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Abstract

Introduction: Spirometry is associated with several diagnostic difficulties,

and as a result, misdiagnosis of chronic obstructive pulmonary disease

(COPD) occurs. This study aims to investigate how random forest (RF) can be

used to improve the existing clinical FVC and FEV1 reference values in a large

and representative cohort of the general population of the US without known

lung disease.

Materials and methods: FVC, FEV1, body measures, and demographic data

from 23 433 people were extracted from NHANES. RF was used to develop dif-

ferent prediction models. The accuracy of RF was compared with the existing

Danish clinical references, an improved multiple linear regression (MLR)

model, and a model from the literature.

Results: The correlation between actual and predicted FVC and FEV1 and the

95% confidence interval for RF were found to be FVC = 0.85 (0.85; 0.86)

(p < 0.001), FEV1 = 0.92 (0.92; 0.93) (p < 0.001), and existing clinical refer-

ences were FVC = 0.66 (0.64; 0.68) (p < 0.001) and FEV1 = 0.69 (0.67; 0.70)

(p < 0.001). Slope and intercept for the RF models predicting FVC and FEV1

were FVC 1.06 and �238.04 (mL), FEV1: 0.86 and 455.36 (mL), and for the

MLR models, slope and intercept were FVC: 0.99 and 38.56 39 (mL), and

FEV1: 1.01 and �56.57-57 (mL).

Conclusions: The results point toward machine learning models such as RF have

the potential to improve the prediction of estimated lung function for individual

patients. These predictions are used as reference values and are an important part

of assessing spirometry measurements in clinical practice. Further work is neces-

sary in order to reduce the size of the intercepts obtained through these results.
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1 | INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is one
of the world’s greatest health problems and is esti-
mated to be the third foremost reason for death by
2020.1 The incidence of COPD in individuals over the
age of 40 years is approximately 10%2; however, the
precise incidence of COPD is difficult to estimate.3 In
primary care, misdiagnosis of COPD occurs4; misdiag-
nosis covers underdiagnosis and overdiagnosis of
COPD.5 Worldwide underdiagnosis ranged from 10–
95%, whereas overdiagnosis ranged from 5% to 60%.5 A
spirometry assessment should be conducted by trained
and qualified personnel in a setting with a regular
quality assurance program; misdiagnosis could be
caused by inadequate quality assurance of spirometry.6

Spirometry is the most widely used lung function test in
America and Europe, where forced expiratory volume in
the first second (FEV1) and forced vital capacity (FVC) are
essential in diagnosing and managing patients with
COPD.7 In the case of the FEV1/FVC ratio being lower
than the threshold value of 0.70, it will indicate the pres-
ence of COPD.1 However, spirometry is associated with
several diagnostic difficulties. One of the difficulties is mis-
diagnosis caused by the wrong interpretation of the spi-
rometry measurements made by healthcare professionals
in primary care.8 In these cases, primary care tends to
overdiagnose COPD,9 where general practitioners suggest
an incorrect COPD diagnosis in approximately one-third
of the cases.8

The above-mentioned errors, which can lead to mis-
diagnosis of COPD, indicate that an improvement in the
quality control of spirometry measurements could be use-
ful. Today, Danish healthcare professionals are assisted
by a predicted lung function based on multiple linear
regression (MLR) with age and height as predictors.10

However, these current reference estimates are not
always precise and could lead to errors in diagnosing
patients correctly.11 To minimize potential errors, an
improvement of the existing prediction model would be
beneficial. Furthermore, a prediction model could poten-
tially be used in the development of a decision support
system with the purpose of reducing the number of mis-
diagnoses in primary care.

Several studies developed equations for spirometry
parameters. Among these studies are Mengesha et al.12

and Baltopoulos et al.13 Common to these studies are
the multiple linear regression approach, the same pre-
dictors, similar results, no large representative cohort,
and a large anthropometric diversity. There is a need
for investigating different approaches in a large

representative sample of both multiple ethnic groups
and participants with large anthropometric diversity,
which contributes to trying a different approach with
additional predictors. A few studies tested other
machine learning approaches, especially neural net-
works.14 A study by Boltis and Halkiotis15 managed to
elevate the accuracy of the spirometry references from
Baltopoulos et al.13 by using a neural network
approach. The higher accuracy makes machine learn-
ing interesting to test on a representative cohort with
large anthropometric diversity. Random forest
(RF) has been chosen as the machine learning
approach in this study due to more transparency com-
pared with the neural network.

