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a b s t r a c t

Globally, managers are trying to prevent or halt the eutrophication of valuable estuaries and bays by
reducing nutrient inputs, but justifying the cost of conservation or processing facility upgrades often
proves challenging. We focus on a coastal watershed in Maine and New Hampshire struggling with the
financial burdens of nitrogen pollution mandates due to the eutrophication of the Great Bay estuary.
After creating two future watershed land cover scenarios comparing plausible extremes, we ran them
through two models, the Natural Capital Project’s InVEST (Integrated Valuation of Ecosystem Services
and Tradeoffs) and a detailed hydrologic and biogeochemical river network model FrAMES (Framework
for Aquatic Modeling of the Earth System). Through this work, we both evaluated and valued the eco-
system service of nitrogen retention. We find that both models provide numerical arguments for con-
servation efforts, and decision makers would benefit from using either an ecosystem services model or a
biogeochemical model when dealing with complex issues like nutrient overenrichment. According to
both our modeling results, modest watershed conservation efforts as defined by our expert stakeholders,
ie: protecting wetlands and forests, could reduce the amount of total nitrogen entering the Great Bay
estuary in the range of 3–28 metric tons per year.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Human communities, on a local and global scale, depend on
diverse natural systems for a variety of goods and services, also
known as ecosystem services (ES) (Jacobs et al., 2013; Millennium
Ecosystem Assessment, 2003). There is an international move-
ment, ie: Intergovernmental Platform on Biodiversity and Eco-
system Services or Convention on Biological Diversity's Aichi tar-
gets, to incorporate ES into policies in order to holistically address
human, economic, and environmental well-being (Neßhöver et al.,
2013; President's Council of Advisors on Science and Technology,
2011; Russi et al., 2013). Due to this movement, academics and
others have created a host of new decision-support tools to make
quantifying ES easier for decision makers, and some tools have a
built-in economic analysis function (Bagstad et al., 2013; Kareiva
et al., 2011; Villa et al., 2014). The goal for the majority of ES tools
is place-specific analysis to inform planning options (Grêt-Re-
gamey et al., 2014), which can also potentially be accomplished
with other tools that are not explicitly labeled as ES tools (Viger-
stol and Aukema, 2011). Researchers and decision makers are

looking for accessible methods with which to better understand
and value ES. For this work, we chose one ES model and one model
without the ES label: InVEST and FrAMES.

The Natural Capital Project's InVEST (Integrated Valuation of
Environmental Services and Tradeoffs) modeling suite contains a
spatial model focused on understanding the effect of land man-
agement trends by focusing on nutrient retention, specifically ni-
trogen (N) or phosphorus, in a specific geographic region (Kareiva
et al., 2011). Using data on land use and land cover (LULC), non-
point sources, precipitation, soil types, and slopes, InVEST predicts
the annual biophysical contribution of landscapes in total nitrogen
(TN) and then calculates a dollar value for the ES of N or phos-
phorus retention. Although there are an array of ES models
available, we decided to use InVEST as the representative ES model
because of its capacity to model N, the built-in economic evalua-
tion, the published examples of other decision making uses, and
its free “off the shelf” availability (Bassi et al., 2009; Hulse et al.,
2004; Swetnam et al., 2011). As it is often recommended to natural
resource decision makers as a viable option for gaining additional
knowledge, it's touted user-friendliness was also attractive to us.
Since this decision Bagstad et al. have compared or described 17 ES
tools in an effort to discover ease of use (2013), however InVEST is
still a recommended option for many, and we see strong value in
investigating this tool.
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Our non-ES labeled model, FrAMES (Framework for Aquatic
Modeling of the Earth System), also spatially evaluates N, specifi-
cally the loading to river networks and in-stream processing of
dissolved inorganic nitrogen (DIN). FrAMES is a spatially dis-
tributed hydrology and biogeochemical river network model that
was developed at the University of New Hampshire (UNH) and
locally adapted to New England watersheds. Although it is not
described with ES language, the model does provide information
on aquatic nitrogen removal, which is an ES, at varying spatial and
temporal scales. It also accounts for seasonal variation and in-
stream DIN dynamics. It could be helpful for local decision makers
if presented with ES language (Smart et al., 2012).

