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Cortical Auditory Attention Decoding During
Music and Speech Listening

Adéle Simon , Gérard Loquet , Jan Østergaard , Senior Member, IEEE, and Søren Bech

Abstract— It has been demonstrated that from cortical
recordings, it is possible to detect which speaker a person
is attending in a cocktail party scenario. The stimulus
reconstruction approach, based on linear regression, has
been shown to be useable to reconstruct an approxima-
tion of the envelopes of the sounds attended to and not
attended to by a listener from the electroencephalogram
data (EEG). Comparing the reconstructed envelopes with
the envelopes of the stimuli, a higher correlation between
the envelopes of the attended sound is observed. Most of
the studies focused on speech listening, and only a few
studies investigated the performances and the mechanisms
of auditory attention decoding during music listening.
In the present study, auditory attention detection (AAD)
techniques that have been proven successful for speech
listening were applied to a situation where the listener is
actively listening to music concomitant with a distracting
sound. Results show that AAD can be successful for both
speech and music listening while showing differences in
the reconstruction accuracy. The results of this study also
highlighted the importance of the training data used in the
construction of the model. This study is a first attempt
to decode auditory attention from EEG data in situations
where music and speech are present. The results of this
study indicate that linear regression can also be used for
AAD when listening to music if the model is trained for
musical signals.

Index Terms— Auditory attention, electroencephalogra-
phy (EEG), envelope tracking, stimulus reconstruction,
music listening.

I. INTRODUCTION

IN COMPLEX sound scenes, human beings have the ability
to segregate sound streams and to focus their attention
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on one of the multiple sounds present [41]. A considerable
amount of literature has been published on this ability, often
called the cocktail party effect [10], [30]. These studies
particularly focus on situations where multiple speech signals
are presented to a listener. However, less research has explored
this effect where music is also present.

The last two decades have seen a growing trend toward
auditory attention decoding (AAD) from neuroimaging, as a
way to understand the underlying mechanisms and as a
potential application for future brain-computer interface (BCI)
or neuro-steered hearing assisting devices [3], [6]. Auditory
attention has been shown to induce neural responses [5],
[13], [22], for example, by modulating some neural frequency
bands [26], or by reshaping neural events [36], both during
speech listening [27] or music listening [11], [25], [42]. These
variations in event-related potentials (ERP) can be used to
decode auditory attention [11], [28], [42], but they present
several limitations. One of these limitations is the requirement
of the specific onset of the auditory signal, while another
challenge is the noisy nature of the neural signal. Those
limitations raise the need for several repetitions of the task
to extract useful ERP for hearing assistive BCI.

AAD has also been explored by looking at the mechanisms
of neural entrainment. Some acoustic features of the audio
heard, such as the temporal envelope of the audio signal heard
by a listener, are tracked by the brain [20]. It led to new
methods to analyze cortical responses due to continuous audio
stimuli based on linear (or non-linear) models that estimate:
either the neural response from the audio signal (encoding)
[12]; or the audio signal from the cortical response (decoding)
[2], [34], [35]. The decoding process, also known as the
backward method or stimulus reconstruction method, has been
demonstrated to be sensitive to auditory attention: when the
listener focuses on one source of sound in a complex auditory
environment, the cortical tracking of that attended sound is
increased compared to the tracking of the unattended sounds
[2], [12], [34], [44]. Several studies have demonstrated this
influence of attentional factors, from magnetoencephalography
[19], intracranial EEG [31] and intensively from scalp EEG
[4], [6], [7], [21], [32], [33], [34]. Most of these studies are
based on speech listening scenarios, where listeners have to
solve cocktail party effects with often two competing speech
streams.