The aim of this study was to investigate the potential
for RF to improve the existing clinical FVC and FEV1 ref-
erence values in a large and representative cohort of the
general population.

2 | MATERIALS AND METHODS

Data used in this study were extracted from the
National Health and Nutrition Examination Survey
(NHANES), which is freely available data collected from
the US population. NHANES contained a large amount
of different data types, including FVC, FEV1, demo-
graphics, dietary, examination, and laboratory data. The
FVC and FEV1 measurements met the requirements of
the American Thoracic Society and were acceptable
measurements.16 The standards can be found in Miller
et al.7

2.1 | Participants

To select relevant data from NHANES, inclusion and
exclusion criteria were established. Participants were
excluded if they had unregistered predictors and if their
FEV1/FVC ratio was below 0.7 or the lower limit of nor-
mal. Participants potentially suffering from lung disease
were excluded due to the improvement of the existing
clinical spirometry references addressed to healthy
individuals.
Inclusion criteria

1. Participants with registered FVC and FEV1

Exclusion criteria
1. Participants with a FEV1/FVC ratio below 0.7 or

the lower limit of normal
2. Participants with unregistered predictors
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The selection of relevant participants is illustrated in
Figure 1.

2.2 | Predictor selection

The selection of predictors was collected from studies16–19

that illustrate various causes of misdiagnosis; these
causes constituted the predictors of the final solution.
The selected predictors were:

1. Gender
2. Ethnicity
3. Body mass index (BMI)
4. Smoking
5. Height
6. Weight
7. Waist measure
8. Diabetes
9. Systolic blood pressure
10. Diastolic blood pressure

The predictors would be tested to see whether a rela-
tion exists between them and FVC and FEV1, where the
predictors that were not related to FVC and FEV1 would
be excluded from further work on the development of a
prediction model.

2.3 | Model setup

The study cohort was randomly divided into a
training dataset, in which the RF was derived, and a vali-
dation dataset, in which the model was applied and tested
to obtain an unbiased estimate of the model’s perfor-
mances. The training dataset was further divided into 70%
training and 30% testing. The stepwise development of RF
is shown in Figure 2. This procedure minimizes the poten-
tial for model overfitting.

2.3.1 | RF

RF was used as an improved prediction method for FVC
and FEV1. The training, testing, and validation of the RF
algorithm were performed with the free software machine
learning library scikit-learn. RF struggles to deal with cate-
gorical data such as ethnicity, which was categorized from
one to five. RF placed more weight on ethnicity number
five as it had a higher numerical value. To accommodate
this, ethnicity was changed into five logic columns. Addi-
tionally, bootstrap aggregation is used as a method to cal-
culate an average prediction across the decision trees.

RF is used as a supervised learning method where the
prediction of FVC and FEV1 is made by mapping predic-
tors. To select these predictors, a Python function was used

F I GURE 1 The selection of

participants is shown in a flow diagram.

Step 1 corresponds to the inclusion

criterion, where the participants must

have registered forced vital capacity

(FVC) and forced expiratory volume in

the first second (FEV1). Step

2 corresponds to the exclusion criteria

that eliminate participants with an

FEV1/FVC ratio below 0.7 or below the

lower limit of normal. Step

3 corresponds to the exclusion criteria

that remove participants with

unregistered predictors.
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to calculate the importance of each predictor and an aver-
age of them all, where predictors equal to or greater than
the importance average were included in the RF model.

2.3.2 | Comparison to multiple linear
regression

As reference to the RF model, MLR models were devel-
oped. MLR was chosen in this study because the existing
Danish clinical spirometry references by Løkke et al.20

are made by this method. Three different MLR models
were used in this study to assure an optimal reference for
RF. The three models are the Danish clinical reference
model, Mengesha et al.12 due to high prediction accuracy,
and an improved MLR model with additional predictors
developed in the current study.