We used the two different models for the Piscataqua-Salmon
Falls watershed (PSFW) that flows into the Great Bay Estuary (GBE)
on the coast of New Hampshire and Maine (Fig. 1). Water body
managers around the world are dealing with the challenge of
nutrient overenrichment related to population increase. In that
way, the PSFW is relevant to nutrient impaired coastal water
bodies all over the Globe struggling with the impacts of increasing
human populations in sensitive coastal areas. Within the PSFW,
the GBE, along with the majority of the Northeast's estuaries in-
fluenced from the flow of nutrients downstream, is deteriorating
into a state of anthropogenic nutrient overenrichment called eu-
trophication (Lee et al., 2004; Piscataqua Region Estuaries Part-
nership, 2013; Vitousek et al., 1997). With increased population
density driving land cover and land use changes, GBE is one of the
six “hot spots” of poor water quality in New England (Office of
Research and Development and Office of Water, 2012). Like most
coupled human and natural systems, the primary cause of this
decline is debated due to imperfectly understood interactions and
drivers of change, but studies point to increased levels of nitrogen

(N) as the main driver (Howarth, 2008; Liu et al., 2007; Odell et al.,
2006).

Human activities increase the flow of N from land through
fertilizer application, air pollution, and point sources like waste-
water treatment plants (Driscoll et al., 2003; Vitousek et al., 1997).
As shown in Fig. 2, eighteen publicly owned treatment works
(POTWs), point sources of N from human wastewater, release
about twenty million gallons a day of processed effluent into the
GBE, its tributaries, or into the tidally relevant waters (Spalding,
2012). Upgrading the POTWs to the limits of technology re-
presents an immense potential financial cost to local ratepayers,
estimated at 354 million dollars (Kessler, 2010). Several organi-
zations and community members are interested in approaching
the issue from an alternative perspective, specifically land con-
servation (Rogers et al., 2014; Vanasse Hangen Brustlin, Inc., 2014).

Land conservation has the potential to remove N from the Great
Bay because natural landscapes retain nutrients. For example, New
York City, Boston, and other international areas have shown that
allocating resources towards conservation efforts or green infra-
structure can significantly reduce nutrient levels and provide a
cost savings over wastewater treatment or water filtration plant
upgrades because natural landscapes retain nutrients (Daily and
Ellison, 2002, pp. 61–85; Foran et al., 2000; Grolleau and McCann,
2012; National Research Council, 2005). In other cases, integrated
management plans provide the most effective strategy to reduce N
(Driscoll et al., 2003; Lowrance et al., 1997; Mitsch et al., 2001).
Talberth et al. (2013) tested avoided cost methods in Portland,
Maine, for the Sebago Lake Watershed by running six future
landscape scenarios through a mapping software to look at infra-
structure options and costs over 20 years under different discount
rates. By investing in green infrastructure such as riparian buffers,
culvert upgrades, reforestation, and conservation easements,
Portland found that they could save up to 71% of the cost of a new
drinking water filtration plant. In a similar effort, we wanted to
evaluate the potential of alternative management, specifically
conservation easements and reforestation, to avoid or offset some
of the costs of proposed POTW upgrades in the PSFW.

In order to accomplish this goal, we needed to first know the
range of potential N loading and retention efficiencies from both
extremes of conservation and development futures. Future sce-
nario generation is commonly used in the ecosystem services field
(Alcamo, 2008; Cook et al., 2014). As described in detail in a pre-
vious publication, we queried a variety of expert stakeholders re-
presenting various sectors, build future land cover scenarios, and
simulated the impacts of both conservation efforts and increased
development on N loads from each tributary (Berg et al., 2015).
Again, the ultimate goal of this study was to investigate the
amount of nitrogen removed and costs avoided of non-point
source N management compared to point source management
using two stakeholder-driven future land cover scenarios. We
hypothesized that like the Sebago example, an alternative man-
agement plan would allow the Great Bay municipalities to avoid
part of the proposed cost associated with upgrading 18 POTWs to
the best available technology by reducing the non-point source
pollution load through conservation.

