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ABSTRACT

Positive, right-skewed data with excess zeros are encountered in many real-life sit-

uations. Two possible techniques to analyze this type of data are: Two-part models

and Tweedie models. The two-part models assume existence of a separate zero-

generating process, while the Tweedie models are based on distributions that allow

mass at zero. The paper aims to present a simulation study to investigate the perfor-

mance of Generalized Additive Models (GAM) under the distribution of Tweedie and

two-part models for such data with excess zero by using MSE (Mean Square Error)

and relative bias to compare the performance of both methods. We found that under

different practical scenarios, the two-part model has a better performance than the

Tweedie.
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CHAPTER 1

Introduction

The analysis of zero-inflated data as illustrated by Tu (2006) is a challeng-

ing problem in statistical modeling, and has become increasingly important in many

fields, including agricultural (Hall, 2000), medical (Böhning et al., 1999), manufac-

turing (Lambert, 1992) and economics (Freund et al., 1999). Zero-inflated continuous

data is a type of data where there is an excess number of zero values in a continuous

variable, beyond what would be expected from a reference continuous distribution,

see Liu et al. (2019) as an example. This kind of data are difficult to model using

standard regression models that assume a continuous distribution, such as the Nor-

mal distribution or Gamma distribution. This is because the excessive number of

zeros can lead to skewness and non-normality, which can violate the assumptions of

the model. The objective of this study is to explore the performance of the GAM

(Generalized Additive Models) by using two different methods when there are excess

zeros in the data.

The GAM, which were proposed by Hastie (2017) are flexible and powerful class

of models that can be used to analyze complex relationships between response and

predictor variables in a wide range of fields. The two popular approaches for model-

ing zero-inflated data are Tweedie distribution, see Shono (2008) as an example and

Two-part model, see Duan et al. (1983) as an example. The Tweedie distribution

is a flexible family of distributions that can accommodate both overdispersion and

underdispersion, while the two-part model assumes the existence of a zero-generating

process (a distribution with mass at zero) and continuous distribution that gener-

ates the non-zero part of the data. In this paper, we present a simulation study

1



1. INTRODUCTION

to evaluate the performance of these two approaches under the GAM model. We

set the proportion of zero data into four different levels, roughly 5%-15%, 15%-25%,

25%-35% and 35%-45%. In addition we generate the independent variable from a uni-

form distribution and the continuous part of the dependent variable is set to follow

a Gamma distribution with 2 parameters that depend on a set of covariates through

some known functions. We use Mean Squared Error, MSE, and integrated percent

bias to evaluate the performance of the two approached of accommodating the zeros

(Tweedie and two-part). According to the result we will provide recommendations for

selecting appropriate models for analyzing zero-inflated data using GAM. Our results

show that GAM with the two-part model has better performance and can be a useful

tool for analyzing zero-inflated data, especially when the true distribution of the data

is unknown or cannot be modeled with traditional regression models.

The rest of the paper is structured as follows: chapter 2 will go through some

background of GAM, Tweedie distribution, and two-part model. Chapter 3 outlines

the simulation process and how the generated data and functions look like, and com-

pare the final result to give a conclusion and discuss some further works that can be

done. Chapter 4 gives the conclusion and some future work that can be done.

2



CHAPTER 2

Background of modelling

methodologies

In this chapter, we will go through some concepts of GAM, Tweedie and two-part

model before we model the zero-inflated data. Section 2.1 will be talking about the

definition and properties of Tweedie distributions, Section 2.2 will include the GAM

properties and the cubic spline regression smoothing method. Section 2.3 demon-

strates the working mechanism of two-part model using Gamma distribution.

2.1 Tweedie distributions

In probability and statistics, the Tweedie distributions are defined as a family of

power variance functions which include the purely discrete case like Poisson distribu-

tion and the Poisson-gamma distribution with a positive mass at zero and otherwise

positively continuous. The class was first introduced by Tweedie et al. (1984) and

then named and classified by Jorgensen (1997). Now Tweedie distributions are a

special case of exponential dispersion models and widely applied in many areas like

ecology (Foster and Bravington, 2013), insurance (Shi, 2016) and fisheries research

(Candy, 2004). Basically when the data is a mixture of zeros and non-negative points

as shown in Figure 2.1.1, it is possible to fit the data using Tweedie distribution.

3



2. BACKGROUND OF MODELLING METHODOLOGIES
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Fig. 2.1.1: An example of Tweedie distribution showing the point mass at zero

The Tweedie distributions, which are used to model reproductive data, are a

subset of exponential dispersion models (ED) defined by Jorgensen (1987) which

exhibit a unique mean-variance relationship.

