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ABSTRACT

The field of astronomy has made tremendous progress in recent years thanks to

advancements in technology and the development of sophisticated algorithms. One

area of interest for astronomers is the classification of galaxy morphology, which

involves categorizing galaxies based on their visual appearance. However, with the

sheer number of galaxy images available, it would be a daunting task to manually

classify them all.

To address this challenge, a novel Residual Neural Network (ResNet) model, called

ResNet Var, that can automatically classify galaxy images is proposed in this study.

Galaxy Zoo 2 dataset is used in this research, which contains over 28,000 images for the

five-class classification task and over 25,000 images for the seven-class classification

task.

To evaluate the effectiveness of the ResNet Var model, various metrics such as

accuracy, precision, recall, and F1 score were calculated. The results were impressive,

with the ResNet Var model outperforming other popular networks such as VGG16,

VGG19, Inception, and ResNet50. Specifically, the overall classification accuracy of

the ResNet Var model was 95.35% for the five-class classification task and 93.54% for

the seven-class classification task.

The potential applications of the ResNet Var model are vast. With such a high

accuracy rate, the ResNet Var model is well-suited for large-scale galaxy classification

in optical space surveys. By automating the classification process, astronomers can

quickly and accurately categorize galaxy images according to their morphology. This,

in turn, can help advance our understanding of galaxy formation and evolution, as

well as provide valuable insights into the properties of dark matter and the nature of

the universe.
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CHAPTER 1

Introduction

1.1 Overview

Astronomy is a field of natural science that studies celestial objects and phenomena

[89, 94, 45, 11, 85]. Using mathematics, physics, and chemistry, it seeks to understand

the formation and evolution of these objects. Study of astronomy includes studying

planets, moons, stars, nebulae, galaxies, comets, and other celestial bodies, as well as

phenomena such as supernova explosions, gamma ray bursts, quasars, blazars, pulsars,

and cosmic microwave background radiation [89]. Astronomy is the study of anything

that originates outside the Earth’s atmosphere. With technological advancements

over recent decades, astronomy has become a field that generates vast amounts of

data [94, 45, 11, 85]. New observational tools such as satellites and telescopes provide

large, complex datasets that include spatial and temporal components.

One of the primary sources of data used in observational astronomy is photometry,

where each image captures a specific field of view of the sky in a chosen frequency

band, which can contain multiple objects and is subject to noise [94, 45, 11, 85].

With the simultaneous development of machine learning technologies, it has become

possible to handle and extract more value from these massive datasets in various

research and industry contexts [4].

An unbiased sample containing reliable morphological types is crucial to any re-

search on extragalactic objects. It allows for accurate classification of galaxies based

on their morphologies [45, 4]. Classification of galaxies based on their morphology is

vital because the shape and structure of a galaxy can provide insight into its formation

1



1. INTRODUCTION

and evolution, as well as its interactions with its environment. Galaxies in groups or

clusters, for example, may have different evolutionary paths than those alone, which

is reflected in their morphologies. In order to study galaxy formation and evolution,

it is essential to classify galaxies into a systematic morphology system.

1.2 Galaxy Morphology

Galaxy morphology refers to galaxies’ physical makeup and appearance, encompassing

traits like size, shape, brightness, and the arrangement of components such as stars,

gas, dust, etc. Studying galaxy morphology is crucial in astronomy since it offers a

deep understanding of how they form, evolve and interact with their surroundings.

Different kinds of galaxies (spiral/elliptical/irregular) exhibit unique characteristics

that necessitate accurate categorization based on these features so we can understand

their properties and behavior.

In observational research involving celestial objects, classification into a morpho-

logical system is crucial; however, this process can be complex for researchers with-

out a dependable methodology ensuring precise identification. This makes accuracy

in classifying celestial objects vital, especially within disciplines where information

discovered may reveal valuable insight regarding formation or evolution processes

(astronomy).

2



1. INTRODUCTION

Fig. 1: Tuning-fork style diagram of the Hubble sequence (Source : Wikipedia [98])

In 1926, Hubble introduced the first classification scheme for galaxies, later refined

in 1936 [42, 43]. This classification, commonly known as the Hubble sequence, utilizes

a diagram resembling a tuning fork, as shown in Figure 1. The Hubble sequence

divides galaxies into two main categories based on their overall structure: Early-Type

Galaxies (ETGs) and Late-Type Galaxies (LTGs).

ETGs are characterized by a dominant bulge component, giving them a more

elliptical shape. Hence they are commonly referred to as elliptical galaxies. On

the other hand, LTGs are characterized by a more prominent disk with spiral arms

and are known as spiral galaxies. The LTGs group can be further divided into two

sub-categories based on their central structure: barred (with a bar-shaped central

structure, denoted as SB) and non-barred (with no central bar, denoted as S) galaxies

[79]. These sub-categories can also be refined based on the strength of their spiral

arms.

The Hubble classification provides a useful starting point for understanding the

morphologies of galaxies, and it has been a fundamental tool in extragalactic astron-

omy for nearly a century.

The classification of galaxy images is an essential task in astronomy, as it enables

astronomers to gain insights into the properties and characteristics of galaxies [22].

3



1. INTRODUCTION

However, due to the exponential growth of astronomical data, there has been a signif-

icant increase in the number of galaxy images requiring classification [13]. Therefore,

manual classification is no longer a practical option, as it is time-consuming, labor-

intensive, and prone to human error [35].

One approach to reliable classification is the use of machine learning algorithms.

In recent years, there have been significant developments in the field of machine

learning, making it a powerful tool for classification tasks in astronomy and other

fields. For example, Residual Neural Networks (ResNet) have been successfully used

in the classification of galaxy images based on their morphologies [59]. Other machine

learning techniques, such as convolutional neural networks (CNNs) and decision trees,

have also been used in astronomical research for classification purposes [9, 51].

To ensure a robust classification methodology, it is essential to carefully consider

the features and characteristics of the objects being studied. For example, in as-

tronomical research, photometric measurements are a common source of data, and

careful consideration of the wavelength bands used and the noise levels present can

help to improve classification accuracy [87]. Additionally, it is important to consider

the impact of selection biases on the resulting classification, as the objects selected

for study can have a significant impact on the reliability of the classification [72].

Overall, the classification of objects into a morphology system is a fundamental

task in observational research, and building a robust methodology for reliable classi-

fication is a significant challenge. Machine learning algorithms, such as ResNet, have

shown promise in this area, but careful consideration of the data and selection biases

is also essential for accurate classification.

1.3 Galaxy Zoo

Machine learning algorithms are becoming more common in scientific research, includ-

ing classifying objects into a morphology system. While machine learning algorithms

can significantly improve efficiency and accuracy, human supervision is still neces-

sary to guide the machine and provide meaningful labels to the patterns it discovers.

4



1. INTRODUCTION

One project that successfully utilized human input is the Galaxy Zoo project [55].

Launched in 2007, this project engaged volunteers in classifying galaxy images into

elliptical, spiral, and undefined categories. By combining the power of human intu-

ition and the speed of automated processes, the Galaxy Zoo project could efficiently

and accurately classify many galaxy images.

Fig. 2: Galaxy Zoo 1 user interface showing a galaxy image on the left and buttons
on the right for users to select. By clicking on the buttons, users can select one of
the options from clockwise, anticlockwise and edge-on which are under the category
of spiral galaxy, or the elliptical galaxy, or one of the option from star and merger
which are under undefined/other galaxy category (Source : Lintott et al. (2008) [55])

Galaxy Zoo is a citizen science project that harnesses the collective intelligence of

volunteers to classify galaxies based on their morphologies. The primary objective of

GZ1 (Galaxy Zoo 1, 2007) was to categorize galaxies based on their visual appearance,

particularly their shapes and structures [55]. The user interface of GZ1 was designed

so that users could classify galaxies straightforwardly and intuitively. Figure 2 shows

the user interface of Galaxy Zoo 1 [55]. On the left side of the interface, users were

shown an image of a galaxy. They were given the option to select the galaxy type

from predefined categories such as elliptical, spiral, or other. These three categories

are further divided into six options: the elliptical has one option, the spiral has three

options listed as clock, anti, and edge-on, and the other is divided into two options for

users to select from star and merger. On the right side of the interface, the users were

5



1. INTRODUCTION

Fig. 3: Decision tree used in Galaxy Zoo 2 project (Source : Willett et al. (2013)
[99])

presented with options and examples to help them identify and classify the galaxy

type they saw on the left. Users could classify as many galaxies as they wanted and

were encouraged to return to the site for more images. The classifications submitted

by users were combined and analyzed to create a catalog of galaxy classifications that

researchers could use for further analysis [55].

The initial project’s success led to the launch of a follow-up project, Galaxy Zoo

2 (GZ2), in 2009. Galaxy Zoo 2 aimed to build on the success of its predecessor

by introducing a more complex classification system consisting of a decision tree

table (Table 1) and several classification stages (Fig. 3). This new system enabled

volunteers to provide labeled data for galaxy morphology with unprecedented detail,

thus significantly improving our understanding of the universe.

The project known as Galaxy Zoo was a significant step towards democratizing

6



1. INTRODUCTION

Task Question Responses Next

01
Is the object a smooth galaxy, a
galaxy with features/disk or a
star?

smooth 07

features or disk 02

star or artifact end

02 Is it edge-on?
yes 09

no 03

03 Is there a bar?
yes 04

no 04

04 Is there a spiral pattern?
yes 10

no 05

05
How prominent is the central
bulge?

no bulge 06

just noticeable 06

obvious 06

dominant 06

06
Is there anything ”odd” about the
galaxy?

yes 08

no end

07 How round is the smooth galaxy?

completely round 06

in between 06

cigar-shaped 06

08 What is the odd feature?

ring end

lens or arc end

disturbed end

irregular end

other end

merger end

dust lane end

09
What shape is the bulge in the
edge-on galaxy?

rounded 06

boxy 06

no bulge 06

10
How tightly wound are the spiral
arms?

tight 11

medium 11

loose 11

11 How many spiral arms are there?

1 05

2 05

3 05

4 05

more than four 05

can’t tell 05

Table 1: Questions displayed to users by GZ2 interface along with possible responses
for users to select from 7



1. INTRODUCTION

scientific research, allowing for the public to actively participate and contribute to

new discoveries. This approach relied on the collective intelligence of a diverse group

of volunteers who were able to classify and analyze large amounts of astronomical

data that would have been unmanageable by a single research team.

GZ2 expanded upon this idea with an even more advanced classification system

providing greater detail in galaxy classification through the use of decision tree (Fig.

3). Table 1 served as guides for volunteers ensuring consistent and accurate classifi-

cations while multiple stages reduced errors increasing precision.

The following sections will cover important concepts including topics such as Ar-

tificial Intelligence, Machine Learning, Neural Networks, Deep Learning, Artificial

Neural Networks along with applications using Deep Learning techniques.

1.4 Artificial Intelligence

Artificial Intelligence (AI) is developing and implementing computer systems capable

of performing tasks that typically necessitate human intelligence, such as learning,

problem-solving, decision-making, and natural language comprehension [69]. Unlike

animal and human intelligence, AI is a product of synthetic thinking, perception, and

inference by computers. The definition of AI by the Oxford English Dictionary of

Oxford University Press is the “theory and development of computer systems capable

of performing tasks that typically require human intelligence, such as visual perception,

speech recognition, decision-making, and translation between languages” [25]. AI is

categorized into various types: reactive machines, limited memory systems, theory

of mind, and self-aware systems. Reactive machines are the most basic type of AI,

simply responding to their environment without memory of past experiences. Limited

memory systems can use past experiences to make decisions, as with self-driving cars

that record information about their surroundings to navigate the road. Theory of

mind systems can comprehend and reason about other agents, such as humans or

other AI systems. Lastly, self-aware systems can recognize their mental states and

are conscious of their existence [69].

