

Aalborg Universitet

Time-, Graph- and Value-based Sampling of Internet of Things Sensor Networks

Holm, Josefine

DOI (link to publication from Publisher):
10.54337/aau532689661

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Holm, J. (2023). Time-, Graph- and Value-based Sampling of Internet of Things Sensor Networks. Aalborg
Universitetsforlag. Ph.d.-serien for Det Tekniske Fakultet for IT og Design, Aalborg Universitet
https://doi.org/10.54337/aau532689661

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: September 08, 2023

https://doi.org/10.54337/aau532689661
https://vbn.aau.dk/en/publications/7afe3b29-e500-4fce-ab4b-0c6346c37b42
https://doi.org/10.54337/aau532689661

Jo
sefin

e H
o

lm
Tim

e-, G
r

a
ph

- a
n

d
 Va

lu
e-b

a
sed

 Sa
m

plin
g

 o
f In

ter
n

et o
f Th

in
g

s Sen
so

r
 N

etw
o

r
k

s

Time-, Graph- and Value-based Sampling
of Internet of Things Sensor Networks

by
Josefine Holm

Dissertation submitted 2023

Time-, Graph- and
Value-based Sampling of
Internet of Things Sensor

Networks

Ph.D. Dissertation
Josefine Holm

Aalborg University
Department of Electronic Systems

Fredrik Bajers Vej 7B
DK-9220 Aalborg

Dissertation submitted:	 February 2023

PhD supervisor: 	 Professor Petar Popovski
			 Aaqlborg University

PhD committee: 	 Associate Professor Tatiana Kozlova Madsen (chair)
			 Department of Electronic Systems
			 Aalborg University

			 Associate Professor Jemin Lee
			 Department of Electronic and Electrical Engineering
			 Sungkyunkwan University (SKKU)
			 Suwon, Korea

	 	 	 Professor Sofie Pollin
			 TELEMIC
			 KU Leuven, Belgium

PhD Series:	 Technical Faculty of IT and Design, Aalborg University

Department:	 Department of Electronic Systems

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-735-2

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Josefine Holm

Printed in Denmark by Stibo Complete, 2023

Abstract

The rise of 5G and Internet of Things (IoT) technology has brought the option to collect
massive amounts of data. However, there are limitations imposed by bandwidth, storage
space, and energy consumption and much work is being done to mitigate and loosen
these limitations. However, once a hardware solution has been installed, the limit is
set and it can be costly to replace it. When the limit is reached, the way forward is
to decrease the volume of data by increasing its value or omitting the data with little
to no value. The goal is then to devise clever sampling and transmission schemes for
collecting only the most valuable data. Value of Information (VoI) is a measure of how
useful a data point is, with three important aspects: is it collected at the right time,
is it relevant for the problem at hand, and is it providing novelty that could not be
predicted?

This thesis explores the use of side information for optimizing Value of Information
(VoI) in a wireless IoT network setting. Multiple types of side information are considered
in order to optimize the different aspects of VoI. First, graph structures are used to
increase the novelty of data transmitted. Second, knowledge of the query arrival process
is used to minimize the response time. Third, knowledge of the aggregation functions
used to summarize the data is used to maximize the relevance of the data collected. The
results show that it is possible to tailor the sampling and transmission scheme to a given
application using side information. It is further shown that the more precise, extensive,
and diverse the side information available is, the better the results are. Partial side
information can also be useful, though with diminishing returns. A secondary focus of
the thesis is to make the transmission scheme more efficient and increase the lifetime of
battery driven IoT devices. This is done by lowering the total number of transmissions
necessary and by forcing the optimizations algorithms to adhere to a strict transmission
budget.

iii

Resumé

Fremkomsten af 5G og Internet of Things (IoT) teknologi har medført muligheden for
at indsamle enorme mængder data. Det er dog begrænset af båndbredde, lagerplads og
energiforbrug og meget arbejde bliver gjort for at afbøde og løsne disse begrænsninger.
Der arbejdes meget på at øge disse, men når først en hardwareløsning er installeret, er
grænsen fastsat, og det kan være dyrt at udskifte den. Når grænsen er nået, er vejen
frem at reducere mængden af data, ved at øge dets værdi eller udelade det med ringe eller
ingen værdi. Målet er derefter at udtænke intelligente sampling- og transmissionsplaner
til kun at indsamle de mest værdifulde data. Value of Information (VoI) er et mål for,
hvor nyttigt et datapunkt er, med tre vigtige aspekter: er det indsamlet på det rigtige
tidspunkt, er det relevant for det aktuelle problem og bidranger det med noget nyt some
ikke kunne forudsiges?

Denne afhandling udforsker brugen af sideinformation til optimering af VoI i en
trådløs IoT-netværksforbindelse. Flere typer sideinformation overvejes for at optimere
de forskellige aspekter af VoI. For det første bruges grafstrukturer til at øge nyhedsvær-
dien af de transmitterede data. For det andet bruges kendskab til forespørgselsankomst-
processen til at minimere responstiden. For det tredje bruges viden om de aggregerings-
funktioner, der bruges til at opsummere dataene, for at maksimere relevansen af de
indsamlede data. Resultaterne viser, at det er muligt at skræddersy sampling- og trans-
missionsplaner til en given anvendelse ved hjælp af sideinformation. Det er yderligere
vist, at jo mere præcis, omfattende og forskelligartet den tilgængelige sideinformation
er, jo bedre er resultaterne. Delvis sideinformation kan også være nyttig, dog med afta-
gende afkast. Et sekundært fokus i afhandlingen er at gøre transmissionsplanerne mere
effektive, og øge levetiden for batteridrevne IoT-enheder. Dette gøres ved at sænke det
samlede antal nødvendige transmissioner, og ved at tvinge optimeringsalgoritmerne til
at overholde et stramt transmissionsbudget.

v

Contents

Abstract iii

Resumé v

Thesis Details xiii

Acknowledgements xv

I Introduction 1

Introduction 3
1 Introduction . 3

1.1 Motivation . 4
1.2 Thesis Objectives . 5
1.3 Thesis Outline . 6

2 Utilizing Graph Structure . 7
2.1 Summary of Contributions . 9

3 Age of Information and Beyond . 11
3.1 Summary of Contributions . 13

4 Conclusion . 15
4.1 Final Remarks and Future Directions 16

References . 17

II Papers 19

A Lifetime Maximization of an Internet of Things (IoT) Network based
on Graph Signal Processing 21
1 Introduction . 23

vii

viii Contents

2 System Model . 25
3 Algorithm . 27
4 Numerical Results . 29
5 Conclusion . 32
References . 34

B Finding Representative Sampling Subsets in Sensor Graphs using Time
Series Similarities 37
1 Introduction . 39
2 Related Work . 43

2.1 Phase-I: Creation of Similarity Graphs 43
2.2 Phase-II: Sampling Algorithms 45

3 Problem Statement and Framework . 45
3.1 Problem Statement . 45
3.2 Preliminaries . 47

4 Phase I : Similarity Graph Creation . 49
4.1 Statistical Approaches . 49
4.2 Approaches based on Time-Series 50
4.3 Approaches based on Graph Signal Processing, Pgsp 51
4.4 Summary of Insights . 51

5 Phase II: Identifying Optimum Sampling Partition (OSP) 52
5.1 Network Stratification based Approach, Strat 52
5.2 Minimum singular value based approach, MSV 55
5.3 Greedy MSE Based Approach, JIP and SIP 57
5.4 Minimum Frobenius Norm, Frob, and Maximum Parallelepiped

Volume, Par . 60
5.5 AutoSubGraphSample . 61

6 Experimental Setup . 62
6.1 Dataset Details and Preprocessing 62
6.2 Evaluation Metrics . 63

7 Results and Discussions . 64
7.1 Phase-I Results: Comparison of the Similarity Graph Creation

Approaches . 65
7.2 Phase-II Results: Comparison of the Sampling Techniques 67
7.3 Evaluation of AutoSubGraphSample 69
7.4 Comparing SubGraphSample with Exhaustive Search 72
7.5 Comparison of SubGraphSample with optimum Sampling Sets . 73
7.6 Studying the impact of Ed on Reconstruction Error 76
7.7 Frequency analysis . 76
7.8 Evaluation of AutoSubGraphSample on partial Time Series . . . 76
7.9 Identifying the Maximum Number of Sampling Sub-sets, K . . . 78

Contents ix

8 Conclusions and Future Works . 78
References . 81

C Freshness on Demand: Optimizing Age of Information for the Query
Process 89
1 Introduction . 91
2 System model . 94

2.1 Age of Information at Query . 94
2.2 Models for Communication and Query Arrivals 95

3 MDP formulation and problem solution 95
4 Numerical results . 97
5 Conclusions and future work . 102
References . 104

D Query Age of Information: Freshness in Pull-Based Communication 107
1 Introduction . 109
2 Related work . 112
3 System model . 115

3.1 The QAoI metric . 116
3.2 Communication system model . 117

4 Analytical example . 118
5 MDP formulation and problem solution 121

5.1 Problem solution . 124
6 Simulation settings and results . 126

6.1 Periodic queries with constant error probability 126
6.2 Periodic queries and error probability 132
6.3 Stochastic queries with periodic error probability 133
6.4 Stochastic queries with a Gilbert-Elliott channel 136

7 Conclusions and future work . 137
A Appendix . 137
References . 139

E SENDAI: A Framework for Joint Reasoning About Sensor Data Ac-
quisition and Sensor Data Analytics 143
1 Introduction . 145
2 Background . 147

2.1 Running Example . 147
2.2 Sampling . 148
2.3 Transfer . 149
2.4 Prediction . 150

3 Use Cases . 151
3.1 Wind Turbine . 151

x Contents

3.2 Smart Meter . 152
4 Framework for joint Sensory Data Acquisition and Analysis (SENDAI) . 153

4.1 Overview . 153
4.2 Prediction . 157
4.3 Query Processing . 158
4.4 Summary . 161

5 Sensor Data Acquisition Scheme . 161
5.1 Periodic Sensor Data Acquisition 161
5.2 Semantic Sensor Data Acquisition 162
5.3 Optimizing the Wind Turbine Use Case 163
5.4 Optimizing the Smart Meter Use Case 165

6 Related Work . 166
6.1 Sensor Data Acquisition . 166
6.2 Sensor Data Analytics . 166

7 Conclusion and Future Work . 167
References . 168

F Scheduling of Sensor Transmissions Based on Value of Information for
Summary Statistics 173
1 Introduction . 175
2 System Model . 177

2.1 Kalman Filter Estimation . 177
2.2 Summary Statistics . 178

3 Scheduling Strategies . 178
3.1 Baseline Scheduler . 179
3.2 Sample Mean Scheduling . 179
3.3 Sample Variance Scheduling . 180
3.4 Statistic-aware Monte Carlo scheduling 180

4 Numerical Evaluation . 181
4.1 Scenario and Settings . 182
4.2 Results . 183

5 Conclusion . 184
References . 185

G Goal-Oriented Scheduling in Sensor Networks with Application Tim-
ing Awareness 187
1 Introduction . 189
2 Related Work . 192
3 System Model . 194

3.1 Remote Kalman Tracking . 194
3.2 The Query Process . 195

Contents xi

3.3 Responding To Queries . 196
4 The Scheduling Problem . 198

4.1 A Simple Example: The Effect of Queries on the Optimal Policy 200
4.2 Reinforcement Learning Solution and Learning Architecture . . . 203
4.3 Computational Complexity . 204

5 Simulation Settings and Results . 205
5.1 Scenario and Benchmark Policies 205
5.2 Periodic Query Scenario . 208
5.3 Geometric Query Arrival . 210
5.4 Mixed Query Arrival . 210

6 Conclusions and Future Work . 212
References . 213

xii Contents

Thesis Details

Thesis Title: Time-, Graph- and Value-based Sampling of Internet of Things
Sensor Networks

Ph.D. Student: Josefine Holm
Supervisors: Prof. Petar Popovski, Aalborg University
Co-Supervisors: Prof. Morten Nielsen, Aalborg University

Asst. Prof. Federico Chiariotti, Aalborg University

The main body of this thesis consist of the following papers.
[A] Josefine Holm, Federico Chiariotti, Morten Nielsen, and Petar Popovski, “Lifetime

Maximization of an Internet of Things (IoT) Network based on Graph Signal
Processing,” IEEE Communications Letters, Vol. 25, No. 8, pp. 2763–2767, 2021.

[B] Roshni Chakraborty, Josefine Holm, Torben Bach Pedersen, and Petar Popovski,
“Finding Representative Sampling Subsets in Sensor Graphs using Time Series
Similarities,” Submitted to ACM Transactions on Sensor Networks, 2022.
Preprint: https://arxiv.org/pdf/2202.08504.pdf

[C] Josefine Holm, Anders E. Kalør, Federico Chiariotti, Beatriz Soret, Søren K.
Jensen, Torben B. Pedersen, and Petar Popovski, “Freshness on Demand: Opti-
mizing Age of Information for the Query Process,” IEEE International Conference
on Communications, pp. 1–6, 2021.

[D] Federico Chiariotti, Josefine Holm, Anders E. Kalør, Beatriz Soret, Søren K.
Jensen, Torben B. Pedersen, and Petar Popovski, “Query Age of Information:
Freshness in Pull-Based Communication,” IEEE Transactions on Communica-
tions, vol. 70, no. 3, pp. 1606–1622, 2022.

[E] Søren Kejser Jensen, Josefine Holm, Federico Chiariotti, Christian Thomsen, An-
ders Ellersgaard Kalør, Petar Popovski, Beatriz Soret, and Torben Bach Peder-
sen, “SENDAI: A Framework for Joint Reasoning About Sensor Data Acquisition
and Sensor Data Analytics,” Submitted to Information and Computation Journal,
2022.

xiii

xiv Thesis Details

[F] Federico Chiariotti, Anders E. Kalør, Josefine Holm, Beatriz Soret, and Petar
Popovski, “Scheduling of Sensor Transmissions Based on Value of Information for
Summary Statistics,” IEEE Networking Letters, vol. 4, no. 2, pp. 92–96, 2022.

[G] Josefine Holm, Federico Chiariotti, Anders E. Kalør, Beatriz Soret, Torben B. Ped-
ersen, and Petar Popovski, “Goal-Oriented Scheduling in Sensor Networks with
Application Timing Awareness,” Submitted to IEEE Transactions on Communi-
cations, 2022.

In addition to the main papers, the following publications have also been made.

[I] Josefine Holm, Thomas Arildsen, Morten Nielsen, and Steffen Lønsmann Nielsen„
“Orthonormal, moment preserving boundary wavelet scaling functions in Python,”
SN Applied Sciences, vol. 2, no. 12, pp. 1–9, 2020.

[II] Ivana Nikoloska, Josefine Holm, Anders E. Kalør, Petar Popovski, Nikola Zla-
tanov, “Inference over Wireless IoT Links with Importance-Filtered Updates,”
IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 4,
pp. 1089–1098, 2021.

[III] Josefine Holm, Alberto Natali, Geert Leus, and Petar Popovski, “Reconstruction
of Missing Values in Sub-Sampled IoT Sensor Networks through Graph Signal
Processing,” in preparation.

Acknowledgements

I started my PhD with a great curiosity to explore the dept of this rabbit hole and to
push the limits of my own abilities.

I would like like to thank my supervisors - Professor Petar Popovski, for you tremen-
dous help and support and for making time and space for me, not just as your student
but as a person; Professor Morten Nielsen who is the reason that I became interested
in research in the first place; Assistant professor Federico Chiariotti for always having
your door open to my questions and for helping turn around projects that I had given
up on.

Secondly I would like to thank my fellow researchers and technical staff in the con-
nectivity section at Aalborg University as well as all of my co-authors. Especially those
from the departments of mathematical and computer science, as interdisciplinary work
has always been a special interest of mine.

I would like to thank Geert Leus and his fellow researchers at TU Delft for hosting
me and including me in the day-to-day work and scocial life of the group. I would also
like to thank the assessment committee for evaluating my work as well as the sources
of funding that have made this possible.

Lastly I would like to thank my friends and family, specially my partner Peter, who
has been my rock and my cheerleader though all the ups and downs of the past few
years, I will be forever grateful for you support.

Josefine Holm
Aalborg University, February 28, 2023

xv

xvi Preface

Part I

Introduction

1

1. Introduction 3

1 Introduction
The introduction of 5G brought with it new ways of viewing wireless connectivity.
Previous generations aimed at the highest possible capacity as the first and foremost
objective, while 5G broadens the scope to new performance metrics for different types
of traffic. In addition to Enhanced Mobile Broadband (eMBB), which is an extension of
traditional mobile broadband, Ultra Reliable Low Latency Communications (URLLC)
and Massive Machine Type Communications (mMTC) were introduced [20]. These are
terms for three different categories of use cases; eMBB is considering relatively few
users who need a high data rate without particularly strict requirements on latency
and reliability [8]. One common use-case in this category is people streaming video on
a wireless device. URLLC considers problems where it is vital that a small amount
of data from few users is received correctly without delay. One example use-case in
this category is self driving cars where missing or delayed information can cause a
crash. mMTC considers a high number of users needing to transmit small amounts of
data without strict requirements on latency and reliability. One common case is small
devices observing the environment, such as the temperature, and reporting this to a
central system.

The focus of this thesis is mMTC use cases, i.e., many small devices reporting
observations of a process or their environment to a central point. Networks of Internet
of Things (IoT) devices are becoming more and more common, making it an important
area for research. The characteristics of IoT devices are:

• Very cheap to install in high numbers.

• Very limited computing power and memory.

• One or more sensors installed in order to make observations.

• A wireless radio capable of transmitting small data packets to a nearby base station
and are sometimes also able to receive small packets from the base station.

A network of IoT devices is any group of sensors which collect the same type of data that
is not statistically independent of each other. Another important point about mMTC
is that there is never or rarely any human in the loop. It is all machine-to-machine
communication used to automate processes.

The sensors’ observations provide data about the process by sampling it at a specific
time in a specific place, i.e. it is tangible and has a predefined datatype. Information
is a much broader term; it can be about the process observed, the IoT devices, or
anything inferred from data. Sampling is the process of procuring data, i.e., making an
observation of a process at a specific time or time interval.

When an IoT device makes a sample, that data needs to be transmitted. In this
thesis it is assumed that there is some form of transmission budget. This can be due to

4

limited battery on the device or to avoid overloading the receiver. Transmission budget
comes in two main formats:

• Some form of cost or negative impact for each packet transmitted.

• A maximum number of transmissions allowed, either per device or in total.

It is important to take a transmission budget into account. Without it, the problem of
sampling IoT devices becomes less of a problem as the devices can just be sampled all
the time.

1.1 Motivation
When taking VoI into account in a communication scheme it can be split into three
components that can be considered independently or jointly.

Timely Data needs to be delivered when it is needed.

Relevant Data needs to affect the receiver.

Novel Data needs to provide new information.

The data chosen for transmission has to be Timely, Relevant and Novel. The Time-
liness is related to the sub-field Age of Information (AoI) [12]. AoI concerns optimizing
the transmission process such that the newest possible sample of a process is available
at the receiver. However, there is more to the data being timely. In order to optimize
for timeliness, the transmission schedule also has to consider when the data is needed.
It is a waste of resources to transmit data that will never be used, if it is known that
this is the case before transmission. To optimize for the timeliness beyond the AoI, it
is necessary to have some side information about the timing of the use of the data.

Optimizing for the relevance of data being transmitted also depend on side infor-
mation about how the data will be used. It is common that a summary of a data set
will be used for analysis and that individual data points only serve to produce an ac-
curate summary. Side information about which function(s) constitutes the summary
for the data can be taken into account when choosing which data points are relevant
to transmit, such that only data producing a more accurate summary is transmitted.
Another way data might be used is as training data for a neural network. This type of
information can be used to optimize the data collection to shorten the training time, by
not transmitting data that can already be correctly classified by the network [17].

Novel data is data that cannot be predicted, i.e., the information that the data
provide cannot be inferred from other data or predicted using the receiver’s estimator.
It is not identical to a sample already transmitted by another device. To optimize for
novelty the IoT devices can be provided with some rules for what constitutes expected

1. Introduction 5

or unexpected data, or side information about the network can be utilized to predict
what can reasonably be inferred and only sample the ones that cannot be predicted.

The difference between the relevance aspect and the novelty aspect can be made
clear with the following two examples. Data can be relevant without being novel. An
example of this is when constructing a coreset of a larger data set, [10]. A coreset is a
subset of data that approximates the full set, so a sample can be relevant to the coreset
without being novel. A data point can be novel by being smaller than predicted, but if
the only aggregate of interest is the maximum value then that data point is not going
to be relevant.

1.2 Thesis Objectives
The main focus of my research has been on utilizing the available side information to
optimize the information flow in IoT sensor networks. Such side information can come
in many shapes and sizes, so in this work it is limited to some specific categories of
side information, and how those can be utilized to ensure that the most useful data is
transmitted from the devices in the network.

The first category is information about a graph that can be used to model the
relation between the sensors in the network. When the information that the sensors in
the network has access to are not independent of each other, a graph can be constructed
to describe the dependency. When such a graph is known, it can be used to optimize
the sampling and processing of data from the sensors.

The second category is information about when data will be used. Two cases will
be considered; firstly, when data from an individual sensor will be used, such that the
data collection can be optimized on an individual sensor level to avoid collecting data
that will never be used. Secondly, when data from the sensor network as a whole will
be used, such that all sensors in the network can be coordinated to prepare for the time
when data will be pulled from the network.

The third category is information about which aggregates of the data will be used.
In this context, an aggregate is a function that takes some data from the network and
outputs one value. Aggregates are often the first step in data analysis or used for decision
making. Knowing which aggregates of a data set will be used gives room to optimize
the data collection, because not all observations a equally important to determine the
correct aggregate for the data set. We do not consider the value of the data collected
for the first two categories of side information when choosing how to sample. With this
third category we consider the value of data already collected and the expected value of
future data to determine which sensor to sample at which times, in order to fully utilize
information about the aggregate.

These three categories of side information correspond to the three bases of sampling
laid out in the title of this thesis, namely graph-based, time-based, and value-based.
The central question of the research is about sampling, i.e. getting the best possible

6

representation of the information within a limited transmission budget.

• How can knowledge of a graph representing relations between IoT devices be
utilized to improve the usefulness of the communication system?

• How can knowledge about the timing of queries for the IoT sensor network be
utilized to optimize the response to them?

• How can knowledge about the aggregates be used to summarise the information
and optimize the sampling of an IoT sensor network?

1.3 Thesis Outline
The thesis is in two parts. The remainder of part one is organized as follows: Chapter 2
provides theoretical background relevant for the first research question and a summary
of contributions for the two papers aimed at that question. Chapter 3 provides theo-
retical background relevant for the second and third research questions and a summary
of contributions for those questions. The background and summary for the second and
third question are in the same chapter because there is significant overlap in the back-
ground for these. Chapter 4 draws conclusions on each of the three research questions,
provides some final remarks and future directions.

The submitted and published papers that constitute the main work of this thesis
are included in part two. They are ordered firstly after the research question that they
relate to and secondly by date of submission. Paper A and B are aimed at the first
question. Paper C, D, and E are aimed at the second question. Paper F and G are
aimed at the third question.

2. Utilizing Graph Structure 7

2 Utilizing Graph Structure
IoT sensor networks are an important part of the mMTC aspect of 5G. When dealing
with such networks, it can be beneficial to represent them as graphs [5, 15], where the
nodes represent the IoT devices and the edges represent a relationship between them.

There are many different ways of representing an IoT sensor network with a graph,
depending on the purpose of the representation and on what information is available. In
cases where information about the geographical placement of the devices is available, it
is common to use this information to create the graph. This type of graph can be seen
as a naturally induced graph. Examples of this are networks of weather stations [23],
sensors observing water distribution networks [29], and sensor in road networks [26]. In
the latter two examples, it is not purely geographical information that determines the
edges, but rather pipes or roads between devices.

In cases where no such information is available, or the information has proven to
be of little use in a particular case, it might be advantageous to make a data induced
graph. This requires that there are some data available from the network. In order to
get a good fit, a decent amount of data needs to be available from the sensors. The
exact amount necessary depends on the method used, of which there are many [16, 24].

When a graph for the IoT devices has been established, a graph signal can be defined.
For a network of N devices, G = {V, E ,A} is the graph, where V is the set of nodes,
E is the set of edges, and A ∈ RN×N is the adjacency matrix. The adjacency matrix
representing the N devices is zero on the diagonal and is symmetrical for undirected
graphs. Ai,j > 0 when there is an edge representing the relation between node i and
j. In weighted graphs Ai,j is the weight of the edge, whereas in unweighted graphs all
weights are one. The graph signal, defined as x(v, t), is sensor data collected from the
network. It is a discrete signal where v is the range of nodes in the graph and t is the
range in time.

Much research has been done on processing of signals on graphs [21, 25]. Most of
it has been concerned with the simple case of signals without a time dimension. The
main definitions and results are extensions from classic signal processing to the irregular,
discrete domain of graphs. In the following definitions x(v) will denote a single instance
of a graph signal.

The graph Laplacian is L = D−A, where D is the diagonal matrix with Di being the
number of edges connected to node i. When the graph is undirected, A, and therefore
also L, are symmetric. In my work, I only consider undirected graphs and some of the
following results does not hold for directed graphs, but can be extended to hold. The
Laplacian is a difference operator in the graph:

(Lx)(i) =
∑

j∈Ni

Aij(x(i)− x(j)), (1)

where Ni is the set of nodes connected to node i. The graph Fourier transform for a

8

graph signal x is defined in terms of the eigendecomposition of the graph Laplacian,
L = UΛU−1, where the graph Fourier spectrum is sampled in the eigenvalue and the
transform is defined as the inner product with the eigenvectors.

x̂(λl) = ⟨x, ul⟩ =
N∑

i=1
x(i)u∗l (i). (2)

With this definition of the graph Fourier transform, the transform on an unweighted,
undirected circle graph reduces to the discrete Fourier transform [21]. The Graph Fourier
transform facilitates an interpretation of the frequency of the graph signal. High ampli-
tude of the graph Fourier transform for low eigenvalues mean that the signal changes
slowly across the graph. High amplitude for the high eigenvalues mean that the graph
signal changes fast [25]. The inverse graph Fourier transform is:

x(i) =
N−1∑
l=0

x̂(λl)ul(i). (3)

Other classical aspects of signal processing have also been extended to the graph
domain, such as filtering in both the frequency- and vertex- domain, convolution, trans-
lation, modulation, and dilation. These results are less important in the context of
sampling and therefore will not be discuss further here.

Graph signal processing has been used for sampling prior to the work of this thesis.
Several works consider sampling of a single time instance of a graph signal under some
assumptions about what type of connection between the nodes the graph represents
[3, 6, 28]. These papers assume that the signal on the graph is limited in frequency
bandwidth. Frequency bandwidth is a measure of how many graph Fourier components
are significant in value. It is also assumed that there exists a linear interpolator that
can be used to recover the unsampled data.

When collecting data in a network of IoT devices, it is necessary to consider both
the graph dimension and the time dimension jointly. When considering a graph-time
signal, x(v, t), it is often correlated in both the time- and graph- dimension or even
jointly correlated. To optimize the sampling scheme it is crucial to consider both. Some
initial work has been done in the field of applying graph signal processing to IoT sensor
networks. [29] uses graph signal processing to reduce the number of devices in an IoT
network. This can be useful, if the data collection operates on a subscription basis,
where a user can save resources by unsubscribing from a device. However, if the users
own the devices, the cost of installing the device will be wasted if it is not utilized. [7]
proposes a simple importance measure for the devices in the network base on the graph
Fourier transform, which is used to sample the graph-time signal.

2. Utilizing Graph Structure 9

2.1 Summary of Contributions
In this thesis the following papers on the topic of utilizing graph structure has been
written:

Paper A: Josefine Holm, Federico Chiariotti, Morten Nielsen, and Petar Popovski,
“Lifetime Maximization of an Internet of Things (IoT) Network based on Graph Signal
Processing,” IEEE Communications Letters, Vol. 25, No. 8, pp. 2763–2767, 2021.

Paper B: Roshni Chakraborty, Josefine Holm, Torben Bach Pedersen, and Petar
Popovski, “Finding Representative Sampling Subsets in Sensor Graphs using Time Se-
ries Similarities,” Submitted to ACM Transactions on Sensor Networks, 2022.
Preprint: https://arxiv.org/pdf/2202.08504.pdf

These papers explore the use of graph signal processing to optimize the data collec-
tion in a IoT sensor network for novelty. The aim is to have the lowest possible error
on the reconstruction of unreceived data. When using this type of metric, the data
collected is what is considered to hold the most information not already known by the
receiver, thus making it an optimization for novelty.

The two papers in this topic share the same model for the wireless data collection.
One or more base stations collect data from the devices in the network. The commu-
nication between the base station and the devices are wireless and the devices only
communicate with the base station. Because the focus of this part of the thesis is on
sampling so only the most novel data is transmitted, it is assumed that the error on
the transmissions is negligible. Negligible transmission error can be achieved through
coding, retransmission, or a combination of the two, often at the cost of some latency
or additional transmission cost. With the problems considered in these papers, the
communication cost is significantly reduced by sampling, so a small increase in the cost
per data point is acceptable. Furthermore, latency is not in focus in these papers be-
cause a small delay does not significantly affect the type of reconstruction and analysis
considered.

In papers A and B, it is assumed that there exists a relation between the data
observed by the sensors in the network, and that it is possible to find a graph representing
this relation. A concept drawing of the system model can be see in Figure 1.

In paper A, the graph structure, representing the relation between the data collected
by the different devises in the network, is assumed to be naturally induced. The example
used for the numerical results is from the water distribution simulation tool EPANET
[22], which provides realistic data from a sensor network deployed in water pipes. A
graph for the network can be created by drawing an edge between sensors that are
connected by a pipe. The objective of the paper is to partition the devices in the
network into disjoint groups. These group are then sampled in a round robin manner; the
communication can be either pull- or push-based as each device is sampled periodically.
The partitioning is optimized for novelty such that each group represents the signal.
The main purpose of this is to reduce the energy consumption by the IoT devices,

10

Fig. 1: Depiction of the system showing the communication from the IoT devices to the base station
(black arrows) and the relation between the devices (red lines).

as they are often battery powered. Saving battery power extends the lifetime of the
device, reducing the need for maintenance, and replacement. Reduction in number of
transmissions also decreases the load on the base station and reduces the interference.

Paper B extends paper A in two main ways: Firstly, it extends with a survey of data
induced graph creation methods. Secondly, it extends with further research into optimal
sampling partitions. The first part of paper B is a survey on graph creation methods that
uses historic data from the network to create a graph that is optimal in some sense. The
optimality criteria used to create the graph affect the result, and the resulting graphs
have different properties that can be useful for different applications. Therefore, there is
not a right or wrong method in general, as it depends on the network and the application
considered. The survey considers six different methods and compares the properties
of the resulting graphs. The second part of paper B continues the investigation of the
problem of partitioning the IoT devices into disjoint sampling sets in an optimal manner,
as proposed in paper A. In paper A, a single measure of optimality is utilized in a novel
algorithm for creating the optimal sampling scheme. In paper B the research is expanded
to include four additional measures of optimality, which are used to solve the problem
of creating the highest number of disjoint sampling sets given an error bound and its
dual problem. This results in six novel algorithms. The graph creation methods and
sampling scheme algorithms are tested on a variety of simulated and real world data sets
of different types, such as recordings of pressure, temperature, and humidity. The tests
consider all combinations of graph creation method and sampling scheme algorithm to
find the best combinations for the different types and sizes of data sets. Based on initial
test, recommendations are formed depending on network size and desired edge density
of the graph, these are confirmed though a second round of tests.

