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Abstract 
Comparing, validating and assessing the accuracy of 
dynamic models is crucial for multiple applications in the 
field of energy, buildings and indoor environmental 
engineering. To that matter, various comparison metrics 
and key performance indicators have been developed or 
borrowed from other fields of science, and a few popular 
guidelines have recommended some of them for building 
energy models. 
This article aims at giving an overview of what metrics 
are used by the community of researchers in the field of 
energy, buildings and indoor environment. This overview 
is based on a large-scale review work of 259 scientific 
publications from the last 40 years. This paper also 
discusses the main trends, reveals certain gaps and 
suggests several research activities currently being 
undertaken by a multi-institutional working group of 
researchers, which should greatly benefit the entire 
community of building energy and indoor environment 
simulation. 
Highlights 
• Review of 259 publications about energy and building 

model testing, comparison and validation. 
• Overview of comparison metrics used by the building 

energy performance community to test, compare and 
validate numerical models. 

• Analysis of the most popular comparison metrics. 

Practical implications 
This review identifies clear trends in the practices of the 
building energy performance community regarding the 
testing, comparison and validation of numerical 
simulations. Popular comparison metrics are analyzed, 
and their shortcomings are pointed out. This analysis can 
guide researchers in selecting appropriate comparison 
metrics for numerical model validation and suggest future 
work for the development of robust validation methods in 
the field of building physics. 

Introduction 
Comparing, validating and assessing the accuracy of 
dynamic models is crucial for multiple applications in the 
field of energy, buildings and indoor environmental 
engineering. The output results of these dynamic 
simulations are most often in the form of time series. The 

quality assessment and validation of such dynamic 
models thus consist in determining how different the 
output result time series from a simulation are when 
compared to a reference time series (Johra et al., 2021). 
Such metrics and key performance indicators have been 
developed or adopted from other fields of science, and 
additionally, a few popular guidelines, such as the 
ASHRAE Guideline 14-2014, the IPMVP (2014) and the 
FEMP, M&V Guidelines (2015), have recommended 
some comparison metrics and criteria for building energy 
modelling testing and validation. Despite the clear 
importance and influence of such metrics on the model 
quality, no large-scale comparison review of them has 
been published to the best of the authors' knowledge, and 
thus discussions behind the choice of adequate 
comparison metrics are very seldom and not supported by 
data. One reason is presumably the human-labour-
intensive nature of such a task since there are no easy 
ways to automate the search and categorisation of 
equations in scientific publications, especially with large 
variations in the formulations, naming and acronyms. 
Such difference in definition, naming, and acronyms not 
only hinders an automated search but also increases the 
likelihood of misinterpretation of results by fellow 
researchers, exacerbates the risk of misunderstandings, 
and thus potentially hinders research. 
In other research communities, such comparisons exist. 
For example, Lepot et al. (2017) have recently compared 
metrics for interpolating time-series data, Prema et al. 
(2021) provided an overview and comparison of metrics 
for wind and solar power forecasting, while Hewamalage 
et al. (2022) provide a general overview for forecasting. 
However, the adequacy of comparison metrics might be 
greatly influenced by the dynamic properties of the 
evaluated time series, e.g., the sampling rate, signal 
amplitude, frequency spectrum, unit scale (e.g., K, °C, 
°F), or closeness to the 0 of such unit scale. An analysis 
of comparison metrics focusing specifically on the 
building physics and building energy modelling context 
and supported by data is thus important for the building 
industry and research community and the IBPSA 
audience in particular. 
This article aims to close this knowledge gap for the 
dynamic modelling of energy, buildings and indoor 
environment by providing an overview and discussions on 
comparison metrics that are based on the review of 259 



scientific publications over the last 40 years. Furthermore, 
main trends are discussed, gaps are revealed, and future 
research activities are suggested. 
All the references and data collected for this study have 
been compiled and curated and are available in open 
access (Johra et al., 2023). Additionally, a unified 
definition and notation for the 48 metrics found in the 
review process are provided in supplementary materials 
(Johra et al., 2023). The supplementary materials to the 
current study can be directly accessed here: 
https://doi.org/10.54337/aau533917780 
Combined with the provided overview and discussions, 
such unified notation and definition should greatly benefit 
the entire building energy simulations community. 
Scope and methodology of the current 
literature review 
The conducted structured literature review focused on 
scientific papers using deterministic building physics (or 
related) models for dynamic (time-dependent) variables 
such as temperature, energy demand, 
heating/cooling/electricity demand, CO2 concentration, 
relative humidity, fluid mass flow rate, or heat flow in 
building elements. 
The review focuses primarily on peer-reviewed scientific 
journals and conference proceedings in the fields of 
energy in buildings, and indoor environment, in which 
simulation result time series are being compared to 
reference time series (e.g., empirical reference data) or 
compared to other numerical dynamic model results. 
These time series comparisons are intended to assess 
model accuracy and/or validate the correctness (and thus 
usefulness) of a tested simulation model. 