The stimulus reconstruction approach has recently been
successfully applied to reconstruct musical signals [15], [17],
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[24], [29] but to a lesser extent than speech signals [24], [45].
AAD has also been applied to music, where the goal was
to decode attention directed towards individual instruments
in a multi-instrumental musical piece [3], [9], [23]. This
new research focus is relevant as music is often present in
natural sound scenes, either as a distracter or as a target of
attention. Therefore, performance and potential specificities
of the stimulus reconstruction method in a so-called “musical
cocktail party scenario” could be explored in a context where
multiple sounds that are speech or music are present and
compete for the listeners’ attention.

The present study investigated the performance of auditory
attention decoding based on a linear stimulus reconstruction
method in a musical cocktail party scenario. The primary goal
of this study is to test the performance of an AAD based
on previously used methodology in a listening situation that
includes music. In the experiment, participants listened to
a target sound, either speech or music, in the presence of
a competing distracter sound, which was also either speech
or music. During the listening task, the participants’ cortical
responses were continuously measured with high-density EEG
and used to train a linear model that was then used to recon-
struct the target stimuli and decode attention. The experimental
strategy was designed to test the hypotheses that the temporal
envelope of the target signal can be reconstructed regardless
of whether it is speech or music, and with an accuracy
above chance level; this decoding approach can be success-
fully used to decode attention in a musical cocktail party
scenario.

II. METHODS

A. Participants
Thirty-five participants (14 females), aged between 21 and

33-year-old (mean = 26,29) took part in the experiment.
No participants reported a known history of neurological
disorder or hearing loss. Apart from the three participants
who were native English speakers, all the others had working
experience or followed education in English. The participants
were compensated for their participation, and written informed
consent was obtained from all the participants. After recording,
two participants were excluded from the data due to poor data
quality in the raw data and thus not used for further analysis
(due to the large number of artefacts that contaminate every
trial).

B. Procedure
Each participant undertook 32 trials of one minute each.

In each trial, they were presented with two different sound
streams coming from separate loudspeakers. The loudspeakers
were separated in space in front of the listener (+/− 30 ◦

azimuth). For each trial, participants were asked to pay atten-
tion to one of the sounds (the target), while ignoring the other
sound (the distracter). The target, as well as the distracter,
could be either speech or music (see figure 1).

Before starting the task, the participants did a training trial
consisting of a trial similar to the real one with stimuli that
were not later reused in the study. They had the opportunity to

Fig. 1. A trial started with a visual cue that indicates which sound is
the target. Right after, the two sound streams start with a 2s offset to
help the participant to focus on the target. Participants listen to the two
concurring sounds for 60s. At the end of each trial, participants have to
answer two questions.

repeat this training as many times as they wanted and to ask
questions about the task before starting. At the end of each
trial, the participants answered two questions related to their
attention level and the quality of their listening experience.
Both questions were rated on a continuous scale with endpoint
labels offset 1.5 cm after the start and before the end of a
15 cm long scale.

• “How difficult was it to focus on the target stimuli?” -
Endpoint labels: Easy and Difficult

• “How would you describe your listening experience?” -
Endpoint labels Bad and Excellent

The subjects could take a break between trials. The partic-
ipants were instructed to keep their gaze fixed on a cross in
the middle of the screen for the entire trial duration and asked
to minimize body movements and blinking.

C. Stimuli
Four categories of stimuli were used, divided into two types

(music and speech), with each type separated into two genres.
• Piano Music: 8 excerpts of mono instrumental pieces

played on a piano
• Electronic music: 8 excerpts of polyphonic pieces of

instrumental electronic music
• Speech female: 8 excerpts of an audiobook read by a

woman in English
• Speech male: 8 excerpts of an audiobook read by a man

in English
Each excerpt was one minute long, and the participants

actively listened to the target throughout the whole minute.
Participants listened to the same type of target for a full
block (e.g. first a block of 8 trials of Piano Music, then
a block of 8 trials of Speech female). The order of the
block was randomized across participants. In the same trial,
the target and the distracter could both be music, speech,
or one of each type. Each excerpt was used only once
as a target. Distracters were so that a balanced number of
trials across conditions was obtained. For each trial, the
distracter was randomly drawn from the pool of the rele-
vant genre. In the case where both the target and distracter
were music in a trial, the two excerpts could not belong
to the same musical genre (e.g., target = piano music &
distracter = piano music). The location of the target and the
distracter (i.e. left or right loudspeaker) was randomized across
trials.
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Fig. 2. Example of 3 seconds of an envelope for speech and music.

