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Abstract. In this paper, we study the generalized Fibonacci like sequences
{𝑡𝑘,𝑛}𝑘∈{2,3},𝑛∈N with arbitrary initial seed and give some new and well-
known identities like Binet’s formula, trace sequence, Catalan’s identity, gen-
erating function, etc. Further, we study various properties of these general-
ized sequences, establish a recursive matrix and relationships with Fibonacci
and Lucas numbers and sequence of Fibonacci traces. In this study, we exam-
ine the nature of identities and recursive matrices for arbitrary initial values.
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1. Introduction

In recent years, several papers [1, 2, 4, 18] published involving new identities and re-
sults based on Fibonacci-like sequences and their generalizations which have many
interesting properties. One can refer to the book [8] of T. Koshy for more such
sequences, generalizations, and rich applications.

In spite of many articles, books, and literature reviews on Fibonacci-like se-
quences and their generalizations [3–10, 13, 17], investigating new identities, results
and their applications are interesting areas among researchers. Ongoing through
the available literature review on generalizations of Fibonacci sequences, it can be
noted that mainly the work may be generalized in two directions. Either the re-
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cursive formula can be generalized and extended or the formula is preserved with
arbitrary initial assumptions. Kalman et al. [6] discussed some well-known results
of classical Fibonacci-like sequences and demonstrated that many of the properties
of these sequences can be established for much more general classes.

The recursive matrices corresponding to recursive sequences always attract re-
searchers to investigate new identities and establish some well-known results such
as Binet’s formula, determinants, permanents, etc. For instance, Kumari et al. [9]
have proposed some new families of identities of 𝑘-Mersenne and generalized 𝑘-
Gaussian Mersenne numbers and their polynomials. Tianxiao et al. [16] presented
a recursive matrix for recursive sequences of order three 𝑎𝑘+3 = 𝑝𝑎𝑘 +𝑞𝑎𝑘+1+𝑟𝑎𝑘+2
with arbitrary initial conditions, and discussed some special third order recurrences
such as Padavon and Perrin numbers. Saba et al. [14] introduced the concept of bi-
variate Mersenne Lucas polynomials then established Binet’s formula and obtained
many well-known identities using Binet’s formula. Özkan et al. [11] obtained the
elements of the Lucas polynomials by using two matrices and extended the study
to the 𝑛-step Lucas polynomials, whereas Testan et al. [15] given some families
of generalized Fibonacci and Lucas polynomials and developed some properties of
these families and established interrelationships.

1.1. Fibonacci and Lucas matrices
The well-known integer sequences, Fibonacci {𝑓2,𝑛} and Lucas {𝑢2,𝑛} sequence are
defined as

𝑓2,𝑛+2 = 𝑓2,𝑛 + 𝑓2,𝑛+1 and 𝑢2,𝑛+2 = 𝑢2,𝑛 + 𝑢2,𝑛+1; 𝑛 ≥ 0, (1.1)

with 𝑓2,0 = 0, 𝑓2,1 = 1 for {𝑓2,𝑛} and 𝑢2,0 = 2, 𝑢2,1 = 1 for {𝑢2,𝑛}. These sequences
are also extendable in the negative direction which can be achieved by rearranging
Eqn. (1.1). It is also noted that 𝑓2,−𝑛 = (−1)𝑛+1𝑓2,𝑛 and 𝑢2,−𝑛 = (−1)𝑛𝑢2,𝑛 for
𝑛 ∈ N ∪ {0}.

A matrix sequence [8] corresponding to above integer sequences are given as

𝑄𝑛
2 =

[︂
𝑓2,𝑛+1 𝑓2,𝑛

𝑓2,𝑛 𝑓2,𝑛−1

]︂
and 𝐿

(𝑛)
2 =

[︂
𝑢2,𝑛+1 𝑢2,𝑛

𝑢2,𝑛 𝑢2,𝑛−1

]︂
. (1.2)

Further in [12], Prasad et al. have obtained some interesting properties of gen-
eralized Fibonacci matrices (𝑄𝑛

𝑘 ) given in the following theorem. We use these
identities to establish some new identities and results in this paper.

Theorem 1.1 ([12]). Let 𝑛, 𝑙 ∈ Z, 𝑘(≥ 2) ∈ N and 𝑄𝑛
𝑘 be a generalized Fibonacci

matrix of order k, then we have

1. (𝑄1
𝑘)𝑛 = 𝑄𝑛

𝑘 ,

2. 𝑄0
𝑘 = 𝐼𝑘, where 𝐼𝑘 is identity matrix of order k,

3. 𝑄𝑛
𝑘 𝑄𝑙

𝑘 = 𝑄𝑛+𝑙
𝑘 ,
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4. det(𝑄𝑛
𝑘 ) = (−1)(𝑘−1)𝑛.

Note. Throughout the paper, we adopt the notation 𝑡𝑘,𝑛 to denote the 𝑛th term
of the sequence {𝑡𝑘,𝑛} of order 𝑘 with arbitrary initial values.

2. The {𝑡2,𝑛} sequence and some properties
Consider the second order linear difference equation given by

𝑡2,𝑛+2 = 𝑡2,𝑛+1 + 𝑡2,𝑛, 𝑛 ≥ 0 with 𝑡2,0 = 𝑎 and 𝑡2,1 = 𝑏. (2.1)

Similar to the Fibonacci sequence, the sequence {𝑡2,𝑛} can also be extended in the
negative direction by rearranging Eqn. (2.1) as 𝑡2,−𝑛 = 𝑡2,−𝑛+2 − 𝑡2,−𝑛+1; 𝑛 ∈ N
with the same initial values.

Thus, the first few terms of the sequence are as follows:

𝑛 ... -3 -2 -1 0 1 2 3 4 5 6 ...
𝑡2,𝑛 ... -3a+2b 2a-b -a+b a b a+b a+2b 2a+3b 3a+5b 5a+8b ...
𝑓2,𝑛 ... 2 -1 1 0 1 1 2 3 5 8 ...
𝑙2,𝑛 ... -4 3 -1 2 1 3 4 7 11 18 ...