8
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AI has many applications, such as web search engines, recommendation systems,

speech recognition software, self-driving cars, automated decision-making, and strate-

gic game systems [88]. With machines becoming increasingly capable, the AI effect

has become a phenomenon where actions previously thought to necessitate “intelli-

gence” are frequently taken out of the definition of AI [56]. Nevertheless, AI continues

to advance and transform how we interact with technology and the world around us.

1.5 Machine Learning

Machine learning, a subset of artificial intelligence, involves using algorithms and

models to teach computers how to learn from data and make predictions or deci-

sions without explicit programming [7]. The primary objective of machine learning

is to create models and algorithms capable of processing data accurately, identify-

ing patterns, and making predictions or decisions based on that knowledge. Various

types of learning techniques exist in machine learning, including supervised learning,

unsupervised learning, semi-supervised learning, and reinforcement learning [60]. In

supervised learning, the model is trained using labeled data to predict the output

based on the input. This learning technique is useful for image classification, speech

recognition, and sentiment analysis applications. Examples of supervised learning

algorithms include logistic regression, linear regression, and decision trees [16].

In unsupervised learning, the model is provided with unlabeled data and must

independently discover patterns and structures in the data. The model can iden-

tify data patterns, cluster similar data points, and reduce the dimensionality of the

data. Unsupervised learning examples include clustering, anomaly detection, and

dimensionality reduction [31].

Semi-supervised learning is a combination of supervised and unsupervised learn-

ing. In semi-supervised learning, the model is trained using a small amount of labeled

data and a more extensive collection of unlabeled data. The labeled data is used for

making predictions, while the unlabeled data is utilized for finding patterns and struc-

tures. A spam email filter is an example of semi-supervised learning, where a small

9
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set of labeled data is used to train the model to classify emails as spam or not spam.

However, manually labeling every email is time-consuming, so semi-supervised learn-

ing can help the model learn patterns and features expected in spam emails using a

large amount of unlabeled data.

Reinforcement learning is a type of learning that involves training the model to

make decisions based on the outcomes of its actions in an environment. The model

learns to take actions that maximize a reward signal. Reinforcement learning can be

applied to various fields like gaming, control systems, and robotics [82].

1.6 Artificial Neural Networks

An artificial neural network, often known as a “neural network,” is made up of input

layer of neurons (or nodes, units), one to three hidden layers of neurons, and a layer of

output neurons [92]. Figure 4 depicts a typical architecture along with the connections

between the neurons. Each connection has a weight that is a numeric value. The

hidden layer’s neuron i’s output, hi, is

hi = σ(
N∑
j=1

Vijxj + T hid
i ), (1)

where N is the number of input neurons, Vij are weights, xj are inputs to the

neurons, and T hid
i are the threshold terms of the hidden neurons. σ is referred to

as the activation (or transfer) function. In addition to adding nonlinearity to the

neural network, the activation function (a non-linear mathematical function that is

applied to the output of a neuron in a neural network) aims to constrain the neuron’s

value to prevent the neural network from being paralyzed by divergent neurons. The

sigmoid (or logistic) function, which is a typical illustration of the activation function,

is defined as

σ(u) =
1

1 + exp(−u)
. (2)

A neural network built in the manner described above has been demonstrated

to be capable of approximating any computed function with arbitrary precision [92].
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For the function that the neural network is attempting to approximate, the numbers

supplied to the input neurons are independent variables, and the numbers returned

from the output neurons are dependent variables. When data is properly encoded,

inputs to and outputs from a neural network can be binary (such as yes or no) or even

symbols (green, red, etc.). This property gives neural networks a broad spectrum of

use.

Fig. 4: Architecture of simple neural network (Source: Wang et al. (2003) [92])

Artificial Neural Networks (ANNs) are models that mimic the structure and func-

tion of the human brain to process information, identify patterns, and make decisions.

ANNs contain interconnected nodes called artificial neurons arranged in layers with

input data received by the input layer producing final predictions from the output

layer. Hidden layers may analyze and process incoming data.

Each neuron takes inputs from other neurons that undergo weight summation

passed through an activation function for its respective output based on weights

connectivity between them.

The learning process is vital wherein ANNs adjust their parameters-weights, biases-

using optimization algorithms such as gradient descent or backpropagation, reducing

the error between predicted vs. actual outputs.

Feedforward networks with a one-way data flow are simple; recurrent networks

work best to process sequential time-series information using feedback loops inter-
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nally. In comparison, convolutional neural networks-CNNs-specialize in image feature

extraction and representation creation.

Therefore Artificial Neural Networks utilize concepts observed within our brains’

working model to assess vast amounts of data effectively while adjusting internal

connections according to a supervised learning system minimizing prediction errors

categorized into feedforward network types and others like recurrent or CNN-based

applications.

1.7 Convolution Neural Networks

With the emergence of the Artificial Neural Network (ANN), the discipline of ma-

chine learning has recently changed drastically. In popular machine learning tasks,

these computational models with biological inspiration perform noticeably better than

earlier iterations of artificial intelligence. Convolutional Neural Network (CNN) ar-

chitecture is one of the most remarkable types of Artificial Neural Network (ANN)

architecture. CNNs are typically employed to tackle challenging image-driven pat-

tern recognition problems. Thanks to their accurate yet straightforward architecture,

they provide a streamlined way to get started with ANNs [62]. CNNs emphasize the

idea that the input will be made up of one or more images. This concentrates the

architecture’s set up to meet the requirements for handling the particular data type.

One of the main variations is that the layers of the CNN are made up of neurons

arranged into three dimensions, the spatial dimensionality of the input (height and

breadth) and the depth. The depth describes the third dimension of an activation

volume rather than the total number of layers within the ANN. In contrast to con-

ventional ANNs, each layer’s neurons will only link to a small portion of the layer

before it [62].

In practice, this means that for the earlier example, the input “volume” will have

a dimensionality of 64× 64× 3 (height× width× depth), resulting in a final output

layer with a dimensionality of 1× 1× n (where n represents the number of classes

that may be present). This is because we would have condensed the full input dimen-
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sionality into a smaller volume of class scores filed across the depth dimension. Figure

5 shows a simplified CNN architecture for MNIST classification. The MNIST dataset

is a widely-used dataset in machine learning and computer vision, consisting of 70,000

handwritten digits images (28× 28 pixels) of the digits 0 to 9. It is commonly used

as a benchmark dataset for image classification tasks, particularly for evaluating the

performance of neural network models [53]. The image shown in figure 5 is a visu-

alization of a Convolutional Neural Network (CNN) architecture commonly used in

image classification tasks. It consists of several layers, including convolutional layers,

pooling layers, and fully connected layers. The input image is passed through the

network, and as it progresses through each layer, it becomes increasingly abstracted

and transformed. Finally, the output layer provides the classification result.

Fig. 5: A simple CNN architecture (Source: Balaji et al. (2020) [12])

1.8 Deep Learning

Deep Learning (DL) is a subfield of Machine Learning (ML) that involves training

deep neural networks to make predictions or take decisions based on data [32]. Deep

learning architectures, also known as deep neural networks, are a type of artificial

neural network that consists of multiple layers of nodes, each of which processes the

data and extracts features. The deeper the network, the more complex features it

can extract [52].
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Inspired by the human brain’s structure and function, deep learning networks

can be trained with various data types: images, text, and audio. These networks

get categorized into feedforward neural networks or convolutional neural networks

(CNNs) to recurrent neural networks (RNN), each suited for specific data processing

tasks [32].

Recurrent Neural Networks are a type of artificial neuron that helps design ma-

chine learning and natural language processing. Unlike feedforward nets with one-way

directional flow through inputs–outputs layers, RNN’s feedback loop passes informa-

tion from time steps leading up to eventual output, so temporal dependencies in

sequential speech-text-time series-data get captured, making them ideal-perfect for

translating languages and image captioning purposes.

Feedforward networks in basic deep learning architecture reflect simple pattern

recognition between nodes-values moving forward instead of CNNs designed explic-

itly around analyzing video/images using convolution, which extracts features within

provided media. In contrast, recurrence focuses on capturing sequence element de-

pendencies helping analyze applications such as sound waves or textual translation

[52].

Deep learning networks have been used to achieve state-of-the-art results in various

applications, including image and speech recognition, natural language processing,

and autonomous vehicles. For instance, a deep learning algorithm has been used for

autonomous vehicle navigation in complex environments [17]. Another example is

deep learning networks for speech recognition and natural language processing, as

seen in popular applications such as Siri and Alexa [38].

In conclusion, deep learning has proven to be an effective and powerful tool for a

wide range of applications and continues to be an active area of research in machine

learning [52].
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1.9 Deep Learning Applications

The innovative concept of building machines that can mimic human intelligence and

even enhance it has long piqued our interest and continues to do so. It was because

of the work done on this concept that artificial intelligence, machine learning, and

later deep learning, were developed [44]. These three ideas—or, more precisely, tech-

nologies—are intriguing on their own. However, given the constraints of the subject

at hand, we shall concentrate on Deep Learning in this article. The closest we have

come to designing a system that mimics how the brain functions is probably with deep

learning. It is a complex system that tries to learn concepts and solve issues that

were previously beyond the reach of human intelligence. Deep Learning serves count-

less uses, including helping computers make independent judgments and identifying

images, translating human language, talking with humans, and more.

Common applications of deep learning in artificial intelligence are listed as:

� Computer Vision: Deep learning models can be used to classify images, detect

objects, and even generate new images. This makes it a powerful tool for tasks

such as image recognition, facial recognition, and object detection.

� Natural Language Processing: Deep learning models can be used to process and

understand human language. This makes it useful for tasks such as language

translation, text summarization, and sentiment analysis.

� Speech Recognition: Deep learning models can be used to recognize speech

and convert it to text. This makes it useful for tasks such as speech-to-text

transcription and voice-controlled assistants.

� Robotics: Deep learning models can be used to control robots and make them

more autonomous. This makes it useful for tasks such as navigation, manipu-

lation, and object recognition.

� Recommendation Systems: Deep learning models can be used to analyze large

amounts of data and make personalized recommendations. This makes it useful
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for tasks such as movie and music recommendations, and product recommen-

dations.

� Healthcare: Deep learning models can be used to analyze medical images and

make diagnoses, such as detecting cancer, or analyzing medical records to make

predictions about patient outcomes.

� Autonomous vehicles: Deep learning models can be used to enable autonomous

vehicles to drive safely and make decisions based on their surroundings.

� Gaming : Deep learning models can be used to improve the gaming experience

by providing realistic graphics, controlling non-player characters, or creating

new game scenarios.

� Fraud Detection: Deep learning models can be used to detect fraudulent activ-

ities by analyzing large amounts of financial data.

� Energy and Power : Deep learning models can be used to optimize energy usage

and power generation in smart grids, wind and solar power.

These are just a few examples of the many ways that deep learning can be applied.

As the field continues to evolve and improve, the potential for deep learning to impact

various industries and aspects of life will only continue to grow.
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CHAPTER 2

Literature Review

This chapter summarizes some crucial papers that apply machine learning or deep

learning techniques for classifying galaxy images. In recent years, these methods

have gained popularity in astronomy due to their ability to process large datasets

with high accuracy and efficiency. Machine learning and deep learning techniques

have been used to classify galaxies based on their shape, size, and color. For instance,

some studies have employed Convolutional Neural Networks (CNN) to classify galaxy

images based on morphological features [6, 10]. In contrast, others have used Gen-

erative Adversarial Networks (GAN) for generating realistic images of galaxies [24].

Using these techniques in astronomy has opened up new avenues for research, al-

lowing scientists to make more accurate predictions and identify previously unknown

phenomena. Therefore, it is essential to review the current state of the art in apply-

ing machine learning and deep learning techniques to galaxy image classification to

understand their potential for advancing the field of astronomy.

