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Abstract. Programming languages evolve in the long term, new standards
are specified in which new constructs appear, old elements may become dep-
recated. Standard library of programming languages also changes time by
time.

The standard of the C++ programming language defines the elements of
the C++ Standard Template Library (STL) that provides containers, algo-
rithms, and iterators. According to the STL’s generic programming approach,
these sets can be extended in a convenient way. The std::iterator class
template had been in the C++ since beginning and has been deprecated in
the C++17 standard. This class template’s purpose was to specify the traits
of an iterator. Typically, it was a base class of many standard and non-
standard iterator class to provide the necessary traits. However, the usage
of iterator is straightforward and fits into the object-oriented programming
paradigm. Many non-standard containers offer custom iterators because of
the STL compatibility. Using this base class does not cause any weird effect,
therefore usage of iterator can be found in code legacy.

In this paper, we present a static analysis approach to assist the develop-
ment of iterator classes in a modern way in which the iterator class template
is not taken advantage of. We utilize the Clang compiler infrastructure to
look for how the deprecated iterator classes can be found in legacy code and
present an approach how to modernize them.
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1. Introduction
Every programming language evolves regularly. New standards of programming
languages published, new compiler techniques and constructs become available.
For instance, many different Fortran standards have been developed in the last
sixty years and many constructs have evolved during the years [7]. In 2022, Oracle
announced the nineteenth release of the Java standard [15].

This language evolution takes part in the history of the C++ programming
language, as well. C++98, C++03, C++11, C++14, C++17, and C++20 are the
official standards. C++23 is already done, but it is not offial yet. Therefore, no
compiler supports the entire C++23 standard recently. New standards may affect
the core language and its standard library.

In general, language standard updates introduce new language constructs and
may deprecate older constructs [3]. For instance, C++11 made the template class
std::auto_ptr deprecated and provides new standard smart pointers instead [2].
Later, std::auto_ptr has been removed from the C++ standard library.

New language constructs and standard libraries can require migration in code
legacies with a method called source code rejuvenation that is not considered code
refactoring [13].

The std::iterator class template had been in the C++ since beginning and
has been deprecated in the C++17 standard [10]. This class template’s purpose
was to specify the traits of an iterator [11]. Typically, it was a base class of many
standard and non-standard iterator class to provide the necessary traits [12]. How-
ever, the usage of iterator is straightforward and fits into the object-oriented
programming paradigm. Many non-standard containers offer custom iterators be-
cause of the Standard Template Library compatibility [1]. Using this base class
does not cause any weird effect, therefore usage of iterator can be found in code
legacy.

In this paper, we present a static analysis approach to assist the development
of iterator classes in a modern way in which the iterator class template is not taken
advantage of. We utilize the Clang compiler infrastructure to look for how the
deprecated iterator classes can be found in legacy code and present an approach
how to rejuvenate them. Clang’s checker approach is proper to detect and emit
warning based on static analysis [8].

This paper is organized as follows. In Section 2, we give an overview about the
C++ Standard Template Library (STL) and iterators. We detail our approach in
Section 3 and we present its evaluation in Section 4. Section 5 provides possible
ways of the future work. Finally, this paper concludes in Section 6.

2. Iterators
C++ Standard Template Library is an examplar library based on the generic pro-
gramming paradigm [1]. STL provides containers (e.g. std::vector, std::map)
and container-independent algorithms (e.g. std::max_element, std::sort) [14].
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These components are separated and they can be extended simultaneously in a
non-intrusive way. Iterators bridge the gap between containers and algorithms
that are abstraction of pointers [9].

In the C++ language, it is possible to access or manage the memory directly
from the source code. One of the tools provided by the language which can be used
for such purposes are the pointers – these are a special kind of variables. They
store an integer value which represents the memory address to which the variable is
pointing to, therefore the information stored in that memory block can be retrieved
or modified by using the pointer for it. In contrast to reference variables, the
pointers can store a different value than the one which they were initialized with:
the memory addresses they point to can be shifted in both directions (forward or
backward) based on the allocated size of the type of the value which they hold the
pointer for – this is done by using pointer arithmetics.

