
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2023

Extending the Work of DT-Fixup: Examining the Effects of Extending the Work of DT-Fixup: Examining the Effects of

PowerNorm and MADGRAD Optimization on DT-Fixup PowerNorm and MADGRAD Optimization on DT-Fixup

Performance Performance

Prem Shankar Mohan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mohan, Prem Shankar, "Extending the Work of DT-Fixup: Examining the Effects of PowerNorm and
MADGRAD Optimization on DT-Fixup Performance" (2023). Electronic Theses and Dissertations. 9099.
https://scholar.uwindsor.ca/etd/9099

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9099&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F9099&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9099?utm_source=scholar.uwindsor.ca%2Fetd%2F9099&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Extending the work of DT-Fixup:
Examining the Effects of PowerNorm and
MADGRAD Optimization on DT-Fixup

Performance

By

Prem Shanker Mohan

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2023

©2023 Prem Shanker Mohan

Extending the work of DT-Fixup: Examining the Effects of PowerNorm and

MADGRAD Optimization on DT-Fixup Performance

by

Prem Shanker Mohan

APPROVED BY:

M. Wang

Department of Mechanical, Automotive and Materials Engineering

A. Yacoub

School of Computer Science

J. Chen, Advisor

School of Computer Science

June 05, 2023

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

With the introduction of the attention technique, the Bidirectional Encoder Rep-

resentations from Transformers (BERT) have greatly advanced the study of solv-

ing sequence-to-sequence tasks in Natural Language Processing (NLP). When the

task-specific annotations are limited, the NLP tasks are commonly performed by

pre-training a model using the transformer technique on large-scale general corpora,

followed by fine-tuning the model on domain-specific data. Instead of using shallow

neural components for fine-tuning, additional transformer layers could be introduced

into the architecture. Recent research shows that, by resolving some initialization and

optimization issues, these augmented transformer layers could lead to performance

gains despite of the limited size of the available data, and this can be successful,

especially for well-structured data. Along this direction, we will perform comprehen-

sive experiments on the DT-Fixup algorithm which is designed to mitigate mentioned

issues. For possible performance improvement on DT-Fixup, we propose to study the

applicability of the power normalization and Momentumized, Adaptive, Dual Av-

eraged Gradient Method for Stochastic Optimization (MADGRAD) in this setting.

This is motivated by the recent literature which shows that, stemming from batch

normalization widely adopted in the area of computer vision, power normalization

is shown to outperform the layer normalization usually found in the transformers.

In the family of AdaGrad adaptive gradient methods, MADGRAD is a new opti-

mization technique that performs exceptionally well on deep learning optimization

problems from a variety of fields, including classification and image-to-image tasks in

vision and recurrent and bidirectionally-masked models in natural language process-

ing. Even on issues where adaptive methods typically perform badly, MADGRAD

matches or beats both SGD and ADAM in test set performance for each of these

tasks. This research will be performed on ReClor, and LogiQA datasets selected

according to its structure.

IV

DEDICATION

I would like to dedicate this thesis to my family for her incredible love and support.

Because I believe that she is the real backbone of our family, this is to appreciate her

selfless hard work and efforts towards the family.

Furthermore, I dedicate it to my dad to raise me like a son and give me wings to

fly. To my grandfather, for always trusting me and supporting me in my hard times,

without his encouragement, nothing would have been easy. And to my entire family

for their unconditional affection toward me.

V

ACKNOWLEDGEMENTS

I would like to sincerely express my most profound gratitude towards my supervi-

sor Dr.Jessica Chen, whose input helped me immensely. With her input, I was able

to look at my research with a different perspective and a more critical eye.

Secondly, I would like to express my gratitude to my thesis committee members

for their beneficial advice and suggestions for my thesis.

I humbly extend my thanks to the School of Computer Science and all concerned

people who helped me in this regard.

VI

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

DEDICATION V

ACKNOWLEDGEMENTS VI

LIST OF FIGURES IX

LIST OF ABBREVIATIONS XI

1 Introduction 1

2 Background 5
2.1 Transformers . 5

2.1.0.1 Understanding Encoders 6
2.1.0.2 The Residuals . 7

2.2 Logical Reasoning . 8
2.2.1 Logic Identification . 9
2.2.2 Informal Logic . 10
2.2.3 Formal Logic . 11
2.2.4 Examples of Logical Structures 12

2.3 Normalization . 15
2.4 Batch Normalization . 19
2.5 LayerNorm . 21
2.6 Power Normalization . 22
2.7 Optimization . 24

2.7.1 Loss Curve . 24
2.7.2 Challenges with Gradient Descent Optimization 26

2.8 MADGRAD Optimization . 34
2.9 BERT and RoBERTa . 36

3 Related Works 40
3.1 Adam optimization . 40
3.2 DT-Fixup . 42

4 Problem Statement and Methodology 45
4.1 Problem Statement . 45
4.2 Methodology . 49

VII

5 Experiments and Results 50
5.1 Setup . 50

5.1.1 Datasets . 50
5.1.2 ReClor: A Reading Comprehension Dataset Requiring Logical

Reasoning . 50
5.1.3 LogiQA . 52
5.1.4 Evaluation Strategy and Metrics 53

5.2 Results . 54
5.2.1 Baseline Experiments . 54

5.2.1.1 ReClor Baseline Experiment 55
5.2.1.2 LogiQA Baseline Experiment 57
5.2.1.3 ReClor with DT-Fixup Baseline Experiment 59
5.2.1.4 LogiQA with DT-Fixup Baseline Experiment 60

5.2.2 Normalization’s Impact on DT-Fixup Performance 62
5.2.2.1 ReClor with PowerNorm Baseline Experiment 62
5.2.2.2 LogiQA with PowerNorm Baseline Experiment . . . 64
5.2.2.3 ReClor with DT-Fixup and PowerNorm Baseline Ex-

periment . 65
5.2.2.4 LogiQA with DT-Fixup and PowerNorm Baseline Ex-

periment . 67
5.3 Optimization Algorithms and DT-Fixup Methodology 69

5.3.0.1 ReClor with MADGRAD Baseline Experiment . . . 69
5.3.0.2 LogiQA with MADGRAD Baseline Experiment . . . 71
5.3.0.3 ReClor with DT-Fixup and MADGRAD Baseline Ex-

periment . 73
5.3.0.4 LogiQA with DT-Fixup and MADGRAD Baseline Ex-

periment . 75

6 Conclusion and Future Work 78

REFERENCES 81

VITA AUCTORIS 88

VIII

LIST OF FIGURES

1.0.1 Question-answer pair from SQuAD dataset [36] 1

1.0.2 Question-answer pair from ReClor dataset [56] 3

2.1.1 Encoder and Decoder . 6

2.1.2 Encoder Architecture . 7

2.1.3 Graphical Representation of Vector Interactions and Layer Normal-

ization Process . 8

2.2.1 Example from ReClor to understand Logical Reasoning[56] 9

2.3.1 how normalization takes place . 16

2.3.2 What normalized data looks like . 17

2.3.3 Features on different scales take longer to reach the minimum 18

2.3.4 A narrow valley causes gradient descent to bounce from one slope to

the other . 18

2.3.5 Normalized data helps the network converge faster 19

2.4.1 Visual Representation of BatchNorm 21

2.5.1 Visual Representation of LayerNorm 22

2.6.1 Visual Representation of PowerNorm[42] 24

2.7.1 Loss curve for Gradient Descent . 25

2.7.2 Loss curve in CNN . 26

2.7.3 local minimum . 27

2.7.4 Saddle point . 28

2.7.5 Valley . 29

2.7.6 Batch Gradient Descent . 30

2.7.7 Batch Gradient Descent in a Valley 30

2.7.8 Moment . 31

2.7.9 Moment in a valley . 32

2.7.10 Adagrad in a valley . 33

2.9.1 BERT model . 37

IX

3.1.1 ADAM Optimizer . 41

3.2.1 Architecture of DT-Fixup . 43

3.2.2 Architecture of DT-Fixup (detailed) 44

5.1.1 Examples of some question types from ReClor. The correct options

are marked in red[56] . 51

5.1.2 These percentages and descriptions represent various types of logical

reasoning. [56] . 52

5.1.3 Examples of LogiQA’s logical reasoning types. Red ticks indicate the

correct answer [22] . 53

5.2.1 Accuracy curve for ReClor Baseline Experiment 57

5.2.2 Accuracy curve for LogiQA Baseline Experiment 58

5.2.3 Accuracy curve for Baseline Experiment for ReClor with DT-Fixup . 60

5.2.4 Accuracy curve for Baseline Experiment for LogiQA with DT-Fixup 61

5.2.5 Baseline Experiment for ReClor with PowerNorm 63

5.2.6 Baseline Experiment for LogiQA with PowerNorm 65

5.2.7 Baseline Experiment for ReClor with DT-Fixup and PowerNorm . . 67

5.2.8 Baseline Experiment for LogiQA with DT-Fixup and PowerNorm . . 69

5.3.1 Baseline Experiment for ReClor with MADGRAD 71

5.3.2 Baseline Experiment for LogiQA with MADGRAD 73

5.3.3 Baseline Experiment for ReClor with DT-Fixup and MADGRAD . . 75

5.3.4 Baseline Experiment for LogiQA with DT-Fixup and MADGRAD . 77

X

LIST OF ABBREVIATIONS

TP True Positive

FN False Negative

FP False Positive

TN True Negative

TPR True Positive Rate

FPR False Positive Rate

FNR False Negative Rate

TNR True Negative Rate

FRR False Rejection Rate

FNMR False Non Match Rate

FAR False Rejection Rate

FMR False Match Rate

EER Equal Error Rate

SVM Support Vector Machine

DT Decision Tree

KNN K Nearest Neighbors

NB Naive Bayes

LR Logistic Regression

RF Random Forest

MLP Multi Layer Perceptron

LGB Light Gradient Boosting Machines

XI

NN Neural Network

GA-KNN Genetic Algorithm -K Nearest Neighbors

IForest IsolationForest

XII

CHAPTER 1

Introduction

Reading comprehension (RC) is the capacity to read a piece of text and answer ques-

tions about it. This can be quite tough for machines as it demands an understanding

of language as well as worldly knowledge. Take, for example, the question ”What

causes precipitation to fall?” linked to a specific passage (referenced as Figure 1.0.1).

To find the answer, one could first identify the pertinent section of the passage, which

states ”Precipitation... falls under gravity.” Then, by understanding that ”under” is

indicating a cause rather than a location, the correct response can be concluded:

”gravity.” This task, when performed by machines, forms the basis of Machine Read-

ing Comprehension (MRC). [36]

Fig. 1.0.1: Question-answer pair from SQuAD dataset [36]

1

Machine Reading Comprehension (MRC) is a significant aspect of Natural Lan-

guage Processing (NLP) research. The objective of this task is to design models

that can interpret a provided piece of text and understand the responses to partic-

ular questions, which are related to the text’s context. In recent years, the field of

MRC has seen significant advancements, particularly due to the success of trans-

former(a machine learning model) [48]. Models like RoBERTa[24] that utilize pre-

trained transformers have demonstrated impressive performance, nearly saturating

most of the popular MRC datasets [36, 20, 35]. Transformers, introduced in the pa-

per ”Attention is All You Need” [48], are deep learning models with self-attention

mechanisms. They excel in Natural Language Processing tasks, including Machine

Reading Comprehension, by effectively grasping textual context. A prime example

is the RoBERTa model [24], which we’ll cover in Chapter 2 along with transformers

[48].

This progress led researchers to consider other complexities in the field of machine

reading comprehension. One such critical aspect is logical reasoning - the capacity to

inspect, analyze, and critically assess arguments as they appear in everyday language,

based on the definition provided by the Law School Admission Council[6]. Logical

reasoning is a major component of human intelligence and is vital in various tasks

such as negotiation, debating, and writing. However, current reading comprehension

datasets lack or have very little data that necessitate logical reasoning. For example,

the MCTest dataset [38] doesn’t require logical reasoning at all, and only 1.2% of

the SQuAD dataset [36] requires it, as noted by researchers Sugawara and Aizawa

[43]. In order to further evolve models’ capabilities in logical reasoning, from sim-

ple relationship classification to more complex reasoning, and from sentence-level to

passage-level, there’s a clear need for a reading comprehension dataset that empha-

sizes logical reasoning.

Let’s look at an example of logical reasoning questions from the ReClor dataset

[56], as shown in Figure 1.0.2. This format is similar to multiple-choice reading

comprehension datasets. It includes a context, a question, and four potential answers,

but only one is correct. To find the right answer, readers have to understand the

2

logical links between the lines to spot the conflict, and then assess each of the options

to select the one that resolves the conflict. Datasets like ReClor [56] and LogiQA [22]

have been developed to encourage advancements in logical reasoning within Machine

Reading Comprehension (MRC).

Fig. 1.0.2: Question-answer pair from ReClor dataset [56]

To tackle these logical reasoning challenges within MRC, several adaptations of

the transformer models to enhance its capacity for logical reasoning, with some of

the most notable ones being Focal Reasoner [28], MERIt [17], LReasoner[51], and

DT-Fixup[54]. Our study primarily extends the work on DT-Fixup. Unlike Focal

Reasoner, which introduces a new layer type in RoBERTa[24], or MERIt, which

forms meta paths among logical variables, DT-Fixup addresses the initial optimization

challenges that prevent a standard transformer layer from learning logical structures.

It’s one of the few approaches that directly confront the optimization problems in

the transformer layer that impede the training of logical structures. We explore more

about DT-Fixup in Chapter 3.

DT-Fixup [54] asserts that the primary optimization challenge stems from the

3

Adam optimizer and Layer Normalization, two concepts we’ll delve into in chapters 2

and 3. The solution proposed by DT-Fixup involves adding extra transformer layers

on top of pre-trained models to tackle the optimization issue. They achieve this by

eliminating Layer Normalization and adjusting the weight initialization[54].

We, however, suggest Power Normalization[42] as a replacement for Layer Normal-

ization since it maintains first-order smoothness, which aids in better model training.

We also propose the use of MADGRAD[7] instead of ADAM[19], as MADGRAD

has demonstrated good performance with sparse data points and has outperformed

ADAM in numerous leading-edge problems. We will be discussing more about this

in chapters 2 and 3.