2.1 Galaxy Morphology Classification Using Neu-

ral Ordinary Differential Equations

The authors of this study [34] developed a method called Neural Ordinary Differential

Equations (NODE) to classify galaxy morphology. They applied this method to

classify galaxy images from the Galaxy Zoo 2 dataset [47], which includes five different

classes. Their results show an accuracy of 92% on the dataset of five galaxy classes. To

obtain their dataset, the authors used the Galaxy Zoo Challenge available on Kaggle,
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Fig. 6: The five different galaxy morphologies in the Galaxy Zoo-2 dataset. Each row
has samples from each galaxy class, from to to bottom they are completely round,
in-between, cigar-shaped, edge-on and spiral galaxy (Source: Gupta et al. (2022)
[34])

which includes images from SDSS-DR7 and classification labels from Galaxy Zoo 2.

The dataset includes five morphological classes: completely round smooth, in-between

smooth, cigar-shaped smooth, edge-on, and spiral. These classes are illustrated in

Figure 6.

The Kaggle dataset used in this study [34] contains more than 60,000 images

sorted into five different classes and assigned a classification probability. The authors

filtered the dataset only to include images with high probabilities of being correctly

classified, resulting in 28,790 photos distributed among five classes.

The selection process used in this research to filter out the required 28,790 images

belonging to five classes from a total of over 60,000 images is similar to the method

described by Willett et al. (2013) [99] in which galaxy images with probabilities

greater than a specific threshold are chosen. As a result, the authors obtained 7806,

3903, 578, 8069, and 8434 photos in the completely round, in-between, cigar-shaped,

edge-on, and spiral classes, respectively.
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To train a Neural Ordinary Differential Equations (NODE), the parameters of the

neural network function must be learned using a loss function, such as cross-entropy,

in the case of classification. The ODE solver’s learned representation is fed into the

loss function and optimized with respect to the parameters. However, learning the

parameters requires backpropagation through the solver, which is computationally

costly using naive backpropagation. Chen et al. (2018) proposed an adjoint sensitivity

method to efficiently compute the gradients with respect to h(t) (the state of the

system at any time t) and the neural network parameters by running another ODE

solver backward in time.

For the standard NODE training, the authors used a network architecture with a

standard convolution block consisting of two Convolution-Non-Linearity-Normalization

(CLN) layers, each using a 3 × 3 kernel. The input is also downsampled before be-

ing passed to the ODE network using 2D convolutions, which reduces the number of

channels. After passing through the ODE network, a pooling layer is used, and the

ODE maps the inputs to a desired latent space with the same number of dimensions

as the input. To achieve the final output with five dimensions (equal to the number

of classes), a fully connected (FC) layer is used to learn a linear mapping from the

ODE output to the final output. The standard NODE model trained with the adjoint

method achieved an accuracy of 92% [34].

2.2 Galaxy Morphology Classification using Effi-

cientNet Architectures

To categorize galaxies into seven classes—completely round smooth, in-between smooth,

cigar-shaped smooth, lenticular, barred spiral, unbarred spiral, and irregular. Figure 7

shows the architecture used in this study, based on the EfficientNet-B0 model, a con-

volutional neural network (CNN) consisting of multiple layers of convolutional, pool-

ing, and fully connected layers. The network takes an input image of size 224× 224

pixels. It passes it through several convolutional layers, each of which applies a set
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of filters to the input image to extract features at different levels of abstraction. The

output of each convolutional layer is then passed through a batch normalization layer

to normalize the features and improve the training stability. After the convolutional

layers, the network uses global average pooling to reduce the spatial dimensions of

the output feature maps and generate a feature vector for the input image. The

feature vector is then passed through several fully connected layers to produce the

final output as shown in figure 7, which is a probability distribution over the different

morphological classes of galaxies.

Fig. 7: Network architecture of the tail part of the fine-tuned model. The x in
efficientnet-bx is a placeholder for all the EfficientNet architectures ranging between
B0-B7

The network, together with other well-known convolutional networks, is used to

categorize 29,941 pictures of galaxies. The model’s performance is assessed using

various metrics, including accuracy, recall, precision, and F1 score, along with a

comparison with other cutting-edge convolutional models to see which one performs

the best. Their classification model yields an F1 score of 0.8857, and an accuracy of
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93.7% [48].

According to the proper thresholds, the study [48] collects clean samples of the

galaxies that belong to particular morphologies. These thresholds are based on the

number of votes needed to qualify for a classification task [103]. These thresholds are

used to identify clean samples in [99]. The methodology was used by Zhu et al. (2019)

[103] to divide galaxies into five categories: edge-on, spiral, cigar-shaped smooth,

totally round smooth, and in-between smooth (between entirely round and cigar-

shaped). Following suit, the authors divide galaxies into seven categories: completely

round smooth, in-between smooth, cigar-shaped smooth, lenticular (edge-on), barred

spiral, unbarred spiral, and irregular (irregular set is a collection of mergers, disturbed,

dust lanes and irregular galaxies). The classes are numbered 0, 1, ..., 6. There are,

accordingly, 8107, 7782, 578, 3780, 827, 3307, and 1560 samples in each class. The

dataset with 25,941 images is split into a train:test ratio of 9:1. As a result, they [48]

have 2,589 testing images and 23,352 training images.

2.3 Machine and Deep Learning Applied to Galaxy

Morphology - A Comparative Study

The paper “Machine and Deep Learning Applied to Galaxy Morphology - A Com-

parative Study” by Barchi et al. [14], published in 2020, focuses on using deep

convolutional networks for galaxy morphological classification. The authors aim to

demonstrate the potential of the machine and deep learning techniques for advancing

our understanding of galaxy morphologies.

The dataset used in this study consists of 67,637 galaxy images which are then

divided into three classes: elliptical, barred spiral, and unbarred spiral. The im-

ages were collected from various sources, including the Sloan Digital Sky Survey, the

Galaxy Zoo project, and the Galaxy Evolution Explorer (GALEX) satellite.

To classify the galaxy images based on their morphologies, the authors used

GoogleNet Inception [83], a neural network architecture developed by Google re-
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searchers in 2014 for image classification. It uses Inception modules, which consist

of multiple convolutional layers with different filter sizes and pooling operations, to

capture features of different sizes and resolutions in parallel without increasing the

computational cost too much. The model was trained on the galaxy image dataset,

and the authors reported an accuracy of approximately 82% for classifying the images

into the three morphological classes [14].

This research [14] also compared the performance of GoogleNet Inception with

other machine learning techniques, such as decision trees and support vector ma-

chines. These comparisons showed that deep convolutional networks outperformed

these other techniques, achieving higher accuracy for galaxy morphological classifica-

tion.

Fig. 8: Overall Accuracy (OA in percentage) for all approaches considering GZ2
classification (the darker the green colour of a cell, the better OA obtained) (Source:
Barchi et al. (2020) [14])

Barchi et al. [14] believe that their results (fig. 8) demonstrate the potential

of machine learning and deep learning techniques for advancing our understanding

of galaxy morphologies. The study provides a valuable contribution to the field of

astrophysics, as well as the field of computer vision and machine learning. The au-

thors suggest that future research could focus on using deep convolutional networks

to classify galaxy images based on additional morphological classes, such as irregu-

lar galaxies, as well as exploring the use of other deep learning techniques, such as

recurrent neural networks and generative adversarial networks.
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2.4 Classifying Galaxy Morphologies with Few-shot

Learning

In the paper “Classifying Galaxy Morphologies with Few-shot Learning,” Zhirui

Zhang et al. (2022) [102] proposed an approach to classify galaxy images using few-

shot learning. The authors believe that few-shot learning is an ideal solution for this

problem because it requires only a small number of examples to classify new data.

This is particularly relevant for galaxy morphology classification because there is a

limited number of labeled examples available.

Fig. 9: Siamese Architecture (the left and right input different data, and calculate
the similarity between them after feature extraction) (Source: Zhang et al. (2022)
[102])

They [102] used a model called SC-Net, which consists of a convolutional neural

network (CNN) and a Siamese network (fig. 9). SC-Net is a neural network architec-

ture proposed in 2018 for image classification tasks. It uses spatial and channel-wise

attention mechanisms to dynamically adjust the weights of convolutional filters, allow-

ing the network to focus on essential regions of the input image and discard irrelevant

features. This helps improve the network’s accuracy while reducing its computational

cost [102]. The CNN extracts feature from the galaxy images, while the Siamese net-
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work compares the similarities between the query image and the support images. The

authors believe combining these two components provides a more robust and accurate

solution for few-shot learning.

Zhirui Zhang et al. (2022) [102] evaluated the SC-Net model on a dataset of galaxy

images, focusing on five distinct classes of galaxy morphologies: completely round,

in-between, spiral, cigar-shaped, and edge-on. The authors achieved an accuracy of

90.9% on this dataset, demonstrating the effectiveness of their approach. The SC-Net

model provides a solution requiring only a few examples to classify new data.

2.5 Rotation-invariant Convolutional Neural Net-

works for Galaxy Morphology Prediction

Sander Dieleman et al. (2014) [26] published a paper entitled “Rotation-Invariant

Convolutional Neural Networks for Galaxy Morphology Prediction” that explores

the use of deep neural network models for galaxy morphology classification. The

authors propose a new method for classification that takes advantage of translational

and rotational symmetry in the data. This is achieved by using a rotation-invariant

convolutional neural network (R-CNN), which is a type of deep learning model that

is capable of handling variations in image orientation.
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Fig. 10: Schematic overview of a neural network architecture for exploiting rotational
symmetry. The input image (1) is first rotated to various angles and optionally
flipped to yield different viewpoints (2) and the viewpoints are subsequently cropped
to reduce redundancy (3). Each of the cropped viewpoints is processed by the same
stack of convolutional layers and pooling layers (4), and their output representations
are concatenated and processed by a stack of dense layers (5) to obtain predictions
(6) (Source: Dieleman et al. (2014) [26])

The architecture figure 10 shows the neural network architecture used for predict-

ing the morphology of galaxies based on their images. The architecture consists of

a series of convolutional and pooling layers followed by two fully connected layers.

Sander Dieleman et al. (2014) [26] used a variant of the LeNet-5 architecture as the

base architecture for their network. In order to make the network rotation-invariant,

they augmented the training data by rotating the images in 90-degree increments and

feeding them as separate inputs to the network. They present a detailed description

of the R-CNN model and its architecture (fig. 10), including convolutional layers,

pooling layers, and activation functions. The authors also describe the training pro-

cess, which involves using a large dataset of galaxy images to train the network. The

network was trained using a supervised learning approach, with the goal of predicting

the probabilities associated with each image (pk, where k = 1, ..., 37).

The study [26] evaluates the performance of the R-CNN model by comparing it
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to other state-of-the-art models for galaxy morphology classification in terms of Root

Mean Squared Error (RMSE), and they achieved an RMSE of 0.0769. In conclusion,

the paper by Sander Dieleman et al. (2014) [26] presents a novel method for galaxy

morphology classification using a rotation-invariant convolutional neural network (R-

CNN). They demonstrate that the R-CNN model outperforms other models, making

it a promising tool for galaxy morphology classification. This work provides valuable

insights into the potential of deep neural network models for solving complex problems

in astronomy. It highlights the importance of considering rotational symmetry in data

when designing deep learning models.

2.6 Additional Literature Review

Alawi et al. (2021) [5] proposed a deep residual network (ResNet) model for the

classification of galaxies and stars. They preprocessed the data using image aug-

mentation techniques and trained the ResNet model using transfer learning. They

achieved an accuracy of 96.77% on the test dataset of 10,000 images belonging to two

classes. Shetty et al. (2022) [75] proposed a convolutional neural network (CNN)

model for the classification of satellite galaxies. They used the dataset from the

galaxy zoo challenge, called the Galaxy Zoo dataset, and trained their model using

transfer learning. They achieved a validation accuracy of 77.8% on the test dataset.

