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Entropy for Optimal Control on a Simplex with an
Application to Behavioral Nudging

Mohamad Al Ahdab, Torben Knudsen, Jakob Stoustrup, and John Leth

Abstract— We study the utilization of the entropy func-
tion of inputs in solving an Optimal Control Problem (OCP)
with linear dynamics and inputs constrained to a variable-
sized simplex in which the size is also an input. By using
the entropy function as part of the objective functional
in the OCP, we are able to derive a closed-form solution.
Additionally, we present an example of how the studied
OCP can be applied to choose between nudging techniques
to discourage a specific behavior, such as non-adherence
to medication, through the lens of behavioral momentum
theory.

Index Terms— Emerging control applications, Optimal
control.

I. INTRODUCTION

Optimal control problems (OCPs) are concerned with find-
ing an optimal input trajectory for a dynamical system which
maximizes or minimizes an objective functional while satis-
fying specific constraints. A class of problems in which the
input trajectory is constrained to be on a simplex arises in
many applications such as portfolio optimization in finance,
resource allocation in energy systems, mixing chemicals in
chemical reactions, and when the control input is a discrete
probability distribution. The use of entropy in the objective for
continuous-time dynamics has been studied in works of [1] and
[2]. In [1], the authors analyzed the use of the entropy function
for stochastic linear optimal control problems. As for the work
in [2], the authors derived a class of Hamilton–Jacobi–Bellman
(HJB) equations for optimal control problem in which the
input is a probability measure. The optimization in the men-
tioned papers is performed over a probability measure with the
dynamics having inputs drawn from the probability measure,
and the optimal control problem considers averaged dynamics
with respect to the probability measure in addition to averaged
objective terms with respect to the probability measure. In this
paper, we consider an OCP with linear time-varying dynamics
and an input vector u constrained to a simplex of size v > 0
with v being an input itself. In particular, we show how
the use of the entropy function in the objective in addition
to a linear objective in state, a linear objective in u, and
a quadratic objective in v will yield a closed-form solution
using the necessary conditions of the maximum principle with
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Arrow type sufficient conditions [3]. Although setting v = 1
in our setup will make our problem a special case of those
considered in [1], [2], these works do not explicitly address
and solve the case of a discrete probability measure with
continuous linear time-varying dynamics and a linear objective
function, as we do in this paper. Moreover, we introduce the
size of the simplex as an additional optimization input, which
further expands the scope of the problem. Furthermore, we
present an example on how the OCP of interest in this paper
can be used to schedule different nudging techniques using
behavioral momentum theory [4] to discourage an unhealthy
behavior in people. Behavioral momentum theory suggests
that behaviors that are reinforced more frequently are more
resistant to changes in the environment. With this theory, we
model the dynamics of the average rate of a target behavior
by a linear model, with the average rate of a reinforcement
being a parameter.

To discourage an unhealthy behavior, we introduce different
nudges to the behavior as inputs to the OCP framework. In
the context of our framework, we represent the probabilities
of selecting the nudges as inputs belonging to a simplex, with
the size of the simplex representing their overall rate. Our
objective is to optimize the choice of different nudges and
their average rate to minimize the average rate of the targeted
behavior, while also considering the cost of each nudge and
ensuring a diversity of nudges.

The use of computational and machine learning techniques
have recently been investigated for the design of nudges for
medical care professionals such as in [5] and to encourage
patients to adhere to their prescribed medicine in [6]. Ad-
ditionally, the work in [7] considers the optimal design of
nudges within a Markov decision process framework derived
from resource-rational analysis. In this paper, we consider the
problem of choosing between nudges while minimizing their
average rate within a continuous optimal control framework
derived from behavioural momentum theory. Our work offers
an alternative framework and perspective for the problem of
behavioral nudging in healthcare. We hope that our discussion
in this paper can be one of the early works towards the
application of control theory concepts in behavioral nudging
of people in healthcare.

The summary of the contributions of this paper is as follows
• We derive closed-form solution for an OCP with inputs

constrained to a simplex in which the size of the simplex
itself is also another input.