Definition 1. Following Jorgensen (1997), Let C be a convex support and let Ω be

the interior of C. They are intervals satisfying: Ω ⊆ C ⊆ R. A unit deviance is a

function d : C × Ω → R which satisfies the following properties:

(i). d(y, y) = 0, for ∀y ∈ Ω;

(ii). d(y, x) > 0, for ∀y ̸= x.

4



2. BACKGROUND OF MODELLING METHODOLOGIES

A random variable is said to follow the Tweedie distribution TWp(µ, σ
2) if Y ∼

ED(µ, σ2) with expectation E(Y ) = µ. The class of EDMs (Exponential dispersion

models) is a family which has the axiomatic definition given by:

Definition 2. An Exponential Dispersion Model (EDM) is a probability distribution

whose pdf is defined as:

f(y;µ, σ2) = a(y, σ2) exp

(
− 1

2σ2
d(y, µ)

)
, y ∈ C,

where a ≥ 0 is a suitable function, d is a unit deviance of the form d(y, µ) = yg(µ) +

h(µ) + k(y), C is the convex support, µ ∈ Ω, and Ω is an interval.

Here we consider the function a(·) is suitable if the condition of probability that

the integration of pdf equals to 1 is satisfies. In other words, it is sufficient to check:

∫
f(y;µ, σ2)dy = 1. (2.1.1)

The terminology ”dispersion model” is named for interpreting the σ2 > 0 as the

dispersion parameter. For fixed parameter σ2 > 0, the ED(µ, σ2) is just the natural

exponential family. µ is the position parameter and the expectation of Y is given by

E(Y ) = µ, the variance is given by V ar(Y ) = σ2V (µ), where V (·) is called the unit

variance function.

As was illustrated in Jorgensen (1997), we would elaborate the constructive defi-

nition form for EDMs.

Definition 3. Let v be a σ-finite measure on R. The cumulant function κ(θ) is

defined as:

κ(θ) = log

∫
eθyv(dy).

The domain of κ(θ) is Θ =
{
θ ∈ R :

(∫
eθyv(dy) < ∞

)}
.

In practice, we rarely compute the cumulant function. There are other convenient

ways of defining the cumulant functions. We will discuss this later, but right now

we will define the measure v. Note that Both constructive definition and axiomatic

5



2. BACKGROUND OF MODELLING METHODOLOGIES

definition give the same idea about the EDMs. Before we show the proof of this

statement, we need some preparations. Recall that we mentioned a(y, σ2) is any

suitable function satisfying the Equation (2.1.1), in general, a(y, σ2) does not have

closed form. Let b(y, σ2) be a function like a(y, σ2), now we take σ2 = 1, we can get

that:

v(dy) = b(y, 1)dy. (2.1.2)

Here dy is the Lebesgue measure. For any random variable Y which has one parameter

θ and defined on a measurable set A, the cdf is:

Pθ(Y ∈ A) =

∫
A

exp {yθ − κ(θ)} v(dy). (2.1.3)

By substitute Expression (2.1.2) in Expression (2.1.3), we can have that it is equiva-

lent to the following:

∫
A

exp {yθ − κ(θ)} b(y, 1)dy. (2.1.4)

Now we can determine the MGF (Moment Generating Function) and the CGF

(Cumulant Generating Function) of the random variable Y. The MGF of random

variable Y is defined with Expression (2.1.3) as:

MY (t; θ) =

∫
exp{yt} exp{yθ − κ(θ)}v(dy)

= exp{−κ(θ)}
∫

exp{yt+ yθ}v(dy)

= exp{−κ(θ)} exp{κ(θ + t)}

= exp{κ(θ + t)− κ(θ)}.

Now we get the MGF of Y, the CGF is just the log of the MGF, thus, we can easily

obtain that the CGF is:

KY (t; θ) = κ(θ + t)− κ(θ).

6



2. BACKGROUND OF MODELLING METHODOLOGIES

By the property of CGF, we know that the first derivative of CGF computed at t = 0,

is the mean µ, and the second derivative computed at t = 0 is the variance of the

random variable, then we can observe that:

K(i)(t; θ) =
∂(i)K(t; θ)

∂ti
= κ(i)(θ + t)

K(i)(0; θ) = κ(i)(θ).

Now it is trivial to see that:

κ′(θ) = µ.

