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Abstract. The Interval Branch and Bound (IBB) method is a good choice
when a rigorous solution is required. This method handles computational
errors in the calculations. Few IBB implementations use the Fritz-John (FJ)
optimality condition to eliminate non-optimal boxes in a constrained non-
linear programming problem. Applying the FJ optimality condition implies
solving an interval-valued system of equations. In the best case, the solution
is an empty set if the interval box does not contain an optimizer point. Solv-
ing this system of equations is complicated or unsuccessful in many cases.
This problem can be caused by the interval box being too wide, the defined
system of equations containing unnecessary constraints, or the solver being
unsuccessful. These unsuccessful attempts have a negative outcome and only
increase the computation time. In this study, we propose some modifications
to reduce the running time and computational requirements of the Interval
Branch and Bound method.
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1. Introduction
There are many applications in which we are looking for a rigorous solution to
a mathematical problem. For example, in physics or chemistry, we look for the
stability point of a substance. Sometimes we obtain a stability point, but in this
environment, the material is very unstable; it can fall apart even with a small
change.

In this study, we focus on solving the constrained nonlinear programming prob-
lems with inequality and general bound constraints. We deal with the following
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n-dimensional nonlinear problem,

minimize
x ∈ yyy ⊆ Rn

f(x)

subject to gi(x) ≤ 0, i = 1, . . . , m,
(1.1)

where f : Rn → R and gi : Rn → R, i = 1, . . . , m are continuously differen-
tiable nonlinear functions, and the interval box yyy = [y, y] denotes a general bound
constraint. We search for the global optimum using a guaranteed method, the
Interval Branch and Bound (IBB) method. Solving a constrained nonlinear pro-
gramming problem is, in general, very difficult. Sometimes we can only solve a
low-dimensional instance or a smaller subproblem. In the IBB method, we replace
the problem with smaller subproblems. We try to discard a subproblem by calcu-
lating upper and lower bounds and checking the feasibility or optimality. One of
the best ways to rigorously compute the bounds for the subproblem is using inter-
val arithmetic (IA). In IA, the rounding error or imprecision of the parameters is
automatically taken into account by replacing the numbers with intervals. Today,
several implementations of the IBB can be found in the literature. However, many
of them do not use Fritz-John (FJ) or Karush-Kuhn-Tucker (KKT) optimality con-
ditions to discard non-optimal subproblems. These mean solving an interval-valued
system of equations. In this study, we use the improved version of IBB, which can
solve both the unconstrained and the constrained cases in a reasonable time. We
also study the solvability of the interval FJ optimality conditions, which are more
general than the interval KKT optimality conditions.

In the following section, we introduce the basic terms and concepts of IA and
the solution method for the interval-valued system of equations. We also describe
the prototype of the IBB method. In Section 3, we study the FJ Condition System
(FJ-CS) and extend it to intervals by defining the Normalized Interval Fritz-John
Condition System (NIFJ-CS). In Section 4, we consider four methods to solve NIFJ-
CS, analyze them, and present some additional improvements to reduce the running
time of the methods. We compare the methods described using computational
experiments in Section 5. Finally, in Section 6, we summarize this study and make
suggestions for future directions.

2. Interval Branch and Bound method
In this section, we introduce the basic concepts of Interval Arithmetic (IA). We
demonstrate the methods for solving interval-valued systems of equations, which
we use to solve the NIFJ-CS. We also briefly introduce the prototype of the Interval
Branch and Bound (IBB) method.

2.1. Interval arithmetic
Interval arithmetic is the basis of the Interval Branch and Bound method, in
which numbers are replaced by a range of numbers called an interval. In this

2



Annal. Math. et Inf. The Fritz-John Condition System . . .

way, rounding and measurement errors are avoided by enclosing the number in
intervals. Following the basic notation used in the literature [8], the intervals are
denoted by xxx = [x, x], where x and x describe the lower and upper bounds of
the interval, respectively. Therefore, we can define n-dimensional interval vectors
as xxx = (xxx1, . . . ,xxxn) ∈ In = I × · · · × I, which can be called intervalbox or box,
where I is the set of intervals. In addition, we define some properties of the inter-
vals. For example, the midpoint of an interval xxx is denoted by mid(xxx) = 1

2 (x + x)
or the width of the interval xxx by wid(xxx) = x − x. We can extend this to boxes
as well, as follows. The midpoint of a n-dimensional box xxx = (xxx1, . . . ,xxxn)T is
given by mid(xxx) = (mid(xxx1), . . . , mid(xxxn))T and the width of the box by wid(xxx) =
max{wid(xxxi) : i = 1, . . . , n}.