2. Methods

2.1. Scenario generation

In order to evaluate potential future N loads to the GBE, we
needed to decide how LULC change could occur over our study
area. Specifically, we were interested in discovering the full range
of N retention between a very conservation focused future vs a
development focused future. As part of the scenario generation,

Fig. 1. Study location, the Piscataqua-Salmon Falls watershed (PSFW), in spatial
context.
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we queried local expert stakeholders representing public, private,
and non-profit sectors, with 16 out of 18 interested stakeholders
completing the questionnaire that helped us determine drivers
and expected magnitude of land cover change over a 10 year
period. As further described with full questionnaire used in Berg
et al. (2015), we created scenarios of conservation and develop-
ment trajectories using the InVEST Scenario Generator Tool ver-
sion 3.1.0. to use as input into both models to produce both the
value of N retained in both scenarios and the amount of N ex-
ported (Fig. 3).

2.2. Running InVEST

We gathered and processed the data layers that InVEST re-
quires and are further explained in the User's Guide: LULC, pre-
cipitation, a digital elevation model, soil depth, evapotranspiration,
watershed delineations, plant available water content, and

Fig. 2. N point sources (POTWs) and subwatersheds in the study area. The dot size reflects the amount of N released per year.

Fig. 3. Conceptual map of the methodology employed to discover alternative
management potential for the PSFW.
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hydrologic seasonality (Donohue et al., 2012; Jin et al., 2013;
Lehner et al., 2006; Liang and Liu, 2014; PRISM Climate Group, n.
d.; Sharp et al., 2014; Soil Survey Staff, 2013; Trabucco and Zomer,
2009; United States Geological Survey, 2013; Xu et al., 2013, p.
Fig. 3; Zhang et al., 2004). When possible, we used the same input
data sources as FrAMES.1 We also created the required biophysical
table that contains critical information regarding how N interacts
with each land cover type. We completed a literature review to
make these decisions, and we chose the higher end of N levels in
the literature when optimizing the model because those were
more inline with the measured data we had on the system
(Table 1).

2.3. Running FrAMES

FrAMES has similar data requirements as InVEST but at a much
more detailed scale. For example, the soil data incorporated im-
pervious surfaces, percent silt to clay, and the The National Land
Cover Dataset (NLCD) to calculate the available water capacity. The
National Land Cover Dataset (NLCD) 2006 was translated into
percent human land use and percent agriculture per grid cell
based upon grouping the land cover classifications. FrAMES used
the percent developed land use/agriculture and daily precipitation
information to obtain the concentration of dissolved inorganic
nitrogen (DIN) entering the stream, and sequentially modeled
routing and biogeochemical processing of DIN within the river
network. The spatial resolution can be set to various sizes, but our
analysis used grid cells of approximately 500 m to a side. For more
detailed information regarding the model parameters and loading
relationships see Wollheim et al. (2008).

2.4. Evaluating model parameters and goodness of fit

As with all models, there is inherent uncertainty because they
do not perfectly represent reality. In order to know how well each
model represented the study area, we compared the results to
observed data from nonpoint sources from the Piscataqua Region
Estuaries Partnership (PREP, 2009). We compared FrAMES’ results,

the average DIN output from a five year period of 2009–2013, to
the DIN 2009–2011 loads from PREP (2009, Table NUT1–3). Based
largely on the work of Legates and Mccabe (1999), Fox (1981),
Krause et al. (2005), and Willmott (1982), we decided to avoid
Pearson's correlation (r) and the coefficient of determination (r2)
as model evaluative parameters; instead, we relied upon two es-
timates of average error: mean absolute error (MAE) and root
mean square error (RMSE). The level of difference between RMSE
and MAE should indicate the extent of variance from modeled to
observed. Although we would like to use coefficient of efficiency
(Nash-Sutcliffe) or index of agreement, InVEST does not produce a
time series. Thus, we relied predominately upon RMSE and MAE,
as these parameters do not require a time series and are easily
conceptualized since they are reported in the same units as the
model results being tested.