As in the EDMs, we see that there are 2 parameters of µ and σ2, we can induce

from the definition for one-parameter case and give the definition for random variable

Y in exponential family with two parameters as:

Pθ,σ2(Y ∈ A) =

∫
A

exp

(
yθ − κ(θ)

σ2

)
v(dy). (2.1.5)

Thus, we can give the constructive definition of EDMs as:

Definition 4. An Exponential Dispersion Model (EDM) is a probability distribution

whose pdf is defined as:

f(y;µ, σ2) = b(y, σ2) exp

(
yθ − κ(θ)

σ2

)
, y ∈ C,

where b ≥ 0 is some suitable function and C is a convex support, µ ∈ Ω as well.

By applying a similar calculation process as shown above, we can compute the

7



2. BACKGROUND OF MODELLING METHODOLOGIES

MGF and CGF for the two-parameter case as:

MY (t; θ, σ
2) =

∫
exp {yt} exp

{
yθ − κ(θ)

σ2

}
v(dy)

= exp

{
−κ(θ)

σ2

}∫
exp

{
yt+

yθ

σ2

}
v(dy)

= exp

{
−κ(θ)

σ2

}
exp

{
κ(θ + tσ2)

σ2

}
= exp

{
κ(θ + tσ2)− κ(θ)

σ2

}
,

and

KY (t; θ, σ
2) =

κ(θ + tσ2)− κ(θ)

σ2
. (2.1.6)

Before we give the proof that both constructive definition and axiomatic definition

are equivalent, we need a function that maps from parameter space Θ to position

parameter space Ω in EDMs. Define a function τ : τ(θ) = κ′(θ) = µ, Θ → Ω where

Θ is the parameter space, and Ω is the mean parameter space. Let τ−1:τ−1(µ) =

θ, Ω → Θ be the inverse function of τ . Taking the first and second derivative of

Equation (2.1.6) with respect to t at t = 0, we can find that:

K ′
Y (0; θ, σ

2) =
σ2κ′(θ)

σ2
= κ′(θ) = τ(θ) = µ (2.1.7)

K ′′
Y (0; θ, σ

2) =
(σ2)2κ′′(θ)

σ2
= σ2κ′′(θ) = σ2τ ′(θ). (2.1.8)

Recall that the variance of EDMs is σ2V (µ), therefore, we can know that τ ′(θ) =

κ′′(θ) = V (µ). Now from the cdf defined in Expression (2.1.5), we can rewrite the

pdf, after setting the σ-finite measure v to be v = b(y;σ2)dy,

f(y;µ, σ2) = b(y;σ2) exp

{
yθ − κ(θ)

σ2

}
= b(y;σ2)e

yτ−1(µ)−κ(τ−1(µ))

σ2 . (2.1.9)

As was proposed in Jorgensen (1997), he gave the unit deviance d(y;µ) for the

8



2. BACKGROUND OF MODELLING METHODOLOGIES

exponential dispersion model as:

2

[
sup
θ∈Θ

(yθ − κ(θ)− yτ−1(µ) + κ(τ−1(µ))

]
.

Taking partial derivative with respect to θ to find the maximum of the above form,

we can get that:

∂

∂θ
(yθ − κ(θ)) = y − κ′(θ) = 0

⇒ y − τ(θ) = 0

⇒ θ = τ−1(y).

Thus, we can get the unit deviance d(y;µ) for y ∈ Ω as:

2
[
yτ−1(y)− κ

(
τ−1(y)

)
− yτ−1(µ) + κ

(
τ−1(µ)

)]
. (2.1.10)

By using Expression (2.1.10), in the following proposition we show that both ax-

iomatic definition and constructive definition for EDMs are the same.

Proposition 1. Let fa be the pdf of axiomatic definition and fc is the pdf of con-

structive definition. Suppose that a(y;σ2) = fc(y; y, σ
2), then we have that:

fa(y;µ, σ
2) = fc(y;µ, σ

2).

Proof. By Expression (2.1.10), we can have that for y ∈ Ω, the unit deviance is:

d(y, µ) = 2
[
yτ−1(y)− κ

(
τ−1(y)

)
− yτ−1(µ) + κ

(
τ−1(µ)

)]
.

9



2. BACKGROUND OF MODELLING METHODOLOGIES

Substituting this into Definition 2, we have that:

fa(y;µ, σ
2) = a(y, σ2) exp

(
− 1

2σ2
d(y, µ)

)
= fc(y; y, σ

2) exp

(
− 1

2σ2
d(y, µ)

)
= b(y;σ2) exp

{
yτ−1(y)− κ(τ−1(y))

σ2

}
exp

(
− 1

2σ2
d(y, µ)

)
= b(y;σ2) exp

{
yτ−1(µ)− κ(τ−1(µ))

σ2

}
= b(y;σ2) exp

{
yθ − κ(θ)

σ2

}
= fc(y;µ, σ

2).

