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Efficient Generalized Temporal Pattern Mining in
Big Time Series Using Mutual Information

Van Long Ho, Nguyen Ho, Torben Bach Pedersen, CS Distinguished Contributor, IEEE, and Panagiotis
Papapetrou

Abstract—Big time series are increasingly available from an ever wider range of IoT-enabled sensors deployed in various
environments. Significant insights can be gained by mining temporal patterns from these time series. Temporal pattern mining (TPM)
extends traditional pattern mining by adding event time intervals into extracted patterns, making them more expressive at the expense
of increased time and space complexities. Besides frequent temporal patterns (FTPs), which occur frequently in the entire dataset,
another useful type of temporal patterns are so-called rare temporal patterns (RTPs), which appear rarely but with high confidence.
Mining rare temporal patterns yields additional challenges. For FTP mining, the temporal information and complex relations between
events already create an exponential search space. For RTP mining, the support measure is set very low, leading to a further
combinatorial explosion and potentially producing too many uninteresting patterns. Thus, there is a need for a generalized approach
which can mine both frequent and rare temporal patterns. This paper presents our Generalized Temporal Pattern Mining from Time
Series (GTPMfTS) approach with the following specific contributions: (1) The end-to-end GTPMfTS process taking time series as input
and producing frequent/rare temporal patterns as output. (2) The efficient Generalized Temporal Pattern Mining (GTPM) algorithm
mines frequent and rare temporal patterns using efficient data structures for fast retrieval of events and patterns during the mining
process, and employs effective pruning techniques for significantly faster mining. (3) An approximate version of GTPM that uses mutual
information, a measure of data correlation, to prune unpromising time series from the search space. (4) An extensive experimental
evaluation of GTPM for rare temporal pattern mining (RTPM) and frequent temporal pattern mining (FTPM), showing that RTPM and
FTPM signficantly outperform the baselines on runtime and memory consumption, and can scale to big datasets. The approximate
RTPM is up to one order of magnitude, and the approximate FTPM up to two orders of magnitude, faster than the baselines, while
retaining high accuracy.

Index Terms—Temporal Pattern Mining, Rare Temporal Patterns, Time Series, Mutual Information.

✦

1 INTRODUCTION

IoT-enabled sensors have enabled the collection of many big
time series, e.g., from smart-meters, -plugs, and -appliances
in households, weather stations, and GPS-enabled mobile
devices. Extracting patterns from these time series can offer
new domain insights for evidence-based decision making
and optimization. As an example, consider Fig. 1 that shows
the electricity usage of a water boiler with a hot water tank
collected by a 20 euro Wifi-enabled smart-plug, and accurate
CO2 intensity (g/kWh) forecasts of local electricity, e.g.,
as supplied by the Danish Transmission System Operator
[1]. From Fig. 1, we can identify several useful patterns.
First, the water boiler switches On once a day, for one
hour between 6 and 7AM. This indicates that the resident
takes only one hot shower per day which starts between
5.30 and 6.30AM. Second, all water boiler On events are
contained in CO2 High events, i.e., the periods when CO2
intensity is high. Third, between two consecutive On events
of the boiler, there is a CO2 Low event lasting for one or
more hours which occurs at most 4 hours before the hot
shower (so water heated during that event will still be
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Fig. 1: CO2 intensity and water boiler electricity usage

hot at 6AM). Pattern mining can be used to extract the
relations between CO2 intensity and water boiler events.
However, traditional sequential patterns only capture the
sequential occurrence of events, e.g., that one boiler On
event follows after another, but not that there is at least
23 hours between them; or that there is a CO2 Low event
between the two boiler On events, but not when or for
how long it lasts. In contrast, temporal pattern mining (TPM)
adds temporal information into patterns, providing details
on when certain relations between events happen, and for
how long. For example, TPM expresses the above relations
as: ([7:00 - 8:00, Day X] BoilerOn → [6:00 - 7:00, Day X+1]
BoilerOn) (meaning BoilerOn is followed by BoilerOn the
next day), ([6:00 - 10:00, Day X] HighCO2 ≽ [7:00 - 8:00,
Day X] BoilerOn) (meaning HighCO2 contains BoilerOn),
and ([7:00 - 8:00, Day X] BoilerOn → [0:00 - 2:00, Day X+1]
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LowCO2→ [6:00 - 7:00, Day X+1] BoilerOn) (meaning there
is a LowCO2 event between two BoilerOn events). As the
resident is very keen on reducing her CO2 footprint, we
can rely on the above temporal patterns to automatically
(using the smart-plug) delay turning on the boiler until the
CO2 intensity is low again, saving CO2 without any loss of
comfort for the resident. In the smart city domain, temporal
patterns extracted from vehicle GPS data [2] can reveal
spatio-temporal correlations between traffic jams, advising
drivers to take another route for their morning commute.

Finding frequent temporal patterns (FTPs) is useful;
however, in many applications, some patterns appear rarely
but are still very interesting and useful due to high confi-
dence. We call such patterns rare temporal patterns (RTPs). For
example, considering smart city applications, a rare pattern
could be: ([20:00, 22:00] Snow ≽ [20:15, 21:15] HighWind
→ [21:20, 21:50] HighInjuryMotorist), which means that
the coincidence of snow and strong winds leads to traffic
accidents within an hour. This pattern occurs rarely but sup-
ports transportation coordinators in warning citizens about
traffic accidents. In health care, identifying symptoms and
relations among them supports health experts in diagnosing
diseases in the early phases.

Challenges of mining frequent temporal patterns. Mining
temporal patterns is much more expensive than mining
sequential patterns. Not only does the temporal information
add extra computation to the mining process, the complex
relations between events also add an additional exponential
factor O(3h

2

) to the O(mh) search space complexity (m is the
number of events and h is the length of temporal patterns),
yielding an overall complexity of O(mh3h

2

) (see Lemma 2 in
Section 4.4). Existing TPM methods [3], [4], [5] do not scale
to big datasets, i.e., many time series and many sequences,
and/or do not work directly on time series but only on pre-
processed temporal events.

Challenges of mining rare temporal patterns. The support
measure represents the frequency of a temporal pattern
across the entire dataset. However, to find rare temporal
patterns, the support has to be set very low, which causes
a combinatorial explosion, potentially producing too many
patterns that are uninteresting to the user. Existing work
proposes solutions to mine rare itemsets [6], [7], [8], [9]
and rare sequential patterns [10], [11], [12]. However, they
do not consider the temporal aspect of items/events. Thus,
addressing the explosion of rare temporal patterns with high
confidence is still an open problem.

Generalized temporal pattern mining. Since there are many
joint challenges in mining frequent and rare temporal pat-
terns, there is a need for a generalized approach that can mine
both types of patterns efficiently.

Contributions. In this paper, we present our comprehen-
sive Generalized Temporal Pattern Mining from Time Series
(GTPMfTS) approach which solves the above challenges.
The paper significantly extends a previous conference pa-
per [13]. Our key contributions are: (1) We present end-to-
end GTPMfTS process that receives time series as input, and
produces frequent/rare temporal patterns as output. Within
this process, a splitting strategy is proposed to convert time
series into event sequences while ensuring the preservation
of temporal patterns. (2) We propose the efficient Generalized
Temporal Pattern Mining (GTPM) algorithm to mine both

frequent and rare temporal patterns. The novelties of GTPM
are: a) the use of an efficient data structure, Hierarchical
Hash Tables, to enable fast retrieval of events and patterns
during the mining process; and b) pruning techniques based
on the Apriori principle and the transitivity property of
temporal relations to enable faster mining. (3) Based on the
information theory concept of mutual information, which
measures the correlation among time series, we propose a
novel approximate version of GTPM that prunes unpromising
time series to significantly reduce the search space and can
scale on big datasets, i.e., many time series and many se-
quences. (4) We perform extensive experiments on synthetic
and real-world datasets for both rare temporal pattern min-
ing (RTPM) and frequent temporal pattern mining (FTPM),
showing that our RTPM and FTPM significantly outperform
the baselines on both runtime and memory usage. Com-
pared to the baselines, the approximate RTPM has up to one
order of magnitude speedup, and the approximate FTPM up
to two orders of magnitude speedup, while retaining high
accuracy compared to the exact algorithms.

Compared to the the conference version [13], this paper
generalizes the TPM problem, to mine both frequent and
(the novel proposal of) rare temporal patterns. For FTPM,
this paper uses Hierarchical Hash Tables to retrieve events
and patterns quickly, a significant improvement over the
Hierarchical Pattern Graph in the conference version [13].
Moreover, we now combine the lower bound of support
and the lower bound of confidence from the conference
version [13] for the approximate FTPM to further accelerate
the mining. For RTPM, we introduce the first exact and ap-
proximate algorithms to mine rare temporal patterns. In the
present paper, we further provide a set of new experiments
to compare our algorithms with the baselines.

Paper Outline. The paper is structured as follows. Sec-
tion 2 discusses the related work. Section 3 formulates
the generalized temporal pattern mining problem. Section
4 describes the exact GTPM algorithm. Section 5 presents
the approximate GTPM algorithm. Section 6 presents the
experimental evaluation. Finally, Section 7 concludes and
points to future work.

2 RELATED WORK

Temporal pattern mining: Compared to sequential pattern
mining, TPM is rather a new research topic. One of the first
papers in this area is of Kam et al. that uses a hierarchical
representation to manage temporal relations [14], and based
on that mines temporal patterns. However, the approach in
[14] suffers from ambiguity when presenting temporal rela-
tions. For example, using the representation in [14], it is pos-
sible to have two temporal patterns that involve the same set
of temporal events, for example, (((a overlaps b) before c)
overlaps d), and ((a overlaps b) before (c contains d)). Thus,
the same set of events can be mapped to different temporal
patterns that are semantically different. Our GTPM avoids
this ambiguity by defining a temporal pattern as a set of
pairwise temporal relations between two events. In [15], Wu
et al. develop TPrefix to mine temporal patterns from non-
ambiguous temporal relations. However, TPrefix has several
inherent limitations: it scans the database repeatedly, and
the algorithm does not employ any pruning strategies to
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reduce the search space. In [16], Moskovitch et al. design a
TPM algorithm using the transitivity property of temporal
relations. They use this property to generate candidates by
inferring new relations between events. In comparison, our
GTPM uses the transitivity property for effective pruning. In
[17], Iyad et al. propose a TPM framework to detect events
in time series. However, their focus is to find irregularities
in the data. In [18], Wang et al. propose a temporal pattern
mining algorithm HUTPMiner to mine high-utility patterns.
Different from our GTPM which uses support and confidence
to measure the frequency of patterns, HUTPMiner uses util-
ity to measure the importance or profit of an event/ pattern,
thereby addresses an orthogonal problem. In [19], Amit et
al. propose STIPA which uses a Hoeppner matrix represen-
tation to compress temporal patterns for memory savings.
However, STIPA does not use any pruning/ optimization
strategies and thus, despite the efficient use of memory, it
cannot scale to large datasets, unlike our GTPM. Other work
[20], [21] proposes TPM algorithms to classify health record
data. However, these methods are very domain-specific,
thus cannot generalize to other domains.