Vijay et al. (2020) [90] proposed a method for identifying the orientation of galaxies

in the Galaxy Zoo dataset using spectral clustering. They first preprocessed the data

and extracted features using principal component analysis (PCA). Then, they applied

spectral clustering to group the galaxies based on their orientation. They achieved

an accuracy of 87.6% on the Galaxy Zoo dataset. Zhu at al. (2019) [103] proposed

a deep CNN model for galaxy morphology classification. They used the Galaxy Zoo

dataset and trained their model using transfer learning. They achieved an accuracy

of 93.12% on the test dataset, which outperformed previous state-of-the-art methods.

They also conducted experiments to show the effectiveness of transfer learning and

data augmentation in improving the performance of their model.
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2.7 Summary on Literature Review

Table 2 summarizes five studies discussed earlier in this chapter that have applied

machine learning techniques for galaxy morphology classification. Gupta et al. (2022)

achieved 92% accuracy using neural ordinary differential equations on a dataset of

28,790 images with five classes, a subset of the Galaxy Zoo (GZ) dataset. The GZ

dataset is available on Kaggle [47]. Kalvankar et al. (2020) achieved 93.7% accu-

racy using efficientnet architectures on a dataset of 25,941 images with seven classes.

Barchi et al. (2020) achieved 82% accuracy using machine and deep learning on a

dataset of 67,637 images with three classes. Zhang et al. (2022) achieved 90.9% ac-

curacy using few-shot learning on the same dataset as Gupta et al. (2022). Finally,

Dieleman et al. (2015) achieved a root mean squared error of 0.0769 on a dataset of

61,578 images from the Galaxy Zoo Challenge on Kaggle [47] using rotation-invariant

convolutional neural networks.

Author Dataset Type Dataset Size Result

Gupta et al. (2022) Five classes 28,790 images 92% accuracy

(Section 2.1) (Subset of GZ dataset)

Kalvankar et al. (2020) Seven classes 25,941 images 93.7% accuracy

(Section 2.2) (Subset of GZ dataset)

Barchi et al. (2020) Three classes 67,637 images 82% accuracy

(Section 2.3) (GZ2 project data*)

Zhang et al. (2022) Five classes 28,790 images 90.9% accuracy

(Section 2.4) (Subset of GZ dataset)

Dieleman et al. (2015) GZ dataset [47] 61578 images 0.0769 root

(Section 2.5) mean squared error

Table 2: Summary of five different studies that have attempted to classify galaxies
using machine learning techniques [48, 34, 14, 26, 102]. Each row corresponds to a
study, with columns indicating the dataset used in their study and the results achieved
in their research. GZ dataset is available on Kaggle and *GZ2 project data is the
data available from GZ2 project
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2. LITERATURE REVIEW

While some studies in this field have reported good results, many suffer from lim-

itations, such as using a single dataset to show their results or relying on existing

models for comparative analysis. Additionally, certain models proposed in the litera-

ture require a large number of training parameters which can lead to overfitting. To

address these limitations, this study proposes a model based on the Residual Neural

Network (ResNet) architecture. ResNet can achieve high accuracy while reducing

computational costs, thanks to the use of skip connections. Moreover, it can gener-

alize well to new, unseen galaxies by learning more complex features. The relatively

small number of parameters in ResNet can also help to prevent overfitting, and it can

be trained on various datasets, making it more representative of all types of galaxies.

In the following chapter, Methodology, we provide further explanation of the ResNet

architecture, as well as details of the model proposed in this study.
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CHAPTER 3

Methodology

This chapter provides information about the model proposed in this study, called

ResNet Var, which uses ResNet architecture. So, before we move to ResNet Var, let

us learn more about ResNet.

3.1 Residual Neural Networks

Residual Network (ResNet) is a Convolutional Neural Network (CNN) architecture

that has revolutionized the field of computer vision by addressing the problem of

vanishing gradients, which arise when a neural network becomes too deep. The

backpropagation process relies on gradient descent to optimize the weights of the

network. However, when there are too many layers, the repeated multiplications cause

the gradient to vanish, leading to performance saturation or degradation. ResNet

tackles this problem by introducing “skip connections” between layers [36]. Skip

connections, also known as shortcut connections, allow information to bypass one or

more layers of a neural network and be passed directly to a later layer. In ResNet,

skip connections are implemented by adding identity mappings (i.e., a simple linear

function) to the output of one or more convolutional layers. In ResNet, identity

mapping refers to the addition of the input of a residual block to its output. A

residual block is a building block used in residual neural networks (ResNets). In

a residual block, the skip connection is typically implemented as a simple identity

mapping that bypasses one or more convolutional layers in the block. This means

that the input to the block is added directly to the output of the block, which helps to
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prevent the vanishing gradient problem that can occur in very deep neural networks.

By using skip connections, residual blocks enable the network to learn features that

are more abstract and complex than what could be learned without them.

ResNet stacks multiple identity mappings and skips some layers by reusing the

activations of the previous layer. This method speeds up the initial training phase

by compressing the network into fewer layers and then expanding all layers during

retraining. The term “retraining” refers to the process of fine-tuning the weights of

the ResNet architecture after the initial training phase. During the initial training

phase, the ResNet architecture is compressed into fewer layers by skipping some layers

using skip connections. After this phase, the skipped layers are added back in, and

the remaining layers are trained again on the data to improve the performance of

the network. In most ResNet models, two or three layers are skipped at a time with

nonlinearity and batch normalization in between [36].

Fig. 11: A residual network model architecture (Source: Fang et al. (2018) [29])

Figure 11 illustrates the model architecture of a simple Residual Network (ResNet)

and the structure of the residual block used in the ResNet model. As seen in the left
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part of figure 11, the image is given as input to the model, and it is passed to a

convolution layer (“Conv” in the figure 11) of 1 × 1 kernel with a filter size of 20.

Then the image is passed through building block 1 followed by building block 2. The

building block referred to in the figure 11 is also known as residual blocks. The term

“bottleneck” building block in figure 11 refers to a specific type of building block that

is designed to reduce the number of parameters and computations required to train

a very deep neural network. Output from the building block 2 is given as an input to

an average pooling layer (“Avg pool” in the figure 11), and then the output from the

average pooling layer is provided as an input to the fully connected layer (“Fc” in the

figure 11). Now, the right part of figure 11 shows the structure of the building block.

It shows the series of convolutional layers are present inside the building block with

varying kernel sizes of 1× 1 and 3× 3 as well as filter sizes of 20 and 80. As seen in

the right part of figure 11, x is the input to the building block, which is the output

from the previous layers in the neural network. The output from the convolutional

layer, first orange rectangle with “1 × 1 Conv, 20” written inside in the left part of

figure 11, is the input for building block 1, the first blue block with “Building block 1”

written inside. The value of the input to the building block, x, is kept aside to use it

as identity mapping. The right part of figure 11 shows an equal input x which is not

identity mapping is passed through a series of convolution layers, “1 × 1 Conv, 20”,

“3× 3 Conv, 20”, and “1× 1 Conv, 80”. The output from the series of convolutional

layers, F (x) is the residual mapping. The final output from a building block, the

original mapping, is represented as F (x) + x.

There are a few variants of ResNet, such as ResNet18, ResNet34, ResNet50,

ResNet101, and ResNet150. The name of the variant depends on the number of con-

volution and pooling layers in the model. To have a clear understanding of ResNet

architecture, let us take an example of ResNet34. ResNet34 [36] is a variant of the

ResNet family of CNN architectures, which is designed to address the problem of

vanishing gradients in very deep networks. ResNet34 has 34 layers and uses resid-

ual connections to skip over some layers, allowing the network to learn more easily

and effectively. The model consists of several residual blocks (building blocks), each
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(a) ResNet34 (b) Residual Block

Fig. 12: ResNet34 model architecture
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containing multiple convolutional layers, batch normalization, and ReLU activation,

followed by a downsampling layer that reduces the spatial dimensions (further details

on layers/components of a neural network will be discussed in Section 3.3). The last

layer of the network is a fully connected layer that outputs the class probabilities.

ResNet34 has achieved state-of-the-art performance on several image classification

benchmarks, including ImageNet [36].

ResNet34 architecture, shown in figure 12 (a), consists of a sequence of residual

blocks. In figure 12 (a), after the first convolutional layer, “7× 7 Conv, 64”, there is

a skip connection after every two convolutional layers. The combination of the layers

between every skip connection is called a residual block. The structure of the residual

block is shown in figure 12 (b), where each block contains multiple convolutional layers

with 3× 3 filters and skip connections that bypass some of the layers. It can be seen

in figure 12 (a) that the filter size of convolutional layers in the model increases after

a few layers, thus the dotted lines in figure 12 (a) represent the increase in filter size

for convolutional layer. This architecture was designed to address the problem of

vanishing gradients in very deep neural networks and to investigate whether residual

connections improve the performance of deep neural networks.

The next section will provide information on the model proposed in this study,

called ResNet Var.

3.2 ResNet Var Architecture

The model architecture, ResNet Var, for this research is a variant of Residual Neural

Network (ResNet) as shown in the Figure 13 that utilizes several techniques to improve

performance and reduce overfitting.

The model takes an input shape and number of classes as parameters and uses

the Keras functional API to build the architecture. The shape of an image is given

as height× width× colorchannels, and the number of classes is the number of clas-

sifications of the training dataset. To train the model for image classification, the

image is passed as an input to the model, and that image passes through various
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Fig. 13: Architecture of the ResNet Var proposed in this research

layers before the image can be categorized into a class. At the begging of the training

process, the input image is passed to a rescaling layer, shown in figure 13, which

scales the input data by dividing it by 255. This is a common preprocessing step in
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image classification tasks and helps ensure that the input data is in a consistent range.

Then, as illustrated in figure 13, the image passes through a data augmentation layer,

which applies a set of random transformations to the input data to increase the size

of the training dataset. This is important for deep ResNets, as they are particularly

susceptible to overfitting when trained on small datasets. The pipeline defined in this

architecture includes three different types of data augmentation: random flipping,

random rotation, and random zoom. The RandomFlip layer randomly flips the input

images horizontally or vertically. The RandomRotation layer randomly rotates the

images by a specified angle range, in this case between 0 and 1 radians. The Random-

Zoom layer randomly zooms into the images by a specified range, in this case between

-0.1 and -0.4. By applying these types of data augmentation, the model is trained on

a wider range of data, making it more robust to different variations and improving

its ability to generalize to new examples. This can lead to better performance on the

test set and in real-world applications.

In figure 13, we can see that the model then uses a convolutional layer (“conv”

in figure 13) which is shown as “3× 3 conv, 32” where “3× 3” is the kernel size and

“32” is the filter size for the convolutional layer. This layer uses the ReLU activation

function, which is a common choice for Neural Networks because it helps improve

performance and reduce the risk of overfitting. The activation function is applied

every time the image is passed through a convolutional layer. As such, it is not

shown separately in figure 13.

The image is passed through the residual block three times, with a different filter

size in each iteration. Inside the residual block, illustrated in figure 14 (b), the

model uses two Separable Convolution Layers (“sepconv” in figure 13) of kernel size

k=3, with ReLU activation function and a filter size of 64, 128, and 256 in each

respective iteration. In figure 13, the first separable convolutional layer is shown as

“3 × 3 sepconv, 64” where “3 × 3” is the kernel size and “64” is the filter size for

the separable convolutional layer, this structure is followed throughout the model

architecture. Separable Convolution Layers are a more efficient variant of traditional

convolutional layers, which is useful when working with large datasets or running
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the model on resource-constrained devices. The model also uses batch normalization

layers to normalize the activations of the previous layer, which helps to reduce the

internal covariate shift, improving performance and reducing overfitting. After the

Separable Convolution layers, the model applies a max pooling layer to reduce the

spatial dimensions of the input data, which reduces the number of parameters in the

model and helps control overfitting. In addition to the Separable Convolution layers,

the model also uses a convolution layer of kernel size k=1 in the residual connection

with ReLU activation. The model uses residual connections, as shown in figure 14, to

add the output of the previous block to the output of the current block, preserving

information from previous layers and improving performance. The filter size for both

the separable convolution layers and the convolution layer remains the same during

each iteration of the residual block, which is iterated three times with filter sizes of

64, 128, and 256.