The literature search covered both journal articles and 
conference proceedings. The Scopus database was used to 
search for documents in the field of building physics using 
the following keywords: building* AND energy AND 
“simulation” OR “model” AND compar* OR valid* OR 
accura* OR error. Based on a preliminary screening of 
the article content, the latter is added to the list of valid 
documents for thorough review and analysis or 
disregarded. In addition, searches were carried out over 
specific time periods to cover the last 40 years of literature 
in the field of energy and indoor environment modelling. 
Moreover, the proceedings of the IBPSA, NSB and IEEE 
conferences were specifically screened using similar 
keywords. 

 
Figure 2: Results of the Scopus search with keywords 

building* AND energy AND “simulation” OR “model” 
AND compar* OR valid* OR accura* OR error. 

Time series forecasting with probabilistic models is 
defined to be outside the scope of the current work but 
should naturally be included in further studies expanding 
this first research effort. Moreover, the included metrics 

Figure 1: Temporal distribution of the reviewed publications. 
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are always used for model evaluation but not for case or 
scenario comparison nor for model training (i.e., 
hyperparameter estimation in the training process). Model 
training methods might use other custom loss functions 
and specific assessment metrics that are out of the scope 
of this paper. 
Overview and statistical insights on the 
reviewed literature 
This section gives an overview of some key 
characteristics and certain statistical insights on the body 
of reviewed literature in the field of building model 
testing and validation. This can inform on modelling 
practices of the building energy and indoor environmental 
engineering research community. 
The analysed publications cover the last four decades so 
that a representative picture of the development and usage 
of metrics can be drawn. However, due to practical 
reasons and the recent massive expansion of the number 
of scientific publications in the field of building physics 
(see Figure 2), work before 2010 is underrepresented (see 
Figure 1). 

 
Figure 3: Overview of the different sources for the 

reviewed publications. 
One can see in Figure 3 that most of the reviewed 
publications are published in the peer-reviewed scientific 
journals Energy and Buildings, Applied Energy, Building 
and Environment, and the proceedings of the IBPSA 
Building Simulation conference. The other journals 
source category includes, e.g., ASHRAE publications, 
Energy Conversion and Management, International 
Journal of Heat and Mass Transfer, Journal of Solar 
Energy Engineering or Renewable Energy. The other 
conference proceedings source category includes, e.g., 
American Control Conference, Journal of Physics: 
Conference Series or Nordic Symposium on Building 
Physics. 
Figure 4 presents the distribution of the main topic of 
applications for the numerical models in the reviewed 
publications. More than half of the publications focus on 
the energy demand simulation of single buildings or 
clusters of buildings. This dominating trend can be 
attributed to the large interest, need and funding for 
estimating, forecasting and explaining the significant 
share of the total energy demand accounted for by the 
global building stock. 

 
Figure 4: Overview of the main application of the 

numerical models in the reviewed publications. 
As shown in Figure 5, the most popular modelling tools 
in the reviewed publications are Energy Plus, MATLAB 
(custom-made code or existing libraries/packages), 
TRNSYS, Modelica and IDA ICE. The other modelling 
tool category includes DIMOSIM, ENVI-met, PHPP, 
Radiance, COMIS or STAR-CCM+. 

 
Figure 5: Overview of the numerical simulation tools 

employed in the reviewed publications. 
One can see in Figure 6 that the majority of the simulation 
tools used in the reviewed publications follow a White 
Box modelling paradigm. 

 
Figure 6: Distribution of the modelling 

approaches/paradigms in the reviewed publications. 



This is clearly correlated to the modelling approach 
employed in the most popular numerical tools. The White 
Box approach also includes Computational Fluid 
Dynamics (CFD) and analytical solutions of heat and 
mass transfer equations. The vast majority of the Grey 
Box models in the reviewed studies are low-order 
Resistance-Capacitance (RC) networks. A large share of 
the Black Box models are Artificial Neural Networks 
(ANNs). There are also many linear regressions and auto-
regressive models like ARMA, ARMAX or ARIMA. 

