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The two-layer Lorenz ’96 model consists of two linearly coupled systems of ODEs with two

distinct time scales. This simple model was designed to reflect the patterns of local instability

and growth represented by the interaction of planetary and synoptic dynamics with mesoscale

motions and convective clouds. Under the assumption that the large-amplitude variables in the

first layer are fully observed, we consider two inverse problems. The first is to estimate the

unobserved values of the second layer in the case where the dynamics are known; the second

is to solve for both the unobserved small scales and the unknown dynamics governing them.

For simplicity, we assume that the dynamics governing the small scales take on a parameterized

form with a single unknown parameter. In this case, our goal is to simultaneously estimate that

parameter and the unobserved small scales.

Our study begins with a verification that the dynamics in the two-layer Lorenz ’96 model are

dynamically interesting enough to merit further investigation. We then develop algorithms to

solve the two types of inverse problems mentioned above and find theoretical conditions under

which those algorithms allow us to estimate the unobserved small scales and, optionally, the

unknown parameter. We begin by proving that directly inserting the observations into the

model as it is being integrated in time results in synchronization that allows recovery of the

unobserved small scales over time. We then make a novel use of derivative information—i.e., the

rate at which the observations change over time—to obtain new forms of data assimilation that

allow solving the inverse problem faster, under less stringent conditions, and when the parameter

governing the small scales is unknown.

Throughout we confirm our theoretical results with numerical experiments and remark that

solving the inverse problem numerically turns out to be possible even when the system does not

satisfy the hypotheses required by our theory.
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Chapter 1

Introduction

As the behavior of a physical system becomes more complicated, solving inverse problems related

to that system becomes more difficult and, at the same time, more important. For example, a

good weather forecast depends on a realistic model of the atmosphere and an accurate observation

of current conditions ([12]), but atmospheric dynamics are enormously intricate due to interaction

of air parcels at large and small scales across millions of cubic miles of atmosphere, and a model

that could adequately represent the atmosphere at extremely fine scales is still too complex for

today’s most powerful computers. Moreover, perfect observations and small-scale dynamics are

still beyond the grasp of today’s most sensitive equipment, and even perfect observations may

not be accurately represented in an imperfect model. This situation can be thought of as an

inverse problem with insufficient knowledge of the system’s dynamics, a tractable mathematical

problem with important theoretical and practical ramifications.

To illustrate some mathematical aspects of an inverse problem, consider the equation Ax = b

from linear algebra. A typical task related to this equation is solving for x. However, suppose

A were the unknown with x and b known. In this case, the observational data are given by the

known values of x and b, and approximating A is the inverse problem. There are many possible

choices for A such that Ax = b; therefore, finding the correct value of A is an ill-posed problem,

as there are too many free parameters.

Suppose we later learn that the same A also satisfies Ay = c, where y and c are known. Clearly,

not all choices of A such that Ax = b satisfy Ay = c. The question becomes how to reconcile our

original estimate of A with a new estimate based on y and c. Imagine that over time, additional

relationships involving A become known and that the vectors x,y, b, c, and so forth are only
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partially known or include errors. Using such a time series to arrive at a good estimate for A

is analogous to the data assimilation techniques generally used to solve inverse problems, with

one notable exception: Practical applications typically involve a nonlinear relationship, often

governed by differential equations, between the unknowns and the observations.

More concretely, numerical weather prediction is widely treated as an initial value problem with

an uncertain initial condition. In this context, estimating the initial conditions from knowledge

of atmospheric processes and a time series history of observations (both direct and indirect) has

formed the basis of modern weather forecasting. These kinds of inverse problems have important

real-world applications.

Recovering the parameters that govern the unobserved variables can be an important prerequi-

site to approximating the unobserved variables themselves. Since direct observations of those

variables are unavailable, we need to infer their state indirectly based on their effects on things

we can observe. This makes a reasonable description of their dynamics difficult or impossible

to obtain. In particular, unobserved processes are often represented inadequately; even the best

model run by the most powerful supercomputer is a cartoon version of the real-world behavior

([4]), and if such a system is used to model complex natural phenomena, real-time prediction of

the behavior of those phenomena can be fraught with errors that grow over time. A simulation

with thousands or millions of variables would be needed to adequately represent the system and

reduce the size of the errors and their rate of propagation, but real-time filtering is generally

limited to only a few dozen variables ([18]). Moreover, the best computations are further com-

plicated by difficulties inherent in data assimilation algorithms; Kalman filters can be applied

to nonlinear models but become suboptimal when the models are linearized ([24]), and particle

filters can be reasonably applied only to small-scale systems, not to large ones with millions of

variables that cannot all be sampled ([18]).

Because physical and discrete parameterizations cannot always be resolved, stochastic parame-

terizations have been used to estimate those unknowns, recover the parameters, and account for

model uncertainty and error. These parameterizations have been shown to improve the accuracy

of a model ([26]), represent the uncertainty in a model ([3]), and account for model errors ([17]).

Combined with standard techniques such as inflation localization, stochastic parameterization

has been shown to improve weather and climate forecasts ([4]). Thus, if one constructs a model

that reasonably mimics the dynamics of the atmosphere, one could use stochastic parameteriza-

tion to estimate the unknown dynamics. In turn, stochastic representation of model uncertainty

can make the forecast ensemble more reliable and improve the climatological mean state ([20]).
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At this point, it should be noted that characterizing the mean state of the unobserved dynamics

and how that affects the observable quantities of interest is different from the inverse problem of

approximating the details of the unobserved state. In this research, we use stochastic parame-

terization as a measure of dynamical complexity. Although these results are interesting on their

own, our primary focus is solving the inverse problem of recovering the details of the unobserved

variables and the dynamics which govern them.

One simple model related to weather forecasting is a system that [15] created to explore certain

properties of mid-latitude atmospheric dynamics:

dXk

dt
= Xk−1(Xk+1 −Xk−2)−Xk + F, k = 1, . . . ,K, (1.1)

whereX−1 = XK+1, X0 = XK , andXK+1 = X1. Here, F is a time-independent forcing constant.

As [16] observed:

For very small values of F, all solutions decay to the steady solution X1 = . . . =

XK = F, while, when F is somewhat larger, most solutions are periodic, but for still

larger values of F (dependent on K) chaos ensues.

The quadratic terms simulate advection. Note that the indices to these terms are not symmetric.

From a physical point of view, this may indicate a direction of the convection (e.g., west to

east); from an algebraic point of view, the indices have been arranged to obtain cancellations

representing conservation of energy (this will be discussed in Lemma 3.1).

The constant and linear terms simulate external forcing and internal dissipation. Intuitively,

if Xk represents planetary and synoptic dynamics, then F represents large-scale forces such as

gravity and heating of the earth from the sun. The subscript k is then the azimuthal angle

in the mid-latitude cell (see Figure 1.1) divided as K longitudinal sectors of a latitude circle.

Dimensionally, it is not unreasonable to think of Xk as representing a velocity; however, [16]

notes that Xk could be any atmospheric quantity (e.g., pressure, temperature, or humidity). It

should again be emphasized that the Lorenz ’96 model is meant only to represent the kinds of

dynamics that would occur in such a latitude circle and is not a realistic model of the actual

weather; rather, one can think of this model as an imitation of atmospheric dynamics in the

middle latitudes.
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Figure 1.1: Global circulation of Earth’s atmosphere ([11]).

However, this model does not consider the interaction of large- and small-scale dynamics. To

reasonably mimic this interplay, [16] adapted (1.1) as follows:

dXk

dt
= −Xk−1(Xk−2 −Xk+1)−Xk + F − hc

b

kJ∑
j=J(k−1)+1

Yj , k = 1, . . . ,K; (1.2a)

dYj
dt

= −cbYj+1(Yj+2 − Yj−1)− cYj +
hc

b
X⌊(j−1)/J⌋+1, j = 1, . . . , JK, (1.2b)

where theXk are slow, large-amplitude variables that represent planetary and synoptic dynamics;

the Yj are fast, small-amplitude variables that represent mesoscale and microscale dynamics

([16]); and ⌊s⌋ denotes the greatest integer less than or equal to s. The last terms in Equations

(1.2a) and (1.2b) couple the system. Here, h is the strength of the coupling and c and b are

scaling factors which control the amplitude of Y and the rate at which Y fluctuates. In practice,

b, c, h, F, J, and K are chosen empirically such that the dynamics of Y are mesoscale compared

to the large-scale motion of X: e.g., the amplitudes of Y are one magnitude smaller and the

fluctuations of motion a magnitude faster. As the dissipation in the Y equation plays a significant

role in our theory and numerical results, one of our first tasks is to rescale the equations so the

parameter c only appears in the term cYj .

We again remark that the first terms of the right-hand sides of the equations are quadratic and

correspond to energy-preserving advection. Note the indices in the advection term for Y are a
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mirror image of the advection for X. This is reminiscent of how the small eddies near a large

eddy spin in the opposite direction. The linear terms correspond to dissipation of energy and to

the coupling already mentioned. The constant forcing term F controls the magnitude of energy

injected. Note the simplifying assumption that energy is injected only into the Xk variables.

Note that the form of the coupling is energy-conserving. Typically, a two-scale decomposition of

a nonlinear PDE causes the scales to be coupled in the nonlinear terms; if these nonlinear terms

represent convection, the nonlinear coupling is critical to recovering small-scale motion from

observations of the large scales ([19]). In the Lorenz ’96 system, the coupling occurs only in the

linear terms. This allows us to interpret the system as a model of two physical processes coupled

together by an energy-conserving force when the parameters are specified appropriately. Note

also that the Lorenz ’96 system is controlled by several constants that determine the resulting

dynamical complexities.

Given an inverse problem of any complexity, one is faced with the question of whether one can

recover not only the unobserved variables but also parameters which govern the unobserved

dynamics. In particular, we want to know what parameters will cause the fast variables to be

exponentially determined by the slow variables. For the two-layer Lorenz ’96 system, our goal

is to identify conditions that allow effective solving of the following two inverse problems: Use

observations of X to approximate Y ; and use observations of X to recover the dissipation in

the Y equation while simultaneously approximating Y . Note that to treat the second type of

inverse problem, Section 3.1 rescales the two-layer Lorenz ’96 model in order to separate the

parameter governing the dissipation from the other terms. This allows us to consider solving for

the rate of energy dissipation and the small scales at the same time.

Note that solving for the parameters in the three-equation Lorenz ’63 model was considered by

Carlson et. al. [6]; in that work, the parameter being solved for appeared in the equations

governing the observations. In our case, the dissipation parameter we solve for appears only

in the equation governing the small scales Y , whereas we observe only the large scales X. We

therefore introduce a new technique based on the derivative information of X that applies to

the two-layer Lorenz ’96 system and that appears to be generally applicable to other inverse

problems.

We can make some interesting observations with a rescaled version of the two-layer Lorenz ’96

system, particularly about the choice of the dissipation and coupling parameters. Changing the

dissipation parameter changes the rate at which the small scales dissipate the energy from the

large scales. The quadratic terms represent conservative advection which conserve the standard
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energy. Thus, the coupling parameters represent the rates of energy drawn from the large scale

and energy injected into the small scale.

To make these observations, we assume that the fine scales are unobserved. As the real dynamics

of these scales are unknown, we expect some model error and imperfections in data assimilation.

To get around this problem, various approaches have been employed: discrete-time parameter-

ization ([17]), stochastic parameterization ([3]), covariance localization ([1]), and additive and

multiplicative covariance inflation ([10], [2]).

To study the difficulties of such a task in a specific example, we consider Wilks’s technique of

stochastic parameterization ([26]) applied to the two-layer Lorenz ’96 system. He constructed

a reduced model for the observed large-scale dynamics and represented the effects of the unob-

served variables through fourth-order polynomial regressions. We use this technique to explore

parameter regimes that lead to systems for which the inverse problem is interesting. After char-

acterizing the parameter regimes for which the fast variables play an important dynamical role,

we then focus on when the inverse problem can be solved.

In Chapter 4, we use stochastic parameterization to determine the complexity of the dynamics

c that govern the small-amplitude variables. Specifically, for a range of values of c we calculate

the Bayesian information criterion to determine the degree of the regression polynomial that

best models the effects of the small-amplitude variables on the large-amplitude ones. From these

results, we infer that higher-degree polynomials correspond to greater dynamical complexity

and less solvability. In Chapter 5, we find theoretical conditions under which a simple coupling

scheme allows the recovery of V over time from observations of X, an confirm those conditions

using numerical experiments.

In Section 6.1, we prove that directly inserting the observations into the model as it is being

integrated in time results in synchronization that allows recovery of the unobserved small scales

over time. In Section 6.4, we make a novel use of derivative information—i.e., the rate at which

the observations change over time—to obtain new forms of data assimilation that allow solving

the inverse problem faster, under less stringent conditions; we do the same in Section 7.2 when

the parameter governing the small scales is unknown. We repeat these experiments in Chapter

8 but under the assumption that observations of X are only approximately continuous in time.

Our goal is twofold: to identify the conditions that generate effective stochastic parameteriza-

tions of this system, and to determine how those conditions are related to the coupled dynamics.
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In particular, we want to know what parameters will cause the fast variables to be exponen-

tially determined by coupling on the slow variables. We study this in two contexts: when the

dissipation is known, and when the dissipation and the small-amplitude variables are unknown.
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Chapter 2

Background Theory

In this chapter, we present background information relating to the Gauss–Newton method for

minimizing a nonlinear least squares problem, autocorrelation, and the Akaike and Bayesian

information criteria. We present these well-known results for completeness and ease of reference.

2.1 The Gauss–Newton Method

Given a linear system Ax = b with no exact solution, we look for an x that minimizes J =

||Ax− b||. Minimizing J is a well known problem in linear algebra, and the minimizer satisfies

the normal equations

x = (A⊤A)−1A⊤b or, equivalently, x = R−1Q⊤b, (2.1)

where A = QR is the reduced QR factorization of A. Due to the nonlinear terms B and B̃ in the

two-layer Lorenz ’96 system, we will need to solve nonlinear least squares problems. To this end,

we describe the Gauss–Newton method for solving nonlinear least squares problems by means

of a sequence of linear least squares solutions.

Generally, finding a minimum involves looking for the critical points: in this case, the values of

x such that ∇J = 0. One could solve the equation by Newton’s method; however, this method

is often inefficient for systems of many equations, as it requires that the Hessian be calculated.

The Gauss–Newton method avoids this problem by requiring only the Jacobian. In particular,
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suppose

J(x) = ||Φ(x)|| , where Φ(x) ∈ Rp. (2.2)

Here, we assume Φ is a differentiable function of x which may not be linear (e.g., a vector-valued

polynomial). Let DΦ be the Jacobian matrix given by [DΦ]ij = ∂Φi(x)/∂xj and let x(i) be an

approximation of the minimizer of x. Following Solomon [23], the Gauss–Newton method may

be described by first linearizing Φ(x) around x(0) to obtain

Φ(x) ≈ Φ(x(0)) +DΦ(x(0)))(x− x(0)).

Then let J0 be the corresponding version of J about x(0) given by

J0(x) =
1

2

∥∥Φ(x(0)) +DΦ(x(0))(x− x(0))
∥∥2.

Minimizing J0 is a linear least squares problem in which the solutions may be obtained by

Equation (2.1), where A = −DΦ(x(0)) and b = Φ(x(0)).

Let x(0) be an approximation of x. The Gauss–Newton method evolves x(0) forward by solving

the sequence of linear least squares problems

x(n+1) = x(n) −
[
(DΦ(x(n))⊤DΦ(x(n))

]−1

(DΦ(x(n)))⊤Φ(x(n)), where n ≥ 0 (2.3)

or, equivalently, using the reduced QR factorization of DΦ(x(n)). In general, x(0) must be

sufficiently close to the minimizer of the original problem for convergence to occur, and the con-

vergence to that solution may be superlinear (ideally approaching the rate of Newton’s method).

For a discussion of the convergence of the general Gauss–Newton algorithm, see [22] and ref-

erences therein. Note that most of the literature discusses regularization techniques to ensure

convergence (e.g., Levenberg–Marquardt); in our work, such techniques are not needed.

The Gauss–Newton method is used in Section 6.3 to solve algebraic constraints that appear when

the two-layer Lorenz ’96 system is coupled on X and its first n derivatives.

2.2 Autocorrelation

It is well known that nonlinear dynamics can lead to complex time-dependent behavior. For

example, the original Lorenz system ([14]) consisting of three coupled ODEs was shown to
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possess a Smale horseshoe using rigorous numerics (see [25] and [9]) for the standard choice of

parameters. The two-layer Lorenz ’96 system studied in this dissertation is significantly more

complicated, and similar rigorous numerics appear to be out of reach. However, numerical

simulations suggest chaotic behavior typical of nonlinear dynamics.

Over time, dissipative nonlinear systems tend to forget the state of the initial condition and

enter into what appears to be a state in phase space that is statistically independent of that

initial condition. To measure the rate at which this happens, we shall use the autocorrelation.

In the time-discrete case, consider a time series xn sampled at points tn uniformly in time for

n = 1, . . . , N . The autocovariance of xn is given by

γℓ =
1

N − ℓ

N−ℓ∑
n=1

(
xn − ⟨x⟩0

)(
xn+ℓ − ⟨x⟩ℓ

)
, (2.4)

where

⟨x⟩m =
1

N − ℓ

N−ℓ∑
n=1

xn+m. (2.5)

Given the way the averages have been defined in Equation (2.5), we note that

1

N − ℓ

N−ℓ∑
n=1

(
xn − ⟨x⟩0

)
= 0 and

1

N − ℓ

N−ℓ∑
n=1

(
xn+ℓ − ⟨x⟩ℓ

)
= 0. (2.6)

Therefore, we can write (2.4) as

γℓ =
1

N − ℓ

N−ℓ∑
n=1

(
xnxn+ℓ − ⟨x⟩0⟨x⟩ℓ

)
. (2.7)

With the above definition of γℓ, we may write the autocorrelation function as Γℓ = γℓ/γ0.

In practice, we look for the value L such that |Γℓ| < ϵ for some small ϵ and all ℓ > L. From this,

we infer a timescale over which samples of xn appear independent.

2.3 Akaike and Bayesian Information Criteria

The BIC is similar to the Akaike information criterion (AIC). In this section, we give a brief

description of both, the ideas behind them, and how to compute them. We then explain why we

choose the BIC for our analysis.
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When selecting a regression model to fit the data, one seeks a model that minimizes error without

overfitting the training data. But such a model is not unique; one can choose from a collection of

candidate models that appear to minimize error and adequately fit the data. Inspired by Wilks’s

use of stochastic parameterization in [26], we use a polynomial regression to parameterize the

effects of the small scales on the large scales. This allows us to characterize the dynamical

complexity of the interaction between the small and large scales as follows: We use the AIC and

BIC to balance the goodness of fit with the degrees of freedom in this parameterization, and

infer that the degrees of freedom in a statistically good parameterization represent the dynamical

complexity of the small-large scale interactions.

Specifically, let y be the response variable and x be the explanatory variable scalars. Consider a

family of functional relationships y ≈ gd(x; θ). For each d, let θ̂ correspond to the best fit. Now

search for the value of d that best characterizes y in terms of x. To do this, we take a sample

of responses yk and assume yk = f(xk) + ϵk, where f is the true relationship between x and y,

and the ϵk are samples from independent and identically distributed normal random variables.

Denote the joint probability distribution underlying the ϵk’s by ρ. Similarly, for each d, define

ρd as the joint probability distribution underlying yk − gd(xk). The task of choosing d is now

balanced between the number of degrees of freedom represented by gd, and how close gd is to f.

