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A B S T R A C T   

This study establishes a novel approach to investigate if accelerated aging tests can accurately model realistic cell 
aging in a short time while also maintaining the consistency of the involved aging mechanisms. As a trade-off 
between efficiency and consistent mechanism, the application of accelerated aging necessitates carefully 
selecting stress factors to identify the operational range and the significance of aging-related stress factors. Based 
on three levels of major stress factors designed for 43-month calendar aging tests and 10-month cyclic aging tests, 
this work aims at the stress ranking and indicating suitable operational intervals for commercial LFP/C batteries, 
taking two of the most popular lifetime distributions for batteries, namely log-normal and Weibull. Statistical 
distributions of lithium-ion batteries are attained from discharge capacity loss with nonlinear mixed-effects 
(NLME) models. Results prove that log-normal is the preferred model, and the right-skewed Weibull becomes 
more pronounced with deeper aging, especially in calendar aging. The evolution law of distribution parameters 
guided by the consistent acceleration factor was derived. The likelihood ratio parametric bootstrap approach 
based on the NLME model for life samples consistently yields that test conditions with the temperature above 
47.5 ◦C and average state-of-charge (SOC) for cycling aging above 72.5% can result in different life behaviors. In 
contrast, the combination of SOC levels and higher temperatures does not lead to a change in the calendar aging 
mechanisms. The temperature is the most significant stress, followed by temperature-coupled cycle depth and 
SOC levels. This method can offer a reference to make reasonable test plans for detecting battery’s performance 
to predict their life more accurately.   

1. Introduction 

A crucial aspect of the business case for electric vehicles is accurate 
battery life prognostics. Accurate lifetime prediction can help improve 
technology during the battery’s life cycle. It is necessary for stable 
operation and timely maintenance of the battery management system 
(BMS), first and foremost. Furthermore, it can be utilized to shorten the 
production duration by optimizing design and manufacturing processes. 
Additionally, it can offer details on the battery’s first life for second-life 
applications. 

Accelerated tests (ATs) are essential for building life prediction 
models. Typically, data from testing high-level acceleration factors (AF), 
like temperature, C rate, state-of-charge (SOC), or cycle depth (CD). etc., 
can be extrapolated to estimate life in lower, normal-use conditions. 
Effective ATs should ensure that the dominant mechanism is consistent 
under all stress levels [1]. Otherwise, it will not be possible to correctly 

extrapolate life information for normal operation, thus increasing the 
cost of improving battery design and safety. 

In terms of the test plan to ensure mechanistic consistency, stress 
ranking, activation energy agreement, non-invasive techniques, and 
postmortem analysis are four methods currently applied to lithium-ion 
batteries (LiBs). The comparison of this work and present approaches 
in literature are summarized in Table 1, including key methods and 
adopted information. Stress ranking is to use a model or machine 
learning to determine the most essential stress factor based on a large 
number of experimental designs and test results, with the goal of 
reducing test time while limiting the level of this factor to avoid 
mechanistic alterations. This method necessitates the use of large test 
resources since it necessitates various considerations of the design so-
lution and quantitative descriptions of both individual and coupled 
stresses. Another simple way is to use the change in slope of the 
Arrhenius model as an indicator of varying activation energy, and 
therefore represent the occurrence of different basic chemical reactions. 
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The interpretation of the results can be skewed because different ca-
pacity degradation data from the same test settings may also produce 
different fitting results for the activation energy parameter. Electro-
chemical impedance (EIS), incremental capacity analysis (ICA), 

differential voltage analysis (DVA), and electrostriction intermittent 
titration (GITT) are non-invasive approaches for identifying degradation 
modes. These characterization techniques can also offer qualitative de-
tails on the underlying mechanisms, but they necessitate long test 
duration, specialized knowledge, and analysis tools. In addition, a more 
intuitive way is postmortem analysis. For example, SEM or XPS, etc. is 
used to determine the mechanism mutation point. However, this 
approach requires expensive instruments and professional operation. 
Researchers have made extensive use of ATs to test batteries [2–4], 
where the design of tests is based on expert knowledge rather than the 
scientific method. According to the above studies, there are few straight 
and effective discriminatory methods for the consistency of LiB mech-
anisms, and few recommendations for reasonable stress selection and 
operation range. Therefore, a flexible and reliable method to find 
reasonable accelerated test intervals and stress factors is urgently 
needed for industry application. 

LiBs’ end-of-life (EoL) is typically defined as a statistical process 
determined by "hidden" variables that are difficult to manage. The 
challenge of replicating capacity or resistance data for the same batch of 
batteries even under strict controlled test conditions demonstrates this 
[18]. Therefore, applications of statistical analysis in experimental 
design and modeling of ATs for LiBs have gained attention in recent 
years [19]. For example, in [20], Harris et al. focus on statistical mea-
sures that provide valuable insights for battery manufacturers, with a 
focus on making batteries with more stable lifetimes. They conclude that 
sufficient confidence is needed to ensure that enough cells are tested and 
that the 3-parameter Weibull does not add physical insight. Johnen [21] 

Nomenclature 

Qloss the proportion of battery capacity fade 
f(.) the severity factor function 
v the vector of aging factors (T, SOC, IC, CD) 
Df the failure threshold 
εij the group error vector 
σ the standard deviation of the error εij 
Tref the reference temperature 
γ1 the reference aging rate 
γ2 the activation energy to gas constant ratio 
γ3, γ4 coefficients of the cubic equation used to characterize the 