The state-of-the-art TPM methods that currently achieve
the best performance are our baselines: H-DFS [5], TPMiner
[3], IEMiner [4], and Z-Miner [22]. H-DFS is a hybrid algo-
rithm that uses breadth-first and depth-first search strate-
gies to mine frequent arrangements of temporal intervals.
H-DFS uses a data structure called ID-List to transform
event sequences into vertical representations, and temporal
patterns are generated by merging the ID-Lists of different
events. This means that H-DFS does not scale well when the
number of time series increases. In [4], Patel et al. design a
hierarchical lossless representation to model event relations,
and propose IEMiner that uses Apriori-based optimizations
to efficiently mine patterns from this new representation.
In [3], Chen et al. propose TPMiner that uses endpoint and
endtime representations to simplify the complex relations
among events. Similar to [5], IEMiner and TPMiner do not
scale to datasets with many time series. Z-Miner [22], pro-
posed by Lee et al., is the most recent work addressing TPM.
Z-Miner improves the mining efficiency over existing meth-
ods by employing two data structures: a hierarchical hash-
based structure called Z-Table for time-efficient candidate
generation and support count, and Z-Arrangement, a struc-
ture to efficiently store event intervals in temporal patterns
for efficient memory consumption. Although using efficient
data structures, Z-Miner neither employs the transitivity
property of temporal relations nor mutual information for
pruning. Thus, Z-Miner is less efficient than our exact and
approximate GTPM in both runtimes and memory usage,
and does not scale to large datasets with many sequences
and many time series (see Section 6). Our GTPM algorithm
improves on these methods by: (1) using efficient data
structures and applying pruning techniques based on the
Apriori principle and the transitivity property of temporal
relations to enable fast mining, (2) the approximate GTPM
can handle datasets with many time series and sequences,
and (3), providing an end-to-end GTPMfTS process to mine
temporal patterns directly from time series, a feature that is
not supported by the baselines.

Rare pattern mining: Finding rare patterns that occur
infrequently in a given database has received some attention

in recent years. Techniques to find rare patterns in time
series, often called rare motifs, are proposed in [15], [23],
[24]. However, since time series motifs are the repeated sub-
sequences of the time series, rare motif discovery techniques
cannot deal with temporal events, and thus, are insufficient
for rare temporal pattern mining. A related approach con-
cerns rare association rules [6], [7], [8], [9], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34] that find rare associations
between items in the database. However, all the mentioned
work can only discover rare association rules built among
itemsets, and cannot deal with temporal events and the
complex temporal relations between them. Another research
direction studies rare sequential patterns [10], [11], [12],
[35], [36], [37]. However, rare sequential patterns only con-
sider sequential occurrence between events, and therefore,
cannot model other complex relations such as overlapping
or containing between temporal events. To the best of our
knowledge, there is currently no existing work that studies
rare temporal pattern mining which mines rare occurrences
of temporal patterns in a time series database.

Using correlations in TPM: Different correlation measures
such as expected support [38], all-confidence [39], and mu-
tual information (MI) [40], [41], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52] have been used to optimize
the pattern mining process. However, these only support
sequential patterns. To the best of our knowledge, our
proposed approximate GTPM is the first that uses MI to
optimize TPM.

3 PRELIMINARIES
In this section, we introduce the notations and the main
concepts that will be used throughout the paper.

3.1 Temporal Event of Time Series
Definition 3.1 (Time series) A time series X = x1, x2, ..., xn

is a sequence of data values that measure the same phe-
nomenon during an observation time period, and are
chronologically ordered.
Definition 3.2 (Symbolic time series) A symbolic time series
XS of a time series X encodes the raw values of X into
a sequence of symbols. The finite set of permitted symbols
used to encode X is called the symbol alphabet ΣX of X .

The symbolic time series XS is obtained using a map-
ping function f : X→ΣX that maps each value xi ∈ X to a
symbol ω ∈ ΣX . For example, let X = 1.61, 1.21, 0.41, 0.0 be
a time series representing the energy usage of an electrical
device. Using the symbol alphabet ΣX = {On, Off}, where
On represents that the device is on and operating (e.g.,
xi ≥ 0.5), and Off that the device is off (xi < 0.5), the
symbolic representation of X is: XS = On, On, Off, Off.
The mapping function f can be defined using existing time
series representation techniques such as SAX [53].
Definition 3.3 (Symbolic database) Given a set of time series
X = {X1, ..., Xn}, the set of symbolic representations of the
time series in X forms a symbolic database DSYB.

An example of the symbolic database DSYB is shown in
Table 1. There are 4 time series representing the energy
usage of 4 electrical appliances: {Stove, Toaster, Clothes
Washer, Iron}. For brevity, we name the appliances respec-
tively as {S, T, W, I}. All appliances have the same alphabet
Σ = {On, Off}.
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TABLE 1: A Symbolic Database DSYB

Time 10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55

S On On On On Off Off Off On On Off Off Off Off Off Off On On On Off Off Off Off Off Off Off Off Off On On On On On On On On On
T Off Off Off Off Off Off Off On On Off Off On On Off Off On On On Off Off Off Off Off Off Off Off Off On On On On On On On On On
W On On On On On On On On On Off Off Off Off On On On On On Off Off Off Off Off Off Off Off Off On On On On On On On On On
I Off Off Off Off Off Off On On On Off Off Off On On Off Off On On Off Off Off Off Off Off Off Off Off On On Off Off Off Off Off On On

TABLE 2: Temporal Relations between Events

Follows: Ei▷ei
→ Ej▷ej

ei

tsi tei±ϵ

tsj tej

ej
ei

tsi tei±ϵ

tsj tej

ej

tei±ϵ ≤ tsj

Contains: Ei▷ei
≽ Ej▷ej

eitsi tei ± ϵ

ej
tsj tej

eitsi tei ± ϵ

ej
tsj tej

eitsi tei ± ϵ

ej
tsj tej

eitsi tei ± ϵ

ej
tsj tej

(tsi ≤ tsj ) ∧ (tei±ϵ ≥ tej )

Overlaps: Ei▷ei
≬ Ej▷ej

eitsi tei ± ϵ

ej
tsj tej

do

(tsi < tsj ) ∧ (tei±ϵ < tej ) ∧ (tei − tsj ≥ do±ϵ)

TABLE 3: A Temporal Sequence Database DSEQ

ID Temporal sequences

1
(SOn,[10:00,10:15]), (TOff,[10:00,10:35]), (WOn,[10:00,10:40]),
(IOff,[10:00,10:30]), (SOff,[10:15,10:35]), (IOn,[10:30,10:40]), (SOn,
[10:35,10:40]), (TOn,[10:35,10:40])

2
(SOff,[10:45,11:15]), (TOff,[10:45,10:55]), (WOff,[10:45,11:05]),
(IOff,[10:45,11:00]), (TOn,[10:55,11:00]), (TOff,[11:00,11:15]),
(IOn,[11:00,11:05]), (WOn,[11:05,11:25]), (IOff,[11:05,11:20]),
(SOn,[11:15,11:25]), (TOn,[11:15,11:25]), (IOn,[11:20,11:25])

3 (SOff,[11:30,12:10]), (TOff,[11:30,12:10]), (WOff,[11:30,12:10]),
(IOff,[11:30,12:10])

4 (SOn,[12:15,12:55]), (TOn,[12:15,12:55]), (WOn,[12:15,12:55]),
(IOn,[12:15,12:20]), IOff,[12:20,12:50]), (IOn,[12:50,12:55])

Definition 3.4 (Temporal event in a symbolic time series)
A temporal event E in a symbolic time series XS is a tuple
E = (ω, T ) where ω ∈ ΣX is a symbol, and T = {[tsi , tei ]}
is the set of time intervals during which XS is associated
with the symbol ω.

Given a time series X , a temporal event is created by
first converting X into symbolic time series XS , and then
combining identical consecutive symbols in XS into one
single time interval. For example, consider the symbolic
representation of S in Table 1. By combining its consecutive
On symbols, we form the temporal event “Stove is On”
as: (SOn, {[10:00, 10:15], [10:35, 10:40], [11:15, 11:25], [12:15,
12:55]}).
Definition 3.5 (Instance of a temporal event) Let E = (ω, T )
be a temporal event, and [tsi , tei ] ∈ T be a time interval.
The tuple e = (ω, [tsi , tei ]) is called an instance of the event
E, representing a single occurrence of E during [tsi , tei ]. We
use the notation E▷e to say that event E has an instance e.

3.2 Relations between Temporal Events
We adopt the popular Allen’s relations model [54] and
define three basic temporal relations between events. Fur-
thermore, to avoid the exact time mapping problem in
Allen’s relations, we adopt the buffer idea from [5], adding
a tolerance buffer ϵ to the relation’s endpoints. However, we
change the way ϵ is used in [5] to ensure the relations are
mutually exclusive (proof is in the electronic appendix).

Consider two temporal events Ei and Ej , and their
corresponding instances, ei = (ωi, [tsi , tei ]) and ej =
(ωj , [tsj , tej ]). Let ϵ be a non-negative number (ϵ ≥ 0)
representing the buffer size. The following relations can be
defined between Ei and Ej through ei and ej .
Definition 3.6 (Follows) Ei and Ej form a Follows rela-
tion through ei and ej , denoted as Follows(Ei▷ei

,Ej▷ej
) or

Ei▷ei
→Ej▷ej

, iff tei±ϵ≤tsj .
Definition 3.7 (Contains) Ei and Ej form a Contains relation
through ei and ej , denoted as Contains(Ei▷ei

, Ej▷ej
) or

Ei▷ei
≽Ej▷ej

, iff (tsi ≤ tsj ) ∧ (tei ± ϵ ≥ tej ).
Definition 3.8 (Overlaps) Ei and Ej form an Overlaps
relation through ei and ej , denoted as Overlaps(Ei▷ei

,

Ej▷ej
) or Ei▷ei

≬ Ej▷ej
, iff (tsi < tsj ) ∧ (tei ± ϵ < tej ) ∧

(tei − tsj ≥ do ± ϵ), where do is the minimal overlapping
duration between two event instances, and 0 ≤ ϵ≪ do.