Remark 2.1. For a sequence {𝑡2,𝑛}𝑛≥0 satisfying Eqn. (2.1), we have

𝑡2,𝑛 = 𝑎𝑓2,𝑛−1 + 𝑏𝑓2,𝑛, where 𝑓2,0 = 0 and 𝑓2,1 = 1. (2.2)

2.1. Matrix formation

The matrix sequence {𝑇
(𝑛)
2 }𝑛≥0 associated with the integer sequence {𝑡2,𝑛} is de-

fined as
𝑇

(𝑛)
2 =

[︂
𝑡2,𝑛+1 𝑡2,𝑛

𝑡2,𝑛 𝑡2,𝑛−1

]︂
with 𝑇

(0)
2 =

[︂
𝑏 𝑎
𝑎 𝑏 − 𝑎

]︂
, (2.3)

where det(𝑇 (0)
2 ) = 𝑏(−𝑎 + 𝑏) − 𝑎2 = 𝑏2 − 𝑎𝑏 − 𝑎2 = 𝐾(say).

In next theorems and results, we present some interesting recursive and explicit
formulas for the matrix sequence 𝑇

(𝑛)
2 associated with the Fibonacci matrices.

Theorem 2.2. The determinant of matrix 𝑇
(𝑛)
2 is given by

det(𝑇 (𝑛)
2 ) = (𝑎2 + 𝑎𝑏 − 𝑏2)(−1)𝑛−1 = 𝐾(−1)𝑛.

Proof. To prove it, we use the following result of Fibonacci numbers

𝑓2,𝑛+1𝑓2,𝑛−2 − 𝑓2,𝑛𝑓2,𝑛−1 = (−1)𝑛−1. (2.4)

Therefore,

det(𝑇 (𝑛)
2 ) = 𝑡2,𝑛+1𝑡2,𝑛−1 − 𝑡2

2,𝑛

3
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= (𝑎𝑓2,𝑛 + 𝑏𝑓2,𝑛+1)(𝑎𝑓2,𝑛−2 + 𝑏𝑓2,𝑛−1) − (𝑎𝑓2,𝑛−1 + 𝑏𝑓2,𝑛)2

= 𝑎2(𝑓2,𝑛𝑓2,𝑛−2 − 𝑓2
2,𝑛−1) + 𝑏2(𝑓2,𝑛+1𝑓2,𝑛−1 − 𝑓2

2,𝑛)
+ 𝑎𝑏(𝑓2,𝑛𝑓2,𝑛−1 + 𝑓2,𝑛+1𝑓2,𝑛−2 − 2𝑓2,𝑛𝑓2,𝑛−1)

= 𝑎2[(−1)𝑛−1] + 𝑏2[(−1)𝑛] + 𝑎𝑏(𝑓2,𝑛+1𝑓2,𝑛−2 − 𝑓2,𝑛𝑓2,𝑛−1)
= 𝑎2[(−1)𝑛−1] + 𝑏2[(−1)𝑛] + 𝑎𝑏[(−1)𝑛−1] (using Eqn. (2.4))
= (𝑎2 − 𝑏2 + 𝑎𝑏)(−1)𝑛−1 = −𝐾(−1)𝑛−1 = 𝐾(−1)𝑛

as required.

Corollary 2.3. det(𝑇 (𝑛+1)
2 ) = (−1) det(𝑇 (𝑛)).

Example 2.4 (Fibonacci matrix). For 𝑎 = 0, 𝑏 = 1, we have det(𝑇 (𝑛)
2 ) = (−1)𝑛.

Example 2.5 (Lucas matrix). For 𝑎 = 2, 𝑏 = 1, we have det(𝑇 (𝑛)
2 ) = (−1)𝑛5.

Theorem 2.6. Let 𝑇
(𝑛)
2 be a matrix as defined in (2.3) and 𝑄𝑛

2 is the Fibonacci
matrix, then we write

𝑇
(𝑛)
2 = 𝑄𝑛

2 𝑇
(0)
2 = 𝑇

(0)
2 𝑄𝑛

2 , ∀𝑛 ∈ Z.

Proof. We have

𝑄𝑛
2 𝑇

(0)
2 =

[︂
𝑓2,𝑛+1 𝑓2,𝑛

𝑓2,𝑛 𝑓2,𝑛−1

]︂[︂
𝑏 𝑎
𝑎 𝑏 − 𝑎

]︂
=

[︂
𝑏𝑓2,𝑛+1 + 𝑎𝑓2,𝑛 𝑎𝑓2,𝑛+1 + (𝑏 − 𝑎)𝑓2,𝑛

𝑏𝑓2,𝑛 + 𝑎𝑓2,𝑛−1 𝑎𝑓2,𝑛 + (𝑏 − 𝑎)𝑓2,𝑛−1

]︂
=

[︂
𝑎𝑓2,𝑛 + 𝑏𝑓2,𝑛+1 𝑏𝑓2,𝑛 + 𝑎𝑓2,𝑛−1
𝑎𝑓2,𝑛−1 + 𝑏𝑓2,𝑛 𝑏𝑓2,𝑛−1 + 𝑎𝑓2,𝑛−2

]︂
(using relation (1.1))

=
[︂
𝑡2,𝑛+1 𝑡2,𝑛

𝑡2,𝑛 𝑡2,𝑛−1

]︂
(using relation (2.2))

= 𝑇
(𝑛)
2 .

By a similar argument, we have 𝑇
(0)
2 𝑄𝑛

2 = 𝑇
(𝑛)
2 .

Corollary 2.7. If 𝑎 = 0, 𝑏 = 1 then 𝑇
(0)
2 = 𝐼2 and 𝑇

(𝑛)
2 = 𝑄𝑛

2 , where 𝐼2 is an
identity matrix of order 2.

Corollary 2.8. For 𝑛 ∈ N, we have 𝑇
(𝑛)
2 = 𝑄2𝑇

(𝑛−1)
2 = 𝑄−1

2 𝑇
(𝑛+1)
2 .

Theorem 2.9. Let 𝑇
(𝑛)
2 be a matrix as defined in (2.3), then we write

𝑇
(𝑛)
2 𝑇

(−𝑛)
2 = (𝑇 (0)

2 )2.

Proof. By definition of 𝑇
(𝑛)
2 , we have

𝑇
(𝑛)
2 𝑇

(−𝑛)
2 = 𝑄

(𝑛)
2 𝑇

(0)
2 𝑄

(−𝑛)
2 𝑇

(0)
2

4
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= 𝑇
(0)
2 𝑄

(𝑛)
2 𝑄

(−𝑛)
2 𝑇

(0)
2

= 𝑇
(0)
2 𝐼𝑇

(0)
2 = 𝑇

(0)
2 𝑇

(0)
2 = (𝑇 (0)

2 )2

as required.