SOC dependence 
γ5 the power law exponent 
γ́ Natural logarithm of γ 
φ1, φ2 the parameters to define the SOC dependence 
φ3 the ratio of the temperature 
φ4 the current-dependent activation energy to the gas 

constant 
φ5 the aging rate constant with CD dependence 
φ6 power law exponent 

φ́ Natural logarithm of φ 
mi the number of degradation paths 
mj the number of observation indicators per path 
r the number of random parameters in each path 
k the number of mutually independent 
fγ́ the multivariate normal density function 
∑

γ́ the covariance matrix for random effects. 
Sl low stress 
Sh high stress 
α shape parameter 
β scale parameter 
Λ0 a collective model with only two parameters in total 
Λobs the LR between a model that considers the differences 

between test conditions 
n the number of accelerated test conditions 
m the number of random bootstrap tests 
f the probability density 
η the corrected lifetime distribution parameters 
QBoL the capacity measured at the Beginning of Life 
Qk(t) the periodically measured capacity after each RPT  

Table 1 
Comparison of this work and current studies.  

Methods Adopted 
resources 

Major benefits Limitations Reference 

Stress 
ranking 

Significant 
database of 
experimental 
studies 
Empirical 
model or 
machine 
learning 

Identification 
of the most 
impactful 
stress factors 
and utilize 
them for ATs 

Requirements 
for more stress 
levels 
considered in 
test design 
Stress 
interaction 
effects 
considered 

[5–7] 

Activation 
energy 
agreement 

Linear form by 
applying the 
natural 
logarithm on 
Arrhenius law 

Simple fitting 
A small 
amount of data 

Rough 
interpretation 
of mechanistic 
changes 
Questionable 
accuracy of 
fitting 

[8–10] 

Non- 
invasive 
techniques 

EIS 
ICA 
DVA 
GITT 

Providing 
qualitative 
information on 
underlying 
mechanisms 

Understanding 
the principles of 
testing 
cumbersome 
data handling 

[11,12] 

Postmortem 
analysis 

X-ray 
spectroscopy 
Tomography 
SEM 
XRD 

Visual 
verification of 
degradation 
mechanisms 

Instrument 
expertise 
materials- 
related 
mechanism 
understanding 

[13–17] 

This work Capacity 
degradation 
over time 
Statistical 
distribution 

Finding out the 
mechanism 
consistency 
interval 
Accelerated 
effect of stress 
factors 
Straight and 
feasible 

Dependent on 
test data   

Table 2 
Datasheet values of the studied LFP/C battery.  

Parameter Value 

Cell Dimensions [mm] ϕ26× 65 
Nominal Capacity [Ah] 2.5 
Nominal voltage [V] 3.3 
Max. voltage [V] 3.6 
Min. voltage [V] 2.0 
Max. continuous charge current [A] 10 
Max. continuous discharge current [A] 70 
Operation temperature [ ◦C] − 30 ◦C ~ +60 ◦C 
Storage temperature [ ◦C] − 50 ◦C ~ +60 ◦C  
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and Mouais [22] recommend the log-normal distribution as a reasonable 
choice for modeling the lifetime of batteries by studying the censored 
data from ATs. From this, reliability modeling starts to gain interest in 
the degradation and lifetime analysis of LiBs [23]. By creating a new AF 
expression and mechanistic consistency discrimination criteria, 

including the idea of AF consistency in the mechanistic discrimination 
study is achieved, which is inspired by reliability assessment methods 
[24]. Based on the above analysis of the lifetime distribution model, we 
adopt log-normal and Weibull distributions as statistical tools in this 
study, the two most often used methods for analyzing LiBs’ lifetime, 

Fig. 1. Flowchart of the calendar and cycling aging test and RPT procedure. The time between periodic battery checks is indicated by different colors. Blue denotes 
every 30 days for the calendar test. Green, yellow, and orange indicate every 3250, 950, and 550 cycles, respectively. 

Fig. 2. Mean capacity fade paths, simulated fade trends, and normal probability plots of residuals. Colored dots represent the three different cells in each aging test. 
Different Temperature at 50% SOC (a) 313.16 K, (b) 321.66 K, (c) 328.16 K; different SOC levels at (d) 10%, (e) 90%. 
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where time is represented by storage months for calendar and full 
equivalent cycles (FEC) for cycling. To the best of our knowledge, the 
methodology for establishing AF expression in LiBs and determining test 
plans based on the AF consistency principle has not been fully explored. 

In this paper, we derive the conditions for satisfying the criterion of 
mechanism consistency, that is, the AF expression and the variation law 

of log-normal and Weibull distribution parameters under different stress 
levels. The methods of parameter consistency test using the likelihood 
ratio (LR) parametric bootstrap test are also given. Aging tests were 
performed on a total of 41 batteries (15 cells were tested for 43 months 
under calendar aging conditions and 26 cells were tested under cycling 
aging conditions). Finally, the stress points that cause mechanistic 
changes within the experimental design are indicated, and comparisons 
of AF for different stresses acting together and stress factor rankings are 
obtained. The log-normal distribution’s advantage is proven, while an 
appropriate stress factor selection and interval recommendations are 
provided. 

The roadmap is as follows. Section II describes the mechanism con-
sistency discrimination method. Section III provides the experimental 
scheme and battery specimens, as well as the experimental results of 
discharge capacity loss and modified aging models with nonlinear 
mixed-effects (NLME). Section IV discusses the effects of individual 
stresses, the variation of AF for coupled stresses, the stress ranking, and 
statistical comparative results. Concluding remarks are given in Section 
V. 

Table 3 
Parameter estimation of calendar aging model.  