The Follows relation represents sequential occurrences of
one event after another. For example, Ei▷ei

is followed by
Ej▷ej

if the end time tei of ei occurs before the start time
tsj of ej . Here, the buffer ϵ is used as a tolerance, i.e., the
Follows relation between Ei▷ei

and Ej▷ej
holds if (tei + ϵ) or

(tei − ϵ) occurs before tsj . On the other hand, in a Contains
relation, one event occurs entirely within the timespan of
another event. Finally, in an Overlaps relation, the timespans
of the two occurrences overlap each other. Table 2 illustrates
the three temporal relations and their conditions.
3.3 Temporal Pattern
Definition 3.9 (Temporal sequence) A list of n event in-
stances S=<e1, ..., ei, ..., en> forms a temporal sequence if the
instances are chronologically ordered by their start times.
Moreover, S has size n, denoted as |S| = n.
Definition 3.10 (Temporal sequence database) A set of
temporal sequences forms a temporal sequence database DSEQ
where each row i contains a temporal sequence Si.

Table 3 shows the temporal sequence database DSEQ,
created from the symbolic database DSYB in Table 1.
Definition 3.11 (Temporal pattern) Let ℜ={Follows, Con-
tains, Overlaps} be the set of temporal relations. A temporal
pattern P=<(r12, E1, E2),...,(r(n−1)(n), En−1, En)> is a list
of triples (rij,Ei,Ej), each representing a relation rij ∈ ℜ
between two events Ei and Ej .

Note that the relation rij in each triple is formed using
the specific instances of Ei and Ej . A temporal pattern that
has n events is called an n-event pattern. We use Ei ∈ P
to denote that the event Ei occurs in P , and P1 ⊆ P to say
that a pattern P1 is a sub-pattern of P .
Definition 3.12 (Temporal sequence supports a pattern) Let
S=<e1,...,ei,...,en> be a temporal sequence. We say that S
supports a temporal pattern P , denoted as P ∈ S, iff |S| ≥
2 ∧ ∀(rij, Ei, Ej) ∈ P, ∃(el, em) ∈ S such that rij holds
between Ei▷el

and Ej▷em
.

If P is supported by S, P can be written as P=<(r12,
E1▷e1

, E2▷e2
), ..., (r(n−1)(n),En−1▷en−1

, En▷en
)>, where the
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relation between two events in each triple is expressed using
the event instances.

In Fig. 1, consider the sequence S =<e1=(HighCO2,
[6:00, 10:00]), e2=(BoilerOn, [7:00, 8:00]), e3=(LowCO2,
[13:00, 15:00])> representing the order of CO2 inten-
sity and boiler events. Here, S supports a 3-event
pattern P=<(Contains, HighCO2▷e1 , BoilerOn▷e2 ), (Fol-
lows, HighCO2▷e1 , LowCO2▷e3 ), (Follows, BoilerOn▷e2 ,
LowCO2▷e3 )>.

Maximal duration constraint: Let P ∈ S be a temporal
pattern supported by the sequence S. The duration between
the start time of the instance e1, and the end time of the
instance en in S must not exceed the predefined maximal
time duration tmax: ten − ts1 ≤ tmax.

The maximal duration constraint guarantees that the
relation between any two events is temporally valid. This
enables the pruning of invalid patterns. For example, under
this constraint, a Follows relation between a “Washer On”
event and a “Dryer On” event in Table 3 happening one
year apart should be considered invalid.

3.4 Frequency and Likelihood Measures
Given a temporal sequence database DSEQ, we want to find
patterns that occur at certain frequency in DSEQ. We use
support and confidence [55] to measure the frequency and
likelihood of a pattern.
Definition 3.13 (Support of a temporal event) The support
of a temporal event E in DSEQ is the number of sequences
S ∈ DSEQ containing at least one instance e of E.

supp(E) = |{S ∈ DSEQ s.t. ∃e ∈ S : E▷e}| (1)

The relative support of E is the fraction between supp(E) and
the size of DSEQ:

rel-supp(E) = supp(E)/|DSEQ| (2)

Similarly, the support of a group of events (E1, ..., En),
denoted as supp(E1, ..., En), is the number of sequences S ∈
DSEQ which contain at least one instance (e1, ..., en) of the
event group.
Definition 3.14 (Support of a temporal pattern) The support
of a pattern P is the number of sequences S ∈ DSEQ that
support P .

supp(P ) = |{S ∈ DSEQ s.t. P ∈ S}| (3)

The relative support of P in DSEQ is the fraction
rel-supp(P ) = supp(P)/|DSEQ| (4)

Definition 3.15 (Confidence of an event pair) The confidence
of an event pair (Ei, Ej) in DSEQ is the fraction between
supp(Ei, Ej) and the support of its most frequent event:

conf(Ei, Ej) =
supp(Ei, Ej)

max{supp(Ei), supp(Ej)}
(5)

Definition 3.16 (Confidence of a temporal pattern) The
confidence of a temporal pattern P in DSEQ is the fraction
between supp(P ) and the support of its most frequent event:

conf(P ) =
supp(P )

max1≤k≤|P |{supp(Ek)}
(6)

where Ek ∈ P is a temporal event. Since the denominator
in Eq. (6) is the maximum support of the events in P , the
confidence computed in Eq. (6) is the minimum confidence of

a pattern P in DSEQ, which is also called the all-confidence as
in [55]. Note that unlike association rules, temporal patterns
do not have antecedents and consequents. Instead, they
represent pair-wise temporal relations between events based
on their temporal occurrences. Thus, while the support and
relative support of event(s)/ pattern(s) defined in Eqs. (1)
− (4) follow the same intuition as the traditional support
concept, indicating how frequently an event/ pattern occurs
in a given database, the confidence computed in Eqs. (5)− (6)
instead represents the minimum likelihood of an event pair/
pattern, knowing the likelihood of its most frequent event.

Frequent temporal patterns vs. Rare temporal patterns: Con-
sider a temporal pattern P in a temporal sequence database
DSEQ with the support σ = supp(P ) and the confidence
δ = conf(P ). Pattern P is considered to be frequent in DSEQ
if both support σ and confidence δ are high, representing
the presence of pattern P in a large fraction of sequences
in the database. In contrast, pattern P is considered to be
rare in DSEQ if the support σ is low and the confidence δ
is high, indicating a type of pattern that occurs only in a
small fraction of sequences but with high likelihood, given
the occurrence evidence of the involved events.

Problem Definition: Generalized Temporal Pattern
Mining. Given a set of univariate time series X =
{X1, ..., Xn}, let DSEQ be the temporal sequence database
obtained from X , and σmin, σmax and δ be the mini-
mum support, maximum support and minimum confidence
thresholds, respectively. The Generalized Temporal Pattern
Mining from Time Series (GTPMfTS) problem aims to find
all temporal patterns P in DSEQ such that P satisfies the
support and confidence constraints, i.e., σmin ≤ supp(P ) ≤
σmax ∧ conf(P ) ≥ δ.

Using the three constraints σmin, σmax and δ, GTPMfTS
can mine frequent temporal patterns in DSEQ by setting
σmax =∞, and assigning σmin and δ to high threshold val-
ues. In contrast, to mine rare temporal patterns, GTPMfTS
will assign low threshold values to σmin and σmax, con-
straining on a low occurrence frequency, and a high value
to δ, constraining on a high likelihood of the patterns.

4 GENERALIZED TEMPORAL PATTERN MINING

In this section, we present the Generalized Temporal Pattern
Mining (GTPM) algorithm to mine both frequent and rare
temporal patterns from time series. Fig. 2 gives an overview
of the GTPMfTS process which consists of two phases.
The first phase, Data Transformation, converts a set of time
series X into a symbolic database DSYB, and then converts
DSYB into a temporal sequence database DSEQ. The second
phase, Generalized Temporal Pattern Mining (GTPM), mines
both frequent and rare temporal patterns, and consists of
three steps: (1) Mining Single Events, (2) Mining 2-Event
Patterns, and (3) Mining k-Event Patterns (k>2). The final
output is a set of all temporal patterns in DSEQ that satisfy
the minimum support, maximum support and minimum
confidence constraints.

4.1 Data Transformation
4.1.1 Symbolic Time Series Representation
Given a set of time series X , the symbolic representation of
each time series X ∈ X is obtained by using a mapping
function as in Def. 3.2.



6

Set of Time Series X

Symbolic Time Series Representation

Temporal Sequence Database Conversion

Single Events Mining

2-Event Patterns Mining

k-Event Patterns Mining (k > 2)

Temporal Patterns

G
TP

M
fT

S
Pr

oc
es

s

D
ata

Transform
ation

Tem
poralPatterns

M
ining

(G
TPM

)

DSYB

DSEQ

Fig. 2: The GTPMfTS process

S1 S2

t t

SOn
TOn WOn

IOn

(a) With no overlapping

S1 S2

tov
t

t

SOn
TOn WOn

IOn

(b) With overlapping

Fig. 3: Splitting strategy

4.1.2 Temporal Sequence Database Conversion
To convert DSYB to DSEQ, a straightforward approach is
to split the symbolic series in DSYB into equal-length se-
quences, each belongs to a row in DSEQ. For example, if
each symbolic series in Table 1 is split into 4 sequences, then
each sequence will last for 40 minutes. The first sequence S1

of DSEQ therefore contains temporal events of S, T, W, and I
from 10:00 to 10:40. The second sequence S2 contains events
from 10:45 to 11:25, and similarly for S3 and S4.

However, the splitting can lead to a potential loss of
temporal patterns. The loss happens when a splitting point
accidentally divides a temporal pattern into different sub-
patterns, and places these into separate sequences. We ex-
plain this situation in Fig. 3a. Consider 2 sequences S1

and S2, each of length t. Here, the splitting point divides
a pattern of 4 events, {SOn, TOn, WOn, IOn}, into two sub-
patterns, in which SOn and TOn are placed in S1, and WOn
and IOn in S2. This results in the loss of this 4-event pattern
which can be identified only when all 4 events are in the
same sequence.

To prevent such a loss, we propose a splitting strategy
using overlapping sequences. Specifically, two consecutive
sequences are overlapped by a duration tov: 0 ≤ tov ≤ tmax,
where tmax is the maximal duration of a temporal pattern. The
value of tov decides how large the overlap between Si and
Si+1 is: tov = 0 results in no overlap, i.e., no redundancy, but
with a potential loss of patterns, while tov = tmax creates
large overlaps between sequences, i.e., high redundancy,
but all patterns are preserved. As illustrated in Fig. 3b,
the overlapping between S1 and S2 keeps the 4 events
together in the same sequence S2, and thus helps preserve
the pattern.