The influences of Power Normalization [42] and MADGRAD [7] have not yet been

thoroughly investigated in the specialized domain of Natural Language Processing

(NLP), especially when it comes to training transformer models on smaller datasets.

This is the primary motivation for our thesis; we aim to comprehend how Power-

Norm and MADGRAD affect the DT-Fixup algorithm [54], as these insights could

potentially enhance the performance of existing transformers.

4

CHAPTER 2

Background

This chapter will be presented to explain some of the fundamental concepts that

have been used to understand the DT-Fixup methodology and how we conducted our

investigation on it.

2.1 Transformers

The Transformer model was developed to overcome some of the drawbacks of earlier

sequence-to-sequence models including recurrent neural networks (RNNs) [41] and

convolutional neural networks[21] (CNNs). It was first presented in the publication

”Attention Is All You Need” by Vaswani et al. in 2017. The self-attention mechanism,

which the Transformer model introduced, enabling it to attend to different parts of

the input sequence at different times without being constrained by the sequential

structure of RNNs or the fixed-size receptive fields of CNNs, was the model’s key

innovation. Self-attention was a concept that was not wholly new because it has been

utilized in the area of natural language processing (NLP) for activities like language

modelling and machine translation. However, prior models frequently merged RNNs

or CNNs with self-attention, which constrained their scalability and increased their

computational cost.

The Transformer model, on the other hand, was more effective and could handle

longer sequences since it only used self-attention as a mechanism for attending to

input sequences. The Transformer also made use of a multi-head attention mechanism

that allowed it to focus on many aspects of the input sequence at once, significantly

5

2.1. TRANSFORMERS

enhancing its performance. This is one of the reasons why transformers are better at

logic compared to RNNs or CNNs.

2.1.0.1 Understanding Encoders

We have an encoder and a decoder layer which make up the Sequence to Sequence

mode. Each component of the input sequence is processed by the encoder, which then

condenses the resulting data into a single vector known as the context vector.

Fig. 2.1.1: Encoder and Decoder

The input words are first encoded using positional encoding. To encode the posi-

tioning information of words in a phrase, positional encoding is a technique used in

the field of natural language processing (NLP). A sentence can be represented in NLP

as a series of vectors, each of which represents a word in the sentence. It is crucial

to convey information about each word’s place in the sentence since the sequence

of the words in a sentence matters. Positional encoding is useful in this situation.

By using positional encoding, each word’s matching vector representation can now

include information about the word’s location inside the phrase. This is accomplished

by supplementing the word’s initial embedding with a fixed-length vector known as

positional encoding.

A set of hidden representations are created by the encoder from a sequence of

input tokens (often words or subwords), which are then used by the decoder to create

the output sequence. The encoder’s job is to take the input sequence’s significant

information and express it in a way that is appropriate for subsequent operations.

The encoder is made up of a stack of identical layers, each of which has a feedforward

network and a self-attention mechanism as its two sublayers.

6

2.1. TRANSFORMERS

Before encoding a specific item, the encoder’s inputs undergo a self-attention

layer, enabling them to take into account other items within the input sequence.

Subsequently, the self-attention layer’s output is processed through a feed-forward

neural network, which is applied individually to each point in the input sequence.

As illustrated in Figure 2.1.2, the input vector (x1,x2,x3) is passed through the self-

attention layer, resulting in output vectors z1, z2, and z3. These resultant vectors

are then forwarded to the feed-forward network as previously mentioned.

Fig. 2.1.2: Encoder Architecture

2.1.0.2 The Residuals

The structure of a Transformer’s encoder includes repetitive units, each of which

contains two parts: a self-attention mechanism and a position-wise fully connected

feed-forward network. These parts are known as sub-layers. An important aspect of

this architecture is that each sub-layer is surrounded by a residual connection, which

directly combines the input and output of the sub-layer. This is designed to help

with the issue of disappearing gradients when training deep networks. Furthermore,

after every sub-layer, there is a step known as layer normalization which helps in

stabilizing the learning process and reducing training time.

7

2.2. LOGICAL REASONING

Fig. 2.1.3: Graphical Representation of Vector Interactions and Layer Normalization
Process

A residual connection, or a skip connection, helps in preventing the vanishing

gradient problem during training and allows the model to learn more complex func-

tions. It does this by adding the original input back to the output of the sub-layer.

The output of each sub-layer is LayerNorm(x + Sublayer(x)), where x is the input

to the sub-layer, and Sublayer(x) represents the function that the sub-layer itself

implements.

We will be modifying the ”Add & Normalize” layer for our work in this thesis.

2.2 Logical Reasoning

Logic theories delve into the symbolic reasoning processes used in everyday language.

They can be broadly divided into informal logic and formal logic. Informal logic

reveals the reasoning structure within context, whereas formal logic transforms the

8

2.2. LOGICAL REASONING

language into symbolic axiomatic systems to assess its validity. Both forms of logic

contribute to the development of models for logical reasoning question-answering.

In the domain of logical reasoning, the first critical step is to discern and under-

stand the elementary components that make up the reasoning process. We will be

exploring that in the below sub-sections.

Fig. 2.2.1: Example from ReClor to understand Logical Reasoning[56]

2.2.1 Logic Identification

When it comes to logical reasoning, the initial crucial step involves identifying and

comprehending the basic elements that constitute the reasoning process - these ele-

ments are what we call logical expressions. These logical expressions, comprised of

logical symbols and connectives, can be found in each sentence of the text and every

provided option. In the following section, we will delve into the methodology used to

identify these logical expressions, including the use of notations for logical symbols

and connectives, and the process of combining them. Furthermore, we will discuss

how to detect the presence of negation and conditional relationships within these

expressions, essential aspects in understanding and performing logical reasoning.

To perform logical reasoning, it’s necessary to first recognize the fundamental

9

2.2. LOGICAL REASONING

elements that facilitate reasoning - we call these logical expressions. We spot these

expressions in each context sentence and the corresponding options. To demonstrate

the structure of these expressions, we use specific notations:

1. {α, β, γ, . . .}: These are the logical symbols that make up the fundamental

elements in the context, helping to form the logical expressions. For instance,

’have keyboarding skills’ in Figure 2 is such a symbol.

2. {¬,→}: This is the set of logical connectors. ¬ signifies a negation operation

applied to a specific logical symbol, and → denotes a conditional relationship

between two logical symbols.

3. {(α → β), . . .}: These are the logical expressions made up of logical symbols

and connectors. (α → β) implies that α is a precondition for β.

If a negative word is associated with a logical symbol, denoted as α, we append

the negation connector ¬ in front of α to form a new logical symbol ¬α. We catego-

rize words like “not”, “n’t”, “unable”, “no”, “few”, “little”, “neither”, “none of” as

negative words. When there’s a conditional relationship between two logical symbols,

α and β, in a sentence, we can build the associated logical expression as (α → β).

The conditional relationship between the symbol α and β, denoted as (α → β), is

recognized based on conditional indicators like “if α, then β”, “α in order for β”, “β

due to α”, “¬β unless α”, and so forth. In instances where an active voice is present

between α and β, we also apply (α → β). As demonstrated in Figure 2.2.1, given

a context with two sentences, we can extract three logical symbols {α, β, γ} and

recognize two existing logical expressions: (¬α → ¬β) and (¬β → ¬γ).

2.2.2 Informal Logic

Logical Components in Arguments: Informal logic looks into the structural reasoning

processes within arguments. This structure is referred to as an argument.

For example, in the argument ”A and B; therefore C,” ”A,” ”B,” and ”C” are

propositions, with ”C” being a conclusion derived from the two premises ”A” and

10

2.2. LOGICAL REASONING

”B.” As a result, within this discrete structure, the conclusion and premise are two

key logical components, which are typically complete sentences or sub-sentences.

Inference Indicators: Informal logic aids in the process of identifying logical com-

ponents from text and reconstructing the argument’s structure. This is accomplished

by using regularly occurring indicators that signal the premise or conclusion. Typi-

cal premise indicators include words like ”since,” ”because,” ”for,” and ”given that,”

while conclusion indicators include ”therefore,” ”so,” and ”consequently,” among oth-

ers. Drawing from this, we rebuild logical structures for logical reasoning questions

and answers by employing these inference indicators as text delimiters. These de-

limiters split the text into multiple sentences or clauses, which ideally serve as the

fundamental units for reasoning. The indicators themselves represent the respective

logical relations between these units.

2.2.3 Formal Logic

Deviation of Logical Expressions: Variation in Logical Expressions. Formal logic

systems like First-Order Logic (FOL) allow the derivation of numerous valid formulas,

i.e., logical expressions, from a set of axioms and rules. The soundness of these

derivations ensures that if the axioms are true, then the derived expressions will also

hold true.

For instance, the rule of modus ponens in first-order propositional logic can be

represented as:

P → Q,P ⊢ Q.

This suggests that if α ∧ β → γ is an axiom and holds true, and if α ∧ β is also

true, then we can conclude that γ is also true.

Another example is provided by the rule of addition: P ⊢ P ∨ Q. If we assume

α → β to be an axiom and to be true, then the derived expression (α → β) ∨ γ will

also hold true.

From this, we can observe that in the derivation of logical expressions, the ex-

11

2.2. LOGICAL REASONING

pressions derived from each other are related only if they share common variables.

In the first example, this common variable is α ∧ β, while in the second example, it

is α → β. This observation has inspired us to create the variable edges during the

construction of the logic graph.

Validity of Expressions and Instantiation: If a logical expression is valid, multiple

instantiations based on it are also true as they follow the same valid reasoning pattern.

For instance, consider two applications of the modus ponens rule from the equation

above:

Example 1 is the classic syllogism: ’All men are mortal. Socrates is a man.

Therefore, Socrates is mortal.’ This is derived by substituting ’be men’ for P and ’be

mortal’ for Q.

Example 2 follows the same reasoning: ’All birds can fly. Eagles are birds. There-

fore, eagles can fly.’ Here, ’be bird’ is substituted for P , and ’can fly’ for Q.

Even though the topics of Examples 1 and 2 are different, we know both statements

are true because they share the valid reasoning framework of the modus ponens rule.

In addition, logical reasoning processes in texts often use natural language, with

logical variables embedded within the language. One clue to these logical variables

can be found in the topic-related terms that often recur in the text, such as ’men’

and ’mortal’ in Example 1, and ’birds’ and ’fly’ in Example 2.

2.2.4 Examples of Logical Structures

• Necessary Assumptions: Determine the statement that must be accurate or is

necessary for the reasoning to be valid. Let’s denote the claim as P , which

represents the statement that must be true or required for the argument to be

valid.

In formal logic, we can express the claim as follows:

P → (Argument)

Here, the arrow (→) represents the implication or logical consequence. The

12

2.2. LOGICAL REASONING

statement asserts that if claim P is true, then the argument as a whole holds

or is valid.

Please note that this representation assumes a binary logic framework, where

P is either true or false. In a formal logical analysis, additional premises or

conditions may be included, and the logical structure may vary depending on

the specific argument being evaluated.

• Sufficient Assumptions: Determine a comprehensive supposition that, when

included in the reasoning, would make it logically sound. Determine a com-

prehensive supposition that, when included in the reasoning, would make it

logically sound.

In formal logic, we can express the supposition as follows:

Q → (Argument)

Here, the arrow (→) represents the implication or logical consequence. The

statement asserts that if the supposition Q is true, then the argument as a

whole holds or is valid.

• Weaken: Determine details that could potentially undermine a given argument.

Determine details that could potentially undermine a given argument.

In formal logic, we can express the potential undermining details as follows:

R → ¬(Argument)

Here, the arrow (→) represents the implication, and the negation symbol (¬)

represents the logical negation or ”not” operator. The statement asserts that

if the details R are true, then it is not the case that the argument holds or is

valid.

• Identify a Flaw: Determine a mistake or error in the logic of an argument.

Determine a mistake or error in the logic of an argument.

13

2.2. LOGICAL REASONING

In formal logic, we can express the mistake or error as follows:

M → ¬(Argument)

Here, the arrow (→) represents the implication, and the negation symbol (¬)

represents the logical negation or ”not” operator. The statement asserts that if

the mistake or error M is true, then it is not the case that the argument holds

or is valid.

• Universal Affirmative (All/Everyone/Any):

Example: All humans are mortal. (∀x)Human(x) → Mortal(x)

• Universal Negative (No):

Example: No cats can fly. (∀x) Cat(x) → ¬CanFly(x)

• Particular Affirmative (Some):

Example: Some birds can sing. (∃x) Bird(x) ∧ CanSing(x)

• Sufficient conditional reasoning: uses conditional statements in the form

”If P, then Q” to reason hypothetically. ”If P, then Q” general form: If P , then

Q. P → Q

Example: If it rains, then the ground is wet. Rain → Ground is wet

• Necessary conditional reasoning: uses conditional statements like ”P only if Q”

and ”Q whenever P” to establish necessary conditions for P.

”P only if Q” general form: P only if Q. P ⇒ Q

”Q whenever P” general form: Q whenever P. P ⇒ Q

14

2.3. NORMALIZATION

• Disjunctive reasoning: uses disjunctive premises in the form ”either...or...”,

where the conclusion is true if at least one premise is true.

Disjunctive Reasoning Example:

Premise 1: Either it is raining or the sun is shining. (Raining ∨ SunShining)

Premise 2: I am getting wet. (Wet) Conclusion: Therefore, it is raining.

(Raining)

In this example, the disjunctive premises state that it is either raining or the

sun is shining. The conclusion is derived based on the observation that I am

getting wet, leading to the inference that it is raining.

• Conjunctive reasoning: uses conjunctive premises in the form ”both...and...”,

where the conclusion is true only if all premises are true. Conjunctive Reasoning

Example:

Premise 1: Both the sun is shining and the birds are singing. (SunShining ∧

BirdsSinging) Premise 2: The weather is pleasant. (PleasantWeather) Con-

clusion: Therefore, it is a beautiful day. (BeautifulDay)

In this example, the conjunctive premises state that both the sun is shining and

the birds are singing. The conclusion is derived based on the observation that

the weather is pleasant, leading to the inference that it is a beautiful day.