Operations such as addition, multiplication, subtraction, and division can be
extended to intervals. The interval arithmetic operations are defined by xxx ⊙ yyy =
{x⊙ y : x ∈ xxx, y ∈ yyy} for xxx,yyy ∈ I, where ⊙ ∈ {+,−, ·, /} and xxx/yyy is defined only if
0 /∈ yyy.

Furthermore, f : In → I is an inclusion function for f : Rn → R if it satisfies
{f(x) : x ∈ xxx} ⊆ f(xxx) for all interval boxes xxx ⊂ In within the domain of f . In
many cases, the inclusion function is wider than the image of the function because
it is overestimated. Note that if f is an inclusion function, we can obtain the lower
and upper bounds on f taking f(xxx) and f(xxx), respectively.

Elementary functions (such as sin, cos, exp, etc.) are easily extended to in-
tervals. The simplest inclusion function is called natural interval extension, which
means that we replace the numbers x by the box xxx at each occurrence in the function
f and compute the inclusion function in interval terms. One of the most commonly
used inclusion functions is the centered form, which is a better approximation of the
inclusion function than the natural interval extension but takes more time to com-
pute. We compute the centred form using equation fc(xxx) = f(c) +∇f(xxx) · (xxx− c),
where c ∈ xxx is usually the centre of the box and ∇f(xxx) is the inclusion of the
gradient of f over xxx. We use Automatic Differentiation (AD) to compute the in-
clusion of gradients [12]. In this method, only the derivative rules are needed for
the calculation, and we calculate the function value and the derivative at the same
time. The interested readers can find more information about Interval Arithmetic
methods in [3, 5].

2.2. Solvers for interval-valued system of equations
By solving an interval-valued system of equations, we want to find an enclosure
of all possible solutions within a starting box. However, if the enclosures of the
coefficients are too wide, we cannot remove any part of the box. Sometimes we
can improve the solvability of the methods by using preconditioners. This simply
means that we transform the system of equations to be more suitable for the solver
by using a transformation matrix. We use the midpoint preconditioner, which can
be found in [7], along with other preconditioners. To solve the NIFJ-CS we use an
iterative method, the Interval Gauss-Seidel method (IGS), and a direct method,
the Interval LU decomposition (ILUD). These two methods are straightforward
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extensions of methods to solve the real system of equations. The interested reader
can find more information about these two methods and their implementations
in [1, 13].

2.3. The prototype of the Interval Branch and Bound method
Branch and Bound is a framework for solving optimization problems in which the
main problem is divided into subproblems and an attempt is made to discard the
subproblems that do not contain the optimal point using some discarding rules.
IBB is based on Interval Arithmetic and Branch and Bound concepts. All steps
are extended to intervals. These steps must be specified for a particular implemen-
tation, and their choice can have a large impact on the efficiency of the method.
Since we will only focus on one discarding test (the Fritz-John optimality test), the
remaining steps are done in the usual way.

In an IBB method [6, 10], there are five main steps: selection, bounding, discard-
ing, division, and termination. The prototype algorithm is shown in Algorithm 1.

Algorithm 1 Prototype Interval Branch and Bound method
Lwork ← {xxx}; Lresult ← {};
while Lwork ̸= ∅ do

Select a box xxx from Lwork ▷ Selection Rule
Compute bounds for f(xxx), gi(xxx),∀i ∈M ▷ Bounding Rule
if xxx cannot be discarded then ▷ Discarding Tests