From Theorem 2.2, it is clear that the matrix 𝑇
(𝑛)
2 is invertible if and only if

𝑇
(0)
2 is invertible i.e det(𝑇 (0)

2 ) = 𝐾 ̸= 0. Thus from Theorem 2.9, we have the
inverse of 𝑇

(𝑛)
2 given by

Inv(𝑇 (𝑛)
2 ) = 𝑇

(−𝑛)
2 𝐻−1, where 𝐻 = (𝑇 (0)

2 )2 and 𝑎, 𝑏 are such that 𝐾 ̸= 0.

2.2. The trace sequence
Let us define another sequence {𝑙2,𝑛} of order two for the given sequence {𝑡2,𝑛} as
follows

𝑙2,𝑛 = trace(𝑇 (𝑛)
2 ) = 𝑡2,𝑛+1 + 𝑡2,𝑛−1, (2.5)

whose initial values in terms of 𝑎 and 𝑏 are obtained as

𝑙2,0 = 𝑡2,1 + 𝑡2,−1 = 𝑏 + (𝑏 − 𝑎) = −𝑎 + 2𝑏,

𝑙2,1 = 𝑡2,2 + 𝑡2,0 = (𝑎 + 𝑏) + 𝑎 = 2𝑎 + 𝑏.

Thus, Eqn. (2.5) can be re-stated free from 𝑡2,𝑛, recursively as

𝑙2,𝑛+2 = 𝑙2,𝑛+1 + 𝑙2,𝑛 with 𝑙2,0 = −𝑎 + 2𝑏, 𝑙2,1 = 2𝑎 + 𝑏. (2.6)

In particular, for 𝑎 = 0, 𝑏 = 1, {𝑡2,𝑛} becomes {𝑓2,𝑛} and its corresponding se-
quence of traces coincides with the standard Lucas sequence {𝑢2,𝑛}.

Moreover, the matrix 𝑀
(𝑛)
2 corresponding to trace sequence {𝑙2,𝑛} is given by

𝑀
(𝑛)
2 =

[︂
𝑙2,𝑛+1 𝑙2,𝑛

𝑙2,𝑛 𝑙2,𝑛−1

]︂
with 𝑀

(0)
2 =

[︂
𝑙2,1 𝑙2,0
𝑙2,0 𝑙2,−1

]︂
=

[︂
2𝑎 + 𝑏 2𝑏 − 𝑎
2𝑏 − 𝑎 3𝑎 − 𝑏

]︂
. (2.7)

Theorem 2.10. The determinant of matrix 𝑀
(𝑛)
2 is given by

det(𝑀 (𝑛)
2 ) = 5𝐾(−1)𝑛+1 ∀𝑛 ∈ Z.

Proof. From Eqn. (2.7), we have

𝑀
(𝑛)
2 =

[︂
𝑙2,𝑛+1 𝑙2,𝑛

𝑙2,𝑛 𝑙2,𝑛−1

]︂
=

[︂
𝑡2,𝑛+2 + 𝑡2,𝑛 𝑡2,𝑛+1 + 𝑡2,𝑛−1

𝑡2,𝑛+1 + 𝑡2,𝑛−1 𝑡2,𝑛 + 𝑡2,𝑛−2

]︂
=

[︂
𝑡2,𝑛+1 𝑡2,𝑛

𝑡2,𝑛 𝑡2,𝑛−1

]︂[︂
1 2
2 −1

]︂
= 𝑇

(𝑛)
2 𝐿

(0)
2 (from Eqn. (2.1) and Eqn. (1.2)).

Thus, det(𝑀 (𝑛)
2 ) = |𝑇 (𝑛)

2 𝐿
(0)
2 | = |𝑄𝑛

2 𝑇
(0)
2 𝐿

(0)
2 | = |𝑄𝑛

2 ||𝑇 (0)
2 ||𝐿(0)

2 | = 5𝐾(−1)𝑛+1.

5
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In particular for 𝑛 = 0, we have det(𝑀 (0)
2 ) = 5𝑎2 + 5𝑎𝑏 − 5𝑏2 = −5𝐾.

The first few terms of the trace sequence {𝑙2,𝑛}𝑛∈Z are as follows:

𝑛 ... -3 -2 -1 0 1 2 3 4 ...
𝑙2,𝑛 ... 7a-4b -4a+3b 3a-b -a+2b 2a+b a+3b 3a+4b 4a+7b ...

Remark 2.11. If 𝑙2,𝑛 = 𝑘1𝑎 + 𝑘2𝑏 for 𝑛 > 0, then we have

𝑙2,−𝑛+1 = (𝑘2𝑎 − 𝑘1𝑏)(−1)𝑛.

2.3. Binet’s formula, identities and generating function
The characteristics equation for the second order linear difference equation (2.1) is
given by

𝑥2 = 𝑥 + 1. (2.8)

Equation (2.8) has two real roots, 𝛼1 = 1+
√

5
2 and 𝛼2 = 1−

√
5

2 , which satisfy

𝛼1 + 𝛼2 = 1, 𝛼1 − 𝛼2 =
√

5, 𝛼1𝛼2 = −1 and 𝛼1

𝛼2
= 3 +

√
5

−2 . (2.9)

And from the theory of difference equation we know that the general term of the
Eqn. (2.1) can be expressed as:

𝑡2,𝑛 = 𝑐1𝛼𝑛
1 + 𝑐2𝛼𝑛

2 , (2.10)

where 𝑐1 and 𝑐2 are arbitrary constants (to be evaluated) and 𝛼1 and 𝛼2 are
characteristics roots.

Theorem 2.12 (Binet’s formula). For 𝑛 ≥ 0, we have

𝑡2,𝑛 = −𝐴𝛼𝑛
1 + 𝐵𝛼𝑛

2√
5

, (2.11)

where 𝐴 = 𝑎𝛼2 − 𝑏 and 𝐵 = 𝑎𝛼1 − 𝑏.

Proof. To establish the result, we eliminate arbitrary constants 𝑐1 and 𝑐2 from
Eqn. (2.10). Now, putting the values of 𝛼1 and 𝛼2 in Eqn. (2.10), we get

𝑡2,𝑛 = 𝑐1

(︂
1 +

√
5

2

)︂𝑛

+ 𝑐2

(︂
1 −

√
5

2

)︂𝑛

. (2.12)

To determine the values of 𝑐1 and 𝑐2, we set 𝑡2,0 = 𝑎 and 𝑡2,1 = 𝑏 in Eqn. (2.12).
Therefore,

𝑡2,0 = 𝑎 = 𝑐1 + 𝑐2 and 𝑡2,1 = 𝑏 = 𝑐1

(︂
1 +

√
5

2

)︂
+ 𝑐2

(︂
1 −

√
5

2

)︂
=⇒ 𝑏 = 1

2[𝑎 +
√

5(𝑐1 − 𝑐2)],

6
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which gives 𝑐1 + 𝑐2 = 𝑎 and 𝑐1 − 𝑐2 = (2𝑏 − 𝑎)/
√

5 and on solving we get

𝑐1 = 𝑎
√

5 − (𝑎 − 2𝑏)
2
√

5
and 𝑐2 = 𝑎

√
5 + (𝑎 − 2𝑏)

2
√

5
.

