GLRMSE model showed an 

improvement in IPSNR (PSNR obtained by considering only true positive prediction) 

compared to the other models. However, these results may be biased towards the majority 

of sample types in the dataset. Further evaluation of categorized datasets (low coverage 

with high IOU (LCHI), low coverage with low IOU (LCLI), high coverage with high 

IOU (HCHI), and high coverage with low IOU (HCLI)) revealed the same patterns, 

except for the HCLI set where GLRMSE had a similar IOU score compared to the TBL 

model. However, analyzing multiple samples from each dataset type revealed that TBL 

model does not always produce the best results. The ranking of model performance in 

terms of IOU varied depending on the specific samples evaluated, highlighting the need 

for further improvement in evaluation metrics and the categorization of samples. 

Nonetheless, the GLRMSE model consistently predicted better radiance values of fire 

pixels, as indicated by its best IPSNR scores across all cases. Therefore, improving 

evaluation metrics and categorizing samples would enable the development of more 

reliable models. 

The study's results offer a robust foundation for future research in creating high-

resolution GOES images. To enhance the accuracy and applicability of the DL model, 

several directions for further studies can be pursued. First, while the proposed model can 

predict fire boundaries, there is room for improvement in actual radiance value 

prediction, which could be a focus of future research. Second, an adaptive region of 

interest (ROI) approach could be implemented to selectively include only relevant areas 

in the image. Currently, a constant value 'C' degree is used to determine the ROI's 
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corners, which is based on the biggest wildfire observed in the dataset available. This 

often results in smaller wildfires having a larger background area. Employing an adaptive 

ROI can decrease computational requirements and improve the model's speed. Third, 

incorporating more data for training, such as VIIRS data from NOAA-20 satellite, could 

increase the model's generalizability. Fourth, improving the rasterization process could 

enhance the model's accuracy by using more advanced techniques to align GOES and 

VIIRS data. Fifth, global normalization of VIIRS and GOES could help remove any 

biases introduced by variations in sensor properties and improve consistency between 

images. Sixth, adding a time component to the model could enable forecasting of changes 

in wildfire patterns and enhance the prediction’s accuracy. Finally, incorporating land use 

information, vegetation properties, and terrain data could improve wildfire pattern 

predictions. These potential enhancements represent future research directions in the field 

of high-resolution GOES image creation using DL models. 
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Appendix 