Divide xxx into subboxes xxx1, . . . ,xxxr ▷ Division Rule
for i = 1 to r do

if TerminationCriterion(xxxi, ε) then ▷ Termination Rule
Store xxxi in Lresult

else
Store xxxi in Lwork

end if
end for

end if
end while
return Lresult

First, we initialize the working list (Lwork) with the bound constraint and the
result list (Lresult) with an empty set. We stop the method when the working list is
an empty set. In each iteration, we select a box xxxselected from the working list with
some selection rules. The selection rules can be LIFO, FIFO, or the lowest lower
bound. In our implementation, we use the lowest lower bound selection rule. In
the next step, we bound the objective of the box xxxselected by computing the natural
interval extension or the centered form. Sometimes, in the unconstrained case, we
can discard the selected box, because it is monotone, concave, or does not contain
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an optimal point (Interval Newton test), by using higher-order information, e.g.
gradient. When we solve a constrained nonlinear problem, we can add two more
tests. The first is the feasibility test, where we investigate whether the selected box
is a subset of the feasible area by computing the bounds on the constraints. In this
test, there are three possible cases: the undetermined case when some computed
bounds contain zero (∃i ∈ 1, . . . , m: 0 ∈ gi(xxxselected)), the infeasible case when one
of the lower bounds of the computed bounds is greater than zero (∃i ∈ 1, . . . , m:
gi(xxxselected) > 0), and the strictly feasible case, when all the upper bounds of the
constraints are less than zero (gi(xxxselected) < 0,∀i = 1, . . . , m). To examine the
optimality of the box, we can use the FJ or KKT optimality tests. If the selected
box is not discarded and satisfies the termination rule, we can move it to the result
list. The termination rule usually examines the width of the interval or the width of
the inclusion function. Otherwise, we divide the selected box xxxselected into subboxes
xxx1, . . . ,xxxr using the division rule. The division rule can be bisection, trisection,
multisection, etc. In this work, we use bisection as a division rule, dividing the box
into two subboxes along the widest dimension.

In the next section, we will discuss the interval version of the FJ optimality
conditions in more detail. We will examine and compare four possible solution
methods.

3. The Interval Fritz-John Condition System
The Fritz John conditions are necessary conditions for a solution to be optimal in
nonlinear programming. For problem (1.1), the FJ optimality conditions [9] for a
given point x are the equations

µ0∇f(x) +
∑

i∈Mb

µi∇pi(x) +
∑

j∈Mc

µj∇gj(x) = 0 (3.1)

µipi(x) = 0, i ∈Mb (3.2)
µjgj(x) = 0, j ∈Mc (3.3)

µi ≥ 0, i ∈Mb ∪Mc ∪ {0}, (3.4)

where µi are the Lagrange multipliers, Mb and Mc is the set of the bound con-
straints and the general constraints, respectively. Thus, µ0 is the Lagrange multi-
plier of the objective function. If the system can be solved, we confirm that x can
be the optimal solution. Note that we can easily formulate a bound constraint for
xi as piu(x) = xi−yi and pil

(x) = yi−xi, where yi and yi are the upper and lower
bounds of the general bound constraint, respectively.

The straightforward extension of the Fritz John optimality conditions (3.1)–
(3.4) for a given box xxx are the interval-valued system of equations

µµµ0∇f(xxx) +
∑

i∈Mb

µµµi∇pi(xxx) +
∑

j∈Mc

µµµj∇gj(xxx) = 0 (3.5)

µµµipi(xxx) = 0, i ∈Mb (3.6)
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µµµjgj(xxx) = 0, j ∈Mc (3.7)
µµµi ≥ 0, i ∈Mb ∪Mc ∪ {0}, (3.8)

where f(xxx), pi(xxx), gj(xxx) are the inclusion functions, ∇f(xxx), ∇pi(xxx), ∇gj(xxx) are
the inclusions of the gradients of f(x), pi(x), gj(x), respectively. Note that we
can reduce the number of equations in the system by considering only the active
constraints. We consider a constraint active if the inclusion of the constraint,
pi(xxx), gj(xxx), contains zero. Let B and C be the set of active bound constraints
and active constraints, respectively. We can formalize the equations (3.5)–(3.8) for
active constraints by replacing Mb with B and Mc with C.