3. Age of Information and Beyond 11

3 Age of Information and Beyond
Timing and timelines have received significant attention with the rise of 5G technology,
[18]. For a wireless transmission to be successful, there is a series of actions that needs
to be performed. These include the encoding, decoding, and the transmission itself.
All of these take time and have strict requirements in order to be considered real-time.
Such requirements are the latency budget for the transmission [2]. The relevant latency
budget for an IoT device depends on the hardware and software of that device, as well as
on the application for which it is used. The notion of latency for real-time applications
is considered one of the main features of 5G wireless systems.

Age of Information (AoI) is a timing metric related to latency, that describes the
age of the most recent packet received at the destination. Age is the time since the
packet was generated, and in the case of a device with one or more sensors it is the time
since the sensor made the measurement. The AoI is thus dependent on two factors:
the packet generation time and the transmission latency. AoI is most often a linear
function measuring the freshness. However, in some scenarios it can provide valuable
insight to use a nonlinear AoI function [27]. In the remainder of the thesis, it is assumed
that the AoI is a linear function, and other cases will not be discussed further as they
have limited relevance to the contributions of this thesis. AoI assesses sampling and
transmission collectively rather than separately.

Traditionally many systems used a push-based communications model, where a
packet was created and transmitted whenever something new happened. With the
derivatives of AoI and VoI considered in this work, the communication model is pull-
based, where the receiver makes a request for an update when needed. This is inspired
by the field of databases in computer science, where the users make formal requests to
the database, known as queries. The type of query considered here can ask for aggre-
gates or subsets of data from the Data Base Management System (DBMS), [9, Section
1.1]. The task of the computer scientist is to optimize the system such that queries are
responded to as efficient as possible. Similarly, in a pull-based communication model,
data is requested from devices when needed.

Examples of important derivatives of AoI include Peak Age of Information (PAoI),
which measures the maximum AoI before the receiver gets an update from the trans-
mitter [11]. Also, [13] considers a case where multiple servers receives infrequent and
asynchronized updates about the same process and the Server have different response
time. A user can send identical requests for data from multiple servers. The paper finds
that waiting for multiple responses from the server reduces the AoI on average.

The next level after considering AoI and its derivatives and optimizing the timing,
is to start considering the content of the data itself [19]. An example of how this can
be done in a push-based communication model, where the transmitting side is given a
set of rules or criteria to decide if the data it has available will be important to the
receiver. In most cases, the receiver has a model for the data and the goal is to transmit

12

updates whenever the model is wrong. If the transmitter has the necessary capacity,
it can have a copy of the model and push updates when appropriate. However, this is
rarely the case. One way to work around this is for the receiver to predict when the
model is insufficient and pull data to correct it. Taking the content of data into account
when optimizing the sampling scheme is often referred to as Value of Information (VoI)
or goal-oriented communications [4].

There are different ways of measuring the importance or value of information. In [1]
the authors consider a case where the importance of observed events are tied to the
frequency of the event occurring, so less frequent events are considered more important
to report than more frequent events. Other examples of derivatives of VoI are Age
of Incorrect Information (AoII), [14], which extends AoI by not only considering fresh
updates but fresh "informative" updates. Informative here is defined as reducing the
estimate that the receiver have of the process observed by the transmitter. Secondly,
Urgency of Information (UoI), [30], is an extension of VoI that specifically aim to stabi-
lize the remote control of an actuator. In this case, information that affect the control
decisions should be prioritized.

3. Age of Information and Beyond 13

3.1 Summary of Contributions
In this thesis, the following papers on the topic of utilizing graph structure has been
written:

Paper C: Josefine Holm, Anders E. Kalør, Federico Chiariotti, Beatriz Soret, Søren
K. Jensen, Torben B. Pedersen, and Petar Popovski, “Freshness on Demand: Opti-
mizing Age of Information for the Query Process,” IEEE International Conference on
Communications, pp. 1–6, 2021.

Paper D: Federico Chiariotti, Josefine Holm, Anders E. Kalør, Beatriz Soret, Søren
K. Jensen, Torben B. Pedersen, and Petar Popovski, “Query Age of Information: Fresh-
ness in Pull-Based Communication,” IEEE Transactions on Communications, vol. 70,
no. 3, pp. 1606–1622, 2022.

Paper E: Søren Kejser Jensen, Josefine Holm, Federico Chiariotti, Christian Thom-
sen, Anders Ellersgaard Kalør, Petar Popovski, Beatriz Soret and Torben Bach Peder-
sen, “SENDAI: A Framework for Joint Reasoning About Sensor Data Acquisition and
Sensor Data Analytics,” Submitted to Information and Computation Journal, 2022.

Paper F: Federico Chiariotti, Anders E. Kalør, Josefine Holm, Beatriz Soret and
Petar Popovski, “Scheduling of Sensor Transmissions Based on Value of Information for
Summary Statistics,” IEEE Networking Letters, vol. 4, no. 2, pp. 92–96, 2022.

Paper G: Josefine Holm, Federico Chiariotti, Anders E. Kalør, Beatriz Soret and
Petar Popovski, “Goal-Oriented Scheduling in Sensor Networks with Application Tim-
ing Awareness,” submitted to IEEE Transactions on Communications, 2022.

Paper C defines a new derivative of AoI named Age of Information at Query (QAoI).
While AoI is a continues measurement, and optimization ensures that the age is low at all
times, Age of Information at Query (QAoI) instead measures discretely at the time when
a query arrives at the receiver. The aim of this is to promote having fresh information
when it is needed for a query and avoid wasting resources on updates that will never
be used. To optimize for QAoI each device in the network is considered individually
and sampled using a pull-based communication model. The receiver has information
about the query and pulls the device for updates when it is deemed appropriate. The
transmission budget is modeled as a leaky bucket, where tokens are generated in a
random process and the device can only transmit if it has a token available. The
receiver knows the token status. The communication channel is modeled as a packet
erasure channel with constant error probability for simplicity.

The results of optimizing for this using a Markov decision process shows that it is
possible to have lower age at the query time by saving up tokens and rapidly using them
immediately before a query. When comparing with the traditional sawtooth pattern of
an AoI optimized scheme, there is much more variety in the size of the peaks. The peaks
are much taller in the middle of a query interval and very small right before a query.
When the exact time of the query is known, this method is effective at minimizing the
age. However, the results also show that if the query arrival process is stochastic, and

14

the only information available is statistical, the possibility for foresighted scheduling can
be diminished.

Paper D is an extension of paper C. It provides further in depth analysis of the
QAoI measure. More channel models are considered so that more factors are taken
into account when optimizing. Paper D also provides a comparison with other AoI
derivatives.

Paper E combines sensor data acquisition with storage and data analysis. It proposes
Framework for joint Sensory Data Acquisition and Analysis (SENDAI) as a tool to
optimize these different phases in the life of data. The framework is based on two very
disparate real-life use cases, provided by industry collaborators. It provides a generalized
way of describing and optimizing the journey of data, from the state of the process to
the end user. When the data acquisition and analysis are considered jointly, it enables
the system to use information about how and when the data will be used to optimize
the sampling scheme, storage and analysis, as well as taking into account the limitations
of each layer when optimizing the others.

Paper F and G defines VoI in terms of aggregation functions, such that the measure
can be tailored to the specific user or application. The two papers consider a similar
system model with multiple IoT devices with time-slotted wireless links to a base station.
The base station has storage and computation resources and can pull data from any
device at any time slot. The devices each observe one part of a multidimensional process.
The base station keeps a model of the process and computes aggregates that are sent
to users when requested.

Paper F considers the case where a request arrives a the base station and the base
station then have time to pull one device before responding. This is the one-step optimal
solution where, given some historic data, the aim is to determine which device improve
the confidence in the response the most. Four different aggregation functions are con-
sidered: sample mean, sample variance, maximum, and number of state components
within an interval.

Paper G extends the work of paper F in two ways. Firstly, the time aspect is
extended, so instead of having one time-step to optimize for a query, the type and
timing of the queries are known further ahead of time so multiple devices can be pulled
to optimize for the query. Secondly, the case where multiple users makes requests for
different aggregates at different times is considered. This means that the scheduler at
the base station have to optimize for different functions of the data at different time and
balance the aggregates in the optimization. These two extensions significantly increase
the complexity of the problem. To this end, the paper proposes a deep reinforcement
learning scheme able to predict upcoming queries and pull the devices such that it
outperforms naive approaches.

4. Conclusion 15

4 Conclusion
How can knowledge of a graph representing relations between IoT devices
be utilized to improve the usefulness of the communication system?

Paper A and B proposes methods for energy-efficient sampling of IoT devices. The
main focus is on partitioning the devices into disjoint sampling sets using a graph
structure for the devices. The purpose of the partitioning is to lower the communication
load on the system, in order to save energy of the IoT device side and reduce the risk of
collision and interference on the base station side. The partition is optimized such that
the reconstruction of the observed process is as good as possible at all times. This is
used as a measure of novelty, as the set that results in the lowest reconstruction error
is the one best suited for interpolating the rest of the signal.

Two types of graphs are used to represent the relations between the IoT devices;
naturally induced graph based on side information about the system and data induced
graph based on historic data from the sensors on the devices. The results show that
using a measure of importance on the graph, that takes into account all the devices in
a set jointly, results in lower reconstruction error than assessing them individually or
assigning them randomly.

How can knowledge about the timing of queries for the IoT sensor network
be utilized to optimize the response to them?

Paper C and D proposes a pull-based sampling scheme for optimizing the response
time for incoming queries. The new metric for measuring the age of information at the
time it is needed for a query has been dubbed QAoI. Optimizing for this metric produces
a sampling scheme that is significantly different from one optimized for classic AoI. The
papers show that the new metric and proposed scheme leads to good results when the
query process is well known. This works even in cases with spotty connection, such as
satellite communication, where the channel is only open for short periods.

Paper E further contributes to this research with a discussion on the trade-of between
push- and pull-based communication. Either push, pull, or a combination can be used
depending on the information available and the storage and computational capacity of
the different parts in the system.

How can knowledge about the aggregates be used to summarise the in-
formation and optimize the sampling of an IoT sensor network?

Paper F and G proposes policies for sampling a network of IoT devices optimized
for relevance. This is done for multiple different aggregation functions. Paper F derives
the one-step optimal solution and shows that the optimal device to pull is significantly
different for the considered aggregates, as for some of them the error compounds and
for other aggregates such that they compensate for each other.

Paper G uses reinforcement learning to solve a more complex version of the problem.
Multiple different aggregates of the same process are considered, as well as their long-
term impact. This leads to better policies than one-step greedy strategies.

16

4.1 Final Remarks and Future Directions
In this work, the three aspects of Value of Information; Timeliness, Relevance and
Novelty, have been discussed and optimized for, both separately and jointly. Based on
this, it can be concluded that including multiple aspects increases the complexity of
the optimization problem, but making use of all available side information also leads to
better solutions.

Several avenues are open for future work, such as increasing the complexity of the
problems considered and combining the proposed methods. Firstly, the problem could
be extended to include more complex data types, such as point clouds, images, or
multivariate data, i.e. IoT devices with multiple different sensors from which updates
can be transmitted as a single packet. This will increase the complexity of the prediction
and thus requires estimators capable of dealing with more complex functions, data
types, and system models. Secondly, different methods proposed in this thesis could
be combined to utilize the knowledge of a graph structure for the IoT devices, in order
to increase the accuracy of the prediction. Alternatively, the proposed graph-based
sampling algorithms can be used to decrease the energy consumption in the system,
while optimizing for timing, relevance, or novelty.

References 17

References
[1] P. Agheli, N. Pappas, and M. Kountouris, “Semantics-aware source coding in status update

systems,” in 2022 IEEE International Conference on Communications Workshops (ICC
Workshops). IEEE, 2022, pp. 169–174.

[2] Y. Alfadhli, Y.-W. Chen, S. Liu, S. Shen, S. Yao, D. Guidotti, S. Mitani, and G.-K.
Chang, “Latency performance analysis of low layers function split for urllc applications in
5g networks,” Computer Networks, vol. 162, p. 106865, 2019.

[3] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theorem for signals on arbi-
trary graphs,” in 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2014, pp. 3864–3868.

[4] O. Ayan, M. Vilgelm, M. Klügel, S. Hirche, and W. Kellerer, “Age-of-information vs.
value-of-information scheduling for cellular networked control systems,” in Proceedings
of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, 2019, pp.
109–117.

[5] O. M. Bushnaq, A. Chaaban, S. P. Chepuri, G. Leus, and T. Y. Al-Naffouri, “Sensor
placement and resource allocation for energy harvesting iot networks,” Digital Signal Pro-
cessing, vol. 105, p. 102659, 2020.

[6] L. F. Chamon and A. Ribeiro, “Greedy sampling of graph signals,” IEEE Transactions on
Signal Processing, vol. 66, no. 1, pp. 34–47, 2017.

[7] A. Chiumento, N. Marchetti, and I. Macaluso, “Energy efficient wsn: a cross-layer graph
signal processing solution to information redundancy,” in 2019 16th International Sympo-
sium on Wireless Communication Systems (ISWCS). IEEE, 2019, pp. 645–650.

[8] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-latency and ultra-
reliable virtual reality,” IEEE Network, vol. 32, no. 2, pp. 78–84, 2018.

[9] R. Elmasri, S. B. Navathe, R. Elmasri, and S. Navathe, Fundamentals of Database Systems,
7th ed. Springer, 2000.

[10] D. Feldman and M. Langberg, “A unified framework for approximating and clustering
data,” in Proceedings of the forty-third annual ACM symposium on Theory of computing,
2011, pp. 569–578.

[11] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-class queueing sys-
tem,” in 2015 IEEE international symposium on information theory (ISIT). IEEE, 2015,
pp. 1681–1685.

[12] A. Kosta, N. Pappas, V. Angelakis et al., “Age of information: A new concept, metric,
and tool,” Foundations and Trends® in Networking, vol. 12, no. 3, pp. 162–259, 2017.

[13] F. Li, Y. Sang, Z. Liu, B. Li, H. Wu, and B. Ji, “Waiting but not aging: Optimizing
information freshness under the pull model,” IEEE/ACM Transactions on Networking,
vol. 29, no. 1, pp. 465–478, 2020.

[14] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of incorrect informa-
tion: A new performance metric for status updates,” IEEE/ACM Trans. Netw., vol. 28,
no. 5, pp. 2215–2228, Jul. 2020.

18 References

[15] M. Mangia, F. Pareschi, R. Varma, R. Rovatti, J. Kovačević, and G. Setti, “Rakeness-based
compressed sensing of multiple-graph signals for iot applications,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 65, no. 5, pp. 682–686, 2018.

[16] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the dots: Identifying
network structure via graph signal processing,” IEEE Signal Processing Magazine, vol. 36,
no. 3, pp. 16–43, 2019.

[17] I. Nikoloska, J. Holm, A. E. Kalør, P. Popovski, and N. Zlatanov, “Inference over wireless
iot links with importance-filtered updates,” IEEE Transactions on Cognitive Communi-
cations and Networking, vol. 7, no. 4, pp. 1089–1098, 2021.

[18] P. Popovski, F. Chiariotti, K. Huang, A. E. Kalør, M. Kountouris, N. Pappas, and B. Soret,
“A perspective on time toward wireless 6g,” Proceedings of the IEEE, vol. 110, no. 8, pp.
1116–1146, 2022.

[19] P. Popovski, O. Simeone, F. Boccardi, D. Gündüz, and O. Sahin, “Semantic-effectiveness
filtering and control for post-5g wireless connectivity,” Journal of the Indian Institute of
Science, vol. 100, pp. 435–443, 2020.

[20] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5g wireless network slicing
for embb, urllc, and mmtc: A communication-theoretic view,” Ieee Access, vol. 6, pp.
55 765–55 779, 2018.

[21] G. B. Ribeiro and J. B. Lima, “Graph signal processing in a nutshell,” Journal of Com-
munication and Information Systems, vol. 33, no. 1, 2018.

[22] L. A. Rossman et al., “EPANET 2: users manual,” 2000.
[23] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs: Frequency anal-

ysis,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3042–3054, 2014.
[24] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network topology inference

from spectral templates,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 3, no. 3, pp. 467–483, 2017.

[25] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vanderghenyst, “The emerging
filed of signal processing on graphs,” IEEE Signal Processing Magazine, 2013.

[26] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph fourier transform,”
in 2012 IEEE Statistical Signal Processing Workshop (SSP). Ieee, 2012, pp. 133–136.

[27] Y. Sun and B. Cyr, “Sampling for data freshness optimization: Non-linear age functions,”
Journal of Communications and Networks, vol. 21, no. 3, pp. 204–219, 2019.

[28] F. Wang, Y. Wang, and G. Cheung, “A-optimal sampling and robust reconstruction for
graph signals via truncated neumann series,” IEEE Signal Processing Letters, vol. 25,
no. 5, pp. 680–684, 2018.

[29] Z. Wei, A. Pagani, G. Fu, I. Guymer, W. Chen, J. McCann, and W. Guo, “Optimal
sampling of water distribution network dynamics using graph Fourier transform,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 3, pp. 1570–1582, 2019.

[30] X. Zheng, S. Zhou, and Z. Niu, “Urgency of information for context-aware timely status
updates in remote control systems,” IEEE Transactions on Wireless Communications,
vol. 19, no. 11, pp. 7237–7250, 2020.

Part II

Papers

19

Paper A

Lifetime Maximization of an Internet of Things (IoT)
Network based on Graph Signal Processing

Josefine Holm, Federico Chiariotti, Morten Nielsen, and Petar Popovski.

The paper has been published in the
IEEE Communications Letters Vol. 25, No. 8, pp. 2763–2767, 2021.

© 2021 IEEE
The layout has been revised.

1. Introduction 23

Abstract
The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices
can be increased by minimizing the number of transmissions per device while not exces-
sively deteriorating the correctness of the overall IoT monitoring. We propose a graph
signal processing based algorithm for partitioning the sensor nodes into disjoint sampling
sets. The sets can be sampled on a round-robin basis and each one contains enough in-
formation to reconstruct the entire signal within an acceptable error bound. Simulations
on different models of graphs, based on graph theory and on real-world applications,
show that our proposal consistently outperforms state-of-the-art sampling schemes, with
no additional computational burden.

1 Introduction
The expansion of Internet of Things (IoT) systems leads to massive data produced from
a vast variety of connected devices and sensors, providing unprecedented knowledge
about the state and processes of the physical world [1] [2]. These IoT sensors are often
cheap, wireless and battery-powered. They transmit data sporadically to a Base Station
(BS), which forwards the data to a data analytics module. In order to increase the
longevity of the massive IoT network, each sensor should try to minimize the number of
transmissions, while not compromising the quality of the inference at the data analytics
module. This letter addresses the optimization of the conflicting objectives of network
lifetime and correctness of inference by casting the problem in the context of signal
processing on graphs.

We consider a deployment of an IoT network in which the underlying graph structure
is induced naturally by the physical deployment of the IoT devices. This concept is
shown on Figure 1, where the IoT sensors are attached at the vertices of a water supply
network. Other similar examples include IoT devices attached to other types of utility
networks, sensors deployed along streets, etc. Each sensor transmits the data to a
BS. Due to the physical setup, the readings of the sensors connected within the physical
graph are correlated and sampling of one of them carries information about the potential
reading of the other sensor. The objective is to partition the set of sensors into S subsets,
such that the subsets are disjoint and all sensors are assigned to exactly one set. In each
sampling round the data analytics module reconstructs the state of the graph based only
on the transmission of a subset of sensors. This reduces the duty cycle requirements
for each sensor, as it has to transmit S times less often. Partition sampling can then,
in principle, increase the IoT network lifetime by S times, which can be equivalent to
an order of magnitude increase. However, it comes at the cost of increased error in the
reconstructed signal at the receiver, as the data are incomplete. Finding a partition that
minimizes that error is critical to achieve the best possible balance between increased

24 Paper A.

A
B

C

D

E

F

G

Fig. A.1: Concept drawing of the system on a slice of the test network. Communication between base
station and sensors (red arrows) and associations between sensors (black lines).

battery lifetime and reconstructed signal quality.
The reconstruction of the state can leverage the methods of the emerging field of

signal processing on graphs [3, 4]: the graph structure, representing the correlation
among the measurements from the different sensors, can be exploited to improve the
reconstruction of the signal from each of these subsets. The optimal partition of the
graph, i.e., the one that provides the lowest reconstruction Mean Square Error (MSE) for
a given number of subsets S, is a combinatorial problem, as the value of adding a node
to the sampling set depends on the other nodes already in the set. Most works in the
literature have concentrated on finding a single set, and not a complete partition. To the
best of our knowledge, the first work to do so was [5], which considered band-limited
signals, and find a sampling set that allow for perfect reconstruction under certain
conditions. A later work [6] aimed at finding the smallest possible set for a given MSE
bound, while [7] concentrated on the opposite problem, i.e., finding the sampling set of
fixed size with the minimum MSE. A modification of [6] that is resilient to packet losses
was presented in [8], but the authors still do not take into account the fact that the
data stemming from the graph nodes are a time series, while [9] considers the temporal
aspect but neglects to consider the fact that the importance of a node depends on the
other nodes in the subset.

The possibility of exploiting graph structures and correlations in the data from
different IoT sensors has already been considered for water distribution networks [10],
which are uniquely suited for this thanks to the strong correlation between nodes and
lack of high-frequency dynamics in the graph. In general, reducing the activity of each
sensor can give huge benefits in IoT networks, as sensors are generally battery-powered
and expected to last for several years.

This work extends the heuristic from [6] towards finding the largest complete par-
tition, all subsets of which respect the MSE constraint. Our main contribution is a
new algorithm that allows us to find the largest partition of the set of nodes in the
graph that respects an MSE constraint. While our algorithm is a heuristic, it can be
very close to the optimal by considering the effect of the existing nodes in each subset

2. System Model 25

when adding nodes. This work shares some similarities with [9], but we take the cor-
rect importance of each node, considering the elements already in the various subsets,
instead of simplifying the problem by assuming its independence from other elements.
Our algorithm can run with a similar computational cost to [6] even though we find a
complete partitioning, and reduces the average MSE by approximately 5%.

2 System Model
Consider a network of IoT devices wirelessly transmitting to a Base Station. Such a
network can be described as a graph where the sensors are represented with nodes and
the edges represent similarity between the sensors in terms of what values they observe.
The edges can be organized into an adjacency matrix A ∈ RN×N , where N is the
number of nodes and Ai,j ̸= 0 if and only if there is an edge between node i and j. The
observations of the sensors are considered a signal, this signal exist in both time and
space, such that for each sensor there is a time series and for each timestamp there is
a graph signal. We will denote the graph signals by x ∈ RN . In this letter we propose
a method of prolonging the lifespan of the sensors. We split the sensors in disjoint sets
and, at a given timestamp, the Base Station (BS) samples only one set. If the sets are
sampled on a round-robin basis, then the channel usage is reduced and thus the network
lifetime is prolonged. The problem is how to do this and still be able to reconstruct the
full graph signal at each timestamp within a reasonable margin of error.

In order to solve this problem we utilize concepts from graph signal processing [3].
The graph Fourier transform is defined in terms of the of the eigenvectors of the graph
Laplacian defined as L = D − A, where D is the degree matrix, i.e. a diagonal matrix
whose i-th element is the sum of the weights going into vertex i. We write the eigen
decomposition as L = V EV H , where V = [v1 · · · vN]H is a matrix with the eigenvectors
of L and E is a diagonal matrix with the corresponding eigenvalues. We use the eigen
decomposition to define the Fourier transform of x on the graph as x̄ = V Hx.

If we assume that x ∈ RN is a spectrally sparse signal on the graph, i.e., x = VKx̄K,
where |K| ≪ N and VK ∈ RN×|K| are the columns of V with index in the set K, then
compression is obtained in the graph Fourier domain. Each node i can measure one
component of the signal, with an additional noise component: the fully sampled signal
is then y = x + w, where the noise, w, follows a zero mean circular distribution with
Λw = diag(λw,i). We remark that this noise is inherent in the measurement operation,
and is not due to the communication link with the BS. It is further assumed that the
noise has full rank. Even if the sampling set contains every node in the graph, the
reconstruction of the signal at the BS will never be perfect due to this measurement
noise. If we consider sampling sets that are strict subsets of the graph, the reconstruction
quality will degrade accordingly.

This imperfect reconstruction from smaller sampling sets is the one we consider: as
in [9], the goal is to divide the sensors into disjoint sampling sets, where each set produce

26 Paper A.

good enough representation of the entire graph signal on its own. The approach in [9] is
to calculate the importance of of each node individually and then use that to group the
nodes. However, that approach does not take into account that the importance of the
nodes depends on which nodes they are grouped with. This is the main difference from
our approach, as we recalculate the importance at each step to take maximum advantage
of the graph structure. To this end, we use the reconstruction MSE for a sampling set
as in [6]. The authors in [6] define the optimal linear interpolation operator to obtain
the reconstructed signal x̂ = By, accounting for the fact that the importance of the
nodes depends on the other nodes in the set; however, the objective is to construct only
one sampling set. Specifically, the goal in [6] is to make the smallest possible sampling
set with reconstruction error below a given threshold. An optimal linear interpolation
operator B∗ can be found for each sampling set by minimizing the interpolation error
covariance matrix

B∗ = arg min
B

E[(x−By)(x−By)H |x,w]. (A.1)

In the following, we use the simplified notation B∗y = x̂ to indicate the reconstructed
vector after interpolation. Using the approach from [6] as a starting point and putting
it in the context of network longevity, we create several disjoint sampling sets that are
all sufficiently good to reconstruct the original graph signal below the error tolerance.
We will denote the partitioning G, Gp is set number p and Gp,j is iteration j of set p.
It is defined as MSE(x̂) = E∥x − x̂∥2

2. As we follow the same model as defined in [6],
we can exploit their derivation of the maximum MSE for the sampling set:

MSE(Gp) = Tr[K(Gp)], (A.2)

where

K(Gp) = VK

Λ−1 +
∑

i∈Gp

λ−1
w,iviv

H
i

−1

V H
K . (A.3)

In [6, Prop 1] it is shown that (A.3) is the error covariance matrix of x̂ if we use the
optimal interpolation x̂ = B∗y from (A.1) given a sampling set. This can be rewritten
to calculate the MSE iteratively as follows:

Tr[K(Gp)] = V H
K VK

Λ−1 +
∑

i∈Gp

λ−1
w,iviv

H
i

−1

, (A.4)

because trace is rotational, i.e., Tr[ABCD] = Tr[CDAB]. We then define:

A = Λ−1 +
∑

i∈Gp

λ−1
w,iviv

H
i . (A.5)

3. Algorithm 27

Let Kj be a shorthand for K(Gp) where Gp has j nodes. We will use this for the
iterative calculation of K(Gp).

Tr[Kj−1] = Tr[V H
K VKA

−1] (A.6)
Tr[Kj] = Tr[V H

K VK(A+ λ−1
w,svsv

H
s)−1]. (A.7)

We then use the matrix inversion lemma

(A+ UCV)−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1, (A.8)

using A = A, U = vs, V = vH
s and C = λ−1

w,s we get

Tr[Kj] = Tr[Kj−1 − V H
K VK

A−1vsv
H
s A
−1

(λ−1
w,s)−1 + vH

s A
−1vs

]. (A.9)

Therefore, the iterative calculation of of the MSE becomes:

MSE(Gp,j ∪ vs) = Tr[Kj]− vH
s KjV

H
K VKKjvs

λw,s + vH
s Kjvs

, (A.10)

where
Kj = Kj−1 − V H

K VK
Kj−1vuv

H
u Kj−1

λw,u + vH
u Kj−1vu

, (A.11)

K0 = Λ and u is the index for the most recently added node. Note that V H
K VK = I for

|K| = N , as well as:
MSE(vs) = MSE(∅ ∪ vs). (A.12)

The main problem we will propose a solution to is formulated as:

maximize k

subject to MSE(Gp) ≤ ε ∀ p = 0, ..., k.
(A.13)

3 Algorithm
The problem in (A.13) is combinatorial, as the MSE of each subset depends on all the
elements of the set, and cannot be solved efficiently. For this reason, we propose a
heuristic Joint Iterative Partitioning (JIP) algorithm which builds on the basic idea of
the Individual Iterative Partitioning (IIP) algorithm from [9, Algorithm 1]. However,
the importance of each node is not considered to be fixed, but we compute the possible
gain from adding it to a sampling set considering the nodes already in the set: in this
way, we can improve the balance between the sets by putting each node in the subset
where it can improve the MSE the most.

28 Paper A.

12 4

5

7

1132 6 1

1413 98

010

Fig. A.2: Graph partitioned into 3 sets.

The idea behind JIP is to start by calculating the MSE for all possible sampling
sets with one node and sorting the nodes based on this. We take the largest node and
add it to the first set. If MSE < ε the process is done, otherwise we search for the
best node to add. If more than one node makes MSE < ε we choose the one with the
smallest MSE alone and the set is finished. If no such node exists, we choose the one
that minimizes the MSE for the set. Then we find the next node to add to the set. An
example of how this partition is made can be seen in Fig. A.2. The graph is divided
into three sets by JIP, which iteratively adds the nodes to the sets. The numbers on
the nodes in the figure indicate the order in which they were added, while their color
indicates the set in which they were placed. The first node to be assigned is the one
with the most neighbors, which makes sense, as its low distance from several others
means that the reconstruction drawn only from that node has the lowest MSE. The
second node added covers a part of the graph that is far from the first node, but it is
still connected to several other nodes. After the third node, the green set is over the
threshold, so the algorithm moves to a new set. As the best nodes are selected first,
the number of nodes in the sets increases, and the red set has 7 nodes. The last node
is allocated to a random set, as it cannot form a set on its own and all existing sets are
below the threshold MSE. The allocation of these “orphan” nodes, which cannot form
another set with the required MSE, can be performed in various ways, with the effect of
further reducing the MSE, but it cannot increase the number of sets in the partition.

The algorithm requires O(n2|K|2) operations, the same as [6] in the worst case
scenario. The pseudo-code for our approach is given in Algorithm 1.

Ones the sampling sets are selected we create the sampling matrix S by setting Si,j

as 1 if i ∈ Gj and 0 otherwise, and then get the samples yj = Sjx.
Adaptation of IIP for comparison: In this section we adapt the IIP algorithm

from [9] to this setting. The setting is similar in that we also want to minimize the
energy consumption of the network by splitting the nodes into disjoint sampling sets.
The Authors in [9] assumes that data from the sensors are available and use this to
infer a graph structure. In this paper we assume that the graph structure is given,

4. Numerical Results 29

Algorithm 1 Joint Iterative Partitioning (JIP)
1: Input: Λ,Λw, V, ε
2: K0 = Λ, p = 0, j = 1
3: Ls = MSE(vs)
4: L_index = argsort(L) (largest first)
5: while L_index ̸= ∅ do
6: u = pop(L_index−1)
7: Gp,j = u
8: while MSE(Gp,j) > ε and L_index ̸= ∅ do
9: Calculate Kj according to (A.11)

10: for i in L_index do
11: if MSE(Gp,j ∪ Li) < ε then
12: Gp,j+1 = {Gp,j ∪ Li}
13: j = 0, p = p+ 1, delete(L_index = i)
14: goto 5
15: Gp,j+1 = {Gp,j ∪ arg min(MSE(L))}
16: remove chosen node from L_index, j = j + 1
17: if MSE(G−1,−1) > ε then
18: Split the nodes in G−1 among the other sets
19: Return G

but we have no assumption about the availability of data from the nodes. Therefore,
we will skip step 2 and 3 in IIP and instead add the known graph structure to the
initialization step. Once a graph structure has been established, the algorithm orders
the nodes in descending order of sampling importance in steps 4 and 5. We make a slight
modification to this step, as the original algorithm used a Root MSE (RMSE) measure
to sort the nodes, while we take the expected MSE which can be computed by creating
the sampling matrix for the known graph structure. Once the nodes are sorted, they
are iteratively assigned to sampling sets following a greedy approach: the first nodes,
i.e., the ones with the lowest RMSE, are put in the first set, until the RMSE of the
reconstruction is below the threshold, in steps 10 and 11. As we use the expected value
of the RMSE instead of the statistical average, we cannot preform a reconstruction to
perform this check, so we just check if the expected RMSE is below the threshold. With
this adaptation, IIP from [9] can be compared fairly to the proposed algorithm.