Appendix A 

Wildfire events used for this study 
Site Central 

Longitude 

Central 

Latitude 

Fire Start date Fire End date 

Kincade -122.780 38.792 2019-10-23 2019-11-06 

Walker -120.669 40.053 2019-09-04 2019-09-25 

Tucker -121.243 41.726 2019-07-28 2019-08-15 

Taboose -118.345 37.034 2019-09-04 2019-11-21 

Maria -118.997 34.302 2019-10-31 2019-11-05 

Redbank -122.64 40.12 2019-09-05 2019-09-13 

Saddle ridge -118.481 34.329 2019-10-10 2019-10-31 

Lone -121.576 39.434 2019-09-05 2019-09-13 

Chuckegg creek fire -117.42 58.38 2019-05-15 2019-05-22 

Eagle bluff fire -119.5 49.42 2019-08-05 2019-08-10 

Richter creek fire -119.66 49.04 2019-05-13 2019-05-20 

LNU lighting complex -122.237 38.593 2020-08-18 2020-09-30 

SCU lighting complex -121.438 37.352 2020-08-14 2020-10-01 

CZU lighting complex -122.280 37.097 2020-08-16 2020-09-22 

August complex -122.97 39.868 2020-08-17 2020-09-23 

North complex fire -120.12 39.69 2020-08-14 2020-12-03 

Glass fire -122.496 38.565 2020-09-27 2020-10-30 

Beachie wildfire -122.138 44.745 2020-09-02 2020-09-14 

Beachie wildfire 2 -122.239 45.102 2020-09-02 2020-09-14 

Holiday farm wildfire -122.49 44.15 2020-09-07 2020-09-14 

Cold spring fire -119.572 48.850 2020-09-06 2020-09-14 

Creek fire -119.3 37.2 2020-09-05 2020-09-10 

Blue ridge fire -117.68 33.88 2020-10-26 2020-10-30 

Silverado fire -117.66 33.74 2020-10-26 2020-10-27 

Chuckegg creek fire -117.42 58.38 2019-05-15 2019-05-22 

Bond fire -117.67 33.74 2020-12-02 2020-12-07 

Washinton fire -119.556 48.825 2020-08-18 2020-08-30 

Oregon fire -121.645 44.738 2020-08-17 2020-08-30 

Talbott creek -117.01 49.85 2020-08-17 2020-08-30 

Christie mountain -119.54 49.364 2020-08-18 2020-09-30 

Bush fire -111.564 33.629 2020-06-13 2020-07-06 

Magnum fire -112.34 36.61 2020-06-08 2020-07-06 

Bighorn fire -111.03 32.53 2020-06-06 2020-07-23 
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Santiam fire -122.19 44.82 2020-08-31 2020-09-30 

Holiday farm fire -122.45 44.15 2020-09-07 2020-09-30 

Slater fire -123.38 41.77 2020-09-07 2020-09-30 

Eagle bluff fire -119.5 49.42 2019-08-05 2019-08-10 

Alberta fire 1 -118.069 55.137 2020-06-18 2020-06-30 

Doctor creek fire -116.09788 50.0911 2020-08-18 2020-08-24 

Magee fire -123.22 49.88 2020-04-15 2020-04-16 

Pinnacle fire -110.201 32.865 2021-06-10 2021-07-16 

Backbone fire -111.677 34.344 2021-06-16 2021-07-19 

Rafael fire -112.162 34.942 2021-06-18 2021-07-15 

Telegraph fire -111.092 33.209 2021-06-04 2021-07-03 

Dixie -121 40 2021-06-15 2021-08-15 

Monument -123.33 40.752 2021-07-30 2021-10-25 

River complex -123.018 41.143 2021-07-30 2021-10-25 

Antelope -121.919 41.521 2021-08-01 2021-10-15 

Mcfarland -123.034 40.35 2021-07-29 2021-09-16 

Beckwourth complex -118.811 36.567 2021-07-03 2021-09-22 

Windy -118.631 36.047 2021-09-09 2021-11-15 

Mccash -123.404 41.564 2021-07-31 2021-10-27 

Knpcomplex -118.811 36.567 2021-09-10 2021-12-16 

Tamarack -119.857 38.628 2021-07-04 2021-10-08 

French -118.55 35.687 2021-08-18 2021-10-19 

Lava -122.329 41.459 2021-06-25 2021-09-03 

Alisal -120.131 34.517 2021-10-11 2021-11-16 

Salt -122.336 40.849 2021-06-30 2021-07-19 

Tennant -122.039 41.665 2021-06-28 2021-07-12 

Bootleg -121.421 42.616 2021-07-06 2021-08-14 

Cougar peak -120.613 42.277 2021-09-07 2021-10-21 

Devil'sKnob Complex -123.268 41.915 2021-08-03 2021-10-19 

Roughpatch complex -122.676 43.511 2021-07-29 2021-11-29 

Middlefork complex -122.409 43.869 2021-07-29 2021-12-13 

Bull complex -122.009 44.879 2021-08-02 2021-11-19 

Jack -122.686 43.322 2021-07-05 2021-11-29 

Elbowcreek -117.619 45.867 2021-07-15 2021-09-24 

Blackbutte -118.326 44.093 2021-08-03 2021-09-27 

Fox complex -120.599 42.21 2021-08-13 2021-09-01 

Joseph canyon -117.081 45.989 2021-06-04 2021-07-15 

Wrentham market -121.006 45.49 2021-06-29 2021-07-03 

S-503 -121.476 45.087 2021-06-18 2021-08-18 
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Grandview -121.4 44.466 2021-07-11 2021-07-25 

Lickcreek fire -117.416 46.262 2021-07-07 2021-08-14 

Richter mountain fire -119.7 49.06 2019-07-26 2019-07-30 
 

 