• We present examples of how the OCP of interest and behav-



ioral momentum theory can be used to assist in the choice
of different nudging techniques aimed at discouraging an
undesired behaviour, such as non-adhering to medication.
To our knowledge, this is the first time control theory
techniques have been used in connection with behavioral
momentum theory.

II. NOTATIONS

All vectors are considered as column vectors. We let [a, b]
denote the closed interval from a to b, and [a b] denote
the row vector with coordinates a and b. The symbols In

and 0n×m are used to denote the n × n identity and the
n × m zero matrix, respectively. The symbol 1n is used to
denote the n-dimensional column vector of 1s. The symbols
≥e, >e are used for element-wise ≥ and >. For u ∈ △v

n :={
u ∈ Rn

≥0 | ∥u∥1 = v
}

, we write the entropy function as
ϕ (u) = −

∑n
i=1 ui ln (ui) and we take 0 ln(0) := 0. For

u ∈ △v
n and w >e 0, we write the Kullback–Leibler

(KL) divergence (relative entropy) as DKL(u || w) =∑n
i=1 u

i ln
(
ui/wi

)
. We use expe(x) and lne (x) for the

element-wise exponential and logarithm of a vector x, respec-
tively.

III. SOLUTION OF THE OPTIMAL CONTROL PROBLEM

In this section, we first present the OCP of interest in III-A,
and derive an explicit solution for it in III-B.

A. Problem Setup

To define the OCP of interest (OCPv) in this work, we begin
by defining

L (x,u, v, t) :=
1

η
ϕ(u)+cT(t)u+dTx+ qv2,

and S(x) := eTx, with η > 0, c(t) ∈ Rnu being continuously
differentiable, d ∈ Rnx , and e ∈ Rnx . The OCP in this paper
has the following form

max
u,v

∫ tf

t0

L
(
x(t),u(t), v(t), t

)
dt+ S

(
x(tf )

)
(1a)

ẋ(t) =Ax(t) +B(t)u(t), x(t0) = x0, (1b)

v(t)− 1Tu(t) = 0, u(t) ≥e 0, v(t) ≥ 0. (1c)

Note that for the case in which v is set to 1, the inputs u will
be constrained to the unit simplex △1

nu
. Also note that B(t)

is assumed to be an explicit function of time t e.g., see below
(11).

B. Closed-Form Solution

In order to find the solution for OCPv, we use the necessary
conditions of the maximum principle. To summarize the
necessary conditions, it is convenient to define the Hamiltonian
function for our problem

H (t,x,u, v,λ) = L̃(x,u, v, t) + λT
(
Ax+B(t)u

)
, (2)

for all (t,x,u, v,λ) ∈
[
t0, tf

]
×Rnx ×Rnu ×R×Rnx , where

λ is called the adjoint variable1. The necessary conditions for
the tuple

(
x∗(t),u∗(t), v∗(t)

)
, t ∈

[
t0, tf

]
, to be a solution

of the OCP in (1) are summarized as follows(
u∗(t), v∗(t)

)
∈ argmax

u∈△v
nu

,v≥0
H

(
x(t),u, v,λ(t), t

)
, (3a)

λ̇(t) = −Hx

(
t,x∗(t),u∗(t), v∗(t),λ(t)

)
, (3b)

λ(tf ) = −Sx(tf ) (3c)

From the maximality condition (3a), we get (see Appendix I)

(
u∗(t), v∗(t)

)
= argmax

u∈△v
nu

,v≥0
H

(
x(t),u, v,λ(t), t

)
, (4a)

u∗(t) = v∗(t)
expe

(
ηBT(t)λ(t) + ηc(t)

)
1Texpe

(
ηBT(t)λ(t) + ηc(t)

) >e 0, (4b)

v∗(t) =

−W0

(
−2qη exp (−1)1Texpe

(
ηBT(t)λ(t) + ηc(t)

