
Submitted: July 30, 2023
Accepted: August 7, 2023
Published online: August 8, 2023

Annales Mathematicae et Informaticae
Accepted manuscript
DOI: https://doi.org/10.33039/ami.2023.08.003
URL: https://ami.uni-eszterhazy.hu

Visualization of Read-Copy-Update
synchronization contexts in C code

Endre Fülöp, Attila Gyén, Norbert Pataki

Department of Programming Languages and Compilers
Eötvös Loránd University

Budapest, Hungary
gamesh411@gmail.com
gyenattila@gmail.com

patakino@elte.hu

Abstract. The Read-Copy-Update (RCU) mechanism is a way of synchro-
nizing concurrent access to variables with the goal of prioritizing read perfor-
mance over strict consistency guarantees. The main idea behind this mecha-
nism is that RCU avoids the use of lock primitives while multiple threads try
to read and update elements concurrently. In this case, elements are linked
together through pointers in a shared data structure. RCU is used in the
Linux kernel, but there are user-space libraries which implement the tech-
nique as well. One of the user-space solutions is liburcu that is a C language
library. Earlier, we defined our code comprehension framework for easing the
development of RCU solutions. In this paper, we present our visualization
techniques for the Microsoft’s Monaco Editor.

AMS Subject Classification: 68W10 Parallel algorithms

1. Introduction

Read-copy-update (RCU) mechanism is used for synchronizing memory access in a
way that guarantees deterministic read-access even during concurrent writes to the
same memory region [4]. Unsynchronized access from multiple threads can lead to
the evaluation of completely unexpected values, which in turn almost negates the
programmers ability to reason about possible outcomes [11].

There are multiple families of solutions to this problem. One traditional solution
is locking, where multiple threads are sequentially ordered at runtime, thus accesses
to a memory region are mutually exclusive among threads. This can, however, lead

https://doi.org/10.33039/ami.2023.08.003
https://ami.uni-eszterhazy.hu
mailto:gamesh411@gmail.com
mailto:gyenattila@gmail.com
mailto:patakino@elte.hu


Annal. Math. et Inf. E. Fülöp, A. Gyén, N. Pataki

to performance degradations, live- and deadlock problems. Locking solutions use
synchronization primitives like mutexes and various kinds of locks [5]. Another
possible solution is lock-free programming, where synchronization is solved without
explicit exclusion, eliminating most locking issues [9]. Many lock-free solutions use
memory barriers and atomic variables [15]. RCU is a solution of higher abstraction
level than those mentioned before. RCU can be implemented in the kernel- or in
the user-space. Linux kernel uses data structures with RCU implementation since
2002 [13].

RCU can also be implemented in the user-space, one such library is liburcu
written in C [3]. In order to provide synchronization using the liburcu library, the
user must intersperse the application code with calls to library functions. In effect
the side-effects of these invocations produce a context along the execution paths
where accesses to a memory region are guaranteed to have desired properties. To
help the comprehension of the synchronization provided by the library, we have
devised a visualization technique. The goal of the proposed technique is to provide
the users of the library a visual and interactive way of exploring the code, thus fa-
cilitating the correct and intended usage of the library. There is no silver bullet in
software engineering [2]. However, visualization is an important aspect [6]. Visual-
ization improves the comprehension in many ways [18]. Code comprehension often
requires visualization on the top of the source code [10]. However, subtle details
are in-use for more sophisticated approaches [16]. Our previous work presented our
framework for the code comprehension of RCU contexts [7]. In the previous paper,
we focus on framework, more precisely, the static analysis and Monaco Editor-
related techniques. Unfortunately, the actual visualization has not been presented
properly. In this paper, the major contribution belongs to the visualization of the
contexts.

This rest of this paper is organized as follows. In Section 2, we provide a brief
overview on related work. We present the Userspace RCU implementation and our
static analysis methods in Section 3. Section 4 provides a brief explanation how
the backend analysis techniques are defined in our earlier work. We present the
approach of visualization in Section 5, and finally, this paper concludes in Section 6.