However, pointers are compound types, so they do not store much additional
information or metadata about themselves, nor have we the ability to customize
them – how dereferencing the variable, or shifting it should happen exactly. To
solve these issues we could use the concept of iterators. An iterator is an object
which can be used to maintain an element of a given range, using a set of operators.
A special form of the iterators are the pointers, however, sometimes we do not
need to have all the capabilities of a pointer implemented in our custom iterator:
depending on the use-case, it might be enough to have an iterator which is only
capable of stepping forward, or can only be written to but it does not have the
ability to be read. To achieve this, iterators can be sorted into one of the five main
iterator categories: input, output, forward, bidirectional or random access iterators.

On top of the customized methods iterators can – and in a lot of cases have
to – define additional information about themselves. This information is available
in the form of iterator traits: there should be five iterator traits defined in total.
The difference_type should express the result of subtracting one iterator from
another, value_type stores information about the type of the value which the
iterator points to, pointer is the type of a pointer which can point to the value
maintained by the iterator, so is reference but instead of pointers the reference
type is described, iterator_category shows us into which one of the iterator
categories does the iterator belong to. The metadata defined by the iterator traits
will be used by several STL algorithms to provide the most optimal behavior, or
to be able to check whether the instance of the iterator type provided to them is
implementing all the operators or methods they require, so the iterator object has
all the capabilities they need [14].

2.1. Defining custom iterators – legacy way
To check the capabilities of an iterator object, the std::iterator_traits class
of the STL can be used – this wrapper class is needed when both pointers and
iterator objects can be accepted. Based on the template parameter it receives,
it can generate a proper definition through which all the needed information can
be accessed e.g. by an algorithm, and accepts both pointers and iterator objects
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as a template parameter. Before C++17, to declare all the information needed
to this specific wrapper class needed by the majority of the standard algorithms,
the STL provided us a helper class named std::iterator [9]. When creating our
own custom iterator class, by deriving from the std::iterator it was possible to
define all the needed iterator traits by passing them to the parent iterator class as
template arguments:

struct DummyIteratorDepr :
std::iterator<std::forward_iterator_tag, // iterator_category

int, // value_type
int, // difference_type
int*, // pointer
int & // reference
>

{
public:

DummyIteratorDepr(pointer ptr) {n = ptr;}
DummyIteratorDepr& operator++() {return *this;}
DummyIteratorDepr operator++(int) {return *this;}
reference operator*() {return *n;}
pointer operator->() {return n;}
bool operator==(const DummyIteratorDepr &rhs) {return true;}
bool operator!=(const DummyIteratorDepr &rhs) {return true;}

private:
int *n;

};

Another advantage of inheriting the std::iterator to have compatibility with
the STL containers and algorithms is that – by making use of the default template
arguments the parent class has – we do not even have to define all the attributes if
they do not have to be specific ones, or we are sure they will not be needed at all:
difference_type, pointer and reference all have default values, which can be
deduced from the values we provided to the mandatory iterator_category and
value_type fields.

Since this tool provided by the standard library seems to be extremely useful,
it would be understandable to ask why did it become deprecated in C++17? It
is worth to mention, that the concept of iterator traits for providing compatibility
did not become deprecated, only the std::iterator class, and the main reason for
that is its ambiguity. Consider the following example taken from the standard [5]:

template <class T,
class charT = char,
class traits = char_traits<charT> >

class ostream_iterator:
public iterator<output_iterator_tag, void, void, void, void>;
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In this example, it is hard to understand which void stands for which attribute.
Declaring an iterator like this could be very confusing and hard to read. Another
reason for deprecating the class is that if the custom iterator itself depends on a
template argument which is then passed to the std::iterator class, finding the
traits during name lookup could fail:

template <typename T>
struct MyIterator : std::iterator<std::random_access_iterator_tag,

T>
{

value_type data; // Error: value_type is not found by name lookup
};

The result would be the same if we put void instead of T to the parent iterator
class as second template argument.