D. EEG Data Acquisition and Pre-Processing
The experiment was carried out in a single session for each

participant. Continuous EEG data were recorded at 512 Hz
using a 64-channel g.HIamp-Research system (g.tec Medical
Engineering GmbH, Austria). The electrodes were placed
on the scalp according to the 10-20 international system.
The impedance of each electrode was maintained at lower
than 5kOhms.

After data collection, pre-processing was carried out using
EEGLAB v2021.1 [14]. The EEG data were referenced to the
average of all scalp electrodes. The EEG channels contami-
nated by noise were visually inspected and interpolated from
neighbouring electrodes. Independent Component Analysis
(ICA) was run from EEGLAB and the automated detection
plugin [37] allowed to remove the artefacts related to eye
blinks or eye movements. The EEG data were bandpass
filtered between 1 and 8 Hz and downsampled to a sampling
rate of 64 Hz. The choice of cutoff frequency was based
on previous studies on cortical stimulus reconstruction done
on speech signal [34]. The influence of cutoff frequency
was also tested on the present dataset: the results obtained
support the importance of the 1-8 Hz frequency range for
both speech reconstruction and music reconstruction. The
trials where the artefacts were too significant were discarded
(e.g., movements). The discarded data correspond to 7,68% of
the total data.

For the signals, amplitude envelopes from both target and
distracter were extracted using a Hilbert transform and then
downsampled to the same sampling rate of 64 Hz. Exam-
ples of the envelopes for speech and music can be seen in
Figure 2. The shape of envelopes for speech and music differ
due to the nature of the signal: for speech signal, due to
the pause between words, the envelope tends to drop to zero
and show a greater depth of modulation compared to music
envelopes.

E. Stimulus Reconstruction and Attention Decoding
The decoding of auditory attention from the EEG signal

was done with a conventional stimulus reconstruction method
[2], [12], [34]. With this method, the EEG signal is used
to reconstruct an estimate of the input stimulus through a
linear reconstruction multi-delay model. This model maps

Fig. 3. Schematic summary of auditory attention decoder.

the cortical activity measured with the EEG to the stimulus
envelope as follows:

s′(t) =

∑
n

∑
τ

g(τ, n)R(t − τ, n) (1)

where s′ is the reconstructed envelope, R(t − τ, n) is the EEG
response at time (t − τ) for electrode n, and g is the linear
model, which is a function of electrode n and time lags τ .
The time lags τ cover the interval from 0 ms to 500 ms post-
stimulus, in order to take into account time lags that have been
shown to influence AAD for both speech [34] and Music [24].
The model g can be estimated by minimizing the mean squared
error between the original and the reconstructed envelopes,
which can be solved analytically using ridge regularization
methods [44]:

g = (RT R + Iλ)−1 RT S (2)

where I is the identity matrix, and λ is the regularization
parameter used to prevent overfitting [2], [44]. The hyperpa-
rameter λ was estimated through a cross-validation approach,
as described in [12]. This test was run for each separated
subset of data (target = speech female, target = speech
male, target = music electronic, and target = music piano),
in order to ensure that the regularization factor is optimized
for each stimulus type. For those four categories, the optimal
regularization factor that produced the highest reconstruction
accuracy was similar at λ = 105.

The reconstruction accuracy is measured by calculating
Pearson’s r , the correlation coefficient, between the original
target envelope and the reconstructed one (rtarget ). The cor-
relation between the reconstructed envelope and the envelope
extracted from the distracter was also calculated (rdistracter ).
The correlation is calculated with an entire trial, corresponding
to 60 seconds of the reconstructed envelope and 60 seconds
of the original envelope.