2.3 Normalization

Normalization is a common practice in deep learning, where input data is adjusted

to have a mean of zero and a variance of one. This process is applied to each feature

column individually. In other words, if we have multiple features (x1, x2, ..., xn) with

different value ranges, normalization ensures that each feature is transformed to have

a similar scale as shown in Figure 2.3.1.

15

2.3. NORMALIZATION

Fig. 2.3.1: how normalization takes place

To achieve this, we calculate the mean and variance of each feature across all the

samples in the dataset. Then, we use these computed statistics to normalize the values

of each feature. The formula used for normalization typically involves subtracting the

mean from each value and dividing the result by the standard deviation (square root

of the variance).

The purpose of normalization is to bring the features onto a comparable scale,

preventing any particular feature from dominating the learning process due to its

larger magnitude. It helps the model to converge faster during training and ensures

that the gradients are not influenced disproportionately by certain features. Normal-

izing the data can also help avoid numerical instability issues that may arise in the

optimization process.

By normalizing the input data, we create a more balanced representation of the

features, allowing the deep learning model to make fair and accurate comparisons

between them.

In the provided image (Figure 2.3.2), we observe the impact of normalizing data.

The original values, represented by the blue data points, have been transformed to

16

2.3. NORMALIZATION

be centred around zero, as indicated by the red data points. This process ensures

that all the feature values are now on the same scale, making them comparable

and facilitating fair analysis and interpretation. By aligning the data around zero,

normalization eliminates any bias or influence that might arise due to varying scales

of different features.

Fig. 2.3.2: What normalized data looks like

Let’s look at an example (Figure 2.3.3) with just two features that are on vastly

different scales to comprehend what occurs without normalization. The network

learns weights for each feature that are also on various scales because the output

is a linear combination of each feature vector. Otherwise, the small feature will be

completely masked by the large feature.

The network would therefore need to significantly update one weight relative to

the other weight during gradient descent in order to ”move the needle” for the Loss.

Because of this, it might take more steps to reach the minimum as the gradient

descent trajectory oscillates back and forth along one dimension.

17

2.3. NORMALIZATION

Fig. 2.3.3: Features on different scales take longer to reach the minimum

The loss landscape in this instance resembles a deep valley. The gradient can be

divided into its two components. Along one dimension, it is very steep, and on the

other, it is considerably milder as demonstrated in figure 2.3.4.

Due to one weight’s significant gradient, we ultimately update it more significantly.

The gradient descent is afterwards made to bounce to the opposite side of the slope.

On the other hand, because of the second direction’s smaller gradient, our weight

updates and resulting steps are smaller. The network takes longer to converge on this

unequal trajectory.

Fig. 2.3.4: A narrow valley causes gradient descent to bounce from one slope to the
other

18

2.4. BATCH NORMALIZATION

Instead, the lost landscape is more homogeneous like a bowl if the features are

scaled similarly. Then, a smooth gradient drop can continue all the way to zero as

shown in figure 2.3.5.

Fig. 2.3.5: Normalized data helps the network converge faster

2.4 Batch Normalization

When using a neural network with hidden layers, the output of one layer becomes

the input for the next layer. If the inputs to a layer change dramatically, it can lead

to unstable gradients, which can hinder the training process.

In the case of large datasets, they are usually divided into smaller batches for

training using the mini-batch gradient descent algorithm. This algorithm optimizes

the neural network’s parameters by processing the dataset one batch at a time.

However, it’s possible that the distribution of inputs to a specific layer changes

across different batches. This change in distribution is known as internal covariate

shift, as mentioned in the paper ”Batch Normalization: Accelerating Deep Network

Training” by Sergey Ioffe and Christian Szegedy [16]. For example, if the input

distribution to layer K keeps changing across batches, it can result in a longer training

time for the network.

During the mini-batch gradient descent algorithm, the weights and biases of the

neural network are updated for each batch in the input dataset. The goal is to make

19

2.4. BATCH NORMALIZATION

the network fit the specific distribution of the input seen in that batch.

The problem arises when the distribution of the input changes significantly for

the next batch. In such cases, the network has to adjust its parameters to fit the new

distribution, which slows down the training process.

To overcome this issue, we can normalize the inputs to the hidden layers of the

network. By doing so, we can mitigate the negative effects of large activations and

changing distributions at the layer’s input. This normalization is performed batch by

batch, using a technique called batch normalization. Its purpose is to speed up the

training process by ensuring that each mini-batch is normalized before updating the

network’s parameters.

For each hidden layer in a neural network, we apply a non-linear activation func-

tion to the inputs, which produces the layer’s output. We have the ability to ensure

that the pre-activations of every neuron in a specific layer have a mean of zero and a

standard deviation of one. This can be achieved by subtracting the mean value from

each input feature across the mini-batch and dividing it by the standard deviation.

To accomplish this, the authors of BatchNorm[16] introduce a layer following

the output of the previous layer. This additional layer performs the normalization

operation across the mini-batch, ensuring that the pre-activations at the current layer

have a standard Gaussian distribution. The diagram in Figure 2.4.1 provides a visual

representation of this process.

20

2.5. LAYERNORM

Fig. 2.4.1: Visual Representation of BatchNorm

Let’s consider a mini-batch with 3 input samples, each input vector being four

features long. The mean and standard deviation computed across each layer for each

input as seen in figure 2.4.2.

By performing these calculations, we normalize the values based on the mean and

standard deviation of the mini-batch, ensuring that the data is centred around zero

and has a unit standard deviation across the layers.

2.5 LayerNorm

Layer Normalization[1], proposed by researchers Jimmy Lei Ba, Jamie Ryan Kiros,

and Geoffrey E. Hinton, ensures that all neurons within a particular layer of a neural

network share the same distribution across all features for a given input.

In simpler terms, in Layer Normalization, they aim to make sure that each neuron

in a layer sees similar values for each feature in the input.

For instance, if an input has d features, forming a d-dimensional vector, and there

are B elements in a batch, the normalization is performed along the length of the

d-dimensional vector, rather than considering the entire batch of size B.

This approach of normalizing across all features, but for each input individually,

21

2.6. POWER NORMALIZATION

removes the reliance on batches. As a result, Layer Normalization is well-suited for

sequence models like transformers and recurrent neural networks (RNNs) that were

widely used before the advent of transformers.

To further illustrate, let’s consider an example presented in Figure 2.5.1. Suppose

we have a mini-batch containing three input samples, each having four features. In

this case, we calculate the mean and variance for each feature separately, treating

each input independently.

Fig. 2.5.1: Visual Representation of LayerNorm

The purpose of Layer Normalization is to ensure that each neuron within a layer

receives consistent inputs across all features, enabling more stable and effective train-

ing of sequence models.

2.6 Power Normalization

Power Normalization [42] builds upon the concept of Batch Normalization [16], so

a prerequisite for comprehending Power Normalization is understanding Batch Nor-

malization. In NLP, LN (Layer Normalization)[1] is commonly preferred over BN

22

2.6. POWER NORMALIZATION

(Batch Normalization)[16] due to practical observations that a simple implementa-

tion of BN leads to poor performance in NLP tasks. The authors who developed

the PowerNorm[42] method conducted a detailed investigation of the problems asso-

ciated with BN in NLP. Based on their findings, they introduced a new normaliza-

tion technique called Power Normalization (PN)[42], which surpasses LN in terms of

performance[42].

The authors of the PowerNorm method[42] observed that the batch statistics of

NLP data have a high variance throughout training, and this variance also exists

in the corresponding gradients. To address this issue, they proposed a modification

to BN called PN-V, which relaxes the zero-mean normalization (meaning they don’t

have to normalize exactly to zero) and replaces the variance with the quadratic mean

to reduce the variation of batch statistics.

The authors of the Power Normalization paper [42] demonstrated that their mod-

ification preserves the first-order smoothness property of Batch Normalization, as

supported by theoretical analysis.

In Batch Normalization, first-order smoothing is employed to maintain consistent

mean and variance values across different mini-batches during the training process.

This is achieved by calculating a running average of the mean and variance over all

mini-batches. By reducing the variance in the normalization statistics, first-order

smoothing helps in stabilizing the training process. [16]

The degree of smoothing in the first-order smoothing process is controlled by math-

ematical parameters that determine the extent of smoothing applied. By preserving

first-order smoothness, models trained with Power Normalization exhibit smoother

loss curves. This smoother behaviour aids in faster and easier convergence during

training.

Figure 2.6.1 shows a visual representation of PowerNorm taking place. Their

research [42], demonstrates that PN surpasses LN in terms of performance for neural

machine translation and language modelling [36].

23

2.7. OPTIMIZATION

Fig. 2.6.1: Visual Representation of PowerNorm[42]

2.7 Optimization

Optimization algorithms are crucial for training neural networks as they help in find-

ing the best set of model parameters, such as weights and biases, to improve the

network’s predictions. The most commonly used optimization technique is gradient

descent. Deep learning libraries like PyTorch and Keras offer a variety of built-in

optimizers based on gradient descent, including Adagrad [9] and Adam [19].

The reason for having multiple optimization algorithms is to cater to different

problem types and data characteristics. Each algorithm has a specific formula for

updating the model parameters, and understanding the significance of each formula

is important in selecting the appropriate optimizer.

2.7.1 Loss Curve

The image depicts a neural network with two weight parameters. The horizontal plane

represents the two axes corresponding to the weights, w1 and w2. The vertical axis

represents the loss value associated with different combinations of weights. Essen-

tially, the graph represents the ”Loss Landscape” of the neural network, illustrating

the loss values for various weight values while keeping the input dataset constant.

24

2.7. OPTIMIZATION

Fig. 2.7.1: Loss curve for Gradient Descent

The blue line on the graph in figure 2.7.1 traces the trajectory of the gradient

descent algorithm during the optimization process. Initially, the algorithm randomly

selects values for the weights and computes the corresponding loss value. In each

iteration, it updates the weight values, aiming to reach a lower loss value along the

curve. Eventually, it reaches its objective, which is the lowest point on the curve

where the loss is minimized.

Loss curves in Figure 2.7.1 are helpful visualizations for comprehending gradient

descent, but it’s important to recognize that the depicted smooth, convex curve is an

idealized representation rather than a realistic scenario.

25

2.7. OPTIMIZATION

Fig. 2.7.2: Loss curve in CNN

In reality, the loss curve tends to be much more erratic and bumpy as shown

in Figure 2.7.2. It may exhibit various irregularities and fluctuations instead of the

smoothness and convexity shown in the picture. The actual loss landscape can have

multiple local minima, saddle points, and other complex features that can pose chal-

lenges for optimization algorithms.

Furthermore, it is important to note that real-world neural networks typically have

far more than just two parameters. In fact, they often consist of tens or even hundreds

of millions of parameters. This vast number of parameters makes it impossible to

visualize or conceptualize the entire parameter space in our minds. The complexity

and high dimensionality of these networks pose unique challenges for optimization and

require sophisticated techniques to effectively navigate and optimize the enormous

parameter space.

2.7.2 Challenges with Gradient Descent Optimization

In a typical loss curve, there are often multiple local minima, along with the global

minimum. Gradient Descent, which aims to descend towards lower loss values, faces

26

2.7. OPTIMIZATION

a challenge when encountering local minima. Once the algorithm descends into a

local minimum, it can struggle to climb back up the slope and may become trapped,

unable to reach the global minimum.

This issue is known as being stuck in local minima. It hampers the optimiza-

tion process, as the algorithm settles for suboptimal solutions instead of finding the

global minimum, which represents the best parameter values for the given problem.

Overcoming local minima is a crucial concern in optimization, and various techniques

are employed to mitigate this problem and improve the chances of finding better

solutions. An example is shown in Figure 2.7.3.

Fig. 2.7.3: local minimum

Another significant challenge in optimization arises from the presence of ”saddle

points.” These are points in the loss curve where, in one direction corresponding to

a particular parameter, the curve reaches a local minimum. However, in another

27

2.7. OPTIMIZATION

direction corresponding to a different parameter, the curve reaches a local maximum.

Saddle points can hinder the progress of optimization algorithms because they

exhibit a flat region where the gradient becomes close to zero in multiple dimensions.

As a result, the algorithm may struggle to move past these points as the gradient

provides ambiguous guidance.

While saddle points can be problematic, they are generally less common than

local minima. Nonetheless, addressing their influence on optimization remains an

important consideration in order to enhance the effectiveness and efficiency of the

training process. An example is shown in Figure 2.7.4.

Fig. 2.7.4: Saddle point

Gradient Descent also faces challenges when traversing ravines, which refer to long

and narrow valleys that slope steeply in one direction (the valley sides) and gently in

another direction (along the valley). These ravines often lead down to the minimum

of the loss curve. Due to the difficult navigation through these ravines, this shape

is known as Pathological Curvature. You can imagine it as a narrow river valley

that gently slopes down from the hills until it reaches a lake. The goal is to move

swiftly downstream in the direction of the valley. However, Gradient Descent can

28

2.7. OPTIMIZATION

easily oscillate back and forth along the sides of the valley, resulting in slow progress

in the downstream direction.

Fig. 2.7.5: Valley

To address these challenges, optimization algorithms have evolved beyond vanilla

Gradient Descent by incorporating various improvements. These enhancements aim

to overcome the difficulties posed by local minima, saddle points, and ravines.

Let’s explore the workings of batch gradient descent, an optimization technique,

and how it progresses toward the minimum. In batch gradient descent, the algorithm

calculates the gradient of the loss function for the entire training dataset in each

epoch. However, this approach can be computationally expensive, especially for large

datasets.

During training, batch gradient descent updates the model parameters based on

the average gradient computed from all the training examples. It takes a lot of epochs,

or iterations over the entire dataset, to reach the minimum of the loss function.

29

2.7. OPTIMIZATION

Fig. 2.7.6: Batch Gradient Descent

Fig. 2.7.7: Batch Gradient Descent in a Valley

30

2.7. OPTIMIZATION

An upgrade to batch gradient descent [31] involves the introduction of momentum,

which aims to expedite convergence. Momentum is a technique where the update step

considers both the current gradient and the accumulated gradient from previous iter-

ations. By incorporating momentum, the algorithm gains momentum in the direction

of steeper gradients, resulting in faster convergence.