3.1. The normalization of the Lagrange multipliers

The Interval FJ-CS usually does not include a normalization condition. One pos-
sible way to normalize Lagrange multipliers, following [2], is to use the equation
µ0 +

∑
i∈B∪C µi = 1. We can easily formulate it as an interval-valued function,

r(µµµ) = µµµ0 +
∑

i∈B∪C

µµµi − 1 = 0. (3.9)

Moreover, adding this condition to the FJ-CS does not remove any solution, and
we can replace the interval µµµi ≥ 0 with [0, 1] for all Lagrange multipliers, which
improves the success rate of the IGS.

3.2. The Normalized Interval Fritz-John Condition System

As before, B and C are the set of active bound constraints and active constraints,
respectively. Let N = 1 + n + |B| + |C| be the dimension of the system, where n
is the dimension of the problem. Set the Lagrange multipliers, µµµi i ∈ B ∪C ∪ {0},
to the interval [0, 1]. When formalizing the system of equations, we consider the
normalization function r(µµµ) extended to the intervals defined in (3.9). Denote all
the variables by ttt = [xxx,µµµ]T , which is N -dimensional. Thus, for the box ttt, we
formalize the Normalized Interval Fritz-John Condition System (NIFJ-CS) as

ϕϕϕ(ttt) =


r(µµµ)

µµµ0 · ∇f(xxx) +
∑
i∈B

µµµi · ∇pi(xxx) +
∑
j∈C

µµµj · ∇gj(xxx)

µµµi · pi(xxx) i ∈ B

µµµj · gj(xxx) j ∈ C

 = 0. (3.10)

Note that this NIFJ-CS is equivalent to the (3.9), (3.5)–(3.7) interval-valued system
of equations.
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4. Solving the Normalized Interval Fritz-John Con-
dition System

When we solve an interval-valued optimality condition system, we can discard the
box if the solution is an empty set. However, if the enclosures of the gradients
are too wide, we cannot remove any part of the box. One possible way to solve
the system of equations ϕϕϕ(ttt) = 0 is to apply the Newton method. Applying the
Newton method as in [2], we obtain the system of equations

J(ttt) · (ttt− t0) = −ϕϕϕ(t0), (4.1)

where J(ttt) is the Jacobian matrix for ϕϕϕ(ttt), i.e. Jij(ttt) = ∂∂∂
∂∂∂tttj

ϕϕϕi(ttt) i, j = 1, . . . , N ,
and t0 is an interior point of the box ttt. Note that for t0 we use the midpoint of
the interval ttt. In addition, we also use the midpoint preconditioner matrix, with
which we transform (4.1) to the system of equations

P · J(ttt) · (ttt− tmid) = −P ·ϕϕϕ(tmid), (4.2)

where P = mid(J(ttt))−1. We solve the system of equations only if one bound con-
straint is active in each dimension. Otherwise, we skip solving NIFJ-CS, reducing
the probability of an unsuccessful Newton method, as the system otherwise be-
comes too large. To solve (4.2), we use IGS, because this method is more efficient
than the ILUD method. However, for IGS we need an initial box ttt, but xxx is given,
and µµµi can be set to [0, 1] for all Lagrange multipliers. Note that since an unsuc-
cessful IGS step significantly increases the runtime of the IBB method, we apply
the Newton method only once.

4.1. Estimating the Lagrange multipliers
In many cases, IGS cannot reduce or discard the box xxx because the initial bound of
ttt is too large, that is, it contains many possible solutions. One way to reduce this
problem is to estimate the Lagrange multipliers before applying the IGS method,
and initialize µµµ with the estimated bounds. The Lagrange multipliers can be ap-
proximated by solving the interval equations

r(µµµ) = 1
µµµ0 · ∇f(xxx) +

∑
i∈B

µµµi · ∇pi(xxx) +
∑
j∈C

µµµj · ∇gj(xxx) = 0 (4.3)

Note that (4.3) are the first two equations of (3.10). To solve these equations,
we use the ILUD method mentioned in Section 2.2.

4.2. Methods
To solve the NIFJ-CS (4.2), we investigate four methods based on the Newton
method, where we modify one or more steps for each variant.