2.2. Defining custom iterators – modern way
As the usage of std::iterator would be deprecated now, all the attributes which
are needed to describe our custom iterator class have to be declared explicitly by
using type aliases:

class DummyIterator
{
public:

using iterator_category = std::forward_iterator_tag;
using value_type = int;
using difference_type = int;
using pointer = int*;
using reference = int&;

DummyIterator (int* ptr) {n = ptr;}
DummyIterator& operator++() {return *this;}
DummyIterator operator++(int n) {return *this;}
reference operator*() {return *n;}
int* operator->() {return n;}
bool operator==(const DummyIterator &rhs) {return true;}
bool operator!=(const DummyIterator &rhs) {return true;}

private:
int *n;

};

Note that for declaring type aliases both typedef and using keywords can be
used, in this specific case they would be semantically equivalent, since we do not
make the aliases depend on template parameters. Despite their semantic equiva-
lence the syntax would differ a bit, consider the following example:
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using value_type_u = int;
typedef int value_type_t;

The latter one is the method of creating type aliases in the legacy way, but
since C++11 the first one is preferred, as being a more powerful tool compared
to the second one. To ensure this, clang-tidy already implements several checkers
which would warn in case of using the old approach instead of the modern one [6].

We can see that by using the modern iterator definition method, it is much more
readable and much easier to understand what properties a given custom iterator
has. This way the original concerns regarding the usage of the std::iterator
class have been overcome, however, we have to face a new problem, which in some
situations could be uncomfortable: we lost the ability the make use of the default
template arguments – since now we do not have any. We have to declare every
trait properly for our custom iterator to be compatible with the standard library,
even if some of them (the ones which had default values earlier) would be trivial.
In the following, we will try to create a tool, or to be more specific a set of tools to
help the transition between the old and new way of defining a custom iterator, and
to help to avoid the potential incompatibilities between the STL and our custom
iterators created by using the modern approach.

3. Verifying custom iterators with static code anal-
ysis

We will define two major problem categories that can be divided into smaller prob-
lems, then we will address these smaller problems with static analysis tools provided
by the Clang compiler infrastructure. The two major problems would be the han-
dling of legacy custom iterators, and detecting potential custom iterators defined
without using class std::iterator. We will then decompose the latter by ranking
potential iterator findings based on how likely it is, that the class we found is meant
to be used as an iterator, which has to be compatible with the standard library. To
achieve this, we implemented a new clang-tidy checker named modernize-replace-
std-iterator, as part of the modernize checker category. The exact behavior and
logic behind the checker is described below.

3.1. Transforming legacy custom iterators
Since the usage of std::iterator has become deprecated, it is better to avoid
using it when developing custom iterators. To help this, we developed a static
analysis tool based on Clang. Clang supports developing new tools, thus the built
abstract syntax tree (AST) can be utilized, queried and visited. We have imple-
mented an AST matcher to find and warn for every class definition which derives
from the class std::iterator. An example for these kind of classes could be
DummyIteratorDepr. However, we have to consider the cases when the custom
iterator class is derived not directly, but indirectly from the deprecated iterator.
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This means one of the parents of our iterator in the inheritance chain would have
std::iterator as a parent class (or at least as one of the parent classes, since in
C++ it is allowed to have multiple inheritance, which means that it is possible to
inherit from multiple base classes to create a common derived type) [14]. To handle
these issues, it is not enough to simply check whether the class in question has the
std::iterator as a base class, but we should also check if one of its parents at
any level has it as a parent.

struct DummyIteratorDeprDesc : DummyIteratorDepr
{

DummyIteratorDeprDesc(pointer ptr) : DummyIteratorDepr(ptr){}
};

To avoid unnecessary and redundant findings, the warning will only be triggered
if our class has inherited the legacy iterator in a direct way. Since all class definitions
will be checked, we will cover all the possible results, all the nodes of all inheritance
chains. To modernize our iterators it is needed to update that one exact base class,
which we get the warning for, since all the newly declared type aliases will be
inherited by all the (directly or indirectly) deriving child classes (if we make sure
that the access specifier of the traits is at least protected but considering that the
purpose of them is to provide information about the iterator to the outside world,
we should declare them as public aliases).

We have now clarified that our approach would be the detection of direct inher-
itances, which has an additional advantage on top of avoiding duplicate matches
and redundant steps. The scope of the analysis will be the translation unit which
we are currently analysing - narrowing this down to our problem we get, that the
scope of the analysis would be the class definitions described in the given trans-
lation unit. However, we will have cases when the removal of the std::iterator
class would be a valid step without modifying any of the iterator definitions we
have in our translation unit, despite the fact that they had the standard iterator
class as an indirect base class. This is the situation when we have a “custom”
iterator class in the middle of our inheritance chain, but outside the unit which we
are analysing right now. In this case, two explanations are possible: one of them
is that we will take care of the custom class when analysing the translation unit
introducing it – the other one is that the custom iterator is defined outside of our
project. If we face the latter, we have to trust the project defining the iterator will
solve the issues caused by the deprecation of the standard iterator.