Test 
case 

µγ 
∑

γ σ Loglikelihood 

I [− 5.2258, 7.8367, 
0.2449, 1.0378, 
− 0.2357] 

[
0.0863 − 0.0628
− 0.0628 0.0836

]
0.0045 272.3485 

II [− 4.2456, 7.3421, 
1.5600, 1.2975, 
− 0.2568] 

[
0.2351 − 0.2147
− 0.2147 0.2637

]
0.0057 401.5446 

III [− 4.1865, 7.6986, 
1.2757, 1.6014, 
− 0.6528] 

[
0.1387 − 0.1266
− 0.1266 0.2851

]
0.0033 300.7478 

IV [− 5.6754, 8.1048, 
0.6443, 1.0963, 
0.0161] 

[
0.1085 − 0.0934
− 0.0934 0.0862

]
0.0077 402.3370 

V [− 5.8454, 7.8816, 
1.3627, 0.9870, 
− 0.0733] 

[
0.5469 − 0.2697
− 0.2697 0.1463

]
0.0075 392.6194  

Fig. 3. Mean capacity fade paths, simulated fade trends, and normal probability plots of residuals. Color dots represent different cells from the same batch in each 
aging test. 
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2. Theory of mechanism consistency discrimination 

2.1. Accelerated degradation modeling 

The degradation behavior of the battery exhibits a power law with 
the degradation time, based on the time dependence of solid electrode 
interface (SEI) growth [25]. A generic representation of the capacity loss 
model can be made as Eq. (1). The time when Qloss reaches the failure 
threshold Df is the EoL as seen in Eq. (2). 

Qloss(v, t) = f (v)⋅tz (1)  

ξ = inf
{

t|Qloss(v, t) ≥ Df
}

(2)  

where Qloss indicates the proportion of battery capacity fade, f(v) is the 
severity factor function, v is the vector of aging factors (T, SOC, IC, CD), 
and Df is usually set at 20%. 

That is, Qloss represents the cell’s actual degradation path. The value 
of Qloss(v,tij) is obtained at discrete time points such as ti1,ti2,…,tij for cell 
i. The perceived degradation path yij of unit i at time tij is the real 
degradation path Qloss (v,tij) plus the error εij, given by Eq. (3) [26]. 

yij = Qloss
(
v, tij

)
+ εij, εij ∼ N

(
0, σ2) (3)  

where εij is the group error vector assumed to be independent, identical 
and normally distributed, and σ is the standard deviation of the error εij. 

For Qloss, each condition has its own model. Based on the above 
concern, we apply modified semi-empirical models for calendar and 
cycling aging based on [9] and [27]. For calendar aging, only storage 
time (t), temperature (T), and SOC level have an impact on capacity fade 

under open-circuit storage conditions (Eq.(4)). 

Qloss(T, SOC, t) = γ1⋅exp
[

− γ2⋅
(

1
T
−

1
Tref

)]

⋅
[
γ3(SOC − 0.5)3

+ γ4
]
⋅tγ5 (4)  

where Tref is the reference temperature with Tref = 298.15 K. γ1 is the 
reference aging rate. γ2 denotes the activation energy to gas constant 
ratio. γ3 and γ4 are the coefficients of the cubic equation used to char-
acterize the SOC dependence. γ5 is the power law exponent. 

The rate constant and power exponent are re-parameterized by 
logarithms because they can only be physically relevant if it is positive. 
In Eq. (4), a possible parametrization can be (γ′

1,γ
′

2,γ
′

3,γ
′

4,γ
′

5) = [log(γ1),

log(γ2), log(γ3), γ4, log(γ5)], The activation energy γ2, rate constants γ3, 
and power law of time γ5 are fixed variables, while other parameters are 
random variables. The choice of fixed and random variables is because 
the activation energy, rate constants, and time power exponent are 
physically meaningful, which is related to the aging mechanism. These 
factors cannot be changed since there is a dominating aging mechanism 
for each test condition. The random effects characterize the model’s 
within-group dependence. Here, a group can be regarded as different 
cells’ performance outcomes under the same test condition. 

During cyclic aging, capacity fade is influenced by time (t), tem-
perature (T), charge/discharge C-rate (IC), and CD (Eq.(5) has been 
modified from [27]). 

Qloss(T, SOC, Ic,CD, t) = (φ1⋅SOC+φ2)⋅exp
[

− (φ3 +φ4⋅Ic)⋅
(

1
T
−

1
Tref

)]

⋅exp(φ5⋅CD)⋅tφ6 (5)  

where φ1 and φ2 are the parameters to define the SOC dependence, φ3 
and φ4 are the ratio of the temperature and current-dependent activa-
tion energy to the gas constant, φ5 is the aging rate constant with CD 
dependence, and φ6 is the power law exponent. 

Similarly in Eq. (5), a possible parametrization can be [φ′

1,φ
′

2,φ
′

3,φ
′

4,

φ′

5, φ′

6] = [log(φ1), log(φ2), log(φ3), log(φ4), log(φ5), log(φ6)]. The rate 
constants φ1 and φ5, activation energy φ3 and power law of time φ6 are 
fixed variables, while other parameters are random variables. The 
choice of fixed and random variables is because the activation energy 
and time power exponent are physically meaningful, which is related to 
the aging mechanism. These factors cannot be changed since there is a 
dominating aging mechanism for each test condition. The random ef-
fects characterize the model’s within-group dependence. Here, a group 
can be regarded as different cells’ performance outcomes under the 
same test condition. 

As individual cell degradation curves have a similar form but vary 
depending on the manufacturing process, this study is to use degrada-
tion data to deduce the behavior of a sample population of cells under 
different conditions and to forecast the lifetime distribution. The 
random parameters for the entire degraded population can be denoted 
by θγ = (μγ ,

∑
γ). 