In 1973, Akaike proposed that the Kullback–Leibler divergence between the probability distri-

butions ρ and ρd underlying f and gd, respectively, could be used to select d (see [8]). Using the

log likelihood function log(L(θ̂)) corresponding to ρd of the best fit, he estimated

EϵEδ[log(ρd(δ; θ̂(ϵ)))],

where Eϵ and Eδ are calculated with respect to ρ. The maximum is overestimated by log(L(θ̂))

on the size of K, where K = dim(θ)+1 is the number of estimable parameters, with the variance

being the additional parameter. Thus,

EϵEδ[log(ρd(δ; θ̂(ϵ)))] ≈ log(L(θ̂))−K.

From this, Akaike defined an information criterion

AIC = −2 log(L(θ̂; x,y)) + 2K, (2.8)

where L is a density function that measures the probability of θ̂ given the data y, and 2K

is the penalty term. Note that minimizing the AIC to select the degree d of the polynomial
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model involves minimizing the bias-corrected likelihood estimator. This, in turn, minimizes the

Kullback–Leibler divergence between ρ and ρd.

The AIC is an attractive selection method due to its efficiency and its selection of a model

that minimizes the Kullback–Leibler divergence from the truth f , but a significant caveat is

its lack of consistency: Even if we assume that the true model exists and is a candidate (i.e.,

f(x) = gd(x,θ) for some values of d and θ), the AIC will not always choose the values of d

and θ that will match f in the limit of large sample sizes. However, the BIC (defined below) is

consistent.

BIC = −2 log(L(θ̂; x,y)) +K log(N), where N = number of observations. (2.9)

We do not discuss the BIC’s derivation here, but we note that the larger penalty term K log(N)

means the free parameters are penalized more harshly than in the AIC. As Burnham and Ander-

son point out [5], this larger penalty term is needed for idealized asymptotic consistency: i.e., if

the true model is in the set of candidate models, the BIC will asymptotically select that model

with probability 1 as N → ∞. In our case, none of the polynomial models under consideration

reflect this sort of truth. However, even though we do not assume in our work that the true

model is a candidate, we exploit the BIC’s larger penalty term because we have thousands of

data points in our sample and N is large. This offsets the disadvantage that there is nothing in

the theory or the derivation of the BIC that addresses the bias-variance tradeoffs considered in

the AIC. In particular, the BIC may select a model that has poorer fit, in which case we may

select a model using the AIC.

In the applications we consider, we assume a polynomial model for which the errors ϵk are

normal, independent, and identically distributed. Thus, yk = gd(xk) + ϵk with gd(x;θ) =

bdx
d+· · ·+b1x+b0, where θ = (s2, b0, b1, . . . , bd). Here, xk represents a time series of observations

of the first oscillator X1 in the two-layer Lorenz ’96 system, and yk is the observed influence of

the second layer on the first. To avoid confusion, we let s2 refer to the variance, as we use σ

to refer to the standard coupling matrix given by Equation (3.1). Thus, the likelihood function

takes the form

L(s2, b0, b1, . . . , bd; x,y) = (2πs2)−N/2 exp

−
1

2s2

N∑
k=1

(yk − gd(xk))
2

 .
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The maximum likelihood estimators b̂i of the bi are given by the polynomial regression, and s2

is obtained from ϵk as

ŝ2 =
1

N

N∑
k=1

ϵ2k.

We remark that the number of estimable parameters in Equation (2.8) is K = d+ 2.
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Chapter 3

Preliminaries

Before we proceed with our research, we rewrite the two-layer Lorenz ’96 system so that it is

more notationally convenient and allows for generalizations. We then rescale the Y equation to

separate the parameter controlling the dissipation in the small scales from the other parameters.

This allows us to consider a number of questions for our research that would not be possible

otherwise. Finally, we characterize how the timescales in our rescaled equations depend on the

dissipation.

To begin, we represent the coupling terms in Equations (1.2a)–(1.2b) as

hc

b
X⌊(j−1)/J⌋+1 =

hc
√
J

b
(σX)js and

hc

b

kJ∑
j=J(k−1)+1

Yj =
hc

√
J

b
(σ⊤Y )k,

where

σ⊤ =
1
√
J


1 1 1 · · · 1 0 0 0 · · · 0 · · · 0 0 0 · · · 0

0 0 0 · · · 0 1 1 1 · · · 1 · · · 0 0 0 · · · 0
...

...
. . .

...

0 0 0 · · · 0 0 0 0 · · · 0 · · · 1 1 1 · · · 1


∈ RK×JK .

(3.1)

Note that σ is a matrix with orthonormal columns and therefore σ⊤σ = I. To achieve this, we

divide by
√
J . Thus, σ : RJK → RK is an isometry: i.e., it preserves lengths and angles. In

particular, ||σ||2 = 1. We want a matrix that represents the coupling in the rewritten two-layer

Lorenz ’96 system. The coupling represented by σ may be visualized schematically using the
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diagram from [26] (see Figure 3.1). Also note that the coupling is symmetric through rotations

but not through reflections.

Figure 3.1: How the oscillators in the two-layer Lorenz ’96 system are coupled using the
standard coupling matrix σ given in Equation (3.1). The directional couplings between Xk

and Xk−2 in the large scales and Yj and Yj+2 in the small scales are not shown.

For most of this study, we will employ σ as given in Equation (3.1). Much of our theoretical

analysis relies on the fact that σ⊤σ = I; therefore, any suitably sized σ with orthonormal

columns satisfies the hypotheses of our theorems. This allows us to consider how different

couplings between the two layers affect our ability to recover the small scales from observations

of the large scales (see Section 6.2).

Following the notation employed by Law et. al. [13] in analogy with standard notation for

the convective terms in equations governing fluid dynamics (see, for example, [7]), we set F =

(F, F, . . . , F ) ∈ Rk, let x,X ∈ RK and y,Y ∈ RJK . Define Bk : RK × RK → R and B̃j : RJK ×

RJK → R as

Bk(X,x) = Xk−1(xk−2 − xk+1), (3.2a)

B̃j(Y ,y) = Yj+1(yj+2 − yj−1), (3.2b)

where k = 1, 2, . . . ,K and j = 1, 2, . . . , JK. Recall that the definition of Xk is to be extended to

all values of k in (3.2a) by letting Xk−K and Xk+K equal Xk. The same extension holds for xk,

and a similar one for period JK holds for Yj and yj in Equation (3.2b).
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We note B and B̃ have the following properties:

Lemma 3.1. Let W ,X ∈ RK and Y ,Z ∈ RJK . Then

1. B(X,X) ·X = 0.

2. B̃(Y ,Y ) · Y = 0.

3. B and B̃ are bilinear: i.e., for vectors xi,Xi ∈ RK and yi,Yi ∈ RJK with i = 1, 2 and

constants a, b, c, d ∈ R,

B(aX1 + bX2, cx1 + dx2) = acB(X1,x1) + adB(X1,x2)

+ bcB(X2,x1) + bdB(X2,x2),
(3.3)

B̃(aY1 + bY2, cy1 + dy2) = acB̃(Y1,y1) + adB̃(Y1,y2)

+ bcB̃(Y2,y1) + bdB̃(Y2,y2).
(3.4)

4. [B(X,W ) +B(W ,X)] ·W ≤ 2 ||X|| ||W ||2 .

5. [B̃(Y ,Z) + B̃(Z,Y )] · Y ≤ 2 ||Y || ||Z||2 .

Proof. Although the results of Lemma 3.1 for the convection-like bilinear term in the Lorenz ’96

models are generally well known, we present details here to obtain explicit bounds and illustrate

algebraic relations that we will use in later analysis.

To prove part 1, note that X0 = XK , X1 = Xk+1, and so on. Thus, we see

B(X,X) ·X =

K∑
k=1

Xk−1(Xk−2 −Xk+1)Xk

=

K∑
k=1

(
Xk−1Xk−2Xk −Xk−1Xk+1Xk

)
=

K∑
k=1

Xk−1Xk−2Xk +

K∑
k=1

Xk−1Xk+1Xk

=

K∑
k=1

Xk−2Xk−1Xk +

K∑
k=1

Xk−2Xk−1Xk

= 0.

The proof of part 2 is similar.
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Equation (3.3) is established by expanding the expression Bk(aX1 + bX2, cx1 + dx2) for an

arbitrary k. The calculation is easy to confirm:

Bk(aX1 + bX2, cx1 + dx2) = (aX1k−1
+ bX2k−1

)(cx1k−2
+ dx2k−2

− cx1k+1
− dx2k+1

)

= aX1k−1
(cx1k−2

− cx1k+1
) + aX1k−1

(dx2k−2
− dx2k+1

)

+ bX2k−1
(cx1k−2

− cx1k+1
) + bX2k−1

(dx2k−2
− dx2k+1

)

= acB(X1,x1) + adB(X1,x2)

+ bcB(X2,x1) + bdB(X2,x2).

A similar calculation establishes Equation (3.4).

The proof of part 4 is similar to that of part 5, which we prove below. To do this, note

[B̃(Y ,Z) + B̃(Z,Y )] · Y

=

JK∑
j=1

[
− Yj+1(Zj+2 − Zj−1)Yj − Zj+1(Yj+2 − Yj−1)Yj

]

=

JK∑
j=1

[
− Yj+1Zj+2Yj + Yj+1Zj−1Yj − Zj+1Yj+2Yj + Zj+1Yj−1Yj

]
. (3.5)

Notice that the first and fourth summands cancel due to telescoping. Thus, the expression

becomes

[B̃(Y ,Z) + B̃(V,Y )] · Y =

JK∑
j=1

[
Yj+1Zj−1Yj − Zj+1Yj+2Yj

]
(3.6)

By the triangle inequality, followed by Cauchy–Schwarz,

[B̃(Y ,Z) + B̃(Z,Y )] · Y ≤
JK∑
j=1

∣∣∣Yj+1Zj−1Yj

∣∣∣+ ∣∣∣− Zj+1Yj+2Yj

∣∣∣
≤ 2 ||Z||∞ ||Y ||2

≤ 2 ||Z|| ||Y ||2 . (3.7)
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3.1 Change of Variables

Our motivation for defining the generalized system below in Equation (3.9) is as follows: First,

this form of the system describes the essential dynamical properties of the system, including the

energy-preserving, componentwise bilinear form, the linear dissipation and injection of energy,

for arbitrary forms of coupling between the layers. Second, the role of the parameter c becomes

evident as the magnitude of the dissipation of energy in the fast variables, while m1 and m2

define the (possibly distinct) draw and amplification, respectively, of energy in its transfer from

the slow layer to the fast layer. Note that separating c from the other parameters allows us

to think about the equations in a more physical way; this makes our approach novel (to our

knowledge) and closer to the way practical problems are formulated.

Definition 1 (Generalized Two-Layer Lorenz ’96). Define a pair of arbitrary componentwise

bilinear forms B : Rp×Rp → Rp and B̃ : Rq ×Rq → Rq that satisfy the orthogonality property:

B(X,X) ·X = 0 for X ∈ Rp, (3.8a)

B̃(V ,V ) · V = 0 for V ∈ Rq. (3.8b)

Define σ as an arbitrary coupling matrix of size p × q. Then the coupled system of nonlinear

ordinary differential equations with dynamic state vectors X, V , time variable t, and the free

parameters c,m1,m2 is as follows:

dX

dt
+B(X,X) +X = F − 1

m1
σ⊤V , (3.9a)

dV

dt
+ B̃(V ,V ) + cV =

1

m2
σX. (3.9b)

We refer to this as the generalized Lorenz ’96 system.

We emphasize in Equation (3.9b) that the parameter c now appears in the term cV controlling

the rate of dissipation of energy. The original parameters b and h have been replaced by m1

and m2. Dimensionally, m1 and m2 function as masses in the energy equation for the rescaled

system. The ability to take the masses constant while varying the dissipation allows us to explore

a number of novel theoretical and numerical questions related to c. Note also that X remains

unchanged from Lorenz’s original formulation but Y has been replaced by a rescaled version V .
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We proceed to derive the generalized Lorenz ’96 system as follows. Using the definitions of B,

B̃, and σ given in Equations (3.1) and (3.2), we rewrite equations (1.2a) and (1.2b) to obtain

dX

dt
+B(X,X)−X = F − hc

√
J

b
σ⊤Y , (3.10a)

dY

dt
+ cbB̃(Y ,Y )− cY =

hc
√
J

b
σX. (3.10b)

Note Equations (3.10a) and (3.10b) can be written into the form of Definition 1 by rescaling

with β > 0 such that Y = βV to yield a system of the form in Definition 1.

We do this by first setting Y = βV . This yields

dV

dt
=

1

β

[
−cbβ2B̃(V ,V )− cβV +

hc
√
J

b
σX

]

= −cbβB̃(V ,V )− cV +
hc

√
J

bβ
σX.

(3.11)

Equation (3.11) yields the rescaled V equation for arbitrary parameters:

dV

dt
= −cbβB̃(V ,V )− cV +

hc
√
J

bβ
σX. (3.12)

To match the terms in (3.12), we enforce β = 1
cb and obtain

dX

dt
+B(X,X) +X = F − h

√
J

b2
σ⊤V , (3.13a)

dV

dt
+ B̃(V ,V ) + cV = hc2

√
JσX. (3.13b)

To obtain the 1
m2

in (3.9b), we can change the standard parameter choice to h = 1
m2c2

√
J
, where

m2 is free. The system becomes

dX

dt
+B(X,X) +X = F − 1

b2c2m2
σ⊤V , (3.14a)

dV

dt
+ B̃(V ,V ) + cV =

1

m2
σX. (3.14b)

Finally, if we take b2 = m1

m2c2
, we obtain equations (3.9a) and (3.9b).

The resulting choice of parameters is thus

β =
1

cb
, h =

1

m2c2
√
J
, b =

√
m1

m2c2
, (3.15)
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and Y is rescaled by a factor of
√
m2/m1 to obtain V .

In addition to fewer parameters and a simpler expression, a significant advantage of the rescaled

system given in Definition 1 is that F is no longer the only isolated parameter. If we attempt to

alter the dynamics of the system by controlling the dynamics of X via F , many solutions would

become constant (see the text following Equation (1.1) above).

The generalized system allows us to control the rate of dissipation of energy in the second layer

via the parameter c without affecting the coupling between the layers. The advantage of this

approach will be further supported by Proposition 5.8, which shows that the dynamics of X

remain nontrivial as c → ∞ while m1 and m2 are held constant. Thus, we can analyze large

values of c without causing the dynamics of X to vanish.

Note also that m1 and m2 play the role of masses for the nonlinear oscillators represented by X

and V , respectively. In particular, the energy function of the system now appears as

ψ = m1 ||X||2 +m2 ||V ||2 . (3.16)

Lorenz [16] focused on the parameters K = 36, J = 10, c = 10, b = 10, and h = 1.0, with F

varying between 8, 10, 15, and 18. Wilks [26] retained the traditional values of c, b, and h and

set K = 8, J = 32, and considered F = 18 and 20. Referring back to the original parameter

choices of h = 1, c = 10, and b = 10, we follow Wilks [26] by setting K = 8 and J = 32. From

Equation (3.15), we obtain

m1 = m2b
2c2 ≈ 17.6777, where m2 =

1

hc2
√
J

≈ 0.001768,

which we simplify by rounding m1 to 20 and m2 to 0.002. Thus, for the remainder of this study,

we vary c and focus on the parameter regime

F = 20, m1 = 20, and m2 = 0.002. (3.17)

Figure 3.2 illustrates a typical point in the phase space of the trajectory of a solution, with

c = 20, F = 20,m1 = 20, and m2 = 0.002. The black dots represent the values of X, and the

red dots represent the values of V .

We note for this choice of parameters with σ defined as in (3.1) that X appears to undergo

complex time-dependent motion (see Figure 3.3).
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Figure 3.2: A typical point in the phase space of the trajectory of a solution, with c =
20, F = 20,m1 = 20, and m2 = 0.002. The red dots have been positioned horizontally near

the black dots that they interact with through the coupling matrix σ.

For this figure and all the other calculations which appear in this dissertation, we will use the

classic RK4 method with a fixed step size, usually of h = 1/2048. Note that this h was chosen

to be small enough so that the statistics of our results do not depend on it and our solutions

remain stable and appear sufficiently accurate for all choices of c. Our reasons for not using an

adaptive method are explained in Appendix A.

3.2 The Decorrelation Timescale

To characterize the decorrelation timescale of the motion represented in Figure 3.3, we consider

the autocorrelation of the component xn = X1(tn) for n = 1, . . . , 288001, where tn is the sequence

of times separated by 0.25. Figure 3.4 illustrates the autocorrelation as a function of Γℓ when

F = 20, m1 = 20, m2 = 0.002, and c = 20. Note that when the time lag is greater than

7.5, |Γℓ| ≤ 0.05. In Figure 3.5, we characterize as a function of c the time lag T (c) such that

|Γℓ| ≤ 0.05 for all tℓ ≥ T (c). Note that T (c) generally increases until c ≈ 23, reaching a maximum

value of 10.75, and decreases after that. Therefore, to obtain a time lag that is larger than the

decorrelation timescale for all values of c under consideration, we sample the trajectories of

our deterministic nonlinear dynamical system every 20 units in time. As a result, we have
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Figure 3.3: The component X1(t) of X with t ∈ [T, T + 10], h = 1/2048, F = 20,m1 =
20,m2 = 0.002, and c = 20. Note this trajectory is representative of Xk for other values of k.

N = 288001/80 ≈ 3600 samples which appear linearly independent and, in particular,

|Γℓ| ≲ 0.01818 for tℓ ≥ 20 and c ∈ {4, . . . , 100} . (3.18)

Note that if xn for n = 1, . . . , 3600 were truly independent, statistical simulation using 100,000

trials suggests the probability P (|Γℓ| > 0.01818) ≈ 0.28. Thus, the upper bound of 0.01818 in

(3.18) is reasonably close to 0 given the sample size in our autocorrelation computations.

We emphasize our motivation for defining the generalized system in Equation (3.9) as follows:

First, this form of the system describes the essential dynamical properties of the system, includ-

ing the energy-preserving, componentwise bilinear form, the linear dissipation and injection of

energy, for arbitrary forms of coupling between the layers. Second, the role of the parameter c

becomes evident as the magnitude of the dissipation of energy in the fast variables, while m1 and

m2 define the (possibly distinct) draw and amplification, respectively, of energy in its transfer

from the slow layer to the fast layer. Third, with respect to any such system, we can conclude

for which relative scales of dissipation and amplification that the fast layer dynamics will be

exponentially determined by the state of the slow layer. We use the method of stochastic pa-

rameterization to further characterize the complex time-dependent behavior observed in Figures

3.2 and 3.3.
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Figure 3.4: Autocorrelation of X1(t) vs. time lag for the two-layer Lorenz ’96 system with
F = 20,m1 = 20,m2 = 0.002, and c = 20. The shaded region indicates the region where the
autocorrelation is between −0.05 and 0.05; the vertical line in red at a time lag of 7.5 shows

the point at which the autocorrelation exceeds the shaded region.

Figure 3.5: Time lag for c between 4 and 100, with F = 20,m1 = 20, and m2 = 0.002 such
that the magnitude of the autocorrelation of X1(t) is less than 0.05.
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Chapter 4

Stochastic Parameterization

In our analysis and simulation of the two-layer Lorenz ’96 system, it will be useful to have a

way of characterizing the dynamical complexity of the interaction between the small and large

scales. To this end, we consider Wilks’s stochastic parameterization of the small scales and use

the Bayesian information criterion (BIC) to select the degree of the polynomial model in that

parameterization.