Thus, from Eqn. (2.12), we have

𝑡2,𝑛 = 1
2
√

5

[︃
(𝑎

√
5 − (𝑎 − 2𝑏))

(︂
1 +

√
5

2

)︂𝑛

+ (𝑎
√

5 + (𝑎 − 2𝑏))
(︂

1 −
√

5
2

)︂𝑛
]︃

= 1√
5

[−𝐴𝛼𝑛
1 + 𝐵𝛼𝑛

2 ]

as required.

Theorem 2.13. For 𝑛 ∈ N, we have

𝑡2,−𝑛 = (−1)𝑛 −𝐴𝛼𝑛
2 + 𝐵𝛼𝑛

1√
5

.

Proof. Replacing 𝑛 by −𝑛 in the Binet’s formula (2.11), we get

𝑡2,−𝑛 = −𝐴𝛼−𝑛
1 + 𝐵𝛼−𝑛

2√
5

= 1√
5

(︂
−𝐴

𝛼𝑛
1

+ 𝐵

𝛼𝑛
2

)︂
= 1√

5

(︂
−𝐴𝛼𝑛

2 + 𝐵𝛼𝑛
1

𝛼𝑛
1 𝛼𝑛

2

)︂
= −𝐴𝛼𝑛

2 + 𝐵𝛼𝑛
1√

5(−1)𝑛
= (−1)𝑛 −𝐴𝛼𝑛

2 + 𝐵𝛼𝑛
1√

5
(using 𝛼1𝛼2 = −1)

as required.

Theorem 2.14 (Catalan’s identity). For the sequence {𝑡2,𝑛}, we have

𝑡2,𝑛−𝑟𝑡2,𝑛+𝑟 − 𝑡2
2,𝑛 = (−1)𝑛(𝑏2 − 𝑎2 − 𝑎𝑏)

2𝑟.5 [2𝑟+1 − (
√

5 − 3)𝑟 − (−
√

5 − 3)𝑟].

Proof. Using the Binet’s formula (2.11), we write

𝑡2,𝑛−𝑟𝑡2,𝑛+𝑟 − 𝑡2
2,𝑛

=
(︂

−𝐴𝛼𝑛−𝑟
1 + 𝐵𝛼𝑛−𝑟

2√
5

)︂(︂
−𝐴𝛼𝑛+𝑟

1 + 𝐵𝛼𝑛+𝑟
2√

5

)︂
−

(︂
−𝐴𝛼𝑛

1 + 𝐵𝛼𝑛
2√

5

)︂2

= 1
5

[︀
𝐴𝐵(2𝛼𝑛

1 𝛼𝑛
2 − 𝛼𝑛−𝑟

1 𝛼𝑛+𝑟
2 − 𝛼𝑛+𝑟

1 𝛼𝑛−𝑟
2 )

]︀
= 1

5𝐴𝐵𝛼𝑛
1 𝛼𝑛

2
[︀
(2 − 𝛼−𝑟

1 𝛼𝑟
2 − 𝛼𝑟

1𝛼−𝑟
2 )

]︀
= 𝐴𝐵𝛼𝑛

1 𝛼𝑛
2

5

[︃
2 −

(︂
3 −

√
5

−2

)︂𝑟

−
(︂

3 +
√

5
−2

)︂𝑟
]︃

(using (2.9))

7
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= (−1)𝑛(𝑏2 − 𝑎2 − 𝑎𝑏)
2𝑟.5 [2𝑟+1 − (

√
5 − 3)𝑟 − (−

√
5 − 3)𝑟]

as required.

Corollary 2.15 (Cassini’s identity). For the sequence {𝑡2,𝑛}𝑛∈N, we have

𝑡2,𝑛−1𝑡2,𝑛+1 − 𝑡2
2,𝑛 = (−1)𝑛(𝑏2 − 𝑎2 − 𝑎𝑏).

Theorem 2.16 (d’Ocagne’s identity). For positive integers r and n, we have

𝑡2,𝑛𝑡2,𝑟+1 − 𝑡2,𝑛+1𝑡2,𝑟 = (𝑏2 − 𝑎2 − 𝑎𝑏)√
5

[𝛼𝑛
1 𝛼𝑟

2 − 𝛼𝑟
1𝛼𝑛

2 ].

Proof. Using the Binet’s formula (2.11), we write

𝑡2,𝑛𝑡2,𝑟+1 − 𝑡2,𝑛+1𝑡2,𝑟

=
(︂

−𝐴𝛼𝑛
1 + 𝐵𝛼𝑛

2√
5

)︂(︂
−𝐴𝛼𝑟+1

1 + 𝐵𝛼𝑟+1
2√

5

)︂
−

(︂
−𝐴𝛼𝑛+1

1 + 𝐵𝛼𝑛+1
2√

5

)︂(︂
−𝐴𝛼𝑟

1 + 𝐵𝛼𝑟
2√

5

)︂
= 𝐴𝐵

5 (𝛼𝑛+1
1 𝛼𝑟

2 + 𝛼𝑛+1
2 𝛼𝑟

1 − 𝛼𝑛
1 𝛼𝑟+1

2 − 𝛼𝑟+1
1 𝛼𝑛

2 )

= 𝐴𝐵

5 [𝛼𝑛
1 𝛼𝑟

2(𝛼1 − 𝛼2) − 𝛼𝑟
1𝛼𝑛

2 (𝛼1 − 𝛼2)]

= 𝐴𝐵

5 [(𝛼𝑛
1 𝛼𝑟

2 − 𝛼𝑟
1𝛼𝑛

2 )(𝛼1 − 𝛼2)] (substituting the value of A and B)

= (𝑏2 − 𝑎2 − 𝑎𝑏)√
5

[𝛼𝑛
1 𝛼𝑟

2 − 𝛼𝑟
1𝛼𝑛

2 ] (using 𝛼1 − 𝛼2 =
√

5)

as required.

Now, we aim to give the generating function for {𝑡2,𝑛} and {𝑙2,𝑛} sequences in
terms of 𝑎 and 𝑏.