2.3.3 | Validation of models

The RF and MLR models were lastly tested on the 30%
validation data; see step 3 in Figure 2. The predicted

values from each model were compared with the actual
measured values from NHANES by plotting these in a
comparison plot with the predicted values depicted on
the x-axis and the measured values on the y-axis. Based
on the R-squared value from these plots, the accuracy of
each model was evaluated.

3 | RESULTS

Table 1 gives an overview of the participants’ characteris-
tics in the training and validation groups, where it is
shown that the characteristics do not differ significantly
between the two groups.

The selected predictors for RF are shown in
Table 2, which shows the total R-squared values for
each model in the training data, the 95% confidence
interval, and values for the hyperparameters for FVC
and FEV1.

Validation of FVC and FEV1 for RF compared with
the three types of MLR models used as references resulted
in the comparison plots shown in Figures 3 and 4, where
the estimations from each model were compared with the

F I GURE 2 Stepwise development

of a random forest (RF). Step 1:

Participants were divided into 70%

training data and 30% validation data.

Step 2: Division of the 70% training data

into an additional 70% and 30%. Step 3:

The SelectFromModel was used to

include predictors for the RF, and the

RandomizedSearchCV function found

the optimal value for each

hyperparameter. Afterward, the RF

model was created from the training

data in step 2 and then tested on the

30% test data. This was repeated

multiple times to minimize the probability

of overfitting the model. Step 4: A final

validation of the model was performed

separately on the 30% validation data

from step 1.
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actual value from NHANES. Table 3 shows the slopes and
intercepts for the comparison plots. For the models predict-
ing FVC and FEV1, the slope and intercept were FVC: 1.06
and �238 (mL), FEV1: 0.86 and 455 (mL), and for the MLR
models, the slope and intercept were FVC: 0.99 and
39 (mL), FEV1: 1.01 and �57 (mL). For the Danish clinical
reference model, the slope and intercept were FVC: 0.98
and �144 (mL) and FEV1: 0.99 and �150 (mL). Likewise,
for the Mengesha model, the slope and intercept were FVC:
0.90 and 434 (mL) and FEV1: 0.80 and 737 (mL).

Figures 5 and 6 show boxplots for the four models
compared: the two models created in the study, Danish
clinical references, and Mengesha et al.12 For both
figures, it is seen that the median for both the developed

RF and MLR models is lower than for the Danish clinical
references and Mengesha et al.12 Further, the skewness
in the data appears higher for both Danish clinical refer-
ences and Mengesha et al.12

The results for FVC show an R-squared value of 0.85
(0.85; 0.86) for RF, 0.72 (0.71; 0.74) for the developed
MLR, 0.66 (0.64; 0.68) for Danish clinical references, and
0.65 (0.63; 0.67) for Mengesha et al.12

The results for FEV1 show an R-squared value of 0.92
(0.92; 0.93) for RF, 0.73 (0.72; 0.75) for the developed
MLR, 0.69 (0.67; 0.70) for Danish clinical references, and
0.65 (0.63; 0.67) for Mengesha et al.12

4 | DISCUSSION

In our data, results from RF showed a higher R-squared
value for FVC and FEV1 than the MLR models: RF (0.85
and 0.92), MLR (0.72 and 0.73). Therefore, the machine
learning method RF could be an improvement compared
with MLR for clinical references. The slopes and inter-
cepts for the FVC and FEV1 comparison plots, as shown
in Table 3, differ from the slope with a max and mini-
mum value of 0.80 to 1.06 and from the intercept �238 to
737 (mL). Based on the intercepts presented in Table 3,
the MLR model for predicting FVC and FEV1 appears to
be the most reasonable. However, the FVC and FEV1
models have considerably large intercepts, which can

TAB L E 1 A statistical overview of the demographic,

questionnaire, and examination data for training and validation

subjects. Numerical data were presented as a mean ± standard

deviation and categorical data as a percentage of the total number

of subjects. Further, the last column shows the p-value for the

Welch’s t test made on the continuous variables and the chi-

squared test on the categorical variables.