Wilks [26] used Equations (1.2) to study stochastic parameterization of the effects of unresolved

mesoscale variables. In terms of the notation used here, he parameterized the effects of τ =

1
m1
σ⊤V via the model

dX

dt
= B(X,X)−X + F −G(X) (4.1)

and called τ the tendencies. Thus, τ is modeled by G(X). Since G(X) treats the effects of

V on X and ignores the state of V , provided the detailed motion of V is significant, then the

modeling of τ by G(X) must include an error. Wilks considered the polynomial model

G(X) = (gd(X1), . . . , gd(XK)) + e(t), where gd(x) = bdx
d + · · ·+ b1x+ b0. (4.2)

with d = 4 and e a stochastic term that represents the modeling error. Note that the same

polynomial is used for each of the vector components of G because the rotational symmetry in

Figure 3.1 implies all the X oscillators are equivalent. Other choices of σ may not have this

symmetry.
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Of interest in our research is the degree of the polynomial gd. In particular, we shall use

the ANOVA test and Bayesian information criterion (BIC) to characterize the degree of the

polynomial that best models the effects of V on X. If this polynomial is of high degree, we

infer that the dynamics which govern that interaction are complicated, whereas if the degree is

smaller (e.g., less than 4), we presume the dynamics to be simpler.

In passing, we know there are other aspects of stochastic parameterization that could be used

to characterize how important the interaction is between the small and large scales: e.g., one

could imagine measuring the difference between the motion of X as influenced by the actual

tendencies compared to the motion of X when the tendencies are modeled by G(X) using a

Hamming-like information-theoretic notion of distance. The technical difficulties of creating a

suitable notion of distance are beyond the scope of this research.

One could also compare the length C of the curve (x, gd(x)) for x ∈ [−5, 15] to the distance

L between the endpoints (−5, gd(−5)) and (15, gd(15)). The ratio C/L is called the tortuosity.

The larger the tortuosity, the more the polynomial oscillates, and the more complicated the

relationship between V and X. Even just the variance around the fit contains information

about how important the motion of V is to the dynamics of X. While we shall look at this

variance (actually standard deviation) in detail, we omit a discussion of the tortuosity in order

to proceed directly to the BIC.

Our goal, then, is to vary c and report the degree of the corresponding polynomial gd selected

using the BIC. First, we repeat Wilks’s experiment for our choice of parameters given in Equation

(3.17) with varying values of c. In our simulations, we use a time step size of h = 1/2048, and we

warm up the solution for each value of c for time T = 50 or, equivalently, 102400 time steps. In

light of the autocorrelation results discussed in Section 3.2, we sample the trajectory at intervals

of ∆t = 20 to obtain 3600 samples with the independence suggested by the bound given in (3.18).

These parameterizations demonstrate a strong dependence of the unresolved variables on the

resolved variables, but they also suggest a dependence on the dissipation. When c = 20 (weak

dissipation), the tendencies deviate more, and when c = 60 (strong dissipation), the tendencies

deviate less and the fit looks more like a straight line (see Figures 4.1 and 4.2). These parame-

terizations suggest a direct correlation between dissipation and dependence: As the dissipation

increases, the unresolved variables depend more strongly on the resolved variables.

These graphs suggest that for modest values of c between 4 and 20, a linear regression is not

sufficient to capture the X dependency in the unresolved tendencies. However, when c is large
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Figure 4.1: Stochastic parameterization using F = 20, m1 = 20, m2 = 0.002, and c = 20.
Here, τ is the effect of V on the first oscillator influenced by the position of the first oscillator.

Figure 4.2: Stochastic parameterization similar to Figure 4.1, except with c = 60.

(e.g., c = 100), a linear regression may be enough. This motivates us to explore how c affects

the degree of the best polynomial model.
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4.1 Variance Analysis of the Parameterization

Define the standard deviation s = s(c) from the regression polynomial of degree d as

s(c) =

√√√√ 1

N − p

N∑
n=1

(G1(tn)− gd(X1(tn))2 =

√√√√ 1

N − p

N∑
n=1

(e1(tn))2, (4.3)

where

G(t) =
1

m1
σ⊤V (t). (4.4)

Here, p = d+1 to account for the y-intercept, and t1 represents time sufficiently far in the future

such that the solution X,V reflects the long-time behavior of the parameters, particularly the

value of c; moreover, the spacing between the times tn+1 − tn = 0.25 is large enough that the

values of the unresolved tendencies appear independent. Note that s(c) is computed based only

on the tendencies of the first oscillator, X1. Given the symmetry in σ (see Figure 3.1), Xk for

any fixed k should have identical statistics. At the same time, due to the coupling between

adjacent oscillators, Xk and Xk+1 will be correlated. To avoid this correlation, we use only one

oscillator when computing s(c).

Figure 4.3: Standard deviation s vs. c for polynomial regressions of degrees 1–7.

By calculating the tendencies G(tn) for c = 1, 2, . . . , 100 and obtaining the standard deviations

of the tendencies from the regression polynomials of degrees 1–7 (see Figure 4.3), we see that the

differences in the standard deviations are negligible for c > 30. Therefore, increasing the degree

of the polynomial when c is large does not significantly decrease the deviation of the tendencies
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about the best fit. Before focusing further on the degree of the polynomial, we observe that for

all polynomials regardless of degree, standard deviation of the tendencies about the fit decreases

as c increases. Therefore, not only may a polynomial of lower degree be needed when c is large,

but that polynomial fits the tendencies with less error. This is consistent with our intuition that

as c increases, the dynamical effects of V are more predictable and, therefore, solving the inverse

problem to find V becomes less important.

Although Figure 4.3 suggests that higher-order regressions are unnecessary for large c, it turns

out that the standard deviation as defined in Equation (4.3) may not fully reflect the significant

contributions of higher-order terms to the regression. To further explore these contributions, we

consider the following hypothesis test.

Recall that gd is the dth-degree regression polynomial whose coefficients b0, b1, . . . , bd minimize

the deviation s(c). We hypothesize the following:

H0 : Only b0, b1 ̸= 0.

H1,d : bi ̸= 0 for all i = 2, . . . , d,

where d is the degree of the regression polynomial.

To test H0, we perform an ANOVA analysis on regression models of degrees 1–7. Table 4.1

shows that the p-values are all below the 5% significance criterion for c ≤ 50, indicating that the

higher-order terms of the regression polynomial are nonzero; thus, a linear regression polynomial

is insufficient to model the data. However, when c = 100, all the p-values are above the 5%

significance criterion, meaning that we fail to find a linear polynomial insufficient.

c = 10 c = 20 c = 50 c = 100
p12 2.2× 10−16 2.2× 10−16 8.335× 10−6 0.1573
p13 2.2× 10−16 2.2× 10−16 2.582× 10−8 0.2386
p14 2.2× 10−16 2.2× 10−16 5.350× 10−8 0.3835
p15 2.2× 10−16 2.2× 10−16 1.427× 10−7 0.3743
p16 2.2× 10−16 2.2× 10−16 6.052× 10−8 0.4157
p17 2.2× 10−16 2.2× 10−16 1.265× 10−8 0.4730

Table 4.1: Comparison of p-values for various values of c. Here, pij represents the ANOVA
analysis of degree-i vs. degree-j regression polynomials.

This analysis was performed by calculating a set of tendencies using the RK4 method with our

standard parameters, using the tendencies to create linear and polynomial regression models

of degrees 2–7, and comparing the linear model against each of the polynomial models. In

particular, we calculated the p-values using the standard ANOVA F -test.
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4.2 Bayesian Selection of Polynomial Degree

The ANOVA analysis rejects the null hypothesis and suggests that a nonlinear regression poly-

nomial is necessary when c is small to sufficiently model the effects of V on X, but the test

does not specify the degree of the regression polynomial. We use the BIC to determine this. In

particular, for each c, we calculate the BIC for each regression polynomial of degrees 1–7, and

we define the degree of the regression polynomial as the degree such that the BIC is minimized.

Unfortunately, a log-linear plot of BIC v. c is similar to Figure 4.3, and our ANOVA analysis

suggests a linear polynomial is insufficient to model the data; thus, we cannot use the BIC alone

to determine the degree of the regression polynomial. To get around this problem, we subtract

the minimum BIC for each BIC value. The results are seen in Figures 4.4 and 4.5. For c < 20,

the degree of the regression polynomial is clearly higher order (i.e., 6 or 7). The polynomial

becomes simpler between c = 20 and c = 40, and is linear or quadratic when c > 40. Clearly,

large values of c are needed to justify the use of a linear regression polynomial, confirming the

results of our ANOVA analysis.

Figure 4.4: BICn − minBICn for c = 4, . . . , 100, where BICn is the BIC of the regression
polynomial of degree n with n = 1, . . . , 7. Notice the regression polynomial is of high degree

when c≪ 30 and of low degree when c≫ 30.

As illustrated in Table 4.1 and Figures 4.3–4.5, the effects of the small scales can be effectively

modeled by a linear or quadratic regression polynomial when c is large. Intuitively, this reflects

the effect that when c is large, the linear term in Equation (3.9b) dominates the nonlinear term,

and the small-scale oscillators in the second layer essentially stop oscillating. While this is an

interesting observation about stochastic parameterization and how the mean state of the V
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Figure 4.5: Degree of the regression polynomial vs. c, where the degree is the first value n
such that BICn − minBICn ≤ 100. When c is large, the effect of the small oscillators is not
very complicated; thus, a linear or quadratic regression polynomial is sufficient to model the

effects of the small scales.

variables affects the X variables, another aspect of the above statistical study is to characterize

the values of c for which the small-scale oscillators play an important dynamical role.

The ANOVA F -test, AIC, and BIC tests show that values of c around 20 are in the parameter

regime where the motion of the small scales is important when the other parameters are F =

20,m1 = 20, and m2 = 0.002. For the remainder of this dissertation, we focus on recovering the

small scales for the parameter regime where c ≈ 20. These are the parameters for which the

data assimilation problem is interesting.
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Chapter 5

Rigorous Analytic Bounds

We have made a preliminary exploration of the dynamics of the two-layer Lorenz ’96 system,

and we have identified parameters for which the data assimilation problem is interesting. With

respect to any complex dynamical system, it is useful to know which relative scales of dissipation

and amplification will cause the fast layer dynamics to be exponentially determined by the state of

the slow layer. Thus, we proceed to our main goal of recovering the values of V from observations

of X. In this section, our focus is on developing new mathematical analysis that yields rigorous

bounds under which a simple coupling scheme allows the recovery of V over time, and we further

illustrate our theory using numerics. Although our techniques are based on well-known energy

methods, their application here uniquely depends on our rescaling of the V equation and on the

structure of the coupling between the two layers.

In particular, we wish to identify the choices of c,m1, and m2 for which the dynamics of the

system Equation (3.9) in the faster variables will be exponentially determined by the slower

variables. using the system

dX

dt
+B(X,X) +X = F − 1

m1
σ⊤V , (5.1a)

dV

dt
+ B̃(V ,V ) + cV =

1

m2
σX, (5.1b)

dv

dt
+ B̃(v,v) + cv =

1

m2
σX. (5.1c)

The above system defines an ODE governing the evolution in time of ||V − v||, where

V = (V1, . . . , VJK), v = (v1, . . . , vJK), (5.2)
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and ||·|| is the Euclidean norm unless otherwise noted. We say V and v are synchronized if

limt→∞ ||V − v|| = 0. The synchronization is governed by Equations (5.1b) and (5.1c).

Beforehand, we need to show a bound on the free-running solution denoted by X and V . This

is provided in the following section and illustrated numerically in Section 5.2. A rigorous proof

that ||V − v|| → 0 when c is large enough is provided in Section 6.1.

5.1 Bounds on the Reference Solution

Before setting bounds on X and V separately, we define the function

ψ = m1 ||X||2 +m2 ||V ||2 (5.3)

to simultaneously represent the behavior of X and V and the effects of the transfer of energy

between the large and small scales. With this, we first prove the following lemma for large c:

Lemma 5.1. Let ψ be as above. Suppose c > 1− 1
2δ with δ > 1

2 . Then

ψ ≤ ψ0e
−αt +

ν

α
(1− e−αt) (5.4)

for

α = 2− 1

δ
and ν = m1δ ||F ||2 . (5.5)

Proof. We first dot Equation (3.9a) on the right by X and Equation (3.9b) on the right by V

to obtain

d ||X||2

dt
= −2 ||X||2 + 2X · F − 2

m1
X · σ⊤V , (5.6a)

d

dt
||V ||2 = −2c ||V ||2 + 2

m2
V · σX. (5.6b)

Because dψ
dt = 2m1 ||X|| + 2m2 ||V || and −X · σ⊤V + V · σX = 0, we can combine Equations

(5.6a) and (5.6b) into a single equation:

1

2

dψ

dt
= −m1 ||X||2 +m1X · F −m2c ||V ||2 . (5.7)
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By the Cauchy-Schwarz inequality, |X ·F | ≤ ||X|| ||F ||. Take δ > 0 and apply Young’s inequality

to get ||X|| ||F || ≤ 1
2δ ||X||2 + δ

2 ||F ||2 . Thus, (5.7) becomes

1

2

dψ

dt
≤ −m1 ||X||2

(
1− 1

2δ

)
+
m1δ

2
||F ||2 −m2c ||V ||2 . (5.8)

Because c > 1− 1
2δ ,

1

2

dψ

dt
≤ −

(
1− 1

2δ

)
ψ +

m1δ

2
||F ||2 . (5.9)

Thus, ψ̇ ≤ −αψ + ν, where α and ν are as in (5.5).

Next, we show d
dtψe

αt ≤ νeαt. We multiply

d

dt
ψeαt = ψ̇eαt + ψαeαt ≤ (−αψ + ν)eαt + ψαeαt = νeαt. (5.10)

through by the integrating factor eαt and integrate by parts from 0 to t to get

ψeαt − ψ0 ≤ ν

α
(eαt − 1). (5.11)

Dividing by the integrating factor and rearranging the inequality yields our final result.

Notice in Equation (5.7) that as c → ∞, we see dψ
dt → −∞. Thus, as long as ||V || is nonzero,

we have ||ψ|| → 0. Also, because α > 0, the differential inequality (5.11) will be used later to

prove ψ is bounded.

For small c, we have the following bound on ψ:

Lemma 5.2. Let ψ be as before. Suppose 0 < c < 1− 1
2δ with δ > 1

2 . Then

ψ ≤ ψ0e
−αt +

ν

α
(1− e−αt) (5.12)

for

α = 2c and ν = m1δ ||F ||2 . (5.13)

Proof. The proof is the same as that of Lemma 5.1 up to and including Equation (5.8). Then

0 > −c ≥ 1
2δ − 1 implies

1

2

dψ

dt
≤ −m1 ||X||2 c+ m1δ

2
||F ||2 −m2c ||V ||2

= −cψ +
m1δ

2
||F ||2 . (5.14)
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The rest of the proof proceeds as in Lemma 5.1.

To compare the bound in Lemma 5.1 with numerical simulations, note first that

lim sup
t→∞

ψ(t) =
ν

α
=
m1δ ||F ||2

2− 1
δ

. (5.15)

Minimizing the right-hand side with respect to δ under the condition that δ > 1/2 yields the

boundm1 ||F ||2 when δ = 1. Figure 5.1 shows that for c = 20, F = 20, m1 = 20, andm2 = 0.002,

the numerical value for ψ is about one decimal order of magnitude smaller than this bound. Since

we are primarily interested in recovering the small scales, we also include the computed values

for m2 ||V ||2 and m2 ||V ||2∞ for reference to illustrate how much of the total energy is in the

small scales. Since the estimate

||V ||2 =

JK∑
j=1

|Vj |2 ≤
JK∑
j=1

||V ||2∞ = JK ||V ||2∞ (5.16)

will be considered later in the analysis, we also show the time evolution of m2JK ||V ||2∞ in

Figure 5.1. Note that the magnitude of this term is similar to that of the total energy.

Figure 5.1: Comparison of ψ, its terms, and the bound in Lemma 5.1, with c = 20, F =
20,m1 = 20, and m2 = 0.002.

These bounds on ψ prove that X and V remain finite for fixed values of α and ν, allowing us to

derive specific bounds on V . The first is a bound for large c:
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Proposition 5.3. Under the assumption c > 1− 1
2δ with δ > 1

2 of Lemma 5.1,

lim sup
t→∞

||V || ≤M1, where M1 = ||F ||
√

m1δ(
2− 1

δ

)
m2

. (5.17)

Moreover, under the assumption 0 < c < 1− 1
2δ with δ > 1

2 of Lemma 5.2,

lim sup
t→∞

||V || ≤M ′
1, where M ′

1 = ||F ||
√

m1δ

2m2c
. (5.18)

Proof. By definition of ψ and the result of Lemma 5.1,

m2 ||V ||2 ≤ ψ ≤
(
ψ0 −

ν

α

)
e−αt +

ν

α
. (5.19)

Taking the lim sup through the inequality yields

lim sup
t→∞

m2 ||V ||2 ≤ lim sup
t→∞

ψ ≤ lim sup
t→∞

(
ψ0 −

ν

α

)
e−αt +

ν

α
. (5.20)

Then because lim supt→∞ e−αt = 0 and ν
α is a constant, the inequality becomes

lim sup
t→∞

m2 ||V ||2 ≤ ν

α
. (5.21)

Dividing both sides by m2 yields

lim sup
t→∞

||V ||2 ≤ ν

m2α
=

m1δ ||F ||2(
2− 1

δ

)
m2

. (5.22)

Taking the square root of both sides yields the first result of our proposition.

Next, by definition of ψ and the result of Lemma 5.2, we write (5.21) as

lim sup
t→∞

||V ||2 ≤ ν

m2α
=
m1δ ||F ||2

2m2c
. (5.23)

Taking the square root of both sides yields the second result.

We remark that the case under which (5.18) holds requires c < 1. For the range of parameters

defined in (3.15) and further studied in Section 4, the interesting values of c are much larger. In

particular, for much of our computations, we focus on c ≈ 20, which means the assumptions of

(5.17) hold.
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The following proposition establishes a bound on V .

Proposition 5.4. When c > 1,

lim sup
t→∞

||V || ≤M2, where M2 =
||σ||2 ||F ||
m2

√
c

. (5.24)

Proof. By (5.17),

lim sup
t→∞

(
m1 ||X||2 +m2 ||V ||2

)
≤ m1δ ||F ||2

2− 1
δ

. (5.25)

Taking δ = 1 yields

lim sup
t→∞

(
m1 ||X||2 +m2 ||V ||2

)
≤ m1 ||F ||2 . (5.26)

This implies ||X|| ≤ (1 + ϵ) ||F || for sufficiently large t ≥ T .

Next, recall Equation (5.6b). By the Cauchy–Schwarz inequality, then Young’s inequality and

the fact that c > 1,

d

dt
||v||2 = −2c ||V ||2 + 2

m2
V · σX

≤ −2c ||V ||2 + c ||V ||2 + 1

m2
2

||σ||22 ||X||2

≤ −c ||V ||2 +
(1 + ϵ)2 ||σ||22 ||F ||2

m2
2

(5.27)

for t ≥ T. Multiplying through by the integrating factor ect yields

d

dt
||v||2 ect ≤ ect

(1 + ϵ)2 ||σ||22 ||F ||2

m2
2

, t ≥ T, (5.28)

and integrating over the interval [T, t] yields

||V ||2 ect − ||V (T )||2 ecT ≤ 1

c
(ect − ecT )

(1 + ϵ)2 ||σ||22 ||F ||2

m2
2

. (5.29)

Isolating ||V ||2 yields

||V ||2 ≤ ||V (T )||2 e−c(t−T ) +
1

c

(
1− e−c(t−T )

) (1 + ϵ)2 ||σ||22 ||F ||2

m2
2

. (5.30)

Taking t→ ∞ yields

lim sup
t→∞

||V ||2 ≤
(1 + ϵ)2 ||σ||22 ||F ||2

cm2
2

for all ϵ > 0. (5.31)
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Letting ϵ→ 0 and taking the square root of both sides yields the result.

The next proposition establishes a bound on the time average of ||V ||∞ .