Here we complete the proof and say that both definitions are the same on convex

supports, which are the most common cases. The proof for the general case of this

idea can be found in the book of Jorgensen (1997).

Definition 5. The Tweedie family of distributions Twp(µ, σ
2) is a special case of

EDMs where the power mean-variance relationship is characterized by

V ar(Y ) = σ2µp, (2.1.11)

where p ∈ (−∞, 0] ∪ [1,∞) and σ2 > 0, p is called the Tweedie power parameter.

This expression indicates that the unit variance function is V (µ) = µp, thus, we

can observe that:

κ′′(θ) = τ ′(θ) =
∂µ

∂θ
= µp.

From Equation (2.1.11), we can determine the expression for parameter θ in terms of

µ and p. Ignoring the constant term, we can get that:

θ =


µ1−p

1−p
p ̸= 1

log(µ) p = 1.

10



2. BACKGROUND OF MODELLING METHODOLOGIES

Next, we introduce a parameter α that is only related to p to compute µ in terms of

θ and α, the relationship is defined as below:

α =
p− 2

p− 1
or p =

α− 2

α− 1
.

The µ represented in terms of θ and α is:

µ =


(

θ
α−1

)α−1
p ̸= 1

eθ p = 1.

(2.1.12)

Using Equation (2.1.12), we can find the cumulant function κ(θ) by solving the dif-

ferential equation κ′(θ) = τ(θ) = µ for p ̸= 1, 2, we can get that

κ(θ) =
α− 1

α

(
θ

α− 1

)α

.

For p = 1, we have κ(θ) = eθ. When p = 2, we have that α = 0, which implies that

κ′(θ) = −1
θ
. Taking the anti-derivative we get that κ(θ) = − log(−θ) when p = 2. In

summary, we have that in Tweedie distribution, the cumulant function κ(θ) is defined

as:

κ(θ) =


α−1
α

(
θ

α−1

)α
for p ̸= 1, 2

− log (−θ) for p = 2

eθ for p = 1.

(2.1.13)

This is a simple analytic way of computing the cumulant generating function. To

have an idea about the behaviour of the Tweedie distributions when we vary these

parameters, Table 2.1.1 shows the Tweedie models based on indexing parameter p,

and Figure 2.1.2 shows how the Tweedie distribution looks like when µ and σ2 change.

11



2. BACKGROUND OF MODELLING METHODOLOGIES

Table 2.1.1: Tweedie models based on different indexing parameter p

Distribution p Domain Mean domain

Stable p < 0 R (0,∞)

Normal p = 0 R R

Do not exist 0 < p < 1

Poisson p = 1 N (0,∞)

Compound
Poisson-gamma

1 < p < 2 [0,∞) (0,∞)

Gamma p = 2 (0,∞) (0,∞)

Stable 2 < p < 3 (0,∞) (0,∞)

Inverse Gaussian p = 3 (0,∞) (0,∞)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

x

D
en

si
ty
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Tweedie model with p = 1.70, mu = 1.00

sigma^2 = 0.5
sigma^2 = 1.2
sigma^2 = 2.3
sigma^2 = 3.5
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Tweedie model with p = 2.00, mu = 1.00
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Tweedie model with p = 3.00, mu = 1.00

sigma^2 = 0.5
sigma^2 = 1.2
sigma^2 = 2.3
sigma^2 = 3.5

Fig. 2.1.2: The Tweedie distribution density plot with µ = 1 and p, σ2 varying
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2. BACKGROUND OF MODELLING METHODOLOGIES

We know how to find the κ(θ) now, but it remains that the suitable functions a(·)

and b(·) are still unknown, as we mentioned before that they can be any functions

as long as they satisfy the Equation (2.1.1). However, the approximation of those

functions can be evaluated by Fourier inversion of the characteristic functions, this

idea is illustrated in details by Dunn and Smyth (2008). The only exceptions where

a(·) and b(·) can be determined are when p = 1, p = 2 and p = 3 and especially

at y = 0 when 1 < p < 2. In this paper, we only concentrate on the case when

1 < p < 2, as proposed by Dunn and Smyth (2008), the zero-mass value is given as:

f(0;µ, σ2) = exp

(
− µ2−p

σ2(2− p)

)
. (2.1.14)

Using Expression (2.1.14), we can draw a plot to see how zero-mass value correlated to

the parameters in Tweedie models (see Figure 2.1.3). More intuitively, (Figure 2.1.4).

gives the contour plot of Figure 2.1.3 which indicates that the higher the dispersion

the higher the zero proportion and the higher the µ the lower the proportion.