For each reconstruction, the attention decoding was evalu-
ated by comparing the two correlation coefficients. A trial was
considered successfully decoded if the reconstructed envelope
had a greater correlation with the target envelope compared
to the correlation with the distracter envelope (i.e., rtarget >

rdistracter ).
For the present study, the stimulus reconstruction approach

was made using a custom-made analysis script on Matlab
R2021a.

F. Model Training
For each trial, a leave-one-out cross-validation method was

used to train the models. Each trial was decoded using a model
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obtained by averaging the parameter of the models trained
on all other trials. Through this experiment, several types of
models were used, all created with different sets of training
data:

• Trained on all: All trials, both when the target is speech
and music, minus the one under test, are used to calculate
the models.

• Trained on the same type and the same genre: Congruent
model, where all trials where the target is of the same
type and the same genre as the one under test (e.g., Piano
music), minus the one under test, are used to calculate the
models.

• Trained on the same type: All trials where the target is
of the same type as the one under test (either music or
speech), minus the one under test, are used to calculate
the models.

• Trained on opposite type: All trials where the target is
not of the same type as the one under test are used to
calculate the models.

III. RESULTS

Two measures were used to assess the performance of
auditory attention detection. The first one is the success rate
of attention detection, which corresponds to the percentage
of trials that were successfully decoded. To that aim, the
correlation between the reconstructed envelope is compared
to either the target’s envelope (rtarget ) or the distracter’s
envelope (rdistracter ). A trial is successfully decoded when
the correlation of the reconstructed envelope with the target
is greater than with the distracter (rtarget > rdistracter ). This
success rate can indicate if the model allows decoding auditory
attention better than chance. Chance level is calculated by
taking the mean and the confidence interval of a binomial
distribution with a success chance of 50%, corresponding to
a random binary decision.

Following that, the reconstruction accuracy was also investi-
gated, which corresponds to Pearson’s correlation coefficients
between the reconstructed envelope and the target envelope.
The goal is to investigate if the linear model can reconstruct the
target envelope better than chance, and then explore potential
differences between the reconstruction of musical envelopes
compared to the reconstruction of speech envelopes.

To establish the chance level, all conditions were com-
pared with a “random reconstruction accuracy”. The random
reconstruction accuracy was calculated with a reconstructed
envelope and an unrelated original envelope: e.g. the enve-
lope of the target used for trial 1 of Subject 1, where the
target was piano music, was correlated with the envelope
reconstructed from trial 14 from Subject 6, where the tar-
get was female speech. The pairing between the original
and reconstructed envelopes was randomized. Following that,
permutation tests were used to compare the reconstruction
accuracy for each condition to the random reconstruction
accuracy with 10 000 permutations. For each condition, sample
sizes used for the calculation of actual accuracy and random
accuracy were equal.

Fig. 4. Success rates across conditions obtained with models trained on
the same type and same genre as the target - Chance level is indicated
by dashed grey lines.

A. Congruent Model
The models were first calculated with training data picked

only from trials where the target was similar to the trial
under test, i.e. of the same type and same genre. By using
condition-specific reconstruction filters, the assumption is that
the models were not influenced by other listening conditions
and would be fitted to each specific trial. The highest decoding
success rate is obtained when the target of attention is speech,
either when the distracter is music (Success rate = 81.43%) or
when the distracter is speech (Success rate = 73.52%). When
the listener is actively listening to music, the success rate of
the AAD is a bit lower, at 70.76% when the distracter is also
music or 67.19% when the distracter is speech.

1) Success Rate: As shown in Figure 4, when using a con-
gruently trained model, auditory attention can be successfully
decoded, above chance level (chance level interval = 43.89%
to 56.11%), for all listening conditions.

2) Reconstruction Accuracy: For all conditions, reconstruc-
tion accuracy was significantly higher than the random
reconstruction accuracy (p < 0.0001), suggesting that for
all listening conditions, stimulus reconstructions are feasible
above chance level.