7



Annal. Math. et Inf. M. Gencsi, B. G.-Tóth

4.2.1. The naive NIFJ-CS method

In the naive NIFJ-CS method, we formalize the Newton step directly as a system
of equations (4.1) and solve with IGS. We initialize the first n component of ttt with
the examined box xxx and the remaining components with the interval [0, 1] (initial
bounds for the Lagrange multipliers). In the best case, we obtain an empty set;
that is, there is no solution in the examined box xxx. Thus, we can discard the box xxx.
Sometimes we obtain as a solution a tighter box within xxx. In this case, we reduce
the box xxx to it. In many cases, however, it is not possible to reduce the size of the
box because it is overestimated. In this case, we obtain many boxes as solutions,
as IGS splits each component where the diagonal coefficient interval contains zero.
In general, we only divide the components µµµ into subboxes and leave the box xxx
unchanged. If the box xxx is unchanged, the Newton step was unsuccessful. If we
obtain subboxes divided in the part of the box xxx, we exchange xxx to these subboxes.
Note that we do not store the estimated Lagrange multipliers because we do not
want to increase the required memory for the IBB. We want to point out that in
most cases the box xxx cannot be reduced or discarded.

4.2.2. Lagrange estimator method

In the Lagrange estimator method, we solve (4.3) using the ILUD method. In this
case, we do not need initial bounds on the Lagrange multipliers. We solve it if the
system is independent, but not underdetermined. We want to use these bounds to
decide whether or not to discard the examined box. We can use the ILUD method
only if the system is squared. In an overdetermined case, we solve the system using
only the first 1+ |B|+ |C| equations. First, we check if there are upper bounds less
than 0. If so, the box is discarded because some estimated Lagrange multipliers
are negative. If we have more equations than variables, after the first check, we
solve the remaining equations with the obtained µµµ. If the Lagrange multipliers do
not satisfy all the equations, we discard the examined box.

4.2.3. Lagrange estimator + NIFJ-CS method

In this method, we first estimate the Lagrange multipliers using the method in
Section 4.2.2. We might discard the box by the Lagrange estimator method. If
we cannot discard the box, the estimated bounds on the Lagrange multipliers
are truncated with [0, 1]. We solve the system of equations with the calculated
multipliers as described in Section 4.2.1. As a result, we can discard the box xxx or
reduce it by the Newton method.

4.2.4. Taylor expansion of the NIFJ-CS

This method is very similar to the naive NIFJ-CS method in Section 4.2.1. How-
ever, in this case, we replace some intervals in the Jacobian matrix with their
midpoints. We use the Jacobian of ϕϕϕ(xxx) as Jij(ttt) = ∂∂∂

∂∂∂tttj
ϕϕϕi(ttt1, . . . , tttj , tj+1, . . . , tN )

i, j = 1, . . . , N , where the N − j components are real numbers. This reduction is
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valid, since the Taylor expansion of ϕϕϕ(ttt) is done for each variable one by one. It
might produce a tighter inclusion; however, the computational cost of the Jacobian
is much higher. The interested reader can find more information on the background
of this method in [3].

4.3. Additional improvements
As a further development, we examine the success of the methods based on the
order of the equations and the variables. Ordering the variables does not have
a huge effect on the solvability of the NIFJ-CS. It only increases the required
computation time. Sorting the equations in descending order by

oi = gi(xxx)
gi(xxx)− gi(xxx)

,

we can improve the success rate of the methods described in Sections 4.2.1 and
4.2.3 without significantly increasing the computation time.

5. Computational experiments
In this section, we compare the four methods together with the IBB method without
NIFJ-CS. We implemented the IBB method with the following discarding tests:
Newton, midpoint, cutoff, concavity, monotonicity, feasibility, and FJ test.

In detail, we use the bisection method as the division step. The termination
criterion for any box xxx is wid(xxx) < ε or wid(f(xxx)) < ε, where ε = 10−6. We sort
the working list in ascending order by the lower bound and delete any box whose
lower bound is greater than the current upper bound (cutoff test). We select the
first element from the working list. We stop the algorithm when the working list
is empty or when we reach the maximum running time (7 200 seconds).

We implement the IBB method in Matlab R2020a version 8 [4] and use Intlab
11 [11]. From Intlab, we used only the IA, AD, and ILUD methods. We imple-
ment other tests, methods, and functions. The complete project can be found on
GitLab1. The abbreviations of the five methods can be seen in Table 1.