Proposition 5.5.

lim sup
s→∞

1

s

∫ s

0

||V ||∞ ≤M3, where M3 = min

{
1

√
cm2

,

√
m1

2

}
||F ||
√
cm2

. (5.32)

Proof. Recall Equation (3.9b), from the rescaled system:

dV

dt
+ B̃(V ,V ) + cV =

1

m2
σX. (5.33)

Solve for cV , and take the dot product of both sides with respect to V . This yields

cV · V =
1

m2
σX · V − dV

dt
· V − B̃(V ,V ) · V . (5.34)

Note B̃(V ,V ) · V = 0 and V · V = ||V ||2 . Thus, the equation further simplifies:

c ||V ||2 =
1

m2
σX · V − 1

2

d

dt
||V ||2 . (5.35)

Next, we will integrate both sides with respect to t and apply the Cauchy–Schwarz inequality,

then Young’s inequality. This yields

c

∫ s

0

||V ||2 dt ≤ 1

m2

[∫ s

0

||σX||2 dt
∫ s

0

||V ||2 dt
]1/2

− 1

2
||V (s)||2 + 1

2
||V 0||2

≤ 1

m2

[
1

2cm2

∫ s

0

||σX|| dt+ cm2

2

∫ s

0

||V || dt
]
− 1

2
||V ||2 + 1

2
||V 0||2 (5.36)

=
1

2cm2
2

∫ s

0

||σX||2 dt+ c

2

∫ s

0

||V ||2 dt− 1

2
||V ||2 + 1

2
||V 0||2.

Notice we can simplify this inequality by subtracting c
2

∫ s
0
||V ||2 from both sides. This yields

c

2

∫ s

0

||V ||2 dt ≤ 1

2cm2
2

∫ s

0

||σX||2 dt− 1

2
||V ||2 + 1

2
||V 0||2. (5.37)

Next, we divide both sides by cs and multiply both sides by 2. This yields

1

s

∫ s

0

||V ||2 dt ≤ 1

c2m2
2s

∫ s

0

||σX||2 dt− 1

s
||V ||2 + 1

s
||V 0||2. (5.38)
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Now let s→ ∞. Then 1
s ||V (s)||2 and 1

s ||V 0||2 vanish, and the inequality becomes

lim sup
s→∞

1

s

∫ s

0

||V ||2 dt ≤ 1

c2m2
2

lim sup
s→∞

1

s

∫ s

0

||σX||2 dt. (5.39)

Let us isolate and determine bounds for lim sups→∞
1
s

∫ s
0
||σX||2 dt and lim sups→∞

1
s

∫ s
0
||V ||2 .

We will start with Equations (5.1a) and (5.1b):

dX

dt
+B(X,X) +X = − 1

m1
σ⊤V + F , (5.40)

dV

dt
+ B̃(V ,V ) + cV =

1

m2
σX. (5.41)

Dotting (5.1a) with X and (5.1b) with V yields

1

2

d ||X||2

dt
+ ||X||2 = − 1

m1
σ⊤V ·X + F ·X, (5.42)

1

2

d

dt
||v||2 + c ||V ||2 =

1

m2
σX · V . (5.43)

Next, we multiply (5.42) by m1 and (5.43) by m2, and we add (5.42) and (5.43). Then because

σ⊤V ·X = σX · V , we get

m1 ||X||2 + cm2 ||V ||2 = m1F ·X − m1

2

d ||X||2

dt
− m2

2

d

dt
||v||2 . (5.44)

Next, we integrate from 0 to s, multiplying by 1
s , and then apply the Cauchy–Schwarz and Young

inequalities to get

1

s

∫ s

0

m1 ||X||2 + cm2 ||V ||2 dt (5.45)

≤ 1

s

∫ s

0

m1 ||F || ||X|| dt− m1

2s

(
||X(s)|| − ||X0||

)
− m2

2s

(
||V (s)|| − ||V 0||

)
≤ 1

s

[
m1

2

∫ s

0

||F ||2 dt+ m1

2

∫ s

0

||X||2 dt
]
− m1

2s

(
||X(s)|| − ||X0||

)
− m2

2s

(
||V (s)|| − ||V 0||

)
.

Let s→ ∞. Then

lim sup
s→∞

[
m1

s

∫ s

0

||X||2 + cm2

s

∫ s

0

||V ||2 dt
]
≤ m1

2
||F ||2 + lim sup

s→∞

m1

2s

∫ s

0

||X||2 dt. (5.46)

Subtracting lim sups→∞
m1

2s

∫ s
0
||X||2 dt from both sides yields

lim sup
s→∞

[
m1

2s

∫ s

0

||X||2 + cm2

s

∫ s

0

||V ||2 dt
]
≤ m1

2
||F ||2 . (5.47)
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Because both these integrals are nonnegative, we have

lim sup
s→∞

1

s

∫ s

0

||X||2 dt ≤ ||F ||2 (5.48)

and, as a bonus,

lim sup
s→∞

1

s

∫ s

0

||V ||2 dts ≤ m1

2cm2
||F ||2 . (5.49)

By Equation (5.48) and the fact that ||σX|| ≤ ||σ||2 ||X|| , we get

1

c2m2
2

lim sup
s→∞

1

s

∫ s

0

||σX||2 dt ≤
||σ||22
c2m2

2

||F ||2 . (5.50)

Next, by Jensen’s inequality,

(
lim sup
s→∞

1

s

∫ s

0

||V || dt
)2

≤ lim sup
s→∞

1

s

∫ s

0

||V ||2 dt, (5.51)

and Equation (5.49) becomes

lim sup
s→∞

1

s

∫ s

0

||V || dt ≤ ||F ||
√

m1

2cm2
. (5.52)

Recall that our goal was to get a bound on ||V ||∞. To do this, note that ||V ||∞ ≤ ||V ||.

Therefore,

lim sup
s→∞

1

s

∫ s

0

||V ||∞ ≤ ||F ||
√

m1

2cm2
. (5.53)

Then by (5.39) and (5.48), we have

lim sup
s→∞

1

s

∫ s

0

||V ||2 dt ≤
||σ||22 ||F ||2

c2m2
2

. (5.54)

By Jensen’s inequality, we have

lim sup
s→∞

1

s

∫ s

0

||V ||∞ dt ≤ lim sup
s→∞

1

s

∫ s

0

||V || dt ≤
||σ||2 ||F ||
cm2

. (5.55)

Combining (5.53) with (5.55), and noting ||σ||2 = 1 yields

lim sup
s→∞

1

s

∫ s

0

||V ||∞ ≤M3, where M3 = min

{
1

√
cm2

,

√
m1

2

}
||F ||
√
cm2

. (5.56)
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This result shows that the size of V is affected by decreasing F (injecting less energy into the

large scales) or increasing c (dissipating more energy out of the small scales). If F is small,

this affects the dynamics of the Xk by decreasing their energy to the point where they could

transition from a chaotic to a non-chaotic regime. If c is large, the chaotic dynamics of the Xk

can be shown to persist (see Proposition 5.8), and the motion of the small scales follows the

coupling from Xk more closely due to the increased dissipation.

The following proposition shows that as c→ ∞, X remains nontrivial and V vanishes. Specifi-

cally, we show that the limiting solution exists and is actually a solution to the one-layer system.

Such a a result is intuitively plausible because of the way we rescaled the original two-layer

system. Since it is not always true that the limiting solution satisfies the limit equations, having

a mathematical proof in our case is not only significant but illustrates the value of the rescaling

in Chapter 3.1. Moreover, this result provides some theoretical support to the statistical obser-

vations in Section 4, which show that the effects of the small scales on the large scales may be

parameterized by a first-degree polynomial when c is large.

Given initial conditions X(0) ∈ RK and V (0) ∈ RJK , let Xc and Vc be the corresponding

solutions to the two-layer Lorenz ’96 system given by Equations (3.9). Further, we denote as

X∞ the solution to the one-layer Lorenz ’96 system given by Equation (1.1) with the same X(0)

as the initial condition. First, we prove

Proposition 5.6. X∞(t) = limc→∞ Xc(t) for any fixed t > 0.

Proof. Recall that X∞ is the solution of

dX∞

dt
+B(X∞,X∞) +X∞ = F with X∞(0) = Xc(0). (5.57)

Let W = X∞ −Xc. Then W satisfies

dW

dt
+B(X∞,X∞)− B̃(Xc,Xc) +W =

1

m2
σ⊤Vc and W0 = 0. (5.58)

Adding and subtracting B(X∞,Xc) from B(X∞,X∞) − B̃(Xc,Xc) yields B(X∞,W ) +

B(W ,Xc); to this, we subtract and add B(W ,Xc) to obtain B(X∞,W ) − B(W ,W ) +

B(W ,X∞). Equation (5.57) thus becomes

dW

dt
+W = B(W ,W )−B(X∞,W )−B(W ,X∞) +

1

m2
σ⊤Vc. (5.59)
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Dotting it through by W yields

1

2

d ||W ||2

dt
+||W ||2 = B(W ,W )·W−B(X∞,W )·W−B(W ,X∞)·W+

1

2m2
σ⊤Vc ·W . (5.60)

By Lemma 3.1, B(W ,W ) ·W = 0; thus,

1

2

d ||W ||2

dt
+ ||W ||2 = −B(X∞,W ) ·W −B(W ,X∞) ·W +

1

2
σ⊤Vc ·W . (5.61)

Next, by the triangle, Cauchy–Schwarz, and Young inequalities,

1

2

d ||W ||2

dt
+ ||W ||2 ≤ 2 ||X∞|| ||W ||2 + 1

2m2
2

∣∣∣∣σ⊤Vc

∣∣∣∣2 + 1

2
||W ||2 . (5.62)

To bound ||X∞||, we now employ estimates similar to those in Lemma 5.1 as follows. We take

the inner product of Equation (5.57) with X∞ to obtain

1

2

d ||X∞||2

dt
+ ||X∞||2 = F ·X∞ ≤ 1

2
||F ||2 + 1

2
||X∞||2 . (5.63)

Multiplying through by the integrating factor et and integrating from 0 to t yields

||X∞||2 ≤ ||X∞(0)||2 e−t + (1− e−t) ||F ||2

≤ ||X(0)||2 + ||F ||2 . (5.64)

Multiplying (5.62) through by 2, isolating dW
dt , and factoring out ||W ||2 on the right yields

d ||W ||2

dt
≤ (4 ||X∞|| − 1) ||W ||2 + 1

2m2
2

∣∣∣∣σ⊤Vc

∣∣∣∣2
≤
(
4

√
||X(0)||2 + ||F ||2 − 1

)
||W ||2 + 1

2m2
2

∣∣∣∣σ⊤Vc

∣∣∣∣2 . (5.65)

By Proposition 5.4 for t ≥ T sufficiently large, ||Vc(t)||2 ≤ 2 ||F ||2 /(m2
2c). Since ||Vc(t)|| is

continuous on [0, T ], then by the Maximum Value Theorem ||Vc(t)|| attains its maximum V max

on [0, T ]. For easier analysis, we denote

κ = 4

√
||X(0)||2 + ||F ||2 − 1 and βc =

1

2m2
2

max

{
2 ||F ||2

m2
2c

, V max

}
(5.66)

Then for all t ≥ 0,
d ||W ||2

dt
≤ κ ||W ||2 + βc, (5.67)



42

which we multiply through by e−κt to obtain

d ||W ||2

dt
e−κt ≤ e−κtβc. (5.68)

Integrating from 0 to t yields

||W ||2 e−κt − ||W (0)||2 ≤ 1

κ
(1− e−κt)βc. (5.69)

Because W (0) = 0, the second term vanishes. Then multiplying by eκt yields

||W ||2 ≤ 1

κ
(eκt − 1)βc. (5.70)

Finally, by Proposition 5.4 and because t is fixed, βc → 0 as c→ ∞. Thus, limc→∞ ||W (t)|| = 0,

and so limc→∞ ||X∞(t)−Xc(t)|| = 0, for any fixed t. This completes the proof.

The existence of X∞ as defined in Proposition 5.6 allows us to obtain a lower bound on it.

Proposition 5.7. Let X∞ be a solution to Equation (1.1). Then

lim sup
t→∞

||X∞|| ≥ ω, where ω =
−1 +

√
1 + 8Fk
4

. (5.71)

Proof. For contradiction, suppose that lim supt→∞ ||X∞|| < ω. Therefore, there is some T such

that ||X∞(s)|| < ω for all s ≥ T. For notational convenience, let X = X∞. First, we multiply

Equation (1.1) through by the integrating factor et and rearrange to yield

dX

dt
et = et

(
F −B(X,X)

)
. (5.72)

Integrating on [T, t] yields

X(t)et −X(T )eT =

∫ t

T

es
(
F −B

(
X(s),X(s)

))
ds. (5.73)

By part 4 of Lemma 3.1, we have
∣∣∣∣B(X(s),X(s)

)∣∣∣∣ ≤ 2ω2. Thus, for all k = 1, . . . ,K,

Fk − 2ω2 ≤ Fk −Bk
(
X(s),X(s)

)
≤ Fk + 2ω2, (5.74)

which we multiply through by es and integrate to yield

∫ t

T

es(Fk − 2ω2)ds ≤
∫ t

T

es
(
Fk −Bk

(
X(s),X(s)

))
ds ≤

∫ t

T

es(Fk + 2ω2)ds. (5.75)
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By applying (5.73) and calculating the outer integrals, we rewrite this as

(et − eT )(Fk − 2ω2) ≤ Xk(t)e
t −Xk(T )e

T ≤ (et − eT )(Fk + 2ω2). (5.76)

We isolate Xk(t) to yield

Xk(T )e
−(t−T ) +

(
1− e−(t−T )

)
(Fk − 2ω2) ≤ Xk(t). (5.77)

Now take t→ ∞. Then

0 < Fk − 2ω2 ≤ lim sup
t→∞

Xk(t). (5.78)

Next, because lim supt→∞ ||X(s)|| < ω,

Fk − 2ω2 ≤ lim sup
t→∞

Xk(t) ≤ lim sup
t→∞

||X(t)|| < ω. (5.79)

Finally, since ω satisfies 2ω2 + ω − Fk = 0, then substituting for Fk on the left side of (5.79)

yields ω < ω, a contradiction. Thus, lim supt→∞ ||X(t)|| ≥ ω.

We now prove a generalization of Proposition 5.7 that applies to Xc.

Proposition 5.8. For all solutions Xc(t) and Vc(t) of Equations (3.9),

lim sup
t→∞

||Xc|| ̸→ 0 and lim sup
t→∞

||Vc|| → 0 as c→ ∞. (5.80)

Proof. Note lim supt→∞ ||Vc|| = 0 as c → ∞ as an immediate consequence of Proposition 5.4.

For notational convenience, let X = Xc. For the analysis of X, suppose for contradiction there

is a function γ : [0,∞) → [0,∞) such that limc→∞ γ(c) = 0 and lim supt→∞ ||X|| = γ(c). Notice

that for sufficiently large t depending on c, we have ||X|| ≤ 2γ(c).

Now we multiply Equation (3.9a) through by et and rearrange to yield

dX

dt
et = et

(
F −B(X,X)− 1

m1
σ⊤V

)
. (5.81)

Integrating on [T, t] yields

X(t)et −X(T )eT =

∫ t

T

es
(
F −B

(
X(s),X(s)

)
− 1

m1
σ⊤V

)
ds. (5.82)
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Let ω be given as in Proposition 5.7. Also recall M2 = ||F ||
m2

√
c
. Choose c so large that

2γ(c) < ω ≤ Fk − 8γ(c)2 − M2

m1
. (5.83)

Note that such a c exists because the definition of ω implies that ω < Fk. Choose T large enough

so that ||X(s)|| < 2γ(c) for all s ≥ T. By Proposition 5.4 and part 4 of Lemma 3.1, we have∣∣∣∣∣∣B(X(s),X(s)
)
+ 1

m1
σ⊤V

∣∣∣∣∣∣ ≤ 8γ(c)2 + M2

m1
. Thus, for all k = 1, . . . ,K,

Fk − 8γ(c)2 − M2

m1
≤ Fk −Bk

(
X(s),X(s)

)
≤ Fk + 8γ(c)2 +

M2

m1
(5.84)

which we multiply through by es and integrate to yield

∫ t

T

es(Fk − 8γ(c)2 − M2

m1
)ds ≤

∫ t

T

es
(
Fk −Bk

(
X(s),X(s)

))
ds ≤

∫ t

T

es(Fk + 8γ(c)2 +
M2

m1
)ds.

(5.85)

By applying (5.82) and calculating the outer integrals, we rewrite this as

(et − eT )(Fk − 8γ(c)2 − M2

m1
) ≤ Xk(t)e

t −Xk(T )e
T ≤ (et − eT )(Fk + 8γ(c)2 +

M2

m1
). (5.86)

We isolate Xk(t) to yield

Xk(T )e
−(t−T ) +

(
1− e−(t−T )

)
(Fk − 8γ(c)2 − M2

m1
) ≤ Xk(t). (5.87)

Now take t→ ∞. Then

ω ≤ Fk − 8γ(c)2 − M2

m1
≤ lim sup

t→∞
Xk(t). (5.88)

Next, because ||X(s)|| < 2γ(c) < ω,

ω ≤ Fk − 8γ(c)2 − M2

m1
≤ lim sup

t→∞
||X|| < ω, (5.89)

a contradiction. Therefore, lim supt→∞ ||X|| ̸→ 0 as c→ ∞.

Note that a more careful inspection of the proof of Proposition 5.8 reveals that

lim inf
c→∞

lim sup
t→∞

||Xc|| ≥ ω, (5.90)
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where ω is as defined in Proposition 5.7. For the development of the present research, this is a

minor point which needs no further elaboration.

5.2 Supporting Numerics

To illustrate and check the results of Propositions 5.4–5.8, we perform some numerical sim-

ulations. As these propositions all involve time limits, we choose large T = 8000 for these

simulations. Note this is 400 time intervals of size ∆t = 20 that correspond to the decorrelation

time found in (3.18). Even though there is no weather forecasting model involved at this point,

we solve the two-layer Lorenz ’96 model in Equations (3.9) using the classic RK4 method with

h = 1/2048. This is to ensure that these computations follow the same discrete dynamics we

will later employ in Sections 4 and 5, when we couple into an approximating solution.

First, we discuss the sharpness of the bound in Proposition 5.4:

lim sup
t→∞

||V || ≤M2, where M2 =
||σ||2 ||F ||
m2

√
c

. (5.91)

To analyze the sharpness of this bound, we note ||σ||2 = 1 and consider the set {c = 1.04n : n = 0, 4, . . . , 160} .

Note that

sup
{
lim sup
t→∞

||V || : all X(0),V (0)
}
≤ sup

{
||V || : X,V ∈ A

}
, (5.92)

where A is the global attractor for the two-layer Lorenz ’96 system. To approximate the lim sup

appearing in (5.91), which holds for any initial condition X(0),V (0), we take the maximum of

||V || over the interval [T, 2T ] starting with one arbitrary initial condition. Thus, we replace M2

by the a posteriori numerical bound

P2(c) = max
{
||V (T + kh)|| : k = 1, 2, . . . , T/h

}
≈ lim sup

t→∞
||V (t)|| , (5.93)

Figure 5.2 plots these bounds as a function of c ∈ [1, 100] and compares them to the corresponding

theoretical bound on P1 given by M1 in (5.17) and the theoretical bound on P2 given by M3 in

(5.32).

Although our computation involves only one initial condition, the trajectory is followed for

such a long time that we visit approximately 400 independent points on the global attractor that

represent the lim sup in (5.91) starting from many different initial conditions. This computational

shortcut of taking the maximum over one trajectory instead of the lim sup over many initial
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conditions is typically justified by appealing to some sort of ergodicity; i.e., time averages are

equivalent to spatial averages. In this case, we have no such theory; however, the chaotic motion

observed in the X variable, and consequently V , along with the decorrelation interval ∆t = 20,

lead us to believe that the samples appearing in (5.93) represent the desired bounds on the

attractor.