))
2qη

,

(4c)

where W0 is the principal branch of the Lambert W function.
Letting

(
u0, v0

)
:= argmaxu∈△v

nu
,v≥0H (x,u, v,λ, t), we

get that (u0, v0) is (u∗, v∗) for a given λ ∈ Rnx , which
is a unique solution due to the strict concavity of H in
(u, v). Substituting (u0, v0) in the Hamiltonian we get that
H(x,u0(x,λ, t), v0(x,λ, t),λ, t) is an affine function in x
which is concave. Additionally, since S (x) is also concave
in x, the necessary conditions (3) are sufficient (Arrow type
sufficient conditions [3]). Now using the adjoint equation (3b)
together with the transversality condition (3c), we get

λ̇(t) = −ATλ(t)− d, λ
(
tf
)
= e. (5)

Referring to [8], we can obtain the solution to (5) as2:

λ(t) = MA(t)e+Md(t), (6)

where[
MA(t) Md(t)
01×nx 1

]
= eM(t−tf),M =

[
−AT −d
01×nx

0

]
.

Substituting the adjoint solution (6) in (4), we get the solution

u∗(t) = v∗(t)
expe

(
ζ(t)

)
1Texpe

(
ζ(t)

) >e 0, (7a)

v∗(t) =
−W0

(
−2q exp(−1)η1Texpe

(
ζ(t)

))
2qη

, (7b)

ζ(t) := ηBT(t)
(
MA(t)e+Md(t)

)
+ ηc(t). (7c)

1The adjoint variable λ0 in H(t,x,u, v,λ, λ0) = λ0L(x,u, v, t) +
λT

(
Ax+B(t)u

)
is set to λ0 = 1 since the end-point x(tf ) is free [3].

2Note that for a non-singular A, we can write MA(t) =

exp
(
A

(
t− tf

))
, and Md(t) = A−1

(
MA(t)− I

)
d.



Remark 3.1: For the case when v is set to 1 and it is not
optimized over, the solution u∗ can then be shown to be u∗ =
expe(ζ(t))

1T expe(ζ(t))
by following the same procedure to obtain (7a).

Moreover, if d = e = 0 and c(t) = c, then the solution (7) is
a constant input u∗ = expe (ηc) /1

Texpe (ηc). Additionally,
if the inputs are weighted equally (i.e., c = c1 for some scalar
c ∈ R), then the solution simplifies to u∗ = 1

nu
1. This is the

well-known solution for the maximum entropy on a simplex.
Remark 3.2: Incorporating the entropy function into the

objective of OCPv encourages the utilization of all available
inputs, as the resulting solution, as shown in equation (7), is
always non-zero. This encourages diversification in the inputs,
which can be advantageous in certain applications where
exploring diverse solutions is desirable or in situations where
one or more inputs could potentially lose their effectiveness,
such as in the case of a faulty actuator. Using only a linear term
for the inputs in the objective of OCPv will yield a bang-bang
solution in step (4). Additionally, if we use a quadratic term
−uT(t)Qu(t),Q ≥ 0 for the inputs in place of the entropy
function, then the problem in (4) becomes a standard quadratic
optimization problem (StQP). However, determining explicit
solutions for StQPs is known to be NP-hard [9], even though
efficient algorithms are available. In contrast, despite the need
to evaluate a matrix exponential for MA and Md, computing
the explicit solution in (7) can be more efficient to implement
in many scenarios (e.g., when A is diagonal). Moreover, if
we intend to implement (7) recursively, as demonstrated in
IV-D, the matrix exponential need only to be evaluated once.
Finally, obtaining an explicit solution may prove valuable for
conducting further theoretical analyses of the implemented
solution’s dynamics.