4.2 Generalized Temporal Pattern Mining
We now present the GTPM algorithm to mine temporal
patterns, both frequent and rare, from DSEQ. We note that

Algorithm 1: Generalized Temporal Pattern Mining
Input: Temporal sequence database DSEQ, minimum

support threshold σmin, maximum support
threshold σmax, confidence threshold δ

Output: The set of temporal patterns P satisfying
σmin, σmax, δ

//Mining single events
1: foreach event Ei ∈ DSEQ do
2: Compute supp(Ei);
3: if supp(Ei) ≥ σmin then
4: Insert Ei to 1Freq;

//Mining 2-event patterns
5: EventPairs← Cartesian(1Freq,1Freq);
6: FrequentPairs← ∅;
7: foreach (Ei, Ej) in EventPairs do
8: Compute supp(Ei, Ej);
9: if supp(Ei, Ej) ≥ σmin then

10: FrequentPairs← Apply Lemma4(Ei, Ej);
11: foreach (Ei, Ej) in FrequentPairs do
12: Retrieve event instances;
13: Check temporal relations against σmin, σmax, δ;

//Mining k-event patterns
14: Filtered1Freq← Transitivity Filtering(1Freq);
15: kEvents← Cartesian(Filtered1Freq,(k-1)Freq);
16: FrequentkEvents← Apriori Filtering(kEvents);
17: foreach kEvents in FrequentkEvents do
18: Retrieve relations;
19: Iteratively check relations against σmin, σmax, δ;

for frequent patterns, only two constraints σmin and δ are
used, whereas with rare patterns, all three constraints σmin,
σmax, and δ are used. In the following when presenting the
GTPM algorithm, the discussion applies to both frequent
and rare patterns, with the implication that σmax is set to∞
when mining frequent patterns.

The main novelties of GTPM are: a) the use of efficient
data structures, i.e., the Hierarchical Lookup Hash (HLH)
structure [56], and b) the proposal of two groups of pruning
techniques based on the Apriori principle and the tempo-
ral transitivity property of temporal events. Particularly,
instead of using the Hierarchical Pattern Graph as in [13],
we use the Hierarchical Lookup Hash data structure to
enable faster retrieval of events and patterns during the
mining process. Algorithm 1 provides the pseudo-code of
our GTPM algorithm.

4.3 Mining Single Events
Hierarchical lookup hash structure HLH1: We use the
hierarchical lookup hash structure HLH1, illustrated in
Fig. 4 to store single events. HLH1 is a hierarchical data
structure that consists of two hash tables: the single event
hash table EH , and the event sequence hash table SH . Each
hash table has a list of <key, value> pairs. In EH , the key
is the event symbol ω ∈ ΣX representing the event Ei, and
the value is the set of sequences < Si, ..., Sk > (arranged in
an increasing order) that contain Ei. In SH , the key is taken
from the value component of EH , i.e., the set of sequences,
while the value stores event instances of Ei that occur in
the corresponding sequence in DSEQ. The HLH1 structure
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enables faster retrieval of event sequences and instances
when mining k-event patterns.

Mining Single Events: The first step in GTPM is to find
single events that satisfy the minimum support constraint
σmin (Alg. 1, lines 1-4). To do that, GTPM scans DSEQ to
compute the support of each event Ei, and checks whether
supp(Ei)≥ σmin. Note that for single events, we do not con-
sider the constraints on the confidence δ, since confidence
of single events is always 1, and on maximum support σmax

because of the following lemma.

Lemma 1. Let P be a temporal pattern and Ei be a single event
such that Ei ∈ P . Then supp(P ) ≤ supp(Ei).

Proof. Detailed proofs of all lemmas, theorems, and complexi-
ties in this article can be found in the electronic appendix.

From Lemma 1, a single event Ei whose support
supp(Ei) > σmax can form a pattern P that has supp(P ) ≤
σmax. Thus, the constraint on σmax is not considered for sin-
gle events to avoid the loss of potential temporal patterns.

We provide a running example using data in Table 3,
with σmin = 0.7, σmax = 0.9, and δ = 0.7. The data structure
HLH1, shown in Fig. 6, stores 7 single events satisfying
σmin constraint. The event WOff does not satisfy σmin (only
appears in sequences 2 and 4), and is thus omitted.

Complexity: The complexity of finding single events is
O(m·|DSEQ|), where m is the number of distinct events.

4.4 Mining 2-event Patterns
Search space of GTPM: The next step in GTPM is to
mine 2-event patterns. A straightforward approach would
be to enumerate all possible event pairs, and check whether
each pair can form patterns that satisfy the support and
confidence constraints. However, this naive approach is very
expensive. Not only does it need to repeatedly scan DSEQ
to check each combination of events, the complex relations
between events also add an extra exponential factor 3h

2

to
the mh number of possible candidates, creating a very large
search space that makes the approach infeasible.
Lemma 2. Let m be the number of distinct events in DSEQ, and
h be the longest length of a temporal pattern. The total number of
temporal patterns is O(mh3h

2

).
Lemma 2 shows the driving factors of GTPM’s expo-

nential search space (proof in the electronic appendix): the
number of events (m), the max pattern length (h), and
the number of temporal relations (3). A dataset of just a
few hundred events can create a very large search space
with billions of candidate patterns. The optimizations and
approximation proposed in the following sections will help
mitigate this problem.

Hierarchical lookup hash structure HLHk: We maintain
k-event groups and patterns found by GTPM using the
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Fig. 6: A hierarchical lookup hash tables
for the running example

HLHk (k ≥ 2) data structure, illustrated in Fig. 5. HLHk

contains three hash tables, each has a list of <key, value>
pairs: the k-event hash table EHk, the pattern hash table PHk,
and the pattern sequence hash table SHk. For each <key,
value> pair of EHk, key is the list of symbols (ω1..., ωk)
representing the k-event group (E1, ..., Ek), and value is an
object structure which consists of two components: (1) the list
of sequences < Si, ..., Sk > (arranged in increasing order)
where (E1, ..., Ek) occurs, and (2), a list of k-event temporal
patterns P = {(r12, E1, E2), ..., (r(k−1)(k), Ek−1, Ek)} cre-
ated from the k-event group (E1, ..., Ek). In PHk, the key
takes the value component of EHk, i.e. the k-event pattern
P , while the value is the list of sequences that support P .
In SHk, the key takes the value component of PHk, i.e.,
the list of sequences that support P , while the value is the
list of event instances from which the temporal relations in
P are formed. The HLHk hash structure helps speed up
the mining of k-event groups through the use of sequences
in EHk, and enables faster search for temporal relations
between k events using the information in PHk and SHk.

Two-steps filtering approach to mine 2-event patterns:
Given the huge set of pattern candidates stated in Lemma
2, it is expensive to check their support and confidence.
We propose a filtering approach to reduce the unnecessary
candidate checking. Specifically, the mining process is di-
vided into two steps: (1) it first finds k-event groups that
satisfy the minimum support and confidence constraints
using σmin and δ, (2) it then generates temporal patterns
only from those k-event groups. The correctness of this
filtering approach is based on the Apriori-inspired lemmas
below.

Lemma 3. Let P be a 2-event pattern formed by an event pair
(Ei, Ej). Then, supp(P ) ≤ supp(Ei, Ej).

From Lemma 3, the support of a pattern is at most the
support of its events. Thus, infrequent event pairs (those
do not satisfy minimum support) cannot form frequent
patterns and thereby, can be safely pruned.

Lemma 4. Let (Ei, Ej) be a pair of events forming a 2-event
pattern P . Then conf(P ) ≤ conf(Ei, Ej).

From Lemma 4, the confidence of a pattern P is always
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at most the confidence of its events. Thus, a low-confidence
event pair cannot form any high-confidence patterns and
therefore, can be safely pruned. We note that the Apriori
principle has already been used in other work, e.g., [3],
[5], for mining optimization. However, they only apply this
principle to the support (Lemma 3), while we further extend
it to the confidence (Lemma 4). Applying Lemmas 3 and 4
to the event filtering step will remove infrequent or low-
confidence event pairs, reducing the candidate patterns of
GTPM. Furthermore, we do not consider the constraint on
σmax in this filtering step to avoid the loss of 2-event pat-
terns, as event pairs that do not satisfy the σmax constraint
can still form 2-event patterns satisfying σmax (Lemma 3).

Step 2.1. Mining event pairs considering σmin and δ:
This step finds event pairs in DSEQ satisfying σmin and δ,
using the set 1Freq found in HLH1 (Alg. 1, lines 5-10).
First, GTPM generates all possible event pairs by calculating
the Cartesian product 1Freq × 1Freq. Next, for each pair
(Ei, Ej), the set Sij (representing the set of sequences where
both events occur) is computed by taking the intersection
between the set of sequences Si of Ei and the set of
sequences Sj of Ej in HLH1. Finally, we compute the
support supp(Ei, Ej) using Sij , and compare against σmin.
If supp(Ei, Ej) ≥ σmin, (Ei, Ej) has high enough support.
Next, (Ei, Ej) is further filtered using Lemma 4: (Ei, Ej) is
selected only if its confidence is at least δ. After this step,
only event pairs satisfying σmin and δ are kept in EH2 of
HLH2.

Step 2.2. Mining 2-event patterns: This step mines 2-
event patterns from the event pairs found in step 2.1 (Alg. 1,
lines 11-13), considering three constraints σmin, σmax, and δ.
For each event pair (Ei, Ej), we use the set of sequences
Sij to check the temporal relations between Ei and Ej .
Specifically, for each sequence S ∈ Sij , the pairs of event
instances (ei, ej) are extracted, and the relations between
them are verified. The support and confidence of each
relation r(Ei▷ei

, Ej▷ej
) are computed and compared against

σmin, and δ thresholds, after which only relations satisfying
the two constraints are selected and stored in PH2, while
their event instances are stored in SH2. Examples of the
relations in HLH2 can be seen in Fig. 6, e.g., event pair (SOn,
TOn). We also emphasize that HLH2 only stores patterns
that satisfy the two constraints σmin, and δ, thus, patterns in
PH2 are frequent temporal patterns. To mine rare temporal
patterns from HLH2, we take a further step by iterating
through every 2-event pattern P in PH2, and checking the
satisfaction of P against the constraint σmax.

Complexity: Let m be the number of single events in
HLH1, and i be the average number of event instances
of each event. The complexity of 2-event pattern mining is
O(m2i2 |DSEQ|2).

4.5 Mining k-event Patterns

Mining k-event patterns (k ≥ 3) follows a similar process
as 2-event patterns, with additional prunings based on the
transitivity property of temporal relations.

Step 3.1. Mining k-event combinations considering
σmin and δ: This step finds k-event combinations that satisfy
the minimum support and confidence constraints (Alg. 1,
lines 14-16).