However, one drawback of momentum is that it can lead to oscillations near local

minima. The increased speed and momentum can cause the algorithm to overshoot

the minimum and oscillate around it, slowing down the convergence process. This

oscillation phenomenon can hinder the algorithm’s ability to settle down and reach

the precise minimum.

Fig. 2.7.8: Moment

31

2.7. OPTIMIZATION

Fig. 2.7.9: Moment in a valley

Despite this drawback, momentum is generally beneficial in optimizing the train-

ing process by enabling faster convergence. However, momentum does not converge

well when the loss curve resembles a valley. Valleys in the loss curve typically arise

when the data is sparse, meaning there are regions in the feature space with limited

or sparse data samples.

In such scenarios, the momentum-based optimization algorithms, including those

using adaptive learning rates, may encounter challenges. The high momentum can

cause the algorithm to overshoot the minimum and lead to oscillations within the

valley. This behaviour can hinder convergence and make it difficult for the algorithm

to navigate through the sparse regions effectively.

To address the challenges posed by valleys and sparse data, one effective tech-

nique is the use of AdaGrad, which stands for adaptive gradient. AdaGrad[9] is an

optimization algorithm that adjusts the learning rate for each parameter based on

the historical accumulation of gradients. It performs better in scenarios where the

32

2.7. OPTIMIZATION

data is sparse.

By adapting the learning rate, AdaGrad places a greater emphasis on infrequent

and important features in the data, enabling effective learning even in the presence

of sparse data. This adaptive behaviour helps the algorithm converge more efficiently

in regions with sparse data and navigate through valleys in the loss curve more effec-

tively.

Fig. 2.7.10: Adagrad in a valley

AdaGrad’s ability to adapt the learning rate for individual parameters makes

it well-suited for handling sparse data, as it allows the algorithm to allocate more

learning resources to relevant features while mitigating the impact of noisy or less

informative features.

33

2.8. MADGRAD OPTIMIZATION

2.8 MADGRAD Optimization

The MADGRAD paper [7] discusses optimization for deep learning, which is a rel-

atively new and growing sub-field in the optimization community. Unlike classical

first-order optimization, deep learning problems involve additional concerns requir-

ing new tools to overcome. Deep learning problems are characterized by very large

parameter vector sizes, making it computationally infeasible to store matrices of the

corresponding size. As a result, diagonal scaling approaches have become the industry

standard for deep learning.

In the optimization community, deep learning optimization is a developing sub-

field that has more difficulties than traditional optimization. When opposed to tra-

ditional first-order optimization, deep learning problems pose particular difficulties

that call for novel solutions. The size of the parameter vectors makes it impossible

to store matrices of size DxD (where D is the dimension of the weight matrix), even

with ”limited memory” techniques [22,2]. Storage that is fixed at a small multiple of

the parameter vector size is the practical limit on these issues.

Models with over 100 billion parameters are being investigated, but storage is

only available in modest multiples of the size of the parameter vector. It is practi-

cally impossible to store (in RAM) matrices of size DxD for deep learning. Due to

this, diagonal scaling techniques are now accepted as best practices for deep learn-

ing optimization. There are currently no other adaptive methods that consistently

outperform Adam, making it the benchmark method in this class. [7]

Diagonal scaling methods, where adaptivity is carried out separately for each

coordinate, are the industry standard for deep learning optimization. This results

in memory use that scales as O (D). Adam relies on the illustrious past of diagonal

adaptive techniques like RMSProp and AdaGrad.

The benchmark method for diagonal scaling approaches is Adam, which has seen

widespread adoption. However, Adam has limitations, including underperformance

in certain situations and a lack of convergence in some cases. To address these issues,

the authors developed the MADGRAD method, which performs consistently at a

34

2.8. MADGRAD OPTIMIZATION

state-of-the-art level across various deep-learning problems without requiring more

tuning than Adam.

MADGRAD is based on the dual averaging formulation of AdaGrad, which has

not been widely used for deep learning optimization despite having a simpler and more

elegant theory compared to the mirror descent form. The authors argue that the lack

of adoption of dual averaging approaches is due to misconceptions, including the belief

that dual averaging is only interesting in the composite optimization setting and the

issue of implementing dual averaging without considering the necessary modifications

for deep learning.

In the case of Natural Language Processing (NLP), it is hypothesized that Ada-

Grad may converge faster compared to other optimization algorithms. This hypoth-

esis stems from AdaGrad’s inherent capability to handle sparse data and navigate

valleys in the loss curve more effectively.

NLP tasks often involve dealing with sparse data, such as text data, where the

feature space can be high-dimensional and data samples may be limited. In such

scenarios, the loss curve may exhibit valley-like shapes due to the sparsity of the

data.

Given AdaGrad’s adaptive learning rate scheme, it is well-suited to handle sparse

data. By appropriately adjusting the learning rate for each parameter based on the

historical accumulation of gradients, AdaGrad can effectively allocate more learning

resources to important features and navigate through valleys in the loss curve.

Dual averaging (AdaGrad) methods provide better generalization performance

due to implicit regularization, which may positively affect early iterations while not

negatively impacting the model’s ability to fit the data during later ”fine-tuning”

epochs. The authors believe that further research into the effect of using stronger

regularization at the early stages of optimization could be interesting more generally.

Momentum is a well-known and crucial component of deep learning optimization

for various architectures and problem settings [46]. It is important to examine how

momentum can be added to dual averaging updates and later to AdaGrad updates.

The core idea of this algorithm is instead of evaluating the gradient at each step at the

35

2.9. BERT AND ROBERTA

value of the argmin operation like in regular dual average, the gradient is evaluated at

a moving average point, which smooths the iterate sequence. This is illustrated when

momentum is added to SGD, where inline averaging is equivalent to more common

equational forms of momentum for appropriate hyper-parameter choices.

Also the authors[7] propose a cube-root modification to maintain the right step

size in their algorithm. This modification is inspired by a similar argument used

for the standard square root method. Although the cube-root approach results in a

final convergence rate bound that is not fully adaptive, the authors believe it’s not a

significant issue. The choice of step size still depends on other unknown factors, even

when using a fully adaptive sequence.

In summary, the research introduces MADGRAD, a novel optimization technique

for deep learning. MADGRAD builds upon the strengths of the AdaGrad optimizer

and enhances its performance in various deep-learning tasks by combining adaptivity

with excellent generalization capabilities. The experimental data presented by the

authors shows that MADGRAD routinely outperforms state-of-the-art solutions for

a wide range of realistic large-scale deep learning applications. They contend that the

approach is a good starting point for optimizers spanning several machine learning

subfields and a general-purpose optimizer for deep learning. The publication offers

a new tool for researchers and practitioners to employ in their work, contributing to

the expanding sub-field of optimization for deep learning.

2.9 BERT and RoBERTa

BERT, or Bidirectional Encoder Representations from Transformers [8], is primarily

a pre-trained Transformer Encoder stack. To fully understand BERT, it is beneficial

to refer to section 2.1 to understand encoders.

The Transformer model is a key innovation in natural language processing (NLP)

that utilizes self-attention mechanisms to capture contextual relationships between

words. BERT, being based on the Transformer architecture, leverages its power to

learn contextual representations from large amounts of unlabeled text data.

36

2.9. BERT AND ROBERTA

Fig. 2.9.1: BERT model

By pre-training on a vast corpus of text, BERT [8] learns to generate word embed-

dings that effectively capture the semantic meaning of words within their surrounding

context. These pre-trained representations can then be fine-tuned on specific down-

stream tasks, such as question answering or text classification.

The BERT model comes in two sizes: Base and Large. Both versions have a

significant number of encoder layers, also referred to as Transformer Blocks. The

Base version consists of twelve encoder layers, while the Large version has twenty-

four encoder layers.

Compared to the default configuration of the Transformer model described in the

initial paper, BERT’s encoder layers have larger feedforward networks. Specifically,

the Base version has 768 hidden units in its feedforward network, while the Large

version has 1024 hidden units.

Additionally, BERT [8] incorporates a greater number of attention heads compared

to the default configuration. The Base version has 12 attention heads, while the

37

2.9. BERT AND ROBERTA

Large version utilizes 16 attention heads. In contrast, the original Transformer model

described in the initial paper employed 6 encoder layers, 512 hidden units, and 8

attention heads as its default configuration.

The larger size of the BERT models, with more encoder layers, increased hidden

units in the feedforward networks, and additional attention heads, allows for more

complex and expressive representations to be learned from the text data. This in-

creased capacity contributes to the enhanced performance of BERT on various NLP

tasks, enabling it to capture more nuanced contextual relationships and achieve state-

of-the-art results.

RoBERTa[24] is a widely embraced alternative and successor to BERT, offering

significant improvements by optimizing the training hyperparameters for BERT in a

meticulous and intelligent manner. Several straightforward modifications collectively

enhance the performance of Roberta, surpassing BERT’s capabilities across various

tasks originally intended for BERT. Notably, at the time of Roberta’s introduction,

another influential transformer model called XLNet was also published. However, the

changes introduced by XLNet are notably more complex and challenging to implement

compared to the relatively straightforward modifications made in Roberta. This

factor contributes to Roberta’s popularity within the AI/NLP community.

Architecturally, Roberta follows the same structure as BERT. However, during the

pretraining phase, Roberta exclusively employs Masked Language Modeling (MLM),

whereas BERT additionally utilizes Next Sentence Prediction (NSP). Roberta intro-

duces specific hyperparameter adjustments that contribute to its improved perfor-

mance:

1. Longer training time and larger training data: Roberta benefits from an ex-

tended training duration and a substantial increase in training data, scaled up from

16 GB to 160 GB. 2. Larger batch size and vocabulary size: Roberta employs a

larger batch size, increased from 256 to 8000, and a larger vocabulary size, expanded

from 30,000 to 50,000 tokens. 3. Longer input sequences: Although Roberta em-

ploys longer input sequences, it still adheres to the maximum token limitation of 512

tokens, similar to BERT. 4. Dynamic masking: Roberta utilizes dynamic masking,

38

2.9. BERT AND ROBERTA

allowing for different masking patterns with each input sequence. In contrast, BERT

employed the same masking pattern consistently.

39

CHAPTER 3

Related Works

In this section, we will delve into the investigation undertaken by DT-Fixup, as our

thesis seeks to build upon and extend their established research.

3.1 Adam optimization

Adam (Adaptive Moment Estimation) [19] is an optimization algorithm that combines

concepts from both adaptive learning rate methods and momentum-based methods.

It has gained significant popularity in the field of deep learning due to its effectiveness

in optimizing neural network models. Here’s a review of the Adam optimizer:

1. Adaptive Learning Rates: Adam adapts the learning rate for each parameter

individually. It uses estimates of the first and second moments of the gradients to

dynamically adjust the learning rate during training. This adaptivity allows Adam to

automatically adjust the learning rate based on the characteristics of each parameter,

leading to efficient optimization.

2. Momentum: Adam incorporates momentum similar to other optimization al-

gorithms such as SGD with Momentum. By including the momentum term, Adam

accumulates past gradients and utilizes them to influence the current parameter up-

date. This helps to smooth out the optimization process and accelerate convergence,

especially in the presence of noisy or sparse gradients.

3. Convergence Speed: Adam is known for its fast convergence speed. It can

quickly find good solutions, especially in deep learning tasks with large parameter

spaces and complex loss landscapes. By adapting the learning rates and effectively

40

3.1. ADAM OPTIMIZATION

utilizing momentum, Adam efficiently navigates through the optimization landscape,

making it a favored choice for many deep learning practitioners.

4. Robustness to Initial Learning Rate: Adam tends to be less sensitive to the

choice of the initial learning rate compared to traditional optimization algorithms like

SGD. This robustness alleviates the need for meticulous tuning of the learning rate,

saving time and effort during model development.

5. Widely Used in Practice: Adam has become a popular choice for many re-

searchers and practitioners in the deep learning community. It is widely supported

by various deep learning frameworks, including TensorFlow and PyTorch, and often

serves as a default or recommended optimizer for many tasks.

However, it is important to note that Adam may not always be the best optimizer

for every scenario. In certain cases, such as in the presence of sparse gradients or for

specific network architectures, other optimization algorithms may perform better.

Fig. 3.1.1: ADAM Optimizer

In figure 3.1.1, the application of Adam optimization can be observed through its

effect on the convergence of the loss curve. Adam is designed to iteratively update

the model parameters in order to minimize the loss function.

41

3.2. DT-FIXUP

In summary, Adam is a powerful and widely used optimization algorithm in deep

learning. It combines adaptive learning rates with momentum to efficiently optimize

neural network models, leading to fast convergence and robust performance.

3.2 DT-Fixup

The study explores the use of pre-trained language models in contemporary NLP sys-

tems for enhancing generalization when task-specific annotations are scarce, in partic-

ular large-scale models trained with transformers[54]. It is proposed that to enhance

performance on tasks involving reasoning and structural comprehension, extra trans-

former layers should be used in conjunction with pre-trained models. Nonetheless, it

is generally accepted that big datasets are necessary for training deep transformers

from scratch, and very few attempts have been done using small datasets. This re-

stricts the use of additional transformer layers over pre-trained models to increasingly

difficult issues.

The Data-dependent Transformer Fixed-update initialization strategy (DT-Fixup)

[54], which the authors suggest using, enables the training of substantially deeper

transformers with greater generalization even on modest datasets. The foundation

of DT-Fixup is a data-dependent initialization strategy that was developed by using

various analyses to address numerous significant drawbacks of the T-Fixup method

put out by Huang et al (2020) [14]. The authors [14] demonstrate that the optimiza-

tion process, not the design, is to blame for the perception that deep transformers

do not perform well on small datasets. It has been demonstrated that adding extra

transformer layers during training can make it easier to learn complex relationships

and data structures.

Spider [55], a challenging cross-domain Text-to-SQL semantic parsing benchmark,

and ReClor [56], a reading comprehension dataset requiring logical thinking, is used

to test the efficacy of DT-Fixup. Due to the low number of training samples in both

datasets, large-batch training is undesirable due to its subpar generalization. With su-

perior generalization and the ability to train substantially more complex transformer

42

3.2. DT-FIXUP

models, DT-Fixup demonstrates consistently outperforms the conventional method

on both datasets.