Remark 3.3: The solution to OCPv can be used in a re-
ceding horizon fashion by recursively estimating the dynamics
parameters and solving the OCP for a fixed horizon (see IV-D
for an example). To ensure that the inputs between the solu-
tions are close to each other, we introduce a relative entropy
objective −η−1

p exp
(
−ρt̃

)
DKL

(
u(t) || up

)
with ρ > 0,

η−1 < η−1
p , and qp exp

(
−ρt̃

) (
v(t)− vp

)2
where t̃ := t−t0,∣∣qp∣∣ < |q| , with qp ≤ 0. The values up, vp are the last

inputs from the previously computed solution. In this case,
the solution in (4) becomes

u∗(t) = v∗(t)
expe

(
γ(t)

)
1Texpe

(
γ(t)

) , (8a)

v∗(t) =
−1

2q̄(t)η̄(t)
W0

(
− 2q̄(t)η̄(t)1Texpe

(
γ(t)

)
exp

(
−2η̄qp exp

(
−ρt̃

)
− 1

))
,

(8b)

γ(t) := η̄(t)BT(t)λ(t)+η̄(t)c(t)

+ η̄(t)η−1
p exp

(
−ρt̃

)
lne

(
up

)
,

(8c)

where η̄(t)= 1

η−1+η−1
p exp(−ρt̃)

, and q̄(t)=q + qp exp
(
−ρt̃

)
.

IV. EXAMPLE WITH BEHAVIORAL MOMENTUM THEORY

In this section, we will present a simple model derived from

the principles of behavioral momentum theory. The model
takes the form of ẋ(t) = B(t)u(t), with 1Tu(t) = v(t) and
will be described in detail in IV-A. We will then proceed to
use this model to solve OCPv for various scenarios in IV-B,
IV-C, and IV-D.

A. Behavioral Momentum Model
Behavioral momentum theory provides a quantitative basis

for the idea that the rate of a behavior, which has been
reinforced frequently in the past is more resistant to change
with disruptions than if it has been reinforced less frequently
[4], [10]. In the works of [4], [10], mathematical representa-
tions for behavioral momentum theory were introduced and
validated with data obtained from different experiments. In
this paper, we use a simple continuous-time version based on
an averaged model from [4], [10]. Let β(t) ∈ R≥0 be the
average rate of occurrence for a specific behavior per unit time
and define x(t) := log10

(
β(t)

)
, then the change x(t)− x(t1)

with ∆t := t− t1 ≥ 0 is modelled with respect to disruptions
and reinforcers as x(t)−x(t1) =

−δ(t)√
r(t)

∆t, where r(t) ∈ R≥0

is the average rate of a reinforcer, and δ(t) = b(t)v(t) with
v(t) ∈ R≥0 being the average rate of disruption events, and
b(t) ∈ R≥0 being an effect factor for the disruption events. The
value

√
r represents a ”behavioral inertia”, a higher average

reinforcer rate would require a higher average rate for the
effect of disruptions δ to change the behaviour. Dividing by
∆t and taking the limit for ∆t → 0, we obtain

ẋ(t) =
−1√
r(t)

δ(t). (9)

Consider now that for a disruption happening with an average
rate of v(t), the disruption can be of nu different types with
a probability ūi of being of type i with an effect factor bi. In
that case, δ(t) in (9) becomes

δ(t) = v(t)bT(t)ū(t), (10)

with ū(t) ∈ △1
nu

and b(t) ∈ Rnu

≥0. Here, the ith component
ūi(t) ≥ 0 of ū(t) can also be understood as the average rate
of a type of disruption with respect to the other types in δ(t)
(average rate ratio). Note that the sum

∑nu

i=1 v(t)ūi(t) = v(t).
The value v(t) is usually desired to be small enough to avoid
what is known as alert fatigue [11]. Alert fatigue is when the
rate of disruptions is high enough that the disruptions will lose
their effect. Note that the model (9) with (10) can be written
in the form of the model of OCPv (1b) by introducing v(t) in
the constraint (1c):

ẋ =
−1√
r(t)

bT(t)u(t),1Tu(t) = v(t), (11)

where B(t) = −1√
r(t)

bT(t).