4 Numerical Results
Figure A.3b shows the results of three partitioning methods used on the ER graph
structure. It shows a small gain from using JIP rather than IIP or Random Partitioning

30 Paper A.

(a) Graph of the Erdős–Rényi (ER) network.

4 6 8 10 12

7

8

9

Sets

R
M

SE

JIP
IIP
RP

(b) Relative error for different number of sets
created for the ER graph structure.

(c) Graph of the Watts–Strogatz (WS) network.

4 6 8 10 12

5

6

7

Sets

R
M

SE

JIP
IIP
RP

(d) Relative error for different number of sets
created for the WS graph structure.

(e) Graph of the EPANET network.

4 6 8 10 12
5.5

6

6.5

7

7.5

Sets

R
M

SE

JIP
IIP
RP

(f) Relative error for different number of sets
created for the EPANET graph structure.

Fig. A.3: The graphs and the results.

4. Numerical Results 31

Algorithm 2 Random Partitioning (RP)
1: Input: Λ,Λw, V, ε
2: K0 = Λ, p = 0, j = 1
3: L_index = [0, 1, ..., N]
4: while L_index ̸= ∅ do
5: r = random(0, |L_index|)
6: u = pop(L_indexr)
7: Gp,j = u
8: while MSE(Gp) > ε and L_index ̸= ∅ do
9: Calculate Kj according to (A.11)

10: r = random(0, |L_index|)
11: u = pop(L_indexr)
12: Gp,j+1 = {Gp,j ∪ u}
13: if MSE(Gp,j+1) < ε then
14: j = 0, p = p+ 1
15: goto 4
16: j = j + 1
17: if MSE(G−1,−1) > ε then
18: Split the nodes in G−1 among the other sets
19: Return G

(RP). However, for the method to work well we need to have some structure to the graph.
The advantage of the JIP method over simple IIP is that it considers the relations
between the nodes already in a sampling set and the new node to be added, so the
difference between the methods is expected to be starker for graphs with highly local
structures, i.e., more clustered ones. Figure A.3d shows the results for a WS graph
structure with β = 0.5. As expected the gain from using JIP is mush bigger and the
relative error is lower for all partitioning methods.

In this section we compare the proposed JIP algorithm to the IIP algorithm and
a RP algorithm. The RP algorithm creates one set at a time by adding randomly
chosen nodes to the set until it is below the given threshold, the pseudo-code for the
RP algorithm is given in Algorithm 2. We will compare the three methods on three
different graph structures, namely, an ER graph, a WS graph and a graph simulated
with EPANET, [11], a tool made for simulation of water supply networks, as shown in
Figure A.3e. The EPANET graph can represent a real-world application of the use of
our graph sampling technique in IoT networks, although it is still simulated. All graphs
are undirected, unweighted and has a similar edge density.

The sampling noise λw is included in the calculation of the MSE, therefore we want to
present the results of the different algorithms and graphs relative to the MSE sampling

32 Paper A.

set that is only affected by noise i.e. the set with all nodes, F : RMSE(G) = MSE(G)
MSE(F) .

Lastly, Figure A.3f shows the results for the graph simulated with the EPANET
tool. This graph has some clustering, but not as mush as the WS graph, and the results
show that both the relative error and the gain form using JIP is somewhere in between
the results for ER and WS, which is what we can expect from most real world graphs.

In order to show the optimality gap of our heuristic, we have performed an Exhaus-
tive Search (ES) for all possible partitions on two graphs with 15 nodes, a WS graph and
an ER graph. Performing ES on larger graphs is infeasible, because the computation
time grows exponentially. Figure A.4 shows the MSE of the best possible partitioning
with two, three and four sets, measured by the maximum MSE for any set in the parti-
tioning. For the three greedy sampling algorithms it shows the lowest possible threshold
that gives the same amount of sets. As the figure shows, JIP is significantly closer to
the optimum than IIP or RP in most cases, particularly on the WS graph structure. For
the ER graph all sampling algorithms struggled with the partition in two sets, but for
three and four sets we lower the MSE threshold by 30-40% compared to IIP and 40-50%
compared to RP. For a theoretical analysis of the optimality of the proposed algorithm
we refer to [6]. They perform an in-depth analysis of the approximate supermodularity
of using (A.2) for greedy optimization.

The main advantage of our proposed scheme can be summarized as follows. Given
that the underlying graph structure is known a priori, the algorithm can be run before
the sensors start to collect any data and they can thus be preconfigured. Although very
infrequently, the graph structure may change over time; it is then important to update
the sampling scheme accordingly. However, how to do that efficiently is a subject of
future work.

The method works well for cases where the graph structure can be induced from some
physical aspects of the setup. An example of this is the case of a network of water pipes,
here the connections of the pipes gives a natural way of connecting the nodes. Because
the sampling scheme is derived before deployment and all sensors sample periodically,
as seen from the sensor perspective, the strain on the sensors from computations is
practically nonexistent. To reconstruct the entire dataset we must assume that the
server has a reasonable amount of computation power and memory available and that
we allow for some error ε.

5 Conclusion
We have considered the problem of energy-efficient sampling of IoT sensors that are
deployed in a system with an underlying graph structure. We leverage this structure
through a graph signal processing framework to obtain the maximal number of disjoint
sets to be sampled, while the the expected mean square error for each set is below
a given error threshold. We have evaluated the algorithm in a scenario where the

5. Conclusion 33

2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Sets

R
M

SE

WS Graph

ES
JIP
IIP
RP

2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

Sets

R
M

SE

ER Graph

ES
JIP
IIP
RP

Fig. A.4: Exhaustive search for best partition on two graphs with 15 nodes.

34 References

underlying graph is build according to a water network. The results show that JIP
gives a lower error than IIP and RP. Although the gains are not particularly high, the
methodologically novel approach shows promises through its consistent improvement
over the other approaches and incurs no additional computational cost. Furthermore,
our results show that the gain from using our scheme increases for more clustered graphs
like the WS small-world model, making JIP particularly suited for those scenarios. As a
future work, we will generalize the approach to allow for efficient update of the partitions
upon changes in the underlying physical graph.

References
[1] C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson, C. Stefanovic,

P. Popovski, and A. Dekorsy, “Massive machine-type communications in 5g: Phys-
ical and mac-layer solutions,” IEEE Communications Magazine, vol. 54, no. 9, pp.
59–65, 2016.

[2] T. Rault, A. Bouabdallah, and Y. Challal, “Energy efficiency in wireless sensor
networks: A top-down survey,” Computer Networks, vol. 67, pp. 104–122, 2014.

[3] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vanderghenyst, “The
emerging filed of signal processing on graphs,” IEEE Signal Processing Magazine,
2013.

[4] G. B. Ribeiro and J. B. Lima, “Graph signal processing in a nutshell,” Journal of
Communication and Information Systems, vol. 33, no. 1, 2018.

[5] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theorem for signals on
arbitrary graphs,” in 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2014, pp. 3864–3868.

[6] L. F. Chamon and A. Ribeiro, “Greedy sampling of graph signals,” IEEE Trans-
actions on Signal Processing, vol. 66, no. 1, pp. 34–47, 2017.

[7] F. Wang, Y. Wang, and G. Cheung, “A-optimal sampling and robust reconstruction
for graph signals via truncated neumann series,” IEEE Signal Processing Letters,
vol. 25, no. 5, pp. 680–684, 2018.

[8] B. Güler, A. Jayawant, A. S. Avestimehr, and A. Ortega, “Robust graph signal
sampling,” in ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 7520–7524.

[9] A. Chiumento, N. Marchetti, and I. Macaluso, “Energy efficient wsn: a cross-
layer graph signal processing solution to information redundancy,” in 2019 16th

References 35

International Symposium on Wireless Communication Systems (ISWCS). IEEE,
2019, pp. 645–650.

[10] Z. Wei, A. Pagani, G. Fu, I. Guymer, W. Chen, J. McCann, and W. Guo, “Optimal
sampling of water distribution network dynamics using graph Fourier transform,”
IEEE Transactions on Network Science and Engineering, vol. 7, no. 3, pp. 1570–
1582, 2019.

[11] L. A. Rossman et al., “EPANET 2: users manual,” 2000.

36 References

Paper B

Finding Representative Sampling Subsets in Sensor Graphs
using Time Series Similarities

Roshni Chakraborty, Josefine Holm, Torben Bach Pedersen, and Petar
Popovski

The paper has been submitted to the
ACM Transactions on Sensor Networks 2022.

The layout has been revised.

1. Introduction 39

Abstract
With the increasing use of IoT-enabled sensors, it is important to have effective methods
to query the sensors. For example, in a dense network of battery-driven temperature
sensors, it is often possible to query (sample) only a subset of the sensors at any given
time, since the values of the non-sampled sensors can be estimated from the sampled
values. If we can divide the set of sensors into disjoint so-called representative sampling
subsets that each represents all the other sensors sufficiently well, we can alternate
between the sampling subsets and thus, increase the battery life significantly of the sensor
network. In this paper, we formulate the problem of finding representative sampling
subsets as a graph problem on a so-called sensor graph with the sensors as nodes. Our
proposed solution, SubGraphSample, consists of two phases. In Phase-I, we create edges
in the similarity graph based on the similarities between the time-series of sensor values,
analyzing six different techniques based on proven time-series similarity metrics. In
Phase-II, we propose six different sampling techniques to find the maximum number of
representative sampling subsets. Finally, we propose AutoSubGraphSample which auto-
selects the best technique for Phase-I and Phase-II for a given dataset. Our extensive
experimental evaluation shows that AutoSubGraphSample can yield significant battery
life improvements within realistic error bounds.

1 Introduction
Recently, Internet of Things (IoT) enabled sensors are being widely used for different
applications, such as, military operations, traffic management, home-service, healthcare,
and several others [1, 2]. Irrespective of the application, the sensors generate continu-
ous data, in the form of time-series. This massive production of data has led to new
challenges in data processing, storage and analysis [3]. In order to handle this massive
information overload, there is a need to develop effective methods that can query the
sensors efficiently, for example, to preserve battery life [4, 5]. Identifying disjoint rep-
resentative sampling subsets such that only a representative sampling subset is queried
at a given time is an efficient solution for quering the sensors. This is possible if the
time-series generated by the different sensors are similar and each representative sam-
pling subset represents the values of all the sensors sufficiently well [6]. Therefore, in
this paper, we aim to identify the maximum number of disjoint representative sampling
subsets given the sensors and their time-series data.

We now discuss this through a motivating example of a sensor network, SN , which
comprises of 9 sensors as S = S1, S2, · · · , S9 as shown in Figure B.1. Each of these
sensors, Si records the temperature of a particular location as a time-series, T i with 5
time instances 1, 2, · · · , 5 resulting in T i

1, T
i
2, · · · , T i

5 for a sensor, Si. We provide the data
recorded by S similar to existing datasets [7] in Table B.1. In order to understand the

40 Paper B.

Fig. B.1: An overview of a sensor network, SN , that comprises of sensors, S1 to S9, where each of the
sensor records data in time-series, T i. The sensors communicate to the base-station B for processing
and computation. The data recorded by sensors, S is shown in Table B.1

similarity between the time-series data among sensors, we compute the Fast DTW [8]
distance between each pair of sensors (see Table B.2). Fast DTW [8] distance is inversely
proportional to the similarity between a pair of sensors on the basis of the time-series.
Although there are several ways to calculate the similarity or distance between a pair
of sensors, we use Fast DTW on SN as an example to calculate distance and provide
an intuition of how the similarity between sensors can be utilized to identify disjoint
representative sampling subsets. We discuss Fast DTW in detail in Subsection 4.2 and
its application on SN in Subsection 4.4. We highlight the results of Fast DTW in Table
B.2 to give an intuition of the research problem. For example, as shown in Table B.2,
S1 and S2 are similar with a low distances of 8 whereas S1 and S9, S2 and S4 are
dissimilar with a high distances of 23 and 28, respectively. Therefore, we can query S1
and S2 at alternating timestamps, improving battery life of both S1 and S2 while still
getting sufficiently accurate results. Extending this idea to the entire SN , we identify
3 disjoint representative sampling subsets, which each represent all the sensors within
a given error bound on the time-series values. The intuition is that by identifying 3
disjoint representative sampling subsets from SN , we can increase the battery longevity
by 3 times compared to the case of querying all sensors at all times. We represent this in
Figure B.2. It is therefore required to devise a system that can perform a) creation of a
similarity graph of the sensors on the basis of the time-series data and, b) identification
of the maximum number of representative sampling subsets from the similarity graph.

Several selection sampling techniques in graph signal processing domain [9] have
been proposed, including randomized [9, 10] or deterministic greedy sampling [11, 12]
techniques which focus on finding a single representative sampling subset. However, these
approaches identify only one sub-set of sensors and therefore, do not solve our objective.

1. Introduction 41

Sensor T i Sensor T i

S1 [4, 5, 5, 5, 4] S6 [7, 9, 10, 10, 9]
S2 [6, 6, 7, 7, 5] S7 [9, 9, 9, 11, 7]
S3 [1, 1, 3, 3, 3] S8 [0, 3, 3, 3, 0]
S4 [0, 0, 1, 1, 1] S9 [1, 1, 1, 4, 1]
S5 [8, 8, 8, 8, 6]

Table B.1: The time-series of the 9 sensors of SN is shown

Si Sj Dij Si Sj Dij Si Sj Dij

S1 S2 8 S1 S6 16 S1 S9 23
S2 S5 7 S2 S4 28 S2 S7 16
S3 S1 12 S3 S2 20 S3 S8 5
S6 S5 9 S6 S7 6 S6 S8 36
S9 S8 7 S9 S5 30 S9 S3 4

Table B.2: The Fast DTW distance between few pairs of sensors of SN is shown

Furthermore, existing sampling approaches rely on the availability of the graph topology
of the sensors which might not be always available. Therefore, in this paper, we propose
a Two-phase framework, namely, SubGraphSample, that identifies the maximum number
of representative sampling subsets on the basis of similarity among the sensors such that
sensors that generate similar data belong to different representative sampling subsets.
In SubGraphSample, we initially create a similarity graph of the sensors in Phase-I and
then, iteratively identify representatives from each possible subgraph of the similarity
graph to form the maximal number of possible representative sampling subsets in Phase-
II. We highlight our contributions next :

1. We propose SubGraphSample that does not require the graph topology of the
sensors and can directly identify the maximum number of possible sampling sets
given only the readings of the sensors. To the best of our knowledge, there is
no existing sampling algorithm that can directly identify the maximum number
of sampling sets given only the readings of the sensors. We highlight our major
contributions for SubGraphSample next.

(a) To generate the similarity graph of the sensors, we compare and tune 6 differ-
ent types of similarity approaches. Although these are previously proposed
approaches, there is no existing comprehensive research work that compares
the performance of these different types of approaches and provide intuition
about which approach to use given a dataset. Additionally, most of these
approaches are mainly used only to identify the similarity between sensors

42 Paper B.

Fig. B.2: An overview of the Two-phase proposed framework, SubGraphSample on the sensor network,
SN , is shown. In Phase I, we create a similarity graph, G of the sensors where there is an edge between
a pair of sensors if the similarity is greater than the threshold. In Phase II, we identify different
representative sampling subsets (represented by different colors) from G.

for different applications. We propose an effective utilization of these ap-
proaches for similarity graph creation for sampling sets identification which
mitigates the dependency of existing sampling approaches on the availabil-
ity of graph topology. We also provide recommendations of which similarity
graph creation approach to use given a dataset.

(b) We propose 6 novel different types of sampling approaches in Phase-II, namely
Strat, MSV, JIP, SIP, Frob and Par. In Strat, we propose three different ap-
proaches which utilizes network science theoretic concepts to identify the
maximum number of possible sampling sets. To the best of our knowledge,
this is the first research work that proposes network science theoretic concepts
for sampling sets identification and is designed specifically for time-series
based applications. In JIP and SIP, we propose utilization of the difference
between the similarity graph signal and the signal of a sensor, namely mean
square error, MSE, to select the sensor into a sampling set and thereby, iter-
atively create the maximum number of possible sampling sets. Additionally,
in MSV, Frob and Par we extend methods, which focus on identifying one op-
timum sampling set, to methods generating the maximum number of possible
sampling sets. While we explore a measure using the eigen decomposition of
the adjacency matrix in MSV, we explore different measures using the eigen
decomposition of the graph laplacian matrix in Frob and Par, respectively.

(c) For our experiments, we compare the performance of Phase-I approaches in
creating similarity graph given a dataset by the average path length, clus-
tering coefficient, edge density, and measure how well the graph topology
represents the dataset by total cumulative energy residual. Additionally, we
use reconstruction error to compare the performance of Phase-II sampling

2. Related Work 43

approaches and SubGraphSample respectively. Our experimental evaluations
on 4 datasets show that the best combination of the graph creation approach
and sampling approach can provide 5− 13 times increase in battery life with
a 20 − 40% error bound for a given dataset. We discuss our experimental
evaluations in detail in Subsection 7.1 and Subsection 7.2 respectively.

2. We propose an auto-tuned approach, AutoSubGraphSample, to select the best
combination of Phase-I and Phase-II approaches for a given dataset.

3. We evaluate AutoSubGraphSample on 9 representative datasets. Our observations
indicates that AutoSubGraphSample can generalize well to new datasets.

4. We perform several additional experimental analyses, such as, evaluate the per-
formance of AutoSubGraphSample when only a fraction of time-series is provided
(details in Subsection 7.8) and a comparative analysis of the AutoSubGraphSample
with the optimum results at each phase (details in Subsection 7.4 and Subsection
7.5).

The organization of the paper is as follows. We discuss the existing research works
in Section 2 followed by the problem statement in Section 3. In Section 4 and 5, we
discuss the proposed approach and the experiments setup. We show our observations
in Section 6. We, finally, draw our conclusions and future works in Section 8.

2 Related Work

2.1 Phase-I: Creation of Similarity Graphs
We categorize the existing research works that could be used to create a similarity graph
of sensors, given the data generated by the sensors, into three types of approaches:
Statistical, Time-Series Analysis and Graph Signal Processing.

Statistical Approaches

In order to identify graphs between sensors, a simple way is to calculate similarity be-
tween each pair of sensors and then, create an edge between them if their similarity
is greater than the threshold [13]. Therefore, existing metrics, such as the Pearson
correlation, the Jaccard coefficient, the Gaussian radial basis function and mutual in-
formation are used to compute the pairwise similarity and thereby, identify the graph
topology [14, 15]. Feizi et al. [16] extended the pairwise correlation by including the
indirect dependencies from the transitive correlations through a network deconvolution
based approach.

44 Paper B.

Time-Series Analysis based Approaches

Using time-series data, one can compute the similarity between a pair of sensors and
use it as a basis to define an edge in the graph. The existing approaches based on time-
series can be classified into distance/neighbourhood based methods and feature based
methods [17]. Distance based methods focus on identifying different distance metrics
to align a pair of time-series [18]. Traditional distance metrics that are inspired by the
concept of edit distance [19], include, Lp-norms [20], Euclidean Distance [21], Dynamic
Time Warping (DTW) [22], Longest Common Sub-sequence (LCSS) [23], Edit Sequence
on Real Sequence (EDR) [24], Swale [25], Spatial Assembling Distance (SpADe) [26], etc.
Further, several existing research papers have proposed different variants [27] of these
traditional distance metrics for different objectives, such as run-time [28], applicability to
specific problem [29], etc. There are several feature-based classification algorithms [30],
such as, traditional SVM and decision trees, naive logistic model (NL), the Fisher kernel
learning (FKL) [31], Hidden State Conditional Random Field [32] and histogram-based
method [33, 34], to determine time-series similarity. However, several studies [35, 36]
have shown that feature-based approaches fail to capture the inherent intrinsic attributes
particular to time-series data which are better captured by distance-based approaches.
Further, several recent research works have proposed integration of both neighbourhood-
based metrics [17, 37] and distance based metrics to train machine learning models,
such as, SVM, Random Forest and ensemble models [38]. Recently, several research
papers have proposed different neural network architectures, such as, autoencoders [39],
deep networks [40], meta-learning based pre-training [41], attention modules [40, 42] to
capture the complex temporal relationships in time-series.

Graph Signal Processing based Approaches

In order to ensure analysis and processing of the graph signals in both the vertex and the
spectral domain of the graph, several recent papers infer an optimum graph topology
such that the input data form graph signals with smooth variations on the resulting
topology [43, 44]. Dong et al. [45] propose a factor analysis based model which was
extended by Kalofolias et al. [46] to include sparsity. However, these approaches assume
that the graph signals used for training are smooth.

Summary of Insights

Considering the variety of existing approaches to infer the similarity graph based on the
sensing data, there is still a lack of a comprehensive study that compares how different
approaches perform on a given dataset. These approaches have mainly been used for
different applications, such as, to infer similarity or distance between two time-series,
create an optimum graph topology given the sensor signals, etc. In addition, to the best
of our knowledge, there is no existing research that utilizes this similarity to generate

3. Problem Statement and Framework 45

a similarity graph for sampling approaches. Therefore, there is no existing research
tailored to identify the maximum number of disjoint representative sampling subsets
given the time-series data of the sensors. In this paper, we select several prominent
existing approaches from the three categories described above and compare them in
their role in Phase-I for a given dataset.

2.2 Phase-II: Sampling Algorithms
Randomized sampling based approaches [9, 10, 47] select nodes from a predetermined
probability distribution. They have a low computational cost, but cannot ensure the
same quality at each selection. Deterministic greedy sampling techniques resolve this
by selecting the optimal sensor at each iteration. This deterministic operation scales
with polynomial complexity [11, 12]. However, most of these sampling techniques search
for only one optimal sampling set and do not consider the time dimension of the data
[48–51]. Therefore, these techniques do not resolve our objective of maximizing battery
longevity. The works [52, 53] identify each sampling set representing a time-graph
signal; nevertheless, the same node may participate in different representative sampling
subsets which is not suitable to maximize the battery longevity. The sampling technique
from [54] can ensure improvement in battery lifetime. However, [55] has shown that
the approach from [54] is sub-optimal. Although Gedik et al. [56] and Liu et al. [57]
intend to maximize the battery longevity of the sensor network, these techniques are not
applicable for the application we are interested in. For example, Gedik et al. [56] assume
that the set of clusters is given and therefore, requires both the similarity among sensors
and the clustering information to be provided beforehand. Although Liu et al. [57] do
not require the clustering information to be provided, it requires the location of the
sensors to be provided and clusters the sensor network based on the spatial correlation
among sensors. In comparison, we only require the time-series data of the sensors.
Thus, we propose six different sampling techniques to identify the maximum number of
representative sampling subsets of which we propose two novel and extend four existing
ones [11, 58, 59].

3 Problem Statement and Framework

3.1 Problem Statement
Given a sensor graph comprising n IOT-enabled sensors, S = (S1, S2, . . . , Sn), the time-
series data for the sensor Si is denoted by T i. Let CP denote the set of all (say, q in this
case) possible complete partitions of the network CP = (SP1,SP2, . . . ,SPq). A parti-
tion, SPu consists of several non-empty subsets of S, i.e., SPu = (SP 1

u , SP
2
u , . . . , SP

k
u)

such that
k⋃

i=1
SP i

u = S. The sensors are battery-powered and have low computing

46 Paper B.

power. We also assume that the time-series data have no missing values. We identify
the optimum partition, OSP , from all the possible complete partitions, CP such that,

OSP = argmaxx∈CP(|SPx|)
s.t. Error(SPi

x,S) ≤ ε ∀ SPi
x ∈ SPx

SPi
x ∩ SPj

x = ∅ ∀ (SPi
x ̸= SPj

x) ∈ SPx

(B.1)

The optimum sampling partition, OSP , is the partition that comprises of the maximum
number of representative sampling subsets, SPu, such that each of these non-empty
subsets, SPi

u can represent the values of all sensors well enough, i.e., the error in the
information recorded by SPi

u when compared to S must be less than the threshold, ε,
as (Error(SPi

u,S) ≤ ε). We consider reconstruction error to calculate Error(SPi
u,S)

which we discuss in details in Subsection 6.2. Additionally, we assume only periodic
round robin scheduling of each representative sampling subset, SPi

u, of OSP in this
paper. Furthermore, we consider constraint that no two subsets of OSP can overlap,
i.e., SPi

u ∩ SPj
u = ∅.

This problem can be reformulated to identify the optimal partition OSP that mini-
mizes the error for a given number K representative sampling subsets:

OSP = argminx∈CP(Error(SPx,S))
s.t. |SPx| = K

SPi
x ∩ SPj

x = ∅ ∀ (SPi
x ̸= SPj

x) ∈ SPx

(B.2)

We show a brute-force solution to Equation B.1 in Algorithm 1 where we initially
identify all the possible complete partitions of G. We, then, enumerate all of these com-
plete partitions to identify that partition which has the maximum number of sampling
partitions such that each sampling partition is within the error threshold. Identifying
one complete partition of a graph is NP-hard [60] (Algorithm 1, line num 1).

The number of possible complete partitions in a G of n sensors are given by the
Bell numbers Bn (B0 = 1, . . .)[18] (where, B0 = 1, B1 = 1, B2 = 2, B2 = 5, B4 =
15, B5 = 52, etc.) [61]. Therefore, Therefore, the time-complexity of the inner loop of
Algorithm 1 (lines 3 − 18) is O(Bns

2), where s represents the maximum possible size
of a sampling set, SPi

x and Bn is number of possible complete partitions of CP [61].
Therefore, Algorithm 1 given CP (from line 3-16) is exponential with respect to the
number of sensors, n [62]. Therefore, we instead propose a heuristic solution based on
a 2-phase framework, SubGraphSample, which can solve either of the dual problems,
Equation (B.1) or Equation (B.2). In Phase-I, we create a similarity graph, G = (V,E)
such that the vertices V are the sensors, S and the edges E represent the similarity of
the recorded data between each pair of sensors, Si and Sj using existing approaches. In
Phase-II, we identify the OSP from G. An overview of the proposed approach on SN
is shown in FigureB.2. We discuss graph creation approaches for Phase-I in Section 4

3. Problem Statement and Framework 47

Algorithm 1 Brute-Force Solution

Input Time-Series Similarity Graph G = (V,E) and error threshold, ε
Output Optimum Sampling Partition OSP

1: Find the set of all possible complete partitions, CP = (SP1,SP2, . . . ,SPq) of G
2: Intialize max=0 ▷ variable to store the maximum number of sampling sets among

all partitions
3: for x in CP do ▷ iterate through all the possible complete partitions
4: Intialize count=0 ▷ variable to store the number of sampling sets of SPx within
ε

5: for i in SPx do ▷ SPx is a complete partition of CP and SPi
x is ith sampling

set of SPx

6: if (Error(SPi
x,S) ≤ ε) then

7: count=count+1
8: Intialize inter=0 ▷ inter is 1 if SPi

x is non disjoint
9: for j in SPx do

10: if (SPi
x ∩ SPj

x)!=∅ then
11: inter=1
12: if (count==|SPx|) and (inter==0) and (|SPx| ≥ max) then
13: max=|SPx|
14: OSP = SPx ▷ SPx has the maximum number of sampling sets among all

members of CP examined
15: Return OSP

and propose sampling approaches for Phase-II in Section 5. Furthermore, we propose
Algorithm AutoSubGraphSample to recommend the most suitable algorithm for both
Phase-I and Phase-II, respectively, for a given dataset.

3.2 Preliminaries
We now discuss the graph signal processing preliminaries needed to understand the
proposed sampling techniques and evaluation metrics. We consider a dataset which
comprises of n sensors, t as the length of the time-series of each sensor such that T =
0, 1, . . . , (t− 1), S = S0, S1, . . . Sn−1 is the set of sensors and s as signal for the rest of
the paper. We provide a summary of the notations in Table B.3.

• Degree Matrix, D: A diagonal matrix that contains the degree of each node, i.e.,
with entries Dii =

∑n
j=1Aij and Dij = 0 for i ̸= j, where A is the adjacency

matrix.

• Graph Laplacian, L : L is calculated as L = A − D, where A is the adjacency

48 Paper B.

Notation Description
S = (S1, S2, . . . , Sn) list of sensors

n number of sensors in S
m length of time-series of a sensor, Si

K number of representative sampling subsets
SPu uth sampling partition
OSP optimum sampling partition
D degree matrix
L graph laplacian
Λ eigenvalues of L
V eigenvectors of L
xr graph signal, x at rth time-stamp where r ∈ 0, 1, . . . , (t− 1)
A adjacency matrix
Σ eigenvalues of A
U eigenvectors of A
Σ eigenvalues of A
U eigenvectors of A
x̂k Graph Fourier Transform of xk

SPi
u ith sampling set of SPu

ε error threshold
G similarity graph
Py similarity graph creation approach, y
Gy similarity graph created by y

ρ(Si, Sj) Pearson Correlation Coefficient, of Si and Sj

NodeScore(Si) importance of Si

Ri relevance of Si

Ck kth community of G
IG(Si,SPi

x) information gain provided by Si with respect to SPi
x

Ed edge density of G
SamSErr(SPi

x,S) sampling error of SPi
u wrt to S

Err(OSP, S) reconstruction error of SPu calculated for K sampling sets
Avg Pl average path length of G
Avg CC clustering coefficient of G
TCER total cumulative energy residual

Table B.3: A summary of the notations

4. Phase I : Similarity Graph Creation 49

matrix and D is the degree matrix [63].

• Signal : A signal represents a time-dependent function that conveys informa-
tion [64]. For example, the signal is sT = s0, s1, . . . , st−1 and si is a sample of the
signal sT .

• Graph Signal, x : A signal whose samples are indexed by the nodes of a graph [64].
In this paper, we consider graph-time signal, i.e., one graph signal, xr per time
stamp, r where r ∈ 0, 1, . . . , (t− 1). Therefore, a graph signal represents the values
of each sensor at a time-stamp, i.e., xr comprises of n samples (for n sensors) where
each sample xr

j is the value for sensor, Sj at the time stamp r.

• Smoothness: A graph signal xr at the r−th time-stamp is smooth if it has similar
values for the neighbouring nodes of G.

• Graph Fourier transform, GFT : GFT is the eigendecomposition of the graph
Laplacian, L or adjacency matrix, A into eigenvalues, Λ and eigenvectors, V . The
eigendecomposition of L is L = V ΛV −1. GFT of xk, i.e., x̂k which is defined as
x̂k = V −1xk [63].

• Bandlimited Signal : This is a signal that is limited to have non-zero spectral
density only for frequencies that are below a given frequency. If x̂k is bandlimited
i.e. there exist a B ∈ {0, 1, ..., F − 1} such that x̂i = 0 for all i ≥ B, then xk is
compressible and can be sampled [64].