Figure 14 shows the difference between the residual blocks used in ResNet34 and

the residual blocks used in ResNet Var. The residual block in ResNet Var uses sep-

arable convolutional layers instead of normal convolutional layers, and we can also

see that the residual block of ResNet Var uses a max pooling layer, which can not

be seen in the residual block of ResNet34. The skip connection in ResNet34 simply

skips a series of convolutional layers, whereas the skip connection in ResNet Var uses

a convolutional of 1×1 kernel. The convolutional layer is added in the skip connection

so that no information is ignored during the training process.

After iterating through the residual block three times with filter sizes 64, 128,

and 256 in each iteration, we can see, in figure 13, that the model uses a separable

convolutional layer of filter size of 512 and kernel, k=3 with ReLU activation function.

The model also uses global average pooling layers, which reduce the spatial dimensions

of the input data to a single value. This is useful for image classification tasks, as it

allows the model to focus on the global features of the input data.

Finally, the model uses a dropout layer, which randomly sets some of the weights

to zero during training. This helps to reduce overfitting by preventing the model from

relying too heavily on any one neuron. The final output layer is a dense layer with
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(a) ResNet34 (b) ResNet Var

Fig. 14: Structure of residual block used in ResNet34 (a) and ResNet Var (b)

a number of units equal to the number of classes and uses the softmax activation

function.

The model proposed in this study, ResNet Var, uses separable convolution layers

instead of regular convolution layers. Separable convolution layers (more details on

components of the model will be discussed in the next section, Section 3.3) consist

of a depthwise convolution layer followed by a pointwise convolution layer. This

reduces the number of parameters in the model, which can make it easier and faster

to train. Additionally, separable convolution layers can learn more diverse feature

representations and can improve the generalization of the model. ResNet Var has a

more diverse block structure than ResNet34 [36], a variant of the ResNet. ResNet34

uses identical blocks throughout the network, while ResNet Var uses blocks of varying
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filter sizes (64, 128, 256). This allows ResNet Var to capture features at multiple

scales, which can improve the accuracy of the model. ResNet Var has a smaller

number of layers than ResNet34. ResNet34 has 34 layers, while ResNet Var has

fewer layers. This can make ResNet Var faster to train and can reduce the risk of

overfitting.

The ResNet Var model proposed in this study has several advantages over the

models discussed in the papers mentioned in the literature review section. First, it

uses a ResNet architecture that has been shown to perform well in various computer

vision tasks. Second, it uses separable convolutions to reduce the number of param-

eters, which helps to prevent overfitting and reduce computational costs. Third, it

uses global average pooling, which reduces the number of parameters and helps to

prevent overfitting. Finally, the ResNet Var model is relatively simple and easy to

implement, making it suitable for a wide range of galaxy morphology classification

tasks.

The next part gives explanation regarding all the components used in ResNet Var,

such as convolution layer, separable convolution layer, ReLU activation, dense layer

and dropout layer.

3.3 Components of ResNet Var

3.3.1 Convolution Layer

The Convolution Layer is a crucial component in Neural Network models, which are

widely used for image classification and other computer vision tasks. The Convolu-

tion Layer is responsible for learning local features or patterns in an image and then

transforming the input image into a feature map, which is used as input to subse-

quent layers in the network. The main operation performed in a Convolution Layer

is convolution, which involves applying a set of filters (also known as kernels) to the

input image. Figure 15 shows that each filter is a small matrix that slides over the

image and performs element-wise multiplications between the values in the filter and

38



3. METHODOLOGY

the values in the corresponding portion of the input image. The results of these mul-

tiplications are then summed up and passed through a non-linear activation function

(such as ReLU) to produce a new set of values for each position in the feature map.

Fig. 15: Convolutional layer in action (Source: Reynolds et al. (2019) [67])

In a Convolution Layer, multiple filters are used, and each filter is responsible

for detecting different patterns or features in the image. For example, one filter may

detect edges, while another filter may detect textures, and so on. This allows the

Convolution Layer to learn a rich set of features from the input image, which can

then be used by subsequent layers in the network to make accurate predictions.

Another important aspect of Convolution Layers is the use of strides and padding.

Strides control the step size of the filter as it slides over the image, and padding

controls the size of the feature map by adding extra pixels to the edges of the input

image. Strides and padding are two techniques used in Convolutional Neural Networks

(CNNs) to control the size of the feature map while preserving important information

from the input image.

Overall, the Convolution Layer is a powerful and flexible component of CNN

models that is essential for learning and extracting meaningful features from the input

image. By combining multiple Convolution Layers with other types of layers (such

as Pooling Layers and Fully Connected Layers), CNN models can achieve remarkable

results in image classification and other computer vision tasks.
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3.3.2 Separable Convolution Layer

Separable convolution was introduced by Google researchers [39] to reduce the com-

putational cost of performing convolutions in deep neural networks. A separable

convolution layer in a neural network model is a type of convolution layer that per-

forms convolution operations in a more efficient manner [91]. A regular convolution

layer performs the convolution operation by applying a filter to each region of the

input image, resulting in a large number of parameters that need to be learned. Sepa-

rable convolutions, on the other hand, perform convolution operations in two separate

stages. The first stage involves applying a depthwise convolution, which applies a sep-

arate filter to each channel of the input image. The second stage involves applying a

pointwise convolution, which combines the outputs of the depthwise convolution into

a single feature map (figure 16).

Fig. 16: Depthwise convolution, uses 3 kernels to transform a 12 × 12 × 3 image to
an 8 × 8 × 3 image (top), Pointwise convolution, transforms an image of 3 channels
to an image of 1 channel (bottom) (Source: Wang et al. (2018) [91])

This separation of the convolution operation into two stages results in a significant

reduction in the number of parameters that need to be learned, making separable
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convolutions more computationally efficient than regular convolutions. Additionally,

separable convolutions have been shown to produce good results in a variety of image

classification tasks, making them a popular choice for many neural network models.

In summary, a separable convolution layer in a neural network model performs the

convolution operation in a more efficient manner by separating the operation into

two stages: a depthwise convolution and a pointwise convolution. This separation

results in a reduction in the number of parameters that need to be learned, making

separable convolutions more computationally efficient and a popular choice for many

neural network models [91].

3.3.3 Rectifier Linear Unit (ReLU) Activation

The Rectified Linear Unit (ReLU) activation layer is a commonly used activation

function in neural network models. It is a non-linear activation function that is used

to introduce non-linearity into the model, allowing the network to learn more complex

representations of the data. The ReLU activation layer is defined as follows: if the

input to the activation layer is positive, the output is equal to the input, and if the

input is negative, the output is set to zero. This activation function can be written

mathematically as:

f(x) = max(0, x) (1)

The ReLU activation function is advantageous in several ways:

� Computationally efficient: The ReLU activation function is computationally

efficient as it involves only a simple comparison operation and requires no ex-

ponentiation or logarithmic calculations.

� Avoiding vanishing gradients: The ReLU activation function avoids the vanish-

ing gradient problem, where the gradients in the network become very small,

making it difficult for the network to learn.

� Sparse activations: The ReLU activation function results in sparse activations,
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where only a small portion of the neurons are activated at a given time, making

it easier for the network to learn relevant features.

Fig. 17: The Rectified Linear Unit (ReLU) activation function produces 0 as an
output when x < 0, and then produces a linear with slope of 1 when x > 0. (Source:
Agarap et al. (2018) [3])

The ReLU activation layer is typically added after each dense layer in a neural

network model, allowing the network to learn non-linear relationships between the

input and output. The ReLU activation function can also be combined with other

activation functions, such as the sigmoid or tanh functions, to achieve better perfor-

mance in some cases. In conclusion, the ReLU activation layer is a commonly used

activation function in neural network models that allows the network to learn non-

linear representations of the data. The ReLU activation function is computationally

efficient, avoids the vanishing gradient problem, and results in sparse activations,

making it a popular choice for many neural network models.

3.3.4 Dense Layer

A dense layer, also known as a fully connected layer, is a common layer type in a

neural network model. The dense layer is used to connect the inputs of the network

to the outputs through a series of neurons or nodes. Each neuron in a dense layer

receives input from all the neurons in the previous layer, and computes a weighted

sum of these inputs. The weighted sum is then passed through an activation function,
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such as the sigmoid, tanh, or ReLU activation function, to produce the output of the

neuron. The activation function adds non-linearity to the model, allowing it to learn

more complex representations of the data. The dense layer is parameterized by a

weight matrix and a bias vector, which are learned during the training process. The

weight matrix determines the strength of the connections between the neurons, and

the bias vector shifts the activation function to the left or right. The weights and

biases are updated during the training process to minimize the difference between the

predicted outputs and the true outputs.

Fig. 18: Fully connected Neural Network (Source: Canu et al. (2022) [19])

In a neural network model, dense layers are typically used to increase the model’s

capacity and representational power. The number of neurons in a dense layer deter-

mines the model’s capacity, and the number of dense layers determines the model’s

representational power. In conclusion, the dense layer is a common layer type in a

neural network model that connects the inputs of the network to the outputs through

a series of neurons. Each neuron in a dense layer computes a weighted sum of the

inputs, which is then passed through an activation function to produce the output.

The dense layer is parameterized by a weight matrix and a bias vector, which are

learned during the training process to minimize the difference between the predicted

outputs and the true outputs.
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3.3.5 Dropout Layer

The Dropout layer is a regularization technique used in neural network models to

prevent overfitting. Overfitting occurs when a model fits the training data too closely,

resulting in poor generalization to new data. Dropout is a simple yet effective way to

prevent overfitting by randomly dropping out neurons during the training process. In

the Dropout layer, a certain percentage of neurons are randomly dropped out during

each iteration of the training process. This means that during each iteration, some

neurons are temporarily disabled, preventing the network from relying too heavily

on any one neuron. The result is a network that is less sensitive to the input data

and is less likely to overfit the training data. The Dropout layer is typically added

between the dense layers in a neural network model. The percentage of neurons that

are dropped out during each iteration is a hyperparameter that must be set prior to

training the network. A common choice for this parameter is to set it between 0.2

and 0.5, meaning that between 20% and 50% of the neurons are dropped out during

each iteration. The Dropout layer is only used during the training process, as during

inference, all neurons are used, and no neurons are dropped out. This ensures that

the network is using all of the learned information during the testing process. In

conclusion, the Dropout layer is a regularization technique used in neural network

models to prevent overfitting. The Dropout layer randomly drops out neurons during

the training process, preventing the network from relying too heavily on any one

neuron. The percentage of neurons that are dropped out during each iteration is a

hyperparameter that must be set prior to training the network, and the Dropout layer

is only used during the training process.

3.3.6 Hyperparameters

Hyperparameters are the variables that determine the structure of a classification

model, such as the number of hidden units, and the variables that control how the

network is trained, such as the learning rate. These hyperparameters must be set

before the model is trained. Some common hyperparameters that are tuned during
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the training process of Neural Network are:

� Kernel/Filter: A kernel, also known as a filter, is a matrix used to carry out

the convolution operation in the Convolution layer. In this case, a 3x3 kernel is

used for training the model. Smaller filters will gather more local information,

while larger filters will gather more global and representative information.

� Stride: The stride is the number of pixels to skip while traversing the input

horizontally and vertically during convolution. This helps to reduce the size of

the input image by a considerable amount after the convolution operation.

� Number of Channels: This is equal to the number of color channels for the input

image. Later, it becomes equal to the number of filters used for the convolution

operation. The more channels, the more filters used, the more features learned,

and the higher the risk of overfitting.