Remark 4.1: For a better understanding of the averaged
representation and how to obtain (10), consider the Poisson
Compound Process Π(t) defined as

Π(t) =

P (t)∑
k=1

−1√
r(T−

k )
bT (T−

k )W k, (12)



where P (t) is a Poisson process representing the number of
disruptions (jumps) up until time t with rate v(t), T−

k is the
pre-disruption time value of the kth random disruption type,
W =W k is an IID stochastic process where W k represents
the type of the kth disruption such that W k ∈ W =
{w1, . . . ,wnu

} with wi being a vector of zeros except for
the ith element being 1 and P (W k = wi) = ūi. Taking the
expectation of Π(t) (Chapter 5 in [12]) will give us

E
[
Π(t)

]
=

∫ t

0

v(s)
−1√
r(s)

bT (s)ū(s)ds, (13)

which is equivalent to x(t) in (9) with δ(t) being chosen as
in (10). This interpretation also gives us a method to apply
the disruptions in real life by simulating (12).

In this paper, we will consider nudges as intentional disrup-
tions that can change the reinforcement contingencies asso-
ciated with a behavior and we will examine three different
examples. The first one in section IV-B deals with a case when
v(t) is fixed to be 1 (see Remark 3.1) and b is constant. The
second case in section IV-C is when v(t) is optimized over,
and the third case in section IV-D is when b(t) is time-varying
compared with a receding horizon setting. It is important to
note that the examples discussed are simplified abstractions.
The intention of presenting the examples is to show how the
solution of OCPv in this paper can potentially be used for
behavior nudging with elements from behavioral momentum
theory. In all of the figures, we will report β(t) = 10x(t)

and ū(t) = 1
v(t)u(t). The code for generating the results can

be found on https://gitlab.com/aau-adapt-t2d/
nudging_entropyocp.

B. Case with a Constant Rate of Nudges

Consider a case in which a diabetic subject is not following
their prescribed medication regimen, such as failing to admin-
ister the correct dose of insulin or taking a lower or higher dose
than what was prescribed due to some constant average rate
of a reinforcer r = 7 [1/Week]. Here the reinforcer could be
inconveniences of administering the dose and/or economical
burden. Assume that we have three different types of dis-
ruptions: ū1 being the probability of sending dose reminder
text messages to the subject with an effect of b1 = 0.2,
ū2 being the probability of sending personalized encouraging
text messages to the subjects (e.g., reminding them about the
importance of their health to their family) with an effect of
b2 = 0.3, and ū3 being the probability of a phone call from
a medical staff reminding them about the importance of their
health with an effect of b3 = 0.4. Our case study assumes that
having a call from a medical staff is the most effective method
while sending unpersonlized reminders is the least effective.
Additionally, consider that we desire to fix the rate of nudges
to a constant v = 1 [1/Week]. Phone calls from medical
staff can be costly and labor intensive. To account for this, we
define a linear cost for the different options c = − [0.1 0.5 1]

T

giving a higher cost for ū3 and a lower cost for ū1. A higher
cost for ū2 than the cost for ū1 is used since the second type of
nudges requires obtaining personal information regarding the

subjects and formulating specific text messages for them. This
cannot be easily automated when compared to just sending
dose reminders with ū1. Additionally, we choose d = e =
−2 to lower x(t) within a time horizon tf = 24 [Week].
Finally, we select η = 1 for the entropy function. Figure 1
shows the results of applying the solution in (7) with v = 1
compared to a solution to the problem obtained numerically
by using forward-Euler with a discretization step Td = 0.01
to discretize the dynamics, lift the problem, and then solve
it using SDP3 [13] with CVX [14]. The numerical solution
matches the closed-form solution which further validates it.
We can see from the solution that the reliance on medical staff
and personalized reminders is higher at the beginning than
text reminders but slowly decreases with time to reduce the
burden on the medical staff. Additionally, none of the nudging
techniques have a zero contribution at any point of time and
there is always a mix between all of them ((4b) will always
be strictly positive). In figure 2, we compare our closed-form
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Fig. 1. Numerical solution (dashed) against the closed-form solution
(solid) for OCPv with constant v = 1.
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Fig. 2. Comparison between the quadratic objective case (dashed) and
the entropy objective case (solid) in OCPv.