By simply stacking transformer layers on top of RoBERTa, the authors of DT-

Fixup achieve the second-place position for ReClor on the public leaderboard at the

time of publication. Further error analysis reveals that improved generalization on

the more challenging scenarios demanding reasoning and structural comprehension is

mostly responsible for the performance improvements brought on by increasing the

depth.

The overall architecture of the model implemented in their research is outlined as

follows: they utilized the RoBERTa model and additional layers aiming to understand

the effects of each model on the corresponding datasets. In figure 3.2.1, we show

the overall architecture used in their paper. The inputs are initially fed into the

RoBERTa large model for fine-tuning. Subsequently, they are processed through

several transformer layers before being relayed to the output.

Fig. 3.2.1: Architecture of DT-Fixup

The DT-Fixup approach involves the following steps:

1. Utilize Xavier initialization[11] for all free parameters, excluding the weights

loaded from pre-trained models.

43

3.2. DT-FIXUP

2. Eliminate the learning rate warm-up and all layer normalization within the

transformer layers, except for those in the pre-trained transformer.

3. Perform a forward pass on all training examples to obtain the maximum input

norm µ, calculated as maxx, where x is the input.

4. Within each transformer layer, scale the MLP block by (N − 1)/2 ∗ µ for the

vanilla transformer layer where N is the total number of layers in the model.

In step 4, we apply scaling since, when the input norm has the same magnitude

as x, setting the encoder parameters to possess an equal norm and solving the corre-

sponding equations leads to the same scale factors[54].

Fig. 3.2.2: Architecture of DT-Fixup (detailed)

In Figure 3.2.2, it’s observable that the DT-Fixup is incorporated within the

transformer block, represented by the green block. More specifically, the DT-Fixup

is applied in the ”Add and Normalize” segment, which is denoted in orange.

44

CHAPTER 4

Problem Statement and

Methodology

4.1 Problem Statement

Since DT-Fixup’s publication [54], has garnered over 30 citations, with 10 of them

specifically focusing on applying the algorithm to Text-to-SQL datasets in various

contexts. The remaining 20 citations primarily reference the paper to explain the

suboptimal performance of transformers on smaller datasets. The significance of

this lies in the fact that most specialized tasks have datasets that are hand-labelled

and typically small in size, necessitating the use of logical strategies for effective

performance[22]. Additionally, none of these researches comprehensively investigate

the generalization capacity of the algorithm or scrutinize its impacts on different

logical frameworks.

In this thesis, we expand the research on the DT-Fixup algorithm to different for-

mal logical structures while also examining the impact of MADGRAD[7] optimization

and power normalization[42] on the DT-Fixup algorithm. Through this comprehen-

sive analysis, we hope to contribute valuable insights to the ongoing exploration of

DT-Fixup and its potential applications in other domains.

Our study incorporates an additional dataset, LogiQA [22], for four main reasons.

First, we aim to address the concern of generalization, as there’s a lack of research

exploring how our methodology adapts to diverse logical structures within similar

datasets. This investigation will help determine the techniques’ wider applicability

45

4.1. PROBLEM STATEMENT

on various logical structures, not just on the specific datasets already examined. Sec-

ond, by evaluating other datasets, we can uncover potential shortcomings in current

optimization methods if there are any, which might not be evident when assessed

solely on one dataset. Such insights could guide future research and algorithmic en-

hancements. Third, the exploration of further datasets can reveal how these methods

handle dataset-specific challenges and if they present any benefits over existing opti-

mization strategies. Finally, incorporating more datasets into our analysis allows for

a more thorough benchmarking of the algorithm, leading to a more holistic evaluation

of its performance.

Specifically, we addressed the following research issues:

• We studied the performance of DT-Fixup on the MCQ reading comprehension

dataset with different logical reasoning types.

The datasets used in this thesis, namely ReClor[56] and LogiQA[22], evalu-

ate natural language processing models’ ability to understand and reason with

language across a wide range of logical reasoning types.

ReClor[56] tests abilities such as identifying necessary or sufficient assumptions,

strengthening or weakening arguments, evaluating implications, and identifying

flaws, among others. It also tests the ability to explain situations, identify

principles, dispute issues, and understand the role of statements within larger

arguments.

The LogiQA[22] dataset, on the other hand, focuses on various types of log-

ical reasoning like categorical reasoning, sufficient and necessary conditional

reasoning, disjunctive reasoning, and conjunctive reasoning. These reasoning

types involve categorizing concepts, analyzing conditional statements, handling

disjunctive premises, and dealing with conjunctive premises.

The investigation of these datasets allows the examination of the applicability

of the DT-Fixup methodology to diverse datasets and reasoning types.

• One aspect we investigated was the role of the power normalization function in

the performance of the DT-Fixup method.

46

4.1. PROBLEM STATEMENT

Examining the effects of PowerNorm on small data architectures is vital for

several reasons. Firstly, it is important to note that research has demonstrated

that PN significantly surpasses LN in terms of performance for neural machine

translation and language modelling[42]. However, no study has assessed its

impact on smaller datasets (less than 10,000 samples) with complex logical

structures, which is the primary focus of our research. PowerNorm is currently

the only widely used normalization scheme in NLP, apart from LayerNorm,

that is designed to surpass LayerNorm while employing a different normalization

approach. Additionally, PowerNorm, as an adaptation of BatchNorm, maintains

first-order smoothness, which is crucial when training datasets with limited

data. Investigating PowerNorm’s influence on small datasets can offer valuable

insights into the effectiveness of this normalization method and its potential to

improve the performance of models trained on limited data [36]. Also, in the

context of DT-Fixup, since the normalization is responsible for finding the max

of input norm ∥x∥, which is ultimately used to compute the scaling factor used

when the normalization is removed for training.

• The influence of the MADGRAD optimization algorithm on the effectiveness of

the DT-Fixup method was investigated. We investigated the use of the MAD-

GRAD optimization algorithm in the DTfixUp method, as proposed in [7].

MADGRAD is designed to improve the performance of deep learning models

by addressing the limitations of existing optimization algorithms and has been

shown to outperform other popular methods on several benchmark datasets

and deep learning models. Meta AI’s research on MADGRAD suggested a

reasonable performance boost in both Computer Vision and Natural Language

problems, which motivated us to test MADGRAD on the application of trans-

formers on smaller datasets [7].

• The effectiveness of DT-Fixup, including its interactions with optimization al-

gorithms, was investigated to determine the extent to which vanilla transformer

layers impact its performance

47

4.1. PROBLEM STATEMENT

We investigate MADGRAD (Momentumized, Adaptive, Dual averaged GRA-

Dient) method on DT-Fixup methodology because it is shown to be superior to

Adam for several reasons according to the provided text:

1. Strong Generalization Performance: Adam, while widely used, has been

critiqued for its potential to converge to poor local minima on certain crit-

ical problems, such as image classification. This has led to claims that

adaptive methods like Adam don’t generalize well. However, MADGRAD

manages to combine adaptive behaviour with strong generalization, indi-

cating it may avoid these pitfalls [7].

2. Consistency: MADGRAD consistently performs at a state-of-the-art level

across various large-scale deep-learning problems like machine translation

with a recurrent neural network and masked language modelling with a

Transformer [7]. This consistency suggests a more robust performance

profile than Adam, which might not be as consistently effective across

different problem types. MADGRAD application on transformers is a

novel idea that is not well researched.

3. No Additional Tuning Required: One major advantage of MADGRAD

over Adam is that it doesn’t necessitate more tuning than Adam.[7] This

suggests that MADGRAD may be easier or at least as easy to use in

practical applications, saving time and computational resources.

4. Evolution from AdaGrad: MADGRAD is a direct and systematic evolution

from the dual averaging form of AdaGrad. This means that it incorporates

the advantages of AdaGrad, a method that has a principled approach to

diagonal adaptivity, while also incorporating improvements suited for deep

learning optimization [7].

5. Momentum and Stabilization: While Adam also incorporates momentum

and bias correction, the text implies that MADGRAD might have further

optimized these aspects for better performance compared to Adam [7].

Understanding the advantages and disadvantages of DT-Fixup will be made easier

48

with the help of our study, which will also guide future studies along this approach.

4.2 Methodology

In this dissertation, we’ve constructed the DT-Fixup architecture from scratch which

is not available in their (Dt-Fixup) original research paper.

In our research, we are not introducing a novel methodology per se. Instead, we

are building upon the existing DT-Fixup framework. Our approach consists of experi-

mentation with the modification of certain variables(optimization and normalization)

within this established algorithm to investigate and understand its potential impacts

and improvements.

Our work primarily relies on two models: the RoBERTa base, which we used to

fine-tune the LogiQA dataset, and the RoBERTa large, which we used to fine-tune

the ReClor dataset. Our goal was to examine the influence of both RoBERTa models

on their respective datasets.

The pipeline for our research, which includes a detailed implementation of the

DT-Fixup algorithm, is comprehensively presented in our code. We developed a

custom class that not only integrates the DT-Fixup architecture but also incorporates

PowerNorm and MADGRAD, demonstrating our extension and exploration of these

techniques within the DT-Fixup algorithm.

Page 28
Code can be found at:

https://github.com/premshanker-ai/Transformer-on-Small-Dataset

https://github.com/premshanker-ai/Transformer-on-Small-Dataset

CHAPTER 5

Experiments and Results

5.1 Setup

5.1.1 Datasets

We utilized two of the datasets accessible for multiple-choice reading comprehension

in the context of testing logic, namely LogiQA[22] and ReClor[56]. As previously

mentioned in the background section, these datasets contain various logical structures.

This diversity in data will aid us in exploring how well the DT-Fixup algorithm can

generalization.

We use the RoBERTa large model for pretraining on the ReClor dataset and the

RoBERTa base model for pretraining on the LogiQA dataset.

5.1.2 ReClor: A Reading Comprehension Dataset Requiring

Logical Reasoning

ReClor [56] is a dataset created to evaluate models’ capacity for logical inference in

multiple-choice reading comprehension tests. ReClor consists of 6,138 data points,

each of which has a context, a question, and four possible answers, only one of which

is the best one. The data points were chosen from standardized tests like the GMAT

and LSAT, which call for intricate logical reasoning, and the information was gathered

from public websites and literature. Figure 2.2.1 shows some sample data points from

the dataset.

50

5.1. SETUP

Fig. 5.1.1: Examples of some question types from ReClor. The correct options are
marked in red[56]

Using 4,638, 500, and 1,000 data points each, the data are divided into a training

set, a validation set, and a testing set.

There are 17 categories of logical thinking questions in the ReClor dataset which

is shown in figure 2.2.2[56]. The most common ones are Necessary Assumptions,

Sufficient Assumptions, Weaken, Identify a Flaw, etc.

51

5.1. SETUP

Fig. 5.1.2: These percentages and descriptions represent various types of logical rea-
soning. [56]

We talk about this here because the logical reasoning required to solve ReClor is

very different from the logical reasoning used in LogiQA.

5.1.3 LogiQA

LogiQA [22] comprises 8,678 paragraph-question pairs, each with four potential an-

swers. The dataset is derived from publicly accessible logical examination papers

meant for reading comprehension. These papers are crafted by domain experts with

the aim of assessing the logical reasoning capabilities of test takers. As such, the

reliability and topical scope of the questions is commendable. Problems from the

original dataset were meticulously selected, excluding those that incorporate figures,

and charts or are excessively mathematical, thereby ensuring a broad representation

of logical reasoning types.

52

5.1. SETUP

The LogiQA paper outlines five distinct types of logical reasoning (shown in figure

2.2.3 with examples) used in the dataset [22] like Categorical reasoning, Sufficient

conditional reasoning, Necessary conditional reasoning, Disjunctive reasoning, and

Conjunctive reasoning.

Fig. 5.1.3: Examples of LogiQA’s logical reasoning types. Red ticks indicate the
correct answer [22]

5.1.4 Evaluation Strategy and Metrics

When it comes to evaluating how well a model performs multiple metrics can be used.

In the present thesis work, the common metric, accuracy, is used. An evaluation

statistic called accuracy is defined by the percentage of the number of samples that

are correctly predicted by the model.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(1)

In classification modelling, it’s crucial to assess the model’s accuracy in predicting

the right result.

53

5.2. RESULTS

5.2 Results

In this section, we explain our findings in response to our research questions.

5.2.1 Baseline Experiments

We will analyze the experiments carried out using solely transformer layers on both

the ReClor and LogiQA datasets and gain a comprehensive understanding of the

outcomes. In addition, we will also explore the DT-Fixup technique and its impact

on the experiments with transformer layers on both the ReClor and LogiQA datasets.

Baseline Experiment

Dataset Our Result Published Result [56] [22]

ReClor 60.2 62.6

LogiQ 32.25 35.85

Although we utilized a very similar model to that published in the papers, there

can be several reasons why our results are lower than the published results for the

same experiment. These reasons include:

• Difference in experimental setup: The experiment setup used by you and the

published results may differ in the form of the training data used, evaluation

metric, feature extraction, etc. Even minor differences in the experimental setup

can cause significant differences in the results obtained.

• Difference in implementation: Even if the experimental setup is identical, the

implementation of the model and the methodology used to obtain the results

can vary. This can be in the form of hyperparameter settings, optimization

algorithms, regularization techniques, and so on.

54

5.2. RESULTS

• Randomness and Variability: The difference in results could be due to the ran-

domness and variability in the experiment. For instance, if the experiment

involves training a deep learning model, the model’s performance can vary sig-

nificantly based on the initialization of the model’s parameters.

• Number of epochs and training time: The number of epochs used for training,

as well as the training time, can significantly impact the performance of the

model.

• Hardware differences: The GPU or other hardware used for training the model

may be different in terms of its capabilities, and this can impact the performance

of the model.

• Repetition of experiments: If the published results were obtained by running

the experiment multiple times, this could reduce the effect of random variations

and help to obtain more stable and reliable results.

5.2.1.1 ReClor Baseline Experiment

We conducted several experiments to evaluate the impact of our research on trans-

formers. To establish a benchmark for the performance of the original transformer

model on the ReClor datasets, we ran several baseline tests without making any mod-

ifications to the model. These baseline tests allowed us to compare the performance

of the modified transformer models with that of the original model and to identify

any potential improvements or limitations resulting from the modifications. From

the results in the table for the ReClor dataset below, it can be seen that adding one

additional transformer layer to the RoBERTa large model improves the performance

significantly, with a validation accuracy of 60.646% and a test accuracy of 64.6%.

