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Abstract
To examine whether stream nitrogen concentrations in forested reference catchments have
changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr
of data collected from 22 catchments at seven USDA Forest Service Experimental Forests.
Trends in stream nitrogen presented high spatial variability both among catchments at a site
and among sites across the USA. We found both increasing and decreasing trends in monthly
flow-weighted stream nitrate and ammonium concentrations. At a subset of the catchments,
we found that the length and period of analysis influenced whether trends were positive,
negative or non-significant. Trends also differed among neighboring catchments within several
Experimental Forests, suggesting the importance of catchment-specific factors in determining
nutrient exports. Over the longest time periods, trends were more consistent among
catchments within sites, although there are fewer long-term records for analysis. These
findings highlight the critical value of long-term, uninterrupted stream chemistry monitoring
at a network of sites across the USA to elucidate patterns of change in nutrient concentrations
at minimally disturbed forested sites.

Keywords: nitrate, ammonium, trends, stream, forested catchment, reference catchments
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Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1. Introduction

Human alteration of the nitrogen (N) cycle is a major
environmental issue that crosses spatial scales from the
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catchment to the globe. Energy and food production have led
to a ten-fold increase in reactive forms of N in terrestrial
ecosystems from 1860 to 2005 (Galloway et al 2008).
Reactive N is routed to freshwaters through surface runoff and
groundwater discharge or atmospheric deposition, resulting
in alteration of the forms and concentrations of N species,
which may result in aquatic eutrophication and altered stream
functions (Stoddard 1994). Despite the implementation of the
Clean Water Act (1972) and the Clean Air Act (1970), stream
and groundwater N concentrations have continued to increase
in large areas of the USA during recent decades (Smith et al
1987, Lettenmaier et al 1991, Rupert 2008, Sprague et al
2011) and have been predicted to further increase in the future
(Howarth et al 2002). However, much of what is known about
temporal changes in stream water quality originates from
studies where catchments have been altered by land use and
land cover change.

In contrast, we know little about temporal trends in
N dynamics at forested, headwater streams with minimal
human impacts, even though they serve as a benchmark
against which we can evaluate more heavily human-modified
catchments. Trends in stream-water nutrients in the relative
absence of changes in land use or land cover can be evaluated
using long-term data from unmanaged forested headwater (i.e.
reference) catchments, such as those in the USDA Forest
Service Experimental Forests and Ranges (EFR) network.
These datasets represent the most complete information
available on stream N concentration for reference sites
because of their length (e.g., Hubbard Brook Experimental
Forest, HJ Andrews and Coweeta Hydrologic Laboratory
have been analyzing stream chemistry since 1963, 1969, and
1972 respectively), because of their sampling frequency (i.e.,
at least biweekly for all sites except HJ Andrews where
they collect three-weekly composite samples), and finally
because of their spatial coverage (EFRs encompass a suite of
climates and forest types across the USA). Data from these
reference catchments are frequently used in paired watershed
comparisons to evaluate effects of land use treatments,
assuming that in the absence of the perturbation under study,
both the reference and treatment catchments would behave
similarly.

Although stream chemistry trends in reference catch-
ments have been investigated at individual EFRs, a com-
parison of trends in reference sites across the country
has not occurred. Researchers at both Coweeta Hydrologic
Laboratory in North Carolina (Swank and Vose 1997) and
Fernow Experimental Forest in West Virginia (Peterjohn
et al 1996) observed increased stream N over the last
decades in reference catchments and attributed the trend
to higher N deposition, and changes in nutrient demand
and forest succession within catchments. At the Hubbard
Brook Experimental Forest in New Hampshire, stream nitrate
concentrations have been declining in recent decades after
increasing from 1963 into the 1970s (Likens and Bormann
1995, Campbell et al 2007). These trends in stream nitrate
at Hubbard Brook have not been explained by changes in
atmospheric deposition and are thought to be due in part to
the long-lasting effect of forest cutting in the early 1900s
combined with effects of changing climate (Bernal et al 2012).

Further, little is known about the synchrony of trends
among adjacent catchments within EFRs. Our study fills
this gap by analyzing trends in stream nitrate (NO3–N) and
ammonium (NH4–N) concentrations from forested reference
catchments in multiple EFRs across the USA. To evaluate
if stream N trends were synchronous with trends in likely
drivers, we examined correlations between trends in stream
N, streamflow, and ammonium and nitrate concentration in
atmospheric wet deposition.

