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Abstract. Watson-Crick automata are belonging to the natural computing
paradigm as these finite automata are working on strings representing DNA
molecules. Watson-Crick automata have two reading heads, and in the 5′ →
3′ models these two heads start from the two extremes of the input. This is
well motivated by the fact that DNA strands have 5′ and 3′ ends based on
the fact which carbon atoms of the sugar group is used in the covalent bonds
to continue the strand. However, in the two stranded DNA, the directions
of the strands are opposite, so that, if an enzyme would read the strand
it may read each strand in its 5′ to 3′ direction, which means physically
opposite directions starting from the two extremes of the molecule. On the
other hand, enzymes may not have inner states, thus those Watson-Crick
automata which are stateless (i.e. have exactly one state) are more realistic
from this point of view. In this paper these stateless 5′ → 3′ Watson-Crick
automata are studied and some properties of the language classes accepted by
their variants are proven. We show hierarchy results, and also a “pumping”,
i.e., iteration result for these languages that can be used to prove that some
languages may not be in the class accepted by the class of stateless 5′ → 3′

Watson-Crick automata.
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1. Introduction

Finite automata are one of the oldest models of computing. The classes of both
deterministic and nondeterministic variants are able to accept exactly the class of
regular languages. Amar and Putzolu have generalised the concept and they have
defined a special class of linear context-free language class, the so-called even-linear
grammars and languages [1, 2].

Finite automata are very popular since they are very simple comparing them
to other more sophisticated models. During the last decades, many kinds of exten-
sions of finite automata are studied and proven to be applicable to accept larger
classes of languages than the class of regular languages, but still have a moder-
ate complexity. One of the branches of DNA computing is working with automata
models accepting DNA molecules (or their formal representations), these automata
are named as Watson-Crick automata [3, 6, 28]. These automata have two reading
heads, one for each strand of the double stranded DNA. They can be used also for
bioinformatic problems [30]. On the other hand, the strings have two extremes,
namely their beginning and ends, which gives the rise of the 2-head models process-
ing the input from their beginning and their end in a kind of parallel manner [13,
16]. Some of these 2-head models are known as 5′ → 3′ Watson-Crick automata by
a biological motivation describing these models to accept DNA molecules instead
of ordinary words [17–19, 24, 26]. As usual at Watson-Crick automata, various ex-
tensions/restrictions could be applied on the model, e.g., string reading feature, or
having only accepting states or having only one state. Generally, this 2-head model
of computing, by finishing the computation at latest when the heads are in the same
position, characterizes exactly the class of linear context-free languages [13, 16, 17,
26]. Regular-like expressions for linear context-free languages are shown in [29]
to suggest the feeling that linear context-free languages can really be imagined
as a superclass of the regular languages. Special variants capable to accept some
special subclasses of the class of linear context-free languages of these automata
models are also studied, e.g., the so-called even-linear languages (see, e.g., their
importance in various applications [31, 32]) are accepted by a model, the so-called
both-head stepping 5′ → 3′ Watson-Crick finite automata, in which the two heads
must move together in a synchronous way [14]. On the other hand, opposite to the
ordinary finite state automata, the deterministic counterpart of the 2-head model
is weaker, and the language class 2detLIN is accepted by them [25, 27]. Recently
two more variants of the model have been investigated: In the state deterministic
5′ → 3′ Watson-Crick automata the state of the next configuration depends only
on the actual state and it does not depend on the read symbol(s) [22]. These
automata can easily be characterized by their graphs. On the other hand, in quasi-
deterministic 5′ → 3′ Watson-Crick automata, in any computation, the state of the
next configuration is deterministically computed, however the configuration itself
is not [21]. These automata behave somewhat between the classical deterministic
and nondeterministic models of the 5′ → 3′ Watson-Crick automata. In [12], the
non-sensing 5′ → 3′ Watson-Crick automata are studied, in which both heads read
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the entire input (but, of course, in opposite direction). It was shown that Turing
machine computations can be coded into the input which gives, on the one hand,
a characterization of the class of recursively enumerable class of languages by the
model, and on the other hand, the undecidability of some of the simple problems
for the accepted languages. Moreover, infinite hierarchies of language classes were
shown according to the number of allowed runs on the input, when in each run the
entire input is processed by both heads.

From a biological point of view, the stateless variants, i.e., 5′ → 3′ Watson-
Crick automata with a sole state make more sense than models with several states.
Thus, in this paper, we consider these variants. Usually, finite state automata store
the information about the already processed input in their states. To store one bit
information, one needs two states. Automata with a sole state referred as stateless,
as they cannot store any information in their state. Thus, usually, not to allow to
accept all possible inputs, these automata are incomplete, in the sense that they
are not accepting those inputs that cannot be processed, i.e., they get stuck during
(all) the computation(s) on these inputs. Actually, the things are a little bit more
complex here, since actually, stateless automata at least have the information that
the already processed part of the input can be processed.