Table 1. Abbreviations of the methods.

IBBWO IBB without FJ optimality conditions
NFJ IBB with the naive NIFJ-CS method (see Section 4.2.1)
Lag IBB with the Lagrange estimator method (see Section 4.2.2)
Lag + NFJ IBB with the Lagrange estimator + NIFJ-CS (see Section 4.2.3)
Tay + NFJ IBB with Taylor expansion of the NIFJ-CS (see Section 4.2.4)

1The IBB with Optimality condition - Intlab: https://gitlab.com/gencsimiska27/the-ibb
-with-optimality-condition-intlab
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Table 2. Computation time.

Test name IBBWO NFJ Lag Lag + NFJ Tay + NFJ
circle 21.4 30.6 13.7 12.7 61.1
ex14_1_1 755.5 4 321.1 774.2 750.5 5 565.4
ex14_1_4 266.2 764.3 218.9 201.5 836.7
ex14_1_8 41.9 84.6 51.1 48.8 181.7
ex2_1_2 496.3 597.9 55 58.3 4 331.3
ex2_1_4 � � � � �

ex2_1_6 346.9 1 762.7 361.8 355.7 2 463.7
ex3_1_2 680.8 1 543.9 87.4 80.5 2 240
ex3_1_3 � � 225.4 201.8 �

ex3_1_4 620.3 563.4 181.8 142.5 374
ex4_1_9 � 6 843.4 5 032.5 4 501.1 5 836.1
ex7_2_3 � � � � �

ex7_2_4 � � � � �

ex7_3_2 62 133.0 26.3 14.3 296.2
Gomez Levy 3.2 3.8 3.9 4.5 8.8
Mishra’s Bird 0.7 0.9 0.6 0.6 0.7
Rbrock (disk) 0.8 1.5 0.9 0.9 1.7
Rbrock (cube) 0.7 1.4 0.9 1 2.4
Simionescu 64.4 10.2 4.2 5 132.8
Hansen Test 0.5 1.7 0.8 0.9 4.3
Avg. Comp. Time 1 968.2 2 273.4 1 432 1 399.1 2 556.9

We used two benchmarks to compare the methods. The first benchmark is
the GLOBALLib2, from which we chose 14 constrained nonlinear programming
test cases having only inequality constraints. The second benchmark is called
Test Functions for Constrained Optimization from the Wikipedia website3, which
contains five two-dimensional test cases. In some cases, general bound constraints
were not given. Thus, we used a large interval, [−10 000, 10 000], which encloses
the optimum points in these cases. All runs were performed on an AMD Ryzen 7
3800X 8-Core Processor with 32 GB RAM. In addition, we use an additional test
case from [2], named the Hansen test.

The running time for each test case and method can be seen in Table 2. The
symbol � means that we cannot reach the required accuracy in 7 200 seconds, but
we still have possible solutions in the result list. We can see that we can reduce the

2GLOBALLib: http://www.gamsworld.org/global/globallib.htm
3Test Functions for Constrained Optimization: https://en.wikipedia.org/wiki/Test_funct

ions_for_optimization
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required computation time for the IBB methods by using the optimality conditions
in most cases. Only a few small problems cannot be improved with them. The
NFJ method takes equal to or more time to compute than the other methods. It is
because we try to solve an interval-valued system of equations with overestimated
variables (initial bounds for Lagrange multipliers, overestimated enclosures of the
gradients) and in many cases we are not able to reduce or discard the studied
box. The calculation time of the Tay + NFJ method is sometimes long but almost
always better than NFJ due to the sharper gradient enclosures. However, it takes
more time to calculate the gradient with different input boxes.

In average time, the best method is the Lag + NFJ method, which takes 1 399.1
seconds on average for 20 test cases, but the Lag method comes very close. The
small difference is due to the fact that the NIFJ-CS method is solved with estimated
bounds on the Lagrange multipliers.

Table 3. Relative deviations of the Weighted Function Evaluations
from the best results (in bold).