To provide more information to the developer, our tool not only warns about
the class definitions mentioned above, but also gives hints about how to update
them. After analysing a proper iterator class, we will get the following warning:

test_iterator.cc:12:8: warning: Derived from std::iterator,
which is deprecated since C++17. From C++17 type aliases
should be declared:
using iterator_category = std::forward_iterator_tag;
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using value_type = int;
using difference_type = int;
using pointer = int*;
using reference = int&; [modernize-replace-std-iterator]

struct DummyIteratorDepr : std::iterator<std::forward_iterator_tag,
...>

This is done by querying the concrete type parameters of the template instan-
tiation we defined when inheriting the base class. It is worth to mention, that we
would get the same list of arguments if we relied only on the mandatory template
parameters:

struct DummyIteratorDepr :
std::iterator<std::forward_iterator_tag, // iterator_category

int> // value_type
{

// ...
}

We now have all the information which is needed to automatize the transforma-
tion, which would result in the class definition having the iterator traits declared.
Currently according to the scope and the goal of our tool, only a warning would be
triggered, but as a future improvement it would be easy to implement the trans-
formation itself by using the fix-it hints of the clang-tidy tool.

3.2. Detecting custom iterators

3.2.1. Analysing potential iterators

As we have described earlier, detecting usages of the deprecated custom iterator
defining method is only one part of our goal. Another part would be to detect all the
existing iterators, or classes which seem to be iterators which can face compatibility
issues when used with the Standard Template Library. Also, we try to keep in mind
the motivation behind the deprecation of std::iterator – readability is an aspect
which should be considered when analysing the code.

First, we try to focus on the classes which – apart from some extreme cases –
can convince the analyser that they are iterators, and they are used as if they were
one. To achieve this, we will define two key criteria: the custom iterator should
define at least one of the mandatory iterator traits (or should derive from a class
which defines one of them), and an instance of this custom class can be used as an
argument for algorithms defined by the Standard Template Library. The library
defines a wide range of methods operating on a given range of elements, for multiple
purposes. These algorithms can be found in the algorithm header, and since they
are analysing/modifying ranges, or a range of elements, the range itself should be
determined when trying to execute them.
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This is done by passing iterators as arguments to them, which iterators can
define the range by marking the start and the end of the range we want to use.
When we create custom iterator classes, a typical usage would be to combine them
with the powerful tools provided by the STL algorithms. Assuming that we have a
custom iterator class named I declaring all the needed iterator traits properly, and
the type of the value to which its instances are pointing to is int. In this case, we
could find e.g. the value 2 in the following way (i_begin and i_end are instances
of our iterator class, defining the range which we would like to analyse):

std::find(i_begin, i_end, 2)

In this example, if 2 is part of the range, the iterator pointing to the first
occurrence will be returned, otherwise the result will be i_end, which points after
the last element. Sticking to this example, this specific function will require all
the iterator traits to be declared, otherwise compiling the code would result in an
error. Consider the following example:

class CustomIterator {
public:

using iterator_category = std::forward_iterator_tag;
using value_type = int;
using difference_type = int;
...

};

We have only three attributes defined, pointer and reference are missing. Be-
cause of this, a compilation error should happen, and we would get an error message
similar to this:

error: no matching function for call to ’__iterator_category’
...
substitution failure [with _Iter = CustomIterator]: no type
named ’iterator_category’ in ’std::iterator_traits<CustomIterator>’

What interesting here is, that even if we had the trait iterator_category de-
fined because of the template substitution failure of class std::iterator_traits,
compiling a code like this will result in an error which can be misleading. Of course,
if we would have used the legacy way for defining CustomIterator, the problem
would not be present since the missing parameters could be determined by using
the default template argument values of std::iterator:

struct CustomIteratorDepr :
std::iterator<std::forward_iterator_tag,

int,
int
>
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{
// ...