Figure 5.2 illustrates that max ||V || < M2, and that M2(c) ≈ 10 ||V (c)|| for all c. This suggests

that the a priori bound M2 is generous and the actual simulations lead to much smaller values

of ||V || . This factor-of-10 difference will become important when interpreting Theorem 3 and

related results on recovering the state of V from the observations of X.

We also discuss the sharpness of the bound in Proposition 5.5:

lim sup
s→∞

1

s

∫ s

0

||V ||∞ ≤M3, where M3 = min

{
1

√
cm2

,

√
m1

2

}
||F ||
√
cm2

. (5.94)

We choose c as before and consider the numerical bound

P3(c) =
h

T

T/h∑
k=1

||V (T + kh)||∞ ≈ lim sup
s→∞

1

s

∫ s

0

||V ||∞ . (5.95)

Figure 5.2 illustrates that max 1
s

∫ s
0
||V ||∞ < M3, and that M3(c) ≈ 10

s

∫ s
0
||V ||∞ for all c. This,

too, suggests that M3 is a soft bound. Moreover, there is a bend in M3 around c = 56; more

interestingly, the values of 1
s

∫ s
0
||V ||∞ bend earlier, near c = 15.

The reader should note that additional experiments were performed for larger T and yielded

similar results to those in Figure 5.2, and that other experiments using different parameter

regimes were not considered in this study. Thus, the reader should bear in mind that different

parameter regimes may yield sharper or softer bounds than seen here.

Finally, we discuss the claim in Proposition 5.8 that ||X|| ̸→ 0 as c→ ∞. We let c and T be as

before, and we warm up Equations (3.9) for time T and evolve forward using the fourth-order

Runge–Kutta method. Figure 5.3 shows that ||X|| tends downward for small c but tends upward

thereafter. Not only does X remain nontrivial as c → ∞, but the theoretical lower bound ω is

significantly less than the numerically realized energy levels of X. We remark that 100 different

simulations were performed using random initial conditions and produced similar results to those

in Figure 5.3.
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Figure 5.2: Log-log plot of the a priori bounds min(M1,M2) and M3 compared with

the numerical a posteriori bounds P2 and P3. Here, M1 = ||F ||

√
m1

m2
(with δ = 1),

M2 =
||F ||
m2

√
c
, M3 = min

{
1√
cm2

,
√

m1
2

}
||F ||√
cm2

, P2(c) ≈ lim supt→∞ ||V (t)||, and P3(c) ≈

lim sups→∞
1
s

∫ s

0
||V ||∞, and c = 1.04n with n = 0, 4, . . . , 160.
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Figure 5.3: Log-log plot of the numerically computed max ||X|| versus c compared with the
theoretical lower bound ω on that maximum for F = 20,m1 = 20, and m2 = 0.002.



49

Chapter 6

Observations of X with Known

Dynamics

In this section, we focus on the first of the two inverse problems which form the focus of this

research. As previously stated, we seek to determine the dynamical conditions under which the

small variables V can be determined from the large variables X. But because we assume V is

unobserved, we must estimate it by obtaining other information from the system. To do that, we

compare it to a set of variables governed by Equation (3.9b) and are assumed to be observable.

This set of variables v we call the reference solution. In this chapter, we identify conditions under

which the reference solution v and unobserved solution V become asymptotically identical in

time. As before, we govern X, V , and v by the respective equations

dX

dt
+B(X,X) +X = F − 1

m1
σ⊤V , (6.1a)

dV

dt
+ B̃(V ,V ) + cV =

1

m2
σX, (6.1b)

dv

dt
+ B̃(v,v) + cv =

1

m2
σX, (6.1c)

and we look for parameter values that cause synchronization.

In this chapter, we assume c is known, and we fix values of c and evolve the system forward in

time to determine whether convergence occurs. Section 6.1 provides theoretical bounds on the

three-equation system defined by Equations (6.1a)–(6.1c) and conditions for the convergence of

||V − v||, and it concludes with numerical results to confirm those bounds. Recursion relations
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for coupling on X and its derivatives are provided in Section 6.3 for the purpose of finding a

lower value of c that establishes convergence; using these, we provide numerical simulations, and

we compare and contrast the values of c that cause synchronization to occur.

6.1 Coupling on X

Theorem 6.1. ||v|| is uniformly bounded in time regardless of whether v is synchronized by V .

Specifically, we have

||v||2 ≤ ||v0||2 +
L1

c2
for all t, and lim sup

t→∞
||v||2 ≤ L2

c
, (6.2)

where L1 and L2 are given in (6.6) and (6.8), respectively.

Proof. Let ψ be as before. By Lemma 5.1, ψ ≤ ψ0e
−αt + ν

α (1 − e−αt). If c > 1 − 1
2δ , take α, ν

to be as in Lemma 5.1; otherwise, if 0 < c < 1 − 1
2δ , we take α, ν to be as in Lemma 5.2. For

definiteness, we assume c > 1− 1
2δ . Note that the proof in the other case is similar for different

L1 and L2.

Next, we take (6.1c) and dot it with v to get

1

2

d

dt
||v||2 + c ||v||2 =

1

m2
σX · v. (6.3)

Applying the Cauchy–Schwarz inequality, then Young’s inequality, yields

1

2

d

dt
||v||2 + c ||v||2 ≤ 1

m2
||σX|| ||v||

≤ 1

2cm2
||σX||2 + c

2
||v||2 . (6.4)

Rearranging (6.4) yields

1

2

d

dt
||v||2 + c

2
||v||2 ≤ 1

2m2c
||σX||2 ≤ 1

2m2c

ψ

m1
≤ L1

2c
, (6.5)
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where

L1 =
1

m1
sup
t≥0

{
ψ0e

−αt +
ν

α
(1− e−αt)

} 1

m2

≤ 1

m1m2

(
ψ0 +

ν

α

)
=

(
1

m2
||X(0)||2 + 1

m1
||V (0)||2 + δ ||F ||2

(2− 1
δ )m2

)
. (6.6)

Next, we multiply (6.5) through by the integrating factor ect. Integrating yields ||v||2 ect −

||v0||2 ≤ L1

c (ect − 1). Dividing this through by ect and rearranging yields

||v||2 ≤ ||v0||2 e−ct +
L1

c2
(1− e−ct). (6.7)

Notice the left side is bounded by ||v0||2 + L1/c
2.

To obtain an asymptotic bound as t→ ∞, let ϵ > 0 and T be so large that for t ≥ T,

d

dt
||v||2 + c ||v||2 ≤ (1 + ϵ)L2, where L2 =

δ ||F ||2

(2− 1
δ )m2

. (6.8)

Now integrating from T to t yields

||v||2 ≤ ||v(T )||2 e−c(t−T ) +
(1 + ϵ)L2

c
(1− e−c(t−T )). (6.9)

Therefore,

lim sup
t→∞

||v||2 ≤ (1 + ϵ)L2

c
. (6.10)

As ϵ is arbitrary, we obtain L2/c for the upper bound in (6.10). Thus, ||v||2 is uniformly bounded

in time even when v is not synchronized by V .

Proposition 6.2. As before, define ∆ = V − v. Then for all ϵ > 0, there is a T such that

1

2

d ||∆||2

dt
≤ (2Mϵ − c) ||∆||2 for t ≥ T, (6.11)

where Mϵ =M1(1 + ϵ).
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Proof. Recall Equations (6.1b) and (6.1c):

dV

dt
+ B̃(V ,V ) + cV =

1

m2
σX,

dv

dt
+ B̃(v,v) + cv =

1

m2
σX.

Next, we subtract dv/dt from dV /dt. The resulting equation is

d∆

dt
+ B̃(V ,V )− B̃(v,v) = −c∆. (6.13)

Next, we take the dot product of each side with the quantity ∆. The equation becomes

1

2

d ||∆||2

dt
= −c ||∆||2 − [B̃(V ,V )− B̃(v,v)] ·∆. (6.14)

We now add and subtract B̃(v,V ) inside the brackets. The expression becomes

[B̃(V ,V ) + B̃(v,V )− B̃(v,V )− B̃(v,v)] ·∆ = [B̃(∆,V )− B̃(v,∆)] ·∆. (6.15)

Adding and subtracting B̃(V ,∆) yields

[B̃(∆,V )− B̃(∆,∆) + B̃(V ,∆)] ·∆. (6.16)

By Lemma 3.1, B̃(∆,∆) disappears. By Equation (3.6), we thus have

[B̃(∆,V ) + B̃(V ,∆)] ·∆ =
JK∑
j=1

[
∆j+1Vj−1∆j − Vj+1∆j+2∆j

]
(6.17)

By Proposition 5.3 and the fact that |Vj | ≤ ||V ||, there exists T such that

|Vj(t)| ≤M1(1 + ϵ) =Mϵ for all t ≥ T. (6.18)
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Then by the Cauchy–Schwarz inequality, we have

[B̃(∆,V ) + B̃(V ,∆)] ·∆

≤
JK∑
j=1

[
|∆j+1||Vj−1||∆j |+ |Vj+1||∆j+2||∆j |

]

≤
JK∑
j=1

[
|∆j+1||∆j |+ |∆j+2||∆j |

]
Mϵ

≤ 2 ||∆||2Mϵ. (6.19)

Thus, Equation (6.14) becomes

1

2

d ||∆||2

dt
≤ −c ||∆||2 + 2 ||∆||2Mϵ

= (2Mϵ − c) ||∆||2 (6.20)

for t ≥ T. This completes the proof.

This proposition implies

Theorem 6.3. If c > 2M1, then ||∆|| → 0 as t→ ∞.

We can use this fact to determine the parameter regimes in which convergence is theoretically

guaranteed to occur. First, suppose c and δ are as in Lemma 5.1. Then because Mϵ > M1 for

all ϵ, we have after minimizing over δ

c > min
δ> 1

2

{
2δ ||F ||

√
m1

(2δ − 1)m2

}
= 2 ||F ||

√
m1

m2
and c >

1

2
. (6.21)

Note that the minimum occurs when δ = 1. This is the estimate that corresponds to our standard

parameters F = 20, m1 = 20, and m2 = 0.002.

Similar work reveals that if c and δ are as in Lemma 5.2, we get convergence if

1− 1

2δ
> c > 2M = 2 ||F ||

√
m1δ

2cm2
(6.22)

or, equivalently,

1− 1

2δ
> c >

3

√
2 ||F ||2m1δ

m2
. (6.23)
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In this case, c must be small, which after optimizing with respect to δ yields the condition that

||F ||2m1

m2
<

27

256
, where δ = 2. (6.24)

However, because the range of values for c, F,m1, andm2 falls outside the dynamically interesting

range identified in Section 4, we forgo further analysis of the values of c which satisfy (6.23).

The proof of Proposition 6.2 leading to Theorem 6.3 also implies something about the rate of

convergence. We state this in

Corollary 6.4. Suppose c satisfies (6.21). Then for all ϵ > 0, there is a constant C such that

||∆||2 ≤ C exp

([
4(1 + ϵ) ||F ||

√
m1

m2
− 2c

]
t

)
. (6.25)

Proof. For any ϵ > 0, there is a T so large that Proposition 6.2 holds as in Equation (6.18) and

the asymptotic bounds given in Proposition 5.3 and Theorem 6.1 imply

||V (T )|| ≤ (1 + ϵ)M1 and ||v(T )|| ≤ (1 + ϵ)L2. (6.26)

Integrate the differential inequality in (6.11) from T to t after multiplying e(4Mϵ−2c)t. Thus,

||∆(t)||2 exp
([

2c− 4(1 + ϵ) ||F ||
√
m1

m2

]
t

)
− ||∆(T )||2 ≤ 0. (6.27)

By (6.26), it follows that

||∆(T )|| ≤ ||V (T )||+ ||v(T )|| ≤ (1 + ϵ)(M1 + L2). (6.28)

Rearranging terms and setting C = ||V (T )||+||v(T )|| ≤ (1+ϵ)(M1+L2) completes the proof.

Theoretically, provided that c > 2M1, as c increases, the rate of convergence between V and v

increases exponentially. Recall that our standard parameterization is F = 20, c = 20,m1 = 20,

andm2 = 0.002, where c is the magnitude of the dissipation of energy in the fast variables. When

c is large, the dissipation is strong; when c is small, the dissipation is weak. To numerically

illustrate the effects of changing c, we warm up the reference solution X,V starting from a

random initial condition for T = 50 units of time so that it reflects the long-time behavior

governed by c. At this point, we start coupling v as given by Equation (6.1c). For definiteness,

we denote t0 = 0 to be the time at which we start coupling, and we initialize v = 0. As Figure
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6.1 shows, a unit difference in c can make recovery impossible, make it possible and slow, or

make it possible and rapid.

Note also that synchronization of v with V occurs for values of c much smaller than the theo-

retical bound 2M1 given in Theorem 6.3. Using the a priori estimate for M1 as in Corollary 6.4,

our parameter regime given in Equation (3.17) implies that

c = 21 ≪ 2 ||F ||
√
m1

m2
= 40 ·

√√√√ 20K

0.002
≈ 11313.71. (6.29)

Similarly, the a posteriori bounds in Figure 5.2 suggest that lim supt→∞ ||V || ≲ 478. And again,

c = 21 < 2M1 ≈ 2 · 478 = 956. (6.30)

Figure 6.1: Time evolution of the absolute error in v for our standard choice of parameters
F = 20, m1 = 20, and m2 = 0.002, with c varying between 19 and 21.

Figure 6.1 as well as Corollary 6.4 suggest that the recovery time decreases as c increases. To

confirm this, we define

T (c) =


τ − T : ||V − v|| < 10−6 for t ∈ [τ, 3T ] and τ ∈ [T, 2T ]

∞ if τ > 2T or if ||V − v|| never goes below 10−6

(6.31)
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where c is the dissipation, T is the length of the warmup period, and X(T ) and V (T ) are points

on the attractor with V (T ) = 0.

We now fit the exponential rate of convergence suggested by Corollary 6.4 to the numerical data

for T (c). First assume

10−6 = ||V − v|| ≈ C exp ((M − 2c)t) when t = T (c).

Consequently, solving for T (c) yields

T (c) ≈ log(10−6/C)

M − 2c

or
1

T (c)
≈ mc+ b, where m = − 2

log(10−6/C)
and b =

M

log(10−6/C)
.

Through a least squares fit involving 10 independent samples of T (c) for values of c ranging from

20 up to 50, we find

m ≈ 0.0691 and b ≈ 1.5375.

Solving back for C and M yields

C ≈ 1.928 and M ≈ 22.25.

Note that 22.25 is slightly larger than the minimum value of c observed for which synchronization

occurs at all. Figure 6.2 compares this least squares fit to the data and shows that for c≫ 22.25

the driven solution v rapidly synchronizes with the free-running solution V over time. On

average, one can expect rapid recovery of V for large values of c.

Also, recall that m1 is the magnitude of the energy drawn from the slow layer to the fast layer,

and m2 is the magnitude of the energy amplified in its transfer from the slow layer to the fast

layer. If m1 > m2, more energy is being transferred to the fast layer; if m1 < m2, more energy

is being amplified in the slow layer; if m1 = m2, the energy being transferred and the energy

being amplified are equal. Thus, Equation and (6.21) and Proposition 6.2 tell us that ||∆|| → 0

when dissipation is greater than the ratio of energy drawn to energy transferred.

We now turn to an improvement of Theorem 6.1.
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Figure 6.2: Least squares fit 1/T (c) ≈ 0.069c − 1.537, where T (c) is the time it takes for
the approximating solution to synchronize to within 10−6 with the reference solution when

F = 20,m1 = 20,m2 = 0.002, and c varying between 20 and 50.

Theorem 6.5. Let V and v be as in Equations (6.1b) and (6.1c), respectively. Define ∆ =

V − v. Then ||∆|| → 0 as t→ ∞, provided

lim sup
t→∞

1

t

∫ t

0

||V ||∞ ds <
c

2
. (6.32)

Proof. Let ∆ be defined as above. Then by the work in Proposition 6.2, Equation (6.14) results,

along with the inequality

1

2

d ||∆||2

dt
= B̃(V ,∆) ·∆+ B̃(∆,V ) ·∆− c ||∆||2

≤ 2 ·max {|Vi| : i = 1, . . . , q} ||∆||2 − c ||∆||2

= 2 ||V ||∞ ||∆||2 − c ||∆||2 . (6.33)

From this, we get (
d

dt
+ 2c− 4 ||V ||∞

)
||∆||2 ≤ 0. (6.34)



58

Next, let τ be the integrating factor exp
(∫ t

0
(2c− 4 ||V ||∞)ds

)
. Then τ ′(t) = (2c−4 ||V ||∞)τ(t)

and, by (6.34),

d

dt
[τ(t) ||∆||2] = τ ′(t) ||∆||2 + d ||∆||2

dt
τ(t)

= (2c− 4 ||V ||∞)τ(t) ||∆||2 + d ||∆||2

dt
τ(t)

= τ(t)
(
(2c− 4 ||V ||∞) ||∆||2 + d ||∆||2

dt

)
≤ 0. (6.35)

We integrate this from 0 to t to yield the inequality τ(t) ||∆||2 − τ(0) ||∆0||2 ≤ 0. Then

τ(t) ||∆0||2 ≤ τ(0) ||∆0||2 . Because τ(0) = 1, we can rearrange this inequality as

||∆||2 ≤ exp

(
−
∫ t

0

(2c− 4 ||V ||∞)ds

)
||∆0||2 . (6.36)

Finally, we multiply the integral by t/t and rearrange it as follows:

∫ t

0

(2c− 4 ||V ||∞)ds =
t

t

∫ t

0

(2c− 4 ||V ||∞)ds = 2t

(
c− 2

t

∫ t

0

||V ||∞ ds

)
. (6.37)

Then when we apply (6.32) to (6.36) and let t→ ∞, the result follows.

To compare the conditions which appear in Theorems 6.3 and 6.5 to the threshold value of c

found in Figure 6.1, after which ||V − v|| → 0 numerically, we define the a posteriori bounds

P2(c) = max {||V (t)||2 : t ∈ [T, 2T ]} , P3(c) =
1

T

∫ 2T

T

||V ||∞ dt. (6.38)

Figure 5.2 plots these bounds as a function of c ∈ [1, 100] and compares them to the corresponding

theoretical bound on P2 given by M1 in (5.17) and the theoretical bound on P3 given by M3

in (5.94). The line c/2 crosses the data represented by P3(c) at c ≈ 60, and the hypotheses of

Theorem 6.5 empirically hold. Therefore, when c ≳ 60, Theorem 6.5 implies that ||V − v|| → 0

as t → ∞. On the other hand, we have a theoretical guarantee when c/2 > M3 or equivalently

when c > 200ish that ||V − v|| → 0 as t→ ∞.
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6.2 Effects of Arbitrary Coupling Matrix σ

This section is an exploration of how the details of the coupling between the two layers affects

the ability to recover V from the observations of X. From a physical point of view, this is

changing the dynamics of the problem; from a mathematical point of view, it is made possible

through our identification of the coupling matrix σ with orthonormal columns. In particular,

by changing σ, we get to explore whether Lorenz’s original choice for σ makes it easier or more

difficult to recover V : i.e., which conditions on c lead to the synchronization of v with V over

time.

Figure 6.3: Box plots of ||V − v|| for 4 randomly determined σ with F = 20,m1 = 20,m2 =
0.002, and c varying between 10 and 25.

We defined σ as in Equation (3.1) to represent the coupling in the original two-layer Lorenz

’96 system. Here, we let σ be an arbitrary coupling matrix with orthonormal columns, and we

numerically determine the critical value of c. We again emphasize that the theory in Chapter 5

applies to any such matrix.

To create σ, we initialize a matrix of uniformly distributed random values in [−1/2, 1/2] using

the Mersenne twister (the default pseudorandom number generator in Julia), perform a QR

decomposition, and define σ to be the matrix consisting of the first eight columns of Q—i.e., σ

is obtained from the reduced QR decomposition of a random matrix.
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Figure 6.4: Box plots of ||QV −q|| for 4 randomly determined σ with F = 20,m1 = 20,m2 =
0.002, and c varying between 10 and 25.