2. Related work
Visualizing concurrency aspects of programs can have the goal of assessing perfor-
mance aspects of a particular solution [17]. One category of tools used to measure
performance is sampling- and instrumenting profilers which are for both single- and
multithreaded programs. These profilers produce aggregated performance statis-
tics and/or traces of events which can be used for detailed performance analysis
[1]. These statistics are consequently converted into visual representations like bar-
charts and flamegraphs to provide an overview and highlight the proportions of each
program parts contribution to a given metric. Compared to these visualizations,
we propose a technique based on static analysis instead of dynamic profiling to
reason about the structure of the RCU implementation. Another important aspect

2



Annal. Math. et Inf. Visualization of Read-Copy-Update synchronization . . .

is that the analysis done by the RCU visualization technique is more qualitative in
nature.

3. Userspace RCU implementation

3.1. RCU overview
RCU is implemented in program code as a set of API calls (free function calls in case
of the liburcu C library), which implements concurrent publication of modifications
on shared data, subscription for insertion into shared data structures, waiting for
readers to complete their executions and finally to maintain different versions of
the same data [4]. This API is geared towards read-heavy uses, where updates
of values and structured data are relatively less frequent, and where consistency
guarantees are not critical. Memory usage is another concern, as multiple version
of the same data can lead to overuse.

Concurrent access to variables is done by associating regions of code with parts
of programs executions, which read shared values (readers) [12]. These sections are
called read critical sections. Read critical sections interact with synchronization
points, which are usually used as part of the update part of the program executions
(updaters). Readers subscribe to a specific version of the data they are reading,
which is the one available at the beginning of the critical section. The end of a
critical section is explicit in the code, which is needed for the updaters to detect if
there is no more reading activity for a specific piece of data. Read critical sections
does not enforce ordering inside a single section, nor do multiple sections between
each other.

3.2. RCU contexts in liburcu
Userspace-implemented RCU library librcu is a compile- and link-time solution for
using RCU primitives in arbitrary C software without depending on kernel features
of the operating system (OS) [12]. The library supports multiple implementations
of the RCU semantics, the API consists of free functions with prefixes corresponding
to the name of the technique (urcu) and the implementation technique (i.e. mb
for memory barrier, qsrb for quiescent state-based reclamation or signal for using
posix signals). By default, API calls are implemented as external linkage functions,
and the generated IR code therefore contains explicit references to the mentioned
free functions. Using optimizations which cause the functions to be inlined will
render the solution described here unusable. Inlining small functions can be the
result of link-time optimization or by defining the URCU_INLINE_SMALL_FUNCTIONS
preprocessor symbol before including the library headers.

Another limitation is that debug information must be generated alongside with
the IR code. An example of an API function which is used for opening a read-side crit-
ical section by using memory barriers as implementation is urcu_mb_read_lock().

There are two API functionalities, which must be used in pairs. For reg-
istering threads, one would used the urcu_<flavor>_register_thread() and

3



Annal. Math. et Inf. E. Fülöp, A. Gyén, N. Pataki

urcu_<flavor>_unregister_thread(). These are used in a non-nested way (call-
ing register while already registered is an error), but the other pair of API func-
tions signifying the read-side critical sections can be nested indefinitely. These are
the urcu_<flavor>_read_lock() and urcu_<flavor>_read_unlock() functions.
The solution presented here is tailored towards the nestable usage, and can be
extended to consider the non-nestable case. There are API calls which can only
be safely used inside the context of registered threads (the majority of the librcu
API) and there are API calls, which have special meaning when inside a read-side
critical section (like defer_rcu() or synchronize_rcu()). The intended usage of
the solution presented here is to provide information about the potential execution
paths that are potentially enclosed in the mentioned API calls. It would help the
software’s discoverability, changeability, and maintainability to know which part of
the code potentially contributes to the synchronization structure.

4. Code comprehension framework
Our earlied work proposed a code comprehension framework for the RCU syn-
chronization contexts [7]. We have developed a static analysis solution based on
the Clang compiler. Our static analysis tool takes advantage of the LLVM IR
(Intermediate Representation) which is generated from the source code.