2. Methods

We analyzed stream inorganic N from 22 independent forested
reference catchments in seven EFRs across the continental
USA and Puerto Rico (figure 1(a)); these span a wide
range of climatic, hydrologic and vegetation conditions (table
S1 available at stacks.iop.org/ERL/8/014039/mmedia). Each
catchment had a minimum of 12 yr of consistent, high
frequency stream chemistry data, daily streamflow data, and
weekly wet deposition chemistry collected nearby. These
catchments are considered reference because they have not
experienced direct anthropogenic disturbances other than
atmospheric deposition during the last 60 yr. A total of
559 yr of stream nitrate and 523 yr of stream ammonium data
collected at least biweekly were analyzed.

Trends were analyzed using the Seasonal Kendall test
(Hirsch et al 1982). This non-parametric, rank test has
been proven robust in evaluating trends in time series that
have strong seasonality. We selected this test because, in
comparison to other trend analysis methods (e.g., linear
regression, time series analysis, etc), the Seasonal Kendall
test does not make assumptions about the distribution of the
data and allows missing values and censored data without
biasing the analysis (Helsel 2005). The Seasonal Kendall
test is an extension of the Mann–Kendall test for monotonic
trends (Mann 1945). If (x1, y1), (x2, y2), . . . , (xn, yn) are
observations where X is time and Y is the object variable, the
Kendall S statistic can be computed from each data pair as:

S = P− N

where P is the number of Yi < Yj for all i < j and N is the
number of Yi > Yj for i < j.

S has a mean of zero and variance:

σ 2
= [n(n− 1)(2n+ 5)−6t(t − 1)(2t − 5)]/18

where t is the number of data pairs involved at any given time.
All observations below the detection limit are considered tied,
and the differences of all tied pairs are zero. The Seasonal
Kendall accounts for the effects of seasonality on trends by
combining the Mann–Kendall test computed on each of the
seasons separately (Hirsch et al 1982). Seasonal Kendall tau
ranges between −1 and +1 and is the ratio of the number of
positive differences minus the number of negative differences
to the number of pairs (discounted for ties). If there is
enough disparity between the number of positive and negative
differences, then tau is statistically significant.

We analyzed trends in monthly flow-weighted con-
centrations of nitrate and ammonium in streams, monthly
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Figure 1. (a) Locations of the Experimental Forests included in this study; averages from 1996 to 2007 are shown for (b) mean monthly
flow-weighted stream nitrate concentration, (c) mean annual streamflow, and (d) mean monthly flow-weighted stream ammonium
concentration in study catchments. Error bars are standard deviations of the mean. Horizontal black lines in (b) and (d) indicate minimum
detection limits. The mean and standard deviation were calculated from censored values after replacing all values below detection limit by
half of the maximum detection limit observed per site between 1996 and 2007.

nitrate and ammonium concentration in wet deposition, and
monthly streamflow (see table S2 available at stacks.iop.
org/ERL/8/014039/mmedia for more details about sampling
frequency, flow-weighted concentration calculations, and
detection limits). Prior to the analysis, stream concentrations
for each site were censored so that the highest detection
limit during the analysis period was used consistently. The
magnitude of the trend was assessed using the Sen slope (Sen
1968) which report the median change in value versus time
(slope) of all the possible pairs in the dataset including zero
differences. The existence of a significant trend with a Sen
slope of zero is possible when a large number of observations
are below the detection limit and therefore considered tied.
The analyses were performed in R v2.13 using the ‘Wq’ and
‘Kendall’ packages with a threshold for significance set to p <
0.05. To standardize analyses among catchments and sites,
trends were calculated for three different periods (calendar
years from 1996 to 2007, 1987 to 2007, and 1972 to 2007),
except for wet deposition. The longest period analyzed for
trends in wet deposition began in 1980 for the Andrews, 1985
for Luquillo, and 1978 for the rest of the sites.

To evaluate more fully the influence of the length and
period of the data record on trend detection, we conducted
additional analyses on stream N concentrations from HJ
Andrews and Hubbard Brook catchments. After analyzing
trends for a minimum period (1996–2007), we iteratively
reanalyzed trends after increasing the length of record in
1 yr increments for the full data record (1969–2007 for HJ
Andrews, 1964–2007 for Hubbard Brook).