The likelihood function of the NLME [28,29] for the accelerated test 
of the n’th group can be expressed as Eq. (6). We maximize the joint 
likelihood to find the estimated mean μ̂γ′ and covariates Σ̂γ′ .  

Table 4 
Parameter estimation of cycling aging model.  

Test 
case 

µγ 
∑

γ σ Loglikelihood 

I [3.2411, − 0.4001, 
8.5587, 3.0547, 
2.8296, − 0.56259] 

[
0.7633 − 0.3909
− 0.3909 0.4863

]
0.0180 185.5144 

II [4.5726, 0.1251, 
7.9807, 3.5465, 
2.9276, − 0.6641] 

[
1.3531 − 0.9820
− 0.9820 0.7157

]
0.0150 278.4290 

III [4.6953, − 0.2416, 
8.3916, 4.0584, 
2.7840, − 1.0467] 

[
1.7790 − 0.4696
− 0.4696 0.3230

]
0.0100 359.9726 

IV [5.6252, − 1.2555, 
7.8660, 3.6788, 
3.4307, − 0.9522] 

[
0.7263 − 0.7628
− 0.7628 0.9464

]
0.0136 178.3063 

V [4.3495, 0.9377, 
7.4309, 2.8502, 
4.6968, − 0.5979] 

[
0.9638 0.7589
0.7589 1.0475

]
0.0153 175.4743 

VI [3.1260, − 1.8914, 
9.0907, 3.0139, 
3.2581, − 0.8915] 

[
2.0965 − 0.9307
− 0.9307 0.6240

]
0.0131 189.4932 

VII [3.0424, − 0.0859, 
8.6990, 0.8229, 
3.4213, − 0.4549] 

[
1.3863 − 1.2004
− 1.2004 1.2098

]
0.0189 129.3995 

VIII [4.3737, 1.8058, 
7.9306, 5.1048, 
3.4893, − 0.4549] 

[
0.6595 0.4464
0.4464 0.4651

]
0.0180 169.4594  

Ln

(

μγ′ ,
∑

γ′

)

=
∏mi

i=1

∫ +∞

− ∞
...

∫ +∞

− ∞

[
∏mj

j=1

ϕ
(
yij − Qloss

(
v, tij
))

σ

]

× fγ′

(

γ′

i; μγ′ ,
∑

γ′

)

dγ′

1i, ..., dγ′

ri

=
∏mi

i=1

∫ +∞

− ∞
...

∫ +∞

− ∞

[
∏mj

j=1

ϕ
(
yij − Qloss

(
v, tij
))

σ

]

× (2π)−
k
2

⃒
⃒
⃒
⃒
⃒

∑

γ′

⃒
⃒
⃒
⃒
⃒

− 1
2

exp

[

−
1
2
(
γ′

i
(r)

− μγ′
)T∑

γ′

− 1(
γ′

i
(r)

− μγ′
)
]

dγ′

1i, ..., dγ′

ri

(6)   
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Fig. 4. LR parametric bootstrap test histogram at three temperatures based on (a-c) log-normal and (d-f) Weibull, and at three SOC levels based on (g-i) log-normal 
and (j-l) Weibull. 
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Where mi is the number of paths, and mj is the number of observation 
indicators per path, r is the number of random parameters in each path, k 
is the number of mutually independent γ’, i.e., the number of parameters 
with fixed effects, fγ′ is the multivariate normal density function, and Σγ′

is the covariance matrix for random effects. 
To obtain the EoL distribution for different acceleration conditions, 

the multivariate normal distribution with estimated parameters fulfilled 
as θγ = (μγ,Σγ) can be used as the basis for parametric sampling, thus, 
creating the sampling lifetime calculated from Eq. (1) and (2) as the 
inputs for the LR test. 

2.2. Statistical analysis 

It is sufficient to confirm that the AF is independent of the cumulative 
failure distribution of the battery life [30], as seen in Eq. (7), to assess 
the consistency of the battery mechanism during the acceleration test. 

Fl(tl) = Fh(th) (7)  

where Fl(tl) and Fh(th) are the cumulative failure probabilities of the 
battery under low stress Sl and high stress Sh, respectively. 

When the capacity degradation is at the failure threshold Df, the AF 
can be expressed as the equation of f(v) (based on Eq. (1)). A large AFh,l 
value indicates a more pronounced acceleration. The AF is reliant on 
Qloss unless the power index is constant; in that case, the AFh,l changes 
based on the Qloss is given as: 

AFh,l(Qloss) =
tl

th
=

̅̅̅̅̅̅̅̅̅̅
f (vh)

zh
√

̅̅̅̅̅̅̅̅̅̅
f (vl)

zl
√ × Qloss

1
zl
− 1

zh ,AFh,l > 1 (8) 

EoL samples are employed to fit the Weibull and log-normal distri-
butions for the battery lifetime distribution. Then, using the above dis-
tributions, what constraints the distribution’s parameters must obey to 
satisfy Eq. (7) are identified. 

Given t̃k = {ti
1k, t

i
2k,…, tijk} represents the lifetime vector under 

accelerated stress Sk for the i’th test sample. Assume that F(t;α, β, Sl) is 
the lifetime distribution function of capacity degradation at stress Sl and 
follows a Weibull distribution with scale parameter β and shape 
parameter α. Then, 

Fig. 5. (a) Standard deviation and (b) shape parameter of lifetime distribution and cell-to-cell variations at 40 ◦C, 47.5 ◦C, and 55 ◦C; (c) Standard deviation and (d) 
shape parameter at 10%, 50%, and 90% SOC levels. 