4 Phase I : Similarity Graph Creation
In this Section, we discuss the creation of the similarity graph, G, by selecting differ-
ent approaches from Statistical Approaches, Time-series based Approaches and Graph
Signal Processing based Approaches.

4.1 Statistical Approaches
We discuss 2 statistical approaches next.

Correlation-based Approach, Pcorr

From [13], we calculate Pearson Correlation Coefficient, ρ(Si, Sj) to determine the sim-
ilarity between Si and Sj as:

ρ(Si, Sj) = σ(Si, Sj)√
var(Si) · var(Sj)

(B.3)

50 Paper B.

where, σ(Si, Sj) is the co-variance between Si and Sj and var(Si) calculates the variance
of the data for Si. Therefore, we create an edge between Si and Sj in Gcorr if ρ(Si, Sj)
is greater than the threshold. The time complexity of Pcorr is O(n3) [13].

Network Deconvolution Pconv

We use network deconvolution [16, 65] to create Gconv from the adjacency matrix A.
Network deconvolution calculates A based on the co-variance matrix, Σ, determined
from the data S generated by the sensors:

A = Σ(I + Σ)−1 (B.4)

The time complexity of Pconv is O(n3) [16].

4.2 Approaches based on Time-Series
We discuss 3 approaches that determine similarity based on the time-series of each pair

of sensors, Si and Sj .

Dynamic Time Warping (DTW), Pdtw

Pdtw measures the distance between a pair of sensors, Si and Sj by calculating the dis-
tance, DisDTW (Si, Sj) based on the Euclidean distance of the respective time-series of
the sensors, Si and Sj at the particular time-stamp and the minimum of the cumulative
distances of adjacent elements of the two-time-series. However, Pdtw incurs high com-
putational cost which runs across different time-series. Therefore, we use Fast DTW [8]
which being an approximation of Pdtw runs in linear time and space [8]. We calculate
the distance between Si and Sj as DisFDTW (Si, Sj) and create an edge between Si

and Sj in Gdtw if the DisFDTW (Si, Sj) is less than the threshold. The time complexity
of Pdtw is O(n2m) as the calculation of DisFDTW (Si, Sj) is O(m) [8] (m being the
length of the time-series) and we calculate DisFDTW (Si, Sj) for n pairs of sensors to
create Gdtw.

Edge Estimation based on Haar Wavelet Transform, Phaar

The data generated from the sensors is inherently unreliable and noisy. Therefore, we
compress the time-series of sensor, Si to effectively handle the unreliability in the data
by Haar wavelet transform [66]. We select the K-largest coefficient for Si and Sj to get
a compressed approximation as S′i and S′j respectively [67]. We create Ghaar in which
an edge between Si and Sj exists if the Euclidean distance between S′i and S′j is less
than the threshold. The time complexity of Phaar is O(n2log2m) as the calculation of
Haar distance between a pair of sensors is O(log2(m)) [68] (m being the length of the
time-series) and we calculate the distance for n pairs of sensors to create Ghaar.

4. Phase I : Similarity Graph Creation 51

K-NN Approach, Pnei

We follow K nearest neighbours, where a class of a node is assigned on the basis of its
K nearest neighbours [69]. We initially calculate the distance between a pair of sensors,
Si and Sj based on Euclidean distance and create an edge between Si and Sj in Gnei if
the distance between them is among the least K-distances. The time complexity of Pnei

is O(mlog2n) [70].

4.3 Approaches based on Graph Signal Processing, Pgsp

We follow [46] to infer the graph topology from signals under the assumption that the
signal observations from adjacent nodes in a graph form smooth graph signals. The
solution from [46] is scalable and the pairwise distances of the data in matrix

Zi,j = ∥xi − xj∥2

are introduced as in

W ∗ = min
W

∥W ◦ Z∥1,1 − α1⊤ log(W1) + β

2 ∥W∥
2
F (B.5)

W ∗ is the optimal weighted adjacency matrix, ∥ · ∥1,1 is the elementwise 1-norm,
1⊤ log(W1) ensures overall connectivity of the graph by forcing the degrees to be posi-
tive while allowing sparsity, α and β are parameters to control connectivity and sparsity
respectively. The time complexity to create Pgsp is O(n2) [46]. We follow the im-
plementation in [71] to determine the weighted adjacency matrix, W . We create an
unweighted adjacency matrix, A and graph, Ggsp by creating an edge in A and Ggsp if
the edge weight in W is greater than threshold. However, we observe that most of the
edge weights are around 0 and very few edge weights are within 0.5− 1, therefore, it is
difficult to create graphs with every edge density by Pgsp.

4.4 Summary of Insights
Therefore, in Phase-I, we explore a variety of approaches to generate the similarity
graph. These approaches vary immensely on the basis of their methodology. Addition-
ally, to the best of our knowledge, there is no existing research work that studies these
different approaches and provide insights on the applicability of these approaches to
generate the similarity graph topology for a sampling technique. We experimentally
analyze the performance of these approaches in Section 7 to provide heuristics to se-
lect the best approach given a dataset. On the basis of the time complexity of these
approaches, we observe that Pnei performs the best. In order to illustrate how the
similarity graph is created given the time-series, we show how Pdtw works on SN . On
the basis of distance calculated between each pair of sensors as shown in Table B.2, we

52 Paper B.

create an edge between each pair of sensors, Si and Sj in Gdtw if the distance between
Si and Sj is less than the threshold, say 15 for SN . Therefore, we show Gdtw in Phase-I
of the Figure B.2 where S1 and S2, S3 and S9 are connected as the distances are 8 and
4 which are less than 15. Additionally, S1 and S9, S2 and S4 with distance 23 and 28
are not connected.

5 Phase II: Identifying Optimum Sampling Partition
(OSP)

We propose several sampling approaches that utilize G to identify representative sam-
pling subsets are representative of the values of all sensors.

5.1 Network Stratification based Approach, Strat
We propose a network stratification based sampling approach, Strat, that captures the
inter-relationship among sensors at group level to inherently handle the sparsity at indi-
vidual connections and the generic global attributes at the network level1. Therefore, in
Strat, we initially group similar sensors together into communities by Modularity Max-
imization [72] followed by selecting representatives from each of these communities to
create a representative sampling subset. We use Modularity Maximization based com-
munity detection to group similar sensors as it is similar to the problem of community
detection in large networks, as in online social networks [73, 74]. Among the multiple
available community detection algorithms, we have opted for Modularity Maximization
as it is efficient and scalable to large networks [72]. In order to create a representative
sampling subset, we select a sensor from each community based on their importance
to that community. We denote the importance of a sensor, Si by NodeScore(Si). We
propose three different mechanisms to calculate NodeScore(Si) which we discuss next in
detail. Therefore, we iteratively select sensors from each community in the decreasing
order of NodeScore(Si) to form a representative sampling subset. We tune the selection
method depending on whether we solve Equation (B.1) or Equation (B.2).

Selection by Relevance, SRel

In SRel, we calculate NodeScore(Si) as the relevance of Si, i.e., Ri, with respect to Ck to
capture the centrality of Si. Centrality score of a node measures the importance of that
node in the network [75]. In this scenario, Ri measures the importance of Si with respect
to all the other sensors present in Ck. Since, an edge between any two sensors in Ck

represents the similarity between the time-series of those two sensors, Ri captures the
similarity of Si with all the other sensors of Ck. Therefore, by selecting the sensor with

1https://en.wikipedia.org/wiki/Level_of_analysis

https://en.wikipedia.org/wiki/Level_of_analysis

5. Phase II: Identifying Optimum Sampling Partition (OSP) 53

Algorithm 2 SRel

Input Time-Series Similarity Graph G = (V,E), number of representative
sampling subsets K

Output Optimum Sampling Partition OSP

1: C = Modularity Maximization algorithm(G)
2: ComMem = min∀v∈C Size(v)/K
3: for u in S do
4: NodeScore(Su) = Eigenvector Centrality(Su)
5: Initialize OSP=[]
6: for i in range(0,K) do
7: for y in C do
8: for z in ComMem do
9: MNodeScore = max∀u∈S NodeScore(Su)

10: Identify Su with MNodeScore
11: Add Su to SPi

x

12: Add SPi
x to OSP

13: Return OSP

the highest centrality we can ensure maximum representation of all the sensors present
in Ck. We utilize the concept of centrality to generate the maximum number of possible
representative sampling subsets. We measure Ri by Eigenvector Centrality [76]. We
determine the number of sensors to be selected from Ck by ComMem. The calculation
of ComMem varies based on whether we solve Equation (B.1) or (B.2). For Equation
B.1, we select the minimum number of possible nodes from each community such that
the selected nodes can represent all the nodes from the community sufficiently well. We
set ComMem to be 1 and then, iteratively select ComMem sensors from Ck in decreasing
order of NodeScore(Si) to create a representative sampling subset such that the error
of the representative sampling subset with respect to all the sensors is less than ε. We
repeat these steps to create the maximum number of possible representative sampling
subsets, i.e., OSP and thus, optimize Equation (B.1).

To solve Equation (B.2), we set ComMem as the ratio of the size of the smallest
community and the given number of representative sampling subsets, K. We, then, iter-
atively select ComMem sensors from a Ck in decreasing order of NodeScore(Si) to form
a SPi

x and repeat this step for K times to create OSP . We show the algorithm of SRel
in Algorithm 2. The time complexity of SRel depends on the time complexity of the
community detection algorithm (O(E)) [72, 77], calculation of eigen-vector centrality
(O(n2)) [76] and calculation and finding the sensor with the highest NodeScore(Si)
(O(|C|log2(|Ck|))). Therefore, the calculation of eigen-vector centrality is most com-

54 Paper B.

putationally expensive for SRel which makes the time complexity of SRel be O(n2).
We follow the same procedure as SRel in SMMR and SEMMR to calculate ComMem
and determine OSP for either (B.1) or (B.2). However, we calculate NodeScore(Si)
differently in SMMR and SEMMR which we discuss next.

Selection by Maximum Marginal Relevance, SMMR

In SMMR, we consider both relevance and information gain of a sensor to calculate
NodeScore(Si). We propose Maximum Marginal Relevance [78] based score to calculate
NodeScore(Si) which is the weighted average of the relevance, Ri and the information
gain provided by Si with respect to SPi

x, IG(Si,SPi
x). We measure Ri as in SRel and

IG(Si,SPi
x) as the difference between the adjacency list of Si and the adjacency list of

the already selected sensors in SPi
x. Therefore, we select the sensor with maximum node

score, MNodeScore and further, repeat this for ComMem times for each Ck iteratively.

Algorithm 3 SMMR

Input Time-Series Similarity Graph G = (V,E), number of representative
sampling subsets K

Output Optimum Sampling Partition OSP

1: ComMem = min∀v∈C Size(v)/K
2: for u in S do
3: NodeScore(Su) = Eigenvector Centrality(Su)
4: Initialize sampling subsets, OSP=[]
5: for i in range(0,K) do
6: for y in C do
7: for z in ComMem do
8: A[Su] = Adjacency List of Node Su

9: D(a, b) = Difference between a set a and a set b
10: Calculate IG(Su,SPi

x) = |D(A[Si], A[SPi
x])|

11: Calculate MNodeScore by Equation B.7
12: Identify sensor, Su with MNodeScore
13: Add Su to SPi

x

14: Add SPi
x to OSP

15: Return OSP

5. Phase II: Identifying Optimum Sampling Partition (OSP) 55

The calculation of MNodeScore is as follows

MNodeScore = max
{Si∈Ck}

[NodeScore(Si)] (B.6)

= max
Si∈Ck

[βRi − (1− β)IG(Si,SPi
x] (B.7)

where β is the weight for relevance and (1 − β) for information gain respectively. For
our experiments, we consider β as 0.5 to give equal importance to both relevance and
information gain respectively. We show the pseudocode of SMMR in Algorithm 3. The
time complexity of SMMR is similar to SRel except for the calculation of Maximum
Marginal Relevance [78] which has a time complexity of O((|Ck|)2). However, as the
number of sensors in a community, i.e., (|Ck|) is much less than the number of sensors
in the network, i.e., n, the time complexity for eigen-vector centrality is the most com-
putationally expensive for SMMR. Therefore, the time complexity for SMMR is same
as for SRel, i.e., O(n2).

Selection by Error based Maximum Marginal Relevance, SEMMR

In SRel and SMMR, we consider the edges between the sensors in G to calculate
NodeScore(Si) and do not consider the actual data generated by Si. In SEMMR, we
incorporate this information by calculating IG(Si,SPi

x) as the average of the minimum
square error between the data generated by Si and the other sensors already selected
in SPi

x. We follow the same procedure of SMMR to calculate MNodeScore and finally,
follow the same procedure as discussed in SRel to determine ComMem and resolve ei-
ther Equation (B.1) or Equation (B.2) accordingly. Algorithm 4 shows the pseudocode
of SEMMR. The time complexity of SEMMR is same as for SMMR, i.e., O(n2) as it
follows same approach as SMMR except for utilizing the time-series of sensors instead of
the adjacency list. SEMMR is redundant when compared to all the proposed sampling
techniques as it also requires time-series of the sensors and is not just dependent on the
G.

5.2 Minimum singular value based approach, MSV
Chen et al. [58] proposed a greedy-selection based sampling algorithm in which they
iteratively select the node that maximizes the minimum singular value of the eigen vector
matrix under the assumption that the signal is bandlimited. Under the assumption of
bandlimitedness, selection of the best |B| nodes ensures almost complete reconstruction
of the graph signal given that there is no sampling noise. Therefore, by choosing the
node that maximizes the minimum singular value, Chen et al. optimize the information
in the graph Fourier domain and form a greedy approximation of the best |B| nodes.
The authors consider eigen decomposition of the adjacency matrix, A = UΣU−1, for

56 Paper B.

Algorithm 4 SEMMR

Input Time-Series Similarity Graph G = (V,E), number of representative
sampling subsets K

Output Optimum Sampling Partition OSP

1: ComMem = min∀v∈C Size(v)/K
2: for u in S do
3: NodeScore(Su) = Eigenvector Centrality(Su)
4: Initialize sampling subsets, OSP=[]
5: for i in range(0,K) do
6: for y in C do
7: for z in ComMem do
8: T [Su] = Time-Series Data of Su

9: Er(Su,SPi
x) = Average Minimum Square Error of Su wrt SPi

x

10: Calculate IG(Su,SPi
x) = Er(T [Su], T [SPi

x])
11: Calculate MNodeScore by Equation B.7
12: Identify sensor, Su with MNodeScore
13: Add Su to SPi

x

14: Add SPi
x to OSP

15: Return OSP

graph Fourier transform, x̂ = U−1x and create only one representative sampling subset
with |B| nodes by selecting the nodes iteratively according to:

m = argmaxqσmin(UB,SSp+{q}) (B.8)

where UB,SSp
is the first |B| rows of U , SSp represents the set of columns of U and

σmin(U) is the function for the minimal singular value of U . In this paper, we pro-
pose MSV which is an extension of [58] where we generate K representative sampling
subsets by iteratively adding nodes to each representative sampling subset according
to Equation (B.8) until all nodes have been assigned. We provide the pseudocode of
MSV in Algorithm 5. The time complexity of MSV is (O(n3K2) as it depends on the
time complexity of singular value decomposition of the matrix, UB,OSPp+{q} which is
O(nK2)) [79] and we calculate the singular value decomposition for n2 sensors. Apply-
ing MSV for SN generates 3 representative sampling subsets results in (5,4,7), (2,6,3)
and (0,8,1). In this paper, we consider B = V .

5. Phase II: Identifying Optimum Sampling Partition (OSP) 57

Algorithm 5 Minimum Singular Value, MSV

Input Time-Series Similarity Graph G = (V,E), number of representative
sampling subsets K, bandwidth, B

Output Optimum Sampling Partition, OSP

1: Initialize OSP as a set of K empty sets
2: Initialize A as the adjacency matrix of G
3: Calculate eigendecomposition A = UΣU−1

4: for i in the number of nodes do
5: p = i mod K
6: m =argmaxqσmin(UB,OSPp+{q})
7: OSPp ← OSPp + {m}
8: Return OSP

5.3 Greedy MSE Based Approach, JIP and SIP
We propose two sampling techniques, i.e., Joint Iterative Partitioning, JIP, and Simul-
taneous Iterative Partitioning, SIP, that consider Mean Square Error to select a node
into a representative sampling subset. By considering Mean Square Error, we ensure
that each representative sampling subset generated can reconstruct the original graph
within an error bound. We discuss JIP and SIP in detail next. We estimate MSE as
in [11]:

MSE(OSPp) = Tr[Q(OSPp)] (B.9)
where

Q(OSPp) = VB

Λ−1 +
∑

i∈OSPp

η−1
i viv

H
i

−1

V H
B (B.10)

Here OSPp is the p’th representative sampling subset, VB is the first |B| columns of
the eigenmatrix, V , vi is the i’th row of V and ηi is the i’th entry in η which is the
variance of the noise. Therefore, MSE is calculated iteratively as nodes are added to a
representative sampling subset. The reformulation is thoroughly described in [55] as:

MSE(OSPp,j ∪ vs) = Tr[Qj]− vH
s QjV

H
B VBQjvs

ηs + vH
s Qjvs

, (B.11)

where
Qj = Qj−1 − V H

B VB
Qj−1vuv

H
u Qj−1

ηu + vH
u Qj−1vu

, (B.12)

Q0 = Λ and u is the index for the most recently added node.

MSE(vs) = MSE(∅ ∪ vs) (B.13)

58 Paper B.

In JIP, we iteratively create representative sampling subsets such that the MSE of
each representative sampling subsets is within the MSE threshold. Therefore, we ini-
tially create a representative sampling subset by adding the node with the least MSE
according to Equation (B.13) until the MSE of that representative sampling subset is
less than the threshold. We, further, repeat this for the maximum number of possible
representative sampling subsets. If there are any nodes left that can not form a repre-
sentative sampling subset on their own, they are divided among existing representative
sampling subsets. The pseudocode of JIP is shown in Algorithm 6 and the time com-
plexity is O(n2|B|2) [55]. In the results presented in this paper we have used a uniform
random vector of [0, 0.001] for η.

Algorithm 6 Joint Iterative Partitioning, JIP

Input Time-Series Similarity Graph G = (V,E), number of representative
sampling subsets K, upper bound of MSE ε

Output Optimum Sampling Partition, OSP

1: Initialize A as the adjacency matrix of G
2: Initialize L as the graph Laplacian, L = A−D
3: Calculate eigendecomposition L = V ΛV −1

4: Q0 = Λ, p = 0, j = 1
5: Ls = MSE(vs)
6: L_index = argsort(L) (largest first)
7: while L_index ̸= ∅ do
8: u = pop(L_index−1)
9: OSPp,j = u

10: while MSE(OSPp,j) > ε and L_index ̸= ∅ do
11: Calculate Qj according to (B.12)
12: for i in L_index do
13: if MSE(OSPp,j ∪ Li) < ε then
14: OSPp,j+1 = {OSPp,j ∪ Li}
15: j = 0, p = p+ 1, delete(L_index = i)
16: goto 7
17: OSPp,j+1 = {OSPp,j ∪ arg min(MSE(L))}
18: remove chosen node from L_index, j = j + 1
19: if MSE(OSP−1,−1) > ε then
20: Split the nodes in OSP−1 among the other sets
21: Return OSP

In SIP, we aim to generate representative sampling subsets such that every repre-
sentative sampling subset has similar reconstruction error to Equation (B.2). Given the

5. Phase II: Identifying Optimum Sampling Partition (OSP) 59

number of representative sampling subsets, K, at each iteration, SIP creates the repre-
sentative sampling subsets simultaneously unlike JIP. After sorting the nodes according
to Equation (B.13), the K nodes with the lowest MSE are added to the representative
sampling subsets, such that each representative sampling subset has been assigned one
node. At each iteration, we add the best node according to Equation (B.11) to the
representative sampling subset with the largest MSE and repeat this for all the rep-
resentative sampling subsets in the same order. We iterate this until all the nodes are
allocated to a representative sampling subset. The pseudocode of SIP is given in Algo-
rithm 7 and the time complexity is same as JIP, i.e., O(n2|B|2) [55]. The representative
sampling subsets by JIP are (5,4,7), (2,6,3) and (0,8,1) and by SIP are (5,1,3), (4,8,0)
and (2,6,7) respectively.

Algorithm 7 Simultaneous Iterative Partitioning, SIP

Input Time-Series Similarity Graph G = (V,E), number of representative
sampling subsets K

Output Optimum Sampling Partition, OSP

1: Calculate the eigenvalues, Λ and eigenvectors, V of G
2: Initialize OSP as a list of K empty sets
3: Q = array(Λ,K), err = zeros(K)
4: Ls = MSE(vs)
5: L_index = [0, ..., N]
6: for i in range(K) do
7: m = arg min(Ls)
8: append m to OSPi

9: err[i] = Ls[m]
10: delete Ls[m] and Lindex[m]
11: Update Qi according to (B.12)
12: while L_index ̸= ∅ do
13: j = arg max(err)
14: m = ones(N) max(Ls)
15: for i in L_index do
16: m[i] = MSE(OSPj ∪ vi)
17: append arg min(m) to OSPj

18: err[j] = min(m)
19: Update Qi according to (B.12)
20: delete lindex = m

21: Return OSP

60 Paper B.

5.4 Minimum Frobenius Norm, Frob, and Maximum Parallelepiped
Volume, Par

Tsitsvero et al. [59] proposed two different greedy based sampling algorithms, GFrob and
GPar, which are based on eigendecomposition of graph Laplacian, L = V ΛV −1, under
the assumption that the signal is B-bandlimited. Frob′ aims to find the representative
sampling subset of size |B| that minimizes the frobenius norm for the pseudo-inverse for
the eigenvector matrix restricted to the first |B| columns and the rows corresponding to
the chosen representative sampling subset, i.e.

OSPi = arg min
SSi∈S:|SSi|=|B|

∥(VB,SSi
)+∥F , (B.14)

where VB,SSi is and the columns of the arbitrary sampling set Ai of V , V + denotes
the pseudo-inverse and S is the set of all nodes. However, GFrob generates only one
representative sampling subset by adding |B| nodes in a greedy manner according to:

m = arg min
q

∑
j

1
σ2

j (VB,SSp+{q})
. (B.15)

where σ2
j (V) denotes the j’th singular value of V .

Algorithm 8 Minimum Frobenius Norm, Frob

Input Time-Series Similarity Graph G = (V,E), number of representative
sampling subsets K, bandwidth B

Output Optimum Sampling Partition, OSP
Output Find OSP that minimizes the error given K

1: Initialize OSP as an assembly of K empty sets
2: Initialize A as the adjacency matrix of G
3: Calculate eigen-decomposition L = V ΛV −1

4: for i in the number of nodes do
5: p = i mod k
6: m =argminq

∑
j

1
σ2

j
(UB,OSPp+{q})

7: OSPp ← OSPp + {m}
8: Return OSP

In this paper, we extend GFrob as Frob to generate K representative sampling subsets
by adding a node to a representative sampling subset on the basis of Equation (B.15)
in a round robin manner until all the nodes have been assigned to a representative
sampling subset. An overview of Frob is shown in Algorithm 8 and the time complexity

5. Phase II: Identifying Optimum Sampling Partition (OSP) 61

is (O(n3K2) as it depends on the time complexity of singular value decomposition which
is O(nK2)) [79] and we calculate the singular value decomposition for n2 nodes. In the
results presented in this paper we have used B = V . Similarly, Par, selects |B| nodes in
a greedy manner according to:

m = arg min
q

∏
j

λj(VB,SSp+{q}V
H
B,SSp+{q}). (B.16)

where λj(V) is the j’th eigenvalue of V . For Par, we follow the same approach as
proposed in Frob to identify the maximum number of possible representative sampling
subsets that optimizes Equation (B.16) instead of Equation (B.15). An overview of Par
is shown in Algorithm 9 and the time complexity is (O(n3K2) as it depends on the time
complexity of eigen-value decomposition which is O((n/K)3) [80] and the eigen-value
decomposition is calculated for n2 nodes. In the results presented in this paper we have
used B = V . The representative sampling subsets generated by Frob and Par on Gdtw

for SN are same which are (8,2,7), (4,5,3) and (0,6,1) respectively.

Algorithm 9 Maximum Parallelepiped Volume, Par

Input Time-Series Similarity Graph G = (V,E), number of representative
sampling subsets K, bandwidth B

Output Optimum Sampling Partition, OSP

1: Initialize OSP as an assembly of K empty sets
2: Initialize A as the adjacency matrix of G
3: Calculate eigen-decomposition L = V ΛV −1

4: for i in the number of nodes do
5: p = i mod k
6: m =argminq

∏
j λj(VB,OSPp+{q}V

H
B,OSPp+{q})

7: OSPp ← OSPp + {m}
8: Return OSP

5.5 AutoSubGraphSample

We have discussed 6 existing graph creation approaches for Phase-I and proposed 6
sampling approaches for Phase-II. However, the performance of these approaches differ
across different datasets as they have different properties. Therefore, there is a need to
automatically select the most suitable approach for Phase-I and Phase-II respectively
given a dataset. In this Subsection, we propose an Algorithm AutoSubGraphSample that
considers the meta data of the dataset, such as, number of sensors, n and edge density,

62 Paper B.

Ed to do this. AutoSubGraphSample recommends Phaar in Phase-I for any edge density
in smaller networks (when n is less than 90) and high edge density (when Ed is greater
than 0.40) in large networks (when n is greater than 90). It recommends Pnei in Phase-I
for large networks (when n is greater than 90) with low edge density (less than 0.40). It
recommends SMMR or Frob when edge density is low and SRel or Frob, otherwise. Our
decision of the threshold for n as 90 and Ed as 0.40 is based on our observations from our
experiments which we discuss in Section 6. The pseudocode of AutoSubGraphSample is
shown in Algorithm 10. We validate the generalizability of AutoSubGraphSample to a
dataset in Section 7.3 by comparing the performance of AutoSubGraphSample and the
best manually selected algorithms for Phase-I and Phase-II on 9 representative datasets.

Algorithm 10 AutoSubGraphSample : Recommendation for Phase-I and Phase-II

Input S = S1, S2, . . . , Sn and time-series data of each sensor, T i is the time-series
of ith sensor

1: Let, ed be the desired edge density
2: if n < 90 then
3: Use Phaar in Phase-I
4: if ed < 0.40 then
5: Use SMMR or Frob in Phase-II
6: else
7: Use SRel or Frob in Phase-II
8: else
9: if ed < 0.40 then

10: Use Pnei in Phase-I
11: Use SMMR or Frob in Phase-II
12: else
13: Use Phaar in Phase-I
14: Use SRel or Frob in Phase-II

6 Experimental Setup
In this Section, we describe the datasets used in experiments and discuss the different
evaluation metrics.

6.1 Dataset Details and Preprocessing
The datasets used for our experiments are:

6. Experimental Setup 63

• Depa: This dataset comprises of 92 sensors and their edge relationships which is
simulated with EPANET [81]. EPANET is a tool for simulating water distribution
network.

• Dtemp: This dataset is based on a sensor network that comprises of 74 sensors
and their hourly temperature [7].

• Dpol: This dataset is based on a sensor network deployed at Aarhus, Denmark
that comprises of 37 sensors and their Ozone level recording 2.

• Dws: We create a synthetic dataset of 100 nodes that follows the Watts-Strogatz
Model [82] with β = 0.5. We create the data for each of the sensors such that it
is strictly bandlimited in the graph Fourier domain.

6.2 Evaluation Metrics
In this Subsection, we discuss the different metrics that we used to compare the differ-
ent approaches for Phase-I, Phase-II and their combinations. For Phase-I, we compare
the approaches in creating different graph topology given a dataset through average
path length, clustering coefficient, edge density and measure how well the graph topol-
ogy represents the dataset by total cumulative energy residual. Furthermore, we use
reconstruction error to measure the performance of Phase-II and the combination of
both. We do not discuss average path length, clustering co-efficient and edge density
further as they are well known. We detail how we calculate reconstruction error and
total cumulative energy residual next.

Reconstruction Error

Reconstruction of signals on graphs is a well-known problem [83, 84] that provides an
estimation of the whole graph, G by a representative sampling subset. For our exper-
iments, we compare the sampling techniques on the basis of the reconstruction error.
Given the OSP , which comprises of K representative sampling subsets and t as the
length of the time-series, we calculate the reconstruction error of a representative sam-
pling subset of OSP , SPi

u, with the G by measuring the difference between the signal
generated by SPi

u, x̂i, with respect to the signal of G, x, at a time-stamp, say r as

∥xr − x̂ir∥2. (B.17)

We repeat this for all K and t respectively for each sampling technique. We calculate
the reconstruction error of OSP , Err(OSP, S) as the average of the total reconstruc-
tion error (TErr(OSP, S)) over K representative sampling subsets. TErr(OSP, S) is
the sum of the average reconstruction error of each representative sampling subset, i.e.,

2http://iot.ee.surrey.ac.uk:8080/datasets/pollution/index.html

64 Paper B.

SPi
u such that i ranges between 1 to K. We calculate the reconstruction error of a rep-

resentative sampling subset, SPi
u as SamSErr(SPi

u, S) over t time stamps. Therefore,
we calculate Err(OSP, S) as follows :

SamSErr(SPi
u, S) =

t∑
m=1

(∥xm − x̂im
p ∥2)

∥xm∥

TErr(OSP, S) =
K∑

i=1
(SamSErr(SPi

u, S)/t)

Err(OSP, S) = TErr(OSP, S)
K

(B.18)

For our results, we show the quartile of TErr(OSP, S) which represents the recon-
struction error by a sampling technique.

Total cumulative energy residual, TCER

TCER [85] measures the expected energy given a data set to understand how the graph
structure represents the data by total cumulative energy of the data. Total cumulative
energy of the data is measured by :

T (X,Q) =
N∑

r=1
(N + 1− r)∥q⊤r X∥2 (B.19)

where Q is an orthogonal basis, TCER can then be calculated as

1− T (X,V)∑N
R=1

∑R
r=1 θ

2
r,r

(B.20)

where V is the eigen vectors of the graph Laplacian and θ are the singular values of
X. The values of TCER are in the range of [0, 1] where a high value indicates that the
graph represents the dataset well. We follow [86] for the implementation.

7 Results and Discussions
In this Section, we initially evaluate the performance of the approaches for Phase-I and

Phase-II separately followed by the validation of Algorithm AutoSubGraphSample on 4
representative datasets. We also analyze which combination of algorithms for Phase-I
and Phase-II provides most optimal solutions. Lastly, we evaluate the performance of
SubGraphSample when the whole time-series is not available and discuss additional ex-
periments, such as studying the impact of Ed on reconstruction error, frequency analysis
of G.

7. Results and Discussions 65

Phase-I Ed Avg Pl Avg CC TCER Th

Gdtw

0.19 inf 0.80 0.95 20
0.41 inf 0.83 0.96 55
0.60 inf 0.85 0.98 80
0.76 1.31 0.91 0.97 120

Gnei

0.20 1.79 0.81 0.77 8
0.40 1.59 0.84 0.79 17
0.60 1.38 0.84 0.78 28
0.75 1.247 0.87 0.90 37

Ghaar

0.18 inf 0.65 0.98 16
0.40 inf 0.75 0.97 18
0.60 1.41 0.82 0.96 70
0.75 0.87 1.25 0.88 160

Ggsp

0.39 1.61 0.87 0.92 −1.111 · 10−6

0.22 1.78 0.90 0.93 −1 · 10−7

0.59 1.41 0.89 0.90 −1.1559 · 10−6

0.77 1.23 0.96 0.92 −1.1576 · 10−6

Table B.4: Ed, Avg Pl, Avg CC for different values of threshold for Phase-I algorithms for Dtemp is
shown

7.1 Phase-I Results: Comparison of the Similarity Graph Cre-
ation Approaches

We evaluate the Phase-I algorithms by analyzing two specific properties of the similarity
graph topology, TCER and reconstruction error.