To understand how trends in stream N relate to trends
in streamflow or to trends in N in wet deposition at a
national level, we performed correlation analyses (Kendall’s
tau) between the Sen slopes for stream nitrate concentrations
versus the Sen slopes for the potential drivers (i.e., streamflow,
ammonium and nitrate concentration in atmospheric wet
deposition) as well as stream ammonium versus potential
drivers.

3. Results

From 1996 to 2007, mean stream nitrate concentrations at
all EFR study catchments except Fernow were ≤0.16 mg
NO3–N l−1; average nitrate at Fernow was 0.75 mg
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Figure 2. Observed trends in monthly flow-weighted nitrate and ammonium concentration, streamflow, and nitrate and ammonium
concentration in wet deposition for three time periods, calculated using Seasonal Mann–Kendall. Red denotes increasing trends, gray
denotes no significant trends, and blue denotes decreasing trends for that period of time and catchment.

NO3–N l−1 (figure 1(b)). Ammonium concentrations in
streams were equal to or below 0.01 mg NH4–N l−1 at
19 of the 21 study catchments; concentrations higher than
0.01 mg NH4–N l−1 were observed at Marcell (0.14 mg
NH4–N l−1 at S2 and 0.05 mg NH4–N l−1 at S5). Most
of the ammonium values were below detection at Fernow
and Hubbard Brook (figure 1(d)). Catchments showed a
wide range of mean annual streamflow, ranging from a
low of 10.7 cm at Marcell-S5 to a high of 269.2 cm at
Luquillo-Q3 (figure 1(c)). Mean annual wet deposition of
dissolved inorganic N was highest at Fernow (5.6 kg ha−1)
and lowest at HJ Andrews (0.9 kg ha−1; table S1 available at
stacks.iop.org/ERL/8/014039/mmedia).

3.1. Trends over time in stream N concentrations

Stream nitrate concentrations, during the 1996–2007 period,
significantly decreased in 11 of 22 reference catchments,
increased in six, and showed no trend in five (figure 2). From
1987 to 2007, nitrate concentrations significantly decreased
in seven of 17 catchments and significantly increased in four
catchments. Over the 36 yr period between 1972 and 2007, the
four Coweeta catchments showed significant increasing trends
and the two catchments at Hubbard Brook and the two at HJ
Andrews showed significant decreasing trends (figure 2). The
slopes of the observed significant trends ranged between −10
and 8.2 µg NO3–N l−1 yr−1 (figure S1 available at stacks.iop.
org/ERL/8/014039/mmedia).

Stream ammonium concentrations, during the 1996–2007
period, significantly decreased in nine of 22 catchments
and increased in four. From 1987 to 2007, six of 13
catchments showed significant decreasing trends and four
showed significant increasing trends. During the 36 yr period

between 1972 and 2007, five of eight catchments (the
four Coweeta catchments and HJ Andrews-WS9) showed
significant increasing trends, and the two catchments at
Hubbard Brook showed decreasing trends (figure 2). The
slopes of the observed significant trends ranged between−0.7
and 0.8 µg NH4–N l−1 yr−1 (figure S1 available at stacks.iop.
org/ERL/8/014039/mmedia).

Within an EFR site, some reference catchments that
were close to each other displayed opposite trends in stream
N during the same time periods. For example, during
the shortest time period evaluated (1996–2007), stream
nitrate decreased at Coweeta-WS2 and Coweeta-WS18 but
increased at Coweeta-WS27 and Coweeta-WS36 (figure 2).
Similarly, during the 1983 and 1984–2007 period, stream
ammonium decreased at HJ Andrews-WS8 and increased for
HJ Andrews-Mack and HJ Andrews-WS2 (figures 3(g)–(j)).

Trends at some individual catchments were consistent
over the entire period of collection (e.g., negative nitrate
trends at HJ Andrews-WS9; figure 3(f)), whereas trends
at other catchments changed direction depending upon the
length of record analyzed. For example, HJ Andrews-Mack
showed increasing stream ammonium concentrations when
analyzing 25, 24, 23, 22 or 21 yr of record prior to 2007; no
significant changes in stream ammonium when considering
20–13 yr of record; and decreasing stream ammonium
concentration when analyzing 12 yr of record (figure 3(g)).
In addition, the shift between positive and negative trends did
not occur simultaneously among catchments or in nitrate and
ammonium concentrations.