Let (k-1)Freq be the set of (k-1)-event combinations found
in HLHk−1, and 1Freq be the set of single events in HLH1.
To generate all k-event combinations, the typical process
is to compute the Cartesian product: (k-1)Freq × 1Freq.
However, we observe that using 1Freq to generate k-event
combinations at HLHk can create redundancy, since 1Freq
might contain events that when combined with (k-1)Freq,
result in combinations that clearly cannot form any patterns
satisfying the minimum support constraint. To illustrate this
observation, consider the event IOn in HLH1 in Fig. 6. Here,
IOn is a frequent event, and thus, can be combined with
frequent event pairs in HLH2 such as (SOn, TOn) to create a
3-event combination (SOn, TOn, IOn). However, (SOn, TOn,
IOn) cannot form any 3-event patterns whose support is
greater than σmin, since IOn is not present in any frequent
2-event patterns in HLH2. To reduce the redundancy, the
combination (SOn, TOn, IOn) should not be created in the
first place. We rely on the transitivity property of temporal
relations to identify such event combinations.
Lemma 5. Let S =< e1,..., en−1 > be a temporal sequence that
supports an (n-1)-event pattern P =< (r12, E1▷e1

, E2▷e2
),...,

(r(n−2)(n−1), En−2▷en−2
, En−1▷en−1

) >. Let en be a new
event instance added to S to create the temporal sequence
S

′
=< e1, ..., en >.
The set of temporal relations ℜ is transitive on S

′
: ∀ei ∈ S

′
,

i < n, ∃r ∈ ℜ s.t. r(Ei▷ei
,En▷en

) holds.
Lemma 5 says that given a temporal sequence S, a new

event instance added to S will always form at least one
temporal relation with existing instances in S. This is due
to the temporal transitivity property, which can be used to
prove the following lemma.
Lemma 6. Let Nk−1 = (E1, ..., Ek−1) be a (k-1)-event com-
bination and Ek be a single event, both satisfying the σmin

constraint. The combination Nk = Nk−1 ∪ Ek can form k-event
temporal patterns whose support is at least σmin if ∀Ei ∈ Nk−1,
∃r ∈ ℜ s.t. r(Ei, Ek) is a frequent temporal relation.

From Lemma 6, only single events in HLH1 that appear
in HLHk−1 should be used to create k-event combinations.
Using this result, a filtering on 1Freq is performed before
calculating the Cartesian product. Specifically, from the
events in HLHk−1, we extract distinct single events Dk−1,
and intersect Dk−1 with 1Freq to remove redundant single
events: Filtered1Freq = Dk−1 ∩ 1Freq. Next, the Cartesian
product (k-1)Freq × Filtered1Freq is calculated to generate
k-event combinations. Finally, we apply Lemmas 3 and 4
to select k-event combinations kFreq which upheld the σmin

and δ constraints. Similar to step 2.1, we do not consider
σmax when generating the k-event combination.

Step 3.2. Mining k-event patterns: This step mines k-
event patterns that satisfy the three constraints of σmin,
σmax, and δ (Alg. 1, lines 17-19). Unlike 2-event patterns,
verifying the relations in a k-event combination (k ≥ 3)
is much more expensive, as it requires to compute the
frequency of 1

2k(k − 1) triples of temporal relations. To
reduce the cost of relation checking, we propose an iterative
verification method that relies on the transitivity property and
the Apriori principle.

Lemma 7. Let P and P
′

be two temporal patterns. If P
′ ⊆ P ,

then conf(P
′
) ≥ conf(P ).
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Lemma 8. Let P and P
′

be two temporal patterns. If P
′ ⊆ P

and supp(P
′
)

max1≤k≤|P |{supp(Ek)}Ek∈P
≤ δ, then conf(P ) ≤ δ.

Lemma 7 says that, the confidence of a pattern P is
always at most the confidence of its sub-patterns. Con-
sequently, from Lemma 8, a temporal pattern P cannot
be high-confidence if any of its sub-patterns are low-
confidence.

Let Nk−1 = (E1, ..., Ek−1) be a (k-1)-event combina-
tion in HLHk−1, N1 = (Ek) be an event in HLH1, and
Nk = Nk−1∪N1 = (E1, ..., Ek) be a k-event combination in
HLHk. To find k-event patterns for Nk, we first retrieve
the set Pk−1 containing (k-1)-event patterns of Nk−1 by
accessing the EHk−1 table. Each pk−1 ∈ Pk−1 is a list of
1
2 (k − 1)(k − 2) triples: {(r12, E1▷e1

, E2▷e2
),...,(r(k−2)(k−1),

Ek−2▷ek−2
, Ek−1▷ek−1

)}. We iteratively verify the possibility
of pk−1 forming a k-event pattern with Ek that can satisfy
the σmin constraint as follows. We first check whether the
triple (r(k−1)k, Ek−1▷ek−1

, Ek▷ek
) satisfies the constraints

of σmin, σmax, and δ by accessing the HLH2 table. If the
triple does not satisfy the minimum and maximum support
constraints (using Lemmas 5 and 6), or the confidence
constraint (using Lemmas 5, 7, and 8), the verifying process
stops immediately for pk−1. Otherwise, it continues on
the triple (r(k−2)k, Ek−2▷ek−2

, Ek▷ek
), until it reaches (r1k,

E1▷e1
, Ek▷ek

).
We note that the transitivity property of temporal rela-

tions has been exploited in [16] to generate new relations.
Instead, we use this property to prune unpromising candi-
dates (Lemmas 5, 6, 7, 8).

Complexity: Let r be the average number of (k-1)-event
patterns in HLHk−1. The complexity of k-event pattern
mining is O(|1Freq| · |(k-1)Freq| · r · k2·|DSEQ|).

GTPM overall complexity: Throughout this section, we
have seen that GTPM complexity depends on the size of
the search space (O(mh3h

2

)) and the complexity of the
mining process itself, i.e., O(m·|DSEQ|) + O(m2i2 |DSEQ|2)
+O(|1Freq| · |(k-1)Freq| · r · k2·|DSEQ|). While the parameters
m, h, i, r and k depend on the number of time series,
others such as |1Freq|, |(k-1)Freq| and |DSEQ| also depend on
the number of temporal sequences. Thus, given a dataset,
GTPM complexity is driven by two main factors: the num-
ber of time series and the number of temporal sequences.

5 APPROXIMATE GTPM
5.1 Mutual Information of Symbolic Time Series
Let XS and YS be the symbolic series representing the time
series X and Y , respectively, and ΣX , ΣY be their alphabets.
Definition 5.1 (Entropy) The entropy of XS , denoted as
H(XS), is defined as

H(XS) = −
∑

x∈ΣX

p(x) · log p(x) (7)

Intuitively, the entropy measures the amount of information
or the inherent uncertainty in the possible outcomes of a
random variable. The higher the H(XS), the more uncertain
the outcome of XS .

The conditional entropy H(XS |YS) quantifies the
amount of information needed to describe the outcome of
XS , given the value of YS , and is defined as

H(XS |YS) = −
∑

x∈ΣX

∑
y∈ΣY

p(x, y) · log p(x, y)

p(y)
(8)

Definition 5.2 (Mutual information) The mutual informa-
tion (MI) of two symbolic series XS and YS , denoted as
I(XS ;YS), is defined as

I(XS ;YS) =
∑

x∈ΣX

∑
y∈ΣY

p(x, y) · log p(x, y)

p(x) · p(y) (9)

The MI represents the reduction of uncertainty of one vari-
able (e.g., XS), given the knowledge of another variable
(e.g., YS). The larger I(XS ;YS), the more information is
shared between XS and YS , and thus, the less uncertainty
about one variable given the other.

Since 0 ≤ I(XS ;YS) ≤ min(H(XS), H(YS)) [57], MI has
no upper bound. To scale the MI into the range [0 − 1], we
use normalized mutual information as defined below.
Definition 5.3 (Normalized mutual information) The nor-
malized mutual information (NMI) of two symbolic time series
XS and YS , denoted as Ĩ(XS ;YS), is defined as

Ĩ(XS ;YS) =
I(XS ;YS)

H(XS)
= 1− H(XS |YS)

H(XS)
(10)

Ĩ(XS ;YS) represents the reduction (in percentage) of the
uncertainty of XS due to knowing YS . Based on Eq. (10),
a pair of variables (XS , YS) holds a mutual dependency
if Ĩ(XS ;YS) > 0. Eq. (10) also shows that NMI is not
symmetric, i.e., Ĩ(XS ;YS) ̸= Ĩ(YS ;XS).

5.2 Lower Bound of the Support of an Event Pair
Consider two symbolic series XS and YS . Let X1 be an event
in XS , Y1 be an event in YS , and DSYB and DSEQ be the
symbolic and the sequence databases created from XS and
YS , respectively. We first study the relationship between the
support of (X1, Y1) in DSYB and DSEQ.
Lemma 9. Let supp(X1, Y1)DSYB and supp(X1, Y1)DSEQ be the
support of (X1, Y1) in DSYB and DSEQ, respectively. Then
supp(X1, Y1)DSYB ≤ supp(X1, Y1)DSEQ holds.

Proof. (Sketch - Detailed proof in the electronic appendix).
Let n be the length of each symbolic time series in DSYB, and
m be the length of each temporal sequence. The number of
temporal sequences obtained in DSEQ is: ⌈ nm⌉.

The support of (X1, Y1) in DSYB is computed as:

supp(X1, Y1)DSYB =

∑⌈ n
m ⌉

i=1

∑m
j=1 sij

n
(11)

where

sij =

{
1, if (X1, Y1) occurs in row j of the sequence si in DSYB

0, otherwise

Moreover, we have:

supp(X1, Y1)DSEQ =

∑⌈ n
m ⌉

i=1 gi
n/m

=
m ·

∑⌈ n
m ⌉

i=1 gi
n

(12)

where

gi =

{
1, if (X1, Y1) occurs in the sequence gi in DSEQ

0, otherwise
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We also get:

supp(X1, Y1)DSEQ =
m ·

∑⌈ n
m ⌉

i=1 gi
n

=

∑⌈ n
m ⌉

i=1 m · gi
n

=

∑⌈ n
m ⌉

i=1

(∑m
j=1 sij + ϑi

)
n

(13)

where sij is defined as in Eq. (11), and

ϑi =

{
m−

∑m
j=1 sij , if

∑m
j=1 sij ̸= 0

0, otherwise

From Eq. (13), we have:

supp(X1, Y1)DSEQ =

∑⌈ n
m ⌉

i=1

∑m
j=1 sij

n
+

∑⌈ n
m ⌉

i=1 ϑi

n
= supp(X1, Y1)DSYB + ϑ (14)

where ϑ =
∑⌈ n

m
⌉

i=1 ϑi

n is the difference between the probabili-
ties of (X1, Y1) in DSEQ and DSYB.
From Eq. (14), we have:

supp(X1, Y1)DSYB ≤ supp(X1, Y1)DSEQ (15)

From Lemma 9, a frequent event pair in DSYB is also
frequent in DSEQ. We now investigate the relation between
Ĩ(XS ;YS) in DSYB and the support of (X1, Y1) in DSEQ.