Dispersion 

M
ea

n 

z

Zero Proportion

Fig. 2.1.3: Zero-mass values with varying σ2 ∈ [0, 100] and µ ∈ [0, 100]
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Fig. 2.1.4: Contour of the Figure 2.1.3

Dunn and Smyth (2008) demonstrate that the function mentioned in the paper

exhibits strict convexity and can be approximated using Stirling’s formula for the

Gamma function and a Fourier inversion method for the infinite series. In practical

applications, the parameters σ2 and p are first estimated by maximizing the profile

likelihood numerically, while profiling out the mean parameter µ based on a given

value of σ2. Next, the mean parameter is estimated using a Generalized Linear Model

(GLM) with the previously estimated σ2. It is important to note that the Tweedie

distribution does not have a closed-form expression, and the profile likelihood needs

14



2. BACKGROUND OF MODELLING METHODOLOGIES

to be computed using numerical optimization methods.

2.2 GAM models

GAM (Generalized additive model), as defined in Hastie and Tibshirani (1987),

is a type of generalized linear model where the linear predictor is composed of the

sum of smoothing functions of the covariates. GAM extends the concept of linear

regression by allowing for more flexible relationships between the dependent variable

and the independent variables. It is particularly useful when dealing with non-linear

relationships, interactions, and complex patterns in the data. The fundamental idea

behind GAMs is to model the relationship between the response variable and each

predictor as a sum of smooth functions, also known as smoothing splines or basis

functions, which has the form looks like in Hastie and Tibshirani (1987):

g(E(Y )) = β0 + f1(x1) + f2(x2) + ...+ fp(xp), (2.2.1)

where y is the response variable, xi are the predictors, and g(·) is the link function

relating the expected value of y to the predictor variables via this structure. In our

study, the link function is defined as log link: log(E(Y )). fi(xi) are the smooth non-

linear functions. These smooth functions are flexible and can capture a wide range of

non-linear patterns. The individual smooth functions are then combined additively

to form the overall model.

In a GAM, the dependent variable is typically assumed to follow a distribution

from the exponential family, such as Gaussian (for continuous variables), binomial (for

binary variables), or Poisson (for count variables). The predictors can be continuous,

categorical, or a combination of both. In our study, we suppose that the dependent

variable follows the Tweedie distribution and Gamma distribution. As we mentioned

before, GAMs consists of smoothing functions and can be seen as a large GLM.

Thus, when we are estimating the GAMs, we need to estimate simultaneously the

smoothing functions and the parametric terms in the model. In our case, we use

15



2. BACKGROUND OF MODELLING METHODOLOGIES

cubic regression spline to estimate the smoother, and for computation convenience

purpose, we use RMLE (Restricted Maximum Likelihood Estimator) to estimate the

smoothing parameter λ. Figure 2.2.1 shows how the performance of cubic spline,

where we can see that almost all the data points are interpolated by the cubic spline.

Fig. 2.2.1: Performance of cubic spline

In the paper by McKinley and Levine (1998), the process of cubic spline estimation

in our case works as following:

Suppose we have data points xi generated from the uniform distribution and yi

from gamma distribution (x1, y1), ..., (xn, yn), and our spline is defined as

S(x) =



s1(x) if x1 ≤ x < x2

s2(x) if x2 ≤ x < x3

...

sn−1(x) if xn−1 ≤ x < xn,

(2.2.2)
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2. BACKGROUND OF MODELLING METHODOLOGIES

where each si(x) is defined in the form:

si(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di, (2.2.3)

for i = 1, 2, ..., n − 1. Observe the Expression (2.2.3), we can see that there are

4 parameters ai, bi, ci and di, which means that we need 4 equations to find the

expression for si, and to obtain these 4 equations we can use the 4 properties of the

cubic spline:

1. The piecewise function S(x) will interpolate all data points,

2. S(x) is continuous on the interval [x1, xn],

3. S ′(x) is continuous on the interval [x1, xn],

4. S ′′(x) is continuous on the interval [x1, xn].

From property 1, we can get that:

S(xi) = yi, for i = 1, 2, 3, ..., n, (2.2.4)

Plug Expression (2.2.2) into Expression (2.2.3), we can know that on each knots we

produce that:

S(xi) = si(xi) (2.2.5)

= ai(xi − xi)
3 + bi(xi − xi)

2 + ci(xi − xi) + di

= di = yi.

For i = 1, 2, ..., n. Since S(x) is continuous across all the intervals at each knot, we

must have:

si−1(xi) = si(xi) (2.2.6)

di = ai−1(xi − xi)
3 + bi−1(xi − xi)

2 + ci−1(xi − xi) + di−1.