W. Guo et al.                                                                                                                                                                                                                                    



e-Prime - Advances in Electrical Engineering, Electronics and Energy 4 (2023) 100142

8

F(t;α, β, Sl) = Pr
(
Qloss(t)Sl ≥ Df

)

= Pr
(
ξ ≤ AFh,l⋅tSh

(
Df
))

= 1 − exp

⎡

⎣ −

(
AFh,l⋅ttSh (Df )

βSl

)αSl
⎤

⎦

(9) 

According to Eq.(7) and Eq.(8), the parameters must satisfy the 
following condition to keep the aging mechanism consistent: 
⎧
⎪⎨

⎪⎩

αsh = αsl

βsl

/

βsh =

̅̅̅̅̅̅̅̅̅̅
f (vh)

zh
√

̅̅̅̅̅̅̅̅̅̅
f (vl)

zl
√ × Qloss

1
zl
− 1

zh
(10) 

Similarly, assuming that the battery lifetime obeys lñtk ∼ N(μk,σk
2), 

it can be obtained that the parameters of the log-normal distribution 
satisfy the following requirement to assure the consistent lifetime 
behavior: 

1
zh

lnfh(vh) −
1
zl

lnfl(vl) +

(
1
zl
−

1
zh

)

lnQloss =

(
σl

σh
− 1
)

lnth + μl −
σl

σh
μh (11)  

where AFh,l does not affect the failure lifetime distribution under any 
accelerating stress, yielding the parameters to satisfy the following 
condition: 
⎧
⎪⎨

⎪⎩

σl = σh

μl − μh =
1
zh

lnfh(vh) −
1
zl

lnfl(vl) +

(
1
zl
−

1
zh

)

lnQloss
(12)  

2.3. Parameter consistency test 

For sampled lifetime through fitting degradation trajectory based on 
Eq.(4) and (5), a parametric bootstrap test LR is applied to test the 
parameter consistency. Suppose the lifetime under different stress is 
corrected with Eq. (10) and (12), in that case, it is thought that if the 
mechanism is consistent, the LR of the lifetime distribution will not vary 
much after the bootstrap of corrected lifetimes in different experimental 
conditions. The null hypothesis is H0 : {FC

Sl
= FC

Sh
}, where the superscript 

C indicates the corrected lifetime applying Eq. (10) based on the EoL log- 
normal assumption and Eq. (12) based on the EoL Weibull assumption, 
and f is log-normal or Weibull distribution. 

The LR of the observed data and that after the bootstrap of corrected 
sampling lifetime at different test conditions are calculated as Eq.(13) 
(14). In a parameterized bootstrap, samples should be drawn assuming 
that H0 is true, i.e., that all acceleration conditions meet mechanistic 
consistency. 

Λobs = − 2

(

Λ0 −
∑n

i=1
Λ(f (ti

c; ηi))

)

Λboot = − 2

[

Λ0 −
∑M

q=1

∑n

p=1
Λ
(
f
(
tpq

c; ηpq
))
]

(13)  

where Λ0 represents a collective model, i.e., with only two parameters in 
total (a common mean and variance or a common shape and scale), Λobs 
is calculated as the LR between a model that considers the differences 
between test conditions, n denotes the number of accelerated test con-
ditions, m denotes the number of random bootstrap tests, f is the 

Fig. 6. LR parametric bootstrap test histogram at (a-c) three temperatures, (g-i) SOC levels and (m-o) CD levels based on log-normal distribution; (d-f) temperatures, 
(j-l) SOC levels and (p-r) CD levels based on Weibull distribution. 
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Fig. 6. (continued). 
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Fig. 7. Standard deviation and shape parameter of lifetime distribution and cell-to-cell variations (a-b) at 308.16 K, 315.16k, and 323.16 K; (c-d) at 27.5%, 50%, and 
72.5% SOC levels; (e-f) at 10%, 35%, and 60% CD level. 
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probability density, and the parameters η represents the corrected life-
time distribution parameters of different accelerated test groups. 

When the significance level is λ, the rejection domain is seen as Eq. 
(14). 
{

t : P
(
Λperm >Λobs

)
≥ λ
}
, λ = 0.05 (14)  

3. Experimental 

This paper studies the commercially available 26,650 LFP/C battery. 
Such batteries use graphitic carbon as the active material at the anode 
and LFP as the cathode. Table 2 shows the main battery parameter 
values from the manufacturer’s datasheet. The battery has a 2.5Ah rated 
capacity. 

3.1. Calendar and cycling aging 

In the calendar aging study, 15 cells selected randomly from a single 
batch were stored in a climate chamber at the open-circuit condition. 
The relative humidity in the climate chamber was about 41%. The 
storage temperature and SOC level are considered as stress factors. If all 
the potential interactions and nonlinearities are addressed for each 
stress factor considering three stress levels for each stress factor, there 
are 9 different ways that stress factors could combine. Due to restrictions 
on the test resources, 5 calendar aging tests were chosen as the test 
matrix, which only considered the primary effects of stress factors on the 

batteries (i.e., possible interactions between the stress factors were 
neglected). The aging results are thoroughly described in [31]. 

All accelerated cycle tests were performed at a C-rate of 4C (10A), 
which is the highest continuous charge current the battery can endure. 
26 cells were selected and aged at different temperatures, CD levels, and 
SOC levels to determine their performance–degradation behavior and 
expected lifetime. It is worth noting that the SOC level is the average 
SOC of the LFP/C cell during charge/discharge cycles. The cycle depth in 
relation to the average SOC level is known as the CD level. Similarly, if 
three levels are considered for each stress factor, a test matrix consisting 
of 27 cycle tests is created. By focusing solely on the primary contributor 
and possible interactions are neglected, the initial test matrix is reduced 
to a matrix with 7 cycle tests. 