Using the analysis published by the Piscataqua Region Estuaries
Partnership (PREP, 2012), we converted FrAMES DIN output to TN
by ratio relationship (DIN:TN) per tributary as sampled by PREP
(Table 2). We also added the point source TN contributions re-
ported by PREP into InVEST's output of TN for each scenario. In
order to determine an avoided N contribution achieved by redu-
cing land development, we subtracted the TN exported under the
increased conservation scenario from the TN exported under the
increased development scenario for both FrAMES and InVEST.

2.5. Economic analysis

InVEST requires an economic valuation input table to calculate
the avoided cost of nitrogen removal.2 We calculated the value of
N retained using three approximations of value: benefits transfer
from Jenkins et al. (2010); average and median marginal

Table 1
The 7 land cover types and their corresponding N loading and removal allocations used to create the biophysical table for InVEST as derived from the literature.

Land Cover TN load (kg/ha/yr);
Efficiency Rate (0-1)

Sources Published Range Sources

Urban 30.5; 0 Line et al. 2002 1.6–38.5 Beaulac and Reckhow, 1982; Rast and Lee 1978; Loehr et al. 1989
Suburban 23.9; 0 Line et al. 2002 5–23.9 Bales et al., 1993; Hartigan et al. 1983; USEPA, 1983; Line et al.

2002; Loehr 1974;
Barren Land 12.4; 0 Dodd et al. 1992 0.5–12.4 Dodd et al., 1992; Loehr 1974;
Forest 11.4; 0.6 Line et al. 2002; Breemen et al.

2002
1.6–11.4 Dodd et al. 1992; Beaulac and Reckhow, 1982; Line et al. 2002;

Rast and Lee 1978; Loehr et al. 1989;
Open Fields 8.6; 0.3 Reckhow et al. 1980; Howarth

1996
1.48–30.8 Beaulac and Reckhow, 1982; Line et al. 2002

Cultivated Crops 53.5; 0.1 Wollheim Curve; Breemen et al.,
2002

2.1–79.6 Beaulac and Reckhow, 1982; Wollheim et al., 2008; Rast and Lee
1978; Loehr et al. 1989;

Wetland 3.8; 0.6 Dodd et al., 1992; Saunders and
Kalff, 2001

0.69–3.8 Dodd et al., 1992

Table 2
The ratio relationships used to convert
FrAMES output to TN.

Tributary % DIN

Winnicut 28.7
Exeter 28.9
Lamprey 32.6
Oyster 37.0
Bellamy 24.4
Cocheco 66.8
Salmon Falls 33.6
Great Works 31.7

1 The tidal portions of our study area prove challenging when modeling due to
the complexity of physical and spatial variability (Kinney and Valiela, 2011). For
instance, the GBE represents 21 square miles of tidal waters indirectly linked to the
Atlantic Ocean by nine miles of the Piscataqua River (Trowbridge et al., 2014). Thus,
the tide reverses water flow direction and raises and lowers the Great Bay sub-
stantially twice daily. These tidal influences also reach the tributaries, so we
trimmed each watershed boundary to remove the tidal draining portions of the
land mass based on topographically driven hydrology. Although this eliminates
some important developed areas such as the city of Portsmouth, NH from our
evaluation, we took this step because FrAMES does not model flow direction
reversal.