3.2. Associated trends and relationships between them

Streamflow showed significant decreasing trends at HJ
Andrews, Fraser, and Coweeta-WS36 during the 1996–2007
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Figure 3. Mean monthly flow-weighted (a) stream nitrate and (b) stream ammonium concentrations at HJ Andrews and trends in (c)–(f)
nitrate and (g)–(j) ammonium concentrations at four HJ Andrews catchments. Trends are calculated for the recent 12 yr and then for longer
periods by adding successive 1 yr increments. Red denotes increasing trends, gray denotes no significant trends, and blue denotes
decreasing trends.

period, at HJ Andrews-WS9, Coweeta-WS18 and WS36
during the 1987–2007 period, and at HJ Andrews-WS9 and
Coweeta catchments during the 1972–2007 period (figure 2).

Average monthly nitrate concentration in wet deposition
decreased at Hubbard Brook and Fernow during all
three time periods, decreased at Coweeta and Marcell
during the 1978–2007 period, and increased at Luquillo
during the 1985–2007 period. Average monthly ammonium
concentrations in wet deposition increased at Coweeta and
Marcell during the three time periods and decreased at HJ
Andrews during the 1980–2007 period, and decreased at
Luquillo during the 1985–2007 period (figure 2).

Trends in stream nitrate concentration were negatively
correlated with trends in streamflow across the eight
catchments with data during the 1972–2007 period (Kendall’s
tau = −0.714, p = 0.013, n = 8), but not across all
catchments over the shorter time periods evaluated. No
relation was detected between trends in stream nitrate
concentration and nitrate concentration in wet deposition at
a national level. Trends in stream ammonium concentration
were negatively correlated with trends in streamflow
(Kendall’s tau = −0.622, p = 0.005, n = 13) and positively

correlated to trends in ammonium concentration in wet
deposition (Kendall’s tau = 0.620, p = 0.010, n = 13) at a
national level during the 1987–2007 period. The figures
representing nitrate concentration versus time at each of the
sites and the complete analysis of trends for Hubbard Brook
can be found in section S3 at stacks.iop.org/ERL/8/014039/
mmedia.

4. Discussion

Long-term data from reference forested catchments provide a
unique opportunity to evaluate complex patterns of stream N
concentrations over more than four decades across the USA.
Through synthesis of data from 22 reference catchments at
seven EFRs, we find that there are trends in stream N concen-
trations even at these minimally disturbed reference sites and
that they present considerable spatial and temporal variability
both among catchments within sites and among sites.

4.1. Spatial and temporal variability in trends

Nitrogen in human-altered streams and rivers of USA
has been shown to increase during recent decades (Smith
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et al 1987, Richards and Baker 1993, Johnson et al
2009, Dubrovsky et al 2010). However, in the reference
forested streams of the Northeast (Hubbard Brook), we
found decreasing trends in stream nitrate, which supports
the previous findings of Likens and Bormann (1995) and
Campbell et al (2007) for Hubbard Brook and Goodale et al
(2003) for the White Mountain region of New Hampshire.
Stream nitrate also declined in the Pacific Northwest (HJ
Andrews) and in Puerto Rico (Luquillo). Still, these trends
are not consistent at national or at local scales, since Fraser
in the Mountain West, and Fernow and half of the Coweeta
catchments in the South, showed increasing trends in nitrate,
suggesting that the controls on stream N concentrations vary
spatially among sites.

Adding to these complex spatial patterns of trends,
catchments within an EFR sometimes had opposing trends for
the same N species for the same period of time. For example,
we found opposing trends in stream nitrate concentrations
among catchments within Coweeta from 1996 to 2007 and in
stream ammonium at HJ Andrews from 1983/1984 to 2007.
Over longer time scales, trends among catchments within
sites tended to be more consistent, although fewer long-term
records were available for these analyses. Additionally, stream
nitrate and ammonium did not show consistent trends or
coincident timing in trend shifts. Because catchments from
the same site do not necessarily present the same direction in
trends during the same time period, extrapolation of trends in
space or across species of N should be made with extreme
prudence.