Training
data

Validation
data p-value

Number of subjects 8203 3515

Average age (years) 38.8 ± 18.7 38.6 ± 18.7 0.137

Gender (%) 0.768

Male 50.5 49.4

Female 49.5 50.6

Ethnicity (%) 0.073

Mexican American 18.1 18.3

Other Hispanic 11.4 12.2

Non-Hispanic White 39.0 38.0

Non-Hispanic Black 22.4 23.1

Other ethnicity* 9.0 8.3

Body mass index
(kg/m2)

27.9 ± 6.8 28.2 ± 6.9 0.069

Smoking (yes %) 21.2 22.4 0.562

Height 167.4 ± 10.1 167.3 ± 10.2 0.481

Waist measure (cm) 94.7 ± 17.2 95.1 ± 17.4 0.585

Diabetes (yes%) 8.2 8.4 0.999

Blood pressure
(mmHg)

Systolic BP 119.0 ± 16.7 119.2 ± 16.1 0.523

Diastolic BP 68.4 ± 12.4 68.4 ± 11.8 0.869

FVC (mL) 3920 ± 1046 3930 ± 1039 0.869

FEV1 (mL) 3219 ± 870 3231 ± 867 0.329

Abbreviations: FEV1, forced expiratory volume in the first second; FVC,
forced vital capacity.

TABL E 2 The table shows a test overview of the importance,

total R-squared values, and 95% confidence interval obtained for

FVC and FEV1 for the selected predictors in the random forest

model. Furthermore, the hyperparameters for each of the models

are shown. The predictor non-Hispanic Blacks were not selected for

the FEV1 model.

Random forest—test data

FVC FEV1

Importance Importance

Age 0.154 0.264

Non-Hispanic Black 0.056 X

Height 0.546 0.464

Total R-squared 0.85 0.86

CI (0.84; 0.86) (0.85; 0.87)

Number of trees 160 300

Min sample split 5 5

Min sample leaf 2 1

Max depth 32 25

Abbreviations: FEV1, forced expiratory volume in the first second; FVC,
forced vital capacity.
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cause bias in the results, and future work should try to
reduce the intercepts through the inclusion of more
predictors.

To conclude on the performance of the RF models, a
comparison to the study by Pramila et al.21 is completed.
The R-squared value for FEV1 is 0.96, which is higher
than the value attained in the present study and is there-
fore a more accurate model for predicting FEV1. How-
ever, the study by Pramila et al.21 is limited because of its
small group of subjects of 198 adults, which makes it dif-
ficult to transfer the results to other populations and
countries. A strength of the presented study is the large
and diverse population used to model the reference
values. This includes a multi-ethnic sample with a wide
age span and both genders included.

The future purpose of the prediction models is to
assist healthcare professionals in assessing whether the
quality of spirometry is acceptable, which is why the
models are based on healthy participants. A limitation in
subjects like this may exclude certain types of a popula-
tion, which results in poor prediction of this part of the
population.

A limitation is that the data used in this study was
limited to the US, so it is not known if these results are
representative of other countries. As the population in

the US is of a bright variation of ethnicity and the used
cohort is large it is expected that the data can be used to
test the Danish clinical reference models.

To further conclude on the improved MLR models, a
comparison to the Danish clinical reference models was
accomplished. The R-squared values for the developed
MLR model were FVC = 0.72 (0.71; 0.74) and
FEV1 = 0.73 (0.72; 0.75), whereas the estimates from the
Danish clinical reference models were FVC = 0.66 (0.64;
0.68) and FEV1 = 0.69 (0.67; 0.70). This comparison
shows a more accurate estimation of FVC and FEV1 using
the improved MLR model in the current study. The
improved accuracy shows the potential of ML models and
how they can be used to improve healthcare in general.
The advantage of RF compared with other ML models is
transparency. RF is a more see-through model, which
makes it easier for healthcare practitioners to understand
both the model and the result and is therefore a better fit
for healthcare. This improvement in accuracy could be
explained by the inclusion of additional predictors in the
improved MLR models, which included 10 predictors,
whereas the Danish clinical reference models included
four predictors. However, all of these additional predictors
are easily obtainable and could be implemented in the
clinical procedure of assessing spirometry.