Figures 6.3 and 6.4 show a substantial improvement in the critical value of c when σ is a random

coupling matrix. When the coupling is on X alone as given by Equation (6.1c), synchronization

occurs around c = 17, considerably less than when we couple using our traditional σ. Interest-

ingly, when the coupling is on X and Ẋ as given by Equation (6.42c), synchronization occurs

around c = 18—still less than when we couple using our traditional σ but more than when we

use Equation (6.1c). We performed this simulation for 10 different random σ, and we obtained

similar results each time. While it is conceivable that a coupling matrix similar to (3.1) might

be obtained randomly, this did not happen in practice. These graphs illustrate that a random

coupling matrix will likely lead to a smaller value of c needed to achieve synchronization. Since

changing the physics of the problem is impossible in real applications, we resume using our

regular σ in the next section.

6.3 On the Use of Derivative Information

In Section 4, we showed that the value of c influences how strongly the unresolved variables

depend on the resolved ones. In particular, when c is large, V depends more strongly on X,

and thus a better estimate of V can be obtained, when c is large. Although we know the
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theoretical conditions under which convergence occurs, our numerical experiments have not yet

demonstrated convergence for the smallest possible values of c.

One possible way to improve the estimates of the dynamics and the recovery of c is to assume

X and Ẋ are known. From a mathematical point of view, if exact observations of X are known

continuously in time, then we have already observed Ẋ and all its derivatives. In practice, there

are many obstacles to inferring Ẋ from the observations of X. First, those observations may

include noise with the effect that they would not be differentiable even if observed continuously

in time. Another impediment to knowing Ẋ is that real observational data is never continuous in

time but only near-continuous in time at best. In this case, one can approximate the derivative

information by means of finite differences. We defer this line of study until Section 8, where it

becomes a crucial tool when solving for c if both c and V are unknown.

To make use of the exact derivative information, note the observation of X over time implies

Ẋ is known. The first differential equation then implies that we also know σ⊤V . In particular,

let P = σσ⊤ and Q = I − P . We remark that P is an orthogonal projection onto a subspace

of the phase space of V , and Q is the orthogonal complement of P . We define a new variable,

q, and replace Equation (6.1c) with dq/dt. Thus, let q = Qv. By orthonormality of σ, we have

QσX = 0. Thus, if we multiply (6.1c) leftwise by Q, we obtain

Qv̇ +QB̃(v,v) + cQv = 0, (6.39)

and by definition of q,
dq

dt
+QB̃(v,v) + cq = 0. (6.40)

We now use v = PV + q for the recovery of V . Thus, we obtain

dq

dt
+QB̃(PV + q, PV + q) + cq = 0, (6.41)

and we obtain the three-equation system with coupling on X and Ẋ:

dX

dt
+B(X,X) +X = F − 1

m1
σ⊤V , (6.42a)

dV

dt
+ B̃(V ,V ) + cV =

1

m2
σX, (6.42b)

dq

dt
+QB̃(PV + q, PV + q) + cq = 0. (6.42c)
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A similar argument to the proof in Theorem 6.3 (also see Proposition 6.2) shows that ||q −QV || →

0 as t → ∞ provided c is large enough. In fact, the same condition on c given in Theorem 6.3

is enough to theoretically guarantee convergence. Before proceeding, we check this through

simulations.

Figure 6.5: A representative graph of the absolute error in q for our standard choice of
parameters and c varying between 20 and 22. Note the convergence occurring when c = 21
instead of c = 20 as in Figure 6.1. Repeated runs with different initial conditions produced

similar results.

Interestingly, we do not see an improvement in the numerical value of c for which synchronization

occurs. As shown by the numerical computations in Figure 6.5, synchronization of q with QV

appears to require larger values of c. The difficulty seems to be that we have ignored how PV

relates to the equation governing X. Equation (6.42c) is also worse in a statistical sense than

Equation (6.1c) when the value of c is unknown. This will be discussed further in Section 7.

The fact that Equation (6.42c) performs worse than the simpler coupling considered before is

somewhat surprising, as we are using more information about the observations: in particular,

we have replaced B̃(v,v) with B̃(PV + q, PV + q), which should be more accurate because

PV , given by the derivative information, is correct. This shall be remedied in Section 6.4, where

we project Equation (6.42a) by P to obtain algebraic constraints governing the evolution of

PV +q. Before proceeding to the nonlinear optimization techniques discussed in Section 6.4, we

next explore a different approach to make use of the algebraic constraints: namely, we employ

the differential algebraic equation (DAE) solver given in [21].
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Suppose X, Ẋ, and Ẍ are known. Then σ⊤V and σ⊤V̇ are known, and q = QV is still

unknown. Note q̇ = QV̇ and dotting Equations (6.42a)–(6.42b) yields

Ẍ +B(Ẋ,X) +B(X, Ẋ) + Ẋ = − 1

m1
σ⊤V , (6.43a)

V̈ + B̃(V̇ ,V ) + B̃(V , V̇ ) + cV̇ =
1

m2
σX. (6.43b)

Dotting Equation (6.43b) and recalling P +Q = I yields

QV̈ +QB̃(P V̇ + q̇, PV + q) + B̃(PV + q, P V̇ + q̇) + cQV̇ = 0. (6.44)

Thus, we yield the four-equation system

Ẋ +B(X,X) +X = F − 1

m1
σ⊤V , (6.45a)

V̇ + B̃(V ,V ) + cV =
1

m2
σX, (6.45b)

η̇ +QV̈ +QB̃(P V̇ + q̇, PV + q),+B̃(PV + q, P V̇ + q̇) + cQV̇ = 0, (6.45c)

q̇ = η. (6.45d)

Figure 6.6 shows that the approximation q given by Equations (6.45c)–(6.45d) fails to synchronize

with QV over time for the same values of c used in Figure 6.5. It appears that the coupling

enhances the propagation of errors over time; in particular, no synchronization was observed,

even for c≫ 20.

Figure 6.6: Absolute error in q for our standard choice of parameters and h = 1/4096, T =
400, and c varying between 19, 20, and 21.
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When Equation (6.44) is introduced into the four-equation system as an algebraic constraint, we

get the system

Ẋ +B(X,X) +X = F − 1

m1
σ⊤V , (6.46a)

V̇ + B̃(V ,V ) + cV =
1

m2
σX, (6.46b)

η̇ +QV̈ +QB̃(P V̇ + q̇, PV + q̇),+B̃(PV + q, P V̇ + q̇) + cQV̇ = 0, (6.46c)

q̇ = η, (6.46d)

η +QB̃(PV + q, PV + q) + cq = 0, (6.46e)

which is evolved forward in time by a DAE solver. Figure 6.7 shows that convergence occurs

numerically when c ≳ 21. As this is no better than the results in Figure 6.5 or the results in Figure

6.1 without using derivative information, we look for a better way of using that information.

Figure 6.7: Absolute error in q for our standard choice of parameters and c varying between
20 and 22. Note the convergence occurring when c = 21 instead of c = 20 as in Figure 6.1.

Coupling on higher derivatives of X and incorporating additional constraints produces mixed

results when using the DAE solver. We see failure to achieve convergence when coupling on

X and its first two derivatives, and convergence at undesirably higher levels of c when another

constraint is added. Whether or not additional constraints will lower the critical value of c

is unclear on the basis of these numerical results, but it is an inquiry that warrants further

investigation, which we discuss in the following section.
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6.4 Coupling on X and Its Higher Derivatives

Recall the two-layer Lorenz ’96 system:

dX

dt
+B(X,X) +X = F − 1

m1
σ⊤V , (6.47a)

dV

dt
+ B̃(V ,V ) + cV =

1

m2
σX. (6.47b)

Here, F is a constant vector and σ ∈ RJK×K is a matrix with orthonormal columns, which in

the classical case are given by interpolation and averaging. Given continuous observations of

X in time, the goal is to recover V . Note the observation of X over time implies dmX/dtm is

known for all orders of derivatives. The first differential equation then implies that we also know

dmσ⊤V /dtm.

We first compute the derivatives of X and V to carry out any further operations involving those

quantities. We do this recursively by setting

βm =
dmB(X,X)

dtm
and β̃m =

dmB̃(V ,V )

dtm

and then noting that

dX

dt
= −β0 −X + F − 1

m1
σ⊤V , (6.48)

dV

dt
= −β̃0 − cV +

1

m2
σX, (6.49)

and for m ≥ 1 that

dm+1X

dtm+1
= −βm − dmX

dtm
− 1

m1
σ⊤ d

mV

dtm
, (6.50)

dm+1V

dtm+1
= −β̃m − c

dmV

dtm
+

1

m2
σ
dmX

dtm
. (6.51)

To finish, we use the binomial theorem for derivatives to explicitly compute βm and β̃m for all

values of m. In particular,

βm =

m∑
j=0

(
m

j

)
B
(dm−jX

dtm−j ,
djX

dtj

)
and β̃m =

m∑
j=0

(
m

j

)
B̃
(dm−jV

dtm−j ,
djV

dtj

)
.

Consequently, given all derivatives of X and V up to and including order m, we recursively

obtain derivatives of order m+ 1 for X and V . We now use this derivative information to help
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recover the complete dynamics of V from continuous observations of X.

Upon defining P = σσ⊤ and Q = I − P , we obtain

P V̇ + PB̃(V ,V ) + cPV =
1

m2
σX, (6.52)

QV̇ +QB̃(V ,V ) + cQV = 0. (6.53)

Observations of X, σ⊤V , and σ⊤V̇ turn the first equation into an algebraic constraint on V .

The second describes how the unobserved quantity QV evolves in time.

We therefore set v = PV +My where the matrix M represents an orthogonal basis for col(Q).

Noting that Q =MM⊤, M⊤M = I, and y =M⊤V , we obtain

σ⊤V̇ + σ⊤B̃(PV +My, PV +My) + cσ⊤V =
1

m2
X, (6.54)

ẏ +M⊤B̃(PV +My, PV +My) + cy = 0. (6.55)

The first equation is an quadratic constraint on the unknown y, and the second governs the

evolution of that unknown.

The algebraic constraint on y involves K equations with JK −K unknowns. In the standard

setting where J = 32 and K = 8, this constraint corresponds to 8 equations with 248 unknowns.

Additional constraints are obtained by differentiation.

Again using the binomial theorem for derivatives, we obtain

ρm =
dmB̃(v,v)

dtm
=

m∑
j=0

(
m

j

)
B̃
(dm−jv

dtm−j ,
djv

dtj

)
.

Now since

v̇ = P V̇ +M ẏ = P V̇ −M(M⊤B̃(PV +My, PV +My) + cy)

= P V̇ −Q
(
B̃(v,v) + cv

)
= P V̇ −Q(ρ0 + cv) (6.56)

we find for m ≥ 1 that

dm+1v

dtm+1
= P

dm+1V

dtm+1
−Q

(
ρm + c

dmv

dtm

)
. (6.57)
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With the time derivatives of X, V , and v in hand, we obtain the constraints

φ2(y) = σ⊤(V̇ + ρ0 + cV )− 1

m2
X

and for n ≥ 1 that

φn+2(y) = σ⊤
(dn+1V

dtn+1
+ ρn + c

dnV

dtn

)
− 1

m2

dnX

dtn
.

By construction we know that φm(M⊤V ) = 0 for m ≥ 2. Note that the subscript m corresponds

to the polynomial degree of the constraint.

We further include a Tikhonov regularizing term given by φ1(y) = y − yp of degree one where

yp is the predicted value of y that will be corrected by the other constraints. If the predicted

yp =M⊤V then also φ1(M
⊤V ) = 0. This motivates the following data-assimilation algorithm

to recover the complete value of V .

Given the prediction yp(tn), minimize

J(y) =
1

2

d∑
m=1

γm
∥∥φm(y)

∥∥2 =
1

2

∥∥Φ(y)∥∥2 where Φ(y) =


γ1φ1(y)

...

γdφd(y)


to obtain the corrected value yc(tn). Here the weights γd are tunable with

d∑
m=1

γm = 1 and γ1 ≪ 1.

to discount the regularizing term in favor of other constraints.

After finding the minimizer yc(tn), we solve the differential equation

ẏ +M⊤B̃(PV +My, PV +My) + cy = 0

on the interval [tn, tn+1] with initial condition y(tn) = yc(tn) to obtain the next prediction

yp(tn+1) = y(tn+1). This process is repeated with the new prediction yp(tn+1).

Minimizing J is a nonlinear least-squares problem. Under the assumption that yp is close to the

desired minimum, we suppose the Gauss–Newton method will converge. Set y0 = yp and for
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Figure 6.8: A representative graph of the absolute error in y for 3 Gauss–Newton iterations,
m = 5, our standard choice of parameters, and c varying between 18 and 22. Note the

convergence occurring around c = 19.5 instead of c = 20 as in Figure 6.1.

ℓ = 0, 1, . . . linearize Φ(y) around yℓ to obtain

Φ(y) ≈ Φ(yℓ) +DΦ(yℓ)(y − yℓ)

whereD is differentiation with respect to y andDΦ(yℓ) ∈ R(JK−K+dK)×(JK−K). SinceDφ1(y) =

I the columns of DΦ(yℓ) are always linearly independent.

Let Jℓ be the corresponding version of J about yℓ given by

Jℓ(y) =
1

2

∥∥Φ(yℓ) +DΦ(yℓ)(y − yℓ)
∥∥2.

Minimizing Jℓ is a linear least squares problem. Upon defining yℓ+1 to be the minimizer of Jℓ,

iteration hopefully leads to sequence which converges to the minimizer of J(y).

To avoid rounding errors write x = yℓ − y and solve the overconstrained problem

DΦ(yℓ)x = Φ(yℓ) in Julia as x = DΦ(yℓ)\Φ(yℓ).

It then follows that yℓ+1 = yℓ − x.
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The only thing left to carry out this procedure is the computation of

DΦ(y) =


γ1Dφ1(y)

...

γdDφd(y)


which we now describe in detail. We obtain

Dv = D(PV +My) =M (6.58)

Dv̇ = D(P V̇ −Q(ρ0 + cv)) = −Q(Dρ0 + cDv) (6.59)

and for n ≥ 1 that

D
dm+1v

dtm+1
= −Q

(
Dρm + cD

dmv

dtm

)
(6.60)

where

Dρm =

m∑
j=0

(
m

j

){
B̃
(
D
dm−jv

dtm−j ,
djv

dtj

)
+ B̃

(dm−jv

dtm−j , D
djv

dtj

)}
.

Note that when A ∈ Rp×q and v ∈ Rp, the notation above means

B̃(A,v) =
[
B̃(a1,v)

∣∣∣ · · · ∣∣∣B̃(aq,v)
]

(6.61)

B̃(u, A) =
[
B̃(u,a1)

∣∣∣ · · · ∣∣∣B̃(u,aq)
]

(6.62)

where

A =
[
a1

∣∣∣ · · · ∣∣∣aq

]
.

Having recursively obtained the above derivatives, one may now compute

Dφ1(y) = D(y − yp) = I, (6.63)

Dφ2(y) = D(σ⊤(V̇ + ρ0 + cV )− 1

m2
X) = σ⊤Dρ0, (6.64)

and for m ≥ 1,

Dφm+2(y) = σ⊤Dρm. (6.65)
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To test the efficacy of these constraints, we calculate ||MV − y|| usingm = 5 constraints. Figure

6.8 shows the trajectories of ||MV − y|| for c between 18 and 22. Convergence occurs around

c = 19.5, noticeably earlier than when we couple on X and Ẋ. Further experiments might be

needed to determine whether larger numbers of constraints or Newton iterations will lower c.
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Chapter 7

Coupling on X with Unknown

Dynamics

So far, we established conditions under which lim
t→∞

||V − v|| → 0 and developed recursion rela-

tions for coupling on X and its derivatives. These results were created under the assumption

that the dynamical equations which govern the motion of X and V are known, and that only

the values of V are unknown. In practical problems, it can happen that these dynamics are

unknown or only known to an approximation. We now turn to the second inverse problem in

which both c and V are unknown.

Typically, the equations governing the observed quantities are better known than the equations

governing the unobserved quantities. Therefore, we assume that the equations governing the

motion of X are known exactly but the equations governing the motion of V are known up to

some approximation. Even if the form of the equation governing the motion of V is known,

some parameters may not be known—in this case, c, m2, σ, and the dimension of the system

JK. We consider here the case in which only the parameter c is unknown. This represents the

simplest case when the dynamics governing the motion of the unobserved state V are known

only approximately. The goal of this chapter is to use observations of X to infer not only the

state of V but the value of c which governs the motion of V .
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7.1 The Effects of Approximate Dynamics

We begin by considering coupling onX as in Section 4.1, except with the exact value of c denoted

by c̃ in the equation governing V . Thus,

dX

dt
+B(X,X) +X = F − 1

m1
σ⊤V , (7.1a)

dV

dt
+ B̃(V ,V ) + c̃V =

1

m2
σX, (7.1b)

dv

dt
+ B̃(v,v) + cv =

1

m2
σX. (7.1c)

The following proposition establishes a bound on V − v when c is unknown.

Proposition 7.1. Define ∆ = V − v. Then

||∆||2 ≤ ||∆0||2 e−(c−4M)t +
|c− c̃|2

c(c− 4M)
JKM2

[
1− e−(c−4M)t

]
, (7.2)

where M is a uniform bound on ||V ||.

Proof. Let ∆ be as above. Then

d∆

dt
+ B̃(V ,V )− B̃(v,v) + c̃V − cv = 0. (7.3)

Adding and subtracting c̃V yields

d∆

dt
+ B̃(V ,V )− B̃(v,v) + (c− c̃)V + c∆ = 0. (7.4)

Adding and subtracting B̃(V ,v) yields

d∆

dt
+ B̃(V ,∆)− B̃(∆,v) + (c− c̃)V + c∆ = 0. (7.5)

Adding and subtracting B̃(∆,V ) yields

d∆

dt
+ B̃(V ,∆) + B̃(∆,V )− B̃(∆,∆) + (c− c̃)V + c∆ = 0. (7.6)

Next, we dot both sides with ∆. By Lemma 3.1, B̃(∆,∆) ·∆ disappears, and

1

2

d ||∆||2

dt
+ B̃(V ,∆) ·∆+ B̃(∆,V ) ·∆+ (c− c̃)V ·∆+ c ||∆||2 = 0. (7.7)
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Now we estimate B̃(∆,V ) ·∆ and B̃(V ,∆) ·∆. By part 5 of Lemma 3.1,

∣∣∣[B̃(∆,V ) + B̃(V ,∆)] ·∆
∣∣∣ ≤ 2 ||V || ||∆||2 . (7.8)

Thus, (7.7) becomes

1

2

d

dt
||∆||2 + (c− c̃)V ·∆+ c ||∆||2 ≤ 2 ||V || ||∆||2 , (7.9)

and we rearrange it and apply the Cauchy–Schwarz inequality to obtain

1

2

d

dt
||∆||2 +

(
c− 2 ||V ||

)
||∆||2 ≤ (c− c̃)V ·∆ ≤ |c− c̃| ||V || ||∆|| . (7.10)

To this we apply Young’s inequality with ϵ = c, and we get

1

2

d

dt
||∆||2 +

(
c− 2 ||V ||

)
||∆||2 ≤ |c− c̃|2

2c
||V ||2 + c

2
||∆||2 . (7.11)

Rearranging and multiplying through by 2 yields

d ||∆||2

dt
+ (c− 4 ||V ||) ||∆||2 ≤ |c− c̃|2

c
||V ||2 . (7.12)

Define θ(t) = |c−c̃|2
c ||V ||2 and note ||V || ≤M. Then

d ||∆||2

dt
+ (c− 4M) ||∆||2 ≤ θ(t). (7.13)

Now let e(c−4M)t be an integrating factor. Then

d

dt
e(c−4M)t ||∆||2 ≤ e(c−4M)tθ(t) (7.14)

and integrating this result yields

||∆||2 ≤ ||∆0||2 e−(c−4M)t + e−(c−4M)t

∫ t

0

se(c̃−4M)tθ(s) ds. (7.15)

Next, note ||V ||2 =
∑JK
j=1 |Vi|2 ≤

∑JK
j=1M

2 = JKM2. Thus,

θ(s) =
|c− c̃|2

c
||V ||2 ≤ |c− c̃|2

c
JKM2 (7.16)
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and so

e−(c−4M)t 1

c− 4M

(
e(c−4M)t − 1

) |c− c̃|2

c
JKM2 =

|c− c̃|2

c(c− 4M)
JKM2

(
1− e−(c−4M)t

)
. (7.17)

The result follows.