 
Figure 7: Occurrence distribution of the different 

analyzed variables of interest in the reviewed 
publications. 

Figure 7 provides insights into what simulated variables 
are typically analyzed in the reviewed publications. One 
can clearly observe that, in the case of model comparison, 
the temperature of the indoor environment, outdoor 
environment and building systems are systematically 
analyzed in more than 53% of the publications. Different 
forms of energy demand (i.e., hourly, sub-hourly or daily 
heating energy, cooling energy and electricity demand) 
represent more than 52% of the analyzed variables, which 
is in line with the main modelling focus emphasized in 
Figure 4. 
If the energy demand is a common simulation result of 
interest (typically computed as Wh per hour or Wh per 
day), the heating, cooling or electrical power demand and 
peak demand (in W) are only compared in less than 10% 
of the cases. 
Results: trends in building modelling 
comparison metrics 
In this review study, the model comparison approach is 
systematically assessed for the different publications. One 
can see in Figure 8 that the researchers include a graphical 
display of the simulation result times series in 86% of the 
reviewed publications. In 29% of the cases, the model 
comparison is only based on a qualitative assessment in 
the form of, most of the time, overlaid time series figures, 
or sometimes boxplots or predictions-reference plots. 
These graphical qualitative model comparisons are thus 
often accompanied by a statement like “the model is in 
good agreement with the empirical data”. If this was 
common practice in the 80s, 90s and early 2000s, the 
absence of quantifiable indicators on how well this 

agreement really is, largely prevents proper 
reproducibility and comparison between studies. 
In 57% of the cases, however, the publication presents a 
graphical comparison of the model performance together 
with one or several comparison metrics. More seldomly, 
only quantitative comparison metrics are presented to 
justify the model’s accuracy without any graphical 
display. As the lack of quantifiable indicators was a 
drawback of the early studies, the lack of visual 
comparison may mask a poor fit (despite quantitative 
indicators). However, one should note that these results 
are highly skewed towards recent publications following 
2010. 

 
Figure 8: Time series comparison approach for the 
testing and validation of numerical models in the 

reviewed publications. 
When looking at the historical perspectives of these 
comparison practices, one can see in Figure 9 that there is 
a clear evolution in the reviewed publications: older 
studies (80s, 90s and early 2000s) tend to use only 
graphical qualitative assessment to report their numerical 
models’ adequacy. This practice has drastically changed 
after 2014 with the systematic use and reporting of 
quantitative accuracy performance indicators in the 
validation of numerical models for energy in building and 
indoor environmental engineering. 
This trend coincides with the publication of the ASHRAE 
guideline 14-2014, the publication of the IPMVP-Core 
Concepts (EVO, 2014) and the FEMP, M&V Guidelines 
2015, which provided benchmarking methods and the 
possibility for the building community to use a set of 
recommended comparison metrics for simulation result 
time series. 26% of the recent reviewed publications 
mention or refer to the ASHRAE Guideline 14. 



This current review study identified 48 different metrics 
for comparing simulation time series in the considered 
publications. The vast majority of these metrics are point-
to-point comparison ones, such as the Mean Bias Error 
(MBE) or the Sum of Squared Errors (SSE). These point-
to-point comparison metrics are usually simple to 
compute, but they assume perfectly synchronized time 
series data points and regular/constant sampling rates. 
This is a clear limitation when there is a certain offset 
between the test time series and the reference one, 
especially if there are multiple peaks in the signal (Johra 
et al., 2021). To overcome this limitation and tackle the 
risks of over-penalization of models in that situation, a 
few publications report time series elastic distances 
calculation and shape comparison instead of simpler 
point-to-point metrics. Examples of these elastic distance 
metrics and general elastic shape comparison found in the 
considered literature are the Dynamic Time Warping, 
dissimilarities based on Pearson's correlation, and the 
Frechet distance. 
In addition, some point-to-point comparison metrics are 
not applied directly to the entire time series of the building 
variable of interest but to a transform of that time series. 
For instance, Panão et al. (2016) compute the Mean 
Absolute Error (MAE) of the daily max of the time series, 
and Johra et al. (2021) calculate the Coefficient of 
Variation of Root Mean Square Error (CVRMSE) of the 
daily amplitude of the signal (from midnight to midnight 
each day). 