To explore differences between reconstruction accuracy
across conditions, Anova based on a general linear model
was performed to explore the main effect of fixed (lis-
tening conditions). Participants were included as a random
factor.

When comparing across conditions, the ANOVA shows
a significant effect of listening conditions (F(3, 998) =

25.980, p < 0.001), with significant differences, calculated
by posthoc comparisons with Bonferroni corrections, between
both of the “target music” conditions and the “target speech”
conditions (p < 0.001). Significant differences were also
found between the two “target speech” conditions (p = 0.004).
These results suggest that the stimulus reconstruction approach
can better reconstruct the target stimulus when the listener is
listening to speech compared to situations where the listener is
listening to music, especially when the distracter is a musical
sound (see figure 6-A).
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Fig. 5. Success rates across conditions obtained with differently trained
models - Chance level is indicated by dashed grey lines.

B. Other Training Conditions
In a second analysis, the training of the model was also

considered to evaluate the success rate and reconstruction
accuracy when using models trained on various types of
sounds. The goal of this analysis is to explore the influence
of the training data on the performance of the model.

1) Success Rate: Figure 5 shows the success rate of audi-
tory attention decoding when using models that are differently
trained. For the “target speech” conditions, the success rate
appears to be unaffected by the training data used, apart from
the “trained on opposite type” condition. In that condition, the
auditory attention model performs around the chance level,
suggesting that in such a case, auditory attention cannot be
successfully detected. For the other conditions, when the target
of attention is music, the training of the model influences
the performances. For the “target music & distracter music”
condition, only the most congruent condition (trained on the
same type and same genre) allows for successful decoding,
while all the other training conditions perform around the
chance level. For the “target music & distracter speech”
condition, while both congruent training conditions perform
above chance level (trained on the same type and same genre
and trained on the same type), for the two other conditions,
the success rate is considerably low. The low success rate,
below chance level, suggests that in these cases, the model
tends to reconstruct the distracter better than the target. The
poor success rate observed in this condition suggests that a
general decoder, trained on both speech and music, tends to
be biased toward speech reconstruction.

2) Reconstruction Accuracy: As for the congruent models,
reconstruction accuracy was significantly higher than the ran-
dom reconstruction accuracy (p < 0.0001) for all conditions
and for both target reconstruction accuracy and distracter
reconstruction accuracy. It suggests that for all listening condi-
tions, stimulus reconstructions are feasible above chance level,
either with the target or with the distracter.

A three-way ANOVA based on general linear model was
calculated with both listening conditions and model training as
fixed factors and participants as a random factor. Main effects
and interactions between fixed factors (Listening Condition x
Model Training) were explored, and residuals were checked to

be normally distributed. Results showed significant effects of
both Listening conditions (F(3, 4088) = 118.293, p < 0.001)
and Training conditions (F(3, 4088) = 96.642, p < 0.001).
A significant interaction between the two factors was also
found (F(9, 4088) = 7.065, p < 0.001). (See figure 6-A for
results) These results suggest that when the target of attention
is speech, the reconstruction is less precise when using a
model trained on different types of signals (here trained only
on music). For all other training conditions, reconstruction
performances are equivalent. When music is the target of
attention, the training of the model influences the results.
Training on an incongruent model, with only trials from a
different type, decrease the reconstruction performance for
speech. Contrary to the “target speech” conditions, here, using
a model trained on the same musical genre increase the recon-
struction performance compared to a generic musical model
(“trained on the same type”) or a generic model (“trained
on all”).

Figure 6-B shows the correlations obtained when calculat-
ing the correlation between the reconstructed envelope and
the distracter envelope. First, it can be observed that the
results obtained are above chance level, for all conditions.
That suggests that it is also possible to reconstruct sounds
that were heard but not actively focused on. However, for most
situations, this reconstruction is lower, as the correlation with
the original envelope is smaller, indicating that the distracter
sound can also be reconstructed, but to a lesser extent than
the target.