For context detection, the iterative algorithm of forward dataflow analyses uses
reverse postorder traversal of the control-flow graph (CFG) elements in case of
forward analysis in order for performance reasons. This results in a scalable method
for gaining an overview about the synchronization aspects of the software. The
modular nature of the approach lends itself to distributed use.

The transfer function saves the interesting locations (the instructions that can
be used to get the locations), by appending them to the basic block level global
fact, but only if this global fact is does not already contain them. In addition, if
a context ending API call is detected, the exit state of the instruction set to the
current global state of the basic block. The reverse postorder visitation guarantees,
if a context starting instruction then happens to precede a context ending one, there
is path in the CFG from the starter to the ending one. The set-like nature of the
list in turn allows for the halting of the fixed-point algorithm in finite steps, as
there are a finite amount of interesting locations inside a program.

The meet function is responsible for merging the exit states of multiple incoming
dataflow facts. This is defined as the concatenation of the dataflow fact lists in a
manner, that guarantees uniqueness of elements inside the resulting list, and the
preservation of relative ordering among the interesting locations.

5. Visualization of the contexts
Monaco Editor is maintained by Microsoft and available worldwide for free [14].
It has a playground with full of interactive examples and provides wide access to

4



Annal. Math. et Inf. Visualization of Read-Copy-Update synchronization . . .

the editor and it supports feature like colorize the editor line-by-line, add different
error and warning messages or add a hover message when the cursor is hovered over
the text. Doing all this with JavaScript programming language for the dynamic
parts, CSS for styling and HTML to build the raw frame [8]. It gives full access
to the Document Object Model (DOM) supplemented by its own special elements.
However, it sets up some limitations.

The figures below show the four aspects of Monaco Editor that we consider to
be the most important. We would like to note that this is our implemented version
of the code parser and the Monaco Editor. The C++ code is approximately the
same in all four figures, with minimal changes in place, which were necessary in
order to be able to present the different possible appearance methods.

Figure 1. Visualization of an RCU thread registration.

In order to make it easier to distinguish different visualization parts, we used

5



Annal. Math. et Inf. E. Fülöp, A. Gyén, N. Pataki

separate colors to display the individual methods and code parts. Figure 1 shows
a thread registration process. The editor highlights precisely the part of the code
where an urcu_memb_register_thread() registration takes place, the end of which
is indicated by urcu_memb_unregister_thread(). The editor highlights this part
of the code sections in yellowish color.

Figure 2. Visualization of an RCU lock snippet.

In Figure 2, we highlight another part of the previous code snippet where a read
lock was created. Its registration starts at the urcu_memb_read_lock() line and
ends with the urcu_memb_read_unlock() line. It is important to note that we can
set the highlighting of these blocks ourselves, which should be in focus, as shown
in Figure 1 and Figure 2 separately. We also have the option to display them at
the same time. In this case, the different layers in the editor will be aligned.

The algorithm detects deficiencies that can cause problems at the code level,

6



Annal. Math. et Inf. Visualization of Read-Copy-Update synchronization . . .

such as the unregistration of registered threads or locks. The editor also draws the
user’s attention to such cases, as shown in the Figure 3. It also reveals which part
of the code is missing, and if there are several errors in the code, it shows how
many errors are in the editor in total. We can use the up and down arrows on
the right side of the error bar to jump back and forth between errors. With this
feature, real-time errors can be displayed to users, thereby avoiding the occurrence
of runtime problems.

Figure 3. Visualization of an alert.

In Figure 4, one can see the highlighting of a code fragment that uses a RCU
function that uses a shared variable outside the locking code snippet at runtime,
potentially causing an error that could arise due to shared memory. By highlighting
this, the user can better check whether the given piece of code has been provided
with the appropriate error handling or threading methods, which can be used to
avoid runtime problems due to shared memory space.

Figure 5 presents the comprehensive visualization of an RCU-based code snippet
in the Monaco Editor. This approach makes many aspects of the RCU usage more

7



Annal. Math. et Inf. E. Fülöp, A. Gyén, N. Pataki

comprehensible. Our solution makes the debugging procedure, and bug fixes easier.
In addition to these, the Monaco Editor visualization implementation we cre-

ated is able to highlight potential runtime problems, such as over-indexing on the
array or highlighting different ranges and displaying hover messages.