Reference performance tests (RPTs) refer to all periodic checks. This 
test was conducted consistently at a temperature of 25 ◦C and predefined 
intervals. As shown in Fig. 1, different test cell colors represent different 
time intervals of RPTs. Before starting each aging test, an initial RPT is 
carried out on each individual LFP/C battery to determine the initial 
capacity of every sample, which will be later used for determining the 
incremental degradation to which the cell was subjected and further 
determining its performance degradation behavior. 

The RPT procedures are described as follows:  

1 Fully discharge the battery at 1C current rate until the end of 
discharge voltage (2 V) is reached.  

2 Battery relaxation for 15 min at 25 ◦C to ensure ionic carrier stability. 

Fig. 8. (a) Severity function map for temperature and SOC level. (b) AF for calendar aging stresses (Qloss=20%).  

Fig. 9. (a)Severity factor map for temperature and SOC level. (b) AF for cycling aging stresses (Qloss=20%). Double arrows indicate the intercomparison used to 
determine the stress ranking. Orange, green, and blue indicate temperature effects, CD effects, and CD and SOC effects, respectively. 
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3 Fully charge the battery at 1C CCCV mode until the cut-off current 
equal to 4% of the nominal capacity is attained.  

4 Battery relaxation for 15 min at 25 ◦C  
5 Fully discharge the battery at 1C current rate until the end of 

discharge voltage (2 V) is reached.  
6 Battery relaxation for 15 min at 25 ◦C. 

3.2. Experiment results 

Only the degradation behavior of the capacity is assessed, as the 
battery capacity is the most representative parameter typically used in 
aging models for lifetime predictions. The aging models for accelerated 
calendar and cycling tests (Section 2) are then used to fit the degradation 
trajectory. 

The battery capacity at measurement time t and the initial capacity of 
each sample are used to compute the capacity fade during the acceler-
ated aging measurement. 

Qk
loss[%] =

QBOL − Qk(t)
QBoL

× 100% (15)  

where QBoL (Ah) represents the capacity measured at the Beginning of 

Life (BoL), and Qk(t) (Ah) represents the periodically measured capacity 
after each RPT.  

(1) Calendar aging 

According to Eq.(4) and NLME model, 300 simulated fade trends are 
presented in Fig. 2. The standard deviation of measurement errors and 
log-likelihood values for the chosen models are displayed in Table 3. The 
measured Qloss for three batteries (each group) is represented by colored 
dots, and the dark blue line displays the average capacity fade model. 
The 300 simulated paths, as shown in Fig. 2, cover the observed capacity 
fade paths and provide a good representation of the degradation 
behavior. The residual normal probability of NLME is shown on the right 
subplot, which demonstrates the assumption of normality of εij. The 
sample variance of capacity fade decreases as temperature (Calendar V, 
IV, II). and SOC (Calendar III, II, I) increase. In all cases, battery capacity 
loss shows an increasing trend with aging, except for the early aging 
phase where the capacity loss decrease occurs at 313.16 K and 50% SOC. 
This is due to the expansion of the graphite layer spacing in the early 
stage of aging, which facilitates the diffusion of lithium ions and thus 
causes an increase in capacity [32]. As noted in the log-likelihood col-
umn of Table 3, the more cycles observed, the higher the loglikelihood 

Fig. 10. Log-normal and Weibull probability nets show the development from low to high stress levels, (a,b) calendar aging; (c,d,e) cycling aging.  
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value of the model, e.g., calendar V, VI, and II are greater than calendar 
III and I.  

(1) Cycling aging 

According to Eq.(5) and NLME model, the mean capacity fading 
paths and 300 simulated fade trends are presented in Fig. 3. The stan-
dard deviation of measurement error and log-likelihood values for the 
chosen models are displayed in Table 4. Cycling aging has more sample 
variance, illustrated by a more dispersed distribution of color dots and a 
larger standard deviation of measurement error (the σ column) than 
calendar aging. At the same time, the dispersion of degradation trajec-
tories diminishes with rising temperatures (Cycle III, II, I), SOC levels 
(Cycle VI, VII, VIII), and CD levels (Cycle V, IV, I). It shows up as a 
narrowing of the shape of the strips produced by the degradation tra-
jectory. Table 4 shows that the greater measurement error compared to 
calendar aging also demonstrates the greater sample variance. The 
graph shows that the variability of cells increases with aging time. The 
normal probability plots of the model residuals similarly show that the 
normality assumption of ε is well satisfied. The aging observation period 
is longer for the two temperatures (Cycle III, II) and the model log- 
likelihood is greater. 

4. Results and discussion 

4.1. Mechanism consistency interval 

For the three temperatures, the LR parametric bootstrap test based 
on the log-normal (Fig. 4(a),(g)) and Weibull distributions (Fig. 4(d),(j)) 
fails the consistency test at a significance level of 5%. (Fig. 4). This 
means that the calendar aging mechanism changes in the range of 
313.16 K to 328.16 K. The EoL behavior at 313.16 K for the same SOC 
level and the EoL behavior at 10% SOC for the same temperature are 
used as references, respectively, with the remaining two groups in a two- 

by-two pairwise test at a significance level of 7.5% to identify the stress 
turning point at which the mechanism changes. Pairwise testing reveals 
that both 313.16 K and 328.16 K fail the test, regardless of whether the 
EoL distribution obeys log-normal (Fig. 4 (b,c)) or Weibull (Fig. 4 (e,f)). 
This indicates that the calendar mechanism changes at 321.66 K. Simi-
larly, LR parametric bootstrap testing under three SOC levels reveals 
that whether EoL follows a log-normal (Fig. 4 (g-i)) or Weibull distri-
bution (Fig. 4 (j-l)), it passes the test in all three tests and pairs, 
demonstrating that there are no obvious mechanism changes. The above 
shows that SOC between 10% and 90% has a negligible effect on the 
mechanistic alteration of calendar aging. 