17



2. BACKGROUND OF MODELLING METHODOLOGIES

Letting the length of interval h = xi−1 − xi is equal for all the sub-intervals, i =

2, 3, ..., n, we can have:

di = ai−1h
3 + bi−1h

2 + ci−1h+ di−1. (2.2.7)

Also, by property 3, we can have that the derivatives must be equal at the data points

in order to make the curve smooth:

s′i(xi) = s′i−1(xi) (2.2.8)

s′i(xi) = 3ai(xi − xi)
2 + 2bi(xi − xi) + ci = ci

s′i−1(xi) = 3ai−1(xi − xi−1)
2 + 2bi−1(xi − xi−1) + ci−1

⇒ ci = 3ai−1(xi − xi−1)
2 + 2bi−1(xi − xi−1) + ci−1

ci = 3ai−1h
2 + 2bi−1h+ ci−1,

for i = 2, 3, ..., n− 1. By property 4, s′′i (x) has to be continuous on all the intervals.

Thus, we have that:

s′′i (x) = 6ai(x− xi) + 2bi

s′′i (xi) = 2bi,

for i = 2, 3, ..., n− 2. Similarly as above, s′′i (xi) = s′′i−1(xi) and we can have that:

s′′i−1(xi) = 6ai−1(xi − xi−1) + 2bi−1

⇒ 2bi = 6aih+ 2bi−1. (2.2.9)

Then, we can induce the expression for ai as:

2bi = 6ai−1h+ 2bi−1 ⇒ 2bi − 2bi−1 = 6ai−1h

⇒ ai−1 =
bi − bi−1

3h
, (2.2.10)
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2. BACKGROUND OF MODELLING METHODOLOGIES

and using Equation (2.2.7), the ci can be rewritten as

di = ai−1h
3 + bi−1h

2 + ci−1h+ di−1

ci−1h = di − ai−1h
3 − bi−1h

2 − di−1

ci−1 =
di − di−1 − ai−1h

3 − bi−1h
2

h

ci−1 =
di − di−1

h
− (ai−1h

2 + bi−1h)

ci−1 =
di − di−1

h
− (

bi − bi−1

3h
h2 +

s′′i−1(xi−1)

2
h)

ci−1 =
di − di−1

h
− (

s′′i (xi)− s′′i−1(xi−1)

6h
h2 +

s′′i−1(xi−1)

2
h)

ci−1 =
di − di−1

h
− (

s′′i (xi)− s′′i−1(xi−1)

6
h+

3s′′i−1(xi−1)

6
h)

ci−1 =
di − di−1

h
− (

s′′i (xi) + 2s′′i−1(xi−1)

6
)h

ci−1 =
yi − yi−1

h
− (

s′′i (xi) + 2s′′i−1(xi−1)

6
)h. (2.2.11)

We can now have enough equations to determine the weight for n− 1 equations

ai =
s′′i+1(xi+1)− s′′i (xi)

6h
(2.2.12)

bi =
s′′i (xi)

2

ci =
yi+1 − yi

h
−
(
s′′i+1(xi+1) + 2s′′i (xi)

6

)
h

di = yi.

This system can be handled more easily by putting the formula into the matrix form,

and the relative computation process can be found in McKinley and Levine (1998).

Now, Expression (2.2.1) can be rewritten as

fi(x) =
3∑

k=1

βikbk(x), (2.2.13)

where i = 1, 2, ..., p, βik is the coefficient and bk(x) is the basis function, since in our

case we are using cubic spline, b1(x) will be x, b2(x) is x
2 and b3(x) is x

3.
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To estimate the GAM, we need to find the proper smoothing parameter λ, which

is the parameter that controls the smoothness of the predictive functions. Generally

we have 2 ways of estimating: Generalized cross validation criteria and RMLE. In

our study, we will only use RMLE for it has less computation complexity. For both

method, the core idea is to maximize the penalized likelihood function, the penalize

likelihood function is given as in Wood (2004) by:

2ℓ (β, f1(x1), f2(x2), ..., fp(xp))− penalty. (2.2.14)

The penalty can be expressed based on the second derivatives

penalty =

p∑
j=1

λj

∫ (
s′′j (xj)

)2
dx. (2.2.15)

The parameter λ1, ..., λp are the smoothing parameters which controls how smooth

our curve will be. Intuitively, we know that the second derivative measures the slope

of the first derivative, that is to say how wiggle the curve will be, while larger second

derivative will lead to a wiggler curve and a straight line will have 0 second derivative.