Theorem 1. (Lower bound of the support) Let µmin be the min-
imum mutual information threshold. If the NMI Ĩ(XS ;YS) ≥
µmin, then the lower bound of the support of (X1, Y1) in DSEQ is:

supp(X1, Y1)DSEQ ≥ λ2 · e
W

(
log λ

1−µmin
1 ·ln2

λ2

)
(16)

where λ1 is the minimum support of Xi ∈ XS , λ2 is the support
of Y1 ∈ YS , and W is the Lambert function [58].

Proof. (Sketch - Detailed proof in the electronic appendix).
From Eq. (10), we have:

Ĩ(XS ;YS) = 1− H(XS |YS)

H(XS)
≥ µmin (17)

⇒ H(XS |YS)

H(XS)
=

p(X1, Y1) · log p(X1|Y1)∑
i p(Xi) · log p(Xi)

+

∑
i̸=1∧j ̸=1 p(Xi, Yj) · log p(Xi,Yj)

p(Yj)∑
i p(Xi) · log p(Xi)

≤ 1− µmin

(18)

Let λ1 = p(Xk) such that p(Xk) = min{p(Xi)},∀i, and
λ2 = p(Y1). We obtain:

H(XS |YS)

H(XS)
≥

p(X1, Y1) · log p(X1,Y1)
λ2

log λ1
(19)

From Eqs. (18), (19), the support lower bound of (X1, Y1) in
DSYB is derived as:

supp(X1, Y1)DSYB ≥ λ2 · e
W

(
log λ

1−µmin
1 ·ln 2

λ2

)
(20)

Since:
supp(X1, Y1)DSEQ ≥ supp(X1, Y1)DSYB (21)

It follows that:

supp(X1, Y1)DSEQ ≥ λ2 · e
W

(
log λ

1−µmin
1 ·ln 2

λ2

)
(22)

From Theorem 1, we can derive the minimum MI thresh-
old µmin such that the support of (X1, Y1) is at least σmin.

Corollary 1.1. The support of an event pair (X1, Y1) ∈
(XS , YS) in DSEQ is at least σmin if Ĩ(XS ;YS) is at least µmin,
where:

µmin ≥

1− λ2

e·ln 2·log 1
λ1

, if 0 ≤ σmin
λ2

≤ 1
e

1−
σmin·log

σmin
λ2

ln 2·log λ1
, otherwise

(23)

Interpretation of the support lower bound: Given two
symbolic series XS and YS , and a minimum mutual infor-
mation threshold µmin. Theorem 1 says that, if XS and YS

are mutually dependent with the minimum MI value µmin,
then the support of an event pair in (XS , YS) is at least
the lower bound in Eq. (16). Combining Theorem 1 and
Lemma 3, we can conclude that if an event pair of (XS ,YS)
has a support less than the lower bound in Eq. (16), then
any pattern P formed by that event pair also has support
less than that lower bound. This allows us to construct an
approximate version of GTPM (discussed in Section 5.5).

5.3 Lower bound of the Confidence of an Event Pair
Consider two events X1, Y1 of two symbolic series XS and
YS . We derive the confidence lower bound of (X1, Y1) in the
sequence database DSEQ as follows.

Theorem 2. (Lower bound of the confidence) Let σmin and
µmin be the minimum support and minimum mutual information
thresholds, respectively. Assume that supp(X1, Y1)DSEQ ≥ σmin.
If the NMI Ĩ(XS ;YS) ≥ µmin, then the lower bound of the
confidence of (X1, Y1) in DSEQ is:

conf(X1, Y1)DSEQ ≥ σmin · λ
1−µmin
σmin

1 ·
(

nx − 1

1− σmin

) λ3
σmin

(24)

where nx is the number of symbols in ΣX , λ1 is the minimum
support of Xi ∈ XS , and λ3 is the support of (Xi, Yj) ∈
(XS , YS) such that p(Xi|Yj) is minimal, ∀(i ̸= 1 ∧ j ̸= 1).

Proof. (Sketch - Detailed proof in the electronic ap-
pendix). Let λ1 = p(Xk) such that p(Xk) =
min{p(Xi)},∀i, and λ3 = p(Xm, Yn) such that p(Xm|Yn) =
min{p(Xi|Yj)},∀(i ̸= 1 ∧ j ̸= 1). Then, by applying the
min-max inequality theorem for the sum of ratio [59] to the
numerator of Eq. (18), we obtain:

H(XS |YS)

H(XS)
≥

p(X1, Y1) · log p(X1|Y1) + λ3 · log 1−p(X1,Y1)
nx−p(Y1)

log λ1

≥
σmin · log p(X1,Y1)

p(Y1)
+ λ3 · log 1−σmin

nx−1

log λ1
(25)

Next, assume that supp(Y1)DSYB ≥ supp(X1)DSYB . From Eqs.
(18), (25), the confidence lower bound of (X1, Y1) in DSYB is
derived as:

conf(X1, Y1)DSYB =
supp(X1, Y1)DSYB

supp(Y1)DSYB

≥ λ
1−µmin
σmin

1 ·
(

nx − 1

1− σmin

) λ3
σmin

(26)
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Since: conf(X1, Y1)DSEQ ≥ σmin · conf(X1, Y1)DSYB (27)

It follows that:

conf(X1, Y1)DSEQ ≥ σmin · λ
1−µmin
σmin

1 ·
(

nx − 1

1− σmin

) λ3
σmin

(28)

From Theorem 2, we can derive the minimum MI thresh-
old µmin such that the confidence of (X1, Y1) is at least δ.

Corollary 2.1. The confidence of an event pair (X1, Y1) ∈
(XS , YS) in DSEQ is at least δ if Ĩ(XS ;YS) is at least µmin,
where:

µmin ≥ 1− σmin · logλ1

 δ

σmin
·
(
1− σmin

nx − 1

) λ3
σmin

 (29)

Interpretation of the confidence lower bound: Given
two symbolic series XS and YS , and a minimum mutual
information threshold µmin. Theorem 2 says that, if XS and
YS are mutually dependent with the minimum MI value
µmin, then the confidence of an event pair in (XS , YS) is at
least the lower bound in Eq. (24). Combining Theorem 2 and
Lemma 4, if an event pair of (XS ,YS) has a confidence less
than the lower bound in Eq. (24), then any pattern P formed
by that event pair also has a confidence less than that lower
bound. This allows us to construct an approximate version
of GTPM (discussed in Section 5.5).

5.4 Upper Bound of the Support of an Event Pair

We derive the support upper bound of the event pair
(X1, Y1) of XS and YS in DSEQ as follows.

Theorem 3. (Upper bound of the support) Let σmin be the mini-
mum support threshold, and µmax be the maximum mutual infor-
mation threshold, respectively. Assume that supp(X1, Y1)DSEQ ≥
σmin. If the NMI Ĩ(XS ;YS) ≤ µmax, then the upper bound of
the support of (X1, Y1) in DSEQ is:

supp(X1, Y1)DSEQ ≤ λ2 · e

W


log

λ
1−µmax
5

λ
1−σmin
4

·ln 2

λ2


+ ϑ (30)

where: λ2 is the support of Y1 ∈ YS , λ4 is the fraction between
the support of (Xi, Yj) ∈ (XS , YS) and the support of Yj ∈ YS

such that p(Xi|Yj) is minimal, ∀i ̸= 1 ∧ j ̸= 1, λ5 is the
maximum support of Xi ∈ XS , and ϑ is the difference between
the probabilities of (X1, Y1) in DSEQ and DSYB.

Proof. (Sketch - Detailed proof in the electronic appendix).
Let λ2 = p(Y1), λ4 = min{p(Xi|Yj)} ∀(i ̸= 1 ∧ j ̸= 1), and
λ5 = max{p(Xi)} ∀i. We obtain:

H(XS |YS)

H(XS)
≤

p(X1, Y1) · log p(X1,Y1)
λ2

+ (1− σmin) · log λ4

log λ5
(31)

From Eqs. (10), we have:

Ĩ(XS ;YS) = 1− H(XS |YS)

H(XS)
≤ µmax ⇒

H(XS |YS)

H(XS)
≥ 1− µmax

(32)

From Eqs. (31) and (32), we have:

p(X1, Y1) · log p(X1,Y1)
λ2

+ (1− σmin) · log λ4

log λ5
≥ 1− µmax (33)

⇔ p(X1, Y1) ≤ λ2 · e

W


log

λ
1−µmax
5

λ
1−σmin
4

·ln 2

λ2


(34)

From Eq. (14), we have:

p(X1, Y1) = supp(X1, Y1)DSYB = supp(X1, Y1)DSEQ − ϑ (35)

From Eqs. (34) and (35), we have:

supp(X1, Y1)DSEQ ≤ λ2 · e

W


log

λ
1−µmax
5

λ
1−σmin
4

·ln 2

λ2


+ ϑ (36)

From Theorem 3, we can derive the maximum MI thresh-
old µmax such that the support of (X1, Y1) is at most σmax.

Corollary 3.1. The support of an event pair (X1, Y1) ∈
(XS , YS) in DSEQ is at most σmax if Ĩ(XS ;YS) is at most
µmax, where:

µmax ≤ 1−
σmax−ϑ

λ2
· log σmax−ϑ

λ2
+ log λ1−σmin

4

log λ5
(37)

Interpretation of the support upper bound: Given a
maximum MI threshold µmax, let XS and YS be two sym-
bolic series. Theorem 3 says that, if the NMI of XS and YS is
at most µmax, then the support of an event pair in (XS , YS)
is at most the upper bound in Eq. (30). Combining Theorem
3 and Lemma 3, we can conclude that if an event pair in
(XS ,YS) has a support less than the upper bound, then any
pattern P formed by that event pair also has support less
than that upper bound.