2 The economic feature of the InVEST Nutrient Retention model is optional, but
it calculates the value of N retention per subwatershed from the perspective of
avoided treatment costs using this calculation,
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abatement costs of the 18 POTWs (Kessler, 2010); spatially allo-
cated marginal abatement costs by tributary (Kessler, 2010). We
included the benefits transfer because it represents an actual
range of the cost of marginal trade for nitrogen reduction credits
that could potentially be devised for our study region. Further-
more, we opted to run both the median and mean for the POTW
cost per kg to demonstrate the difficulty in applying one value for
the entire watershed. InVEST allows values of N retention to differ

between subwatersheds, and we used this capability to conduct a
tributary-specific analysis of value. Because the spatial distribution
of POTWs and cost was so variable (Fig. 4), we had to create rules
to assign these values.3 We took the median of required upgrades
along each tributary; for the two tributaries with no associated
POTWs, we took the value from a town within the watershed
boundary with a POTW (Table 5). We used discount rates of one,
three, and five percent, which is a common range of discount rates
in present value calculations, to represent various levels of the
time preference for money in the net present value calculations of
the avoided costs over a 10 year period. This generated three dif-
ferent estimates of cost of N per kg updated to 2015 dollars using

Fig. 4. Spatial representation of the study area with the 18 POTWs represented with stars and the N removal costs in $/kg/yr adapted from Table 5 in Kessler (2010). Note the
variation in cost from $15 to $9321 which created difficulty in determining marginal abatement costs.

(footnote continued)

∑_ = ( )* *
( + )=

−
wp Value cost p retained

r

1

1
w w

t

T

t
0

1

as described on page 133 of the InVEST User Manual 3.0.1. : the value of retention
for subwatershed¼annual treatment cost ($/kg) * N retained * sum of the time
span being considered using the appropriate discount rate as given by the user.

3 Some POTWs were not included under these rules, specifically Pease, New-
ington, Kittery, and Portsmouth. With a model that could represent tidal flow, they
would be included.
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the CPI Inflation Calculator over the 10 year period of our stake-
holder driven scenarios (BLS, 2015).

The economic feature of the InVEST Nutrient Retention model
is optional, but it calculates the value of N retention per sub-
watershed from the perspective of avoided treatment costs using
this calculation, as described in the user manual: the value of re-
tention for subwatershed¼ annual treatment cost ($/kg)* N re-
tained * sum of the time span being considered using the appro-
priate discount rate as given by the user. See equation above and
on page 133 of the InVEST User Manual.

3. Results

3.1. Land cover scenarios

For the Increased Development Scenario, the majority of our
experts predict that cultivated crops, suburban, and urban land
covers will increase by 7% over the next ten years (Fig. 5). When
asked to rank urban, suburban, cultivated crops, and open fields,
experts chose suburban areas as most likely to increase (Fig. 6) and
confirmed the previous question's results that development in the
study area will increase land cover in (1) suburban, (2) urban, and
(3) cultivated crops. They indicated that development would still
occur under a conservation scenario but at 3% total. They
also noted that while conservation efforts have the potential to
increase by 15% of the watershed, conservation priorities lean
heavily towards more pristine land parcels and less towards
remediation efforts. Translating this into land cover changes,
conservation will mostly protect existing forests and wetlands
while creating potentially 1% more forest. All of the results
of the stakeholder driven scenarios, including the questionnaire
we used, are available in an open access peer reviewed publica-
tion: http://www.sciencedirect.com/science/article/pii/S00163287
15001639.

3.2. Comparison of model outputs

In comparison to the sampled N levels (Piscataqua Region Es-
tuaries Partnership, 2012), InVEST consistently underestimated the
TN loads to the GBE (Fig. 7); FrAMES produces a variety of results
as the Lamprey was underestimated while the others range from
1.2 to 2 times the DIN estimate from PREP (Fig. 7). When com-
paring goodness-of-fit statistics between observed and modeled N
loads, neither model dramatically out performs the other

Fig. 6. Expert Stakeholder's ranking of land cover change potential in the study
area for 2015–2025 (n¼12).

Fig. 5. Visual representation of our expert stakeholders’ advice regarding land
cover likelihood of increase under a development scenario (n¼13).