The situation is different when the target is music and
the distracter is speech. In that case, when the model is
trained only on musical signal (“trained on the same type” or
trained on the same type and same genre”), the reconstruction
accuracy for the distracter is lower than the reconstruction
accuracy with the target, and follow a similar trend compared
to the other listening conditions. When the model is trained
on speech signal (“trained on opposite signal” or “trained on
all”), the reconstruction accuracy of the distracter is greater. It
is still lower than the target reconstruction accuracies obtained
with speech as a target, but on average greater than the target
reconstruction accuracy obtained with music as a target. This
suggests that when trained with speech signals, the model
may be biased towards speech reconstruction, which can also
explain the poor success rate obtained for the conditions where
music is a target, speech is a distracter, and the model is trained
on speech.

C. Effect of Size of Training Set
In the aforementioned analysis, the size of the training

set differed: as the general model used all available data,
the training dataset is larger than for the model trained on
only a subset of data (e.g. congruent models trained on one
specific type and genre). This approach was chosen to optimize
training by using as much data as possible. However, this
difference in the size of the training sets may influence the
conclusions of the current study. To control this factor, the
success rates for AAD were recalculated with models trained
on smaller training sets to ensure that all training subsets were
of equal size (i.e. the models were trained on 252 trials of one
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Fig. 6. Reconstruction accuracies across conditions obtained with
differently trained models, between A- reconstructed and target stimuli;
B- reconstructed and distracter stimuli - Chance level is indicated by
dashed grey lines.

minute). For each training condition, the training subsets were
randomly selected from the available training data. During
the selection, the type of data was controlled to ensure a
balanced distribution of conditions in the smaller training set
(e.g. for the subset selection for a model trained on both
speech and music, the number of trials where Target = Music
is equal to the number of trials where Target = speech).
An exact McNemar’s test was used to test if the success
rates obtained with equally-sized training sets differ from
the success rates from unequally-sized training sets. The test
determined that there were no significant differences between
the two conditions (p =.275).

D. Subjective Ratings
Two-way mixed model ANOVAs were conducted to exam-

ine the effect of condition and participants (included as a
random factor), as well as the interactions, on the subjective
ratings of the participants, attention and quality of listening
experience (QoLE); residuals were checked to be normally
distributed.

For attention, significant effects were found for the con-
dition factor F(3, 998) = 20.081, p < 0.001. For QoLE,
significant effects were found for the condition factor
F(3, 998) = 48.618, p < 0.001. This suggests that while
there are differences between the conditions in terms of
difficulty to focus on the target stimuli and quality of listening
experience, it also varies across individuals. Results can be
seen in figure 7.

Fig. 7. Subjective ratings across conditions, mean and 95% CI across
participants.

In order to explore a potential link between cortical
reconstruction accuracy and subjective ratings, Pearson’s cor-
relations have been run between the reconstruction accuracy
values and the subjective rating. For the attention ratings,
a small but significant correlation has been found with the
reconstruction accuracy (r(5168) = 0.052, p < 0.001).
Similarly, the ratings of QoLE ratings are slightly correlated
with the cortical reconstruction accuracy (r(5168) = 0.042,

p = 0.003)

IV. DISCUSSION

This study attempts to decode auditory attention from con-
tinuous cortical responses, measured with EEG, in a musical
cocktail party scenario. Participants were presented with two
streams of sounds simultaneously, which could be either
speech or music, and asked to focus on one of the sounds (tar-
get) while ignoring the other (distracter). A linear regression
method that maps the cortical data to the audio signal was
used to reconstruct the input stimuli, and the reconstruction
was used to decode the attention of the listener.

For each trial, the attention decoding was done by compar-
ing the reconstructed envelope with both the target envelope
and the distracter envelope. As the stimulus reconstruction
approach has been shown to be sensitive to selective auditory
attention, it was hypothesized that the reconstructed envelope
should correlate better with the envelope of the target stimulus
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compared to the correlation with the distracter stimulus, irre-
spective of the type of target of distracter (music or speech).