However, adding more layers does not lead to further improvement, and in fact, the

performance drops dramatically with three layers or more.

55

5.2. RESULTS

Baseline Experiment for ReClor

Model Name Transformer

Layers

Validation Accu-

racy

Test Accuracy

RoBERTa large 0 60.2 43.6

RoBERTa large 1 60.646 64.6

RoBERTa large 2 63 63

RoBERTa large 3 21.8 21.8

RoBERTa large 4 59.4 59.4

The accuracy curve for the ReClor Baseline Experiment is shown in Figure 5.2.1,

where the x-axis represents the number of epochs, and the y-axis represents the

accuracy. The results indicate that adding transformer layers to the model tends

to improve the accuracy of the model. However, it was observed that if too many

transformer layers are added, the model finds it difficult to decrease the loss or fine-

tune the parameters effectively. These findings suggest that adding transformer layers

to the ReClor model can improve its accuracy, but a careful balance must be struck

to avoid overfitting and ensure efficient training of the model.

The best performance is achieved with the RoBERTa large model with one addi-

tional transformer layer, which outperforms the original RoBERTa large model by a

significant margin. These findings suggest that the addition of one transformer layer

can be an effective modification for improving the performance of the RoBERTa large

model on the ReClor dataset.

56

5.2. RESULTS

Fig. 5.2.1: Accuracy curve for ReClor Baseline Experiment

However, adding more layers does not lead to further improvement, and in fact,

the performance drops dramatically with three layers or more. The best performance

is achieved with the RoBERTa large model with one additional transformer layer,

which outperforms the original RoBERTa large model by a significant margin. These

findings suggest that the addition of one transformer layer can be an effective mod-

ification for improving the performance of the RoBERTa large model on the ReClor

dataset.

5.2.1.2 LogiQA Baseline Experiment

From the results in the table for the LogiQA dataset, it can be observed that adding

transformer layers to the RoBERTa base model has a relatively small impact on

the performance which can be noticed from the table below. The addition of one

transformer layer results in a slight improvement in the validation accuracy, but the

test accuracy remains largely the same. Adding two transformer layers further im-

proves the performance, with a validation accuracy of 34.715% and a test accuracy

of 34.715%.

57

5.2. RESULTS

Baseline Experiment for LogiQA

Model Name Transformer

Layer

Validation Accu-

racy

Test Accuracy

RoBERTa base 0 32.25 32.25

RoBERTa base 1 33.6 32.71

RoBERTa base 2 34.715 34.715

RoBERTa base 3 34.01 34.25

RoBERTa base 4 34.40 34.4086

Fig. 5.2.2: Accuracy curve for LogiQA Baseline Experiment

The accuracy curve for the LogiQA Baseline Experiment is depicted in Fig. 5.2.2,

where the x-axis represents the number of epochs and the y-axis represents the accu-

racy. It can be observed that adding transformer layers to the RoBERTa base model

leads to a slight increase in accuracy. However, the performance gain is not substan-

tial, and adding more transformer layers does not lead to significant improvements.

In fact, the performance of the model fluctuates with three or four transformer layers.

The results suggest that the optimal number of transformer layers to add to the

RoBERTa base model for the LogiQA dataset is two. The model with two additional

58

5.2. RESULTS

transformer layers performs slightly better than the original RoBERTa base model

and yields the best performance overall. These findings highlight the importance of

carefully selecting the number of transformer layers to add to a base model to achieve

optimal performance on a given dataset.

5.2.1.3 ReClor with DT-Fixup Baseline Experiment

In this experiment, we evaluated the performance of the ReClor model with DT-Fixup

using RoBERTa large and varying numbers of transformer layers. The validation and

test accuracy were used as the evaluation metrics for the models. The RoBERTa

large model achieved a validation accuracy of 60.2% and a test accuracy of 43.6%.

Baseline Experiment for ReClor with DT-Fixup

Model Name Transformer

Layers

Modifications Val. Acc. Test Acc.

RoBERTa large 0 None 60.2 43.6

RoBERTa large 1 DT-Fixup 61.00 61.00

RoBERTa large 2 DT-Fixup 59.00 59.00

RoBERTa large 3 DT-Fixup 58.6 58.6

RoBERTa large 4 DT-Fixup 59 59

By adding 1 transformer layer and DT-Fixup to the RoBERTa large model, we

achieved an improvement in validation accuracy to 61.00%, which was also main-

tained in the test accuracy. With 2 transformer layers and DT-Fixup, we achieved a

validation accuracy of 59.00% and a test accuracy of 59.00%. However, the addition

59

5.2. RESULTS

of 3 transformer layers and DT-Fixup slightly decreased the validation accuracy to

58.6% and the test accuracy remained the same. Finally, by adding 4 transformer

layers and DT-Fixup, we achieved a validation accuracy of 59% and a test accuracy

of 59%.

Fig. 5.2.3: Accuracy curve for Baseline Experiment for ReClor with DT-Fixup

The graph shown in Fig. 5.2.3 represents the accuracy curve for the Baseline

Experiment conducted on the ReClor model with DT-Fixup. The X-axis indicates

the number of epochs, while the Y-axis represents the accuracy achieved. The graph

indicates that the inclusion of transformer layer with DT-Fixup slightly improved

the accuracy. However, the addition of more layers did not lead to a significant

improvement in performance, and the accuracy fluctuated with three or four layers.

Therefore, it can be concluded that the ReClor model with DT-Fixup performed

better with the inclusion of one or two transformer layers, and increasing the number

of transformer layers did not result in any significant improvement and may even

slightly decrease the accuracy.

5.2.1.4 LogiQA with DT-Fixup Baseline Experiment

As we analyzed the baseline experiment for LogiQA with DT-Fixup, we observed that

the RoBERTa base model achieved a validation accuracy and test accuracy of 32.25.

60

5.2. RESULTS

Baseline Experiment for LogiQA with DT-Fixup

Model Name Transformer

Layers

Modifications Val. Acc. Test Acc.

RoBERTa base 0 None 32.25 32.25

RoBERTa base 1 DT-Fixup 40.8 31.33

RoBERTa base 2 DT-Fixup 34.5 31.79

RoBERTa base 3 DT-Fixup 33.83 31.18

RoBERTa base 4 DT-Fixup 34.16 31.49

However, when we added one transformer layer and DT-Fixup, the validation ac-

curacy increased to 40.8, while the test accuracy decreased to 31.33. Similarly, when

we added two transformer layers and DT-Fixup, the validation accuracy decreased to

34.5, and the test accuracy decreased to 31.79. The same pattern was observed for

models with three and four transformer layers and DT-Fixup, with validation accu-

racies of 33.83 and 34.16, and test accuracies of 31.18 and 31.49, respectively. These

results suggest that adding DT-Fixup to the RoBERTa base model and transformer

layers may not always lead to better performance in LogiQA.

Fig. 5.2.4: Accuracy curve for Baseline Experiment for LogiQA with DT-Fixup

61

5.2. RESULTS

The accuracy curve for the Baseline Experiment conducted on the LogiQA model

with DT-Fixup is shown in Fig. 5.2.4. The X-axis represents the number of epochs,

and the Y-axis shows the accuracy achieved. It can be observed that adding a trans-

former layer with DT-Fixup slightly increased the accuracy. However, the inclusion

of more layers did not lead to a significant improvement in performance, and the

accuracy fluctuated with three or four layers. Therefore, it can be concluded that

the LogiQA model with DT-Fixup performed better with the addition of one or two

transformer layers, and increasing the number of transformer layers did not result in

any significant improvement and may even slightly decrease the accuracy.

5.2.2 Normalization’s Impact on DT-Fixup Performance

We conducted a thorough analysis of the experimental results obtained through the

use of transformer layers on both the ReClor and LogiQA datasets. Furthermore,

we investigated the effects of DT-Fixup and PowerNorm techniques on these exper-

iments. By doing so, we aimed to gain a more comprehensive understanding of the

performance of the transformer layers in these contexts.

5.2.2.1 ReClor with PowerNorm Baseline Experiment

In this experiment, we evaluated the effectiveness of ReClor with PowerNorm on

RoBERTa large models with varying numbers of transformer layers. The goal was

to determine if this combination could improve the accuracy of the models on a

validation and test dataset.

We presented the results in a table, which includes the model name, validation

accuracy, and test accuracy for each variation of the RoBERTa large model with

PowerNorm and a different number of transformer layers.

62

5.2. RESULTS

Baseline Experiment for ReClor with PowerNorm

Model Name Transformer

Layers

Modifications Val. Acc. Test Acc.

RoBERTa large 0 None 60.2 43.6

RoBERTa large 1 PowerNorm 46.33 55.6

RoBERTa large 2 PowerNorm 31.0 37.2

RoBERTa large 3 PowerNorm 32.33 38.8

RoBERTa large 4 PowerNorm 26.0 31.2

The results show that the baseline RoBERTa large model achieved the highest

validation accuracy at 60.2%, but a lower test accuracy at 43.6%. The RoBERTa

large model with one transformer layer and PowerNorm achieved the highest test

accuracy at 55.6%, but a lower validation accuracy at 46.33%. The models with

two and three transformer layers did not showed improvements in accuracy with the

addition of PowerNorm, also the model with four transformer layers saw a decline in

performance.

Fig. 5.2.5: Baseline Experiment for ReClor with PowerNorm

63

5.2. RESULTS

The results of the baseline experiment shown in Fig. 5.2.5 suggest that the use

of ReClor with PowerNorm does not lead to improved accuracy in RoBERTa large

models with a moderate number of transformer layers. To determine the best con-

figuration for different types of datasets and tasks, additional experiments can be

conducted to explore the ideal number of transformer layers and PowerNorm settings

on other datasets.

5.2.2.2 LogiQA with PowerNorm Baseline Experiment

We conducted an experiment to evaluate the effectiveness of LogiQA with PowerNorm

on RoBERTa base models with varying numbers of transformer layers. The goal was

to determine if this combination could improve the accuracy of the models on a

validation and test dataset.

The results of the experiment are presented in a table, which includes the model

name, validation accuracy, and test accuracy for each variation of the RoBERTa base

model with PowerNorm and a different number of transformer layers.

Baseline Experiment for LogiQA with PowerNorm

Model Name Transformer

Layers

Modifications Val. Acc. Test Acc.

RoBERTa base 0 None 32.25 32.25

RoBERTa base 1 PowerNorm 42.2 32.41

RoBERTa base 2 PowerNorm 35.8 26.57

RoBERTa base 3 PowerNorm 39.4 30.10

RoBERTa base 4 PowerNorm 35.8 24.3

64

5.2. RESULTS

From the table, it is clear that the RoBERTa base model with one transformer

layer and PowerNorm achieved the highest validation accuracy of 42.2%. However, the

test accuracy for this model was only marginally higher than the baseline at 32.41%.

The models with two and three transformer layers also showed some improvement

in validation accuracy but saw a decline in test accuracy. The model with four

transformer layers saw a significant decline in both validation and test accuracy.

Fig. 5.2.6: Baseline Experiment for LogiQA with PowerNorm

In Fig. 5.2.6, we can see the results of a baseline experiment for LogiQA with

PowerNorm. The X-axis represents the number of epochs, while the Y-axis shows

the accuracy. The experiment suggests that using LogiQA with PowerNorm may

be effective in improving the accuracy of RoBERTa base models for this specific

task. However, the addition of PowerNorm and more transformer layers did not

consistently improve performance on the validation and test datasets. If you plan

to conduct further experiments, it may be worth exploring different combinations of

pre-processing techniques and models for LogiQA tasks.

5.2.2.3 ReClor with DT-Fixup and PowerNorm Baseline Experiment

We experimented to evaluate the effectiveness of using DT-Fixup and PowerNorm

in combination with RoBERTa large models with varying numbers of transformer

layers for the ReClor task. The objective was to determine if this combination could

improve the accuracy of the models on a validation and test dataset.

65

5.2. RESULTS

The results of the experiment are presented in a table, which includes the model

name, validation accuracy, and test accuracy for each variation of the RoBERTa large

model with DT-Fixup and PowerNorm and a different number of transformer layers.

Baseline Experiment for ReClor with DT-Fixup and PowerNorm

Model Name Transformer

Layers

Modifications Val. Acc. Test Acc.

RoBERTa large 0 None 60.2 43.6

RoBERTa large 1 DT-Fixup +

PowerNorm

50.83 61.00

RoBERTa large 2 DT-Fixup +

PowerNorm

48.33 58.00

RoBERTa large 3 DT-Fixup +

PowerNorm

48.83 58.6

RoBERTa large 4 DT-Fixup +

PowerNorm

50.83 61.00

From the table, it is evident that the addition of DT-Fixup and PowerNorm to

the RoBERTa large model improved the accuracy of the models on both validation

and test datasets. The model with one transformer layer achieved the highest test

accuracy of 61.00% with a validation accuracy of 50.83%. The models with two and

three transformer layers also showed improvements in test accuracy, but at the cost

of lower validation accuracy. The model with four transformer layers had the same

accuracy as the model with one transformer layer

66

5.2. RESULTS

Fig. 5.2.7: Baseline Experiment for ReClor with DT-Fixup and PowerNorm

Fig. 5.2.7 shows the results of a baseline experiment for ReClor with DT-Fixup

and PowerNorm, where the X-axis represents the number of epochs, and the Y-

axis represents accuracy. The experiment suggests that combining DT-Fixup and

PowerNorm may be effective in improving the accuracy of RoBERTa large models for

the ReClor task. Moreover, adding DT-Fixup and PowerNorm consistently improved

test accuracy across models with different numbers of transformer layers compared

to just PowerNorm layers added. Further experiments could explore the effectiveness

of combining DT-Fixup and PowerNorm with other pre-processing techniques and

models.

5.2.2.4 LogiQA with DT-Fixup and PowerNorm Baseline Experiment

In this study, we conducted a baseline experiment for LogiQA with DT-Fixup and

PowerNorm, using different variations of the RoBERTa base model with additional

transformer layers. The purpose of this experiment was to evaluate the impact of

DT-Fixup and PowerNorm on the model’s performance in the LogiQA task.