Table 3
Various descriptive statistics that indicate the effectiveness of the programs to
model the observed conditions. MAE and RMSE describe the average difference in
the same units as the measurements (metric tons/yr). The MAE is less sensitive to
extreme values than RMSE. Overall, the models perform similarly, with MAE fa-
voring InVEST and RMSE favoring FrAMES.

Statistic Observed_DIN FrAMES_DIN Observed_TN InVEST_TN

Mean 45 57 83 70
Standard
Deviation

59 73 62 52

MAE 13.7 12.4
RMSE 17.2 18.2

Fig. 7. Percentages that represent how the TN results from InVEST (on the left) and the DIN results FrAMES (on the right) compare to the PREP observations of average
annual load of TN and DIN from each tributary.
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(Table 3).4 We do not report variation about the mean because
InVEST only reports one set of annual results when using the re-
commended input data. FrAMES time series provides information
on daily, seasonal, and annual variation.

3.3. Value of N retained in the terrestrial ecosystem

3.3.1. Benefits transfer method
Using the range of annualized value of N mitigation service as

reported by Jenkins et al. (2010),5 InVEST suggests that the net
present value of nutrient retention in the PSFW under increased
conservation over ten years will be worth $645,312 to $3.5 million
more than under the increased development scenario. The range
represents varying values of N weights and discount values of 1%,
3%, and 5%.

3.3.2. Local value method
Using the place-specific marginal social cost of abatement by

upgrading to best technology as reported by the draft New
Hampshire Department of Environmental Services’ wastewater
engineering report on upgrade costs, we find that the ES value of N
retention under conservation ranges from $10.3 to $46.4 million
(Table 4).

3.4. Comparison of total nitrogen exports

Holding point sources constant, FrAMES predicts that an aver-
age of 28.1 metric tons of TN will be added to the system per year
under an increased development scenario. InVEST predicts that

3.1 metric tons of TN will be added to the system per year under
development. Based upon modeled to observed comparisons, we
suggest that InVEST's 3.1 t TN/yr is an underestimate and FrAMES’
28.1 t TN/yr is an overestimate. Thus, these results present the full
range of potential avoided TN exports through conservation.

3.5. Potential avoided cost

If Epping’s POTW upgrades to generate 3 mg/l TN effluent, [DES
estimates] it would remove an estimated additional 2.99 metric
tons TN /yr. A conservative estimate of the effect of realistic land
conservation efforts across the watershed would provide analo-
gous benefits to the Epping POTW upgrading to the best available
technology. The FrAMES estimate of 28.1 t TN/yr is comparable to
upgrading the Newmarket POTW, which will keep 26.5 t TN/yr
from entering the GBE.

4. Discussion/conclusions

First, our analysis contributes to the growing knowledge and
attempts to understand the GBE, a cherished resource. Instead of
discussing potential savings using dollars, we provide situational
insight by indicating equivalencies between upgrading specific
POTWs and conservation efforts. Upgrading all 18 POTWs is esti-
mated to remove roughly 281 t/yr (Kessler, 2010), and even under
the high conservation removal estimate of 28.1 t/yr, point source
reductions are needed. Although there is much debate regarding
contributing factors, managing the POTWs is most direct man-
agement option for N. Driscoll et al. (2003) found that in eight
estuaries in the northeastern United States, POTW effluent is the
greatest source of anthropogenic N from the watersheds and the
most effective N source to control under a single option manage-
ment style. However, the conservation strategy could avoid the
cost of upgrading wastewater infrastructure on the order of 10–46
million dollars over 10 years.