The sample fluctuations indicated by the squares are characterized 
by showing the capacity fluctuations when Qloss first reaches 20% and 
comparing them to the lifetime behavior to describe the consistency of 
the parameters, as seen in Fig. 5. It is also worth noticing that the 
Weibull shape points follow the opposite trend as the log-normal sigma. 
This is because a bigger shape parameter denotes a more concentrated 
Weibull distribution with less variability. When the temperature is 
321.66 K, the fluctuations in a lifetime are almost identical to the 
variation of cells (shown by the overlapping sigma points and the larger 
shape parameters at 321.66 K). This is a critical transition point, after 
which lifetime fluctuates more than individual differences, implying 
that changes in mechanisms throughout aging catalyze internal in-
consistencies rather than those generated only by production processes. 
The lifetime distribution shows consistent fluctuations with cell varia-
tion at different SOC levels. That is, different SOC states at high tem-
peratures do not appear to trigger significantly different aging 
mechanisms. 

The LR parametric bootstrap test for three different temperatures, 
SOC levels, and CD levels under cycling aging are shown in Fig. 6. Under 
the EoL log-normal (Fig. 6 (m-o)) and Weibull distribution (Fig. 6 (p-r)) 
assumptions, all three CD levels and pairwise test pass the mechanism 
consistency hypothesis, indicating that the aging mechanism does not 
alter from 10% to 60% CD. The LR tests, however, do not pass the 

Fig. 11. Cumulative failure distribution from fitted log-normal for 10% to 20% EoL. Calendar aging at different (a) temperatures and (b) SOC levels; cycling aging at 
different (c) temperatures, (d) SOC levels, and (e) CD levels. 
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consistency assumption under different temperatures and SOC levels. 
The three temperature LR test for EoL satisfying the log-normal distri-
bution (Fig. 6(a)) agrees with their Weibull distribution (Fig. 6(d)) LR 
test, all failing the original hypothesis of mechanism consistency and 
showing a change in the range of cycling aging at 308.16 K to 323.16 K. 
The LR pairwise tests satisfying the log-normal distribution in Fig. 6 (b, 
c) for temperatures and Fig. 6 (h, i) for SOC levels show that the 
mechanism changes at 323.16 K and 72.5% SOC. The LR pairwise test 
satisfying the Weibull distribution in Fig. 6 (e,f) for temperatures and 
Fig. 6 (k,l) for SOC levels can be used to indicate the same conclusion as 
earlier. This is consistent with experiments demonstrating that above 
318.16 K the mechanism changes and it is no longer just the diffusion of 
the anode that limits the growth of the SEI film [16]. 

The characteristics of the cell fluctuations are compared to the life-
time behavior to demonstrate the variation of the parameters in cycling 
aging, as seen in Fig. 7. From Fig. 7(a), the temperature stress causes a 
decrease in standard deviation and an increase in shape parameters for 
the log-normal and Weibull EoL distributions, respectively. This incon-
sistency becomes statistically significant at 323.16 K (although indi-
vidual cells represented by the squares fluctuate). This implies that the 
effect of the 323.16K-induced aging mechanism on lifetime has little to 
do with individual differences themselves. The standard deviation and 
shape parameters of the log-normal and Weibull distributions differed 
from the other levels at 72.5% SOC, with a sharp decrease in standard 
deviation and an abrupt increase in shape parameters, respectively. CD 
levels exhibit varying sample differences, and the lifetime distribution’s 
characteristics fluctuate without experiencing any abrupt anomalous 
changes, suggesting that the effect is not significant. In terms of 
parameter span, high stress-level can balance out cell variance to some 
extent, especially at high SOC and CD levels. The progressively smaller 
standard deviation of the EoL distribution and that of the cell-to-cell 
variance, as evidenced by the similar progressively larger shape 
parameter of the EoL distribution and that of the sample variance, 
demonstrate this phenomenon. 

4.2. Comparison of stress ranking 

Using parameter interpolation to create a severity factor f(v) versus 
temperature and SOC as shown in Fig. 8(a), the SOC level adds a non- 
linear factor of the exponential effect of temperature on calendar 
aging, but the dependence between SOC level and calendar aging is not 
monotonically increasing. Viewing along the SOC dimension, a capacity 
degradation plateau occurs around 50% SOC. It is worth stating that the 
non-linear severity factor depends on aging factors other than the effect 
of time. The visualization AF, calculated based on Eq. (1), is the height of 
3D columns, as seen in Fig. 8(b). The AF is a ratio of EoLs at the defined 
Qloss and is used to quantify the acceleration effect for various conditions 
where capacity degradation is the same. It is a function of both the 
severity factor and the capacity loss. The reference condition is T =
313.16 K and SOC=10%, AF of which is 1. The temperature has the most 
noticeable effect on aging, as AF with the temperature of 328.16 K, and a 
SOC level of 50% is greater than AF at the temperature of 320.66 K and a 
SOC level of 90%. The acceleration effect at 90% SOC is most significant 
when the capacity loss is 20% (indicated by the higher bars at 90% SOC 
for the same temperature conditions). 