Evaluation of the Similarity Graph Topology

In order to analyze the properties of the graphs created by different graph creation
approaches, we vary the values of the threshold for each of approaches of Phase-I to
create graphs with a specific Ed and then, study the average path length, and clustering
coefficient of these graphs. For our experiments, we consider 4 different edge densities;
0.20, 0.40, 0.60 and 0.75 for all the datasets. We show our observations for Dtemp in
Table B.4. Our observations show that there is a significant variance in the properties of
the graphs created by the different approaches even for the same Ed and same dataset.

66 Paper B.

Gdtw is disconnected when the Ed is less than 0.70 and the number of sensors is greater
than 70 and when the number of sensors is greater than 90 for any Ed. Ghaar is discon-
nected when the Ed is less than 0.40 and the number of sensors is above 90 and Gnei is
always connected irrespective of the number of sensors and Ed. Additionally, analyzing
the possible values of threshold for different edge densities, we observe Pdtw, Phaar and
Pnei can create graphs with any Ed. However, a very small difference in the values of
threshold for Pgsp, Pcorr and Pdeconv can create graphs with highly different Ed. As
previously discussed in Section 4.3, we observe that it is difficult for Pgsp to generate
graphs of different edge densities given a dataset.

The reason for the performance of Pcorr and Pdeconv is that they utilize correlation of
the time-series between a pair of sensors to create an edge and find similarity even when
the values of the two time-series vary. Therefore, we do not consider Pcorr and Pdeconv

henceforth. On the basis of our observations, we find that Pnei can be used irrespective
of the dataset and Ed, Phaar can be used only for datasets with small number of sensors
or sensors when Ed is greater than 0.40 while Pdtw can be used for small networks. Pgsp

can be used only if the threshold is tuned for different edge densities.

Total cumulative energy residual

We compare the TCER value of a graph to that of a random graph for a dataset. Our
observations indicate that Gdtw and Ghaar always yield the best TCER values, around
0.88−0.98 irrespective of the Ed and the dataset and Gnei has the lowest TCER values.
We show our observations in Table B.4. We observe that the TCER for Dws is bad
irrespective of the graph creation approach. The reason for this is that the TCER value
for the original graph from which we simulate the data for Dws is much lower than 1,
i.e., 0.89.

Reconstruction Error

We compare the reconstruction error of all the graph creation approaches on Depa-Dws

for when Ed are 0.20, 0.40, 0.60 and 0.75 and the number of representative sampling
subsets are 5, 7, 10 and 13 respectively. We perform this experiment to understand
how the choice of the graph creation approach affects the reconstruction error. For our
experiments, we select Frob here. We perform this experiment only for connected graphs.
Our observations indicate that Pcorr has significantly higher reconstruction error than
others whereas Pnei, Phaar and Pdtw have similar results for Depa. We observe Pnei has a
higher reconstruction error than Phaar, Pgsp and Pdtw for Dtemp and Dpol. Furthermore,
Pdtw and Phaar performs the best followed by Pgsp irrespective of the dataset and Ed.
We show the results for Depa in Figure B.3 where we observe that Phaar performs the
best followed by Pdtw while Pnei and Pcorr performs the worst.

7. Results and Discussions 67

Pcorr Pdtw Phaar Pnei Pgsp
Similarity Graph Creation Approaches

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

Fig. B.3: Comparison of Reconstruction Error when Ed is 0.75 of Pcorr, Pdtw, Phaar, Pnei and
Pgsp for Depa. The x-axis represents the similarity graph creation approaches of Phase-I and y-axis
represents the reconstruction error.

Summary for Phase-I

We conclude that Phaar followed by Pdtw is the best choice for Phase-I for a dataset
with more than 90 nodes and high Ed (more than 0.40) and for any Ed for a dataset
with less than 90. However, for graphs with more than 90 nodes and Ed less than 0.40,
we recommend Pnei followed by Pgsp. We use these observations to propose AutoSub-
GraphSample. As already discussed, we do not recommend Pcorr and Pdeconv.

7.2 Phase-II Results: Comparison of the Sampling Techniques
We compare the performance of the sampling approaches for Phase-II and a random

representative sampling subset selection algorithm on the basis of their solution for
Equation B.2. For our experiments, we compare the reconstruction error generated by
the sampling techniques for each graph creation approach with different Ed, such as,
0.20, 0.40, 0.60 and 0.75 and vary K from 5− 13 and calculate the reconstruction error
quartile.

We find that irrespective of K and the dataset, SRel ranks 1−3 among all sampling
techniques when the Ed is greater than 0.40 whereas SMMR ranks 1 − 3 when the Ed

is less than 0.40. SEMMR has similar mean reconstruction error as SMMR but, the
maximum reconstruction error is much higher. SRel has around 0.1−0.40 reconstruction
error when Ed is greater than 0.40 and 0.20− 0.60 otherwise. SMMR and SEMMR has
around 0.2−0.40 when Ed is less than 0.40 and 0.10−0.60 otherwise. SRel, SMMR and

68 Paper B.

SRel SMMR SEMMR MSV JIP SIP Frob Par Ran
Sampling Techniques

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

(a)

SRel SMMR SEMMR MSV JIP SIP Frob Par Ran
Sampling Techniques

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ac
tio

n
of
 R
ec
on
st
ru
ct
io
n
Er
ro
r

(b)

SRel SMMR SEMMR MSV JIP SIP Frob Par Ran
Sampling Techniques

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac
tio

n
of
 R
ec
on
st
ru
ct
io
n
Er
ro
r

(c)

Fig. B.4: Comparing the reconstruction error of sampling techniques and Random Sampling Approach
for K is 5, Ed is 0.20 on Gnei in Figure B.4a of Dtemp, for K is 7 when Ed is 0.75 on Ghaar in Figure
B.4b of Dtemp and K is 5, Ed is 0.75 on Ghaar in Figure B.4c of Dpol.

SEMMR has the highest maximum reconstruction error for Depa when Ed is greater
than 0.60 and is K greater than 7. MSV has around 0.20 − 0.40 reconstruction error
when Ed is around 0.75 but the performance degrades for low Ed to around 0.30− 0.80
reconstruction error. MSV also has the highest maximum reconstruction error at low
Ed. On comparing JIP and SIP which follow similar approaches, we observe that SIP
yields better performance than JIP in every scenario irrespective of K, Ed or dataset.
On comparison with the other sampling approaches, we observe that SIP has around
0.40− 0.60 reconstruction error when Ed is high and 0.40− 0.90 otherwise. Par has the
worst performance among all sampling techniques. Although Frob ranks in the top 3−4
among all sampling techniques based on the minimum reconstruction error, it produces
the maximum reconstruction error among all sampling techniques. As expected, we also

7. Results and Discussions 69

observe that the reconstruction error increases with increase in K irrespective of the
sampling technique.

Based on our observations, we conclude that SRel is the best choice for graphs with
high Ed (greater than 0.40) and SMMR for graphs with Ed less than 0.40. However, if
we need to choose sampling technique that performs irrespective of the Ed, Frob should
be selected. We use these observations to propose AutoSubGraphSample. Due to the
huge number of results, we only show 3 representative examples in Figure B.4.

7.3 Evaluation of AutoSubGraphSample
Based on our observations for Phase-I and Phase-II, we decide the values for Thn and
The in Algorithm AutoSubGraphSample as 90 and 0.40 respectively. We analyze the
generalizability of AutoSubGraphSample on 9 new representative datasets now.

1. Dps: A dataset that records temperature of 55 sensors.3

2. Din: A dataset that records humidity of 54 sensors.4

3. Dhum: A dataset that records humidity of 100 sensors.5

4. Dgas: A dataset that records acetone of 16 sensors.6

5. Dsof : A dataset that records temperature of 170 sensors.7

6. Delec: A dataset that records the electricity consumption of 124 sensors.8

7. Dpre: A dataset that records pressure of 324 sensors.9

8. Dsyn: We generate synthetic dataset that records temperature of 1000 sensors

9. Dsyn1: We generate synthetic dataset that records the humidity consumption of
1000 sensors.

Based on AutoSubGraphSample, we apply Phaar in Phase-I irrespective of the Ed

and SMMR or SRel in Phase-II on the basis of Ed for Dps, Din and Dgas. However,
for Dhum, Dsof , Dsyn, Dsyn1 and Delec, we apply Phaar in Phase-I and SRel in Phase-
II when Ed is greater than 0.40 and Pnei in Phase-I followed by SMMR in Phase-II
otherwise. We consider the number of representative sampling subsets, K as 5, 7 and

3https://archive.ics.uci.edu/ml/datasets.php
4https://www.kaggle.com/hmavrodiev/air-quality-dataset?select=2017-09_bme280sof.csv
5https://archive.ics.uci.edu/ml/datasets/
6https://archive.ics.uci.edu/ml/datasets/
7https://www.kaggle.com/hmavrodiev/sofia-air-quality-dataset
8https://archive.ics.uci.edu/ml/datasets/
9https://www.kaggle.com/code/wessam1234/9394b134-a

https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/hmavrodiev/air-quality-dataset?select=2017-09_bme280sof.csv
https://archive.ics.uci.edu/ml/datasets/
https://archive.ics.uci.edu/ml/datasets/
https://www.kaggle.com/hmavrodiev/sofia-air-quality-dataset
https://archive.ics.uci.edu/ml/datasets/
https://www.kaggle.com/code/wessam1234/9394b134-a

70 Paper B.

3 5 7
K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

(a)

5 7 10
K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

(b)

5 7 10
K

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

(c)

5 7 10
K

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

(d)

5 7 10
K

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

(e)

5 7 10
K

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

(f)

Fig. B.5: Comparing the reconstruction error of Dgas in Figure B.5a for Ed = 0.25, Dhum in Figure
B.5b for Ed = 0.25, Dpre in Figure B.5c for Ed = 0.60, Dsyn in Figure B.5d for Ed = 0.60, Dsof in
Figure B.5e for Ed = 0.60 and Dsyn1 in Figure B.5f for Ed = 0.75. The x-axis represents K and y-axis
represents the reconstruction error.

7. Results and Discussions 71

Dataset Ed AutoSubGraphSample Manual

Dps
0.25 0.51 0.51
0.75 0.61 0.61

Dhum
0.25 0.31 0.31
0.75 0.42 0.42

Dsof
0.25 0.41 0.41
0.75 0.38 0.38

Dgas
0.25 0.49 0.47
0.75 0.56 0.56

Din
0.25 0.33 0.32
0.75 0.49 0.49

Delec
0.25 0.47 0.45
0.75 0.50 0.47

Table B.5: Comparing the reconstruction error by AutoSubGraphSample and Manual Selection on
Dps, Dgas, Din, Delec, Dsof and Dhum when Ed is 0.25 and 0.75 for K = 5.

10 for all datasets except Dgas. As Dgas comprises of only 16 sensors, we consider K
as 3, 5 and 7. We observe that the reconstruction error by AutoSubGraphSample is
similar for all datasets except for Dgas and Delecto our previous observations for other
datasets irrespective of the number of representative sampling subsets and Ed. Our
observations indicate that the reconstruction error for Delec is high when K increases
more than 5, therefore we can increase the battery life for Delec by maximum 5 times
within the error margin of 0.40. We observe for Dgas the highest reconstruction error
is greater than 0.60 whereas the average is within 0.40 for K values ranging from 3− 7.
The reason being the number of sensors being very less, i.e., only 16. We, further,
observe that AutoSubGraphSample can ensure similar performance irrespective of the
number of sensors as the number of sensors in the datasets range from 16 − 1000.
We show some representative examples of our observations in Figure B.5. In order
to understand the significance of AutoSubGraphSample, we compare the performance
by AutoSubGraphSample and Manual Selection, i.e., if we manually select the best
combination of Phase-I and Phase-II algorithms specifically for a dataset. We apply
all combinations of Phase-I and Phase-II algorithms on a dataset and calculate the
respective reconstruction errors for a specific Ed. We select that combination of Phase-
I and Phase-II algorithm which provides the least reconstruction error as the Manual
Selection. We repeat this for all the 9 datasets when Ed is 0.25 − 0.75 and K as 3,
5, 7 and 10. We show our observations as shown in Table B.5 for K = 5, Ed is 0.25
and 0.75 shows that AutoSubGraphSample can ensure similar results as compared to
Manual Selection with a small margin of around 2 − 6% for Dgas and Delec and same
results for other datasets. Therefore, based on our observations, we can conclude that

72 Paper B.

Pdtw Phaar Pnei Pgsp Popt
Similarity Graph Creation Approaches

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

Fig. B.6: Comparing the reconstruction error for
the optimum sampling algorithms on Gnei, Ghaar,
Gdtw, Ggsp, and Gopt on Dex is shown.

SRel SMMR SEMMR MSV JIP SIP Frob Par Ran
Sampling Techniques

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

Fig. B.7: Comparing the reconstruction error of
the sampling techniques on Gopt for Dex is shown.

AutoSubGraphSample generalizes to a dataset irrespective of the size of the dataset and
Ed.

7.4 Comparing SubGraphSample with Exhaustive Search
In theory, identification of the optimum representative sampling subsets given the data of
the sensors is possible through a joint exhaustive search for both the best graph topology
and best sampling partition. However, this requires us to perform an exhaustive search
for best sampling partition for every possible graph topology which is so computationally
expensive that we consider it to be infeasible. Therefore, we consider this in 2 phases,
where in Phase-I, we search for an optimum graph topology and in Phase-II, we search for
the optimum sampling partition given the optimum graph topology. For our experiments,
we consider a subset of 8 sensors of Dpol, namely Dex, as exhaustive analysis is not
possible on the complete dataset.

Method Ed Avg Pl Avg CC TCER
Gopt 0.64 1.36 0.45 0.88
Gnei 0.46 1.54 0.82 0.82
Ghaar 0.50 1.79 f0.87 0.86
Gdtw 0.50 1.79 0.87 0.86
Ggsp 0.57 1.54 0.80 0.83

Table B.6: Ed, Pl, CC and TCER for Dex is shown

In order to identify the optimum graph, we explore the relationship between existing

7. Results and Discussions 73

graph topology measures, like average path length, clustering coefficient and TCER
with optimal graph. Based on our observations, we conclude that the TCER values are
indirectly proportional to reconstruction error, i.e., higher the TCER values, lower is
the reconstruction error. Furthermore, if different graphs have similar TCER values, we
observe that as the average path length decreases, the reconstruction error also decreases.
We calculate the TCER for all possible connected graphs to a precision of 2 significant
digits for Dex. We consider the graph which has the highest TCER and shortest average
path length as the optimal graph, Gopt. As the Ed of Gopt is 0.64, we try to find graphs
with similar Ed using the proposed methods. We show the Ed, average path length,
clustering co-efficient, TCER of Gopt with Gnei, Ghaar, Gdtw and Ggsp in Table B.6 which
indicates that Ghaar and Gdtw has the most similar TCER values with Gopt. As the
graphs produced with Phaar and Pdtw are identical, so we only show results for Pdtw

henceforth.
In order to find the Os, we search all possible sampling partitions on Gopt such that

the maximum reconstruction error is the lowest. We perform an exhaustive search to
find Os on Gnei, Gdtw, Ggsp and Gopt. Our observations as shown in Figure B.6 indicate
that Phaar and Pdtw ensures the least reconstruction error. Therefore, our observations
indicate that it is possible to find a graph that gives lower reconstruction error than
the graph with the highest TCER. To evaluate the different sampling algorithms for
Phase-II, we compare the reconstruction error by Frob, MSV, SIP, SMMR and SRel
on Gopt in Figure B.7. Our observations indicate that by Frob, SIP and SMMR has
the least reconstruction error with respect to Opt. However, these observations varies
with network size and edge density. As it is not possible to confirm every scenario
of different edge densities and for different network sizes with exhaustive analysis, we
compare the performance of the graph creation approaches and sampling algorithms on
a synthetic dataset whose representative sampling subsets are already provided next in
Subsection 7.5.

7.5 Comparison of SubGraphSample with optimum Sampling
Sets

We now evaluate how close the representative sampling subsets found by SubGraphSam-
ple are to the optimum sampling sets, Os. As we do not have Os for any real dataset, we
construct a dataset such that we know Os. We assume the optimal number of sampling
sets, K as 6, the total number of sensors, N as 40, the length of the time-series as 10,
sensors as S1, S2, . . . , SN and we denote this dataset as Dst. We simulate Dst such that
it records temperature. We generate Os of 6, O1, O2, . . . , O6 sampling sets by randomly
allocating each sensor to a Oi on the basis of Dst. Based on Os, we generate the time-
series of S such that while the mean values of the distributions vary by 3 − 5 between
different sampling sets, i.e., the constructed sampling sets are indeed the optimal.

We calculate the reconstruction error of Os for Dst to understand the performance

74 Paper B.

SRel SMMR SEMMR MSV JIP SIP Frob Par Ran
Sampling Techniques

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac
tio

n
of
 R
ec
on
st
ru
ct
io
n
Er
ro
r

Fig. B.8: Comparison of the reconstruction error of when Ed is 0.60 and Phaar in Phase-I for Dst is
shown.

Phase-I Ed Avg Pl Avg CC TCER Th

Gdtw

0.23 inf 0.91 0.49 120
0.40 2.26 0.84 0.97 210
0.60 1.47 0.89 0.97 330

Gnei

0.23 1.78 0.89 0.89 5
0.40 1.60 0.86 0.85 9
0.60 1.39 0.84 0.87 15

Ghaar

0.23 2.64 0.81 0.97 60
0.40 1.77 0.77 0.96 100
0.61 1.39 0.81 0.93 185

Ggsp

0.20 2.05 0.39 0.90 0.01
0.40 1.69 0.52 0.89 -4e-06
0.59 1.47 0.71 0.89 -1.1e-05

Table B.7: Average path length (Pl), clustering co-efficient (CC), TCER and the threshold value for
Dst is shown

of Os. As we do not know the true Ed and the graph topology of Dst which is required
to calculate the reconstruction error, we consider 4 different Ed, such as, 0.20, 0.40,
0.60 and 0.75 and the 4 similarity graph creation algorithms, Pdtw, Phaar, Pnei and
Pgsp. We compare Pdtw, Pnei, Pgsp and Phaar on the basis graph topology, TCER
and the reconstruction error for all Ed in Table B.7. Our observations shows that
Os has minimum reconstruction error when Ed is 0.60 and similarity graph creation
approach is Phaar. On comparing the sampling techniques on Ghaar when Ed is 0.60, our
observations as shown in Figure B.8 indicate that SRel produces similar reconstruction

7. Results and Discussions 75

error to Os. Therefore, the combination of Phaar and SRel can ensure most similar
results to Os. On the basis of our observations from Subsection 7.5 and this Subsection,
we find that the proposed recommendations for Algorithm AutoSubGraphSample can
ensure most similar results to Os. For example, we observe that Phaar in Phase-I, SMMR
or Frob in Phase-II has the best performance. Although it is not possible to confirm
every scenario by exhaustive analysis, our results from empirical analysis supports the
recommendations by Algorithm AutoSubGraphSample when Pnei is used in Phase-I and
when SRel could be used in Phase-II.

0.20l 0.40 0.60 0.75
Edge Density

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

(a)

0.20l 0.40 0.60 0.75
Edge Density

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

(b)

0.20l 0.40 0.60 0.75
Edge Density

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
io

n
Er

ro
r

(c)

Fig. B.9: Comparison of the reconstruction error for different edge densities for Ggsp on Depa in Figure
B.9a, Gnei on Dtemp in Figure B.9b and Gdtw on B.9c in Figure 9c is shown. The x-axis represents the
sampling techniques and y-axis represents the reconstruction error.

76 Paper B.

7.6 Studying the impact of Ed on Reconstruction Error
To study the relationship between Ed and reconstruction error, we calculate the recon-

struction error for different edge densities 0.20− 0.75. For this experiment, we consider
Frob for Phase-II and K as 7. Our observations differ with respect to datasets. For
example, we observe that the higher the Ed, the lower is the reconstruction error for
Depa as shown in Figure B.9a. However, we observe that the reconstruction error is the
highest when Ed is 0.2 and decreases with increase in Ed for Dtemp as shown in Figure
B.9b. We did not observe any relationship between Ed and reconstruction error in Dpol

and Dws as shown in Figure B.9c. Based on these observations, we conclude there is an
optimal Ed for which the reconstruction error is the lowest for a dataset. However, the
optimal Ed differs across datasets.

7.7 Frequency analysis

In order to understand the performance of the graph creation approaches discussed
in Phase-I, we visualize the Frequency transform of the graphs created given a dataset.
As discussed in Section 3.2, Graph Fourier Transform (GFT) is the eigen decomposition
of the graph Laplacian, L into eigenvalues, Λ and eigenvectors, V , i.e., GFT of L is
L = V ΛV −1. Additionally, GFT of the graph signal at the k−th time-stamp, xk, is x̂k

which is defined as x̂k = V −1xk. Therefore, given a dataset, the GFT of the optimal
graph topology should comprise of the maximum number of possible distinct eigenvalues
which are evenly spread. Additionally, the GFT of the optimal graph topology should
be such that the lower the eigenvalues, the higher the amplitudes and vice-versa. Our
observations indicate that the GFT of Ghaar and Gdtw ensures optimal graph topology
created given a dataset and the Ed whereas Gnei has fewer distinct eigenvalues and
therefore, is not optimal for Dpol and Dtemp. We show some representative examples of
our observations in Figure B.10.

7.8 Evaluation of AutoSubGraphSample on partial Time Series
In our previous experiments, we generate G based on the complete time-series given

a dataset. In this Subsection, we analyze the performance of AutoSubGraphSample
when the complete time-series is not available. Therefore, in this experiment, we select
a fraction, p, of the time-series for which to generate the similarity graph, G′, and
identify K sampling sets on G′. We compare the reconstruction error of G′ with G for
different values of p while keeping K, Ed, Phase-I and Phase-II approaches constant.
We repeat this experiment by varying p as 0.75, 0.50 and 0.25 of the time-series, K
between 5− 13 and Ed between 0.20− 0.75, respectively. We repeat this for all the 13
datasets. Our observations as shown in Figure 11 indicate that the difference in average
reconstruction error is minimal (1−9%) across datasets irrespective of p. Therefore, we

7. Results and Discussions 77

0 10 20 30

0

100

200

300

400

(a)

0 20 40 60

0

100

200

300

(b)

0 5 10 15 20 25 30

0

100

200

300

400

(c)

Fig. B.10: Graph Fourier transforms of Gnei with Ed 0.43 on Dpol in Figure 10a, Ghaar with Ed 0.40
on Dtemp in Figure 10b and Gdtw with Ed 0.60 on Dpol in Figure 10c is shown

78 Paper B.

can conclude that AutoSubGraphSample can ensure similar increase in battery longevity
within the error bound irrespective of the size of the time-series. We intuitively believe
the reason being AutoSubGraphSample identifies a list of sampling sets such that similar
sensors are allocated to different sampling sets by utilizing the similarity graph topology.
Therefore, although the sampling sets might vary as we vary p of the time-series, it does
not impact the reconstruction error. Furthermore, there is generally a correlation in
the sensor’s data irrespective of the p which is another reason that the performance
of AutoSubGraphSample is not impacted and AutoSubGraphSample can handle small
fluctuations in the sensing data easily by the utilization of similarity graph topology.

7.9 Identifying the Maximum Number of Sampling Sub-sets, K

In this Subsection, we compare the performance of Phase-II for Equation B.1, i.e., we
find the K generated by a sampling approach given ε. However, the proposed sampling
approaches except SRel, SMMR and SEMMR can not provide a solution for Equation
B.1 as they focus on identifying the maximum error given K and therefore, they require
K to be pre-specified and can not be modified to identify the maximum number of
sampling sub-sets given ε. Therefore, we select SRel, SMMR and SEMMR for this
experiment. We compare K generated by SRel, SMMR and SEMMR for each graph
creation approach with different Ed, such as, 0.20 − 0.75, and vary ε from 0.40 − 0.60.
Our observations indicate that SRel generates the maximum value for K for high Ed

whereas SMMR generates the maximum value for low Ed. Although SEMMR performs
similar to SMMR for all datasets, the performance for SEMMR is the worst among all
for Dpol irrespective of Ed. We show our observations on Gdtw, Gnei, and Ghaar for Ed

as 0.20, 0.40, 0.75 on Dpol and Dtemp datasets for ε as 0.40 and 0.50 respectively in
Table B.8.

8 Conclusions and Future Works
In this paper, we propose SubGraphSample which finds the maximum number of rep-

resentative sampling subsets given a sensor graph. By finding the maximum number
of representative sampling subsets, we can alternate querying between these and thus,
increase battery longevity significantly. Unlike existing sampling approaches, SubGraph-
Sample do not require prior knowledge of the similarity of the sensors and automatically
identifies the maximum number of representative sampling subsets. We explore 6 graph
creation approaches and propose 6 sampling approaches in SubGraphSample. However,
the suitability and performance of a graph creation approach and sampling approach
varies across datasets. Therefore, we propose Algorithm AutoSubGraphSample which
can autoselect the most suitable approaches given a sensor graph and we, further, show
the generalizability of AutoSubGraphSample given a dataset. We evaluate all possible
combination of approaches of SubGraphSample on 4 datasets which shows that the best

8. Conclusions and Future Works 79

0.25 0.50 0.75 1
Fraction of Time-Series

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ns
tru

ct
io

n
Er

ro
r

(a)

0.25 0.50 0.75 1
Fraction of Time-Series

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ns
tru

ct
io

n
Er

ro
r

(b)

0.25 0.50 0.75 1
Fraction of Time-Series

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ns
tru

ct
io

n
Er

ro
r

(c)

0.25 0.50 0.75 1
Fraction of Time-Series

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Re

co
ns

tru
ct

io
n

Er
ro

r

(d)

0.25 0.50 0.75 1
Fraction of Time-Series

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ns
tru

ct
io

n
Er

ro
r

(e)

0.25 0.50 0.75 1
Fraction of Time-Series

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ns
tru

ct
io

n
Er

ro
r

(f)

Fig. B.11: Comparing the reconstruction error of Dtemp when K = 7, Ed = 0.75 in Figure B.11a,
Dpol when K = 5, Ed = 0.60 in Figure B.11b, Dsof when K = 5, Ed = 0.60 in Figure B.11c, Dhum

when K = 7, Ed = 0.40 in Figure B.11d, Dps when Ed = 0.75, when K = 5 in Figure B.11e and Dtemp

when K = 5, Ed = 0.20 in Figure B.11f. The x-axis represents the fraction of time-series, p and y-axis
represents the reconstruction error.

80 Paper B.

Dataset ε Ed Phase-I Phase-II K
SRel 6

Dtemp 0.40 0.75 Gnei SMMR 4
SEMMR 4
SRel 3

Dtemp 0.40 0.20 Gnei SMMR 4
SEMMR 4
SRel 5

Dtemp 0.40 0.75 Ghaar SMMR 4
SEMMR 4
SRel 9

Dtemp 0.40 0.40 Ghaar SMMR 10
SEMMR 10
SRel 7

Dpol 0.50 0.75 Gnei SMMR 7
SEMMR 4
SRel 3

Dpol 0.50 0.20 Gnei SMMR 4
SEMMR 3
SRel 8

Dpol 0.50 0.75 Gdtw SMMR 7
SEMMR 5
SRel 4

Dpol 0.50 0.20 Gdtw SMMR 4
SEMMR 3

Table B.8: We show the number of sampling sets, K generated by SRel, SMMR and SEMMR when
the mean reconstruction error, ε, is given for Dtemp and Dpol

combination of algorithms can provide 5 − 13 times increase in battery life within a
20− 40% error bound.

As a future work, we will extend AutoSubGraphSample to handle multivariate time-
series and scale to large time-series using deep learning-based time-series embedding.
Furthermore, we aim to merge the current two phases into one in a deep reinforcement
learning based model.

References 81

Acknowledgment
This work has, in part, been supported by the Danish Council for Independent Research
(Grant No. 8022-00284B SEMIOTIC).

References
[1] S. Ashraf, S. Saleem, and T. Ahmed, “Sagacious communication link selection

mechanism for underwater wireless sensors network,” Int. J. Wirel. Microw. Tech-
nol, vol. 10, no. 2, pp. 12–25, 2020.

[2] Y.-B. Chen, I. Nevat, P. Zhang, S. G. Nagarajan, and H.-Y. Wei, “Query-based
sensors selection for collaborative wireless sensor networks with stochastic energy
harvesting,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3031–3043, 2018.

[3] J. Paparrizos, C. Liu, B. Barbarioli, J. Hwang, I. Edian, A. J. Elmore, M. J.
Franklin, and S. Krishnan, “Vergedb: A database for iot analytics on edge devices.”
in CIDR, 2021.

[4] D. Lin, Q. Wang, W. Min, J. Xu, and Z. Zhang, “A survey on energy-efficient
strategies in static wireless sensor networks,” ACM Transactions on Sensor Net-
works (TOSN), vol. 17, no. 1, pp. 1–48, 2020.

[5] T. V. D. Lee, G. Exarchakos, and S. H. D. Groot, “Distributed reliable and energy-
efficient scheduling for lr-wpans,” ACM Transactions on Sensor Networks (TOSN),
vol. 16, no. 4, pp. 1–20, 2020.

[6] L. Mao and L. Jackson, “Selection of optimal sensors for predicting performance of
polymer electrolyte membrane fuel cell,” Journal of Power Sources, vol. 328, pp.
151–160, 2016.

[7] H. J. Diamond, T. R. Karl, M. A. Palecki, C. B. Baker, J. E. Bell, R. D. Leeper,
D. R. Easterling, J. H. Lawrimore, T. P. Meyers, M. R. Helfert et al., “Us climate
reference network after one decade of operations: Status and assessment,” Bulletin
of the American Meteorological Society, vol. 94, no. 4, pp. 485–498, 2013.

[8] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time
and space,” Intelligent Data Analysis, vol. 11, no. 5, pp. 561–580, 2007.

[9] Y. Tanaka, Y. C. Eldar, A. Ortega, and G. Cheung, “Sampling signals on graphs:
From theory to applications,” IEEE Signal Processing Magazine, vol. 37, no. 6, pp.
14–30, 2020.

82 References

[10] N. Perraudin, B. Ricaud, D. I. Shuman, and P. Vandergheynst, “Global and local
uncertainty principles for signals on graphs,” APSIPA Transactions on Signal and
Information Processing, vol. 7, 2018.

[11] L. F. Chamon and A. Ribeiro, “Greedy sampling of graph signals,” IEEE Trans-
actions on Signal Processing, vol. 66, no. 1, pp. 34–47, 2017.

[12] A. Gadde, A. Anis, and A. Ortega, “Active semi-supervised learning using sampling
theory for graph signals,” in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014, pp. 492–501.

[13] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the dots:
Identifying network structure via graph signal processing,” IEEE Signal Processing
Magazine, vol. 36, no. 3, pp. 16–43, 2019.

[14] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under laplacian
and structural constraints,” IEEE Journal of Selected Topics in Signal Processing,
vol. 11, no. 6, pp. 825–841, 2017.

[15] S. Hassan-Moghaddam, N. K. Dhingra, and M. R. Jovanović, “Topology identifi-
cation of undirected consensus networks via sparse inverse covariance estimation,”
in 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016, pp.
4624–4629.