The length of record is a major factor influencing
detection of trends; trends for several catchments were not
consistent over time. The inclusion of additional years in
the time series analyzed shifted the direction or significance
of trends in a number of catchments. This highlights that
even when trends for short periods are statistically significant,
they are not necessarily indicative of longer-term patterns.
Therefore, there is need for caution in extrapolating trends
over time. It is also important to recognize that statistically
significant trends, even using the Seasonal Kendall test which
is more robust than regressions for analysis of trends, might
be ecologically insignificant. If the magnitude of change is
extremely small, such as observed for stream nitrate at the
HJ Andrews or stream ammonium at Hubbard Brook (figure
S1 available at stacks.iop.org/ERL/8/014039/mmedia), the
impacts of a significant trend on processes or functions may
be minimal.

Our data are unique because they represent high
frequency data of at least biweekly long-term sampling from
reference sites. The detectability of trends depends on each
site’s ability to precisely analyze solutes, but because of
the improvement of analytical methods over the duration of
these studies, detection limits may change over time. By
recensoring monthly flow-weighted concentrations prior to
the analysis and using the highest detection limit for the full
period included in the analysis: we avoided trend artifacts.
This meant that we were able to evaluate long-term trends that
were not influenced by differing detection limits over time.

4.2. N concentrations and magnitude of trends

In general, stream N concentrations at the forested reference
catchments included in this study were low in comparison to
concentrations found in urban or agricultural streams and in
the lower range of undisturbed catchments reported by other
studies (Clark et al 2000, Binkley et al 2004). In contrast
to what has been recently observed nationwide (Sprague
et al 2009), stream nitrate concentrations in our forested
reference sites showed a higher proportion of significant
trends (77% this study, 33% Sprague et al 2009) and a
higher tendency for decreasing trends in stream nitrate (50%
this study, 27% Sprague et al 2009). The slopes of the
trend observed in our reference streams (between −10 and
8.2 µg NO3–N l−1 yr−1) were in the middle range of
those observed by Sprague et al (2009) between 1993 and
2003 in streams with similar mean nitrate concentrations
(between −31.7 and 40.0 µg NO3–N l−1 yr−1). However,
the relative magnitude of change in stream N concentrations
should be considered when interpreting trends over time.
For instance, during the 1996–2007 period, stream nitrate
at Coweeta-WS2 and Coweeta-WS18 decreased by 0.3 µg
NO3–N l−1 yr−1 while increases of 1.6 and 0.8 µg
NO3–N l−1 yr−1 were observed at Coweeta-WS27 and WS36,
respectively. This variability in the absolute magnitude of
change is reduced when comparing the percentage of change
of the mean (−4% yr−1,−2% yr−1, 4% yr−1 and 3% yr−1 at
Coweeta-WS2, WS18, WS27 and WS36, respectively).

Ammonium concentrations in our study were less than
nitrate concentrations, except at the peatland catchments
of Marcell. Likewise, ammonium concentrations showed a
smaller range of variation among catchments, results also
observed by Clark et al (2000) and Binkley et al (2004).
At some sites, ammonium values were close to the detection
limit. This would help to explain the high variability in trends
from year to year in the detailed analysis of HJ Andrews
ammonium data, where small changes in N transformation
pathways within a catchment might result in changes in
trends. Additionally, data that are below the detection limit
(which end up as ties in the ranking for the analysis of
trends) coupled with occasional detectable concentrations
might explain significant ammonium trends with a slope of
0 µg N l−1 yr−1 at Hubbard Brook or Fernow.

4.3. Possible drivers of changes in stream N

Trends in stream N concentrations were not synchronous
with trends in potential drivers such streamflow or N
concentrations in wet atmospheric deposition. Some of the
correlations between trends were significant for one time
period and not significant for others, indicating a possible
temporal change in the variables driving those trends.
Moreover, the lack of consistent correlations between trends
in stream N concentrations and N in wet deposition reflects
transformations that N species entering the catchment undergo
both in the terrestrial and aquatic ecosystems.