The results of Proposition 7.1 are meaningful when c > 4M . As noted in (6.29) and (6.30),

whether M represents an a priori or an a posteriori bound on V , much smaller values of c work

numerically. We now illustrate the result of Proposition 7.1 when there is a mismatch between

our approximation of c and the exact value c̃.

We take c̃ = 21 and vary c in a neighborhood about c̃. Following the procedure used in Section

4 to obtain 3600 independent samples, we use a time step size of h = 1/2048 and warm up the

reference solution V for each value of c for time T = 50. Then we initialize v = PV and warm

up the approximating solution until v no longer reflects the initial condition v0 and begins to

resemble its long-time behavior.

Again, the autocorrelation results discussed in Section 3.2 lead us to sample the trajectory at

intervals of ∆t = 20. The graph on the left in Figure 7.1 illustrates the resulting statistics of the

relative error ||V − v|| / ||V || for c between 20.5 and 21.5.

It is notable that when the approximate value of c differs by as little as 0.05, the whiskers

extend to 100% relative error, which means once in a while, the approximating solution v loses

synchronicity with V with the result that our recovery of the mesoscale and microscale state

represented by v is occasionally quite wrong. On the other hand, the red dots show that 95% of

the time, the relative errors in our approximation are much smaller. The aqua dots tell a similar

story for 90% of the time. Having an occasional outlier in the error means that any subsequent

predictions based on that particular estimated state v of V will be worse than expected. In

this section, we seek not only to estimate the unknown value of c but to reduce the size of these

outliers.

The coupling given in Equation (6.42c) appears less stable with respect to errors in our estimate

of c: i.e., the sizes of the outliers are still large. Recall the equations governing the evolution of
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q are given by

dX

dt
+B(X,X) +X = F − 1

m1
σ⊤V , (7.18a)

dV

dt
+ B̃(V ,V ) + c̃V =

1

m2
σX, (7.18b)

dq

dt
+QB̃(PV + q, PV + q) + cq = 0, (7.18c)

where the value of c in the last equation represents an approximate value. We follow the same

warmup procedure as used in Figure 7.1.

In Figure 7.1, the graph on the right illustrates the resulting statistics of the relative error

||QV − q|| / ||V || for c between 20.5 and 21.5. Note that the maximum size of the outliers still

exceeds 100% and the red and aqua dots are slightly higher than those in the graph on the left.

Figure 7.1: Statistics of the relative error in the approximation v of V in Equation (7.1c)
(left) and in the approximation PV + q of V given by Equation (7.18c) (right) over 3600
independent samples. The relative error is less than the red dots 95% of the time and less
than the aqua dots 90% of the time. The tops of the whiskers represent the maximum relative

error.

To further illustrate the effects of not knowing the exact dynamics governing V —i.e., not know-

ing the correct value of c—we repeat the simulations for Figure 7.1 and for Figure 7.2 with the
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Figure 7.2: Statistics, given a fixed arbitrary coupling matrix σ, of the relative error in the
approximation v of V in Equation (7.1c) (left) and in the approximation PV + q of V given
by Equation (7.18c) (right) over 3600 independent samples. The relative error is less than
the red dots 95% of the time and less than the aqua dots 90% of the time. The tops of the

whiskers represent the maximum relative error.

random coupling matrices σ described in Section 6.2. As before, we create σ by initializing a

matrix of random values, perform a QR decomposition, and take σ to be the matrix consist-

ing of the first eight columns of Q. Although the critical value of c at which synchronization

occurs is generally smaller for an arbitrary coupling matrix, we again set c̃ = 21 and allow our

approximation of c to vary between 20.5 and 21.5.

Figure 7.2 shows a substantial improvement to the relative error when given a typical arbitrary

coupling matrix σ. We performed this simulation for 10 different random σ, and we obtained

similar results each time. Unlike the results in Figure 7.1, the relative errors on the right appear

smaller than those on the left.

While it is interesting that these random σ show substantial improvement to the relative error in

the approximating solution, it is worth remembering what σ in Equation (3.1) represents phys-

ically: the coupling between the slow, large-amplitude variables and the fast, small-amplitude

variables. This coupling is given by the physical laws of nature. Though it would be convenient
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to change σ, mathematically, we generally cannot do so, as we cannot change the laws of nature

to make our inverse problem easier to solve.

7.2 Solving for c

In this section and the rest of this research, we return to the standard coupling matrix given

in Equation (3.1). In this case, even a close approximation of c leads to occasional errors

approaching 100% as shown in Figure 7.1. To remedy this defect, we introduce an equation for

dynamically tuning c as the observations of X are assimilated.

Assume X is known and V and c̃ are not. Because we know X, we also know Ẋ and Ẍ. We

remark that the use of derivative information to solve for c appears related to the fact that c

does not appear directly in the equation for our observations X. In particular, other methods in

the literature typically assume that the unknown parameter appears in the equation governing

the observations. Thus, to our knowledge, the algorithm developed in this section is original.

To start, we know

σ⊤V = −m1

(
Ẋ +B(X,X) +X − F

)
(7.19)

and

σ⊤V̇ = −m1

(
Ẍ +B(X, Ẋ) +B(Ẋ,X) + Ẋ

)
. (7.20)

To solve for the unknown c̃, rearrange (7.18a) as

c̃V =
1

m2
σX − B̃(V ,V )− V̇ , (7.21)

and we multiply through by σ⊤ to obtain

c̃σ⊤V =
1

m2
X − σ⊤B̃(V ,V )− σ⊤V̇ . (7.22)

If we dot Equation (7.21) on the right with σ⊤V , we get

c̃
∣∣∣∣σ⊤V

∣∣∣∣2 =
1

m2
X · σ⊤V − σ⊤B̃(V ,V ) · σ⊤V − σ⊤V̇ · σ⊤V . (7.23)
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Dividing through by
∣∣∣∣σ⊤V

∣∣∣∣2 yields

c̃ =

[
1
m2

X − σ⊤B̃(V ,V )− σ⊤V̇
]
· σ⊤V

||σ⊤V ||2
. (7.24)

Because V is unknown and has to be inferred, Equation (7.24) does not allow us to solve exactly

for c̃. As already mentioned, σ⊤V and σ⊤V̇ are determined through Ẋ and Ẍ. However,

σ⊤B̃(V ,V ) on the right-hand side of Equation (7.24) is unknown. Under the assumption that

v ≈ V , we replace this term with σ⊤B̃(v,v) to approximate c̃ using

c1(t) =

[
1
m2

X − σ⊤B̃(v,v)− σ⊤V̇
]
· σ⊤V

||σ⊤V ||2
. (7.25)

We remark that the denominator in the expression for c1(t) must be nonzero. However, from an

analytic point of view, it is unclear whether V passes through 0 as the system evolves forward

in time. In general, this question is related to whether there are points on the attractor with

V = 0 and, specifically, whether there are points with σ⊤V = 0.

Now substitute this approximation into (7.1c) to obtain

dv

dt
+ B̃(v,v) + c1(t)v =

1

m2
σX. (7.26)

Figure 7.3 shows that convergence is achieved for c̃ = 22. However, for c̃ = 21, not only does

c1(t) fail to recover the unknown value of c̃, but it eventually goes negative and v blows up.

Before proceeding, it is instructive to examine the expression for c1(t) given in Equation (7.25) to

understand what terms cancel in order to gain c̃, and to highlight the fact that the approximation

deteriorates as the denominator decreases. To do this, we substitute Equation (7.1b) to obtain

c1(t) =

 1
m2

X − σ⊤B̃(v,v) + σ⊤

B̃(V ,V ) + c̃V −
1

m2
σX

 · σ⊤V

||σ⊤V ||2
(7.27)

=

[
σ⊤
(
B̃(V ,V )− B̃(v,v)

)
+ c̃σ⊤V

]
· σ⊤V

||σ⊤V ||2

=
σ⊤
(
B̃(V ,V )− B̃(v,v)

)
· σ⊤V

||σ⊤V ||2
+ c̃.
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Although an analytic treatment of this term appears beyond reach, we can numerically observe

the denominator and note that when it gets smaller, our approximation of c̃ may become less

accurate. Also note that the better the cancellation between the two bilinear terms B̃(V ,V )

and B̃(v,v), the better our approximation of c̃ will be. Ideally, ||V − v|| → 0 hand in hand with

c1(t) → c̃. We emphasize, however, that unexpected smallness of
∣∣∣∣σ⊤V

∣∣∣∣ might spoil this even

when c̃ is large.

Figure 7.3: Time evolution of c1(t) as governed by Equation (7.26) with a warmup of T = 50,
a run time of T = 20, h = 1/2048, c̃ = 21, and our standard parameter regime. Sometimes,

the solution blows up (left), and other times it simply fails to converge (right).

Figure 7.3 illustrates the evolution of c1(t) when c̃ = 21. In the graph on the left, the solution

blows up before t = 20. Out of 100 random trials, this happened 89% of the time. Numerically,

what seems to happen is that our approximation v of V degrades to the point where c1(t) <

0. Subsequently, energy is pumped into Equation (7.26): i.e., the damping is converted into

exponential growth, and the approximation v becomes even worse. At this point, we reach the

stability limits of our numerical scheme, and the floating point arithmetic overflows to the point

that we get NaN. We remark that no blowup occurred in the graph on the right, although it may

at a later time if a longer simulation is run.
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Although c̃ = 21 resulted in convergence when c was known, as shown in Figures 6.1 and 6.5

having to estimate c and V does not result in good estimates of convergence when we use

Equation (7.26). This is not entirely unexpected. When c is larger, there is greater dissipation,

and it becomes easier to solve for c. This is illustrated in Figures 7.4 and 7.5.

Figure 7.4: Time evolution of c1(t) as governed by Equation (7.26) with a warmup of T = 50,
a run time of T = 20, h = 1/2048, c̃ = 23, and our standard parameter regime.

Even though the calculations in these figures indicate a good skill in recovering both c̃ and V ,

we still have the difficulty that the denominator in c1(t) is not well controlled. In particular, the

approximating solution sometimes blows up when the experiment is performed with the same

parameters but the reference solution is warmed up from a different random initial condition.

Before considering changes to regularize the denominator, we first explore the idea of improving

the cancellation in the numerator.

For example, more cancellation may occur if, instead of B̃(v,v), we used B̃(PV +Qv, PV +Qv)

for the approximation to obtain

c2(t) =
σ⊤
(
B̃(V ,V )− B̃(PV +Qv, PV +Qv)

)
· σ⊤V

||σ⊤V ||2
+ c̃. (7.28)
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Figure 7.5: Time evolution of c1(t) as governed by Equation (7.26) with a warmup of T = 50,
a run time of T = 20, h = 1/2048, c̃ = 24, and our standard parameter regime.

Figure 7.6: Percent of approximating solutions computed using c1(t) compared with those
computed using c2(t) that blow up on the time interval [0, 20] from an ensemble of 100 reference

solutions.

We again remark that PV is known from Ẋ and Qv is obtained through the evolution of

Equation (7.26) with c1 replaced by c2.
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To compare the approximations of c̃ obtained from c1 and c2 for each value of c̃ in the range

from 21 to 26, we consider an ensemble of 100 reference solutions. For each c̃, each solution in its

ensemble is obtained starting with a random initial condition, which is then warmed up for time

T = 50 so that it reflects the long-term dynamics from the choice of c̃ and other parameters. At

this point, we start computing an approximating solution v using Equation (7.26) and another

one using the same equation except with c2.

Figure 7.6 characterizes how the tendency of the approximating solution to blow up depends on

the value of c̃ and whether c1 or c2 is used to approximate c̃. Note that as c̃ increases, it is less

likely that the solution v will blow up. Note also that there is not that much difference between

c1 and c2 in terms of what percentage of approximations blow up. We remark that it is difficult

to compare the average error in the two different ways of approximating v given the tendency

of the approximations to blow up.

One possible remedy is to introduce a lower bound on our approximation of c̃. For example, if

it were known that c̃ ≥ 10, we could compute v as

dv

dt
+ B̃(v,v) + max(10, ci(t))v =

1

m2
σX. (7.29)

The advantage of Equation (7.29) is that it ensures there is a dissipation of at least 10 in the

v equation, regardless of how bad our approximation ci(t) is. The real problem being avoided

here is when ci(t) < 0, at which point energy is being injected into the system; this problem is

resolved by imposing a cutoff. This allows us to prove

Theorem 7.2. Let v be governed by Equation (7.29). Then ||v|| remains uniformly bounded in

time regardless of whether v is synchronized by V . Specifically, we have

||v||2 ≤ ||v0||2 +
L1

c2
for all t, and lim sup

t→∞
||v||2 ≤ L2

c
, (7.30)

where L1 and L2 are given in (6.6) and (6.8), respectively.

Proof. The proof is similar to that of Theorem 6.1. Since we have chosen 10 to be the minimum

cutoff for our estimates of c̃, it is reasonable to assume c̃ ≥ 10. In this case, Lemma 5.1 provides

bounds on ψ = m1 ||X||2 +m2 ||V ||2 . In particular,

ψ ≤ ψ0e
−αt +

ν

α
(1− e−t), where α = 2− 1

δ
and ν = m1δ ||F ||2 .

Here, δ > 1
2 .
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Next, we take (7.29) and dot it with v to get

1

2

d

dt
||v||2 +max(10, ci(t)) ||v||2 =

1

m2
σX · v. (7.31)

Consequently,
1

2

d

dt
||v||2 + 10 ||v||2 ≤ 1

m2
σX · v. (7.32)

Taking c = 10 allows us to finish the proof as in Theorem 6.1.

We remark that the above theorem guarantees that there is no blowup anymore. This is further

illustrated numerically by Figure 7.7. On the left, the approximation c1(t) < 0 around t = 3.0,

which leads to blowup of our approximating solution v. On the right, the cutoff of c = 10 takes

effect around the same time and prevents the blowup. The grayed-out part of the trajectory

illustrates the values of c1(t) that were replaced by c = 10.

Figure 7.7: Time evolution of c1(t) as governed by Equation (7.26) with a warmup of T = 50,
a run time of T = 20, c̃ = 24, and our standard parameter regime.

Now that we have removed the blowup, we can do a comparison of the trajectories calculated

using c1(t) and c2(t). Figure 7.8 shows that in this particular experiment, convergence occurs at

c̃ ≈ 24.5 when either c1(t) or c2(t) is employed; note, however, that in the case of c2, the lengths
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of the whiskers do not visually decrease to 0 until c̃ ≈ 25. At the same time, when c̃ = 23.5,

the inner quartile range has already collapsed onto 0, which suggests that the approximation

of V by v is good for much of the time with an occasional loss of synchronization represented

by the long whiskers. Again, no outliers have been removed from the box plots. Note that the

tops of most whiskers exceed 1.0; this indicates that at some point in time, v lost synchronicity

with V and went wrong. This likely occurred because max(ci(t), 10) = 10 numerous times in

the calculation. This is important because in an application, losing synchronization means the

prediction is poor.

Figure 7.8: Statistics of the relative error in the approximation v of V in Equation (7.29),
using c1(t) (left) and c2(t) (right) as defined in Equations (7.25) and (7.28), respectively, with
a warmup of T = 50, a run time of T = 72000 and sampled every ∆t = 20, and our standard
parameter regime. The relative error is less than the blue dots 95% of the time and less than
the purple dots 90% of the time. The tops of the whiskers represent the maximum relative

error. Note that the whiskers go away when c ≳ 24.5.
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Chapter 8

Near-Continuous-in-Time

Observations

Mathematically knowingX continuously in time determines Ẋ and Ẍ, but practical observations

are only approximately continuous in time and may contain errors. Assuming observations

Xn = X(tn) are made at times tn = t0 + δn, we note that δ must be much smaller than the

decorrelation timescale for the observations of X to be considered approximately continuous in

time. In this case, we wish to determine whether Ẋ and Ẍ may be approximated by finite

differences. For example, our approximations to second order can be written as

Ẋ(tn) ≈ D1Xn =
Xn+1 −Xn−1

2δ
(8.1)

and

Ẍ(tn) ≈ D2Xn =
Xn+1 − 2Xn +Xn−1

δ2
. (8.2)

In the numerics, we take δ = h and note that changing h and consequently δ will affect the

results. Of course, replacing h by h/2 and setting δ = 2h would also yield similar results.

From these, we obtain

σ⊤V (tn) ≈ S1 = −m1

(
D1Xn +B(Xn,Xn) +Xn − F

)
(8.3)

and

σ⊤V̇ (tn) ≈ S2 = −m1

(
D2Xn +B(Xn,D1Xn) +B(D1Xn,Xn) +D1Xn

)
, (8.4)
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and we therefore obtain a piecewise constant approximation for c1(t) given by

c1(t) ≈ ξ1(tn) =

[
1
m2

Xn − σ⊤B̃
(
v(tn),v(tn)

)
− S2

]
· S1

||S1||2
for t ∈ [tn, tn+1). (8.5)

and for c2(t),

c2(t) ≈ ξ2(tn) =

[
1
m2

Xn − σ⊤B̃
(
σS1 +Qv(tn), σS1 +Qv(tn)

)
− S2

]
· S1

||S1||2
. (8.6)

We note that the approximations for Ẋ and Ẍ involve observations of X in the future. This is

not a problem, as we can evolve the approximating solution lagged by one unit of time compared

to the free-running solution. In particular, we evolve

dv

dt
+ B̃(v,v) + max(ξi(tn), 10)v =

1

m2
σXn for t ∈ [tn, tn+1), (8.7)

noting that ξ1(tn) involves observations of X(tn+1).

We note that obtaining an accurate approximation for Ẋ from observational measurements is a

fairly difficult task when there is noise in the measurements. Even more difficult would be an

accurate approximation of Ẍ. We therefore consider a modification of Equation (7.25) to obtain

an approximation for the unknown value c̃ that does not involve Ẍ.

c3(t) =

[
1
m2

X − σ⊤B̃(v,v)− σ⊤v̇
]
· σ⊤V

||σ⊤V ||2
. (8.8)

Here, we have replaced σ⊤V̇ with σ⊤v̇, which does not involve Ẍ and we know exactly through

our computation of the approximating solution v.

Upon substituting, where v̇ is given by Equation (7.29), note that the X and B̃ terms cancel,

and we obtain

c3(t) = max(c3(t), 10)
σ⊤v · σ⊤V

||σ⊤V ||2
= max(c3(t), 10)

∣∣∣∣σ⊤v
∣∣∣∣

||σ⊤V ||
cos θ, (8.9)

where θ is the angle between σ⊤V and σ⊤v.

Intuitively, if
∣∣∣∣σ⊤V

∣∣∣∣ > ∣∣∣∣σ⊤v
∣∣∣∣, this has the tendency to make the approximation c3(t) larger,

which subsequently increases the dissipation in the equation governing v. This would then

decrease ||v|| . Similarly,
∣∣∣∣σ⊤V

∣∣∣∣ < ∣∣∣∣σ⊤v
∣∣∣∣ decreases the dissipation and causes ||v|| to increase.
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All this is further affected by the angle θ between the approximating solution and the reference

solution.