The severity factor f(v) and the three aging stresses are illustrated in 
Fig. 9. The figure shows the CD level panning the effect of temperature 
and SOC on aging. The volume of spheres reflects AF as indicated in 
Fig. 9(b), where the reference condition is T = 308.16 K, SOC=27.5%, 
CD=35%, and AF equals 1. Temperature is the most significant accel-
eration effect (seen as the red double arrows). When the SOC is the same 
at 50%, the AF at 60% CD and 315.66 K is less than that at 35% CD and 
323.16 K. The fact that the AF at 72.5% SOC and 315.66 K is larger than 
that at 50% SOC and 323.16 K when the CD level is the same at 35% 
demonstrates this considerable effect. The CD level is the second-most 
important stress factor (seen as the green double arrow). This is 

because, when both SOC levels are 50%, the AF is higher at 315.66 K and 
a CD level of 60%, than it is at 323.16 K and 35%. It is worth noting that 
the acceleration effect of CD is substantially reliant on temperature 
coupling, with 323.16 K being significantly greater than 315.66 K 
(highlighted by the purple arrows). Lastly, the SOC does not appear to be 
essential in terms of accelerated cycle aging, although this could be a 
special case. Additionally, the acceleration effect at 308.16 K and 
315.66 K is not considerably different due to the early stage of the 
exponential development of the temperature effect and primarily de-
pends on CD and SOC levels, as can be seen by comparing the volumes of 
the two smallest spheres (indicated by the blue box). In conclusion, the 
aging mechanism changes at 323.16 K and 72.5% SOC level (as illus-
trated with the red circles). 

4.3. Analysis of statistical models 

For fitting EoLs, the Weibull and log-normal distributions are two of 
the most commonly used, but which one better fits our data? As illus-
trated in Fig. 10, the blue, red, and yellow lines reflect the cumulative 
percentage of EoLs for battery ATs from low to high stress conditions 
respectively. It shows that log-normal is the preferred model for both 
calendar and cycling aging. Because of the consequent right-skewness, 
most outliers are located right in Weibull form. With advancing aging, 
the right skew of the entire EoL distribution becomes increasingly 
prominent. This phenomenon is more evident in calendar aging (Fig. 10 
(a,b)), and cycling aging of different temperatures (Fig. 10(c)) and CD 
levels (Fig. 10(e)). Additionally, as the probability curves do not seem 
parallel as aging continues also marks a transition in the aging mecha-
nism, e.g. 321.66 K and 328.16 K for calendar aging (Fig. 10(a)), and 
323.16 K (Fig. 10(c)) and 72.5% SOC ((Fig. 10(d)) for cycling aging. 
Given that the log-normal is a better model for describing lifetimes, it 
will be used to estimate the degree of mechanism change based on the 
slopes of log-normal probability curves of EoL under different scenarios. 

Fig. 11 depicts plots of the cumulative percentage of EoLs as a 
function of time for the different Qloss criteria (10% and 20%), based on 
the log-normal distribution described above as the lifetime distribution. 
EoL cumulative probability is spread more widely at 20% Qloss than 10%. 
The difference between the EoL distribution when the Qloss threshold is 
20% and the EoL distribution when the Qloss threshold is 10% is com-
parable (as shown by the red and blue lines). This is because capacity 
reduces more slowly after 10% capacity fade (i.e., when 90% to 80% of 
the initial capacity remains), particularly when the level of aging factors 
is low. In addition to the non-parallelism of EoL cumulative failure 
distributions for the same threshold, implying a change in mechanism, 
the non-parallelism of EoL distributions for different thresholds (seen as 
blue and red lines) implies that the compounding effect of the aging 
mechanism on lifetime gradually grows as aging advances, with the 
results of the change in mechanism becoming more clearly visible with 
longer operation and severe aging. This can be observed through red 
lines are not more parallel to each other than the blue lines. 

5. Conclusions 

Our findings are of practical interest since acceleration tests within 
mechanistically consistent intervals are the foundation for planning 
acceleration studies and the assurance for projecting the operational life 
under normal conditions. This study explores the mechanism consis-
tency interval and accelerated effect of different stress factors, on both 
the calendar and cycling capacity degradation behaviors of commercial 
LFP/C batteries. Log-normal and Weibull distributions are used to 
describe the distribution of EoLs and the analysis shows that of the two 
the log-normal is the preferred model. In brief, for temperature, a 
consistent test range of 35 ◦C to below 47.5 ◦C can be considered as a 
suitable temperature range for ATs. For SOC levels, their impact on 
calendar aging is negligible. However, during cycling aging, an 
acceptable accelerated aging condition is below 72.5% SOC. For CD 
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levels, there is no significant change in the aging mechanism at 10% to 
60%. Temperature is the most damaging stress in both cases and shows 
an exponential trend. About calendar aging, 47.5 ◦C and 55 ◦C point out 
different lifetime behaviors, which are not good choices to select as 
stress levels. 90% SOC informs the largest capacity fade at 55 ◦C when 
the Qloss equals 20%, and the combination of SOC levels and higher 
temperature does not indicate a different lifetime behavior, demon-
strating that the SOC level does not cause mechanism changes. 
Regarding cycling aging, the aging mechanism of cells remains consis-
tent between 35 ◦C and 42.5 ◦C, but beyond 50 ◦C the mechanisms 
change. The CD effect has an exponential effect, especially when com-
bined with a higher temperature, accelerating the aging effect. Although 
the accelerating effect of the average SOC level is limited in the range of 
27.5% to 72.5%, 72.5% SOC triggers different aging mechanisms. 

Future work will continue to develop and explore a physics of failure 
model using ‘gray box’ modeling which combines machine learning with 
mechanistic consistency analysis, to make prediction methods more 
applicable and accurate. 
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