� Pooling-layer Parameters: The Pooling layer has similar parameters to the Con-

volutional layer. Just like the kernel, it convolves through the feature map gen-

erated after the convolution operation. In this model, a 2x2 size max pooling

operation is used to reduce the dimensionality of the image.

3.3.7 Trainable Parameters

Trainable parameters in neural network models are the weights and biases of the

model that are learned during training. They are used to make predictions based

on the input data and are updated during training to minimize the error between

the predicted and actual outputs. When there are a large number of parameters in a

neural network model, it means that the model has a high capacity or the ability to fit

a wide range of functions. This can be beneficial for complex problems, as it allows the

model to capture more information from the input data. However, when the number

of parameters is too large, the model may become overfitting, which means that it

memorizes the training data and perform poorly on unseen data. When there are

a small number of parameters in a neural network model, it means that the model

45



3. METHODOLOGY

has a low capacity or the ability to fit a limited range of functions. This can be

beneficial for simple problems, as it reduces the risk of overfitting. However, when

the number of parameters is too small, the model may become underfitting, which

means that it is not able to capture enough information from the input data, and

perform poorly in general. In general, it’s important to find a balance between the

number of parameters and the complexity of the problem. A model with a large

number of parameters may be overfitting, but one with a small number of parameters

may be underfitting. Techniques like regularization and early stopping can be used

to help find the optimal number of parameters for a given problem.

3.4 Other Applications of ResNet Var

ResNet Var is a modified version of the original ResNet architecture and can be used

for image classification tasks other than classifying galaxy morphologies. Here are

some of the applications of ResNet Var model:

� Image Classification: ResNet Var can be trained on a labeled dataset of

images to classify them into different categories or classes. The final dense layer

with softmax activation makes it suitable for multi-class classification tasks.

� Object Recognition: By training ResNet Var on a dataset with labeled im-

ages of various objects, it can be used to recognize and classify objects within

images.

� Fine-tuning Pretrained Models: ResNet Var can be used as a base archi-

tecture for transfer learning. By loading pre-trained weights from a ResNet

model trained on a large dataset like ImageNet, we can fine-tune the model on

a smaller dataset specific to our task. This approach is useful when we have

limited training data.

� Feature Extraction: ResNet Var can also be used as a feature extractor. By

removing the final dense layer and keeping the rest of the network intact, we
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can extract meaningful feature representations from images. These features can

be used for tasks like clustering, similarity matching, or downstream tasks in a

larger pipeline.

It’s important to note that the specific use case and performance of the model will

depend on the dataset it is trained on and the specific problem at hand. Additionally,

the model can be further customized and modified to suit specific requirements.
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Experiments and Results

This research evaluated ResNet Var in addition to four popular Convolutional Neural

Network (CNN) models - VGG16, VGG19, ResNet50, and Inception - on Dataset D1

and Dataset D2 (additional details on the datasets will be covered in section 4.1),

which consist of five and seven distinct classes, respectively. The proposed model,

ResNet Var, was trained and compared with the popular CNN models mentioned

above using commonly used metrics in computer vision and machine learning, in-

cluding Precision, Recall, F1-score, and Accuracy. Additionally, this study compared

ResNet Var’s performance on Dataset D1 with the models proposed by Gupta et al.

(2022) [34] and Zhang et al. (2022) [102], as they also used Dataset D1. Similarly, the

performance of ResNet Var on Dataset D2 was compared with the model proposed

by Kalvankar et al. (2020) [48], as they used Dataset D2.

The models were trained and tested on a system with an AMD Ryzen 7 3700X

8-Core Processor clocked at 3.60 GHz. The system has 32 GB RAM, 64-bit OS,

and an x64 processor architecture for demanding computational tasks. Additionally,

an NVIDIA GeForce RTX 3070 GPU with 8192 MB display memory enhances the

system’s performance for graphical computations. Overall, these system specifica-

tions provide good performance, efficiency, and scalability for training and testing

the models to their potential.
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4.1 Datasets

Gathering and organizing the data is an essential part of training a neural network

model. The raw data is collected from a competition launched on Kaggle in Decem-

ber 2013 [47]. It is a dataset, called Galaxy Zoo dataset, on Kaggle that provides

information on various galaxies in the universe. The dataset contains information

on the morphological properties of over 79,000 galaxies from the Sloan Digital Sky

Survey (SDSS) and is sourced from the Galaxy Zoo project. The Galaxy Zoo project

is a citizen science project that involves the public in classifying the shapes of galaxies

from digital images.

The dataset includes a wide range of information, including:

� Galaxy ID: A unique identifier for each galaxy in the dataset.

� RA (Right Ascension): The position of the galaxy in the sky in terms of

its right ascension. Right ascension is a coordinate used in astronomy to indi-

cate the east-west position of a celestial object in the sky, measured in hours,

minutes, and seconds.

� Dec (Declination): The position of the galaxy in the sky in terms of its

declination. Declination is a celestial coordinate that indicates the position of

an object in the sky relative to the celestial equator. It is measured in degrees

and is the angular distance of an object above or below the celestial equator.

� Plate: The plate number of the galaxy, which refers to the image used to

classify the galaxy.

� FiberID: The fiber identifier of the galaxy, which is a unique identifier for each

spectrum in the SDSS.

� z: The redshift of the galaxy, which is a measure of how far away the galaxy is

from us.
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� T01 smooth or features a01 smooth: A classification of the galaxy’s ap-

pearance, where 1 indicates a smooth appearance, and 0 indicates a feature-rich

appearance.

� T01 smooth or features a02 features or disk: A classification of the galaxy’s

appearance, where 1 indicates a feature-rich or disk-like appearance, and 0 in-

dicates a smooth appearance.

� T02 edgeon: A classification of the galaxy’s edge, where 1 indicates an edge-on

orientation, and 0 indicates a face-on orientation.

� T03 bar a06 bar: A classification of the galaxy’s bar, where 1 indicates the

presence of a bar, and 0 indicates the absence of a bar.

� T04 spiral a08 spiral: A classification of the galaxy’s spiral pattern, where 1

indicates the presence of a spiral pattern, and 0 indicates the absence of a spiral

pattern.

� T05 bulge prominence a10 no bulge prominence: A classification of the

galaxy’s bulge prominence, where 1 indicates the absence of a bulge prominence,

and 0 indicates the presence of a bulge prominence.

This dataset provides a wealth of information for researchers studying galaxy mor-

phology, as well as for anyone interested in the classification of galaxies. It provides

a large sample of galaxies with detailed morphological classifications, making it a

valuable resource for astronomers and anyone interested in exploring the universe.

Gupta et al. (2022) [34] utilized a specific subset of the Galaxy Zoo dataset, which

was previously mentioned in this section. The dataset used by the researchers [34] is

composed of galaxy images that are categorized into five distinct groups, namely spi-

ral, edge-on, cigar-shaped, in-between, and completely round. The study conducted

by Kalvankar et al. 2020 [48] also utilized a subset of the same Galaxy Zoo dataset

previously mentioned. In this particular study [48], the galaxy images are catego-

rized into seven groups, namely irregular, unbarred spiral, barred spiral, lenticular
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(edge-on), cigar-shaped, in-between, and completely round. Both studies utilized the

Galaxy Zoo dataset as a starting point, but categorized the galaxy images in different

ways to suit their research goals.

In the present study, we utilize a dataset denoted as D1, which is identical to the

one used in recent research by Gupta et al. (2022) [34]. This dataset consists of a

large collection of astronomical images that have been categorized into five distinct

classes based on their visual features. The categories are as follows: completely round,

in-between, cigar-shaped, edge-on, and spiral. The distribution of the images in each

class is shown in Table 3, with 8434, 8069, 578, 3903, and 7806 images, respectively,

for each category.

It is worth noting that the classification of these images into their respective

categories was performed by expert astronomers, who employed their expertise and

experience to identify and categorize each object based on its visual appearance. The

use of a pre-existing dataset in this study allows for comparisons and benchmarking

against previous studies, providing a basis for further advancements in the field of

astronomical image classification.

Fig. 19: Galaxy image from each class in dataset D1, (from left to right) Cigar shaped,
Completely round, Edge-on, In-between, Spiral (Source: Kaggle Dataset [47])

The dataset known as D2 is the same as the dataset employed by Kalvankar et al.

in their 2020 publication [48]. This dataset is composed of galaxy images that have

been categorized into seven distinct groups, namely completely round, in-between,

cigar-shaped, lenticular, barred spiral, unbarred spiral, and irregular. The number

of images belonging to each category is displayed in Table 4. It is evident from the
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Class Sample Tasks Selection Nsample

0 Completely round T01 fsmooth >= 0.469 8434

T07 fcompletelyround >= 0.50

1 In-between T01 fsmooth >= 0.469 8069

T07 fin−between >= 0.50

2 Cigar-shaped T01 fsmooth >= 0.469 578

T07 fcigar−shaped >= 0.50

3 Edge-on T01 ffeature/disk >= 0.430 3903

T02 fedge−on,yes >= 0.602

4 Spiral T01 fsmooth >= 0.469 7806

T02 fedge−on,no >= 0.715

T04 fspiral,yes >= 0.619

Table 3: Clean samples selection in Galaxy Zoo 2. The clean galaxy images are
selected from Galaxy Zoo 2 data release (Willett et al. 2013 [99]), in which thresholds
determine well-sampled galaxies. (fclass is probability of the image being in a galaxy
class/category, N is the number of images in each class)

table that the number of images assigned to each category is not uniform, with the

completely round group having the highest number of images at 8107, followed by the

in-between category with 7782 images. The cigar-shaped group contains the fewest

images at 578, whereas the lenticular, barred spiral, unbarred spiral, and irregular

categories have 3780, 872, 3307, and 1560 images, respectively.

Fig. 20: Galaxy image from each class in dataset D2, (from left to right) Completely
round, In-between, Cigar shaped, Lenticular, Barred spiral, Unbarred spiral, Irregular
(Source: Kaggle Dataset [47])
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Class Sample Tasks Selection Nsample

0 Completely round T01 fsmooth >= 0.469 8107

T07 fcompletelyround >= 0.50

T06 fodd,no >= 0.50

1 In-between T01 fsmooth >= 0.469 7782

T07 fin−between >= 0.50

T06 fodd,no >= 0.50

2 Cigar-shaped T01 fsmooth >= 0.469 578

T07 fcigar−shaped >= 0.50

T06 fodd,no >= 0.50

3 Edge-on T01 ffeature/disk >= 0.430 3780

T02 fedge−on,yes >= 0.602

T06 fodd,no >= 0.50

4 Barred spiral T01 ffeature/disk >= 0.430 827

T02 fedge−on,no >= 0.715

T02 fbar,yes >= 0.715

T04 fspiral,yes >= 0.619

4 Unbarred spiral T01 ffeature/disk >= 0.430 3307

T02 fedge−on,no >= 0.715

T02 fbar,no >= 0.715

T04 fspiral,yes >= 0.619

6 Irregular T01 fodd,yes >= 0.420 1560

T04 fdisturbed/irregular/other/merger/dustlane >= 0.50

Table 4: Clean samples selection in Galaxy Zoo 2. The clean galaxy images are
selected from Galaxy Zoo 2 data release (Willett et al. 2013 [99]), in which thresholds
determine well-sampled galaxies.(fclass is probability of the image being in a galaxy
class/category, N is the number of images in each class)

After generating datasets from the GZ dataset, we need to split the data into 9:1

ratio for training and testing the model proposed in this study, 90% of the dataset

being used for training and 10% of the dataset being used for testing. This distribution

applies to both datasets, Dataset D1 and Dataset D2. The two tables (Table 5 and

Table 6)provide information about image datasets categorized based on galaxy class.

The first table (Table 5), Dataset D1, consists of 5 classes of galaxies, namely Cigar

shaped, Completely round, Edge-on, In-between, and Spiral. The second table (Table

6), Dataset D2, consists of 7 classes, namely Completely round, In-between, Cigar

shaped, Lenticular, Barred spiral, Unbarred Spiral, and Irregular.