When tested on a congruently trained model (i.e., trained
and tested on trials with the target of the same type and
genre), auditory attention can be successfully decoded for all
listening conditions above chance level. The type of data used
for the training of the model also impacted the success rate
of the decoding. When the target of attention was speech,
all training conditions led to successful decoding, with an
equivalent success rate, except for one condition. If the model
was trained only on musical trials and tested on speech, the
success rate dropped around the chance level. In this condition,
the decoding was unsuccessful.

When the target of attention was music, results also vary
across conditions depending on the type of distracter. If the
target was music, and the distracter was also music, only
the congruent training (same type & same genre), leads to
successful decoding. All the other training conditions perform
around chance level. However, when the target was music and
the distracter was speech, both congruently trained models
(model trained on the same type & same genre, as well as
model same type) perform above chance level. However, when
the training set also included speech data, the success rate
dropped considerably. For the “trained on all” and “trained on
opposite type” (i.e., here trained on speech), the success rate
was below chance level (23.95 - 30.53%), which suggests that
the model reconstructs the distracter better than the target. This
finding was unexpected and suggests that, in these conditions,
the model is more influenced by aspects specific to speech
than by aspects related to auditory attention.

For all listening conditions, the values of reconstruction
accuracies obtained are better than chance. It suggests that,
even when multiple sounds are present in a sound scene,
the linear regression approach can be used to reconstruct
the stimulus that a listener is attentive to, both when this
stimulus is speech and music. These results, especially the
order of magnitude of the reconstruction accuracy obtained
through this study, are consistent with previous work on
auditory attention decoding using linear regression during a
cocktail party scenario with only speech [21], [32], [34],
or previous work using this reconstruction approach during
music listening [9], [23], [29]. Reconstruction accuracies are
overall greater when the target of attention is speech compared
to the trials where the target of attention is music. This differ-
ence in tracking accuracies matched those observed by [45].
In addition, the results showed that the training of the model
can influence the reconstruction accuracy. An incongruently
trained model (e.g., a model trained on music and tested on
speech), significantly reduces the reconstruction accuracies.
When the target of attention is music, the reconstruction
accuracy seems to be more sensitive to the training of the
model: The reconstruction accuracy is significantly higher
when decoded with a model trained only on the same musical
genre, compared to the other models (i.e., trained only on
music trials, but also including other musical genres, or trained
on both speech and music). Nevertheless, it is coherent with
the results obtained for the success rate of attention decoding.
This difference might be greater than the difference due to the

auditory attention, leading to a better reconstruction of speech
than music, even if the attention was directed to speech.

The difficulty of the task and the difficulty of attending to
the target stimulus might influence the decoding performance,
as the attention of the listener might not be perfectly on
the target during a challenging trial. However, the correlation
between subjective ratings of attention and reconstruction
accuracy has been found to be small. This difficulty in
attending to the target might explain the small decrease in
performance for speech listening in presence of speech com-
pared to speech listening in presence of music. It is, however,
different for the situation where the target of attention is music
and the distracter speech. While being rated easier than the
speech on speech or music on music situation, the decoding
performances are worse. More research would be needed
to explore the relationship between cortical reconstruction
accuracy, the difficulty of the task and listening effort. The
fact that participants were not native English speakers may
also influence the neural response (and thus the reconstruc-
tion accuracy), or modulate how they attend to the speech
signal [38].