Setting the values of µmin and µmax: GTPM uses three
user-defined parameters, the minimum support σmin, the
maximum support σmax, and the minimum confidence δ
to mine both frequent and rare temporal patterns (with
σmax is set to ∞ in case of frequent patterns). To mine
frequent patterns that satisfy both σmin and δ constraints,
we select µmin such that both Eqs. (23) and (29) hold, i.e.,
the maximum value of µmin provided by the two equations.
On the other hand, to mine rare patterns that also have to
satisfy σmax constraint, µmax is chosen using Eq. (37).
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Algorithm 2: Approximate GTPM using MI
Input: A set of time series X , a minimum support

threshold σmin, a maximum support threshold
σmax, a minimum confidence threshold δ

Output: The set of temporal patterns P
1: Convert X to DSYB and DSEQ;
2: Scan DSYB to compute the probability of each event,

event pair, and plus ϑ value;
3: foreach pair of symbolic time series (XS , YS) ∈ DSYB do
4: Compute Ĩ(XS ;YS) and Ĩ(YS ;XS);
5: Compute µmin using Eqs. (23) and (29);
6: Compute µmax using Eqs. (37);
7: if min{Ĩ(XS ;YS), Ĩ(YS ;XS)} ≥ µmin then
8: if min{Ĩ(XS ;YS), Ĩ(YS ;XS)} ≤ µmax then
9: Insert XS and YS into XC ;

10: foreach XS ∈ XC do
11: Mine single events from XS as in Section 4.3;
12: foreach (XS , YS) ∈ XC do
13: Mine 2-event patterns from (XS , YS) as in Section

4.4;
14: if k ≥ 3 then
15: Mine k-event patterns similar to the exact GTPM in

Section 4.5;

5.5 Using the Bounds for Approximate GTPM
Approximate GTPM: Approximate GTPM is based on the
exact GTPM and performs the mining only on the set of
mutually dependent symbolic series XC ∈ X with minimum
and maximum MI thresholds µmin and µmax. Algorithm 2
describes the approximate GTPM. First, DSYB is scanned
once to compute the probability of each single event, pair of
events, and plus ϑ value (line 2). Next, NMI, µmin, and µmax

are computed for each symbolic series pair (lines 4-6). The
pairs of symbolic series whose min{Ĩ(XS ;YS), Ĩ(YS ;XS)}
is at least µmin, and min{Ĩ(XS ;YS), Ĩ(YS ;XS)} is at most
µmax are inserted into XC (lines 7-9). Then, we traverse each
series in XC to mine the single events (lines 10-11). Next,
each event pair in corresponding series in XC is employed to
mine the 2-event patterns (lines 12-13). For k-event pattern
(k ≥ 3), the mining process is similar to GTPM (lines 14-15).

Complexity analysis of Approximate GTPM: To com-
pute NMI, µmin, and µmax, we only have to scan DSYB
once to calculate the probability for each single event, pair
of events, and plus ϑ value. Thus, the cost of NMI, µmin,
and µmax computations is |DSYB|. On the other hand, the
complexity of the exact GTPM at HLH1 and HLH2 are
O(m2i2 |DSEQ|2)+O(m·|DSEQ|) (Sections 4.3 and 4.4). Thus,
the approximate GTPM is significantly faster than the exact
GTPM.

6 EXPERIMENTAL EVALUATION
We evaluate GTPM in two different settings: to mine rare
temporal patterns, named as RTPM, and to mine frequent
temporal patterns, named as FTPM. Note that for RTPM,
all three constraints σmin, σmax and δ are used, whereas
for FTPM, only σmin and δ are used. In each setting, the
performance of both exact and approximate versions are
assessed. We use real-world datasets from four applica-
tion domains: smart energy, smart city, sign language, and
health. Due to space limitations, we only present here the
most important results, and discuss other findings in the
electronic appendix.

TABLE 4: Characteristics of the Datasets

NIST UKDALE DataPort SC ASL INF

# sequences 1460 1520 1460 1216 1908 608
# variables 49 24 21 26 25 25

# distinct events 98 48 42 130 173 124
# instances/seq. 55 190 49 162 20 48

TABLE 5: Parameters and values
Params Values
Minimum
support σmin

User-defined:
σmin = 0.2%, 0.4%, 0.6% 1%, 3% ...

Maximum
support σmax

User-defined:
σmax = 2%, 6%, 10%, 15%, 20%, ...

Minimum
confidence δ

User-defined:
δ = 40%, 50%, 60%, 70%, 80%, ...

Overlapping
duration tov

User-defined:
tov (hours) = 0, 1, 2, 3 (NIST, UKDALE,
DataPort, and SC)
tov (frames) = 0, 150, 300, 450 (ASL)
tov (days) = 0, 7, 10, 14 (INF)

Tolerance
buffer ϵ

User-defined:
ϵ (mins) = 0, 1, 2, 3 (NIST, UKDALE, and
DataPort)
ϵ (mins) = 0, 5, 10, 15 (SC)
ϵ (frames) = 0, 30, 45, 60 (ASL)
ϵ (days) = 0, 1, 2, 3 (INF)

6.1 Experimental Setup
Datasets: We use three smart energy (SE) datasets, NIST

[60], UKDALE [61], and DataPort [62] that measure the
energy consumption of electrical appliances in residential
households. For the smart city (SC), we use weather and
vehicle collision data obtained from NYC Open Data Portal
[63]. For sign language, we use the American Sign Language
(ASL) datasets [64] containing annotated video sequences
of different ASL signs and gestures. For health, we combine
the influenza (INF) dataset [65] and weather data [66] from
Kawasaki, Japan. Table 4 summarizes their characteristics.

Baseline methods: Our exact RTPM version is referred
to as E-RTPM, and the approximate one as A-RTPM. Since
our work is the first that studies rare temporal pattern
mining, there is not an exact baseline to compare against
RTPM. However, we adapt the state-of-the-art method for
frequent temporal pattern mining Z-Miner [22] to find rare
temporal patterns. The Adapted Rare Z-Miner is referred to
as ARZ-Miner. Similarly, we denote the exact FTPM version
as E-FTPM, and the approximate one as A-FTPM. We use 4
baselines (detailed in Section 2) to compare with our FTPM:
Z-Miner [22], TPMiner [3], IEMiner [4], and H-DFS [5]. Since
the exact versions (E-RTPM and E-FTPM) and the baselines
provide the same exact solutions, we use the baselines only
for quantitative evaluation.

Infrastructure: We use a VM with 32 AMD EPYC cores
(2GHz), 512 GB RAM, and 1 TB storage.

Parameters: Table 5 lists the parameters and their values
used in our experiments.

6.2 Qualitative Evaluation

Rare temporal patterns: Table 6 shows several interesting rare
temporal patterns extracted by RTPM. Patterns P1-P5 are
from SC and P6-P8 are from INF. Analyzing these pat-
terns can reveal some rare but interesting relations between
temporal events. For example, P1-P5 show there exists an
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association between extreme weather conditions and high
accident numbers, such as high pedestrian injury during a
heavy snowing day, which is very important to act on even
though it occurs rarely.

Frequent temporal patterns: Table 7 lists some interesting
frequent temporal patterns extracted by FTPM. Patterns P9-
P15 are from SEs and P16-P18 are from ASL. Analyzing
these patterns will reveal useful information about the do-
mains. For example, P9-P15 show how the residents interact
with electrical appliances in their houses. Specifically, P9
shows that a resident turns on the light upstairs in the early
morning, and goes to the bathroom. Then, within a minute
later, the microwave in the kitchen is turned on. This pattern
occurs with minimum support of 20%, reflecting a living
habit of the residents. Moreover, P9 also implies that there
might be more than one person living in the house, in which
one resident is in the bathroom while the other is downstairs
preparing breakfast.

6.3 Quantitative Evaluation of RTPM
6.3.1 RTPM: Baseline comparison on real world datasets
We compare E-RTPM and A-RTPM with the adapted base-
line ARZ-Miner in terms of runtime and memory usage.
Figs. 7, 8, 9, and 10 show the comparison results on NIST
and SC. Note that Figs. 7-14 use the same legend and log-
scale y axes.

As shown in Figs. 7 and 8, A-RTPM achieves the best
runtime among all methods, and E-RTPM has better run-
time than the baseline. The range and average speedups of
A-RTPM compared to other methods are: [1.9-7.2] and 3.4
(E-RTPM), [5.4-48.9] and 16.5 (ARZ-Miner). The speedup of
E-RTPM compared to the baseline is [2.9-24.7] and 7.4 on
average. Note that the time to compute MI, µmin, and µmax

for NIST and SC in Figs. 7 and 8 are 35.4 and 28.7 seconds,
respectively, i.e., negligible compared to the total runtime.

In terms of memory consumption, as shown in Figs.
9 and 10, A-RTPM uses the least memory, while E-RTPM
uses less memory than the baseline. A-RTPM consumes [1.6-
3.9] (on average 2.1) times less memory than E-RTPM, and
[7.2-120.6] (on average 24.1) times less than ARZ-Miner. E-
RTPM uses [4.6-61.8] (on average 14.7) times less memory
than ARZ-Miner.

6.3.2 RTPM: Scalability evaluation on synthetic datasets
As discussed in Section 4, the complexity of GTPM in gen-
eral (and RTPM in particular) is driven by two main factors:
(1) the number of temporal sequences, and (2) the number
of time series. The evaluation on real-world datasets has
shown that E-RTPM and A-RTPM outperform the baseline
significantly in both runtimes and memory usage. However,
to further assess the scalability of RTPM, we scale these
two factors using synthetic datasets. Specifically, starting
from the real-world datasets, we generate 10 times more
sequences, and create up to 1000 synthetic time series. We
then evaluate the scalability of RTPM in two scenarios:
varying the number of sequences, and varying the number
of time series.

Figs. 11 and 12 show the runtimes of A-RTPM, E-RTPM
and the baseline when the number of sequences changes.
We can see that A-RTPM and E-RTPM outperform and scale

better than the baseline in this configuration. The range
and average speedups of A-RTPM w.r.t. other methods
are: [2.3-5.7] and 3.2 (E-RTPM), [5.1-19.8] and 12.5 (ARZ-
Miner). Similarly, the range and average speedups of E-
RTPM compared to ARZ-Miner are [2.7-7.6] and 5.3.

Figs. 13 and 14 compare the runtimes of A-RTPM with
other methods when changing the number of time series.
It is seen that, A-RTPM achieves highest speedup in this
configuration. The range and average speedups of A-RTPM
are [3.5-7.4] and 4.6 (E-RTPM), [7.2-24.8] and 15.2 (ARZ-
Miner), and of E-RTPM is [3.6-9.5] and 6.4 (ARZ-Miner).

On average, E-RTPM consumes 17.2 times less memory
than the baseline, while A-RTPM uses 20.6 times less mem-
ory than E-RTPM and the baseline in the scalability study.
Furthermore, Fig. 13a shows that A-RTPM and E-RTPM
can scale well on big datasets while the baseline cannot.
Specifically, the baseline fails for large configurations as it
runs out of memory, e.g., when # Time Series ≥ 1000 on the
synthetic NIST. We add an additional bar chart for A-RTPM,
including the time to compute MI, µmin, and µmax (top red)
and the mining time (bottom blue) for comparison, showing
that this time is negligible.

Finally, the percentage of time series and events pruned
by A-RTPM in the scalability test are provided in Table 8.
Note that for the NIST dataset, every time series has two
events, On and Off. Thus, the percentage of pruned time
series and the percentage of pruned events are the same in
NIST. We can see that the higher σmin, δ, and σmax, the more
time series (events) are pruned. This is because higher σmin

and δ result in higher µmin, and higher σmax results in lower
µmax, and thus, more pruned time series.

6.3.3 E-RTPM: Evaluation of different pruning techniques

We evaluate the following combinations of E-RTPM pruning
techniques: (1) NoPrune: E-RTPM with no pruning, (2)
Apriori: E-RTPM with Apriori-based pruning (Lemmas 3,
4), (3) Trans: E-RTPM with transitivity-based pruning (Lem-
mas 5, 6, 7, 8), and (4) All: E-RTPM applied both pruning
techniques.