Unlike trends observed in other broad-scale studies
(e.g., Smith et al 1987 or Sprague et al 2009), trends in
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stream N concentrations in our reference catchments should
reflect changes in stream N concentrations that are not
related to anthropogenic perturbations other than atmospheric
deposition. The observed changes in stream N concentrations
most likely reflected effects of change in climatic drivers,
such as hydrology and temperature. Changes in streamflow
(Lins and Slack 1999) and in the timing and magnitude
of precipitation (Pielke and Downton 2000), could lead to
changes in the relationship between N transport per unit
of water volume (e.g., a relatively constant amount of
N being transported by changing quantity of streamflow
would lead to a changing trend in stream N concentration).
Additionally, changing hydrology may affect N availability
and transformation processes (Dahm et al 2003). Changes in
air temperature, although not always paralleled to changes
in stream-water temperature (Arismendi et al 2012), would
affect microbial activity and N cycling rates within the
catchment (Brookshire et al 2011). Moreover, stream N
concentration is expected to change during forest succession,
as a result of changing net ecosystem productivity as a
forest ages (Vitousek and Reiners 1975, Vitousek 1977,
Goodale et al 2003). Therefore, some of the observed trends
could be caused by forest successional dynamics, including
long-lasting legacy effects of past anthropogenic events
(Bain et al 2012) or natural disturbances (Rhoades et al
2013, supplementary material S1 available at stacks.iop.org/
ERL/8/014039/mmedia). Local catchment factors, including
aspect, micrometeorology, vegetation, geology, soils, and
natural disturbances can affect how N is transported and
processed in catchments and ultimately, influences trends
in N concentrations. These findings suggest that even in
reference catchments, N concentrations in these streams are
not necessarily stationary over time (Milly et al 2008).

5. Conclusions

Understanding whether nutrient concentrations are changing
over time in reference streams is vital for good management
and protection of water resources. The data presented here
provide a unique opportunity to document changes in N
concentrations in streams in the absence of changes in
land use or other anthropogenic impacts except atmospheric
deposition. Trends in stream N concentrations show high
spatial variability both within and among sites, and our results
demonstrate the transient nature of trends. The direction and
significance of trends varied with record length at some
catchments, a finding that reinforces the value of long data
records, the need of properly pairing record lengths for
catchment comparisons and the importance of caution when
extrapolating trends from short time periods to longer periods.

Synthesis of long-term stream chemistry data from
multiple catchments is valuable for understanding trends
and for determining spatial variation across the USA, while
showing some perils of broadly extrapolating information
from individual catchment studies or short data records.
Local factors including catchment characteristics and natural
disturbance events influence trends within a site. Differences
of trends within and among EFRs highlight a need for

considering multiple reference catchments at both site and
national levels to serve as benchmarks against which we
can evaluate more heavily human-modified ecosystems.
Reference catchments are also essential to improve our basic
understanding of patterns and processes governing element
cycles within intact ecosystems. Both of these functions can
inform the management of N-pollution effects (e.g. through
establishment of water quality standards or total maximum
daily loads). These results also emphasize the importance
of site-specific strategies that are relevant to choice of
catchments and sampling schemes; such information is vital
when considering trends, the refinement of existing programs,
and establishment of new monitoring sites.

Acknowledgments

This synthesis was facilitated by funding from USDA Forest
Service Research and Development, the National Council on
Air and Stream Improvement, and the American Reinvest-
ment and Recovery Act (PNW/OSU 10-JV-11260489-026).
We acknowledge helpful comments from Brian Lutz, Don
Buso, Fred Swanson, Evan Kane and two anonymous
reviewers. Collection and archiving of long-term data at these
EFRs have been funded by the USDA Forest Service, Na-
tional Science Foundation’s Long-Term Ecological Research
(LTER) and Long-Term Research in Environmental Biology
(LTREB) programs, and other site-specific grants. For a
detailed description of site acknowledgments and datasets,
see the supplementary material S5 (available at stacks.iop.org/
ERL/8/014039/mmedia).

References

Arismendi I, Johnson S L, Dunham J B, Haggerty R and
Hockman-Wert D 2012 The paradox of cooling streams in a
warming world: regional climate trends do not parallel variable
local trends in stream temperature in the Pacific continental
United States Geophys. Res. Lett. 39 L10401

Bain D J, Green M B, Campbell J L, Chamblee J F, Chaoka S,
Fraterrigo J M, Kaushal S S, Martin S L, Jordan T E and
Parolari A J 2012 Legacy effects in material flux: structural
catchment changes predate long-term studies BioScience
62 575–84

Bernal S, Hedin L O, Likens G E, Gerber S and Buso D C 2012
Complex response of the forest nitrogen cycle to climate
change Proc. Natl Acad. Sci. USA 109 3406–11

Binkley D, Ice G G, Kaye J and Williams C A 2004 Nitrogen and
phosphorus concentrations in forest streams of the United
States J. Am. Water Resources Assoc. 40 1277–91

Brookshire E N J, Gerber S, Webster J R, Vose J M and
Swank W T 2011 Direct effects of temperature on forest
nitrogen cycling revealed through analysis of long-term
watershed records Glob. Change Biol. 17 297–308