The choice of the bandpass filter (1 to 8 Hz) might also have
influenced the reconstruction accuracy, as it has been shown
that the cortical tracking of sound differs between speech and
music listening at lower frequencies [45]. This study aimed
to test an AAD method, that has previously proven successful
on speech listening, on a music listening task. However, that
means that the method and the parameters have been optimized
for speech and may be sub-optimal for music. Further research
should be undertaken to investigate how the performances are
influenced by some of the signal or model parameters, such
as filtering of the EEG data and choice of audio features
used in the AAD. In order to increase reconstruction and
attention decoding performances for music listening, further
work could also explore stimulus reconstruction based on other
audio features than the envelope, which may be better tracked
by the brain during music listening such as mel spectrogram
[9] or notes onset timing [29]. For music listening, it also
has been suggested that spectral modulation plays a greater
role than temporal modulations [43]. The open questions that
arose after this study are: to what extent do the parameters
used for the models (such as the audio features) maximize
the reconstruction for speech compared to music; and if
there are other parameters that can be more suited for music
reconstruction?

The differences between speech and music conditions, both
in reconstruction accuracy and success rate, could also be due
to separate cortical processes for speech or music listening
involving different parts of the brain [1]. In the context of stim-
ulus reconstruction, when trying to maximize reconstruction
accuracy, differences were found between speech and music
listening for the optimal latencies [40] and the selection of the
electrode [39]. These results suggest temporal and topographic
variations that could indicate the presence of differences in
cortical processes activated during speech or music listening.
Additional studies would be needed to investigate further the
temporal and topographic variations during cortical music and
speech processing.
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Furthermore, the reconstruction accuracy results might be
due to an enhanced cortical tracking for speech compared to
music, which would be in line with the recent findings by
[45]. Differences could be related to some brain processing
specific to speech, or they could be due to some acoustical
aspects specific to speech signals. Another potential expla-
nation, as suggested by [45], is that these differences may
be linked to some high-level speech-specific features, such as
phoneme processing [16] or phonotactic probabilities [18] or
semantics aspects [8] that could increase the cortical tracking
of speech and thus lead to greater reconstruction accuracy.
Aspects related to the signal itself might influence the dif-
ferences obtained for signal reconstruction. The shape of the
envelopes differs between speech and music. For speech, due
to the pause between words, the envelopes go down to zero,
followed by sharp jumps to high amplitude a the beginning of
a new word. For the music envelope, the envelopes are more
“flat”, resulting in a lower dynamics range (see Figure 2).
Further studies, which take these variables into account, would
be needed to get a better understanding of cortical auditory
tracking, and variations between speech and music, in order
to untangle how different aspects of speech influence the
reconstruction accuracy.

Independent of the underlying factors influencing the recon-
struction accuracy, the present results should be considered
when designing a versatile AAD, especially in cases where
both speech and music could be the target of attention. Due
to the difference in reconstruction accuracy observed between
speech and music reconstruction, the current decision criteria
(i.e., comparing the reconstruction accuracy for both target
and distracter) may not be suitable as it does not take into
account these differences. Other approaches, for instance,
using thresholds to classify between target or distracter, might
be more appropriate (e.g., the reconstruction accuracy should
be above a music threshold to be considered as a target of
attention if there is music in the sound scene). Thresholds
could also be used to correct the bias toward speech found in
the general model (i.e., trained on both speech and music) to
ensure that the apriori probability for a trial to be classified
as speech or music is equal. While this approach would
be interesting to develop AAD, it is outside the scope of
the present study to determine such thresholds: more data
and more diverse situations would be needed to explore and
determine relevant thresholds. In addition, for AAD imple-
mentation, using threshold would require knowledge about the
sound scene when using the AAD, such as an acoustic scene
classification to inform about the presence of speech or music
in the sound scene to decode.

Overall, this study shows that auditory attention decoding
is feasible for musical cocktail party scenarios, both during
active speech listening and active music listening. However,
for music listening, the decoding model needs to be fitted
to the target stimulus. This is a limitation for the potential
applications of such technologies, as it would be necessary
to know the type of stimuli present in the sound scene to
apply the right model. Future work could further explore
the differences between speech listening and music listening
for auditory attention decoding to gain knowledge about the

underlying mechanisms for both music listening and speech
listening and attempt to improve the performance in AAD
during music listening.
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