[16] S. Feizi, D. Marbach, M. Médard, and M. Kellis, “Network deconvolution as a gen-
eral method to distinguish direct dependencies in networks,” Nature biotechnology,
vol. 31, no. 8, pp. 726–733, 2013.

[17] W. Jiang, “Time series classification: Nearest neighbor versus deep learning mod-
els,” SN Applied Sciences, vol. 2, no. 4, pp. 1–17, 2020.

[18] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh,
“Experimental comparison of representation methods and distance measures for
time series data,” Data Mining and Knowledge Discovery, vol. 26, no. 2, pp. 275–
309, 2013.

[19] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,” in Proceedings
of the Thirtieth international conference on Very large data bases-Volume 30, 2004,
pp. 792–803.

[20] B.-K. Yi and C. Faloutsos, “Fast time sequence indexing for arbitrary lp norms,”
KiltHub, 2000.

[21] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence matching
in time-series databases,” ACM Sigmod Record, vol. 23, no. 2, pp. 419–429, 1994.

References 83

[22] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time
series.” in KDD workshop. Seattle, WA, USA:, 1994, pp. 359–370.

[23] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar multidimensional
trajectories,” in Proceedings 18th international conference on data engineering.
IEEE, 2002, pp. 673–684.

[24] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search for mov-
ing object trajectories,” in Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, 2005, pp. 491–502.

[25] M. D. Morse and J. M. Patel, “An efficient and accurate method for evaluating
time series similarity,” in Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, 2007, pp. 569–580.

[26] Y. Chen, M. A. Nascimento, B. C. Ooi, and A. K. Tung, “Spade: On shape-
based pattern detection in streaming time series,” in 2007 IEEE 23rd International
Conference on Data Engineering. IEEE, 2007, pp. 786–795.

[27] M. Cuturi, “Fast global alignment kernels,” in Proceedings of the 28th international
conference on machine learning (ICML-11), 2011, pp. 929–936.

[28] M. Cuturi and M. Blondel, “Soft-dtw: a differentiable loss function for time-series,”
in International Conference on Machine Learning. PMLR, 2017, pp. 894–903.

[29] J. Yin, R. Wang, H. Zheng, Y. Yang, Y. Li, and M. Xu, “A new time series similarity
measurement method based on the morphological pattern and symbolic aggregate
approximation,” IEEE Access, vol. 7, pp. 109 751–109 762, 2019.

[30] V. Stojov, N. Koteli, P. Lameski, and E. Zdravevski, “Application of machine
learning and time-series analysis for air pollution prediction,” Proceedings of the
CIIT, 2018.

[31] T. Jaakkola, M. Diekhans, and D. Haussler, “A discriminative framework for de-
tecting remote protein homologies,” Journal of computational biology, vol. 7, no.
1-2, pp. 95–114, 2000.

[32] W. Pei, H. Dibeklioğlu, D. M. Tax, and L. van der Maaten, “Multivariate time-
series classification using the hidden-unit logistic model,” IEEE transactions on
neural networks and learning systems, vol. 29, no. 4, pp. 920–931, 2017.

[33] E. Zdravevski, P. Lameski, R. Mingov, A. Kulakov, and D. Gjorgjevikj, “Robust
histogram-based feature engineering of time series data,” in 2015 Federated Con-
ference on Computer Science and Information Systems (FedCSIS). IEEE, 2015,
pp. 381–388.

84 References

[34] E. Zdravevski, P. Lameski, V. Trajkovik, A. Kulakov, I. Chorbev, R. Goleva,
N. Pombo, and N. Garcia, “Improving activity recognition accuracy in ambient-
assisted living systems by automated feature engineering,” Ieee Access, vol. 5, pp.
5262–5280, 2017.

[35] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classification,” ACM
Sigkdd Explorations Newsletter, vol. 12, no. 1, pp. 40–48, 2010.

[36] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate lstm-fcns for
time series classification,” Neural Networks, vol. 116, pp. 237–245, 2019.

[37] Z. Gong and H. Chen, “Sequential data classification by dynamic state warping,”
Knowledge and Information Systems, vol. 57, no. 3, pp. 545–570, 2018.

[38] J. Lines and A. Bagnall, “Time series classification with ensembles of elastic dis-
tance measures,” Data Mining and Knowledge Discovery, vol. 29, no. 3, pp. 565–592,
2015.

[39] A. Abid and J. Zou, “Autowarp: Learning a warping distance from unlabeled time
series using sequence autoencoders,” arXiv preprint arXiv:1810.10107, 2018.

[40] S. Matsuo, X. Wu, G. Atarsaikhan, A. Kimura, K. Kashino, B. K. Iwana, and
S. Uchida, “Attention to warp: Deep metric learning for multivariate time series,”
arXiv preprint arXiv:2103.15074, 2021.

[41] J. Narwariya, P. Malhotra, L. Vig, G. Shroff, and T. Vishnu, “Meta-learning for
few-shot time series classification,” in Proceedings of the 7th ACM IKDD CoDS
and 25th COMAD. ACM, 2020, pp. 28–36.

[42] D. Yao, G. Cong, C. Zhang, X. Meng, R. Duan, and J. Bi, “A linear time ap-
proach to computing time series similarity based on deep metric learning,” IEEE
Transactions on Knowledge and Data Engineering, 2020.

[43] A. Venkitaraman, S. Chatterjee, and P. Händel, “Predicting graph signals using
kernel regression where the input signal is agnostic to a graph,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 5, no. 4, pp. 698–710,
2019.

[44] T. Liao, W.-Q. Wang, B. Huang, and J. Xu, “Learning laplacian matrix for smooth
signals on graph,” in 2019 IEEE International Conference on Signal, Information
and Data Processing (ICSIDP). IEEE, 2019, pp. 1–5.

[45] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Laplacian matrix learn-
ing for smooth graph signal representation,” in 2015 IEEE international conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 3736–3740.

References 85

[46] V. Kalofolias, “How to learn a graph from smooth signals,” in Artificial Intelligence
and Statistics. PMLR, 2016, pp. 920–929.

[47] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random sampling of
bandlimited signals on graphs,” Applied and Computational Harmonic Analysis,
vol. 44, no. 2, pp. 446–475, 2018.

[48] Y. H. Kim, “Qr factorization-based sampling set selection for bandlimited graph
signals,” Signal Processing, p. 107847, 2020.

[49] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, and W. Gao, “Fast graph sam-
pling set selection using gershgorin disc alignment,” IEEE Transactions on Signal
Processing, vol. 68, pp. 2419–2434, 2020.

[50] M. Coutino, S. P. Chepuri, and G. Leus, “Subset selection for kernel-based signal
reconstruction,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 4014–4018.

[51] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, “Eigendecomposition-free
sampling set selection for graph signals,” IEEE Transactions on Signal Processing,
vol. 67, no. 10, pp. 2679–2692, 2019.

[52] G. Ortiz-Jiménez, M. Coutino, S. P. Chepuri, and G. Leus, “Sampling and recon-
struction of signals on product graphs,” in 2018 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). IEEE, 2018, pp. 713–717.

[53] Z. Wei, B. Li, and W. Guo, “Optimal sampling for dynamic complex networks with
graph-bandlimited initialization,” arXiv preprint arXiv:1901.11405, 2019.

[54] A. Chiumento, N. Marchetti, and I. Macaluso, “Energy efficient wsn: a cross-
layer graph signal processing solution to information redundancy,” in 2019 16th
International Symposium on Wireless Communication Systems (ISWCS). IEEE,
2019, pp. 645–650.

[55] J. Holm, F. Chiariotti, M. Nielsen, and P. Popovski, “Lifetime maximization of an
internet of things (iot) network based on graph signal processing,” IEEE Commu-
nications Letters, 2021.

[56] B. Gedik, L. Liu, and S. Y. Philip, “Asap: An adaptive sampling approach to
data collection in sensor networks,” IEEE Transactions on Parallel and distributed
systems, vol. 18, no. 12, pp. 1766–1783, 2007.

[57] C. Liu, K. Wu, and J. Pei, “An energy-efficient data collection framework for wire-
less sensor networks by exploiting spatiotemporal correlation,” IEEE transactions
on parallel and distributed systems, vol. 18, no. 7, pp. 1010–1023, 2007.

86 References

[58] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal processing on
graphs: Sampling theory,” IEEE transactions on signal processing, vol. 63, no. 24,
pp. 6510–6523, 2015.

[59] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: Uncertainty
principle and sampling,” IEEE Transactions on Signal Processing, vol. 64, no. 18,
pp. 4845–4860, 2016.

[60] R. P. Gupta, “Bounds on the chromatic and achromatic numbers of complimentary
graphs,” North Carolina State University. Dept. of Statistics, Tech. Rep., 1968.

[61] R. Wilson and J. J. Watkins, Combinatorics: ancient & modern. OUP Oxford,
2013.

[62] M. Aigner, “A characterization of the bell numbers,” Discrete mathematics, vol.
205, no. 1-3, pp. 207–210, 1999.

[63] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vanderghenyst, “The
emerging filed of signal processing on graphs,” IEEE Signal Processing Magazine,
2013.

[64] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst, “Graph
signal processing: Overview, challenges, and applications,” Proceedings of the
IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[65] N. Sulaimanov and H. Koeppl, “Graph reconstruction using covariance-based meth-
ods,” EURASIP Journal on Bioinformatics and Systems Biology, vol. 2016, no. 1,
p. 19, 2016.

[66] F.-P. Chan, A.-C. Fu, and C. Yu, “Haar wavelets for efficient similarity search of
time-series: with and without time warping,” IEEE Transactions on knowledge and
data engineering, vol. 15, no. 3, pp. 686–705, 2003.

[67] Y.-L. Wu, D. Agrawal, and A. El Abbadi, “A comparison of dft and dwt based
similarity search in time-series databases,” in Proceedings of the ninth international
conference on Information and knowledge management, 2000, pp. 488–495.

[68] J. A. R. Macias and A. G. Exposito, “Efficient computation of the running discrete
haar transform,” IEEE transactions on power delivery, vol. 21, no. 1, pp. 504–505,
2005.

[69] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric re-
gression,” The American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[70] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers-a tutorial,” ACM
Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–25, 2021.

References 87

[71] R. Pena, “Graph learning,” https://github.com/rodrigo-pena/graph-learning.

[72] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” Journal of statistical mechanics: theory and
experiment, vol. 2008, no. 10, p. P10008, 2008.

[73] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of algorithms for
network community detection,” in Proceedings of the 19th international conference
on World wide web, 2010, pp. 631–640.

[74] I. X. Leung, P. Hui, P. Lio, and J. Crowcroft, “Towards real-time community
detection in large networks,” Physical Review E, vol. 79, no. 6, p. 066107, 2009.

[75] K. Das, S. Samanta, and M. Pal, “Study on centrality measures in social networks:
a survey,” Social network analysis and mining, vol. 8, no. 1, pp. 1–11, 2018.

[76] B. Ruhnau, “Eigenvector-centrality—a node-centrality?” Social networks, vol. 22,
no. 4, pp. 357–365, 2000.

[77] V. A. Traag, “Faster unfolding of communities: Speeding up the louvain algorithm,”
Physical Review E, vol. 92, p. 032801, 2015.

[78] J. Carbonell and J. Goldstein, “The use of mmr, diversity-based reranking for
reordering documents and producing summaries,” in Proceedings of the 21st annual
international ACM SIGIR conference on Research and development in information
retrieval, 1998, pp. 335–336.

[79] A. Sharma, K. K. Paliwal, S. Imoto, and S. Miyano, “Principal component analysis
using qr decomposition,” International Journal of Machine Learning and Cyber-
netics, vol. 4, no. 6, pp. 679–683, 2013.

[80] K.-B. Yu, “Recursive updating the eigenvalue decomposition of a covariance ma-
trix,” IEEE Transactions on Signal Processing, vol. 39, no. 5, pp. 1136–1145, 1991.

[81] L. A. Rossman et al., “EPANET 2: users manual,” 2000.

[82] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,”
nature, vol. 393, no. 6684, pp. 440–442, 1998.

[83] X. Wang, P. Liu, and Y. Gu, “Local-set-based graph signal reconstruction,” IEEE
transactions on signal processing, vol. 63, no. 9, pp. 2432–2444, 2015.

[84] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques for inter-
polation in graph structured data,” in 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 5445–5449.

88 References

[85] V. Kalofolias, A. Loukas, D. Thanou, and P. Frossard, “Learning time varying
graphs,” in 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). Ieee, 2017, pp. 2826–2830.

[86] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst,
and D. K. Hammond, “GSPBOX: A toolbox for signal processing on graphs,” ArXiv
e-prints, Aug. 2014.

Paper C

Freshness on Demand: Optimizing Age of Information for the
Query Process

Josefine Holm, Anders E. Kalør, Federico Chiariotti, Beatriz Soret, Søren
K. Jensen, Torben B. Pedersen, and Petar Popovski

The paper has been published in the
ICC 2021-IEEE International Conference on Communications pp. 1–6, 2021.

© 2021 IEEE
The layout has been revised.

1. Introduction 91

Abstract
AoI has become an important concept in communications, as it allows system designers
to measure the freshness of the information available to remote monitoring or control
processes. However, its definition tacitly assumed that new information is used at any
time, which is not always the case. Instead instants at which information is collected
and used are dependent on a certain query process. We propose a model that accounts
for the discrete time nature of many monitoring processes, by considering a pull-based
communication model in which the freshness of information is only important when the
receiver generates a query. We then define the QAoI, a more general metric that fits the
pull-based scenario, and show how its optimization can lead to very different choices from
traditional push-based AoI optimization when using a Packet Erasure Channel (PEC).

1 Introduction
Over the past few years, the concept of information freshness has received a significant
attention in relation to cyber-physical systems that rely on communication of various
updates in real time. This has led to the introduction of AoI [1] as a metric that reflects
the freshness at the receiver with respect to the sender, and denotes the difference
between the current time and the time when the most recently received update was
generated at the sender.

The first works to deal with AoI considered simple queuing systems, deriving ana-
lytical formulas for information freshness [2]. Followup works addressed AoI in specific
wireless scenarios with errors [3] and retransmissions [4], or basing their analysis on
live experiments [5]. The addition of more sources in the queuing system leads to an
interesting scheduling problem, which aims at finding the packet generation rate that
minimizes the age for the whole system [6]. Optimizing the access method and senders’
updating policies to minimize AoI in complex wireless communication systems has been
proven to be an NP-hard problem, but heuristics can achieve near-optimal solutions [7]
by having sources decide whether an update is valuable enough to be sent (i.e., whether
it would significantly reduce the AoI) [8]. The average AoI has been derived in slotted [9]
and unslotted ALOHA [10], as well as in scheduled access [11], and the performance of
scheduling policies has been combined with these access methods in [12].

However, the tacit assumption behind AoI, regardless of the system for which it is
computed, has been that the receiver is interested in having fresh information at any
time. In other words, this assumption works with push-based communication, in which a
hypothetical application residing at the receiver has a permanent query to the updates
that arrive at the receiver. The motivation for this paper starts by questioning this
underlying assumption and generalizes the idea of AoI by considering the timing of the
query process. This makes the communication between the sensor and receiver pull-

92 Paper C.

based, where the query can guide the communication strategy for the sensor updates.
The impact of the query-driven, pull-based communication model becomes imme-

diately obvious with the (over)simplified example in Fig. C.1. The time is slotted and
each packet, labeled 1, 2, . . . 7, takes one slot. Each update is generated immediately
prior to the transmission. The queries Q1, Q2, Q3, . . . arrive periodically, every 7-th
slot. Furthermore, as an energy constraint, it is assumed that the sender can transmit
on average one packet every 3 slots. Fig. C.1a shows the case in which the sender is
oblivious to the query arrival process and distributes the transmissions evenly in time.
Another strategy could be, in each slot, to decide to transmit with probability 1/3 or
stay silent otherwise; the important point is that this decision is made independently
from the query process. Fig. C.1b shows the case in which communication is query-drive
so the sender knows the query instants and optimizes the transmissions with respect
to the timing of the query process, i.e., sends just before the query instants. In both
cases the (red) packets 1, 4, 5 are lost due to transmission errors. Fig. C.1c shows that
the query-driven strategy is more likely to provide updates that are fresh when a query
arrives, although its average AoI is worse at the instants in which there is no query.

Despite the deceptively simple insight offered by the example from Fig. C.1, the in-
troduction of query-driven communication strategies does have a practical significance
and introduces novel and interesting problems, as this paper shows. In fact, the assump-
tion of a permanent query is relatively uncommon in the network control literature [13],
which often uses periodic discrete time systems that poll the state of the monitored
process at predefined intervals. Most network control systems are asynchronous, and
use different sampling strategies that depend on the reliability of the connection and on
the monitored process [14]. We define a query arrival process and consider the optimiza-
tion of the communication process with respect to that arrival process. Furthermore,
we define an QAoI metric which reflects the freshness in the instants when the receiver
actually needs the data: having fresh data when the monitoring process is not asking for
it does not provide any benefits to the system, as the information will not be used. Our
model is also relevant for duty cycle-based applications, in which the sleeping pattern
of the sensors are synchronized with the monitoring process.

This paper introduces models to analyze the difference in the communication strate-
gies that should be used when the query arrival process is taken into account compared
to the treatment of AoI in the context of a permanent query. In this initial work, we
derive a Markov Decision Process (MDP) model for the problem with periodic queries
and an erasure channel, and show that an optimization aimed at QAoI can significantly
improve the perceived freshness with respect to classical models.

The remainder of the paper is organized as follows. We define the system model and
the concept of QAoI in Sec. 2, and we formalize it as an MDP in Sec. 3. The setting
and results of our simulations are described in Sec. 4, and Sec. 5 concludes the paper
and presents some possible avenues of future work.

1. Introduction 93

Q1 Q2 Q3

1 2 3 4 5 6 7

(a) Permanent query transmissions

Q1 Q2 Q3

21 43 65

(b) Query-aware transmissions

Q1 Q2 Q3

t

A
oI

Permanent query
Query-aware

(c) Age for the two systems

Fig. C.1: Example of the difference between a system assuming a permanent query and one that is
aware of the query arrival process. The same packets are lost (depicted in red) in both systems, and
the markers indicate the age at the query arrival instants.

94 Paper C.

2 System model
We consider a scenario in which a wireless sensor generates updates at will and transmits
them to an edge node over a wireless channel. The edge node receives queries from a
server about the state of the sensor, e.g. as part of a monitoring or control process. The
objective of this work is to maximize the freshness of the information used in the query
responses while considering that the sensor is energy-constrained and needs to limit the
number of transmissions to the edge node to prolong its lifetime.

2.1 Age of Information at Query
We consider a time-slotted system indexed by t = 1, 2, . . ., and denote the time instances
at which updates are successfully delivered to the edge node by tu,1, tu,2, Following
the common definition of AoI considered in the literature, e.g. [2, 6] we denote the AoI
in time slot t by ∆(t), and define it as the difference between t and the time at which
the last successfully received packet was generated:

∆(t) = t− max
i:tu,i≤t

tu,i. (C.1)

We will assume that tu,1 = 0 so that ∆(t) is well defined. An alternative, but equivalent
definition can be obtained by introducing an indicator function ψ(t), which is equal to
1 if a packet is successfully received in slot t and 0 otherwise:

∆(t) =
{

∆(t− 1) + 1 if ψ(t) = 0;
1 if ψ(t) = 1,

(C.2)

where ∆(0) = 0.
Most work considers the problem of minimizing the long-term average of ∆(t). How-

ever, this is only one possibility in real monitoring and control systems: discrete-time
systems involve queries in which the monitoring process samples the available informa-
tion. To capture such applications, we introduce the QAoI metric, which generalizes
AoI by sampling ∆(t) according to an arbitrary querying process, thereby considering
only the instants at which a query arrives. We denote the query arrival times at the
edge node by tq,1, tq,2, . . ., and define the overall objective as minimizing the long-term
expected QAoI defined as

τ∞ = lim
t→∞

1
t
E

 ∑
i:tq,i≤t

∆(tq,i)

 . (C.3)

Although the query process may in general follow any random process, in this initial
paper we limit the focus to the case in which the exact query instants are known in
advance to the edge node and the sensor. This is for instance the case when the queries
are periodic, or if the server repeatedly announces its next query instant.

3. MDP formulation and problem solution 95

2.2 Models for Communication and Query Arrivals
We assume that each update has a fixed size and is transmitted over a PEC with erasure
probability ε. For simplicity’s sake, in the following we refer to the success probability
ps = 1 − ε. Packets are instantaneously acknowledged by the receiver, so the sensor
knows if a packet was erased or correctly received.

To model the energy-constrained nature of the node, we use a leaky bucket model,
as commonly done in the literature [15]: we consider a bucket of tokens, which is
replenished by a process which can generate tokens independently at each step with
probability µb. The node can only transmit a packet if there are tokens in the bucket,
and each transmission consumes one token. This model can fit an energy gathering
node, as well as a general power consumption constraint on a battery-powered node,
which should limit its number of transmissions in order to prolong its lifetime.

In this work, we assume the simplest possible query arrival process, with periodic
queries every Tq steps. We assume that the sensor and receiver are synchronized, i.e.,
the sensor knows when the next query will come. While simple, this assumption is often
realistic, as discrete time monitoring processes are often designed with a constant time
step.

The model can be easily extended to more complex query arrival processes, and the
process statistics can even be learned implicitly as part of the optimal strategy, as long
as it is consistent. If we follow the definitions from Sec. 2.1, the strategies to minimize
AoI and QAoI coincide in the memoryless case in which the query arrival process is
Poisson or when the query arrival process is much faster than the sensor, i.e., when
there is a query in each time slot.

3 MDP formulation and problem solution
In the following, we will model the two communication scenarios described in the next
paragraph as MDPs, which we will then proceed to solve. An MDP is defined by a
state space S, an action space A, a set of transition probabilities pa(s, s′) = P (st+1 =
s′|at = a, st = s), and an instantaneous reward function r(s, a, s′), which represents
the immediate reward when taking action a and transitioning from state s to state
s′. The model can be used to represent two different systems: a Permanent Query
(PQ) system, which minimizes the traditional AoI, and a Query Arrival Process Aware
(QAPA) system, which minimizes the QAoI, only caring about the instants when a
query arrives. These two systems can use the same state and action spaces, and only
differ in the reward function that they use.

Decisions are made at every slot, as the sensor can either keep silent or send a
packet. Consequently, the action space is A = {0, 1}. As the aim of the QAPA agent
is to minimize the QAoI, the state should include the current age ∆(t), as well as the
number of slots σ(t) until the next query. Additionally, the agent should know the

96 Paper C.

number of available tokens, b(t), as it will influence its decision whether to transmit.
If the number of tokens is 0, the sensor is blocked from transmitting until a token
is generated. The state space can then be defined as S = N × {0, . . . , Tq − 1} × N,
where N indicates the set of strictly positive integers. A state st is given by the tuple
(∆(t), σ(t), b(t)). Each element in the state tuple evolves independently between time
steps, so in the following we describe the state dynamics one by one.

The AoI increases by one between each slot unless the node decides to transmit and
the packet is successfully received, with probability ps, in which case the AoI is reduced
to one in the subsequent slot. The non-zero transition probabilities are thus described
by

Pr(∆(t+ 1) = δ|∆(t), at) =


atps if δ = 1;
1− atps if δ = ∆(t) + 1;
0 otherwise,

(C.4)

where at is the action at time t, which equals zero if the sensor is silent and one if
it transmits. The time until the next query σ(t), is deterministic and independent of
the action, and decreases by one until it reaches zero, at which point it is reset to Tq.
Assuming that the first query happens at time t = Tq, the value of σ(t) can be written

σ(t) = Tq − t (mod Tq). (C.5)

Finally, the number of tokens in the next slot depends on whether a new token is
generated and whether the sensor transmits, in which case, it uses one token. The
transition probability from b(t) to b(t+ 1) is:

p(b(t+ 1) = b+ i|b(t), at) =


µb if i = 1− at;
1− µb if i = −at;
0 otherwise.

(C.6)

We define two cost functions; one for the PQ system, which does not depend on the
query instant and will be used as baseline, and one for the QAPA system, in which the
cost is only considered when a query arrives. In the baseline PQ model, the cost is given
by the AoI in any slot:

cPQ(st, at, st+1) = ∆(t+ 1). (C.7)
However, in the QAPA system, the cost is the AoI when a query arrives:

cQAPA(st, at, st+1) =
{

∆(t+ 1) if σ(t+ 1) = 0;
0 otherwise.

(C.8)

In both cases, the objective is to find a policy π∗ that minimizes the long-term cost. In
this initial work, we limit ourselves to consider the discounted case, which benefits from

4. Numerical results 97

strong convergence guarantees, and defer the case with undiscounted costs to future
work. Specifically, we solve:

π∗ = arg min
π

E

[∞∑
t=0

λtc(t)|π
]
, (C.9)

where λ < 1 is the discount factor.
We can now proceed to solve the MDP for the two systems we have defined using

policy iteration, as described in [16, Ch. 4]. In order to apply the algorithm, we need to
truncate the problem to a finite MDP. We do so by defining a maximum age ∆max and
a token bucket size B: once the age or the number of tokens in the bucket reach the
maximum, they cannot increase further. As long as the maximum values are sufficiently
large, they are not reached during normal operation and this simplification does not
affect the optimal policies or their performance.

The policy iteration algorithm has two steps: 1) policy evaluation and 2) policy
improvement which are repeated until convergence. To solve the proposed problem we
initialize the policy with zeros i.e. the policy where we never send any updates, and the
value to be larger than we expect from a reasonable policy.

1. The policy is evaluated using

vπ(s) =
∑

s′

p(s′, c|s, a) (c+ λvπ(s′)) . (C.10)

for all s, where s is the current state, s′ is the new state, a is the action, and c is
the cost from either (C.7) or (C.8).

2. The policy is improved by evaluating

qπ(s, a) =
∑

s′

p(s′, c|s, a) (c+ λvπ(s′)) (C.11)

for all a. If qπ(s, a) > vπ(s) we substitute a into the policy. This is repeated for
all s.

Policy iteration is guaranteed to converge to the optimal policy [17] in finite-state MDPs
with finite reward. As mentioned above, we truncated the age and token bucket size to
make the MDP finite, so the conditions to use the algorithm apply.

4 Numerical results
This section presents Monte Carlo evaluations of the policies obtained using the MDP
described in Section 3. Although, the methods in Section 3 can be applied to any query

98 Paper C.

process, throughout the evaluation we will consider queries that occur periodically, at
a fixed time interval Tq. Furthermore, we truncate the MDP at a maximum age of
∆max = 100 × Tq and a maximum token bucket size of B = 10, and we use a discount
factor λ = 0.75. We use the term AoI to refer to the age at any time and QAoI for the
age sampled at the query instants.

We start by exploring the temporal dynamics of the AoI process obtained using
the PQ and the QAPA policies. Recall that PQ is optimized to achieve a low AoI
independent of the query process, while QAPA minimizes the AoI at the query times,
using cost functions (C.7) and (C.8), respectively. Fig. C.2a shows the AoI for queries
occurring periodically every Tq = 40-time slots as indicated by the vertical lines, a
packet error probability of ε = 0.2, and a token rate µb = 0.2. It is seen that the PQ
policy reduces the AoI approximately uniformly across time, while the QAPA policy
consistently tries to reduce the AoI in the slots immediately prior to a query, so that the
AoI is minimized when the query arrives. This is reflected in Fig. C.2b, which shows
that the QAPA policy accumulates energy when the next query is far in the future,
unlike PQ. A consequence of this is that the QAPA policy generally has a slightly
higher average AoI than the PQ policy, but the QAoI of the QAPA is significantly lower
than that of the PQ policy.

The initial observations from Fig. C.2 can be confirmed by the distribution of the
AoI as a function of the time since the last query, as illustrated in Figs. C.3 and C.4.
Figs. C.3a and C.4a show the probability mass function of the AoI conditioned on various
time instants t mod Tq, while Figs. C.3b and C.4b show the Cumulative Distribution
Function (CDF) of the overall AoI and QAoI. In the scenario with low error probability,
ε = 0.2, the AoI distribution of the PQ policy is uniform across time (upper plot in
Fig. C.3a), while the QAPA policy has an increasing age as time since the query passes,
but a far lower age right before and at the query instant, t mod Tq = 0 (lower plot
in Fig. C.3a). The resulting CDF in Fig. C.3b reveals, as expected, that the AoI and
the QAoI are equivalent for the PQ policy, as the distribution is the same at any time
instant. However, for the QAPA policy, the QAoI is significantly lower than the AoI,
while the AoI is often larger than the PQ policies. This is because the QAoI is only
measured at the query instants, at which the age of the QAPA policy is minimized.
Due to the energy constraint, this comes at the cost of a generally higher age, causing a
higher AoI measured at each time instant. Finally, the staircase appearance in the CDF
is because the queries happen periodically. If the queries came at variable (but known
in advance) intervals, the CDF would be smoother, maintaining QAPA’s performance
advantage.

The same observations apply for the scenario with high error probability, ε = 0.7,
shown in Figs. C.4a and C.4b. Although the AoI and QAoI are higher due to the high
packet error rate, the applied policies are similar. The gain that the QAPA policy
achieves by clustering its transmissions close to the query instant is clearly reflected in
Fig. C.4a where, although there is a significant probability that the packet immediately

4. Numerical results 99

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

t

∆
(t

)

PQ
QAPA
Query Time

(a) AoI over time for the two policies.

0 20 40 60 80 100 120 140 160 180 200

0

5

10

t

b(
t)

PQ
QAPA
Query time

(b) Available tokens over time for the two policies.

Fig. C.2: AoI dynamics of the PQ and QAPA policies for Tq = 40, µb = 0.2, ε = 0.2. The PQ policy
generally has a lower AoI, but the QAPA policy minimizes the AoI at the query instants.

100 Paper C.

20

40
A

oI
(P

Q
)

0.00

0.25

0.50

0 10 20 30

20

40

t mod Tq

A
oI

(Q
A

PA
)

0.00

0.40

0.80

(a) PQ (upper) and QAPA (lower) density, ε = 0.2.

0 100 200 300 400
10−5

10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

AoI (PQ)
QAoI (PQ)
AoI (QAPA)
QAoI (QAPA)

(b) Complementary CDF, ε = 0.2.

Fig. C.3: AoI distributions and CDFs for PQ and QAPA for Tq = 40, µb = 0.1 and ε = 0.2. (a): AoI
distribution for the PQ and QAPA at various time instances t mod Tq for ε = 0.2. PQ achieves low
AoI at all times, QAPA ensures that the AoI is low at the query instants, i.e. t mod Tq = 0. (b):
Complementary CDF of the AoI and QAoI achieved by the two policies for ε = 0.2. Generally, the
QAPA policy has lower QAoI but higher AoI than the PQ policy.

4. Numerical results 101

20

40
A

oI
(P

Q
)

0.00

0.10

0.25

0 10 20 30

20

40

t mod Tq

A
oI

(Q
A

PA
)

0.00

0.15

0.30

(a) PQ (upper) and QAPA (lower) density, ε = 0.7.

0 100 200 300 400
10−5

10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

(b) Complementary CDF, ε = 0.7.

Fig. C.4: AoI distributions and CDFs for PQ and QAPA for Tq = 40, µb = 0.1 and ε = 0.7. (a): AoI
distribution for the PQ and QAPA at various time instances t mod Tq for ε = 0.7. PQ achieves low
AoI at all times, QAPA ensures that the AoI is low at the query instants, i.e. t mod Tq = 0. (b):
Complementary CDF of the AoI and QAoI achieved by the two policies for ε = 0.7. Generally, the
QAPA policy has lower QAoI but higher AoI than the PQ policy.