solution with a numerical solution obtained using a quadratic
cost −uTu instead of the entropy in OCPv. Additionally, we
simulate the response β(t) in a case where the medical staff
become unavailable after the first week rendering b3 = 0 in
simulation only and not in the calculation of the input nudges.
We can see from the figure how the input nudges with the
entropy objective are smoother than the ones calculated with
a quadratic cost. Additionally, we see that for the quadratic
cost case, the text reminders were not used at all until almost
10 weeks from the beginning of the scheduling of nudges. This

https://gitlab.com/aau-adapt-t2d/nudging_entropyocp
https://gitlab.com/aau-adapt-t2d/nudging_entropyocp


is not preferable since it is desired for the subject to be more
acquainted with the different nudging techniques as early as
possible to handle technical and personal difficulties from the
beginning. The average rate of the behaviour β(t) for both the
quadratic objective case and the entropy objective case are very
similar. For the case when b3 = 0, the entropy objective case
has a lower β(t) curve over time than the curve obtained with
the quadratic objective. This is expected since maximizing the
entropy encourage the use of all the available resources which
offers robustness in case of the sudden absence of one resource
or more.

C. Case with a Time-Varying Nudge Rate
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Fig. 3. Numerical Solution (dashed) against the closed-form solution
(solid) for OCPv.
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Fig. 4. Comparison between the solutions with varying v with q = −1
(dashed), q = −2 (dotted), and with a fixed rate v = 1 (solid).

We consider in this section the same case in the previous
section IV-B but when we desire to optimize over v(t).
Figure 3 shows the results when we choose q = −1 against
a numerical solution obtained using CVX and SDP3. We
observe from figure 3 that the numerical solution matches the
closed-form solution which further validates it. We notice from
the solution that the rate of nudges v at the beginning has a
value greater than 2 [1/Week], and phone calls from medical
staff have the highest share of the different types of nudges.
Afterwards, the nudge rate v decreases to be below 1 [1/Week]
throughout the solution while the reliance on text reminders is
increasing to finally be the nudge with the highest contribution.
Allowing v to vary gives the opportunity to lower it while
the average behavioral rate β(t) is decreasing, which prevents
overburdening the subject with nudges that could lead to alert

fatigue. In figure 4, we compare the solutions when v = 1 with
two cases of varying v with q = −1 and q = −2. We can see
from the figure that for both of the cases of varying v, the
average rate β(t) decreases faster than the case of a fixed rate
due to v starting with a value greater than 1. Additionally, we
observe that the inputs ū are identical for all the cases with ū3

being the highest at the beginning and the lowest towards the
end. Notice how increasing |q| will make v starts at a lower
value which helps to reduce the risk of alert fatigue from the
beginning.

D. Receding Horizon Case
In this section, we demonstrate how the solution of OCPv

can be used in a receding horizon fashion to adapt to changes
in the parameters of the model. We introduce ”feedback” by
utilizing recursively estimated values of the model’s param-
eters for the computation of a new scheduling scheme. We
choose ρ = 5, qp = 0.5q, and ηp = 10η in (8) for the receding
horizon solution. For the simulation, we consider a case in
which the effect b3 of a phone call from the medical staff
vanishes for a while during treatment according to b3(t) =
0.4− 0.4σ(10(t− 10)) + 0.4σ(10(t− 18)). Additionally, we
consider a case in which the subject pays less attention to text
messages on their phone over time captured by modifying the
effects b1 and b2 according to b1(t) = 0.2

(
1
2 + 1

2e
−0.2t

)
and

b2(t) = 0.3
(
1
2 + 1

2e
−0.2t

)
. We simulate a case in which we

have a perfect knowledge about b(t) (Nominal), and for a
case in which we have an estimate of the effect of nudges.
For the receding horizon case, we consider that every week
tj such that tj − tj−1 = 1 [Week], j ∈ Z, we obtain an
estimate b̂(tj) = b(tj − 2/7) + 0.25∥b(tj − 2/7)∥2ξ(tj) with
ξ(tj) ∼ N (0, I)3. The solution of the receding horizon for
each week then uses a constant b̂(tj) for the entire week
with tf = 24 [Week]. The figure in 5 shows the results. We
can see from the results that the open loop response of β
with the perfect knowledge of b(t) compared to the one with
the receding horizon and imperfect knowledge of b are very
similar. As for the inputs, we can see how they are affected
by the noise and the delay during the simulation. Despite the
presence of noise and delay, the receding horizon solution is
able to follow the trend of the optimal open-loop solution for
the case of a perfect knowledge of b(t).