Thus, it’s reasonable to add up all the squared derivatives as the penalty, Figure 2.2.2

shows the impact of smoothing parameter directly.
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Fig. 2.2.2: Impact of smoothing parameter Larsen (2015)

To maximize the penalized likelihood function, we need to use RMLE, given the

vector of smoothing parameter Λ, the restricted log likelihood function has the form

Larsen (2015)

ℓr

(
β̂, λ

)
=

∫
f(y | β)f(β)dβ, (2.2.16)

which is taken by integrating out the joint pdf with respect to β, and the β is the

matrix whose elements are coefficients in Expression (2.2.13). Firstly, for some given
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random trail Λ, we estimate the β using penalized iterative re-weighted least square.

Secondly, we update the Λ by maximizing the Expression (2.2.16). Repeat the above

2 steps until the result converges and then we obtain the estimation of smoothing pa-

rameters. More details about PIRLS (Penalized Iterative Re-weighted Least Square)

method and how it works are stated in the paper of Wood (2004).

2.3 Two-part models

In our study, the response values are consisted of 2 parts, first part is y = 0

and the second part is y > 0. The outcome y = 0 is observed sufficiently frequent

that those zeros can not be neglected. To address this problem, two-part model

(2PM) assumes that the outcome of Pr(Y = 0 | x) and Pr(Y > 0 | x) is governed

by a logistic regression. That is, suppose Pr(Y = 0 | x) = p, then ln
(

p
1−p

)
=

x1β1 + x2β2+, ..., xpβp. This is considered as the first part of modeling. Then for the

part of Pr(Y > 0 | x), we use GAM to fit the data and that is ln (E(Y | y > 0)) =

β + f1(x1) + f2(x2)+, ....,+fp(xp). In this model, the outcome ln(y) is only observed

when y > 0. The distribution of p is suppose to follow a Bernoulli distribution and

those positive observations are supposed to from the Gamma distribution. In this

paper, we are estimating the mean of the response variable, and the value in 2PM

can be estimated as

E(Y ) = Pr(Y = 0 | x)× 0 + Pr(Y > 0 | x)× E(Y | y > 0)

⇒ E(Y ) = Pr(Y > 0 | x)× E(Y | y > 0). (2.3.1)

More details of 2PM can be found in Mullahy (1998).
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CHAPTER 3

Simulation study

In our study, we generate the data to simulate the GAM, the dependent variable

Y is generated from the gamma distribution and the mean and θ parameter are defined

as functions of the independent variables X0 and X1. Both independent variables are

generated from the uniform (0,1) distribution, and the functions defined to generate

the mean and θ are as following

µ = exp

(
2sin(πx0)

5

)
, (3.0.1)

θ = exp

(
ex1

2
− 2

)
. (3.0.2)

The dependent variable Y is generated from the Gamma
(
1
θ
, µθ

)
, where the shape

parameter is 1
θ
and the scale parameter is µθ. We generate 1000 points by the process

depicted above, Figure 3.0.1 and 3.0.2 show the relationship between X1 and Y , X0

and Y respectively. To make things more clear, we generate only 100 points to plot

these 2 figures. From the plot, we can see that for both variables, they are not showing

a linear relationship with Y . Thus, the linear models may not be very suitable here

and GAM seems to be a good option in the case.
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Fig. 3.0.1: Relationship between X1 and Y
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We assume that the zero proportion in our data has 4 different groups: 5%-15%,

15%-25%, 25%-35% and 35%-45%, the proportion of zero is represented by p. To

create the zero observations, we generate a vector of N elements from the Bernoulli

distribution and the mean of this vector is 1 − p, then we multiply the observations

y by this vector, thus we obtain the vector of responses which will contain zeros with

probability p. Since later we will be estimating p with logistic regression, p is defined

as a function of X1, through the usual logit function:

p =
1

1 + exp (β + αx1)
, (3.0.3)

where β and α are taking values as (1.73, 1.27), (1.1, 0.65), (0.6,0.5) and (0.2, 0.4)

respectively. Taking these values in pair guaranteed that the value of p is located

properly in the range we set at the beginning. The corresponding distributions of p

are shown in Figure 3.0.3 and Figure 3.0.4 shows the relationship between X1 and p.