We use 3 different scenarios that vary: the minimum sup-
port, the minimum confidence, and the maximum support.
Figs. 15, 16 show the results. We see that (All)-E-RTPM has
the best performance of all versions, with a speedup over
(NoPrune)-E-RTPM ranging from 15 up to 74, depending
on the configurations. Thus, the proposed prunings are very
effective in improving E-RTPM performance. Furthermore,
(Trans)-E-RTPM delivers a larger speedup than (Apriori)-
E-RTPM, with the average speedup between 12 and 28
for (Trans)-E-RTPM, and between 7 and 19 for (Apriori)-
E-RTPM, but applying both yields the best speedup.

6.3.4 A-RTPM: Evaluation of accuracy

To evaluate A-RTPM accuracy, we compare the patterns
extracted by A-RTPM and E-RTPM. Table 9 shows the
accuracies of A-RTPM for different σmin, δ, and σmax on
the real world datasets. It is seen that A-RTPM obtains high
accuracy (≥ 83%) with lowest σmin and δ, and highest σmax,
e.g., σmin = 1%,δ = 60%, σmax = 20%, and very high
accuracy (≥ 93%) with higher σmin and δ, and lower σmax,
e.g., σmin = 3%, δ = 70%, σmax = 10%.
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TABLE 6: Summary of Interesting Rare Patterns
Patterns σmin (%) δ (%) σmax (%)

(P1) Heavy Rain ≽ Unclear Visibility ≽ Overcast Cloudiness → High Motorist Injury 5 30 9
(P2) Heavy Rain ≬ Strong Wind → High Motorist Injury 2 40 6
(P3) Very Strong Wind → High Motorist Injury 5 40 9
(P4) Strong Wind ≬ High Pedestrian Injury 4 30 8
(P5) Extremely Unclear Visibility ≽ High Snow ≽ High Pedestrian Injury 3 45 7

(P6) Frost Temperature ≬ High Snow ≽ High Influenza 1 42 6
(P7) Low Temperature ≽High Influenza 1 42 6
(P8) Heavy Rain ≽ High Influenza 3 35 8

TABLE 7: Summary of Interesting Frequent Patterns
Patterns σmin (%) δ (%)

(P9) ([05:58, 08:24] First Floor Lights) ≽ ([05:58, 06:59] Upstairs Bathroom Lights) ≽ ([05:59, 06:06] Microwave) 20 30
(P10) ([18:00, 18:30] Lights Dining Room) → ([18:31, 20:16] Children Room Plugs) ≬ ([19:00, 22:31] Lights Living Room) 20 20
(P11) ([15:59, 16:05] Hallway Lights) → ([17:58, 18:29] Kitchen Lights ≽ ([18:00, 18:18] Plug In Kitchen) ≽ ([18:08, 18:15] Microwave) 20 25
(P12) ([06:02, 06:19] Kitchen Lights) → ([06:05, 06:12] Microwave) ≬ ([06:09, 06:11] Kettle) 20 35
(P13) ([16:45, 17:30] Washer) → ([17:40,18:55] Dryer) → ([19:05, 20:10] Dining Room Lights) ≽ ([19:10, 19:30] Cooktop) 10 30
(P14) ([06:10, 07:00] Kitchen Lights) ≽ ([06:10, 06:15] Kettle) → ([06:30, 06:40] Toaster) → ([06:45, 06:48] Microwave) 25 40
(P15) ([18:00, 18:25] Kitchen Lights) ≽ ([18:00, 18:05] Kettle) → ([18:05, 18:10] Microwave) → ([19:35, 20:50] Washer) 20 40

(P16) [2.12 seconds] Negation ≽ [0.27 seconds] Lowered Eye-brows 10 10
(P17) [2.04 seconds] Negation ≽ [0.52 seconds] Rapid Shake-head 10 10
(P18) [1.53 seconds] Wh-question ≽ [0.36 seconds] Lowered Eye-brows → [0.05 seconds] Blinking Eye-aperture 10 15

TABLE 8: Pruned Time Series and Events from A-RTPM

# Attr.

σmin (%) - δ (%) - σmax (%)
NIST SC

Pruned Time Series / Events (%) Pruned Time Series (%) Pruned Events (%)
6-80-20 3-70-15 1-60-10 6-80-20 3-70-15 1-60-10 6-80-20 3-70-15 1-60-10

200 59.50 39.50 22.50 48.50 30.50 15.50 39.10 25.10 11.90
400 58.50 38.25 21.25 45.75 29.75 14.75 37.55 24.30 11.45
600 56.50 36.17 19.83 43.17 27.17 14.33 36.43 23.03 10.57
800 51.63 35.88 19.63 42.38 23.88 14.25 33.55 21.28 10.30

1000 49.70 34.10 19.40 41.30 22.70 13.80 32.94 20.14 9.96

TABLE 9: RTPM Accuracy (%)

σmax (%)
σmin (%) - δ (%)

NIST SC
1-60 3-70 6-80 1-60 3-70 6-80

10 93 96 100 91 93 100
15 86 92 95 86 91 100
20 84 92 92 83 87 90
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Fig. 7: RTPM-Runtime Comparison on NIST (real-world)
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Fig. 8: RTPM-Runtime Comparison on SC (real-world)
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Fig. 9: RTPM-Memory Usage Comparison on NIST (real-world)
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Fig. 10: RTPM-Memory Usage Comparison on SC (real-world)
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Fig. 11: RTPM-Varying % of sequences on NIST (synthetic)
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Fig. 12: RTPM-Varying % of sequences on SC (synthetic)

6.4 Quantitative Evaluation of FTPM

6.4.1 FTPM: Baselines comparison on real world datasets

We compare E-FTPM and A-FTPM against the baselines
in terms of runtime and memory usage. Further, we also

compare E-FTPM and A-FTPM against E-HTPGM and A-
HTPGM from the conference version [13] to assess the
performance improvement obtained by using the new data
structure. Figs. 17, 18, 19, and 20 show the experimental
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Fig. 13: RTPM-Varying # of time series on NIST (synthetic)
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Fig. 14: RTPM-Varying # of time series on SC (synthetic)
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Fig. 15: Runtimes of E-RTPM on NIST (real-world)
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Fig. 16: Runtimes of E-RTPM on SC (real-world)
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Fig. 17: FTPM-Runtime Comparison on NIST (real-world)
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Fig. 18: FTPM-Runtime Comparison on SC (real-world)
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Fig. 19: FTPM-Memory Usage Comparison on NIST (real-world)
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Fig. 20: FTPM-Memory Usage Comparison on SC (real-world)

TABLE 10: The Accuracy of A-FTPM (%)

σmin (%)
δ (%)

NIST SC
10 20 50 80 10 20 50 80

10 87 89 91 94 78 83 98 100
20 96 89 91 94 83 83 98 100
50 100 100 96 94 99 99 98 100
80 100 100 100 100 100 100 100 100

results on NIST and SC.
We can see from Figs. 17 and 18 that A-FTPM achieves

the fastest runtime among all methods, and E-FTPM has
faster runtime than the baselines. On the tested datasets,
the range and average speedups of A-FTPM compared to
E-FTPM is [1.5-6.1] and 2.7, and compared to the baselines
is [4.2-356.1] and 45.8. The range and average speedup of
E-FTPM compared to the baselines is [2.6-130.4] and 24.7.

Note that the time to compute MI and µmin for NIST and
SC datasets in Figs. 17 and 18 are 32.6 and 26.4 seconds,
respectively, making it negligible in the total runtime. More-
over, by using the improved hierarchical hash table instead

of the hierarchical pattern tree in [13], both E-FTPM and
A-FTPM are more efficient than E-HTPGM and A-HTPGM.
The speedup of E-FTPM over E-HTPGM is in the range [1.1-
4.7], and A-FTPM over A-HTPGM is in the range [1.3-5.6].

Finally, A-FTPM is most efficient, i.e., achieves highest
speedup and memory saving, when the support threshold
is low, e.g., σmin = 20%. This is because typical datasets
often contain many patterns with very low support and
confidence. Thus, using A-FTPM to prune uncorrelated
series early helps save computational time and resources.
However, the speedup comes at the cost of a small loss in
accuracy (discussed in Section 6.4.2).

In terms of memory consumption, as shown in Figs. 19
and 20, A-FTPM uses the least memory, while E-FTPM uses
less memory than the baselines. A-FTPM consumes [1.4-3.6]
(on average 1.9) times less memory than E-FTPM, and [6.8-
112.6] (on average 15.4) times less than the baselines. E-
FTPM uses [4.1-58.2] (on average 5.8) times less memory
than the baselines. Compared to E-HTPGM and A-HTPGM
[13], E-FTPM and A-FTPM are both more memory efficient.
E-FTPM consumes [1.1-2.8] times less memory than E-
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HTPGM, while A-FTPM uses [1.2-3.1] times less memory
than A-HTPGM.

We also perform other experiments on FTPM, including
scalability evaluation on synthetic datasets, and evaluation
of different pruning techniques on real-world datasets as
in RTPM. These experiments are reported in the electronic
appendix.

6.4.2 A-FTPM: Evaluation of the accuracy
We proceed to evaluate the accuracy of A-FTPM by compar-
ing the patterns extracted by A-FTPM and E-FTPM. Table 10
shows the accuracies of A-FTPM for different support and
confidence thresholds on the real-world datasets. It is seen
that A-FTPM obtains high accuracy (≥ 78%) when σmin and
δ are low, e.g., σmin = δ = 10%, and very high accuracy
(≥ 95%) when σmin and δ are high, e.g., σmin = δ = 50%.

Other experiments: We analyze the effects of the tol-
erance buffer ϵ, and the overlapping duration tov to the
quality of extracted patterns. The analysis can be found in
the electronic appendix.

7 CONCLUSION AND FUTURE WORK

This paper presents our comprehensive Generalized
Frequent Temporal Pattern Mining from Time Series
(GTPMfTS) solution that offers: (1) an end-to-end GTPMfTS
process to mine both rare and frequent temporal patterns
from time series, (2) an efficient and exact Generalized
Temporal Pattern Mining (GTPM) algorithm that employs
efficient data structures and multiple pruning techniques
to achieve fast mining, and (3) an approximate GTPM
that uses mutual information to prune unpromising time
series, allows GTPM to scale on big datasets. Extensive
experiments conducted on real world and synthetic datasets
for rare temporal pattern mining (RTPM) and frequent
temporal pattern mining (FTPM) show that both exact and
approximate algorithms for RTPM and FTPM outperform
the baselines, consume less memory, and scale well on big
datasets. Compared to the baselines, the approximate A-
RTPM is up to an order of magnitude speedup and the
approximate A-FTPM delivers two orders of magnitude
speedup. In future work, we plan to extend GTPM to prune
at the event level to further improve their performance.
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