Campbell J L, Driscoll C T, Eagar C, Likens G E, Siccama T G,
Johnson C E, Fahey T J, Hamburg S P, Holmes R T and
Bailey A S 2007 Long-term trends from ecosystem research at
the Hubbard Brook experimental forest Gen. Tech. Rep NRS-17
(Newtown Square, PA: USDA, Forest Service Northern
Research Station)

Clark G M, Mueller D K and Mast M A 2000 Nutrient
concentrations and yields in undeveloped basins of the United
States J. Am. Water Resources Assoc. 36 849–60

7

http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://stacks.iop.org/ERL/8/014039/mmedia
http://dx.doi.org/10.1029/2012GL051448
http://dx.doi.org/10.1029/2012GL051448
http://dx.doi.org/10.1525/bio.2012.62.6.8
http://dx.doi.org/10.1525/bio.2012.62.6.8
http://dx.doi.org/10.1073/pnas.1121448109
http://dx.doi.org/10.1073/pnas.1121448109
http://dx.doi.org/10.1111/j.1752-1688.2004.tb01586.x
http://dx.doi.org/10.1111/j.1752-1688.2004.tb01586.x
http://dx.doi.org/10.1111/j.1365-2486.2010.02245.x
http://dx.doi.org/10.1111/j.1365-2486.2010.02245.x
http://dx.doi.org/10.1111/j.1752-1688.2000.tb04311.x
http://dx.doi.org/10.1111/j.1752-1688.2000.tb04311.x


Environ. Res. Lett. 8 (2013) 014039 A Argerich et al

Dahm C N, Baker M A, Moore D I and Thibault J R 2003 Coupled
biogeochemical and hydrological responses of streams and
rivers to drought Freshwater Biol. 48 1219–31

Dubrovsky N M et al 2010 The Quality of Our Nation’s Water:
Nutrients in the Nation’s Streams and Groundwater,
1992–2004 (US Geological Survey Circular vol 1350)
(Washington, DC: US Department of the Interior)

Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z,
Freney J R, Martinelli L A, Seitzinger S P and
Sutton M A 2008 Transformation of the nitrogen cycle: recent
trends, questions, and potential solutions Science 320 889

Goodale C L, Aber J D and Vitousek P M 2003 An unexpected
nitrate decline in New Hampshire streams Ecosystems 6 75–86

Helsel D R 2005 Nondetects and Data Analysis (New York:
Wiley-Interscience)

Hirsch R M, Slack J R and Smith R A 1982 Techniques of trend
analysis for monthly water quality data Water Resources Res.
18 107–21

Howarth R W, Boyer E W, Pabich W J and Galloway J N 2002
Nitrogen use in the United States from 1961–2000 and
potential future trends AMBIO 31 88–96

Johnson H O, Gupta S C, Vecchia A V and Zvomuya F 2009
Assessment of water quality trends in the Minnesota River
using non-parametric and parametric methods J. Environ.
Qual. 38 1018–30

Lettenmaier D P, Hooper E R, Wagoner C and Faris K B 1991
Trends in stream quality in the continental United States,
1978–87 Water Resources Res. 27 327–39

Likens G E and Bormann F H 1995 Biogeochemistry of a Forested
Ecosystem (New York: Springer)

Lins H F and Slack J R 1999 Streamflow trends in the United States
Geophys. Res. Lett. 26 227–30

Mann H B 1945 Nonparametric tests against trend Econometrica
13 245–59

Milly P C D, Betancourt J, Falkenmark M, Hirsch R M,
Kundzewicz Z W, Lettenmaier D P and Stouffer R J 2008
Stationarity is dead: whither water management? Science
319 573–4

Peterjohn W T, Adams M B and Gilliam F S 1996 Symptoms of
nitrogen saturation in two central Appalachian hardwood forest
ecosystems Biogeochemistry 35 507–22

Pielke R A Jr and Downton M W 2000 Precipitation and damaging
floods: trends in the United States, 1932–97 J. Clim.
13 3625–37

Rhoades C C et al 2013 Biogeochemistry of beetle-killed forest:
explaining a weak nitrate response Proc. Natl Acad. Sci. USA
110 1756–60

Richards R P and Baker D B 1993 Trends in nutrient and suspended
sediment concentrations in Lake Erie tributaries, 1975–1990
J. Great Lakes Res. 19 200–11