};

Now we have seen that despite its advantages, the modern approach prevents
us to make use of the default template arguments of the legacy class. Using the
legacy method, we do not have the possibility to skip any of the non-mandatory
parameters, the order of the template arguments matters and should be considered
to avoid failures during compilation, but it was a bit easier to define iterators which
did not require all the iterator attributes being defined by their own.

However, not all algorithms make use of the iterator traits or require them to
be present in the class defining the iterator they got as an argument. Let us take
std::swap_ranges as an example. The function exchanges the elements of two
ranges, and requires three parameters to achieve this: the first two parameters
define the first range, the third one points to the beginning of the second range.
Let us define our custom iterator in the following way:

class DummyIterator
{
public:

DummyIterator (int* ptr) {n = ptr;}
DummyIterator& operator++() {return *this;}
DummyIterator operator++(int n) {return *this;}
int& operator*() {return *n;}
int* operator->() {return n;}
bool operator==(const DummyIterator &rhs) {return true;}
bool operator!=(const DummyIterator &rhs) {return true;}

private:
int *n;

};

As we can see, we defined only the operators required by the std::swap_ranges,
but none of the iterator traits. Based on the previous examples we have seen, using
this iterator with for example std::find would lead to compilation error. This is
not the case with this function:

std::swap_ranges(d1_begin, d1_end, d2_begin);

This example compiles just fine, if d1_begin, d1_end and d2_begin are all
instances of DummyIterator we defined above. In case the method does not require
the substitution of the template arguments defined by std::iterator_traits, it
is possible to be compatible with the function by having only a number of traits
defined (or defining none of them). At this point, we can divide the problem of being
compatible with STL algorithms into two subcategories: in one case, the function
call will compile just fine, in the other case a compilation error will happen. We
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have implemented our clang-tidy checker to address both problems at the same
time.

Matching the AST Our concept here would be to help to avoid compatibility
issues with the standard library while keeping the code as much readable as possi-
ble. The base concept of our AST matcher is to find all nodes, which belong to the
class declaration defining the objects which are used as parameters when calling
functions from the std namespace. Note that we mentioned earlier that we are
interested in the calls of functions defined in the algorithm header. This approach
would be much more strict than analysing all the function calls using methods from
the std namespace, however, members of the algorithm library are also part of it.
The reasoning behind it is that we would like to help the developer to avoid incom-
patibilities in the future, for use cases which might not be relevant right now. If a
custom iterator is used with the Standard Template Library, it has the potential
to be used later together with a method, with which it would have compatibility
issues resulting in unexpected errors, mainly during compilation time.

In case of larger code bases and rather complex projects, it is not unusual to
have a lot of legacy code in it. Due to this, we have to handle the cases which
would be covered by using the matcher of our checker tool described previously
(detecting legacy std::iterator usage). These are the cases when the custom
iterator inherits its attributes from the std::iterator class – therefore we exclude
these matches, since they are not part of the scope of the current analysis.

To determine if the arguments are meant to be used as iterators, we are looking
for the explicitly declared type aliases representing the iterator traits, or to be
more specific, we are looking for one of the mandatory ones: iterator_category.
Since the legacy cases had been excluded, all our custom iterators should define
the two mandatory attributes, which are not derived from a custom iterator class
coming from a third party library. However, based on this logic the false-positive
findings should be considered too: what happens, if a class declares the type alias
value_type, and an instance of it is used as an argument of a standard function,
but it is not an iterator?

struct A
{

using value_type = int;
};
...
std::vector<A> v;
A a;
v.insert(v.begin(), a);

This example meets all of our conditions, so A could be considered as an iterator.
To avoid this, we only look for the attribute iterator_category, which is less likely
to be defined in a class representing a different concept then the iterators. Another
thing which we have to deal with is the case, when the class definition does not

11



Annal. Math. et Inf. D. Kolozsvári, N. Pataki

contain the traits, but a base class of it does. In this case, the custom iterator has
a more abstract iterator class from which it inherits the common attributes, which
applies for this specific subtype too.

struct Iter_A
{

using iterator_category = std::forward_iterator_tag;
using value_type = int;

};

struct Iter_B : Iter_A
{

using difference_type = int;
using pointer = int*;
using reference = int&;

};