We recall the well-known fact that stateless automata are as efficient as au-
tomata with any finitely many number of states in case of pushdown automata [9].
Furthermore, a similar fact has been proven for the 5′ → 3′ Watson-Crick push-
down automata [15]. On the other hand, stateless variants of 5′ → 3′ Watson-Crick
multicounter machines were studied in [4, 5, 7, 8] by obtaining various hierarchies
of the accepted language classes.

Pumping and iteration lemmas are well-known for various subclasses of the
context-free languages [9]. In general, they give necessary conditions for the lan-
guages belonging to a given class, and thus, by their help, we may prove that a
given language is definitely not belonging to the class we are interested in. They
are usually proven by considering derivation trees, or for many subclasses, includ-
ing, e.g., the class of regular languages, by arguments based on the finite automata
model. There are variants of these theorems for some special subclasses of the class
of linear context-free languages [10, 20]. In this paper, as one of our main results,
we provide an iteration result for the languages of stateless 5′ → 3′ Watson-Crick
automata.

In the next section, we formally define our model. In Section 3 we show some
examples. In Section 4 we present our main theorems and also we show how they
can be applied. Conclusions and some future topics of research close the paper.

2. Formal definitions
In this section we define formally our model. We note here that in the literature,
the definition may also include the so-called Watson-Crick complementarity relation
defined on the alphabet. Since in the nature, it is a symmetric bijective relation, we
simplify our model not to play with it. This can be done, since, on the one hand,
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in [11] it is shown that at Watson-Crick automata this relation does not play any
important role, as the same language class can be accepted by using the identity
instead of a more general complementarity relation. On the other hand, as we will
see, in the sensing 5′ → 3′ Watson-Crick automata, every position of the double
stranded DNA is read by at most one of the heads, and thus, the relation on the
letters at the same position of the two strands cannot play any role in the accepted
languages.

Definition 2.1. A Watson-Crick finite automaton (a WK automaton) is a
5-tuple A = (T, Q, q0, F, δ), where:

• T is the (input) alphabet, (e.g., the letters standing for possible bases of the
nucleotides),

• the finite set of states Q, the initial state q0 ∈ Q and the set of final (also
called accepting) states F ⊆ Q,

• the transition mapping δ is of the form δ : Q × T ∗ × T ∗ → 2Q, such that it
is non-empty only for finitely many triplets (q, u, v), q ∈ Q, u, v ∈ T ∗.

The computation by WK automata goes through configurations as follows.

Definition 2.2. A configuration is a pair (q, w) containing q, the current state
and w, the unprocessed part of the input.

In sensing 5′ → 3′ WK automata, for any w′, x, y ∈ T ∗, q, q′ ∈ Q, we write a
step of the computation between two configurations as follows: (q, xw′y) ⇒
(q′, w′) if and only if q′ ∈ δ(q, x, y).

We denote the reflexive and transitive closure of the relation ⇒ by ⇒∗, and
this is the computation relation on configurations.

Further, for an input w ∈ T ∗, an accepting computation is a sequence of
steps (q0, w) ⇒∗ (qf , λ) for some qf ∈ F .

As usual, we use automata for accepting languages, thus we have:

Definition 2.3. The language accepted by a sensing 5′ → 3′ WK automaton
consists of all words that are accepted by the automaton.

By comparing traditional finite state automata with sensing 5′ → 3′ WK au-
tomata, there are two main differences. Both of those can be seen in the transition
function. The first difference, as we have already mentioned, is that the sensing
5′ → 3′ WK automata have two reading heads, thus the domain of the transition
function contains triplets. The other difference, coming from biological motiva-
tions, is that the WK automata may read strings in a transition, not only letters.
This is motivated by the fact that enzymes may be attached to the strands, and
thus, read a longer part of the input in a computation step. On the other hand, to
keep the model still finite, it is allowed to have transitions only for finitely many
triplets of the domain, since it is not feasible to allow to read strings with an
unlimited length, as enzymes must also have a finite size.
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The above definitions can be used in general for any 5′ → 3′ WK automata.
However, there are some restricted variants, and actually, in this paper, we are
focusing on some of these variants.