67

5.2. RESULTS

Baseline Experiment for LogiQA with DT-Fixup and PowerNorm

Model Name Transformer

Layers

Modifications Val. Acc. Test Acc.

RoBERTa base 0 None 60.2 32.25

RoBERTa base 1 DT-Fixup +

PowerNorm

34.0 31.33

RoBERTa base 2 DT-Fixup +

PowerNorm

34.5 31.79

RoBERTa base 3 DT-Fixup +

PowerNorm

33.833 31.182

RoBERTa base 4 DT-Fixup +

PowerNorm

34.166 31.49

The results of the experiment are summarized in the table above. The RoBERTa

base model achieved a validation accuracy and test accuracy of 32.25%. The models

with additional transformer layers and DT-Fixup and PowerNorm showed slight im-

provements in validation accuracy, but their test accuracy was lower than the base

model. The best-performing model was the RoBERTa base model with 2 transformer

layers and DT-Fixup and PowerNorm, achieving a validation accuracy of 34.5% and

a test accuracy of 31.79%.

68

5.3. OPTIMIZATION ALGORITHMS AND DT-FIXUP METHODOLOGY

Fig. 5.2.8: Baseline Experiment for LogiQA with DT-Fixup and PowerNorm

In Fig. 5.2.7, we present the results of a baseline experiment for ReClor with DT-

Fixup and PowerNorm. The X-axis represents the number of epochs, while the Y-axis

shows the accuracy. Our findings suggest that adding DT-Fixup and PowerNorm

to the RoBERTa base model does not consistently improve its performance in the

LogiQA task. We believe that further experimentation and analysis are necessary to

determine the optimal configuration of the model for this task.

5.3 Optimization Algorithms and DT-FixupMethod-

ology

We will perform an in-depth analysis of the experimental outcomes achieved through

the implementation of transformer layers on the ReClor and LogiQA datasets. Addi-

tionally, we will examine the impacts of both DT-Fixup and MADGRAD techniques

on these experiments. Our objective is to attain a thorough comprehension of the

performance of transformer layers in these particular settings.

5.3.0.1 ReClor with MADGRAD Baseline Experiment

In this experiment, we evaluated the performance of RoBERTa large model and its

variations with MADGRAD optimizer for the task of ReClor. The results are pre-

sented in the table above.

The baseline model, RoBERTa large, achieved a high validation accuracy of

69

5.3. OPTIMIZATION ALGORITHMS AND DT-FIXUP METHODOLOGY

60.2% and a test accuracy of 43.6%. However, upon adding transformer layers with

MADGRAD optimizer, the performance of the model degraded significantly. The

RoBERTa large model with one additional transformer layer and MADGRAD opti-

mizer achieved a validation accuracy of 23.16% and a test accuracy of 27.8%. The

models with two, three, and four additional transformer layers also experienced a de-

crease in performance, achieving validation accuracies of 19.66%, 20.5%, and 18.0%,

respectively, with corresponding test accuracies of 23.6%, 24.6%, and 21.6%.

Baseline Experiment for ReClor with MADGRAD

Model Name Transformer

Layers

Modifications Val. Acc. Test Acc.

RoBERTa large 0 None 60.2 43.6

RoBERTa large 1 MADGRAD 23.16 27.8

RoBERTa large 2 MADGRAD 19.66 23.6

RoBERTa large 3 MADGRAD 20.5 24.6

RoBERTa large 4 MADGRAD 18.0 21.6

However, upon adding transformer layers with MADGRAD optimizer, the perfor-

mance of the model degraded significantly. The RoBERTa large model with one

additional transformer layer and MADGRAD optimizer achieved a validation accu-

racy of 23.16% and a test accuracy of 27.8%. The models with two, three, and four

additional transformer layers also experienced a decrease in performance, achieving

validation accuracies of 19.66%, 20.5%, and 18.0%, respectively, with corresponding

test accuracies of 23.6%, 24.6%, and 21.6%.

70

5.3. OPTIMIZATION ALGORITHMS AND DT-FIXUP METHODOLOGY

Fig. 5.3.1: Baseline Experiment for ReClor with MADGRAD

In Fig. 5.3.1, we show the results of a baseline experiment for ReClor with MAD-

GRAD. The X-axis represents the number of epochs, while the Y-axis shows the

accuracy. Our findings indicate that adding transformer layers with MADGRAD op-

timizer does not improve the performance of the baseline model for the ReClor task.

In fact, it may even hurt the model’s ability to learn. Therefore, we suggest that

future research could explore other optimization techniques and model architectures

to improve performance on this task.

5.3.0.2 LogiQA with MADGRAD Baseline Experiment

We conducted a baseline experiment for LogiQA using the MADGRAD optimizer

and the RoBERTa base model with additional transformer layers. The results of this

experiment are summarized in the table below.

71

5.3. OPTIMIZATION ALGORITHMS AND DT-FIXUP METHODOLOGY

Baseline Experiment for LogiQA with MADGRAD

Model Name Transformer

Layers

Modifications Val. Acc. Test Acc.

RoBERTa base 0 None 32.25 32.25

RoBERTa base 1 MADGRAD 19.35 18.58

RoBERTa base 2 MADGRAD 25.65 28.57

RoBERTa base 3 MADGRAD 17.51 17.05

RoBERTa base 4 MADGRAD 21.044 18.58

The table shows the validation and test accuracies of the different models. The

RoBERTa base model had an accuracy of 32.25 for validation and 32.25 for test.

When we added one transformer layer with MADGRAD, the validation accuracy in-

creased to 19.35, but the test accuracy decreased to 18.58. Adding two transformer

layers improved the test accuracy to 28.57, while the validation accuracy was 25.65.

However, adding three transformer layers resulted in a drop in both validation and

test accuracy to 17.51 and 17.05, respectively. Finally, adding four transformer lay-

ers resulted in a slight improvement in validation accuracy to 21.044, but the test

accuracy remained low at 18.58.

72

5.3. OPTIMIZATION ALGORITHMS AND DT-FIXUP METHODOLOGY

Fig. 5.3.2: Baseline Experiment for LogiQA with MADGRAD

In Fig. 5.3.2, we present the results of a baseline experiment for LogiQA with

MADGRAD. The X-axis shows the number of epochs, while the Y-axis displays the

accuracy. Our results suggest that adding transformer layers and using MADGRAD

optimizer can have mixed effects or even negative impacts on the performance of the

RoBERTa model for LogiQA.

5.3.0.3 ReClor with DT-Fixup and MADGRAD Baseline Experiment

In this section, we present the results of the baseline experiments conducted for ReClor

with DT-Fixup and MADGRAD optimization. The objective of these experiments

was to evaluate the performance of RoBERTa large model with a varying number of

transformer layers.

73

5.3. OPTIMIZATION ALGORITHMS AND DT-FIXUP METHODOLOGY

Baseline Experiment for ReClor with DT-Fixup and MADGRAD

Model Name Transformer

Layers

Modifications Val. Acc. Test Acc.

RoBERTa large 0 None 60.2 43.6

RoBERTa large 1 DT-Fixup +

MADGRAD

20.0 24.0

RoBERTa large 2 DT-Fixup +

MADGRAD

22.0 26.4

RoBERTa large 3 DT-Fixup +

MADGRAD

21.16 25.4

RoBERTa large 4 DT-Fixup +

MADGRAD

18.83 22.6

The table shows the results of the baseline experiment for ReClor with DT-Fixup

and MADGRAD optimizer using RoBERTa large model. The model was evaluated

with varying numbers of transformer layers and modifications. The results indicate

that the addition of DT-Fixup and MADGRAD to the baseline model did not im-

prove the performance on the ReClor task. Models with more transformer layers and

modifications showed worse performance than the baseline model. The highest test

accuracy achieved was 26.4%, which was obtained with two transformer layers and

DT-Fixup and MADGRAD modifications. These results suggest that further exper-

imentation with different optimization techniques and model architectures may be

necessary to improve performance on this task.

74

5.3. OPTIMIZATION ALGORITHMS AND DT-FIXUP METHODOLOGY

Fig. 5.3.3: Baseline Experiment for ReClor with DT-Fixup and MADGRAD

The results of the experiment were presented in a graph labelled ”Fig. 5.3.3” with

accuracy on the Y-axis and the number of epochs on the X-axis. We then added more

transformer layers to the model, which resulted in improved performance. The best

results were achieved with the RoBERTa large model, which had four transformer

layers, DT-Fixup, and MADGRAD. This model achieved a validation accuracy of

18.83% and a test accuracy of 22.6%. However, the performance improvement was

not as significant as when only one layer was added.

5.3.0.4 LogiQA with DT-Fixup and MADGRAD Baseline Experiment

In this experiment, we investigated the impact of applying DT-Fixup and MADGRAD

optimizer on the performance of RoBERTa base model and its variants in the LogiQA

task. We experimented using a tabular format as shown above.

The results of the experiment show that the baseline RoBERTa base model achieved

the highest validation and test accuracies, with a score of 32.25% on both metrics.

However, when we added DT-Fixup and MADGRAD optimizer to the model, the

performance dropped significantly. For example, the RoBERTa base model with

1 transformer layer, DT-Fixup, and MADGRAD achieved a validation accuracy of

21.0% and a test accuracy of 20.27%.

75

5.3. OPTIMIZATION ALGORITHMS AND DT-FIXUP METHODOLOGY

Baseline Experiment for LogiQA with DT-Fixup and MADGRAD

Model Name Transformer

Layers

Modifications Val. Acc. Test Acc.

RoBERTa base 0 None 32.25 32.25

RoBERTa base 1 DT-Fixup +

MADGRAD

21.0 20.27

RoBERTa base 2 DT-Fixup +

MADGRAD

24.16 24.42

RoBERTa base 3 DT-Fixup +

MADGRAD

23.16 17.97

RoBERTa base 4 DT-Fixup +

MADGRAD

26.5 24.42

On the other hand, we observed an improvement in performance for some of

the models. For instance, the RoBERTa base model with 2 transformer layers, DT-

Fixup, and MADGRAD achieved a validation accuracy of 24.16% and a test accuracy

of 24.42%, which is higher than the baseline performance.

In contrast, for models with 3 and 4 transformer layers, we observed a decrease

in performance when we added DT-Fixup and MADGRAD optimizer. For example,

the RoBERTa base model with 3 transformer layers, DT-Fixup, and MADGRAD

achieved a validation accuracy of 23.16% and a test accuracy of 17.97%. Similarly,

the RoBERTa base model with 4 transformer layers, DT-Fixup, and MADGRAD

achieved a validation accuracy of 26.5% and a test accuracy of 24.42%.

76

5.3. OPTIMIZATION ALGORITHMS AND DT-FIXUP METHODOLOGY

Fig. 5.3.4: Baseline Experiment for LogiQA with DT-Fixup and MADGRAD

The results of the experiment were presented in a graph labelled ”Fig. 5.3.4”,

which showed the accuracy of the LogiQA model on the Y-axis and the number of

epochs on the X-axis.

Based on our analysis, we found that the impact of DT-Fixup and MADGRAD

optimizer on the performance of RoBERTa models in the LogiQA task is not con-

sistent and depends on the number of transformer layers. Our results show that

the accuracy of the LogiQA model varied with different combinations of transformer

layers, DT-Fixup, and MADGRAD optimizer.

In conclusion, learning rate warm-up (in which the learning rate is gradually

increased during the early stages of training) is particularly puzzling. This is not

required for most deep-learning architectures. However, training fails for transformers

if we just start with a typical learning rate. If we start with a very small learning

rate, then the training is stable, but then it takes an impractically long time.[7]

77

CHAPTER 6

Conclusion and Future Work

The transformer models have proved highly effective in NLP tasks when pre-trained

on large-scale generic corpora and fine-tuned on domain-specific data. Recent stud-

ies have shown that adding more transformer layers to the architecture can further

improve the model’s performance, even with limited data. We experimented with

different reading comprehension datasets with different logical reasoning structures,

namely, ReClor and LogiQA.

Our hypothesis predicted that PowerNorm would outperform LayerNorm due to

its ability to preserve first-order smoothness. While PowerNorm demonstrated supe-

rior performance compared to the base model in RoBERTa base, it did not fare as

well in the case of RoBERTa large. We believe this could be attributed to the larger

number of parameters in RoBERTa large and the limited amount of available data,

which may cause PowerNorm to underperform in comparison to LayerNorm.

In our initial prediction, we anticipated that MADGRAD, an optimization algo-

rithm, would outperform Adam in scenarios with sparse data. However, our practical

experiments revealed that MADGRAD performed poorly in both the RoBERTa base

and RoBERTa large models. This outcome might be attributed to the limited amount

of available data and the specific learning rate used. However, it is worth noting that

searching for an optimal learning rate can be computationally expensive and imprac-

tical in real-world settings.

For the ReClor dataset, the results indicated that adding one additional trans-

former layer to the RoBERTa large model improved the performance significantly,

with a validation accuracy of 60.646% and a test accuracy of 64.6%. However, adding

78

more layers did not lead to further improvement, and in fact, the performance dropped

dramatically with three layers or more. The best performance was achieved with the

RoBERTa large model with one additional transformer layer, which outperformed the

original RoBERTa large model by a significant margin.

For the LogiQA dataset, adding transformer layers to the RoBERTa base model

had a relatively small impact on the performance. Adding one transformer layer

resulted in a slight improvement in the validation accuracy, but the test accuracy

remained largely the same. Adding two transformer layers further improved the

performance, with a validation accuracy of 34.715% and a test accuracy of 34.715%.

The findings suggest that adding transformer layers to the ReClor model can

improve its accuracy, but a careful balance must be struck to avoid overfitting and

ensure efficient training of the model. Similarly, adding transformer layers to the

LogiQA model can lead to a slight increase in accuracy, but the performance gain

is not substantial, and adding more transformer layers does not lead to significant

improvements

The goal of the experiments was to determine if this combination could improve

the accuracy of RoBERTa models on these datasets. The experiments varied the

number of transformer layers and modifications made to the models. The results

showed that using PowerNorm did not lead to improved accuracy in RoBERTa models

with a moderate number of transformer layers in the ReClor dataset. On the other

hand, in the LogiQA dataset, the RoBERTa model with one transformer layer and

PowerNorm achieved the highest validation accuracy, but only marginally improved

the test accuracy compared to the baseline model. The models with two and three

transformer layers also showed some improvement in validation accuracy but saw a

decline in test accuracy. The model with four transformer layers saw a significant

decline in both validation and test accuracy.