In this example, the parent (Iter_A) only defines the mandatory attributes,
the rest of them are present only in the derived class. To handle the problem of
abstract iterators, the matcher would follow the following logic: if the definition of
the parameter type contains the mandatory attribute, then this AST node should
be matched, if not, the matcher will look for the node which implements it. If we
have multiple matches, because the traits have been redefined multiple times in the
inheritance chain, we will look for the first one, which declares the attribute (the
top one). The motivation behind this is to find the first class definition which can
potentially act as a standalone iterator itself. After we have found all the nodes
which should be considered regarding a function call, the checker will analyse the
class definitions and determine which iterator traits are missing. When we say
“missing”, it means that we are interested in what are the traits which are not
declared in this exact class definition. The traits can be present without having
to declare them: this is the case if the class inherits these attributes from a base
class. After we have collected the missing type aliases, a warning will be triggered
for the user to see what should be declared on top of the existing aliases. Using
the class we declared earlier (CustomIterator) with std::swap_ranges, we will
get the following warning:

test_iterator.cc:36:7: warning: Type seems to be an iterator used
by std::swap_ranges. The following type aliases should be
declared additionally within the class:

pointer
reference

In this case, the pointer and reference attributes were missing. By analysing
the class definition further, it could be determined, or at least suggested how the
iterator traits should be declared, but for now triggering a warning like the one

12



Annal. Math. et Inf. A static analysis approach for modern iterator development

above is a limitation of our tool. Now let us see, what it means regarding the
separate problem categories we defined:

Matching the base or the derived class If the base class is missing some
of these type aliases, it could be useful to add them, since once we have done it,
all the newly defined deriving classes would inherit all the iterator traits, which
means they could be handled as an iterator by themselves. If we have matched the
deriving class, declaring the traits can be redundant: if the base class (or in case
of multiple inheritance, or a longer inheritance chain one of the base classes) also
defines these attributes, the type alias in the deriving class will hide all the previous
declarations, avoiding name collisions. However, by doing so the class definition
could be much more readable since we would have all the aliases declared in one
place, and it could be understood easily without investigating the parent-child
relationships further. Of course, if none of the attributes are missing either in the
base, or in the derived class, no warning will be triggered.

Matching function calls which would not compile We have mentioned ear-
lier that in a number of cases it is mandatory to have all the traits defined properly,
since they are needed by std::iterator_traits. It is possible for a custom itera-
tor class to possesses all the values required via inheritance: in this case, triggering
the warning could be relevant to have all the aliases declared in one place (see the
case of base-derived classes). Our warnings will have one more advantage in case of
calls which could not compile at all: it can give a hint, which traits are missing. As
we could see earlier, it is possible that the error message triggered by the compiler
only tells us that the substitution of the template arguments failed. In this case,
our warning would highlight which attributes seem to be missing. However, it will
not consider the attributes inherited, but a warning like this could be a motivation
to define the class in a more comprehensible, readable way – otherwise these warn-
ings would count as false positives, but since readability is one of the main aspect
we follow, these warnings could be relevant also.

3.2.2. Analysing possible iterators

The last problem category which we wanted to cover consists of custom iterator
candidates, which have the possibility – based on our conditions – to be treated
as iterators. We can not be as confident as we were in case of the previous cases,
regarding the false-positive results, since our conditions are much less strict for
this category. The goal here also would be to provide readability and compatibility
with the standard library, but the scope of our matchers will be much wider. We
do not limit our findings to classes defining type aliases which could be interpreted
as iterator traits, or to classes whose instances are being used as parameters for
functions of the std namespace.

Our matching logic here will be similar to what is known as duck typing [4].
We will find and mark classes which have similar structure to an STL compatible
iterator. The similarity in this case will not be defined by the members, types, etc.
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defined by the class, but the member methods and operators overloaded by it. As
we have seen in our previous examples, an iterator has to overload a given set of
operators to be treated as a valid one. The set is determined by the type of the
iterator - this is the same type which is stored as the value of iterator_category.
As we have described earlier, all iterators must belong to one of the five iterator
categories, which defines all the capabilities expected from the iterator.

Table 1. Iterator categories and their operations.