Figure 4. Visualization of shared data’s usage outside the locking
snippet.

6. Conclusion
Despite RCU is a very powerful mechanism and in a sense simplifies thread handling
in order for someone to understand what is going on in the background, a deeper
understanding of the topic is required. The visualization tool does not answer

8



Annal. Math. et Inf. Visualization of Read-Copy-Update synchronization . . .

Figure 5. Comprehensive visualization in the Monaco Editor.

all questions, but it helps to comprehend the background processes better. Our
previous work includes a code comprehension framework for RCU. This paper
presents the visualization approach based on the framework. The visualization
is implemented in the Microsoft’s Monaco Editor that is a modern, customizable
solution for high-level code comprehension.

References
[1] R. Bell, A. D. Malony, S. Shende: ParaProf: A Portable, Extensible, and Scalable Tool

for Parallel Performance Profile Analysis, in: Euro-Par 2003 Parallel Processing, ed. by H.
Kosch, L. Böszörményi, H. Hellwagner, Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 17–26, isbn: 978-3-540-45209-6.

9



Annal. Math. et Inf. E. Fülöp, A. Gyén, N. Pataki

[2] M. Danisovszky, T. Nagy, K. Répás, G. Kusper: Western Canon of Software Engineering:
The Abstract Principles, in: 2019 10th IEEE International Conference on Cognitive Infocom-
munications (CogInfoCom), 2019, pp. 153–156, doi: https://doi.org/10.1109/CogInfoCom
47531.2019.9089999.

[3] M. Desnoyers, P. E. McKenney: Userspace RCU, https://liburcu.org/.
[4] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, J. Walpole: User-Level

Implementations of Read-Copy Update, IEEE Transactions on Parallel and Distributed Sys-
tems 23.2 (2012), pp. 375–382, doi: https://doi.org/10.1109/TPDS.2011.159.

[5] M. Drocco, V. G. Castellana, M. Minutoli: Practical Distributed Programming in C++,
in: Proceedings of the 29th International Symposium on High-Performance Parallel and Dis-
tributed Computing, HPDC ’20, Stockholm, Sweden: Association for Computing Machinery,
2020, pp. 35–39, isbn: 9781450370523, doi: https://doi.org/10.1145/3369583.3392680.

[6] E. Fülöp, A. Gyén, N. Pataki: A Framework for C++ Exception Handling Assistance, in:
Proceedings of the Ninth Workshop on Software Quality Analysis, Monitoring, Improvement,
and Applications, ed. by Z. Budimac, CEUR Workshop Proceedings 3237, 2022, 4:1–4:13,
url: http://ceur-ws.org/Vol-3237/paper-ful.pdf.

[7] E. Fülöp, A. Gyén, N. Pataki: Code Comprehension for Read-Copy-Update Synchroniza-
tion Contexts in C Code, in: Geoinformatics and Data Analysis, ed. by S. Bourennane,
P. Kubicek, Cham: Springer International Publishing, 2022, pp. 187–200, isbn: 978-3-031-
08017-3, doi: https://doi.org/10.1007/978-3-031-08017-3_17.

[8] E. Fülöp, A. Gyén, N. Pataki: Monaco Support for an Improved Exception Specification
in C++, IPSI Transactions on Internet Research 19.1 (Jan. 2023), pp. 24–31, doi: https:
//doi.org/10.58245/ipsi.tir.2301.05, url: http://ipsitransactions.org/journals/pa
pers/tir/2023jan/p5.pdf.

[9] T. E. Hart, P. E. McKenney, A. D. Brown, J. Walpole: Performance of memory recla-
mation for lockless synchronization, Journal of Parallel and Distributed Computing 67.12
(2007), Best Paper Awards: 20th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2006), pp. 1270–1285, issn: 0743-7315, doi: https://doi.org/10.1016/j.jpd
c.2007.04.010, url: https://www.sciencedirect.com/science/article/pii/S0743731507
00069X.