Definition 2.4. A Watson-Crick finite automaton is stateless if Q = F = {q0}.
A Watson-Crick finite automaton is simple if δ : (Q×((λ, T ∗)∪(T ∗, λ))) → 2Q,

i.e., at most one heads reads in a step.
A Watson-Crick finite automaton is one-limited if δ : (Q×((λ, T )∪(T, λ))) →

2Q, i.e., exactly one letter is being read in each step.

The notation NWK is used for the stateless automata, as N stands for “no
states”. Further, the notation NSWK and N1WK is used for stateless simple and
stateless one-limited automata, respectively.

By definition, clearly all N1WK automata are NSWK automata, and all NSWK
automata are NWK automata at the same time.

We may also have other types of restrictions based on the sequences of compu-
tation steps:

Definition 2.5. A Watson-Crick finite automaton is deterministic, if for any
of its possible configurations there is at most one possible step to continue the
computation.

A Watson-Crick finite automaton is state-deterministic, if for each of its
states q ∈ Q, if there is a transition from q and it goes to state p, i.e., p ∈ δ(q, u, v),
then every transition from q goes to p.

A Watson-Crick finite automaton is quasi-deterministic, if for each possible
configuration (q, w), if (q, w) ⇒ (p, u) and also (q, w) ⇒ (r, v), then p = r must
hold.

We note here that in some cases, e.g., [13, 16] the 2-head automata are defined
in a way that they may able to read the input only letter by letter. Generally, if the
automaton could have many states, that is not a problem, the string-reading feature
of our model can be resolved by adding some new states and doing the computation
on the input letter by letter. This can be done also in the deterministic case as
proven in [25]. On the other hand, if we consider only automata with a sole state,
the string-reading feature becomes essential in our models. Without allowing to
read strings in a transition only very limited number of languages would be accepted
by 2-head stateless automata.

3. Examples
In this section, for better understanding these computational models, we give some
examples.

Example 3.1. The regular language (01)∗ is accepted by the deterministic NSWK
automaton with state q having only transition q ∈ δ(q, 01, λ) (since the automaton
has only a sole state, we briefly say that it has a transition with (01, λ) without
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mentioning its state). This automaton uses only its left head during the entire
computation on its input. Clearly the whole input can be processed if and only if
it is in the regular language (01)∗.
Example 3.2. The deterministic NWK accepts the language {0n13n} having only
transition by (0, 111). In each computation step, the left head (starting from the
beginning of the input) is reading a 0, while the right head (starting from the end of
the input) is reading 111. Consequently, when the heads meet and the computation
is finished, any nonempty input accepted must have the form that all 0s precede
all the 1s, and the number of 1s is exactly three times as many as the number of
0s. This language is a non-regular linear context-free language.
Example 3.3. The deterministic NWK with two transitions (0, 0) and (1, 1) ac-
cepts the language of even palindromes over {0, 1}, i.e., the language {u · uR | u ∈
{0, 1}∗} where uR is the reversal of the word u. This language is a well-known
non-regular linear context-free language.
Example 3.4. The regular language 0∗1∗ is accepted by the nondeterministic
N1WK automaton having two transitions by (0, λ) and by (λ, 1). In each step of
the computation, either the left head reads a 0 (from the beginning of the remaining
input) or the right head reads a 1 (from the end of the remaining input). Observe
that in fact, this automaton is not deterministic.

From the definitions of state-deterministic, quasi-deterministic and determinis-
tic variants (see also [21, 22, 25, 27]) we can infer the following:
Proposition 3.5. Every NWK automaton is state-deterministic and quasi-de-
terministic. Further, the class of NSWK automata coincides with the class of
state-deterministic NSWK automata and also with the class of quasi-deterministic
NSWK automata. Moreover, the class of N1WK automata coincides with the class
of state-deterministic N1WK automata and with the class of quasi-deterministic
N1WK automata.

On the other hand, based on the examples shown above, we can infer also the
following result about these models.
Proposition 3.6. There are NWK, NSWK and N1WK automata that are not
deterministic.

Thus actually, we can consider six classes of stateless 5′ → 3′ WK automata
in the sequel. We show the hierarchy of the language classes accepted by them in
Figure 1. However, to put also the class of regular languages into this hierarchy we
may use our new results presented in the next section.

4. Main results
In this section, we concentrate on the NWK automata in general, thus the results
of this section are applicable for each of the above mentioned subcases of the model
as well.
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Based on the transitions used in an NWK automaton we can define some further
concepts.