Generating function

Let 𝑔(𝑥) =
∑︀∞

𝑛=0 𝑡2,𝑛𝑥𝑛 be a generating function for the sequence {𝑡2,𝑛}. Now,
multiplying Eqn. (2.1) by 𝑥𝑛+2 and then taking summation over 0 to ∞, we get

∞∑︁
𝑛=0

𝑥𝑛+2𝑡𝑛+2 −
∞∑︁

𝑛=0
𝑥𝑛+2𝑡𝑛+1 −

∞∑︁
𝑛=0

𝑥𝑛+2𝑡𝑛 = 0

=⇒ (𝑔(𝑥) − 𝑡0 − 𝑡1𝑥) − (𝑔(𝑥) − 𝑡0)𝑥 − 𝑔(𝑥)𝑥2 = 0
=⇒ 𝑔(𝑥)(1 − 𝑥 − 𝑥2) − (𝑡0 + 𝑡1𝑥 − 𝑡0𝑥) = 0

=⇒ 𝑔(𝑥) = 𝑎 + (𝑏 − 𝑎)𝑥
(1 − 𝑥 − 𝑥2) . (2.13)

8



Annal. Math. et Inf. On the generalized Fibonacci like sequences and matrices

Theorem 2.17. Let q(x) be the generating function for trace sequence {𝑙2,𝑛} (2.6),
then we have

𝑞(𝑥) = −𝑔(𝑥) + 2
(︂

𝑔(𝑥) − 𝑎

𝑥

)︂
.

Proof. Lat 𝐴 = −𝑎 + 2𝑏 and 𝐵 = 2𝑎 + 𝑏 (initial value of trace sequence), then in
Eqn. (2.13) replace 𝑎 by A and 𝑏 by B, we get

𝑞(𝑥) = 𝐴 + (𝐵 − 𝐴)𝑥
(1 − 𝑥 − 𝑥2) = (−𝑎 + 2𝑏) + (2𝑎 + 𝑏 − (−𝑎 + 2𝑏))𝑥

(1 − 𝑥 − 𝑥2)

= (−𝑎 + 2𝑏) + (3𝑎 − 𝑏)𝑥
(1 − 𝑥 − 𝑥2)

= −𝑎 − (𝑏 − 𝑎)𝑥
(1 − 𝑥 − 𝑥2) + 2[𝑏 + (𝑎 + 𝑏 − 𝑏)𝑥]

(1 − 𝑥 − 𝑥2)

= −𝑔(𝑥) + 2
(︂

𝑔(𝑥) − 𝑎

𝑥

)︂
as required.

For 𝑎 = 0, 𝑏 = 1 and 𝑎 = 2, 𝑏 = 1, Eqn. (2.13) gives the generating function
for Fibonacci and Lucas sequence, respectively.

3. The {𝑡3,𝑛} sequence and some properties

Let us consider the sequence {𝑡3,𝑛}𝑛≥0 given by a third order linear difference
equation as follows

𝑡3,𝑛+3 = 𝑡3,𝑛+2 + 𝑡3,𝑛+1 + 𝑡3,𝑛 with 𝑡3,0 = 𝑎, 𝑡3,1 = 𝑏, 𝑡3,2 = 𝑐. (3.1)

The recurrence relation (3.1) can also be extended in negative direction and it can
be achieved by rearranging the relation as 𝑡3,𝑛 = 𝑡3,𝑛+3 − 𝑡3,𝑛+2 − 𝑡3,𝑛+1, 𝑛 ≤ 0.

In particular for 𝑎 = 𝑏 = 0, 𝑐 = 1, Eqn. (3.1) gives tribonacci sequence while
for 𝑎 = 3, 𝑏 = 1, 𝑐 = 3, same is known as trucas (Tribonacci-Lucas) sequence [8].

The first few terms of sequence {𝑡3,𝑛} are given in the following table:

Index (𝑛) 𝑡3,𝑛 Value Index (−𝑛) 𝑡3,−𝑛 Value
0 𝑡3,0 𝑎 0 𝑡3,0 𝑎
1 𝑡3,1 𝑏 −1 𝑡3,−1 𝑐 − 𝑎 − 𝑏
2 𝑡3,2 𝑐 −2 𝑡3,−2 2𝑏 − 𝑐
3 𝑡3,3 𝑎 + 𝑏 + 𝑐 −3 𝑡3,−3 2𝑎 − 𝑏
4 𝑡3,4 𝑎 + 2𝑏 + 2𝑐 −4 𝑡3,−4 2𝑐 − 3𝑎 − 2𝑏
5 𝑡3,5 2𝑎 + 3𝑏 + 4𝑐 −5 𝑡3,−5 5𝑏 − 3𝑐 + 𝑎
6 𝑡3,6 4𝑎 + 6𝑏 + 7𝑐 −6 𝑡3,−6 4𝑎 − 4𝑏 + 𝑐

9
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The matrix representation corresponding to Eqn. (3.1) is given by a square matrix
𝑇

(𝑛)
3 of order 3 defined as

𝑇
(𝑛)
3 =

⎡⎣𝑡3,𝑛+2 𝑡3,𝑛+1 + 𝑡3,𝑛 𝑡3,𝑛+1
𝑡3,𝑛+1 𝑡3,𝑛 + 𝑡3,𝑛−1 𝑡3,𝑛

𝑡3,𝑛 𝑡3,𝑛−1 + 𝑡3,𝑛−2 𝑡3,𝑛−1

⎤⎦with 𝑇
(0)
3 =

⎡⎣𝑐 𝑎 + 𝑏 𝑏
𝑏 𝑐 − 𝑏 𝑎
𝑎 𝑏 − 𝑎 𝑐 − 𝑎 − 𝑏

⎤⎦ (3.2)

and the determinant of 𝑇
(0)
3 is given as

det(𝑇 (0)
3 ) = 𝑎3 + 2𝑎2𝑏 + 𝑎2𝑐 + 2𝑎𝑏2 − 2 𝑎 𝑏 𝑐 − 𝑎 𝑐2 + 2 𝑏3 − 2 𝑏 𝑐2 + 𝑐3 (= 𝐾, say).

Theorem 3.1. Let {𝑓3,𝑘}𝑛≥0 be tribonacci sequence [A000073] with initial values
0, 0, 1, then

𝑡3,𝑛 = 𝑏(𝑓3,𝑛+1 − 𝑓3,𝑛) + 𝑎𝑓3,𝑛−1 + 𝑐𝑓3,𝑛, ∀𝑛 ∈ Z.