F I GURE 3 Illustrates the predicted forced vital capacity (FVC) compared with the actual FVC and the R-squared with an additional

95% confidence interval. R-squared for random forest (RF) equals 0.85 (0.84; 0.86), multiple linear regression (MLR) equals 0.72 (0.71; 0.74),

Danish clinical references equals 0.66 (0.64; 0.68), and Mengesha et al. equals 0.65 (0.63; 0.67).
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However, whether the contribution from these addi-
tional predictors is enough to include is debatable. For
example, it takes time for the healthcare professional to
take blood pressure, and even then, the measure can be

elevated due to white-coat syndrome.22 The benefits of
this predictor are limited due to its disadvantages, which
is why blood pressure could have been excluded. Predic-
tors such as blood pressure and waist measurements con-
tribute little to the model and are time-consuming due to
measurements, which is why predictors like these are not
nearly as relevant.

A limitation of the present study could be the exclusion
of predictors. The selection method used for RF in the pre-
sent study finds the importance of every predictor and then
excludes the predictors that are under the average impor-
tance. This can be a limitation due to some of the excluded
predictors still contributing to the model even if they are
under the average. A solution to this can be found by
investigating other threshold values for including more
predictors, which may contribute to the models’ accuracy.

An additional limitation of RF is the cross-
validation method, which randomly finds the best bid
for the size of the hyperparameters. In the present
study, the number of trees and depth are decreased to
make RF faster without compromising accuracy.
Changes in the other hyperparameters, such as mini-
mum sample leaf and mean sample splits, can

TAB L E 3 The table shows an overview of the slopes and

intercepts for the comparison plots.

Model Slopes Intercepts (mL)

FVC

Random forest 1.06 �238

Multiple linear regression 0.99 39

Clinical references 0.98 �144

Mengesha 0.90 434

FEV1

Random forest 0.86 455

Multiple linear regression 1.01 �57

Clinical references 0.99 �150

Mengesha 0.80 737

Abbreviations: FEV1, forced expiratory volume in the first second; FVC,
forced vital capacity.

F I GURE 4 Illustrates the predicted forced expiratory volume in the first second (FEV1) compared with the actual FEV1 and the

R-squared with an additional 95% confidence interval. R-squared for random forest (RF) equals 0.92 (0.92; 0.93), multiple linear regression

(MLR) equals 0.73 (0.72; 0.75), Danish clinical references equals 0.69 (0.67; 0.70), and Mengesha et al. equals 0.65 (0.63; 0.67).
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potentially contribute to the prediction models’ speed
as well, which should be further investigated.

Further work includes the implementation of the
models as a tool with a user interface to support the

healthcare professional in their decision of whether a
performed spirometry is of good quality. By using the pre-
diction model with the highest accuracy, it is possible to
compare the current patient’s FVC and FEV1 to the

F I GURE 5 Illustrates a box plot of the four models for forced vital capacity (FVC).

F I GURE 6 Illustrates a box plot of the four models for forced expiratory volume in the first second (FEV1).
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values that, according to the model, should correspond to
a patient with the same values for the predictors. Know-
ing the theoretic values can give the physician further
knowledge for the decision, which can cause the health-
care professional to make a more informed decision in
order to decide whether or not a measurement is correct.
If the actual measured values are nearly the same as pre-
dicted, it indicates that the measurement is of good qual-
ity and therefore should be approved. In contrast, if the
measured value differs from the predicted value, it indi-
cates that something in the measurement has gone wrong
or that the patient suffers from a lung function disease.
In this case, further measurements are needed to decide
whether the measurement is correct.

5 | CONCLUSION

Based on the results presented in this study, the devel-
oped RF model, as well as the developed MLR model,
outperforms the current Danish clinical reference model
regarding estimated lung function for individual patients.
These findings indicate that a clinical model for predict-
ing FVC and FEV1 can be advantageously based on
RF. However, further work with these models is neces-
sary to reduce the size of the intercepts.
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