102 Paper C.

prior to the query is lost, the AoI distribution at t mod Tq = 0 is still concentrated
close to one.

We close the section by studying how the average AoI and QAoI changes with the
packet error probability ε for various choices of the parameters, shown in Fig. C.5. For
all cases, the QAPA policy achieves the lowest QAoI, while the PQ policy achieves the
lowest AoI. When the query period, Tq, is low, the difference between AoI and QAoI is
relatively small, as is the difference between the two policies. Intuitively, this is because
the query instants, which are prioritized by the QAPA policy, are more frequent, making
the two problems more similar. If we set Tq = 1, the two policies would coincide. As a
result, awareness of the query arrival process becomes more important when queries are
rare, i.e., when Tq is large: this is clear from the large gap between the average QAoI
achieved by QAPA and by PQ in Fig. C.5c and Fig. C.5f. The upper row, Fig. C.5a-
C.5c, shows the results for µb = 0.05, i.e., when a new token is generated on average
every 20 time slots. When Tq = 10 (C.5a), the token period becomes a limiting factor,
and both the AoI and QAoI are relatively high even for low values of ε. In particular, in
the error-free case when ε = 0, the average QAoI cannot be lower than (1 + 11)/2 = 6,
which is achieved by transmitting an update prior to every second query. Interestingly,
the impact of the energy limit becomes less significant for the QAPA policy as the time
between queries increases: by saving up tokens until right before the query, this policy
can significantly reduce the QAoI, at the cost of a higher AoI. On the other hand, the
PQ policy does not benefit from this increase, as it is oblivious of the query arrival
frequency. When tokens are generated faster, at rate µb = 0.2, as shown in Fig. C.5d-
C.5f, the AoI and the QAoI are generally lower, since more frequent transmissions are
allowed.

5 Conclusions and future work
In this paper, we proposed a new metric for information freshness, which we dubbed
QAoI: unlike standard AoI for push-based communication, this metric can be used for
pull-based communication in which the monitoring process is not always listening, but
sends queries when it is interested in the information. With the proposed model and
subsequent MDP solution, we show the benefit of optimizing the transmission policy
using the available knowledge on the query arrival process. Our results show that the
standard PQ optimization, which minimizes AoI at any instant, can be very different
from a QAPA policy that optimizes QAoI by concentrating its transmissions right before
it expects a new query.

We are considering several avenues of future work. (i) A formal derivation of the
QAoI in simple queuing systems. (ii) Modeling of more complex query processes with
stochastic timing, which would require the sensors to learn the nature of the query
arrival process online.

5. Conclusions and future work 103

0 0.2 0.4 0.6 0.8
0

20

40

60

80

ε

Av
er

ag
e

ag
e

AoI (PQ)
QAoI (PQ)
AoI (QAPA)
QAoI (QAPA)

(a) Average age for Tq = 10, µb = 0.05.

0 0.2 0.4 0.6 0.8
0

20

40

60

80

ε

Av
er

ag
e

ag
e

(b) Average age for Tq = 20, µb = 0.05.

0 0.2 0.4 0.6 0.8
0

20

40

60

80

ε

Av
er

ag
e

ag
e

(c) Average age for Tq = 40, µb = 0.05.

0 0.2 0.4 0.6 0.8
0

20

40

60

80

ε

Av
er

ag
e

ag
e

(d) Average age for Tq = 10, µb = 0.2.

0 0.2 0.4 0.6 0.8
0

20

40

60

80

ε

Av
er

ag
e

ag
e

(e) Average age for Tq = 20, µb = 0.2.

0 0.2 0.4 0.6 0.8
0

20

40

60

80

ε

Av
er

ag
e

ag
e

(f) Average age for Tq = 40, µb = 0.2.

Fig. C.5: Average AoI and QAoI for the two systems for different values of Tq and µb.

104 References

Acknowledgment
This work has, in part, been supported by the Danish Council for Independent Research
(Grant No. 8022-00284B SEMIOTIC).

References
[1] A. Kosta, N. Pappas, V. Angelakis et al., “Age of information: A new concept,

metric, and tool,” Foundations and Trends® in Networking, vol. 12, no. 3, pp.
162–259, 2017.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one
update?” in Conf. on Computer Communications (INFOCOM). IEEE, Mar.
2012, pp. 2731–2735.

[3] K. Chen and L. Huang, “Age-of-information in the presence of error,” in Int. Symp.
on Information Theory (ISIT). IEEE, Jul. 2016, pp. 2579–2583.

[4] R. Devassy, G. Durisi, G. C. Ferrante, O. Simeone, and E. Uysal, “Reliable trans-
mission of short packets through queues and noisy channels under latency and
peak-age violation guarantees,” IEEE Journ. on Selected Areas in Communica-
tions, vol. 37, no. 4, pp. 721–734, Feb. 2019.

[5] H. B. Beytur, S. Baghaee, and E. Uysal, “Measuring age of information on real-life
connections,” in 27th Signal Processing and Communications Applications Conf.
(SIU). IEEE, Apr. 2019.

[6] I. Kadota and E. Modiano, “Minimizing the age of information in wireless networks
with stochastic arrivals,” IEEE Trans. on Mobile Computing, Dec. 2019.

[7] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff, “Update or
wait: How to keep your data fresh,” IEEE Trans. on Information Theory, vol. 63,
no. 11, pp. 7492–7508, Nov. 2017.

[8] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting source,” in
Int. Symp. on Information Theory (ISIT). IEEE, Jun. 2015, pp. 3008–3012.

[9] R. D. Yates and S. K. Kaul, “Status updates over unreliable multiaccess channels,”
in Int. Symp. on Information Theory (ISIT). IEEE, Jun. 2017, pp. 331–335.

[10] R. D. Yates and S. K. Kaul, “Age of information in uncoordinated unslotted up-
dating,” in Int. Symp. on Information Theory (ISIT). IEEE, Jun. 2020, pp.
1759–1764.

References 105

[11] R. Talak, S. Karaman, and E. Modiano, “Distributed scheduling algorithms for
optimizing information freshness in wireless networks,” in 19th Int. Worksh. on
Signal Processing Advances in Wireless Communications (SPAWC). IEEE, Jun.
2018.

[12] X. Chen, K. Gatsis, H. Hassani, and S. S. Bidokhti, “Age of information in random
access channels,” in Int. Symp. on Information Theory (ISIT). IEEE, Jun. 2020,
pp. 1770–1775.

[13] L. Zhang and D. Hristu-Varsakelis, “Communication and control co-design for net-
worked control systems,” Automatica, vol. 42, no. 6, pp. 953–958, Jun. 2006.

[14] D. Zhang, P. Shi, Q.-G. Wang, and L. Yu, “Analysis and synthesis of networked
control systems: A survey of recent advances and challenges,” ISA transactions,
vol. 66, pp. 376–392, Jan. 2017.

[15] V. Raghunathan, S. Ganeriwal, M. Srivastava, and C. Schurgers, “Energy efficient
wireless packet scheduling and fair queuing,” ACM Trans. on Embedded Computing
Systems (TECS), vol. 3, no. 1, pp. 3–23, Feb. 2004.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[17] R. A. Howard, Dynamic programming and Markov processes. John Wiley, 1960.

106 References

Paper D

Query Age of Information: Freshness in Pull-Based
Communication

Federico Chiariotti, Josefine Holm, Anders E. Kalør, Beatriz Soret, Søren
K. Jensen, Torben B. Pedersen, and Petar Popovski

The paper has been published in the
IEEE Transactions on Communications Vol. 70, Nr. 3, pp. 1606–1622, 2022.

© 2022 IEEE
The layout has been revised.

1. Introduction 109

Abstract
AoI has become an important concept in communications, as it allows system designers
to measure the freshness of the information available to remote monitoring or control
processes. However, its definition tacitly assumes that new information is used at any
time, which is not always the case: the instants at which information is collected and
used may be dependent on a certain query process, and resource-constrained environ-
ments such as most IoT use cases require precise timing to fully exploit the limited
available transmissions. In this work, we consider a pull-based communication model
in which the freshness of information is only important when the receiver generates a
query: if the monitoring process is not using the value, the age of the last update is
irrelevant. We optimize the QAoI, a metric that samples the AoI at relevant instants,
better fitting the pull-based resource-constrained scenario, and show how this can lead
to very different choices. Our results show that QAoI-aware optimization can signifi-
cantly reduce the average and worst-case perceived age for both periodic and stochastic
queries.

1 Introduction
Over the past few years, the concept of information freshness has received a significant
attention in relation to cyber-physical systems that rely on communication of various
updates in real time. This has led to the introduction of AoI [1] as a measure that
reflects the freshness at the receiver, and denotes the difference between the current
time and the time when the most recently received update was generated at the sender.

In a common model for AoI-sensitive systems, a wireless-equipped sensor measures a
physical process and transmits its readings using a wireless link to a destination, where a
monitor processes the received information. On the other hand, we study the effect of the
existence of a query process at the receiver in a resource-limited scenario in which a single
sensor is constrained in how often it can transmit, either due to energy considerations
or duty cycle limitations. In most works in the literature, the tacit assumption behind
AoI has been that the monitor at the receiver is interested in having fresh information
at any time. In other words, the model assumes a push-based communication, in which a
hypothetical application residing at the monitor has a permanent query to the updates
that arrive at the receiver. Our work considers a pull-based communication model, in
which the query arrival process can guide the communication strategy by, for example,
reading the sensor and transmitting the updates immediately before the query times. To
design for pull-based communications, we introduce an age metric named QAoI, which
represents the age of the information available to the receiver in the instant when it
actually needs it. This new metric is similar to the Effective Age of Information (EAoI),
presented in [2], which studied the effect of queries in a different scenario, with multi-

110 Paper D.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Transmission windows

Query process

· · ·

· · ·

No transmission

Transmission window

No query

Query

Time

Tq

Slot

Fig. D.1: Diagram of a satellite IoT-based pull-based communication model.

user scheduling and a constant channel. The QAoI metric and the system optimization
based on it is tested in a scenario with limited link availability at the source, as our
system model considers both when it is possible to transmit and when it is convenient
to do so.

One can think of several scenarios that would fit this pull-based model, as most
monitoring and control applications operate over discrete time intervals, or only activate
to react to some external trigger or user input. An interesting practical use case for this
concept is represented by the Satellite IoT, which connects sensors in remote areas to
the wider Internet through the use of Geosynchronous Earth Orbit (GEO) or Low Earth
Orbit (LEO) satellites, and is still a mostly unexplored setting for the AoI literature [3,
4]. Fig. D.1 shows an example of the transmission and query timing with periodic
intervals: the transmitter can only send a packet in the green slots, and the application
queries the received result in the blue slots. In the push-based communication model,
the transmitter should optimize for freshness at any time, while in the pull-based model,
if there is a successful transmission in, e.g., slot 7, any transmission in slot 5 will then
be useless to the application, as it will never see it. The transmitter will try to send
packets as close to the query instant as possible, even if this results in a larger age in
between queries.

In our model, the channel between the sensor and the intermediate cache, i.e., the
satellite uplink and downlink in the Satellite IoT scenario, is abstracted as a PEC, whose
erasure probability can be either constant or time-varying. The query arrival process is,
in general, a stochastic process. In our simulations, we consider four scenarios, which
can correspond to three different Satellite IoT use cases:

• Periodic queries and constant channel: this is the simplest case, in which queries
are deterministic and periodic and the channel error probability is constant over
time. This model can represent a GEO monitoring application, in which the
satellite is always in the same position relative to the ground and the remote
monitoring application simply logs the data by querying the ground station at

1. Introduction 111

0 20 40 60 80 100

0

0.5

1

t

ε(
t)

Error probability

Query Time

(a) Periodic queries, constant error probability.

0 20 40 60 80 100

0

0.5

1

t

ε(
t)

(b) Periodic queries, periodic error probability.

0 20 40 60 80 100

0

0.5

1

t

ε(
t)

(c) Stochastic queries, periodic error probability.

0 20 40 60 80 100

0

0.5

1

t

ε(
t)

(d) Stochastic queries, stochastic error probability.

Fig. D.2: Scenarios considered in the simulations.

predetermined intervals. This corresponds to the scenario in Fig. D.2a, in which
ε(t) represents the channel error probability at time t.

• Periodic queries with a predictable channel: in this case, we introduce some com-
plexity in the channel behavior by having a time-varying error probability, while
maintaining a deterministic and periodic query arrival process. This scenario can
represent a LEO remote monitoring application, in which the sensor is not served
by a GEO satellite, but by a constellation of LEO satellites, whose orbits bring
them outside the coverage range of the sensor: when there are no visible satel-
lites, the packet error probability is 1. The sensors must then transmit its data
when at least one satellite is passing over it. The orbits of the satellites can be
computed in advance, so these periods of availability are known, but the sensor
will be constrained in its scheduling decisions. This corresponds to the scenario
in Fig. D.2b. Another possible example of this model would be a wireless scenario
with recurring outages, during which the error probability for updates sharply
increases.

• Stochastic queries with a predictable channel: in this case, the channel error prob-
ability can change over time and queries arrive according to a stochastic process,
so the sensor will need to optimize the expected QAoI, considering the probability
of queries arriving in the near future. This scenario can represent a human-in-the-
loop LEO monitoring application, in which queries are driven by the behavior of
the user, and are then only partially predictable. This corresponds to the scenario
in Fig. D.2c.

• Stochastic queries with a stochastic channel: this is the most general case, in which

112 Paper D.

queries are stochastic, and the channel error probability is not predictable, but
follows a stochastic process such as a Markov chain. This case can represent a
general wireless channel, which does not have pre-computed satellite passes, but
depends on the propagation conditions, and is shown in Fig. D.2d. It corresponds
to a general wireless edge system getting queries from the Cloud.

These four examples are described in more detail and adapted to the communication
model in Sec. 6. Besides the satellite IoT application of Fig. D.1, our model can fit
several other monitoring applications, and the formulation is fully general for relaying
scenarios with an intermediate cache node fulfilling requests from the end user. A generic
example includes queries that are periodically/regularly sent from a central cloud to an
edge node.

In this work, we model a scheduling problem for a resource-constrained sensor as a
MDP, showing the difference between a query-aware scheduler and a legacy one that tries
to minimize AoI at any instant: in the most general case, we consider the query arrival
process and the channel state to be driven by two independent Markov chains. The
model in this paper extends the framework we presented in [5], which only considered a
simple scenario with a constant channel and periodic queries. While previous works on
AoI often dealt with limitations on the link availability, because of congestion, energy,
or propagation constraints, but to the best of our knowledge, this is the first work to
combine limitations on the channel availability with AoI in pull-based communication.

Our simulation results show that awareness of the query process can give significant
gains in terms of both the average QAoI and its higher percentiles, which represent
a worst-case result and are critical for reliability-oriented applications, improving the
performance of monitoring systems even in the most general case. The query-aware
optimization often incurs a cost in terms of AoI, as the scheduling strategy that optimizes
freshness when a query arrives will often let the age increase when the probability of a
query arriving is low,

The rest of this paper is divided as follows: first, Sec. 2 presents the state of the
art on scheduling and AoI minimization. We then present the QAoI metric and our
communication system model in Sec. 3, formulating it as an MDP and finding the
optimal policies in Sec. 5. We then present our simulation and its results in Sec. 6,
considering a simple system first and gradually increasing its complexity. Finally, we
conclude the paper and describe some possible avenues of future work in Sec. 7.

2 Related work
Over the last few years, AoI [6] has attracted a significant amount of interest from the
research community, as it represents a more relevant metric than latency for the ongoing
monitoring and control of processes over a network. Most works in the literature deal
with AoI in queuing systems, examining different scheduling policies. Some recent works

2. Related work 113

have proven that preemption, i.e., removing packets already in the queue in favor of
newer ones with more up to date information, can give significant advantages in terms of
average age [7], even when multiple M/M/1 queuing systems in tandem are involved [8].
However, preemption can be suboptimal for different service time distributions, as the
decision over whether to preempt or to continue the ongoing transmission becomes more
complex [9].

Other works addressed AoI in specific wireless scenarios with errors [10] and retrans-
missions [11], or basing their analysis on live experiments [12]. The addition of more
sources in the queuing system leads to an interesting scheduling problem, which aims
at finding the packet generation rate that minimizes the age for the whole system [13].
Optimizing the access method and senders’ updating policies to minimize AoI in com-
plex wireless communication system has been proven to be an NP-hard problem, but
heuristics can achieve near-optimal solutions [14] by having sources decide whether an
update is valuable enough to be sent (i.e., whether it would significantly reduce the
AoI) [15]. The average AoI has been derived in slotted [16] and unslotted ALOHA [17],
as well as in scheduled access [18], and the performance of scheduling policies has been
combined with these access methods in [19].

The scheduling problem can be formulated both for multiple sources, in which case
the scheduling problem involves balancing the ages of the different sources while avoid-
ing interference [20], or for a single source with resource constraints: usually, these con-
straints are in the form of limited energy availability or enforced duty cycles. Energy
harvesting nodes are considered in [21], which derives a near-optimal threshold-based
heuristic that can work without knowledge of future energy generation, and by [22],
which derives the optimal policy for nodes with infinite as well as finite batteries. The
trade-off between energy and freshness is examined explicitly in [23], while [24] considers
a noisy channel as well, in which updates can be randomly erased. A more complex sce-
nario, which includes a Hybrid Automated Repeat Request (HARQ) channel as well as
an energy harvesting node with a finite battery, is considered in [25], which models the
problem as an MDP and finds the optimal policy with reinforcement learning. Another
interesting case for the scheduling problem is AoI minimization in drone networks, in
which drones have to move back and forth between the sensing location and the base
station [26]: finding the correct balance to minimize AoI and energy expenditure is a
non-trivial problem in this scenario.

To the best of our knowledge, most of the literature so far has adopted a push-
based model, in which updates are always relevant to the monitoring process. We
are aware of only a few other works that consider a pull-based model: the one most
similar to this work [2] considers a server updating multiple users, using a metric called
EAoI, which is similar to QAoI, although in their case the system is not constrained by
energy considerations, but by the presence of multiple sensors that need to be scheduled
appropriately. The effect of queries is also modeled slightly differently: in our case, there
is a strict ordering between transmissions and queries, and the response to a query is

114 Paper D.

Symbol Description

tu,i Delivery time of the i-th update
∆(t) AoI at time t
∆∞ Long-term expected AoI
tq,i Time of the i-th query
Sq State space of the query process
Q Set of states in which a query arrives
Pq Transition matrix of the query process
Se State space of the error probability process
Pe Transition matrix of the error probability process

ε(se) Packet error probability for state se

Te Packet error probability period
Tq Query arrival period
S State space of the scheduling MDP
A Action space of the scheduling MDP

pa(s, s′) Probability to go from s to s′ for action a
r(s, a, s′) Instantaneous reward

b(t) Number of available tokens at time t
c(st, at) Long-term expected cost

λ Cost discount factor
π Action policy

vπ(st) Expected state value with policy π
ε0 Error probability during the satellite pass

Table D.1: Notation definitions.

always sent immediately. On the other hand, EAoI considers the possibility of a delayed
response if a transmission from the sensor is scheduled but not yet received. In our work,
we focus on the optimization of the connection between the sensor and the intermediate
cache, considering significant communication constraints and a more challenging IoT
scenario. The difference between our metric and EAoI is shown in Sec. 4. Another
work, first presented by Li et al. in [27] and later expanded in [28], considers age not to
matter unless and until a request for the information is generated. However, Li et al.’s
work does not consider the effects of scheduling in a regime with limited transmission
opportunities, but rather tries to provide freshness to the user by combining multiple
replications of the sensor value over multiple servers. The innovation from [28] can be
combined with ours with limited adaptations to the two models, resulting in a joint
optimization of the whole end-to-end scheduling. Another work also models requests
in the optimization function [29], but it only deals with memoryless request processes,
which (as we will describe in the introduction) lead to a solution that is equivalent to
standard AoI minimization. The extended version of that paper [30] considers more
complex scenarios with partial battery knowledge, but still uses the same memoryless
request model. Finally, a recent work by Xu et al. [31] also considers a memoryless
request process, but considers a mix between traditional AoI and query-aware metrics.
This is a significant difference from QAoI and related metrics such as EAoI, and it leads

3. System model 115

to a highly different optimization, which will prioritize users with a less active request
process.

3 System model
We now define a simple system model and consider the QAoI metric. The notation in
the following sections is summarized in Table D.1.

We consider a time-slotted system indexed by t = 1, 2, . . ., and denote the time
instants at which updates are successfully delivered to the edge node as tu,1, tu,2,
The source can be sampled at any time, and fresh information is always available,
a condition known as zero-wait sampling. Following the common definition of AoI
considered in the literature, e.g. [6, 13] we denote the AoI in time slot t by ∆(t), and
define it as the difference between t and the time at which the last successfully received
packet was generated:

∆(t) = t− max
i:tu,i≤t

tu,i. (D.1)

We will assume that tu,1 = 0 so that ∆(t) is well defined. An alternative, but equivalent
definition can be obtained by defining the time-varying variable ut that takes the value
1 if a new update is received at the edge node in time slot t, and 0 otherwise:

∆(t) =
{

∆(t− 1) + 1 if ut = 0
1 if ut = 1

(D.2)

where ∆(0) = 0. This definition of AoI, as given in [6], considers the freshness of
information at any given point in time. The long-term expected AoI ∆∞ is given by:

∆∞ = lim sup
T→∞

1
T
E

[
T∑

t=1
∆(t)

]
. (D.3)

This formulation does not include any weighting, assuming that all time steps are equally
important. This is reasonable if the monitoring system is either continuous or much
faster than the update generating process and communication system, i.e., can be con-
sidered as essentially continuous. However, this is only one possibility in real monitoring
and control systems: discrete-time systems involve queries in which the monitoring pro-
cess samples the available information. To capture such applications, we introduce the
QAoI metric, which samples ∆(t) according to an arbitrary querying process, thereby
considering only the instants at which a query arrives. In this case, we can consider
long-term AoI as a special case of QAoI in which queries arrive at every time instant.

Naturally, in order for an update to be received successfully in slot t, we need to
transmit it: the policy to transmit an update is a function π : S → {0, 1}, where S is a
state space and an update is transmitted if the policy outputs 1.

116 Paper D.

Q1 Q2 Q3

t

A
oI

AoI
QAoI
EAoI

(a) AoI optimization.

Q1 Q2 Q3

t

A
oI

AoI
QAoI
EAoI

(b) QAoI optimization.

Q1 Q2 Q3

t

A
oI

AoI
QAoI
EAoI

(c) EAoI optimization.

Fig. D.3: Example of the difference between a system assuming a permanent query and one that is
aware of the query arrival process. The same packets are lost in all systems (correctly received packets
are depicted in green, lost ones in red), and the markers indicate the age at the query arrival instants.

3.1 The QAoI metric
If the query arrival process is known in advance, we denote the query arrival times at
the edge node by tq,1, tq,2, We can then define the QAoI for the i-th query, denoted
as τ(i) and given by:

τ(i) = ∆(tq,i). (D.4)

The EAoI metric proposed in [2] shares many similarities with QAoI, and indeed it also
represents a pull-based system; however, it deals with concurrent queries and updates
differently, allowing the server to wait until the update is over to respond to the query,
while our formulation is stricter and enforces an order, with updates always arriving be-
fore queries. We then define the overall objective as minimizing the long-term expected
QAoI, defined as

τ∞ = lim sup
T→∞

1
T
E

 ∑
i:tq,i≤T

∆(tq,i)

 . (D.5)

It is also possible to optimize QAoI without full knowledge of future query arrival times,
as long as there is some information on the statistics of the process: in our model, the
query process is represented by a finite Markov chain with a state space Sq and a
transition matrix Pq. The query process is then in a (known) state at any time instant,
and queries are generated if the state is in a predetermined subset Q ⊆ Sq.

Relating this to the use case example, the Markov chain represents the monitoring
application: in the simplest case, it requests the sensor reading to the ground station
periodically, but in general queries can have complex periodicities that can be modeled
by a Markovian process. In most of the simple cases, we have |Q| = 1, and the interval
between two consecutive queries is Independent and Identically Distributed (IID). We

3. System model 117

can then rewrite the long-term QAoI in the more general case with stochastic queries
as the following:

τ∞(sq) = lim sup
T→∞

E

T−1∑
t=0

∆(t+ 1)
T

∑
s′

q(t+1)∈Q

Pq(sq, s
′
q; t+ 1)

 , (D.6)

where Pq(sq, s
′
q; t+ 1) is the probability of transitioning from state sq to state s′q after

t + 1 steps, specified by the (sq, s
′
q)-th entry in (Pq)t+1. In this way, the QAoI is

considered only in the instants in which a query is happening, i.e., when the Markov
chain representing the query process is in a state in which a query arrives. It is also
possible to consider normalizing the QAoI over the number of queries instead of the
number of steps, but this simply leads to a constant multiplying factor as T tends to
infinity.

If the query arrival process is memoryless, e.g., queries follow a Bernoulli process, the
strategies to minimize AoI and QAoI are the same, as well as their distributions, as the
query process transition probabilities are independent of the current state. The same
is true when the query arrival process is much faster than the sensor, i.e., when there
is a query in each time slot. The opposite extreme is the case with deterministic query
arrivals, in which the transition matrix is deterministic: the query arrival instants are
then known a priori, and the sensor can optimize its transmissions to minimize QAoI
directly. The most obvious example of this is given by periodic queries, but the same
holds for any deterministic process that is known to the sensor.

In general, the QAoI can be very different from the AoI in a given system, as well
as the strategies for optimizing it. In this work, we present such a class of systems,
arguing that an approach that takes the nature and possible periodicity of the monitor-
ing process into account can fit more situations and result in better performance than
standard AoI minimization. This difference is shown in a simple example in Fig. D.3,
in which the three metrics lead to different solutions: while minimizing AoI leads to
periodic transmissions, QAoI and EAoI lead the sensor to transmit just before queries.
However, EAoI-oriented systems would transmit one slot earlier, so as to avoid delaying
the response to the query.

3.2 Communication system model
We now define the model of our pull-based communication scenario, in which a sensor
needs to schedule transmissions over a link with limited availability. Independently,
queries about the state of the sensor are generated, e.g., as part of a monitoring or control
process. The objective of this work is to maximize the freshness of the information at
the query time, while considering that the sensor is energy-constrained and needs to
limit the number of transmissions to prolong its lifetime.

118 Paper D.

We assume that each update has a fixed size and is transmitted over a PEC with
slotted time. The sensor and receiver are assumed to be synchronized, i.e., the sensor
is informed when the last query arrived by the time of the next transmission window.
In order to be as general as possible, we model the channel as a Markov chain with
state space Se and transition matrix Pe, as we did for the query arrival process. An
error probability ε(s) is associated to each state s ∈ Se, and packets are instantaneously
acknowledged by the receiver, so the sensor knows if the last transmitted packet was
erased or correctly received. The Markovian model can fit several practical scenarios,
including periodic communications or a channel with random outages, and is often used
in wireless communications. We also make the simplifying assumption that the sensor
can know the state of the channel through beacon messages. This is a simplifying
hypothesis, and is not always true in sensor networks. However, having to rely on older
estimates of the state of the channel would not change the fundamental nature of the
model, and would only increase the uncertainty of the transmission.

The simplest case we can examine is the constant and always available channel, in
which ε(t) = ε. A slightly more complex example is a deterministic and periodic error
process. This models links that are available in a cyclical manner with period Te, like
the orbital passes of LEO communication satellites. In this case, the error probability
is 1 when no satellite is visible and constant during a pass. In our simulations, we
limit ourselves to deterministic and periodic error probability processes, whose value
is known by the transmitter, but the formulation and solution are general. In our
simulations, we consider the four use cases presented in the introduction, which can be
simply mapped to different Markov chains for the query and channel error processes:
deterministic queries follow a Markov chain with Tq states and forced transmissions,
as do predictable channels (with the constant channel as a special case with Te = 1).
Stochastic query processes and channels follow general finite Markov chains, and in this
case, any foresighted action relies on knowledge of the transition probabilities of the
Markov model.

4 Analytical example
We can now consider a simple example in which the difference between AoI and QAoI
is clear, and in which we can derive the optimal strategies analytically. We assume that
transmitting has a constant cost γ, that the channel has a constant error probability ε,
and that the optimization is over a finite horizon T . The objective of the PQ system is
then to minimize the average AoI during an episode, while the QAPA system will try to
minimize the AoI at the query instant, i.e., in slot T . We also consider the EAoI metric
from [2], which results in a system similar to QAPA.

4. Analytical example 119

20 40

0

20

40

t

∆
∗ (
t)

PQ

QAPA

Eff.

(a) γ = 1 (100 for PQ).

20 40

0

20

40

t

∆
∗ (
t)

PQ

QAPA

Eff.

(b) γ = 5 (500 for PQ).

20 40

0

20

40

t

∆
∗ (
t)

PQ

QAPA

Eff.

(c) γ = 10 (1000 for PQ).

20 40

0

20

40

60

80

100

t

∆
∗ (
t)

PQ

QAPA

Eff.

(d) γ = 20 (2000 for PQ).

Fig. D.4: Thresholds ∆∗ for T = 50, ε = 0.2.

120 Paper D.

We then define a cost function for the two systems, which we call c:

cPQ(t) = γat + ∆(t); (D.7)
cQAPA(t) = γat + δ(t− T)∆(T), (D.8)

where δ(x) is the Dirac delta function. We can also consider a QAPA system which tries
to minimize EAoI instead of QAoI, to show the difference between the two metrics:

cEAoI(t) = γat + δ(t− T) [δ(at)∆(T − 1) + (1− δ(at)∆(T)] . (D.9)

We then define the long-term cost C(τ) =
∑T

t=τ c(t), τ ≤ T . The optimal policy π∗PQ
is then the one that minimizes CPQ(τ), and the same is true for the QAPA system. In
the last step, with t = T , c(T) = C(T), and both systems have the same expected cost
if they start from the same conditions and take the same action:

E[c(T)|at = a,∆(t− 1) = d] =
{
γ + εd+ 1, if a = 1;
d+ 1, if a = 0.

(D.10)

It is easy to see that transmitting in the last slot, i.e., setting aT = 1, reduces the
long-term cost if:

∆(T − 1) > γ

1− ε . (D.11)

We can then derive the optimal policies. In this case, any policy π(d, t) depends only
on the current age ∆(τ − 1) = d and the time slot index τ = t. We only consider cases
in which ε > 0, as the ε = 0 case is trivially optimized by transmitting only in the last
slot before a query.
Theorem 1
The optimal policies π∗PQ and π∗QAPA are threshold policies, i.e., π∗PQ(d, t) = 1⇒ π∗PQ(d+
1, t) = 1 and π∗QAPA(d, t) = 1⇒ π∗QAPA(d+ 1, t) = 1.

The proof of the theorem is given in the Appendix. The PQ policy is then defined by
threshold values ∆∗PQ(t), defined as:

∆∗PQ(t) = min{d ∈ N : π∗PQ(d, t) = 1}. (D.12)

The same holds for the QAPA policy. The threshold for transmission can be computed
recursively: if we know π∗PQ from time τ + 1 to the end of the episode, we can compute
∆∗PQ(τ) using the following formula:

∆∗PQ(τ) = inf
{
d ∈ N : d+ E[C(τ + 1)|π∗,∆(τ) = d]

>
γ

1− ε + E[C(τ + 1)|π∗,∆(τ) = 0]
}
,

(D.13)

5. MDP formulation and problem solution 121

where E[C(τ + 1)|π∗,∆(τ) = d] is the expected long-term cost while following the
optimal policy. On the other hand, ∆∗QAPA(τ) is given by:

∆∗QAPA(τ) = inf
{
d ∈ N : E[C(τ + 1)|π∗,∆(τ) = d]

>
γ

1− ε + E[C(τ + 1)|π∗,∆(τ) = 0]
}
.