Second, comparing these two models provides useful data to
academics, decision makers, and policy advisors (Vigerstol and
Aukema, 2011). Although mapping and modeling tools provide
helpful information, these tools have limitations and many lack
rigorous uncertainty analyses (Hamel and Guswa, 2015). There is a
vast array of ES tools for regulators to use, and we have detailed
the process, data requirements, and comparative accuracy of one
InVEST tool. The numerical results of our work with InVEST were
highly dependent upon what filtering efficiencies and loading
rates we assigned each land cover in line with the sensitivity
analyses conducted by Hamel (2014). Other work with InVEST
emphasized that numerical results should only be considered in
relation to each other at the subwatershed scale instead of taken
as absolute (Goldstein et al., 2012). The user has incredible control
of model inputs, but this places the burden on the user to find
locally-relevant information on N loading and efficiency rates,
which we found tedious. For FrAMES, users would need to contact
an academic group to ask for model results. This limitation in-
dicates that FrAMES and other biogeochemical models like it have
barriers to use that InVEST does not share. If decision makers
partnered with local academic institutions, they could adapt other
models, like FRAMES, to produce ES relevant results without al-
locating resources to learning modeling software like InVEST. If
decision makers did have the resources and time to learn the In-
VEST tool and locate the needed information, we find the mod-
eling results to be helpful and relevant.

InVEST has many affable qualities, but the ranking of more than
one ES at the spatial scale is the most positive aspect of this tool.
Although capacity to field multiple criteria and analyses is bene-
ficial, it is also a limitation. For our situation, we only relied upon

Table 4
Results (in millions of dollars) from InVEST that measure the value of N retention
over 10 year scenarios at discount rates of 1, 3, and 5. Values shown are the dif-
ference between future scenarios of increased conservation and increased devel-
opment using place-specific values from a NH DES report (Kessler, 2010). For an
expanded table, contact lead author.

Discount Rate 1% 3% 5%

Mean Marginal Value ($1538/kg) 46.4 43.1 40.1
Median Marginal Value ($396/kg) 11.9 11.1 10.3
Break-out by Subwatershed (see Table 5) 18.6 17.3 16.1

Table 5
The subwatershed breakout calculations of N retention valuation of the terrestrial
ecosystem used the figures shown in this table. These were devised spatially by
tributary using the rules mentioned in Section 2.4. Note that the values are in 2015
dollars.

Tributary Name Value of N retention
($/kg)

POTWs Used

Winnicut 726 Portsmouth
Great Works 242 South Berwick
Salmon Falls 339 Milton, Somerworth, Berwick,

Rollinsford
Oyster 7314 Durham
Bellamy 82 Dover
Lamprey 244 Epping, Newmarket
Exeter 269 Newfields, Exeter
Cocheco 338 Rochester, Farmington

4 Each model has inherent uncertainties, and we encourage those interested to
see the lengthy model documentation of each using the citations provided
throughout.

5 We updated Table 2 of Jenkins et al. (2010) to represent 2015 dollars. The
annualized value of N was based upon costs of marginal N credits from Ribaudo
et al. (2005). These values ranged from $24.77 to $115.16 per kg, much lower than
our place-specific values.
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the nutrient removal model. Without the comparison between
models, the usability of InVEST declines. For example, a project in
Belize allowed for multiple objectives and impacted ES to be
mapped and compared (Ruckelshaus et al., 2015). Although there
are various other components of the Great Bay issue, N retention is
the most pressing ES valuation, and conducting an avoided cost
requires a model that is more comfortable with the goal of precise
quantification. If there were competing ES, InVEST would have
provided more insight into the broad patterns of spatial variation
(Bhagabati et al., 2014). Although InVEST is independently avail-
able, we find that it would be a better use of decision makers’
resources to contract with academic or consulting groups in order
to receive the best approximation of one or two ES like nutrient
retention using other models that may not have the ES label.

Future work could focus on determining the costs of con-
servation of LULC over the ten year projection. Then, we could
compare the costs of conservation to the costs of POTW upgrades
to discern the avoided cost potential of conservation in the PSFW.
This watershed scale perspective proves challenging to support,
though, because N management at the watershed scale has both
spatial awareness and social capital barriers in the PSFW (Wash-
burn, 2013). Also, future analysis should focus more on modeling
the potential impacts of green infrastructure improvements that
do not change the LULC classification but impact N retention. We
suggest looking at municipal level improvements as Roy et al.
(2014) found that decentralized approaches to stormwater man-
agement on private property did not produce noticeable results in
streams.
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