Proof. We prove it using mathematical induction on 𝑛. For 𝑛 = 0, the result
obviously holds. For 𝑛 = 1, we have

𝑡3,1 = 𝑏(𝑓3,2 − 𝑓3,1) + 𝑎𝑓3,0 + 𝑐𝑓3,1 = 𝑏 + 𝑎0 + 𝑐0 = 𝑏.

Now assuming the result is true for 𝑛 = 𝑘. For 𝑛 = 𝑘 + 1, we write

𝑡𝑘+1 = 𝑡𝑘 + 𝑡𝑘−1 + 𝑡𝑘−2

= [𝑏(𝑓𝑘+1 − 𝑓𝑘) + 𝑎𝑓𝑘−1 + 𝑐𝑓𝑘] + [𝑏(𝑓𝑘 − 𝑓𝑘−1) + 𝑎𝑓𝑘−2 + 𝑐𝑓𝑘−1]
+ [𝑏(𝑓𝑘−1 − 𝑓𝑘−2) + 𝑎𝑓𝑘−3 + 𝑐𝑓𝑘−2]

= 𝑏(𝑓𝑘+1 − 𝑓𝑘−2) + 𝑎(𝑓𝑘−1 + 𝑓𝑘−2 + 𝑓𝑘−3) + 𝑐(𝑓𝑘 + 𝑓𝑘−1 + 𝑓𝑘−2)
= 𝑏(𝑓𝑘+2 − 𝑓𝑘+1) + 𝑎𝑓𝑘 + 𝑐𝑓𝑘+1 (using tribonacci sequence)

as required.

Theorem 3.2. Let 𝑇
(0)
3 be the initial matrix defined in Eqn. (3.2) and 𝑄𝑛

3 be
tribonacci matrix, then we have 𝑇

(𝑛)
3 = 𝑄𝑛

3 𝑇
(0)
3 , ∀𝑛 ∈ Z.

Proof. It can be easily proved using mathematical induction on 𝑛 and Theo-
rem 3.1.

Corollary 3.3. For 𝑛 ∈ N, we have, 𝑇
(𝑛)
3 = 𝑄3𝑇

(𝑛−1)
3 = 𝑄−1

3 𝑇
(𝑛+1)
3 .

Remark 3.4. Matrices 𝑄𝑛
3 and 𝑇

(0)
3 commutes i.e. 𝑄𝑛

3 𝑇
(0)
3 = 𝑇

(0)
3 𝑄𝑛

3 , ∀𝑛 ∈ Z.

Theorem 3.5. For recursive matrix 𝑇
(𝑛)
3 , we write

𝑇
(𝑛)
3 𝑇

(−𝑛)
3 = (𝑇 (0)

3 )2, ∀𝑛 ∈ Z.

10
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Proof. Using definition of 𝑇
(𝑛)
3 , we have

𝑇
(𝑛)
3 𝑇

(−𝑛)
3 = 𝑄𝑛

3 𝑇
(0)
3 𝑄−𝑛

3 𝑇
(0)
3

= 𝑄𝑛
3 𝑄−𝑛

3 𝑇
(0)
3 𝑇

(0)
3 = 𝐼𝑇

(0)
3 𝑇

(0)
3 = (𝑇 (0)

3 )2

as required.

Remark 3.6. Determinant of 𝑇
(𝑛)
3 is invariant of 𝑛, i.e. det(𝑇 (𝑛)

3 ) = det(𝑇 (0)
3 ) = 𝐾.

Since by the properties of determinant, we write

det(𝑇 (𝑛)
3 ) = det(𝑄𝑛

3 𝑇
(0)
3 ) = det(𝑄𝑛

3 ) det(𝑇 (0)
3 )

= (−1)2𝑛 det(𝑇 (0)
3 ) = det(𝑇 (0)

3 ) = 𝐾.

Thus, 𝑇
(𝑛)
3 is invertible if and only if 𝑇

(0)
3 is invertible, so for the existence of

inverse of 𝑇
(𝑛)
3 , we consider only those values of 𝑎, 𝑏, 𝑐 such that det(𝑇 (0)

3 ) ̸= 0.

Example 3.7 (Tribonacci). Let 𝑎 = 𝑏 = 0 and 𝑐 =1 then det(𝑇 (𝑛)
3 ) = 1.

Example 3.8 (Trucas). Let 𝑎 = 3, 𝑏 = 1 and 𝑐 = 3 then det(𝑇 (𝑛)
3 ) = 44.

Remark 3.9. Inv(𝑇 (𝑛)
3 ) = 𝑇

(−𝑛)
3 𝐻−1 provided det(𝑇 (0)

3 ) ̸= 0, where 𝐻 = (𝑇 (0)
3 )2.

3.1. Matrix representation for sequence of traces
The Lucas sequence of order 3 (also known as trucas, ref. A001644, A007486) is
given by following recurrence relation

𝑙3,𝑛+3 = 𝑙3,𝑛+2 + 𝑙3,𝑛+1 + 𝑙3,𝑛, with 𝑙3,0 = 3, 𝑙3,1 = 1, 𝑙3,2 = 3. (3.3)

In terms of tribonacci sequence, trucas is given by 𝑙3,𝑛 = 𝑡𝑟𝑎𝑐𝑒(𝑄𝑛
3 ) = 𝑓3,𝑛+2 +

𝑓3,𝑛+2𝑓3,𝑛−1. Now, redefining the trucas (3.3) for {𝑡3,𝑛} sequence with the relation

𝑙3,𝑛 = trace(𝑇 (𝑛)
3 ).

Since trace(𝑇 (𝑛)
3 ) = 𝑡3,𝑛+2 + 𝑡3,𝑛 + 2𝑡3,𝑛−1, so from Theorem 3.1, we have

trace(𝑇 (𝑛)
3 ) = [𝑏(𝑓𝑛+3 − 𝑓𝑛+2) + 𝑎𝑓𝑛+1 + 𝑐𝑓𝑛+2] + [𝑏(𝑓𝑛+1 − 𝑓𝑛) + 𝑎𝑓𝑛−1 + 𝑐𝑓𝑛]

+ 2[𝑏(𝑓𝑛 − 𝑓𝑛−1) + 𝑎𝑓𝑛−2 + 𝑐𝑓𝑛−1]
= 𝑏(𝑓3,𝑛+3 + 𝑓3,𝑛+1 + 𝑓3,𝑛 − 𝑓3,𝑛+2 − 2𝑓3,𝑛−1)

+ 𝑎(𝑓3,𝑛+1 + 𝑓3,𝑛−1 + 2𝑓3,𝑛−2) + 𝑐(𝑓3,𝑛+2 + 𝑓3,𝑛 + 2𝑓3,𝑛−1)
= 2𝑏(𝑓3,𝑛+3 − 𝑓3,𝑛+2 − 𝑓3,𝑛−1) + 𝑎𝑙3,𝑛−1 + 𝑐𝑙3,𝑛. (3.4)

Remark 3.10. For 𝑎 = 𝑏 = 0, 𝑐 = 1, Eqn. (3.4) gives the standard trucas sequence.