It’s clear that the values of p are located properly in the range we set before, and X1

has a almost linear relationship with p.
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Fig. 3.0.4: X1 and p

We use Monte Carlo simulation to address these 4 groups of data points,

each group of data points are simulated 500 times. To evaluate the performance of

both methods, we compare the mean predicted by using 2PM and simply Tweedie

distribution. As comparison metric, we use MSE and mean integrated percent bias

for predictive accuracy, the mean integrated percent bias in each run is defined as
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follow:

Biasj =
1

N

N∑
i=1

|µ̂i − µi|
µi

. (3.0.4)

This expression looks pretty close to the formula for Mean Absolute Percentage Error

(MAPE), despite we don’t take the absolute value of the denominator term because

the denominator in our case is strictly greater than 0, and note that it’s different from

the standard definition of bias. The MSE in each run is defined by

MSEj =
1

N

N∑
i=1

(µ̂i − µi)
2 , (3.0.5)

where i = 1, 2, ..., N , j = 1, 2, ..., 500 is the index for the running time of Monte Carlo

and the µ̂i is the predicted mean by GAM and µi is the real mean value we generated

in Expression (3.0.1). Since we are running the simulation 500 times, we take the

average of these two metric. Thus, the overall metrics have the expressions

Bias =
1

500

500∑
j=1

Biasj, (3.0.6)

MSE =
1

500

500∑
j=1

MSEj. (3.0.7)

Also we set 3 different size data groups: N = 500, N = 1000 and N = 2000. We

would like to see how these two methods work under each situation. The results of

the simulation study are shown in the figures and tables below.
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3.1 Presentation of the result

Table 3.1.1: The result of MSE and integrated percent bias using method of Tweedie
distribution

N
5%-15% 15%-25% 25%-35% 35%-45%

MSE Bias MSE Bias MSE Bias MSE Bias

N =
500

0.0140 0.0808 0.0132 0.0887 0.0124 0.0996 0.0116 0.1126

N =
1000

0.0076 0.0594 0.0071 0.065 0.0074 0.0763 0.0059 0.0803

N =
2000

0.00507 0.0487 0.00469 0.0531 0.00435 0.0588 0.00406 0.0664

Table 3.1.2: The result of MSE and integrated percent bias using method of 2PM

N
5%-15% 15%-25% 25%-35% 35%-45%

MSE Bias MSE Bias MSE Bias MSE Bias

N =
500

0.0127 0.0767 0.0121 0.0849 0.0106 0.0920 0.0104 0.1063

N =
1000

0.0059 0.0525 0.0055 0.0577 0.0053 0.0649 0.0046 0.0704

N =
2000

0.00336 0.0395 0.00307 0.0425 0.00270 0.0465 0.00257 0.0528

From the above two tables, we can see clearly that as the number of data points

increases, the figures of MSE and mean integrated percent bias decrease significantly

and all the zero proportion groups are having the same trend.
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Fig. 3.1.1: MSE plot when N = 500

Fig. 3.1.2: Mean integrated percent bias plot when N = 500
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When N = 500, we can see that the MSE of both methods are decreasing all the

time as the zero proportion increases. Two-part model has smaller MSE than the

model using Tweedie distribution. To see the distribution of mean integrated percent

bias, we draw the boxplot of the integrated percent bias calculated by Expression

(3.0.4) to see how are they distributed. From the Figure 3.1.2, we see that they both

have an increasing trend and Two-part model has an overall smaller mean integrated

percent bias.
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Fig. 3.1.3: MSE plot when N = 1000
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Fig. 3.1.4: Mean integrated percent bias plot when N = 1000

When N = 1000, the MSE plot of the Two-part model is decreasing as zero pro-

portions increase. The MSE of the Tweedie distribution experienced a small increase

when the proportion of zeros is 25%- 35% and then the curve goes down. The curve

of the Two-part model is always below Tweedie. The variability of the mean inte-

grated percent bias seems to be less for the case when N = 1000. For both methods,

the percentage has an increasing trend, although Tweedie’s method has always larger

percentage.
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Fig. 3.1.5: MSE plot when N = 2000
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Fig. 3.1.6: Mean integrated percent bias plot when N = 2000
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When N = 2000, the MSEs are decreasing for both models as the proportion of

zeros increases. The Two-part model is always better in terms of MSEs. As for the

mean integrated percent bias, it seems the variation does not change significantly

compared to the case when N = 1000. The percentage increases for both methods as

zeros increase, but the the Two-part performs better in all case.
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CHAPTER 4

Conclusion and Future Work

The main objective of this paper is to compare the performance of the 2 methods

for dealing with zero-inflated data. The first method is separating the fitting process

into 2 parts, first estimate the probability of getting zero observations by logistic

regression and then estimate the positive data points by GAM under the assumption

of gamma distribution. Second method fits the data points by assuming a Tweedie

distribution using GAM. The metrics we used to measure the performance of these 2

methods are mean relative bias and MSE computed from Monte Carlo simulations.

From the results we obtained, we conclude that the Two-part model is a better option

when dealing with positive, right-skewed data with excess zeros, since overall it has

a smaller MSE and mean relative bias.

34



REFERENCES
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