The systematic counting of the comparison metrics in the 
review publications (see Figure 10) reveals a clear 
dominating use of 7 popular metrics: 
• MBE: Mean Bias Error 
• NMBE: Normalized Mean Bias Error 
• MAE: Mean Absolute Error 
• MAPE: Mean Absolute Percentage Error 
• R2: Coefficient of determination 
• RMSE: Root Mean Square Error 
• CVRMSE: Coefficient of Variation of Root Mean 

Square Error 
The other less popular metrics with occurrence above 1% 
are: MaxAE (Maximum Absolute Error), MaxAPE 
(Maximum Absolute Percentage Error), NMAE 
(Normalized Mean Absolute Error), SSE (Sum of 
Squared Errors), MSE (Mean Square Error), RNRMSE 
(Range Normalized Root Mean Square Error), RMSEP 
(Root Mean Square Error Percentage), RMSLE (Root 
Mean Square Logarithmic Error), Pearson correlation 
coefficient, Spearman’s rank correlation and GOF 
(tailored goodness of fit function consisting in different 
combinations of other metrics like MBE, NMBE, RMSE 
and CVRMSE). 
 
 
 
 

 

Figure 9: Historical evolution of building model comparison practices in the reviewed publications. 



When focussing on the main variables of interest 
individually, the review reveals the following popular 
choices (sorted by decreasing order of occurrence 
frequency): 
• Energy demand or supply/production (Wh per 

year/month/day/hour): CVRMSE, R2, NMBE 
• Power demand (W): CVRMSE, RMSE, NMBE 
• Temperature (°C, °F or K): RMSE, R2, CVRMSE 
• Heat flow (W or W per m2): RMSE, MAPE 
• Moisture content (% relative humidity or kg per kg): 

R2, CVRMSE 
• Water consumption (L/m3 per year/month/day/hour): 

NMBE, R2, RMSE 
• Air pollutant (e.g., CO2 or VOC concentration): 

MAE 
• Daylight/glare discomfort: R2 
• Material properties: RMSE 
• COP (coefficient of performance) for HVAC 

systems: RMSE, CVRMSE, NMBE 
Discussions 
Before about 2014, there was a clear tendency that mainly 
qualitative model assessment was used based on time 
series graphs and a subjective definition that the model 
agrees well with the (validation) data. From about 2014 
on, a clear paradigm shift is visible towards using both 
qualitative and quantitative assessment, which can be 
seen as a significant increase in scientific objectivity and 

transparency. This trend also coincides with the 
publication of impactful international guidelines 
(ASHRAE guideline 14-2014, IPMVP-Core Concepts 
2014 and the FEMP, M&V Guidelines 2015), which 
provided benchmarking methods and recommended 
comparison metrics with validity thresholds for the 
building community. These guidelines are assumed to be 
one of the significant reasons for the frequent use of the 
MBE, NMBE, RMSE and CVRMSE. While these 
recommended metrics, combined with the suggested 
thresholds, eased the comparison between different 
simulation performance reports, they are no panacea. 
The MBE and NMBE indicate the global bias of the 
model (global under-prediction or global over-
prediction). However, these metrics are prone to 
cancellation or compensation effects: local biases in 
opposite directions compensate each other, i.e., local 
model under-estimations would compensate for local 
over-estimations, leading to a globally low MBE and 
NMBE despite large local discrepancies. Metrics based 
on squared differences (e.g., RMSE, CVRMSE) or 
absolute value of differences (e.g., MAPE) are not 
subjected to compensation effects. 
Metrics that are not normalized (e.g., SSE, RMSE) do not 
allow for the comparison of models on datasets of 
different sizes or with different unit scales. Normalized 
metrics should thus be preferred. However, certain 
normalized metrics have the same or similar names 
(usually comporting a “normalized” term) but actually do 
not use the same normalization logic. This is, e.g., the case 

Figure 10: Occurrence of the most popular time series comparison metrics in the reviewed publications. 