V. CONCLUSION AND FUTURE WORK

We presented an OCP in which the inputs are constrained
to a variable-sized simplex, with the size being another input
to optimize over. We showed that with the inclusion of the
entropy function in the objective, it is possible to derive
closed-form solutions when the dynamics are linear, and the
objectives are linear on the states and the simplex inputs, and

3Several techniques could be used to obtain estimates of the model parame-
ters with data. The data can contain the frequency of the undesired behaviour,
feedback from the subject regarding the effectiveness of the different nudges,
and data on how the subject responds to nudges such as the number of times
they answer phone calls or read text messages (see [6]). Since the use of these
techniques is out of the scope for this paper and the goal of this section is
to demonstrate how receding horizon could work, we used a random additive
error with a delay of two days to simulate estimation errors.
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Fig. 5. Solution for the Nominal case with a perfect knowledge of b(t)
(solid) and a receding horizon case (dashed).

quadratic on the size of the simplex. A possible future research
direction is to study a more general class of OCPs with en-
tropy and simplex constraints. We also demonstrated how the
formulated OCP can potentially be used in conjunction with
behavioral momentum theory in the help of scheduling nudges
to discourage unhealthy behaviors, such as non-adherence
to medication. This work is a starting point for utilizing
control theory methods with the behavioral momentum theory
for nudging design. Future work will focus on incorporating
more complex behavioural momentum models, comparing
this framework with different frameworks such as the one
in [7], performing and developing system identification for
behavioural momentum models, and applying the solutions in
a real-life setting using a receding horizon approach.

APPENDIX I
MAXIMIZATION WITH ENTROPY

Consider u ∈ △v
nu

with v ≥ 0. We will derive the solution
for the following problem

(u∗, v∗) = argmax
u∈△v

nu
,v≥0

1

η
ϕ(u) +αTu+ qv2, (14)

where η > 0, q < 0, and α ∈ Rnu . Define first the Lagrangian
on int

(
△v

nu

)
×R≥0 as

L =
1

η
ϕ(u) +αTu+ qv2 +λTu+ µv+ ζ

(
v − 1Tu

)
,

(15)

where λ ≥e 0, µ ≥ 0, and ζ are Lagrange multipliers. We pro-
ceed by writing the Karush–Kuhn–Tucker (KKT) conditions
[15] which are sufficient since the problem is concave

−1

η
lne (u)−

1

η
1+α+ λ− ζ1 = 0, (16a)

2qv + µ+ ζ = 0, (16b)
u ≥e 0, uiλi = 0, ∀i ∈ {1, . . . , nu}, (16c)
v ≥ 0, µv = 0, (16d)

1Tu = v. (16e)

Since we are considering int
(
△v

nu

)
×R≥0, we get λ = 0

and µ = 0 from (16c), (16e), and (16d). From (16a) we get
u = expe (ηα− 1− ηζ1) >e 0. From (16b), we have ζ =
−2qv which we substitute back in expe (ηα− 1− ηζ1) and
use (16e) to get

1T expe(ηα) exp(−1) exp (2qηv) = v,

⇒ −2qηv exp (−2qηv) = −2qη exp(−1)1T expe(ηα).
(17)

Equation (17) is in the form of y exp(y) = x with x > 0
(q < 0). The solution of this equation is known to be the
principle branch of the Lambert W function y = W0(x). With
the Lambert W function, we solve (17) for v to obtain

v∗ =
−W0

(
−2qη exp(−1)1T expe(ηα)

)
2qη

(18)

u∗ =
v∗ expe (ηα)

1T expe (ηα)
. (19)

Since the objective function in (14) is strictly concave on
△v

nu
×R≥0, then (18) is the unique maximizer on △v

nu
×R≥0.
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