Output *p=, ++
Input *p, ++, ->, ==, !=

Forward *p=, (+Input iterator)
Bidirectional –, (+Forward iterator)

Random Access [], +, -, +=, -=, <, >, <=, >= (+Bidirectional iterator)

In Table 1, we can see all the required methods for each iterator categories.
Based on that, if we see a class which implements all the operations needed for a
forward iterator for example, we can mark it as a potential forward iterator. After
we have done that, we can generate a warning that this class could be a potential
iterator, and we can give a hint what values could be used for the iterator traits (in
this example, iterator_category would get the value forward_iterator_tag).
Similarly to the previous case, if all the traits have been defined by the class or
one of its parents, the warning will not be issued. The reason why we match for
the operations defined instead of the type aliases declared is, that – as we have
shown earlier – in several cases the iterator traits are not needed at all by the
function which takes the pointer as an argument, but this is not the case with the
operator overloads. Missing a mandatory operator would result in a compilation
error, hence relying on them would be useful. Also, the operators to overload (for
example the unary *) are specific enough to match for them:

struct IteratorCandidateA
{

IteratorCandidateA& operator++() { ... }
IteratorCandidateA operator++(int n) { ... }
int& operator*() { ..}
int* operator->() { ... }
bool operator==(const IteratorCandidateA &rhs) { ... }
bool operator!=(const IteratorCandidateA &rhs) { ... }

};

The example shows us a candidate for the category forward iterator. If we find a
candidate which defines all the operations needed by a category, which is a superset
of another one (regarding the operators overloaded), then we will warn for it using
the iterator category which would provide the most features.
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4. Evaluation
To verify our three different approaches we have defined so far, we have executed
the checker with all the different AST matchers in it on the LLVM project. LLVM
is an open source compiler infrastructure, including Clang and also clang-tidy,
the tool which we implemented our checkers in. Because of its nature, LLVM
implements a number of custom iterator classes, making it a good candidate for
our analysis. After analysing the results, filtering out all the duplicates caused
by the same findings in header files included in multiple translation units, we had
proper matches for all three categories, without any false-positive results.

In total, we have found examples for deprecated std::iterator usage in case
of 52 class definitions, 1 custom iterator class whose instance had been used as
an argument of a function defined in the Standard Template Library (and whose
definition does not contain all the possibly required iterator traits). For the last
category, we have identified a total of 12 iterator-like classes – class definitions
which seem to be iterators based on the operator overloads they implemented.

After analysing the results further, we came to the conclusion that all the
findings are valid, there are no false-positive matches among them. Based on these
facts, it is proven that our tool can be used as a tool for modernizing the source
code, and for updating the code base in a way, that future incompatibilities with
the standard library can be avoided.

5. Future work
We have shown that our checker can be a useful tool when modernizing the source
code, however, the matcher logics could be further refined, to find more accurate
results. A refinement like this would be in case of the third problem category to not
only match for the operator overloads (by name), but to consider the parameters
and return types of these overloads also. However, in case of asterisk (*) operators
the void return values are checked even now, to avoid false-positive findings for
output iterators.

We have mentioned earlier, that in a number of cases rejuvenation of the code
could be done automatically – we have all the information available which is needed
to insert all the type aliases which are required to define the iterator traits: we can
extract the proper types from the template arguments of std::iterator when de-
riving from it (in case of the first problem category), or we could define the missing
attributes by analysing the return values and parameter types of the overloaded
operators in case of the second and third problem categories.

In our example run, we have not faced any false-positive matches. However, ear-
lier we have shown that finding faulty results might be possible. One improvement
to avoid these findings would be to filter only for the members of the algorithm part
of the STL, instead of matching for calls of functions defined in the std names-
pace. Also, cases when class definitions are hidden to the static analyser by macro
definitions should be considered too.
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6. Conclusion
Languages and their standard libraries evolve over time. For instance, C++17
provides much more constructs than C++98. On the other hand, some of the
language elements become deprecated sometimes, C++98’s auto_ptr is a typical
obsolete component of the C++ Standard Template Library.

C++17 standard made iterator base class deprecated. However, its usage was
common and safe, there was some reasons to make this class template obsolete.
This class template is widely used when one develops a new iterator to specify the
traits.

We implemented a static analysis method to emit warning if the usage of
iterator base class can be found. Moreover, we presented an approach how cus-
tom iterators can be found. Our approaches provide hint how to improve the source
code. Our method gives feedback if any trait is missing from iterator-like class. We
have implemented a tool for the approaches based on the Clang compiler infras-
tructure. We evaluated our solution with real-world software artifacts, the result
is promising.
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