for the NRMSE (Normalized RMSE) that is actually 
normalized by the average of the reference time series in 
certain publications and is thus the same as the CVRMSE, 
but, in some other publications, the NRMSE is 
normalized by the amplitude of the reference time series. 
These misleading namings can cause severe confusion. 
Metrics based on the (squared) difference and normalised 
by the "total" mean (e.g., NMBE and CVRMSE) do not 
consider changes in the magnitude of a quantity over time. 
They are thus biased towards periods with higher 
magnitudes and, therefore, not necessarily suited in the 
presence of strong seasonal variation commonly found in, 
e.g., heating or cooling energy demand time series. 
Likewise, widespread metrics such as the RMSE, MAE, 
MAPE, and MBE suffer the same limitations and are 
biased towards high magnitude periods and, in the case of 
the RMSE, are sensitive to outliers/measurement errors. 
Certain metrics are very sensitive to values that are close 
to the 0 of the time series unit scale. This is highly 
problematic as building energy demand profiles for 
heating or cooling, when taken separately, are very likely 
to be at 0 for extended periods of time over the year. The 
RMSEP and the very popular MAPE are undefined if the 
data contains zeros. 
Certain comparison metrics are also very sensitive to 
outliers with significant over-penalization effects, which 
might not be desirable for global model validation. For 
instance, the CVRMSE emphasises large deviations (due 
to the squared difference) and can easily lead to poor 
reported accuracy if, e.g., outliers or measurement errors 
are present in the (validation) data. 
The RMSLE is less sensitive to large outliers, in 
comparison to, e.g., the RMSE, because it penalizes much 
less very large differences between the tested model and 
the reference when both the prediction and the reference 
are large numbers. However, the RMSLE penalizes more 
the model under-estimations than the model over-
estimations, which is not necessarily a desired feature for 
building applications. 
Regarding the definition and implementation of the 
popular metrics, it must be noted that the ASHRAE 
guideline 14-2014 recommends using n-1 (with n the 
number of samples) for calibration purposes. Yet the 
current review has found that both n-1 and n are 
commonly used in the research community. While this is 
expected to have a negligible impact for most cases, it 
highlights possible sources for misunderstandings, 
particularly if no clear definitions are provided, which is 
frequently the case. 
R2 is another very common comparison metric, yet one 
that is often misunderstood and misused. Indeed, there 
exist multiple definitions and formulations of R2, and they 
are not all necessarily equivalent, which can lead to 
significant interpretation mistakes (Kvålseth, 1985). In 
addition, R2 does not consider the model complexity and 
is biased toward high-magnitude periods. The problem of 
the model complexity can be overcome with the adjusted 
R2. Another practical issue is that some R2 
implementations in popular software (e.g., Scikit-Learn in 

Python) can take values below 0 if a model performs 
worse than the mean of the data would, which is not the 
case for other R2 definitions and implementations. This 
makes the comparison between studies possibly 
challenging. 
Finally, as mentioned in the previous section, point-to-
point comparison metrics can over-penalized models 
when slight time shifts of signal peaks are presented in the 
test datasets. This behaviour might not be desirable and 
could be tackled by computing elastic distance and shape 
comparison metrics. 
Conclusion and suggestions for future work 
In this work, 259 scientific papers from energy, buildings 
and indoor environment modelling have been reviewed 
and analysed regarding their used model evaluation 
metrics and approach. 
Overall, the collected comparison metrics vary in their 
definition, notation and abbreviations between research 
papers, leading to possible confusion, misinterpretation of 
results and misunderstandings. Thus the modelling 
research community should bundle efforts to establish 
universal names and definitions. Furthermore, the revised 
metrics made it obvious that currently, the recommended 
and most commonly used metrics suffer from various 
flaws, such as bias towards periods with higher magnitude 
for quantities with strong seasonal variation, outlier 
hyper-sensitivity, compensation effect, or impossibility to 
compute when the considered variables are equal to zero. 
Thus future research efforts should focus on establishing 
more robust comparison metrics adapted to the signal 
features of specific variables of interest and with clear and 
unambiguous definitions. 
The key conclusions from this study and 
recommendations for model comparison in the field of 
building physics can be summarized as follows: 
• Qualitative comparison with time series graphical 

visualization should always be included with 
different time scales and with good readability 
(choice of colours and markers) 

• Normalized metrics are prefered over absolute 
metrics for quantitative comparison. 

• The equation of the used metrics should always be 
provided along with the evaluation period, and 
information on the data treatment for zero-values 

• For error evaluation, CVRMSE, RMSE, MAPE and 
MAE are commonly used metrics 

• For bias evaluation, NMBE and MBE are commonly 
used metrics 

• Elastic distance metrics (e.g., Dynamic Time 
Warping or Frechet distance) should be considered 
for further analysis 

The review and analysis work presented in this paper has 
led to a unified and coherent definition and notation for 
the 48 reviewed metrics (Johra et al., 2023). These 
different metrics will then be systematically tested with 
well-defined datasets from building physics. This will 



thus allow identifying similar behaviour and pitfalls 
among the reviewed metrics and thus guide practitioners 
in the selection of adequate comparison tools for specific 
types of time series generated by building models. 
Finally, this review has explicitly focused on 
deterministic models. Hence probability-based models, 
which have become increasingly popular, and forecasting, 
should be included in further extensions of this work. 
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