For the ReClor task, the experiments evaluated the performance of the RoBERTa

large model and its variations with MADGRAD optimizer. The table shows that the

baseline RoBERTa large model achieved a high validation accuracy of 60.2% and a

test accuracy of 43.6%. However, upon adding transformer layers with MADGRAD

79

optimizer, the performance of the model degraded significantly. The models with

one, two, three, and four additional transformer layers achieved lower validation and

test accuracies. The figures also show a similar trend, where the model’s performance

decreases with the addition of transformer layers.

For the LogiQA task, the experiments evaluated the performance of the RoBERTa

base model with additional transformer layers and MADGRAD optimizer. The table

shows that the baseline RoBERTa base model achieved a validation and test accuracy

of 32.25%. Upon adding transformer layers with MADGRAD optimizer, the perfor-

mance of the model varied across different models. Adding one or four transformer

layers resulted in a lower test accuracy while adding two transformer layers resulted

in a higher test accuracy. Adding three transformer layers resulted in lower validation

and test accuracy.

The overall findings show that adding transformer layers with the MADGRAD

optimizer doesn’t consistently improve the performance of baseline models for these

tasks. This might be because MADGRAD misses the minima that the SGD or ADAM

optimizers can reach. Dual Averaging fails to provide stable performance for smaller

NLP datasets when using Transformer architectures, a problem that ADAM[19] or

SGD[40] seems to mitigate. Conducting an exhaustive learning rate (LR) sweep and

an LR scheduler decay sweep might help resolve some convergence issues, but this

method is computationally expensive for complex architectures like RoBERTA base

and large. However, PowerNorm appears to consistently stabilize DT-Fixup when

the number of transformer layers is lower.

For future work, it would be beneficial to explore other datasets with different

logical structures to evaluate the efficiency of the DT-Fixup methodology. Addition-

ally, with the MADGRAD optimizer, efforts should be made to find an efficient way

to perform a learning rate sweep and to discover an effective learning rate scheduler

or use a different optimizer.

80

REFERENCES

[1] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

[2] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,

Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter,

C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J.,

Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020a).

Language models are few-shot learners. CoRR, abs/2005.14165.

[3] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,

Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter,

C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J.,

Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020b).

Language models are few-shot learners. CoRR, abs/2005.14165.

[4] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using rnn

encoder-decoder for statistical machine translation. In Conference on Empirical

Methods in Natural Language Processing.

[5] Colmerauer, A. and Roussel, P. (1996). The birth of prolog. In History of pro-

gramming languages—II. ACM.

[6] Council, L. S. A. (2019). Lsat logical reasoning. https://www.lsac.org/lsat/

taking-lsat/testformat/logical-reasoning. Accessed: Sept. 16, 2019.

81

https://www.lsac.org/lsat/taking-lsat/testformat/logical-reasoning
https://www.lsac.org/lsat/taking-lsat/testformat/logical-reasoning

REFERENCES

[7] Defazio, A. and Jelassi, S. (2021). Adaptivity without compromise: A momentu-

mized, adaptive, dual averaged gradient method for stochastic optimization. CoRR,

abs/2101.11075.

[8] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-

training of deep bidirectional transformers for language understanding. CoRR,

abs/1810.04805.

[9] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. Journal of Machine Learning Research,

12(7).

[10] Gao, P., Geng, S., Qiao, Y., Wang, X., Dai, J., and Li, H. (2021). Scalable

transformers for neural machine translation. CoRR, abs/2106.02242.

[11] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. In Teh, Y. W. and Titterington, M., editors, Pro-

ceedings of the Thirteenth International Conference on Artificial Intelligence and

Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–256,

Chia Laguna Resort, Sardinia, Italy. PMLR.

[12] He Zheng, Liao Ni, Ran Xian, Shilei Liu, and Wenxin Li (2015). Bmdt: An opti-

mized method for biometric menagerie detection. In 2015 IEEE 7th International

Conference on Biometrics Theory, Applications and Systems (BTAS), pages 1–8.

[13] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation.

[14] Huang, X. S., Perez, F., Ba, J., and Volkovs, M. (2020a). Improving transformer

optimization through better initialization. In III, H. D. and Singh, A., editors,

Proceedings of the 37th International Conference on Machine Learning, volume

119 of Proceedings of Machine Learning Research, pages 4475–4483. PMLR.

[15] Huang, X. S., Perez, F., Ba, J., and Volkovs, M. (2020b). Improving transformer

82

REFERENCES

optimization through better initialization. In Proceedings of the International Con-

ference on Machine Learning (ICML).

[16] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. CoRR, abs/1502.03167.

[17] Jiao, F., Guo, Y., Song, X., and Nie, L. (2022). Merit: Meta-path guided

contrastive learning for logical reasoning.

[18] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P.

(2016). On large-batch training for deep learning: Generalization gap and sharp

minima. CoRR, abs/1609.04836.

[19] Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

[20] Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. (2017). RACE: Large-scale

ReAding comprehension dataset from examinations. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, pages 785–794,

Copenhagen, Denmark. Association for Computational Linguistics.

[21] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[22] Liu, J., Cui, L., Liu, H., Huang, D., Wang, Y., and Zhang, Y. (2020a). Logiqa: A

challenge dataset for machine reading comprehension with logical reasoning. CoRR,

abs/2007.08124.

[23] Liu, L., Liu, X., Gao, J., Chen, W., and Han, J. (2020b). Understanding the

difficulty of training transformers. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (EMNLP).

[24] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,

Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized BERT

pretraining approach. CoRR, abs/1907.11692.

83

REFERENCES

[25] McCarthy, J. (1989). Artificial intelligence, logic and formalizing common sense.

In Philosophical logic and artificial intelligence.

[26] Nguyen, T. Q. and Salazar, J. (2019a). Transformers without tears: Improving

the normalization of self-attention. arXiv preprint arXiv:1910.05895.

[27] Nguyen, T. Q. and Salazar, J. (2019b). Transformers without tears: Improving

the normalization of self-attention. In Proceedings of the 16th International Confer-

ence on Spoken Language Translation, Hong Kong. Association for Computational

Linguistics.

[28] Ouyang, S., Zhang, Z., and Zhao, H. (2021). Fact-driven logical reasoning. CoRR,

abs/2105.10334.

[29] Poliak, A. (2020). A survey on recognizing textual entailment as an NLP evalu-

ation. CoRR, abs/2010.03061.

[30] Popel, M. and Bojar, O. (2018). Training tips for the transformer model. The

Prague Bulletin of Mathematical Linguistics, 110:43–70.

[31] Popescu-Bodorin, N., Balas, V., and Motoc, I. (2012). The biometric menagerie

- a fuzzy and inconsistent concept. 5 th Int. Conf. on Soft Computing and Appli-

cations (Szeged, HU), 22-24 Aug 2012.

[32] Popescu-Bodorin, N., Balas, V. E., and Motoc, I. M. (2012). The biometric

menagerie - A fuzzy and inconsistent concept. CoRR, abs/1209.6189.

[33] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou,

Y., Li, W., and Liu, P. J. (2019). Exploring the limits of transfer learning with a

unified text-to-text transformer. CoRR, abs/1910.10683.

[34] Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. (2019). Zero: Memory

optimization towards training A trillion parameter models. CoRR, abs/1910.02054.

[35] Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unan-

swerable questions for squad. CoRR, abs/1806.03822.

84

REFERENCES

[36] Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016a). Squad: 100, 000+

questions for machine comprehension of text. CoRR, abs/1606.05250.

[37] Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016b). Squad: 100, 000+

questions for machine comprehension of text. CoRR, abs/1606.05250.

[38] Richardson, M., Burges, C. J., and Renshaw, E. (2013a). Mctest: A challenge

dataset for the open-domain machine comprehension of text. In Proceedings of

the 2013 Conference on Empirical Methods in Natural Language Processing, pages

193–203.

[39] Richardson, M., Burges, C. J., and Renshaw, E. (2013b). MCTest: A challenge

dataset for the open-domain machine comprehension of text. In Proceedings of

the 2013 Conference on Empirical Methods in Natural Language Processing, pages

193–203, Seattle, Washington, USA. Association for Computational Linguistics.

[40] Robbins, H. E. (1951). A stochastic approximation method. Annals of Mathe-

matical Statistics, 22:400–407.

[41] Schmidt, R. M. (2019). Recurrent neural networks (rnns): A gentle introduction

and overview. CoRR, abs/1912.05911.

[42] Shen, S., Yao, Z., Gholami, A., Mahoney, M. W., and Keutzer, K. (2020). Re-

thinking batch normalization in transformers. CoRR, abs/2003.07845.

[43] Sugawara, S. and Aizawa, A. (2016a). An analysis of prerequisite skills for reading

comprehension. In Proceedings of the Workshop on Uphill Battles in Language

Processing: Scaling Early Achievements to Robust Methods, pages 1–5.

[44] Sugawara, S. and Aizawa, A. (2016b). An analysis of prerequisite skills for read-

ing comprehension. In Proceedings of the Workshop on Uphill Battles in Language

Processing: Scaling Early Achievements to Robust Methods, pages 1–5.

[45] Sugawara, S. and Aizawa, A. (2016c). An analysis of prerequisite skills for reading

comprehension. In Proceedings of the Workshop on Uphill Battles in Language

85

REFERENCES

Processing: Scaling Early Achievements to Robust Methods, pages 1–5, Austin,

TX. Association for Computational Linguistics.

[46] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance

of initialization and momentum in deep learning. In Dasgupta, S. and McAllester,

D., editors, Proceedings of the 30th International Conference on Machine Learning,

volume 28 of Proceedings of Machine Learning Research, pages 1139–1147, Atlanta,

Georgia, USA. PMLR.

[47] Teli, M., Givens, G. H., Phillips, P., Draper, B. A., Beveridge, J., and Bolme,

D. S. (2011). Biometric zoos: Theory and experimental evidence. In Biomet-

rics, International Joint Conference on, pages 1–8, Los Alamitos, CA, USA. IEEE

Computer Society.

[48] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. CoRR,

abs/1706.03762.

[49] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2018).

GLUE: A multi-task benchmark and analysis platform for natural language under-

standing. CoRR, abs/1804.07461.

[50] Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F., and Chao, L. S.

(2019). Learning deep transformer models for machine translation. In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics, pages

1810–1822.

[51] Wang, S., Zhong, W., Tang, D., Wei, Z., Fan, Z., Jiang, D., Zhou, M., and

Duan, N. (2021). Logic-driven context extension and data augmentation for logical

reasoning of text. CoRR, abs/2105.03659.

[52] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan,

Y., Wang, L., and Liu, T. (2020). On layer normalization in the transformer

architecture. CoRR, abs/2002.04745.

86

REFERENCES

[53] Xu, H., Liu, Q., van Genabith, J., Xiong, D., and Zhang, J. (2019). Lips-

chitz constrained parameter initialization for deep transformers. arXiv preprint

arXiv:1911.03179.

[54] Xu, P., Yang, W., Zi, W., Tang, K., Huang, C., Cheung, J. C. K., and Cao,

Y. (2020). Optimizing deeper transformers on small datasets: An application on

text-to-sql semantic parsing. CoRR, abs/2012.15355.

[55] Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, I.,

Yao, Q., Roman, S., Zhang, Z., and Radev, D. R. (2018). Spider: A large-scale

human-labeled dataset for complex and cross-domain semantic parsing and text-

to-sql task. CoRR, abs/1809.08887.

[56] Yu, W., Jiang, Z., Dong, Y., and Feng, J. (2020). Reclor: A reading comprehen-

sion dataset requiring logical reasoning. CoRR, abs/2002.04326.

[57] Zhang, B., Titov, I., and Sennrich, R. (2019a). Improving deep transformer

with depth-scaled initialization and merged attention. In Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th In-

ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

pages 897–908.

[58] Zhang, H., Dauphin, Y., and Ma, T. (2019b). Residual learning without normal-

ization via better initialization. In Proceedings of the International Conference on

Learning Representations (ICLR).

87

VITA AUCTORIS

NAME: PREM
SHANKER MOHAN

PLACE OF BIRTH:
CHENNAI, INDIA

YEAR OF BIRTH: 19997

EDUCATION:

University of Windsor, M.Sc in Computer Science,
Windsor, Ontario, 2023

88

	Extending the Work of DT-Fixup: Examining the Effects of PowerNorm and MADGRAD Optimization on DT-Fixup Performance
	Recommended Citation

	DECLARATION OF ORIGINALITY
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background
	Transformers
	Understanding Encoders
	The Residuals

	Logical Reasoning
	Logic Identification
	Informal Logic
	Formal Logic
	Examples of Logical Structures

	Normalization
	Batch Normalization
	LayerNorm
	Power Normalization
	Optimization
	Loss Curve
	Challenges with Gradient Descent Optimization

	MADGRAD Optimization
	BERT and RoBERTa

	Related Works
	Adam optimization
	DT-Fixup

	Problem Statement and Methodology
	Problem Statement
	Methodology

	Experiments and Results
	Setup
	Datasets
	ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning
	LogiQA
	Evaluation Strategy and Metrics

	Results
	Baseline Experiments
	ReClor Baseline Experiment
	LogiQA Baseline Experiment
	ReClor with DT-Fixup Baseline Experiment
	LogiQA with DT-Fixup Baseline Experiment

	Normalization's Impact on DT-Fixup Performance
	ReClor with PowerNorm Baseline Experiment
	LogiQA with PowerNorm Baseline Experiment
	ReClor with DT-Fixup and PowerNorm Baseline Experiment
	LogiQA with DT-Fixup and PowerNorm Baseline Experiment

	Optimization Algorithms and DT-Fixup Methodology
	ReClor with MADGRAD Baseline Experiment
	LogiQA with MADGRAD Baseline Experiment
	ReClor with DT-Fixup and MADGRAD Baseline Experiment
	LogiQA with DT-Fixup and MADGRAD Baseline Experiment

	Conclusion and Future Work
	REFERENCES
	VITA AUCTORIS