Definition 4.1. Let an NWK automaton A = (T, {q}, q, {q}, δ) be given. By
definition, it has finitely many transitions δ(q, ℓi, ri) = {q} defined, let denote this
number by n. Let us have an alphabet V = {v1, . . . , vn} with n elements, and
let us assign the elements of V to the transitions of the automaton in a bijective
way: vi ↔ (ℓi, ri). Let φ, µ : V → T ∗ be the mappings defined as φ(vi) = ℓi and
analogously, µ(vi) = rR

i , where R stand for the reversal of the word.
We refer to φ and µ as the forward and the backward morphisms of the

automaton A and its accepted language L.

Now we are ready to claim one of our new results about the languages accepted
by these models.

Theorem 4.2. Let A be an NWK automaton over alphabet T . Then there is a
finite alphabet V , and there exist the forward and backward morphisms φ, µ : V →
T ∗ such that the language accepted by A can be written as {φ(x)µ(xR) | x ∈ V ∗},
where xR is the reversal of the word x.

Proof. Clearly, for each word w ∈ T ∗ accepted by the automaton, there exists an
accepting computation that can be described by the sequence of transitions x ∈
V ∗. Moreover, in stateless automata every word of V ∗ is describing an accepting
computation (of some input word w). In this computation the left head is reading
the word defined by φ(x) and as the right head is reading from the right, it is
reading µ(xR) during the computation.

Furthermore, we state the following “pumping”-like theorem.

Theorem 4.3. Let A be an NWK automaton over T . For any word w accepted by
A, there is a factorisation w = u · v, such that uivi is also accepted by A for any
i ∈ N.

Proof. Let us consider any word w accepted by A. Then, by Theorem 4.2, an/the
accepting computation on w can be described by x ∈ V ∗. Further, w = φ(x)µ(xR)
with the associated morphisms. Considering the words of the form xi ∈ V ∗, they
describe accepting computations of the words of the form φ(xi) · (µ((xi)R) =
(φ(x))i · (µ(xR))i which, with the choice of u = φ(x) and v = µ(xR), can be
written as uivi as the theorem states.

The theorem can also be seen as follows: the repetition of the computation
implies a kind of insertion operation on the accepted words.

As we have seen, there are some non-regular languages that are accepted with
deterministic NWK automata. Let us see an example what Theorem 4.3 means for
an accepted language.

Example 4.4. Let us consider the language L of even palindromes shown in Ex-
ample 3.3. Let V = {a, b}, φ(a) = 0, φ(b) = 1 and µ(a) = 0, µ(b) = 1. Then
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w = 00100100 ∈ L, and in fact, x = aaba ∈ V ∗ has the property that φ(x) = 0010
and µ(xR) = 0100. Therefore w = φ(x) · µ(xR). We may obtain the words
(φ(x))2 · (µ(xR))2 = 0010001001000100,
(φ(x))3 · (µ(xR))3 = 001000100010010001001000,
(φ(x))i · (µ(xR))i (for any i ∈ N) based on the words x2, x3, xi.

On the other hand, now we present another possible, maybe more useful appli-
cation of Theorem 4.3.

Proposition 4.5. The regular language a∗bba∗ is not accepted by any NWK au-
tomata.

Proof. As a∗bba∗ does not satisfy the conditions of the previous theorem, as the
number of bs cannot be “pumped”, thus, obviously it cannot be a language that is
accepted by any NWK automata.

Thus, our result can efficiently be used to show that some languages are not
acceptable by any NWK automata. From, e.g., Example 3.3 and Proposition 4.5
we can infer the incomparability of the class of regular languages and the class of
languages accepted by stateless WK automata under set theoretical inclusion.

5. Conclusion and future work
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Figure 1. A hierarchy of language classes accepted by stateless
sensing 5′ → 3′ WK automata.

Figure 1 shows the hierarchy of the language classes of our model in a Hasse dia-
gram (the automaton class here denoting the accepted language class). Classes not
having directed path between them are incomparable under set theoretic inclusion
relation. REG denotes the class of regular, LIN, the class of linear context-free
languages (this is the class that is accepted by sensing 5′ → 3′ WK automata)
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and 2detLIN the class of languages accepted by deterministic sensing 5′ → 3′ WK
automata.

In this paper, we have shown a new iteration theorem for the languages ac-
cepted by stateless 5′ → 3′ Watson-Crick automata. This theorem is based on two
newly defined morphisms. This approach could also be fruitful to analyse further
properties of the corresponding language classes. We recall that a somewhat re-
lated topic, finite state 5′ → 3′ Watson-Crick transducers (automata with output)
were discussed in [23], where the description was also used some special functions
that can be in relation to our newly defined morphisms.

It is a task of a future work to develop other specific iteration theorems and for
other specific classes of languages accepted by variants of Watson-Crick automata
and to describe some new properties of those language classes based on these and
related results.
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