Test name IBBWO NFJ Lag Lag + NFJ Tay + NFJ
circle 142% 384% 26 464 327% 2 185%
ex14_1_1 1 057 048 784% 100% 101% 981%
ex14_1_4 165 154 618% 132% 194% 1 036%
ex14_1_8 37 518 693% 121% 180% 761%
ex2_1_2 1 807% 4 282% 19 719 118% 10 127%
ex2_1_4 2 519 349 150% 124% 122% 239%
ex2_1_6 116 566 2 038% 100% 101% 2 809%
ex3_1_2 728% 3 993% 69 215 185% 7 905%
ex3_1_3 525% 2885% 164 486 155% 3 299%
ex3_1_4 482% 473% 153 782 141% 260%
ex4_1_9 171% 219% 4 719 013 126% 114%
ex7_2_3 3 835 776 536% 122% 130% 695%
ex7_2_4 1 311 026 185% 144% 153% 651%
ex7_3_2 209% 1 613% 51 862 273% 3 552%
Gomez Levy 1 416 374% 110% 116% 216%
Mishra’s Bird 179% 138% 102% 103% 120%
Rbrock (disk) 613 497% 117% 122% 210%
Rbrock (cube) 888 336% 129% 158% 360%
Simionescu 1 270% 140% 2 826 107% 2274%
Hansen Test 1 276 161% 113% 141% 660%
Avg. WFE 121% 361% 817 505 113% 477%

In Table 3, we compare the weighted function evaluations (WFE), computed
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as WFE = Feval + n ·Geval + n2

2 ·Heval, where n is the dimension of the problem,
Feval, Geval, Heval are the number of function, gradient and Hessian evaluations,
respectively. We report the best results in bold, and the relative deviation for the
rest. One can see that, on average, the Lag method requires the least number of
function evaluations. The evaluation for IBBWO, Lag, and Lag + NFJ is very close,
and these three methods solve the problems with the least function evaluations.
The other two methods require more evaluations, because many times solving NIFJ-
CS is unsuccessful.

The relative deviations of the averages for the methods can be seen in Table 4.
We compare the five methods in five aspects: computation time, weighted number
of function evaluations (WFE), number of result boxes, number of iterations, and
number of NIFJ-CS tests, respectively. Furthermore, we study the success rate
of IBB methods that include NIFJ-CS. We can see that the Lag + NFJ method
is the best in terms of computation time (1 399.1 s), number of results boxes (4),
and FJ test (15 551). The success rate of this method is 49%, which is very high
compared to the rest. IBBWO is worst in all aspects compared to the best results.
The NFJ method is sometimes worse than the IBBWO method, which is caused
by the high number of unsuccessful NIFJ-CS. The Lag method requires the least
function evaluation because we do not solve the NIFJ-CS. The Tay + NFJ method
requires the least number of iterations, but the number of function evaluations is
significantly higher, increasing its computation time.

Table 4. The relative average deviations.

Method IBBWO NFJ Lag Lag + NFJ Tay + NFJ
Computation time 141% 162% 102% 1 399.1 183%
WFE 121% 361% 817 505 113% 477%
No. result boxes 4 4 4 4 4
No. iterations 238% 320% 243% 239% 21 340
No. FJ Test - 157% 104% 15 551 143%
FJ Success Percentage - 7% 38% 49% 25%

6. Summary
We studied the applicability of optimality conditions in Interval Branch and Bound
method to constrained problems. We introduced the NIFJ-CS, which is based on
the Fritz-John optimality conditions. We found that the naive NIFJ-CS is difficult
to solve. This is due to the overestimation of the Lagrange multipliers and the
enclosure of the gradients. We studied four versions (NFJ, Lag, Lag + NFJ, Tay
+ NFJ) for solving the NIFJ-CS, and compared their efficiency together with the
IBB method without optimality conditions in 20 test cases from the literature.
We found that the best method for solving NIFJ-CS is the Lag + NFJ method.
The average time required for this method is 1 399.1 seconds, and the success rate
is 49%.
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In the future, we want to improve the success rate of the Lag + NFJ method by
introducing a preliminary test before trying to solve NIFJ-CS. The preliminary test
should discard the box, which certainly does not contain an optimal point, within
a short computation time. In addition, we plan to use constraint propagation
to reduce the box as much as possible. We also want to extend the methods to
problems with equality constraints.
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