11
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The corresponding matrix sequence {𝑀
(𝑛)
3 } for the sequence {𝑙3,𝑛} is given by

𝑀
(𝑛)
3 =

⎡⎣𝑙3,𝑛+2 𝑙3,𝑛+1 + 𝑙3,𝑛 𝑙3,𝑛+1
𝑙3,𝑛+1 𝑙3,𝑛 + 𝑙3,𝑛−1 𝑙3,𝑛

𝑙3,𝑛 𝑙3,𝑛−1 + 𝑙3,𝑛−2 𝑙3,𝑛−1

⎤⎦.

Theorem 3.11. Let 𝐿
(0)
3 be the initial trucas matrix (it can be obtained by putting

𝑎 = 3, 𝑏 = 1, 𝑐 = 3 in 𝑇
(0)
3 in Eqn. (3.2)), then we have

𝑀
(𝑛)
3 = 𝑇

(𝑛)
3 𝐿

(0)
3 . (3.5)

Proof. It can be easily proved with mathematical induction on 𝑛.

Theorem 3.12. If K is determinant of 𝑇
(0)
3 , then det(𝑀 (𝑛)

3 ) = 44𝐾.

Proof. Using properties of the determinant and Eqn. (3.5), we have

det(𝑀 (𝑛)
3 ) = |𝑇 (𝑛)

3 𝐿
(0)
3 | = |𝑇 (𝑛)

3 ||𝐿(0)
3 | = |𝑄𝑛

3 ||𝑇 (0)
3 ||𝐿(0)

3 |
= (−1)2𝑛𝐾44 = 44𝐾

as required.

Thus, it is concluded that if 𝑇
(𝑛)
3 is invertible implies inverse for 𝑀

(𝑛)
3 exists

for all 𝑛 ∈ Z, i.e. 𝑀
(𝑛)
3 is invertible if and only if 𝑇

(0)
3 is invertible.

Generating function

Let 𝑔(𝑥) =
∑︀∞

𝑛=0 𝑡3,𝑛𝑥𝑛 be a generating function for {𝑡3,𝑛} sequence. On multi-
plying each term of Eqn. (3.1) with 𝑥𝑛+3 and then taking summation over 𝑛 = 0
to ∞, we get

∞∑︁
𝑛=0

𝑥𝑛+3𝑡𝑛+3 −
∞∑︁

𝑛=0
𝑥𝑛+3𝑡𝑛+2 −

∞∑︁
𝑛=0

𝑥𝑛+3𝑡𝑛+1 −
∞∑︁

𝑛=0
𝑥𝑛+3𝑡𝑛 = 0.

Thus, we have

(𝑔(𝑥) − 𝑡0 − 𝑡1𝑥 − 𝑡2𝑥2) − (𝑔(𝑥) − 𝑡0 − 𝑡1𝑥)𝑥 − (𝑔(𝑥) − 𝑡0)𝑥2 − 𝑔(𝑥)𝑥3 = 0
=⇒ 𝑔(𝑥)(1 − 𝑥 − 𝑥2 − 𝑥3) − 𝑡0(1 − 𝑥 − 𝑥2) − 𝑡1(𝑥 − 𝑥2) − 𝑡2𝑥2 = 0

=⇒ 𝑔(𝑥) = 𝑎(1 − 𝑥 − 𝑥2) + 𝑏(𝑥 − 𝑥2) + 𝑐𝑥2

(1 − 𝑥 − 𝑥2 − 𝑥3)

=⇒ 𝑔(𝑥) = 𝑎 + (𝑏 − 𝑎)𝑥 + (𝑐 − 𝑏 − 𝑎)𝑥2

(1 − 𝑥 − 𝑥2 − 𝑥3) . (3.6)

In particular, setting 𝑎 = 𝑏 = 0, 𝑐 = 1 and 𝑎 = 3, 𝑏 = 1, 𝑐 = 3 in Eqn. (3.6) give
the generating functions for tribonacci and trucas sequence, respectively.

12



Annal. Math. et Inf. On the generalized Fibonacci like sequences and matrices

3.2. Binet’s formula
To establish any identity involving 𝑛th term of the sequence, the Binet’s formula
plays an important role. Here, we derive an explicit formula for generalized third
order sequences {𝑡3,𝑛}.

Let us assume that the three characteristic roots of difference Eqn. (3.1) are
𝑟1, 𝑟2 and 𝑟3. Clearly, 𝑟1, 𝑟2 and 𝑟3 satisfy the relations

𝑟1 + 𝑟2 + 𝑟3 = 1, 𝑟1𝑟2 + 𝑟2𝑟3 + 𝑟3𝑟1 = −1 and 𝑟1𝑟2𝑟3 = 1. (3.7)

Theorem 3.13 (Binet’s formula). For 𝑛 ≥ 0, we have

𝑡3,𝑛 = 𝑃𝑟1
𝑛 + 𝑄𝑟2

𝑛

𝑟1 − 𝑟2
+ 𝑅𝑟3

𝑛, (3.8)

where 𝑃 = (𝑟2 − 𝑟3)𝑅 − 𝑎𝑟2 + 𝑏, 𝑄 = (𝑟3 − 𝑟1)𝑅 + 𝑎𝑟1 − 𝑏, 𝑅 = 𝑐−(𝑟1+𝑟2)𝑏+𝑟1𝑟2𝑎
𝑟2

3−(𝑟1+𝑟2)𝑟3+𝑟1𝑟2
.

Proof. Using the relation between roots and the coefficients of a polynomial,
rewriting Eqn. (3.1) as

𝑡𝑘,𝑛+3 = (𝑟1 + 𝑟2 + 𝑟3)𝑡𝑘,𝑛+2 − (𝑟1𝑟2 + 𝑟2𝑟3 + 𝑟3𝑟1)𝑡𝑘,𝑛+1 + 𝑟1𝑟2𝑟3𝑡𝑘,𝑛.