[10] B. Kot, B. Wuensche, J. Grundy, J. Hosking: Information Visualisation Utilising 3D
Computer Game Engines Case Study: A Source Code Comprehension Tool, in: Proceedings
of the 6th ACM SIGCHI New Zealand Chapter’s International Conference on Computer-
Human Interaction: Making CHI Natural, CHINZ ’05, Auckland, New Zealand: Association
for Computing Machinery, 2005, pp. 53–60, isbn: 1595930361, doi: https://doi.org/10.11
45/1073943.1073954.

[11] G. Márton, I. Szekeres, Z. Porkoláb: Towards a High-level C++ Abstraction To Utilize
The Read-Copy-Update Pattern, Acta Electrotechnica et Informatica 18.3 (2018), pp. 18–26,
doi: https://doi.org/0.15546/aeei-2018-0021.

[12] P. E. McKenney: Is Parallel Programming Hard, And, If So, What Can You Do About It?
(Release v2021.12.22a), 2021, arXiv: 1701.00854 [cs.DC], url: https://arxiv.org/abs/17
01.00854.

[13] P. E. McKenney, J. Walpole: What is RCU, fundamentally?, 2007, url: https://lwn.ne
t/Articles/262464/.

[14] Microsoft: Monaco Editor, https://microsoft.github.io/monaco-editor/.
[15] G. Nagy, Z. Porkoláb: Read-Copy-Update as a Possible Locking Strategy in Scala, in: Pro-

ceedings of the Seventh Workshop on Software Quality Analysis, Monitoring, Improvement,
and Applications, ed. by Z. Budimac, CEUR Workshop Proceedings 2217, 2018, 12:1–12:8,
url: http://ceur-ws.org/Vol-2217/paper-nag.pdf.

[16] Z. Porkoláb, T. Brunner: Advanced Code Comprehension using Version Control Infor-
mation, IPSI Transactions on Internet Research 16.2 (July 2020), pp. 47–54.

10

https://doi.org/10.1109/CogInfoCom47531.2019.9089999
https://doi.org/10.1109/CogInfoCom47531.2019.9089999
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1145/3369583.3392680
http://ceur-ws.org/Vol-3237/paper-ful.pdf
https://doi.org/10.1007/978-3-031-08017-3_17
https://doi.org/10.58245/ipsi.tir.2301.05
https://doi.org/10.58245/ipsi.tir.2301.05
http://ipsitransactions.org/journals/papers/tir/2023jan/p5.pdf
http://ipsitransactions.org/journals/papers/tir/2023jan/p5.pdf
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1016/j.jpdc.2007.04.010
https://www.sciencedirect.com/science/article/pii/S074373150700069X
https://www.sciencedirect.com/science/article/pii/S074373150700069X
https://doi.org/10.1145/1073943.1073954
https://doi.org/10.1145/1073943.1073954
https://doi.org/0.15546/aeei-2018-0021
https://arxiv.org/abs/1701.00854
https://arxiv.org/abs/1701.00854
https://arxiv.org/abs/1701.00854
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
http://ceur-ws.org/Vol-2217/paper-nag.pdf


Annal. Math. et Inf. Visualization of Read-Copy-Update synchronization . . .

[17] Z. Porkoláb, T. Brunner: The CodeCompass Comprehension Framework, in: Proceedings
of the 26th Conference on Program Comprehension, ICPC ’18, Gothenburg, Sweden: Asso-
ciation for Computing Machinery, 2018, pp. 393–396, isbn: 9781450357142, doi: https://d
oi.org/10.1145/3196321.3196352.

[18] W. Steingartner, M. Haratim, J. Dostál: Software visualization of natural semantics of
imperative languages - a teaching tool, in: 2019 IEEE 15th International Scientific Conference
on Informatics, 2019, pp. 000509–000514, doi: https://doi.org/10.1109/Informatics4793
6.2019.9119290.

11

https://doi.org/10.1145/3196321.3196352
https://doi.org/10.1145/3196321.3196352
https://doi.org/10.1109/Informatics47936.2019.9119290
https://doi.org/10.1109/Informatics47936.2019.9119290