Rupert M G 2008 Decadal-scale changes of nitrate in ground water
of the United States, 1988–2004 J. Environ. Qual. 37 240–8

Sen P K 1968 Estimates of the regression coefficient based on
Kendall’s tau J. Am. Stat. Assoc. 63 1379–89

Smith R A, Alexander R B and Wolman M G 1987 Water-quality
trends in the nation’s rivers Science 235 1607–15

Sprague L A, Hirsch R M and Aulenbach B T 2011 Nitrate in the
Mississippi River and its tributaries, 1980–2008: are we
making progress? Environ. Sci. Technol. 45 7209–16

Sprague L A, Mueller D K, Schwarz G E and Lorenz D L 2009
Nutrient Trends in Streams and Rivers of the United States,
1993–2003 (US Geological Survey Scientific Investigations
Report 2008–5202) (Reston, VA: USGS)

Stoddard J L 1994 Long-term changes in watershed retention of
nitrogen, its causes and aquatic consequences Environmental
Chemistry of Lakes and Reservoirs (Advances in Chemistry
Series no 237) ed L A Baker (Washington, DC: American
Chemical Society) pp 223–84

Swank W T and Vose J M 1997 Long-term nitrogen dynamics of
Coweeta forested watersheds in the southeastern United States
of America Glob. Biogeochem. Cycles 11 657–71

Vitousek P M 1977 The regulation of element concentrations in
mountain streams in the northeastern United States Ecol.
Monogr. 47 65–87

Vitousek P M and Reiners W A 1975 Ecosystem succession and
nutrient retention: a hypothesis BioScience 25 376–81

8

http://dx.doi.org/10.1046/j.1365-2427.2003.01082.x
http://dx.doi.org/10.1046/j.1365-2427.2003.01082.x
http://dx.doi.org/10.1126/science.1136674
http://dx.doi.org/10.1126/science.1136674
http://dx.doi.org/10.1007/s10021-002-0219-0
http://dx.doi.org/10.1007/s10021-002-0219-0
http://dx.doi.org/10.1029/WR018i001p00107
http://dx.doi.org/10.1029/WR018i001p00107
http://dx.doi.org/10.2134/jeq2008.0250
http://dx.doi.org/10.2134/jeq2008.0250
http://dx.doi.org/10.1029/90WR02140
http://dx.doi.org/10.1029/90WR02140
http://dx.doi.org/10.1029/1998GL900291
http://dx.doi.org/10.1029/1998GL900291
http://dx.doi.org/10.2307/1907187
http://dx.doi.org/10.2307/1907187
http://dx.doi.org/10.1126/science.1151915
http://dx.doi.org/10.1126/science.1151915
http://dx.doi.org/10.1007/BF02183038
http://dx.doi.org/10.1007/BF02183038
http://dx.doi.org/10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2
http://dx.doi.org/10.1073/pnas.1221029110
http://dx.doi.org/10.1073/pnas.1221029110
http://dx.doi.org/10.1016/S0380-1330(93)71211-3
http://dx.doi.org/10.1016/S0380-1330(93)71211-3
http://dx.doi.org/10.2134/jeq2007.0055
http://dx.doi.org/10.2134/jeq2007.0055
http://dx.doi.org/10.1080/01621459.1968.10480934
http://dx.doi.org/10.1080/01621459.1968.10480934
http://dx.doi.org/10.1126/science.235.4796.1607
http://dx.doi.org/10.1126/science.235.4796.1607
http://dx.doi.org/10.1021/es201221s
http://dx.doi.org/10.1021/es201221s
http://dx.doi.org/10.1029/97GB01752
http://dx.doi.org/10.1029/97GB01752
http://dx.doi.org/10.2307/1942224
http://dx.doi.org/10.2307/1942224
http://dx.doi.org/10.2307/1297148
http://dx.doi.org/10.2307/1297148

	Trends in stream nitrogen concentrations for forested reference catchments across the USA
	Comments
	Recommended Citation
	Authors

	Trends in stream nitrogen concentrations for forested reference catchments across the USA
	Introduction
	Methods
	Results
	Trends over time in stream N concentrations
	Associated trends and relationships between them

	Discussion
	Spatial and temporal variability in trends
	N concentrations and magnitude of trends
	Possible drivers of changes in stream N

	Conclusions
	Acknowledgments
	References