Unfortunately, the definition given in (8.8) is circular. In order to compute v̇(t), we need c3(t);

but in order to compute c3(t), we need v̇(t). Since c̃ is a constant, we suppose the approximations

are slowly varying; therefore, c3(t− δ) ≈ c3(t).

We now obtain the following piecewise constant approximation of c̃ similar to ξ1 given by

c3(t) ≈ ξ3(tn) = max(ξ3(tn−1), 10)
σ⊤v(tn) · S1

||S1||2
for t ∈ [tn, tn+1), (8.10)

and ξ3(t0) = 10. Note that ξ3 is now defined recursively and no longer circular.

Figure 8.1: Time evolution of ξ1(t) as governed by Equation (7.26) with a warmup of T = 50,
a run time of T = 20, h = 1/2048, c̃ = 21, and our standard parameter regime. Sometimes,
the solution will likely blow up (left), and other times it will simply fail to converge (right).
Note that the gray areas in the left figure represent times when ξ3 < 10; these are the times

when the solution is likely to blow up if ξ3 were allowed to go below 10.

Figure 8.1 illustrates the evolution of max(10, ξ1(t)) when c̃ = 21. In the graph on the left, the

trajectory repeatedly goes below 10, meaning that there are multiple instances when the solution

could blow up if not for the lower limit of 10 on our approximation of c̃. Note that Theorem

7.2 still applies with slight modifications in this case. Out of 100 random trials, the majority of



88

the trajectories repeatedly went below 10. Similar results occurred when 100 random trials were

performed with both ξ2 and ξ3.

As in Chapter 7, we now compare the trajectories calculated using ξ1, ξ2, and ξ3, and we look for

trajectories that converge for c̃ = 23 and c̃ = 24. However, as shown in Figure 8.2, it is difficult

to determine whether convergence occurs solely on the basis of trajectories of max(10, ξ1) and

the relative errors. In Chapter 7, the relative errors reach numerical zero, but here, we do not

observe this. Instead, the relative error lingers around 10−5; this occurs in the cases of apparent

convergence and obvious failure to converge.

The reader should note that these figures are representative of the results in 100 random trials;

i.e., for ξi with i from 1 to 3, and for large values of c̃, we did not observe convergence to

numerical zero. This is due to the inherent errors in approximating the solution using finite

differences at discrete points in time.

Figure 8.2: Time evolution of ξ1(t) (left) and ξ2(t) (right) as governed by Equation (8.7) with
a warmup of T = 50, a run time of T = 20, h = 1/2048, c̃ = 24, and our standard parameter

regime.

To better understand the regimes in which numerical convergence is likely to occur when using

ξ1, we perform statistics on the errors for values of c̃ varying from 21 to 35 over very long

timescales. As Figure 8.3 illustrates, synchronization is less likely to occur for c̃ < 27 and can
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be expected, if not assumed, to occur for c̃ > 27. The reader should note that results similar

to ξ1 are obtained with ξ2. However, ξ3 demonstrates the improved ability to recover both the

unknown parameter c̃ along with the small scales represented by V . In particular, the error

levels when ξ3 is used and c̃ ≈ 24 are about the same as when ξ1 is used and c̃ ≈ 25.

Plausibly, the improvement with ξ3 is due to not using the finite difference approximation D2 for

Ẍ and subsequently S2. Even though σ⊤v̇ may be a poor approximation of σ⊤V̇ , substituting

the exact value of v̇ results in cancellations in the calculation of ξ3(t) and avoids the additional

errors in S2. Although the improvement between c̃ = 24 and c̃ = 25 may seem modest, the

advantages of ξ3 are likely to become more pronounced when practical observations include

errors that make the approximation of the second derivative even worse. Adding noise to the

discrete time to demonstrate even more clearly the superiority of ξ3 is a topic that we save for

future investigation.
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Figure 8.3: Statistics of the relative error in the approximation v of V in Equation (8.7),
using ξ1(t) as defined in Equation (8.5) (left) and using ξ3(t) as defined in Equation (8.10)
(right) with a warmup of T = 50, a run time of T = 72000 and sampled every ∆t = 20, and our
standard parameter regime. The relative error is less than the magenta dots 95% of the time
and less than the red dots 90% of the time. The tops of the whiskers represent the maximum

relative error.
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Chapter 9

Conclusion

In this research, we have considered two inverse problems: estimating V from observations of

X when c, F,m1, and m2 are known; and simultaneously estimating V and an unknown c from

observations of X. Throughout, we take F = 20, m1 = 20, and m2 = 0.002, and we vary c.

These questions were made possible by first rescaling the equations to isolate the weights in the

coupling from the dissipation.

Part of the study involved choosing suitable values for c, F,m1, and m2 such that the resulting

dynamics of the two-layer Lorenz ’96 system are interesting and reflect the physics of synoptic

and mesoscale motion in realistic atmospheric problems. One of the features of such problems

is the tendency of the mesoscales to affect the motion of the large scales. These tendencies were

parameterized by Wilks using a fourth-degree polynomial in order to determine the model error

when substituting the one-layer Lorenz model in place of the two-layer; instead of model error,

our research focuses on solving inverse problems.

For our solution techniques and results to be interesting, they need to be effective when the

underlying dynamics governing X and V are complicated. This is the case when the effects

of V on X are significant and unpredictable as seen by the tendencies and the error in the

polynomial fit of the tendencies. Therefore, rather than fixing the degree of the polynomial

parameterization, we instead use the BIC to select the degree. When the selected degree is at

least 4, we infer that the mesoscales are playing an important role in the dynamics; in particular,

values of c ≲ 30 lead to an interesting inverse problem.
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In passing, we note that the BIC depends on independent observations. To this end, we con-

sidered the autocorrelation of the large slow scales represented by X. The autocorrelation was

less than 0.01818 for tℓ ≥ 20, which is essentially the same as if the observations were truly

independent.

We discovered that when c is known, the inverse problem of recovering V from observations of X

is solvable for c ≳ 19.5 using a synchronization approach that involves driving an approximating

solution v with the observations. The inverse problem when both c and V are unknown is

solvable for c ≳ 24. In particular, we obtain an approximation for c from derivative information

of the observations, and subsequently we can recover these two quantities simultaneously when

c ≳ 24.

We note that there are other data assimilation techniques that could be used to help recover both

c and V : e.g., 4D-variational methods and particle filters based on Bayesian statistics. Even

so, some of the basic building blocks by which these methods work rely on the synchronization

effects demonstrated in the present research; thus, we hope that the simple techniques of solving

the inverse problem considered in this dissertation form an important foundation upon which

more complicated techniques may be based.

Our final results consider the case when c and V are unknown and X is observed at discrete

moments in time. We have shown that the same method of solving for c when the observations

are continuous in time works when the derivatives of X are replaced with finite differences.

Further simplifications allowed us to work with only the finite difference approximation of the

first derivative. In particular, we obtain partial synchronization of v with V and an estimate of

c to an accuracy within 1% that could be useful in real-world applications. To that end, there

are many ways this research could be extended, which we discuss in the next section.
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Chapter 10

Future Work

Throughout our work, we observed X and tried to determine V , and we found a parameter

regime in which synchronization occurred. But supposing X does not determine V via the

coupling, could we still determine c? Perhaps one could do this by looking at the coupled

equations (7.1a), (7.1b), and (7.1c) and minimizing lim supt→∞ ||V − v|| to determine if one can

efficiently find c.

Another extension involves the structure of X. Suppose X has a coherent structure but c is such

that ||V − v|| ̸→ 0. Could we introduce something into the assimilation step (e.g., a Kalman

filter or some sort of smoothing) to make ||V − v|| → 0?

Yet another extension involves using a variational method to solve for c. The advantage might

be that one could identify the exact value of c when c is not as large as in the sequential method

explored in Chapter 7.

In Section 6.2, it was shown that choosing σ to be a random matrix with orthonormal columns

made the inverse problem significantly easier to solve. This leads one to ask how much the

original coupling matrix would have to be modified to obtain the same results as the random

matrix. Perhaps only a partially randomized matrix with a few oscillators coupled in different

ways would be enough to obtain an inverse problem that is easier to solve.

Convection in the two-layer Lorenz ’96 system is represented by two terms B and B̃. These terms

are notable for being mirror images of each other. Physically, this mirror image makes sense in

the sense of two interlocking gears spinning in opposite directions. One interesting question for

further research is what happens if the same convection term is used for both layers. Do any of
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the results reported in this dissertation depend on the mirror-image relationship between B and

B̃?

Another interesting line of further research is one where the unobserved variables represented by

V are modeled using approximate dynamics with reduced dimensionality. This is a generalization

of solving for c, in which the actual dynamics are unknown and other parameters have to be

tuned. Intuitively, if we want to view the fine scale as an arbitrary dimensional refinement

of the scales that exist interpolated between the large scale, we may ask that the weights scale

proportionately to the resolution of the fine scale. For example, the least-squares approach could

be generalized to find parameters in the model of the hidden dynamics which may or may not

be physical.

In Section 6.4, we used Tikhonov regularization to solve the sequence of least squares problems

that occur in the Gauss–Newton algorithm when solving the algebraic constraints. It may be

possible to enhance the efficiency of this technique and extend it to PDE problems by using the

singular value decomposition instead of Tikhonov regularization.

In the case where X is observed continuously (and derivative information about X and σ⊤

is therefore known), there are two possibilities for future work. One could reduce the number

of small oscillators per large oscillator: i.e., choose a smaller value of J so that each alge-

braic constraint resolves a larger proportion of the unresolved scales per degree of the poly-

nomial. Alternatively, one could perform the same calculations for our usual value of J , but

using extended-precision arithmetic; this way, the rounding errors that appear when evaluating

high-degree polynomial constraints and their derivatives are lessened.

Note also in the context of a partial differential equation that governs motion with a wide range of

length scales, the algebraic constraints which appear through the nonlinear term naturally involve

the most significant of the unobserved scales first. Again, this may lead to better performance

of the constraints in real applications, and numerical experiments will be needed to test this

hypothesis.
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Appendix A

Numerical Methods

When numerically solving a coupled system of equations, one must ask if an adaptive method is

feasible. Even if a method is easy to use and of a higher order than a classical method, the use

of different time steps at different points in the computation can lead to rounding errors which

cause mathematically identical computations to diverge. To illustrate the problem, we consider

the system

dX

dt
+B(X,X) +X = F − 1

m1
σ⊤V , (A.1)

dV

dt
+ B̃(V ,V ) + cV =

1

m2
σX, (A.2)

dv

dt
+ B̃(v,v) + c̃v =

1

m2
σX, (A.3)

where m1 = 20,m2 = 0.002, F = 20, and c = 20.

Note X and V are coupled in both directions and v is coupled with X but not vice versa. We

perform two simulations with the same initial conditions and parameter regimes except c̃ = 9

in the first and c̃ = 10 in the second. We expect these computations to be mathematically

identical due to the one-way coupling of X and v, but when the computations are performed

with the TsitPap8 method (see [21]), the trajectories diverge. Similar results are obtained using

the TsitPap5 method. However, if we perform the same two simulations using the classic RK4

method with a fixed step size, the calculations of X and V are identical (see Figure A.1).

The difference in these two sets of computations is caused by an inherent difficulty in using an

adaptive method to compute Equations (A.1)–(A.3). Different changes in the step size based
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Figure A.1: Evolution in time of ||X|| for c̃ = 9.0 (blue) and c̃ = 10.0 (orange) in Equation
(A.3). Equations (A.1)–(A.3) are solved using (left) the adaptive TsitPap8 method included
in the DifferentialEquations.jl package in Julia, and (right) the classical RK4 method with a

fixed step size. The trajectories in the latter are offset by a height of 1 for readability.

on the computation of v create different rounding errors, which accumulate over time and cause

the reference solution X to differ. The trajectories illustrated in Figure A.1 were obtained using

absolute and relative tolerances of 10−8. Similar results occurred with other tolerances.

Since it is not physical if the prediction affects the physical process that one has been observing,

from a mathematical point of view the simulation run on the weather forecasting computer should

not affect the real weather. Using an RK4 method, shown for the fixed step size of h = 0.0001

in Figure A.1, avoids this problem, as the two simulations have the same discrete dynamics for

X and V at each step. For this reason, the rest of the computations which appear in this paper

were performed using RK4 with a fixed step size.
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Appendix B

Code Samples

In this appendix, we provide a few excerpts of programs written in Julia that were used for the

simulations which appear in this dissertation.

B.1 Definitions

This program contains the definitions of commonly used constants and functions. These were

employed throughout much of our research and have been combined into a single file. Note that

sigma on line 54 was converted into a sparse matrix; this saved significant computational time.

1 using Random, Plots, DelimitedFiles, SparseArrays, LinearAlgebra

2 using Statistics, Polynomials

3

4 kplus1 = [[2:K;]; 1]

5 kminus1 = [K; [1:K-1;]]

6 kminus2 = [K-1; K; [1:K-2;]]

7

8 jplus1 = [[2:JK;]; 1]

9 jplus2 = [[3:JK;]; 1; 2]

10 jminus1 = [JK; [1:JK-1;];]

11

12 function B(X, Y)

13 return X[kminus1].*(Y[kminus2] - Y[kplus1])



98

14 end

15

16 function Bt(X, Y)

17 return X[jplus1].*(Y[jplus2] - Y[jminus1])

18 end

19

20 function dXdt(X,V)

21 return B(X,X) - X .+ F - 1.0/m1*sigma’V

22 end

23

24 function dVdt(X,V,c)

25 return Bt(V,V) - c*V + 1.0/m2*sigma*X

26 end

27

28 function rk4twolayer(X, V, h, ct)

29 k1x = dXdt(X, V)

30 k1V = dVdt(X, V, ct)

31

32 k2x = dXdt(X + h/2*k1x, V + h/2*k1V)

33 k2V = dVdt(X + h/2*k1x, V + h/2*k1V, ct)

34

35 k3x = dXdt(X + h/2*k2x, V + h/2*k2V)

36 k3V = dVdt(X + h/2*k2x, V + h/2*k2V, ct)

37

38 k4x = dXdt(X + h*k3x, V + h*k3V)

39 k4V = dVdt(X + h*k3x, V + h*k3V, ct)

40

41 X .= X + h/6*(k1x + 2*k2x + 2*k3x + k4x)

42 V .= V + h/6*(k1V + 2*k2V + 2*k3V + k4V)

43 end

44

45 const J = 32

46 const K = 8

47 const JK = J * K

48 global sigma = zeros(JK, K)

49 for k = 1:K

50 for j = J*(k-1)+1:J*k

51 sigma[j, k] = 1.0/sqrt(J)
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52 end

53 end

54 sigma = sparse(sigma)

55

56 const m1 = 20.0

57 const m2 = 0.002

58 const F = 20.0

B.2 Random Initial Conditions

Many of our experiments considered an ensemble of long-time randomly chosen reference solu-

tions. These were created by choosing a random initial condition given by the function below,

which was then warmed up for T = 50 units of time. Note that X and V are uniformly dis-

tributed on the interval [−1/2, 1/2]; in practice, however, this is a minor point, as the warmup

time coupled with the nonlinear chaotic dynamics causes the initial distribution to be forgotten.

1 function makeIC(seed)

2 Random.seed!(seed)

3 X = rand(Float64, K) .- 0.5

4 V = rand(Float64, JK) .- 0.5

5 return X, V

6 end

B.3 Data Sampling

This program calculates the tendencies as discussed in Section 4. Note that line 20 writes out

samples of 1
m1
σ⊤V every 40960 time steps, which translates to ∆t = 20.

1 function drdt(V)

2 return 1.0/m1*sigma’V

3 end

4

5 function getRegData(c)

6 T = 2048*2*360000

7 h = 1/2048

8 X0, V0 = makeIC(1)



100

9 dr = zeros(K)

10 Xdr = zeros(2, length(X0))

11 X = copy(X0)

12 V = copy(V0)

13 dr = copy(dr0)

14 for n = 1:11*T

15 rk4twolayer(X, V, h, c)

16 dr = copy(drdt(V))

17 if(n == T)

18 Xdr = [X[1] dr[1]]

19 end

20 if(n % 40960 == 0 && n > T)

21 Xdr = [Xdr; [X[1] dr[1]]]

22 end

23 end

24 writedlm("output_f_20_c_"*string(c)*".txt", Xdr)

25 end

26 gc = parse(Int64, ARGS[1])

27 println("Running with c = ", gc)

28 getRegData(gc)

29

B.4 Finding c

This program calculates c1(t) from Section 7.2 and plots the relative errors in ||V − v|| / ||V ||
and |c̃− c1|/c̃. The definitions of commonly used constants and functions are given in B.1.

1 function dvdt(X, V, v)

2 dV = dVdt(X, V, ct)

3 c = ((X/m2 - sigma’*(Bt(v, v) + dV))’*(sigma’V))[1]/norm(sigma’V)^2

4 return dVdt(X, v, c)

5 end

6

7 function rk4unknownC(X, V, v, h)

8 k1x = dXdt(X, V)

9 k1V = dVdt(X, V, ct)

10 k1v = dvdt(X, V, v)
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11

12 k2x = dXdt(X + h/2*k1x, V + h/2*k1V)

13 k2V = dVdt(X + h/2*k1x, V + h/2*k1V, ct)

14 k2v = dvdt(X + h/2*k1x, V + h/2*k1V, v + h/2*k1v)

15

16 k3x = dXdt(X + h/2*k2x, V + h/2*k2V)

17 k3V = dVdt(X + h/2*k2x, V + h/2*k2V, ct)

18 k3v = dvdt(X + h/2*k2x, V + h/2*k2V, v + h/2*k2v)

19

20 k4x = dXdt(X + h*k3x, V + h*k3V)

21 k4V = dVdt(X + h*k3x, V + h*k3V, ct)

22 k4v = dvdt(X + h*k3x, V + h*k3V, v + h*k3v)

23

24 X .= X + h/6*(k1x + 2*k2x + 2*k3x + k4x)

25 V .= V + h/6*(k1V + 2*k2V + 2*k3V + k4V)

26 v .= v + h/6*(k1v + 2*k2v + 2*k3v + k4v)

27 end

28

29 function findC(X, V, h, steps, imod)

30 cvals = zeros(steps÷imod+1)

31 vNorms = zeros(steps÷imod+1)

32 for _ in 1:2048*50

33 rk4twolayer(X, V, h, ct)

34 end

35 v = P*V

36 for i in 1:steps+1

37 c = estimateC(X, V, v)

38 if i % imod == 0

39 cvals[i÷imod] = abs(c - ct)/ct

40 vNorms[i÷imod] = norm(V - v)/norm(V)

41 end

42 rk4unknownC(X, V, v, h)

43 end

44 return cvals, vNorms

45 end

46

47 function makePlots(ct)

48 data = readdlm("data-ct$ct.txt")
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49 plot(data[:,1], data[:,2], xlabel = "Time", ylabel = "Relative Error",

50 xlims = (0, 100), ylims = (1e-20, 1), yscale=:log10, label = "||V - v|| / ||V||")

51 display(plot!(data[:,1], data[:,3], xlabel = "Time", ylabel = "Relative Error",

52 title = "Relative Errors when ct = $ct", legend=:bottomleft,

53 xlims = (0, 100), ylims = (1e-20, 1), yscale=:log10, label = "|ct - c1| / ct"))

54 savefig("plots-$ct.pdf")

55 end

56

57 function runfindC()

58 X, V = makeIC()

59 steps = 2048*100

60 T = 1:steps

61 h = 1/2048

62 imod = 1

63 cvals, vNorms = findC(X, V, h, steps, imod)

64 writedlm("data-ct$ct.txt", [(0:imod:steps)*h cvals vNorms])

65 end

66

67 cn = 21.5:0.5:26

68 for c in cn

69 global ct = c

70 println("c = ", ct)

71 runfindC()

72 makePlots(ct)

73 end
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