For each class, the tables show the number of images in the training set and

testing set. The rows are color-coded with alternating shades of blue and light gray
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to make it easier to read and differentiate between different classes. The total number

of images in each dataset is provided at the bottom of each table.

Class No. Galaxy Class Training Images Testing Images

0 Completely round 7,025 781

1 In-between 7,262 807

2 Cigar shaped 520 58

3 Edge-on 3,513 390

4 Spiral 7,591 843

Total 25,911 2,879

Table 5: Image distribution of Dataset D1 for training and testing

In Dataset D1, the Spiral class has the highest number of images in both the

training and testing sets, with 7,591 and 843 images respectively. The Cigar shaped

class has the lowest number of images, with 520 in the training set and 58 in the

testing set.

Class No. Galaxy Class Training Images Testing Images

0 Completely round 7,297 810

1 In-between 7,004 778

2 Cigar shaped 521 57

3 Lenticular 3,402 378

4 Barred spiral 745 82

5 Unbarred Spiral 2,979 328

6 Irregular 1,404 156

Total 23,352 2,589

Table 6: Images distribution of Dataset D2 for training and testing

In Dataset D2, the Completely round class has the highest number of images in

both the training and testing sets, with 7,297 and 810 images, respectively. The Cigar
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shaped class has the lowest number of images, with 521 in the training set and 57 in

the testing set.

These tables provide useful information for researchers working on galaxy classifi-

cation using machine learning algorithms. They allow researchers to understand the

distribution of images across different classes and select appropriate datasets for their

work.

After splitting datasets D1 and D2 for training and testing, the next step was

training ResNet Var model and other well-known CNN models like VGG16, VGG19,

ResNet50, and Inception on both datasets. The evaluation of each model’s perfor-

mance was done by generating a confusion matrix after testing. From the confusion

matrix we can calculate accuracy, precision, recall, and f1-score, which helps us in

evaluating the performance of the model. Along with the results of popular CNN

models on both the datasets, dataset D1 and dataset D2, we compared the results

of ResNet Var, when trained on dataset D1, with the results obtained from some of

the previous works such as Gupta et al. (2022) [34], Zhang et al. (2022) [102], and

Zhu et al. (2019) [103] (summarized in the Literature Review chapter), as they all

use dataset D1. And, we have compared the finding of Kalvankar et al. (2020) [48]

with the results of ResNet Var, when the model is trained using Dataset D2, as they

[48] used dataset D2 in their study.

4.2 Confusion Matrix

A confusion matrix can be used to measure the effectiveness of a classification model

or a classifier. It is used to calculate performance measurements for machine learning

classification tasks. Building a confusion matrix is very easy. A confusion matrix can

be built by using correctly predicted values and incorrectly predicted values by a clas-

sification model, placed inside a matrix as shown in Figure 21. To build a confusion

matrix, first, we need to calculate True Positive, False Positive, True Negative, and

False Negative values, which are explained below.
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Fig. 21: confusion Matrix

In binary classification, the prediction outcome can be classified into four cat-

egories: True Positive (TP), False Positive (FP), True Negative (TN), and False

Negative (FN).

True Positive (TP): When the actual value is positive (1) and the predicted

value is also positive (1), it is a true positive. For example, in a medical diagnosis,

if a person is actually positive for a disease, and the test predicts that the person is

also positive, then it is a true positive.

False Positive (FP): When the actual value is negative (0) and the predicted

value is positive (1), it is a false positive. For example, in a medical diagnosis, if

a person is actually negative for a disease, but the test predicts that the person is

positive, then it is a false positive.

True Negative (TN): When the actual value is negative (0) and the predicted

value is also negative (0), it is a true negative. For example, in a medical diagnosis,

if a person is actually negative for a disease, and the test predicts that the person is

also negative, then it is a true negative.

False Negative (FN): When the actual value is positive (1) and the predicted

value is negative (0), it is a false negative. For example, in a medical diagnosis, if

a person is actually positive for a disease, but the test predicts that the person is

negative, then it is a false negative.

After obtaining the values of TP, FP, FP and FN through experiment, we can

calculate performance measures such as Accuracy, Error Rate, False Positive Rate,
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False Negative Rate, True Positive Rate, True Negative Rate, Precision, Recall and

F-Score using following formulas.

Where: tp = TP, tn = TN, fp = FP, fn = FN

4.2.1 Accuracy:

Accuracy is a measure of the overall correctness of a model’s predictions. In med-

ical diagnosis, accuracy represents the proportion of all predictions that the model

correctly classified.

For example, let’s say we have a model that is used to diagnose a disease. In a

dataset of 1000 patients, the model makes a prediction for each patient, either positive

for the disease or negative for the disease. Of these 1000 patients, let’s say that 800

do not have the disease and 200 do have the disease. Out of these 800 patients who

do not have the disease, the model correctly predicts 750 patients as negative (TN)

and incorrectly predicts 50 patients as positive (FP). Out of the 200 patients who

do have the disease, the model correctly predicts 150 patients as positive (TP) and

incorrectly predicts 50 patients as negative (FN).

In this example, the total number of correct predictions made by the model is 900

(750 true negatives and 150 true positives). The accuracy of the model is therefore

90% (900/1000).

Accuracy can be a useful measure for evaluating models (1), but it can be mis-

leading in certain cases. For example, if a dataset is imbalanced, meaning that one

class is much more common than the other, a model that simply predicts the more

common class every time will have a high accuracy but will not be useful in practice.

Accuracy =
tp + tn
Total

(1)

4.2.2 Error Rate:

Error rate, also known as misclassification rate, is the proportion of all predictions

that a model incorrectly classified. In medical diagnosis, error rate represents the
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proportion of patients that were incorrectly diagnosed by the model.

Using the same example as before, the error rate is the sum of false positives (FP)

and false negatives (FN) divided by the total number of predictions made by the

model:

Error Rate =
fp + fn
Total

(2)

In this example, the error rate of the model is 10% (100/1000), which means that

100 patients were misclassified by the model. These misclassifications can have seri-

ous consequences in medical diagnosis, such as false positives leading to unnecessary

treatments or false negatives leading to missed opportunities for early detection and

treatment.

Therefore, while accuracy is a useful measure for evaluating models, it is important

to also consider other measures such as error rate and the specific costs and benefits

of different types of errors in the context of the application.

4.2.3 Recall:

Recall is a measure of the model’s ability to correctly identify all positive instances,

or true positives, out of all actual positive instances in the dataset. It is calculated

as the ratio of true positives to the sum of true positives and false negatives.

Continuing with the medical diagnosis example, recall represents the proportion

of patients with the disease that were correctly identified by the model. In this case,

the recall can be calculated as follows:

Recall =
tp

tp + fn
(3)

This means that out of all the patients with the disease, the model correctly identified

75% of them as having the disease (true positives), while the remaining 25% were

incorrectly identified as not having the disease (false negatives).

Recall is an important metric in situations where the cost of a false negative is high,

such as in medical diagnosis where a missed diagnosis can have serious consequences.
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A high recall indicates that the model is able to detect most of the positive instances,

which is important for ensuring that all patients who have the disease are identified

and treated.

However, a high recall can sometimes come at the cost of a high false positive rate,

which can result in unnecessary treatments or procedures. Therefore, it is important

to consider both recall and precision when evaluating a model’s performance.

4.2.4 Precision:

Precision is a metric that measures the proportion of positive predictions that are

actually correct. In the medical diagnosis example, precision would represent the

proportion of patients who were predicted to have the disease and actually have the

disease. Precision is calculated as:

precision =
tp

tp + fp
(4)

where TP is the number of true positives and FP is the number of false positives.

Using the same example as before, let’s say the model predicted that 200 patients

have the disease, but only 150 of those patients actually have the disease. The

remaining 50 patients were falsely predicted to have the disease. The precision of the

model is therefore 0.75 or 75% (150 / (150 + 50)).

Precision is an important metric in situations where false positives are costly or

where the positive class is rare. For example, in the medical diagnosis example, a

false positive could lead to unnecessary treatment and additional testing, which can

be costly and time-consuming. In such cases, a high precision model that minimizes

the number of false positives is desirable.

4.2.5 F-Score:

The F-score, also known as the F1-score, is a measure of a model’s accuracy that

takes into account both precision and recall. It is the harmonic mean of precision and

recall, and is calculated using the following formula:
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F1-Score =
precision ∗ recall
precision+ recall

(5)

Using the same example of medical diagnosis, let’s assume that we have a model

that is used to diagnose a disease, and it correctly predicts 150 patients as positive

(TP), but also incorrectly predicts 50 patients as positive (FP) out of 200 true positive

cases. The model also correctly identifies 150 negative cases (TN), but misses 50

positive cases (FN) out of 200.

Therefore, the F1-score for this model is 0.75, which indicates that it has a balance

between precision and recall. F1-score is useful in situations where both precision and

recall are important, such as medical diagnosis, where both false positives and false

negatives can have serious consequences.

4.3 Experimentation and Results

In the “Experiments” section of our study, we will utilize performance measures

derived from the corresponding confusion matrices to conduct an in-depth analysis

of the experimental results. Specifically, we will begin by examining the experiments

conducted to train our Residual Neural Network model, ResNet Var. Following this,

we will compare the results of our model with those obtained from other well-known

CNN models, such as VGG16, VGG19, ResNet50, and Inception. Additionally, we

will also consider the results obtained from prior studies, namely those conducted by

Gupta et al. (2022) [34], Zhang et al. (2022) [102], and Zhu et al. (2019) [103] which

employed the Dataset D1, and Kalvankar et al. (2020) [48], which employed the

Dataset D2 to train their baseline classification models. Through this comprehensive

analysis, we aim to provide a comprehensive and detailed assessment of our model’s

performance relative to existing state-of-the-art approaches. It is important to note

that while we draw upon the work of other researchers, we take care to ensure that

all sources are properly cited and that our analysis is grounded in original insights

and observations.
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4.3.1 Trainable Parameters

Before moving to the training and testing part, let us have a brief discussion on

how the number of trainable parameters play a role in the performance of a CNN

model. In this section, we will go through a few studies which are conducted to

evaluate the impact of the number of trainable parameters on the performance of

convolutional neural networks (CNNs). One study that examined the impact of the

number of parameters on the performance of deep learning models is “Understanding

the Difficulty of Training Deep Feedforward Neural Networks” by Xavier Glorot and

Yoshua Bengio [30]. The study found that models with more parameters are more

prone to overfitting and have difficulty generalizing to new data. The authors suggest

that using fewer parameters can improve the performance of deep learning models.

Another study that supports this argument is “Do Deep Convolutional Nets Re-

ally Need to be Deep and Convolutional?” by Wenling Shang, Kihyuk Sohn, and

Honglak Lee [73]. The study evaluated the performance of various CNN architec-

tures with different numbers of parameters on the CIFAR-10 and CIFAR-100 datasets

[50]. CIFAR-10 is a dataset of 60,000 32× 32 color images in 10 classes used for ob-

ject recognition and computer vision research. The results showed that increasing the

number of parameters beyond a certain point did not lead to significant improvements

in performance and in some cases, led to worse performance due to overfitting.