It can also be written as,

𝑡𝑘,𝑛+3 − (𝑟1 + 𝑟2)𝑡𝑘,𝑛+2 + (𝑟1𝑟2)𝑡𝑘,𝑛+1

= 𝑟3𝑡𝑘,𝑛+2 − 𝑟3(𝑟1 + 𝑟2)𝑡𝑘,𝑛+1 + 𝑟1𝑟2𝑟3𝑡𝑘,𝑛

= 𝑟3[𝑡𝑘,𝑛+2 − (𝑟1 + 𝑟2)𝑡𝑘,𝑛+1 + 𝑟1𝑟2𝑡𝑘,𝑛]. (3.9)

Similarly, we have

𝑡𝑘,𝑛+2 − (𝑟1 + 𝑟2)𝑡𝑘,𝑛+1 + 𝑟1𝑟2𝑡𝑘,𝑛 = 𝑟3[𝑡𝑘,𝑛+1 − (𝑟1 + 𝑟2)𝑡𝑘,𝑛 + 𝑟1𝑟2𝑡𝑘,𝑛−1]. (3.10)

Substitute Eqn. (3.10) in Eqn. (3.9), we get

𝑡𝑘,𝑛+3 − (𝑟1 + 𝑟2)𝑡𝑘,𝑛+2 + (𝑟1𝑟2)𝑡𝑘,𝑛+1 = 𝑟2
3[𝑡𝑘,𝑛+1 − (𝑟1 + 𝑟2)𝑡𝑘,𝑛 + 𝑟1𝑟2𝑡𝑘,𝑛−1].

Continuing this substitution process, we obtain a recursive relation

𝑡𝑘,𝑛+3 − (𝑟1 + 𝑟2)𝑡𝑘,𝑛+2 + (𝑟1𝑟2)𝑡𝑘,𝑛+1 = 𝑟𝑛+1
3 [𝑡𝑘,2 − (𝑟1 + 𝑟2)𝑡𝑘,1 + 𝑟1𝑟2𝑡𝑘,0].

Now, divide both side of the above equation by 𝑟𝑛+3
3 , we get

𝑡𝑘,𝑛+3

𝑟𝑛+3
3

− (𝑟1 + 𝑟2)
𝑟𝑛+3

3
𝑡𝑘,𝑛+2 + (𝑟1𝑟2)

𝑟𝑛+3
3

𝑡𝑘,𝑛+1 = 1
𝑟2

3
[𝑡𝑘,2 −(𝑟1 +𝑟2)𝑡𝑘,1 +𝑟1𝑟2𝑡𝑘,0]. (3.11)

For simplicity, consider 𝑡𝑘,2 − (𝑟1 + 𝑟2)𝑡𝑘,1 + 𝑟1𝑟2𝑡𝑘,0 = 𝐾 and 𝑡𝑘,𝑛+3

𝑟𝑛+3
3

= 𝐻𝑘,𝑛+3 in

Eqn. (3.11), we write

𝐻𝑘,𝑛+3 − (𝑟1 + 𝑟2)
𝑟3

𝐻𝑘,𝑛+2 + (𝑟1𝑟2)
𝑟2

3
𝐻𝑘,𝑛+1 = 1

𝑟2
3

𝐾, (3.12)

13
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which is a second order non-homogeneous linear difference equation and its solution
is given by 𝐻𝑘,𝑛 = 𝐻(𝐶)+𝐻(𝑃 ), where 𝐻(𝐶) represents the solution corresponding
homogeneous part and 𝐻(𝑃 ) is particular solution.

Since, roots of the characteristic equation for homogeneous part of Eqn. (3.12)
are 𝛼1 = 𝑟1

𝑟3
and 𝛼2 = 𝑟2

𝑟3
. So, the solution for homogeneous part is given by

𝐻(𝐶) = 𝐴

(︂
𝑟1

𝑟3

)︂𝑛

+ 𝐵

(︂
𝑟2

𝑟3

)︂𝑛

, where A and B are arbitrary constants.

Furthermore, the non-homogeneous part of Eqn. (3.12) is a constant, so particular
solution is also a constant and it is given by 𝐻(𝑃 ) = 𝐾

𝑟2
3−(𝑟1+𝑟2)𝑟3+𝑟1𝑟2

. Thus,
general solution of Eqn. (3.12) is

𝐻𝑘,𝑛 = 𝐻(𝐶) + 𝐻(𝑃 ) = 𝐴

(︂
𝑟1

𝑟3

)︂𝑛

+ 𝐵

(︂
𝑟2

𝑟3

)︂𝑛

+ 𝐾

𝑟2
3 − (𝑟1 + 𝑟2)𝑟3 + 𝑟1𝑟2

.

Replacing 𝐻𝑘,𝑛 by 𝑡𝑘,𝑛

𝑟𝑛
3

and 𝐾 by 𝑡𝑘,2−(𝑟1+𝑟2)𝑡𝑘,1+𝑟1𝑟2𝑡𝑘,0 in the above equation,
we get

𝑡𝑘,𝑛 = 𝐴𝑟1
𝑛 + 𝐵𝑟2

𝑛 + 𝑟3
𝑛𝑅, where 𝑅 =

[︂
𝑡𝑘,2 − (𝑟1 + 𝑟2)𝑡𝑘,1 + 𝑟1𝑟2𝑡𝑘,0

𝑟2
3 − (𝑟1 + 𝑟2)𝑟3 + 𝑟1𝑟2

]︂
. (3.13)

Hence, using initial values from Eqn. (3.1) in Eqn. (3.13), we have

𝐴 = (𝑟2 − 𝑟3)𝑅 − 𝑎𝑟2 + 𝑏

𝑟1 − 𝑟2
and 𝐵 = (𝑟3 − 𝑟1)𝑅 + 𝑎𝑟1 − 𝑏

𝑟1 − 𝑟2
,

where 𝑅 = 𝑐−(𝑟1+𝑟2)𝑏+𝑟1𝑟2𝑎
𝑟2

3−(𝑟1+𝑟2)𝑟3+𝑟1𝑟2
, as required.

Remark 3.14. Setting 𝑎 = 𝑏 = 0 and 𝑐 = 1 in Eqn. (3.8) gives the Binet’s formula
for the standard tribonacci sequence (the Fibonacci sequence of order three).

Remark 3.15. Setting 𝑎 = 3, 𝑏 = 1 and 𝑐 = 3 in Eqn. (3.8) gives the Binet’s
formula for the Tribonacci-Lucas sequence.
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