Additionally, a more recent study titled “EfficientNet: Rethinking Model Scaling

for Convolutional Neural Networks” by Mingxing Tan and Quoc V. Le [84], pro-

posed a new method for scaling CNN models to achieve better performance with

fewer parameters. They found that using a compound scaling method that balances

the number of parameters, depth, and width of a CNN model can achieve state-of-

the-art performance on image classification tasks with significantly fewer parameters

compared to previous models.
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Models Trainable Parameters

VGG16 14,717,253

VGG19 20,026,949

ResNet50 23,529,605

Inception 21,778,597

EfficientNetB5 [48] 28,351,029

ResNet Var 320,679

Table 7: Trainable parameter of various CNN models as well as ResNet Var

The table 7 shows the number of trainable parameters for various popular mod-

els used for image classification. It can be observed that ResNet Var, the model

proposed in this study, has significantly fewer trainable parameters than the other

models. Having fewer parameters is generally better to avoid overfitting, as the model

becomes less complex and less prone to memorizing the training data. Please note

that EfficientNetB5 is the model used by Kalvankar et al. (2020) [48], with over

28 million trainable parameters, which is computationally expensive and it can lead

to overfitting. The computational power required to train and run a CNN model is

directly related to the number of trainable parameters in the model [31]. The more

parameters a model has, the more computations it needs to perform during training

and inference. So, in comparison to other CNN models, ResNet Var requires much

less computational power, and it can avoid overfitting.

4.3.2 Results of ResNet Var Compared to Popular CNNMod-

els Using Dataset D1

To begin with, we imported several well-known Neural Network models, including

VGG16, VGG19, ResNet50, and Inception, from the Keras library [54]. The Keras

library is a popular open-source deep learning framework that provides access to pre-

trained models and other tools for training neural networks. These models have been
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Fig. 22: Training accuracy and loss, when using Dataset D1 and ResNet Var

shown to achieve state-of-the-art performance on various computer vision tasks, such

as image classification and object detection (Chollet, 2018) [21]. These models, as well

as ResNet Var, were trained on Dataset D1, and subsequently, graphs were plotted to

display the training accuracy and loss of each model. Additionally, confusion matrices

were generated to evaluate the performance of the models on Dataset D1.

The model proposed in this study, called ResNet Var, is trained on a specific

dataset called D1. First, the training accuracy and loss of the model were plotted to

obtain insights into the model’s learning process, as shown in Figure 22. Additionally,

confusion matrices were generated to further evaluate the performance of the model

on D1, as depicted in Figure 23. These confusion matrices enabled the computation

of key metrics such as accuracy, precision, recall, and F1 score, which are fundamental

in assessing the model’s performance.

The figure 24 shows plots generated while training CNNmodels, which are VGG16,

VGG19, ResNet50, and Inception trained using dataset D1. The blue line in figure

24 shows training accuracy and the orange line shows validation accuracy.

The figure 25 shows plots generated while training CNNmodels, which are VGG16,

VGG19, ResNet50, and Inception trained using dataset D1. The blue line in figure

25 shows training loss and the orange line shows validation loss.
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Fig. 23: Confusion matrix obtained using ResNet Var as a result from testing data
from Dataset D1

Images shown in figure 26 are the confusion matrices generated after testing CNN

models on dataset D1. CNN models are VGG16, VGG19, ResNet50, and Inception.

The figure 27 summarizes the performance of popular CNN models on Dataset D1.

The models compared include VGG16, VGG19, ResNet50, Inception, and ResNet Var.

The evaluation metrics used are accuracy, precision, recall, and F1 score. ResNet Var

is a proposed model that outperforms all the other models, achieving an accuracy,

precision, recall, and F1 score of 0.95.

Figure 27 shows the breakdown of precision, recall, and f1-score for each galaxy-

class of dataset D1 for VGG16, VGG19, ResNet50, Inception, and ResNet Var. These

are the results generated after training and testing these models on dataset D1. The

table seen in each sub-figure of figure 27 is known as a classification report, which

is generated with the help of the Scikit-learn library. In the Scikit-learn library, the

weighted average is a way to compute the average of a metric across different classes

in a classification task, taking into account the relative proportion of each class in the

dataset. For example, when computing the accuracy of a model on a multi-class clas-

sification problem, we might have imbalanced classes where some classes have more
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(a) VGG16 (b) VGG19

(c) ResNet50 (d) Inception

Fig. 24: Training accuracy and validation accuracy plots of popular Neural Network
models
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(a) VGG16 (b) VGG19

(c) ResNet50 (d) Inception

Fig. 25: Training loss and validation loss plots of popular Neural Network models
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(a) VGG16 (b) VGG19

(c) ResNet50 (d) Inception

Fig. 26: Confusion Matrices of popular Neural Network models
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(a) VGG16 (b) VGG19

(c) ResNet50 (d) Inception

(e) ResNet Var

Fig. 27: Performance of CNN models on Dataset D1 for each class
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samples than others. In this case, a simple average of the accuracy across all classes

would not be appropriate, as it would give equal importance to each class regardless of

its size. The weighted average takes into account the number of samples in each class

and computes a weighted average of the metric, where the weight of each class is pro-

portional to the number of samples in that class. Specifically, the weighted average of a

metric is calculated as weighted average = sum(weight i ∗metric i)/sum(weight i)

where metric i is the value of the metric for the i-th class, and weight i is the weight

assigned to the i-th class, which is equal to the number of samples in that class divided

by the total number of samples.

Models Training time

VGG16 1441 seconds

VGG19 1666 seconds

ResNet50 1154 seconds

Inception 1471 seconds

ResNet Var 889 seconds

Table 8: Training time of popular CNN models on dataset D1 for 10 epochs

The table 8 shows time taken by popular CNN models as well as time taken by

ResNet Var for training on dataset D1 for 10 epochs. From the table 8, we can

see that ResNet Var was able to complete 10 epochs on dataset D1 in 889 seconds,

whereas other models took over 1100 seconds to complete 10 epochs during the train-

ing process.

In summary, we utilized several popular Neural Network models from the Keras

library [54] to train on Dataset D1, evaluated their performance using confusion

matrices, and computed various performance metrics for each model. This analysis

can provide insights into which model is best suited for the given task and dataset.
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4.3.3 Results of ResNet Var Compared to Popular CNNMod-

els Using Dataset D2

Once we completed training and testing several Neural Network models on Dataset

D1, we proceeded to import Convolutional Neural Network (CNN) models, namely

VGG16, VGG19, ResNet50, and Inception, from the Keras library [54]. We then

trained each of these models as well as ResNet Var using Dataset D2, another dataset

we wished to evaluate the performance of the models on. Following the training pro-

cess, graphs were created to illustrate the training accuracy and loss for each model.

Figure 28 shows plots of training accuracy and training loss for the model ResNet Var.

Moreover, confusion matrices were generated to evaluate the performance of the mod-

els on Dataset D2, as shown in Figure 29.

Fig. 28: Training accuracy and loss obtained by ResNet Var, when using Dataset D2
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Fig. 29: Confusion matrix obtained using ResNet Var as a result from testing data
from Dataset D2

The figure 30 shows plots generated while training CNNmodels, which are VGG16,

VGG19, ResNet50, and Inception trained using dataset D2. The blue line in figure

30 shows training accuracy and the orange line shows validation accuracy.
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(a) VGG16 (b) VGG19

(c) ResNet50 (d) Inception

Fig. 30: Training accuracy and validation accuracy plots of popular Neural Network
models

The figure 31 shows plots generated while training CNNmodels, which are VGG16,

VGG19, ResNet50, and Inception trained using dataset D2. The blue line in figure

31 shows training loss and the orange line shows validation loss.
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(a) VGG16 (b) VGG19

(c) ResNet50 (d) Inception

Fig. 31: Training loss and validation loss plots of popular Neural Network models

Images shown in figure 32 are the confusion matrices generated after testing CNN

models on dataset D2. CNN models are VGG16, VGG19, ResNet50, and Inception.
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(a) VGG16 (b) VGG19

(c) ResNet50 (d) Inception

Fig. 32: Confusion matrices of popular Neural Network models

Using the generated confusion matrices (fig. 32), we were able to calculate metrics

such as accuracy, precision, recall, and F1 score for each model when they were trained

and tested with Dataset D2. These metrics can provide insights into the strengths

and weaknesses of each model, and enable us to make informed decisions on which

model is best suited for a given task and dataset.

Figure 33 presents the performance of popular Convolutional Neural Network

(CNN) models on Dataset D2 in terms of accuracy, precision, recall, and F1 score.
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(a) VGG16 (b) VGG19

(c) ResNet50 (d) Inception

(e) ResNet Var

Fig. 33: Performance of CNN models on Dataset D2 for each class

The models included in the table are VGG16, VGG19, ResNet50, Inception, and

ResNet Var. Figure 33 shows the breakdown of precision, recall, and f1-score for each

galaxy-class of dataset D2 for VGG16, VGG19, ResNet50, Inception, and ResNet Var.

These are the results generated after training and testing these models on dataset D2.

In summary, we trained and tested several Neural Network models on Dataset

D2 and subsequently evaluated the performance of several well-known CNN models
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on Dataset D2. We used confusion matrices to compute various performance metrics

for each model, which can provide insights into the strengths and weaknesses of each

model.

4.3.4 Results of ResNet Var Compared to Previous Works

ResNet Var shows promising results when the model is compared against popular

CNN models, such as VGG16, VGG19, ResNet50, and Inception. After reviewing

the results of popular CNN models in the previous subsection, we will obtain the

results provided by a few publications which use either dataset D1 or dataset D2.

Table 9 shows the results achieved by a few prior studies which focused on galaxy

classification on dataset D1. Some of the publications did not mention the results

in all the matrices, such as precision, recall, and f1-score. Since all the publications

did include the accuracy they obtained during the classification task, we are using

accuracy as a metric of comparison.

Studies Model Dataset Results

Gupta et al. (2022) [34] NODE Dataset D1 91.62% accuracy

Zhang et al. (2022) [102] Few-shot Learning Dataset D1 90.90% accuracy

Zhu et al. (2019) [103] ResNet Dataset D1 93.12% accuracy

This Study ResNet Var Dataset D1 95.35% accuracy

Table 9: Results obtained by prior studies which employed dataset D1 as well as
results achieved by ResNet Var on dataset D1

Table 9 shows that the model proposed in this study, ResNet Var, outperforms the

models proposed in prior studies on dataset D2. Now, table 10 shows that ResNet Var

produced comparable results to the model proposed in a study by Kalvankar et al.

(2020) [48] on dataset D2. We need to keep in mind that these results are obtained

by ResNet Var, which has a significantly lower number of trainable parameters when

compared to other models (mentioned earlier in the section 4.3.1).
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Studies Model Dataset Results

Kalvankar et al. (2020) [48] EfficientNet Dataset D2 93.70% accuracy

This Study ResNet Var Dataset D2 93.54% accuracy

Table 10: Results obtained by prior studies which employed dataset D2 as well as
results achieved by ResNet Var on dataset D2

In conclusion, ResNet Var produced better results when compared against some

popular CNN models as well as a few prior studies which aimed for the task of galaxy

classification. It can be seen, in table 7 (in section 4.3.1), that even though ResNet Var

has significantly fewer parameters than the other models, its performance is better

than all other popular CNN models. This indicates that the ResNet Var model has

learned to represent the data efficiently despite having fewer parameters, making it a

more efficient and effective model for this task. Therefore, it can be concluded that

having fewer parameters is better to avoid overfitting, and the ResNet Var model is

an effective model that has learned to represent the data efficiently despite having

significantly fewer parameters than the other models.
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Conclusion and Future Work

The proposed model in this study outperformed existing models, including VGG16,

VGG19, ResNet, Inception, and EfficientNet, in classifying galaxies from datasets D1

and D2. The model achieved a test accuracy of 93.54% for seven different classes of

galaxy images in dataset D1 and 95.35% for five different classes of galaxy images in

dataset D2.

This study solves the problem of manually classifying galaxy images under the

explosive growth of astronomical data. The proposed model can accurately classify

galaxies into different classes and can significantly reduce the time and effort required

for manual classification.

In future work, the proposed model can be extended to classify a larger number

of galaxies from different datasets. It can also be used to classify galaxies based on

other parameters such as mass, size, and color. The model can also be improved by

incorporating other machine learning techniques, such as transfer learning or ensemble

learning. Further research can also focus on improving the interpretability of the

model to gain insights into the classification process.
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