(D.14)

Naturally, we have ∆∗PQ(T) = ∆∗QAPA(T) = γ
1−ε , as given by (D.11).

Fig. D.4 shows how the threshold strategies work in a system with ε = 0.2: while
the PQ system exhibits some periodic behavior, mostly due to the effect of the finite
horizon, it tends to transmit less if the episode is close to the end, as the future reduction
of the AoI is limited in time. On the other hand, the QAPA sensor transmits only in
the last steps before the query, but increasing the value of γ makes it less convenient to
transmit, and the sensor will only do so for a progressively higher expected QAoI, and
only closer to the actual query instant. If we use EAoI as a metric for the QAPA system,
the threshold is not monotonic anymore: the best moment to transmit is actually one
step before the query, as transmitting in the same slot increases the delay in the query
response. The transmission cost γ for PQ is higher than for both QAPA settings, because
the overall cost is much higher, taking into account the AoI at every step and not just
at the last step. The monotonicity of the strategy for QAoI, which holds over all our
simulations in more complex systems, can make optimization easier, and a formulation
without delayed responses can be simpler to implement for IoT gateways.

The performance of the systems is shown in Fig. D.5, which shows the CDF of the
AoI and QAoI, along with the number of transmissions in each episode Ntx: as we can
see, the QAPA strategy has a much better QAoI, even though it transmits slightly less.
The EAoI-based system has a slightly higher QAoI than the QAoI-oriented system, as
it tends to transmit slightly earlier: however, it also has slightly fewer transmission
attempts on average. For both systems, this comes at the cost of the AoI, which is
significantly higher than for the PQ system. As we will see in the next sections, this
basic pattern holds even for much more complex systems.

5 MDP formulation and problem solution
In this section, we will consider the full problem, with a query process and energy
dynamics. To understand the impact of the query process in the performance of a
communication system, we will model the PQ and QAPA systems as MDPs, which we
will then proceed to solve. A MDP is defined by a state space S, an action space A, a set
of transition probabilities pa(s, s′) = P (st+1 = s′|at = a, st = s), and an instantaneous
reward function r(s, a, s′), which represents the immediate reward when taking action
a and transitioning from state s to state s′. The two systems, PQ and QAPA, can use
the same state and action spaces, and only differ in the reward function that they use.

122 Paper D.

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

∆

C
D

F

PQ, AoI PQ, QAoI

QAPA, AoI QAPA, QAoI

Eff., AoI Eff., QAoI

(a) CDF of the AoI and QAoI.

0 5 10 15 20
10−2

10−1

100

Ntx

C
D

F

PQ

QAPA

Eff.

(b) CDF of Ntx.

Fig. D.5: Behavior of the PQ, QAPA, and EAoI systems with T = 50 and ε = 0.2, starting from a
random age ∆0 between 1 and 100.

5. MDP formulation and problem solution 123

This problem formulation is significantly more complex than the example from Sec. 4,
making the direct derivation of strategies complex, but it can represent a more general
class of communication systems.

To model the energy-constrained nature of the node, we use a leaky bucket model, as
commonly done in the literature [32]: we consider a bucket of tokens, which is replenished
by a process which can generate tokens independently at each step with probability
µb. The node can only transmit a packet if there are tokens in the bucket, and each
transmission consumes one token. This model can fit a general power consumption
constraint on a battery-powered node, which should limit its number of transmissions
in order to prolong its lifetime. Furthermore, it allows us to easily include the constraint
in the MDP formulation as elaborated further in the next section.

Decisions are made by the sensor at every slot, as it can either keep silent or send a
packet. Consequently, the action space isA = {0, 1}. Both the PQ and the QAPA agents
(i.e., sensors with two different objectives) need to know the current age ∆(t), as well
as the state se(t) ∈ Se of the error probability Markov process. Additionally, the agent
should know the number of available tokens, b(t), as it will influence its decision whether
to transmit. If the number of tokens is 0, the sensor is blocked from transmitting until a
token is generated. The tuple (∆(t), se(t), b(t)) is sufficient to represent the state in the
PQ system, which does not require any knowledge of the query arrival process, while
the QAPA system adds a fourth element to the state, i.e., the state of the query arrival
process sq(t) ∈ Sq. As the PQ system can be studied as a special case of the QAPA
system (with a single-state query arrival process), we adopt the wider definition for both
systems to simplify the notation. We then define the state space as S = N2 × Se × Sq

and assume that the query arrival, token generation, and error probability processes
are independent, examining each element of the state separately. The AoI increases by
one between each slot unless the node decides to transmit and the packet is successfully
received, with probability ps(t) = 1− ε(se(t)), in which case the AoI is reduced to one
in the subsequent slot. The transition probabilities are thus described by

P (∆(t+ 1) = d|st, at) =


atps(t) d = 1;
1− atps(t) d = ∆(t) + 1;
0 otherwise,

(D.15)

where at is the action at time t, which equals zero if the sensor is silent and one if it
transmits. Secondly, the number of tokens in the next slot depends on whether a new
token is generated and whether the sensor transmits, in which case it uses one token.
The transition probability from b(t) to b(t+ 1) is:

P (b(t+ 1) = b+ i|b(t), at) =


µb if i = 1− at;
1− µb if i = −at;
0 otherwise.

(D.16)

124 Paper D.

The transition probabilities for the error probability and query arrival processes are
defined by the matrices Pe and Pq, respectively. We assume that the query process is
error-free, i.e., that the link between the ground station and the monitor is error-free.

We define two cost functions; one for the PQ system, which does not depend on the
query instant and will be used as baseline, and one for the QAPA system, in which the
cost is only considered when a query arrives. In the baseline PQ model, the cost is given
by the AoI in any slot:

cPQ(st, at, st+1) = ∆(t+ 1). (D.17)

However, in the QAPA system, the cost is the AoI when a query arrives:

cQAPA(st, at, st+1) =
{

∆(t+ 1) if sq(t+ 1) ∈ Q;
0 otherwise.

(D.18)

In both cases, the objective is to find a policy π∗ that minimizes the long-term cost. In
this initial work, we limit ourselves to consider the discounted case, which benefits from
strong convergence guarantees, and defer the case with undiscounted costs to future
work. In this case, at least one optimal policy is guaranteed to exist as a stationary
deterministic decision rule [33], i.e. π∗ : S → A. Specifically, we solve

π∗ = arg min
π

[∞∑
t=0

λt
∑
st∈S

P (st|s0, π)c(st, π(st))
]
, (D.19)

where λ < 1 is the discount factor, and c(st, at) = Est+1 [c(st, at, st+1)|st, at] is the
expected cost of taking action at in state st under either the PQ or QAPA model.
Naturally, the energy constraint has a major impact on the cost, but it is implicit: as
the sensor cannot transmit an update if it has no energy tokens, its age will increase,
consequently increasing the long-term cost. In fact, we explicitly excluded a cost of
transmission from the model, as the policy can already account for energy limitations
by tuning its behavior and avoiding short-sighted choices that maximize the short-term
reward while leading to long-term harm. The factor λ is crucial in this, as a higher
discount value leads to a more foresighted policy.

5.1 Problem solution
We can now proceed to solve the MDP for the two systems we have defined using policy
iteration, as described in [34, Ch. 4]. In order to apply the algorithm, we need to
truncate the problem to a finite MDP. We do so by defining a maximum age ∆max, a
maximum query interval Tq,max, and a token bucket size B: once the age, the query
interval, or the number of tokens in the bucket reach the maximum, they cannot increase
further. As long as the maximum values are sufficiently large, they are not reached

5. MDP formulation and problem solution 125

during normal operation and this simplification does not affect the optimal policies or
their performance.

The policy iteration algorithm has two steps, policy evaluation and policy improve-
ment, which are repeated until convergence. The algorithm is initialized with a policy
function π0 and a value function v0

π, which are both set to all zeros. At each step n, we
can use the current estimate of the value of a state to update the next estimate, getting
the value un(s, a, s′), defined as:

un(s, a, s′) = c(s, πn(s), s′) + λvn
π(s′). (D.20)

The iterative steps are then:

1. The policy is evaluated using

vn+1
π (s) =

∑
s′∈S

p(s′|s, πn(s))un(s, a, s′), (D.21)

for all s, where s is the current state, s′ is the new state, a is the action, and c
is the cost from either (D.17) or (D.18). The value function is an estimate of the
long-term value that can be achieved in a given state using the policy.

2. The policy is improved by choosing the action that maximizes the long-term value,
i.e., minimizes the long-term cost:

πn+1(s) = arg min
a∈A

∑
s′∈S

p(s′|s, a)un+1(s, a, s′). (D.22)

Policy iteration is guaranteed to converge to the optimal policy [35] in finite-state MDPs
with finite reward. The complexity of policy iteration in general is exponential in the
number of states, making it particularly impractical for realistic problems. However, if
the correct pivoting rule is adopted and the discount factor is constant in time, policy
iteration was shown to be strongly polynomial in [36]:

Nit ≤
|S|2(|A| − 1)

1− λ log
(|S|2

1− λ

)
. (D.23)

Each iteration uses at most O(|A||S|2) operations, making the resulting bound poly-
nomial in the size of the MDP. As mentioned above, we truncated the age and token
bucket size to make the MDP finite, so the conditions to use the algorithm apply. The
notation in the past two sections is summarized in Table D.1. In our case, in which there
are only two actions, policy iteration then converges in O

(
|S|2
1−λ log

(
|S|2
1−λ

))
) iterations,

which correspond to O
(

2|S|4
1−λ log

(
|S|2
1−λ

))
steps.

126 Paper D.

0 50 100 150 200

0

10

20

30

t

∆
(t

)

PQ
QAPA
Query Time

(a) AoI over time for the two policies.

0 50 100 150 200

0

2

4

6

8

10

t

b(
t)

PQ
QAPA
Query time

(b) Available tokens over time for the two policies.

Fig. D.6: AoI dynamics of the PQ and QAPA policies for Tq = 40, µb = 0.2, ε = 0.2. The PQ policy
generally has a lower AoI, but the QAPA policy minimizes the AoI at the query instants.

Naturally, policy iteration can suffer from the curse of dimensionality in more com-
plex scenarios: as the number of states increases exponentially with the number of
considered dimensions of the state, and policy iteration has itself an exponentially in-
creasing complexity as the number of states increases, this solution is only practical for
relatively small problems. In larger problems, learning-based techniques such as rein-
forcement learning can provide a far faster convergence, particularly when using deep
reinforcement methods that can generalize experience [37]. These solutions have been
successfully applied in the AoI optimization literature [25], and they can be applied
directly to our MDP formulation, but we consider them as part of future work on this
subject, solving some simpler examples with policy iteration.

6 Simulation settings and results
This section presents Monte Carlo evaluations of the policies obtained using the MDP
described in Section 5. Although, the methods in Section 5 can be applied to any query
process, throughout the evaluation we will consider queries that occur periodically, at
a fixed time interval Tq. Furthermore, we truncate the MDP at a maximum age of
∆max = 100 × Tq and a maximum token bucket size of B = 10, and we use a discount
factor λ = 0.95. We use the term AoI to refer to the age at any time and QAoI for the
age sampled at the query instants.

6.1 Periodic queries with constant error probability
We first consider the simplest scenario, in which the error probability is constant and
the query arrival process is deterministic with period Tq. In this scenario, the error
probability process only has one state, i.e., |Se| = 1, and the error probability is a
constant value ε. The query arrival process is a deterministic Markov chain with Tq

6. Simulation settings and results 127

20

40

A
oI

(P
Q

)

0.00

0.05

0.10

0 10 20 30

20

40

t mod Tq

A
oI

(Q
A

PA
)

0.00

0.40

0.80

(a) PQ and QAPA AoI pmf over tq , ε = 0.2.

0 100 200 300 400
10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

PQ, AoI
PQ, QAoI
QAPA, AoI
QAPA, QAoI

(b) Complementary CDF, ε = 0.2.

20

40

A
oI

(P
Q

)

0.00

0.05

0.10

0 10 20 30

20

40

t mod Tq

A
oI

(Q
A

PA
)

0.00

0.40

0.80

(c) PQ and QAPA AoI pmf over tq , ε = 0.7.

0 100 200 300 400
10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

PQ, AoI
PQ, QAoI
QAPA, AoI
QAPA, QAoI

(d) Complementary CDF, ε = 0.7.

Fig. D.7: AoI distributions and CCDFs for PQ and QAPA for Tq = 40, µb = 0.1, and ε = {0.2, 0.7}.

states, with Sq = {1, . . . , Tq}. The transition probabilities are given by:

Pq(sq, s
′
q) =


1, sq < Tq ∧ s′q = sq + 1;
1, sq = Tq ∧ s′q = 1;
0, otherwise.

(D.24)

The subset of query states is given by Q = Tq, i.e., the server sends a query only when
the state reaches Tq, after which the state is reset to 1 and the counter starts increasing
again. This Markov chain is equivalent to a periodic deterministic query process.

We start by exploring the temporal dynamics of the AoI process obtained using
the PQ and the QAPA policies. Recall that PQ is optimized to achieve a low AoI
independent of the query process, while QAPA minimizes the AoI at the query times,
using cost functions (D.17) and (D.18), respectively. Fig. D.6a shows the AoI for queries
occurring periodically every Tq = 40 time slots as indicated by the vertical lines, a
packet error probability of ε = 0.2, and a token rate µb = 0.2. It is seen that the PQ
policy reduces the AoI approximately uniformly across time, while the QAPA policy
consistently tries to reduce the AoI in the slots immediately prior to a query, so that the
AoI is minimized when the query arrives. This is reflected in Fig. D.6b, which shows

128 Paper D.

that the QAPA policy accumulates energy when the next query is far in the future,
unlike PQ. A consequence of this is that the QAPA policy generally has a slightly
higher average AoI than the PQ policy, but the QAoI of the QAPA is significantly lower
than that of the PQ policy.

The initial observations from Fig. D.6 can be confirmed by the distribution of the
AoI as a function of the time since the last query, as illustrated in Fig. D.7. Figs. D.7a
and D.7c show the probability mass function (pmf) of the AoI conditioned on various
time instants t mod Tq, while Figs. D.7b and D.7d show the CDF of the overall AoI and
QAoI. We can immediately see the difference between the two policies from Fig. D.7a:
the horizontal axis represents the time since the last query, while the colors represent
the pmf of the AoI, whose domain is on the vertical axis. The AoI for the PQ policy
does not depend on the time since the last query: the distribution is the same for all
time instants, as can be seen by the fact that each horizontal line in the plot has exactly
the same color. On the other hand, the QAPA policy shows a very different pattern: the
AoI increases linearly as time passes, which indicates that the sensor does not send any
packets in the first half of the interval, then sharply drops and stays very close to 0 in the
final part of the interval. This behavior is consistent with what we would expect from a
QAoI-oriented system, as sending packets long before the next query is basically a waste
of energy, and transmissions are clustered just before the query instant. The resulting
CDF in Fig. D.7b reveals, as expected, that the AoI and the QAoI are equivalent for the
PQ policy, as the distribution is the same at any time instant. However, for the QAPA
policy, the QAoI is significantly lower than the AoI, while the AoI is often larger than the
PQ policy’s. This is due to the fact that the QAoI is only measured at the query instants,
at which the age of the QAPA policy is minimized. Due to the energy constraint, this
comes at the cost of a generally higher age, causing a higher AoI measured at each time
instant. Finally, the staircase appearance in the CDF is due to the fact that the queries
happen periodically. If the queries were arriving at variable (but known in advance)
intervals, then the QAPA would still have lower QAoI than the PQ query, but its CDF
would have a different shape.

The same observations apply for the scenario with high error probability, ε = 0.7,
shown in Figs. D.7c and D.7d. Although the AoI and QAoI are higher due to the high
packet error rate, the applied policies are similar. It is interesting to note that there
is a significant probability of having a QAoI higher than 40 (which corresponds to Tq)
in Fig. D.7c, and that transmissions tend to be even more clustered towards the end
of the query interval for the QAPA policy, indicating that the sensor will tend to save
energy for future queries when it gets several tokens. Although there is a significant
probability that the packet immediately prior to the query is lost, the AoI distribution
at t mod Tq = 0 is still concentrated close to one.

We now study how the average AoI and QAoI changes with the packet error prob-
ability ε for various choices of the parameters, shown in Fig. D.8. For all cases, the
QAPA policy achieves the lowest QAoI, while the PQ policy achieves the lowest AoI.

6. Simulation settings and results 129

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

PQ, AoI
PQ, QAoI
QAPA, AoI
QAPA, QAoI

(a) Average age for Tq = 10, µb = 0.05.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(b) Average age for Tq = 10, µb = 0.2.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(c) Average age for Tq = 40, µb = 0.05.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(d) Average age for Tq = 40, µb = 0.2.

Fig. D.8: Average AoI and QAoI for the two systems for different values of Tq and µb.

When the query period, Tq, is low, the difference between AoI and QAoI is relatively
small, as is the difference between the two policies. Intuitively, this is because the query
instants, which are prioritized by the QAPA policy, are more frequent, making the two
problems more similar.

As a result, awareness of the query arrival process becomes more important when
queries are rare, i.e., when Tq is large: this is clear from the large gap between the
average QAoI achieved by QAPA and by PQ in Fig. D.8c and Fig. D.8d. The plots on
the left show the results for µb = 0.05, i.e., when a new token is generated on average
every 20 time slots. When Tq = 10 (see Fig. D.8a), the token period becomes a limiting
factor, and both the AoI and QAoI are relatively high even for low values of ε. In
particular, in the error-free case when ε = 0, the average QAoI cannot be lower than
(1+11)/2 = 6, which is achieved by transmitting an update prior to every second query.
Interestingly, the impact of the energy limit becomes less significant for the QAPA policy
as the time between queries increases: by saving up tokens until right before the query,
this policy can significantly reduce the QAoI, at the cost of a higher AoI. On the other
hand, the PQ policy does not benefit from this increase, as it is oblivious of the query
arrival frequency. When tokens are generated faster, at rate µb = 0.2, as shown in the
plots on the right side of the figure, the AoI and the QAoI are generally lower, since
more frequent transmissions are allowed.

130 Paper D.

0 10 20 30

0

100

200

300

tq

∆

(a) PQ, b = 1.

0 10 20 30

0

100

200

300

tq
∆

(b) PQ, b = 2.

0 10 20 30

0

100

200

300

tq

∆

(c) PQ, b = 3.

0 10 20 30

0

100

200

300

tq

∆

(d) PQ, b = 4.

0 10 20 30

0

100

200

300

tq

∆

(e) QAPA, b = 1.

0 10 20 30

0

100

200

300

tq

∆

(f) QAPA, b = 2.

0 10 20 30

0

100

200

300

tq

∆

(g) QAPA, b = 3.

0 10 20 30

0

100

200

300

tq

∆

(h) QAPA, b = 4.

Fig. D.9: Strategies for the two systems with ε = 0.2. Yellow indicates a transmission, dark blue
indicates no transmission.

Finally, it is interesting to look at the strategies for the two systems, which are
plotted in Fig. D.9. As expected, the optimal strategy for the PQ system does not
depend on the queries, only on the current AoI. If the AoI is very low, the PQ system
waits for a while to transmit, but this is limited to a few slots (8 if b = 1, and just 4 if
b = 4). On the other hand, while the PQ strategy plots are horizontal, the QAPA plots
are almost vertical, i.e., the importance of the AoI is very low, and the system decides
almost only based on the time until the next query. Naturally, if b is low, it only tries
to transmit in the very last possible slot, to reduce the QAoI, while more tokens allow
it to start earlier and protect itself from errors. If the AoI is high enough, it might be
worth it to start transmitting a little earlier and hope to get a new token in the next
slot, as the small increase in the QAoI if only the packet transmission in the earlier
slot is successful is offset by the large decrease if the new token arrives and only that
transmission is successful. If we compare the QAPA strategies with the threshold-based
ones derived for the simplified system in Fig. D.4, we see a significant similarity: the
basic structure is still the same, although the precise values of the thresholds change.
This result is encouraging for future attempts at deriving analytical threshold-based
strategies for the full problem.

It is possible to imagine a simple threshold-based strategy that performs almost as
well as the optimal strategy in this scenario: sending packets only if b ≥ Tq − tq is a
good approximation of the optimal strategy. Computing the threshold AoI over which
it is convenient to send the first packet earlier is more complex, but still relatively easy

6. Simulation settings and results 131

20

40

A
oI

(P
Q

)

0.00

0.20

0.40

0 10 20 30

20

40

t mod Tq

A
oI

(Q
A

PA
)

0.00

0.40

0.80

(a) PQ and QAPA AoI pmf over tq , ε = 0.2.

0 100 200 300 400
10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

PQ, AoI
PQ, QAoI
QAPA, AoI
QAPA, QAoI

(b) Complementary CDF, ε = 0.2.

20

40

A
oI

(P
Q

)

0.00

0.20

0.40

0 10 20 30

20

40

t mod Tq

A
oI

(Q
A

PA
)

0.00

0.40

0.80

(c) PQ and QAPA AoI pmf over tq , ε = 0.7.

0 100 200 300 400
10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

PQ, AoI
PQ, QAoI
QAPA, AoI
QAPA, QAoI

(d) Complementary CDF, ε = 0.7.

Fig. D.10: AoI distributions and CCDFs for PQ and QAPA for Tq = 40, µb = 0.1 and ε = {0.2, 0.7}.

132 Paper D.

in this case. More complex cases, such as the ones we will examine below, have a much
wider state space with a higher dimensionality, making strategies difficult to visualize
and hand-design.

6.2 Periodic queries and error probability
We now analyze what happens when the error probability is not constant, but follows
a periodic function. We consider the case of a LEO satellite connection which has
limited availability due to constraints on the available constellation: connectivity is
only available sporadically, depending on the periodic passes of the satellite over the
transmitter node. In order to show the main trade-offs and represent a realistic case
in which a LEO satellite passes over the transmitter at regular intervals, we consider a
periodic error process with period Te, in which the state space Se = {1, . . . , Te}. The
first two slots of each period are the only ones during which a transmission is possible,
with an error probability ε0, and correspond to the satellite pass. In all other slots, the
transmission fails, as the transmitter is outside the satellite’s coverage area. We then
have ε(1) = ε(2) = ε0, and ε(se) = 1∀se /∈ {1, 2}. The transition probabilities for the
error probability process are given by:

Pe(se, s
′
e) =


1, se < Te ∧ s′e = se + 1;
1, se = Te ∧ s′e = 1;
0, otherwise.

(D.25)

We can analyze the behavior of the system as a function of the period Te and the
basic error probability ε0. The query arrival process is defined as above, with transition
probabilities given by (D.24). We first consider what happens in a simple case, setting
µb = 0.1, Te = 10, and Tq = 40. Fig. D.10b and Fig. D.10d show how the PQ and QAPA
system are restricted to the available transmission slots: outside of those slots, the AoI
can only grow, resulting in the striped pattern on the plots. As expected, the QAPA
system concentrates its effort in the transmission opportunities closer to a query, while
the PQ system uses all available slots indiscriminately. This generates the difference in
the QAoI seen in Fig. D.10b and Fig. D.10d: the QAPA system can maintain a lower
QAoI, and the higher percentiles of the AoI, i.e., the tail of its distribution, are lower
as well if the error probability is high.

We can then look at the effect of increasing the period of the satellite on the interplay
between AoI and QAoI. We note here that we consider the worst possible scenario for
the QAoI, i.e., the one in which the queries are synchronized with the satellite passes and
each query arrives at the instant immediately before a satellite’s pass. Fig. D.11 shows
the difference in the average age for Te = 1 (i.e., the previous scenario with constant
error probability), Te = 5, Te = 10, and Te = 20, considering µb = 0.05 and Tq = 40. In
all cases, the average AoI of the PQ process is similar: since the most important limiting
factor is the energy constraint, the average age is about 20 slots in the error-free case

6. Simulation settings and results 133

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

PQ, AoI
PQ, QAoI
QAPA, AoI
QAPA, QAoI

(a) Average age for Te = 1.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(b) Average age for Te = 5.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(c) Average age for Te = 10.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(d) Average age for Te = 20.

Fig. D.11: Average AoI and QAoI for the two systems for different values of Te, with µb = 0.1 and
Tq = 40.

and follows a similar trend for all subfigures. By comparing Fig. D.11a and Fig. D.11d,
it is clear that this is not true for QAoI: the effect of having transmissions only at the
beginning of the period, at least Te−2 slots from the query, increases the average QAoI
for the PQ process by approximately Te/2− 1 slots. As in the previous case, the QAPA
system can improve the QAoI by paying a small cost in terms of AoI, but the difference
between its QAoI and the PQ system’s reduces as transmission opportunities become
scarcer: by constraining the possible transmissions of the QAPA system to a few slots,
we reduce the optimality gap of the traditional AoI maximization strategy. However, the
difference between the two is still significant even for Te = 20, as shown in Fig. D.11d.
It is also interesting to see that AoI and QAoI are not the same in this case, even for the
PQ policy: this is due to the fact that, as Tq is a multiple of Te, queries always come
just before a transmission opportunity, so the QAoI is always at least Te−1, while there
is no such offset for AoI, which is measured in all slots.

6.3 Stochastic queries with periodic error probability
We now examine a more general case, in which queries arrive at stochastic IID intervals
with a known distribution and transmission opportunities are limited by satellite passes.

134 Paper D.

20
40
60
80

100

A
oI

(P
Q

)

0.00

0.05

0.10

0 10 20 30

20
40
60
80

100

tq

A
oI

(Q
A

PA
)

0.00

0.05

0.10

(a) PQ and QAPA AoI pmf over tq , ε = 0.2.

0 100 200 300 400
10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

PQ, AoI
PQ, QAoI
QAPA, AoI
QAPA, QAoI

(b) Complementary CDF, ε = 0.2.

20

40

A
oI

(P
Q

)

0.00

0.05

0.10

0 10 20 30

20

40

tq

A
oI

(Q
A

PA
)

0.00

0.05

0.10

(c) PQ and QAPA AoI pmf over tq , ε = 0.7.

0 100 200 300 400
10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

PQ, AoI
PQ, QAoI
QAPA, AoI
QAPA, QAoI

(d) Complementary CDF, ε = 0.7.

Fig. D.12: AoI distributions and CCDFs for PQ and QAPA for Tq = 40, µb = 0.1, Te = 10, and
ε = {0.2, 0.7}, with uniformly distributed query intervals over {21, 22, . . . , 40}.

6. Simulation settings and results 135

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε0

A
ve

ra
ge

ag
e

PQ, AoI
PQ, QAoI
QAPA, AoI
QAPA, QAoI

(a) Average age for Te = 1.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε0

A
ve

ra
ge

ag
e

(b) Average age for Te = 5.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε0

A
ve

ra
ge

ag
e

(c) Average age for Te = 10.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε0

A
ve

ra
ge

ag
e

(d) Average age for Te = 20.

Fig. D.13: Average AoI and QAoI for the two systems for different values of Te, with µb = 0.1,
Tq = 40, and uniformly distributed query intervals over {21, 22, . . . , 40}.

The error probability process is then defined as above, with transition probabilities
given by (D.25). On the other hand, the queries are modeled to arrive with uniformly
distributed inter-query times, i.e., tq,i+1 − tq,i ∼ U

(
Tq

2 + 1, Tq

)
. This is a worst-case

scenario for the QAPA system: as queries can arrive at a random instant over a wide
range of values, the transmitter needs to keep the AoI low almost at all times. We have
Sq = {1, . . . , Tq} with these non-zero transition probabilities:

Pq(sq, s
′
q) =


1, sq ≤ Tq

2 ∧ s′q = sq + 1;
1− 1

Tq−sq+1 ,
Tq

2 < sq < Tq ∧ s′q = sq + 1;
1

Tq−sq+1 , sq >
Tq

2 ∧ s′q = 1.
(D.26)

Fig. D.12 shows that this is indeed a case in which knowledge of the query process
is not critical: the age pmfs in Fig. D.12a and Fig. D.12c are almost the same for PQ
and QAPA. In this case, the time since the last query has a limited value to the QAPA
system, as it does not help much in predicting when a query will arrive. Consequently,
the behavior of the QAPA system is much more similar to the PQ system’s: the knowl-
edge of the query arrival process statistics results in a very small gain, as the uniform

136 Paper D.

0 100 200 300 400
10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

PQ, AoI
PQ, QAoI
QAPA, AoI
QAPA, QAoI

(a) Complementary CDF of the AoI and QAoI.

0 50 100 150 200

0

10

20

30

t

∆
(t

)

AoI
QAoI
Query Time

(b) AoI over time for the two policies.

Fig. D.14: Behavior of the two systems with stochastic queries and a Gilbert-Elliott channel.

interval distribution gives a limited amount of information on future steps. However,
setting a uniform distribution for the interval still implies some memory in the process,
since, e.g., knowing that there has been no query for Tq − 1 steps implies that a query
will arrive in the next step with probability 1. The PQ and QAPA strategies would be
absolutely identical if the query process was Poisson, i.e., memoryless: if queries were to
follow a memoryless process, any instant would be as valuable as any other in terms of
future QAoI. This is evident in Fig. D.12b, which shows a negligible gain for the QAPA
system in terms of QAoI, and even more in Fig. D.12d.

The analysis of the average AoI and QAoI as a function of the error probability ε0,
shown in Fig. D.13, shows that freedom of action and the precision of knowledge about
the query arrival times are two factors that increase the gap between a naive PQ system
and a query-aware QAPA one. This is intuitive, as limits to the available strategies can
reduce gains, as can uncertainty about query arrival times. The more randomness is
included in the system, and the more constrained the possible strategies become, the
more QAoI looks exactly like AoI.

6.4 Stochastic queries with a Gilbert-Elliott channel
Finally, we consider another case, in which the channel does not have predefined trans-
mission opportunities, but follows a stochastic Gilbert-Elliott [38, 39] model. In this
model, we have two states, with ε1 = 0.2 and ε2 = 0.7. The transition probability
matrix is given by:

Pe(se, s
′
e) =

(
0.9 0.1
0.6 0.4

)
. (D.27)

On the other hand, the query process is given by the distribution in (D.26). In this case,
both the channel and the query process are stochastic, and the amount of information
available to the sensor is limited to the current state of each process and the transition
probabilities.

Fig. D.14a shows the complementary CDF of the AoI and QAoI in this scenario:
as this case is less restrictive than the one with periodic transmissions, in which a

7. Conclusions and future work 137

successful update was only possible once every 5 or more slots, the QAPA strategy
performs significantly better in terms of QAoI. Surprisingly, it also performs better in
terms of the tail of the AoI, although not on average: this might be because of the
choice to save energy by not transmitting in the first 20 slots after each query, which
have a probability 0 of having another query. Fig. D.14b shows this behavior over time:
while the PQ policy tends to uniformly transmit frequently, the QAPA policy lets the
AoI grow when queries cannot arrive, then transmits more often to maintain the lowest
possbile QAoI for a potential query.

7 Conclusions and future work
In this work, we have presented an optimization of QAoI, which takes the query arrival
process and resource constraints on the communication into account. We showed that
awareness of the query process can improve average and worst-case freshness in a variety
of systems, modeling the single-source scheduling problem as an MDP and finding the
analytical solution. As AoI does not consider the specific features of applications, but
reduces the age of any packet at any time, it cannot incorporate this additional infor-
mation. The awareness of the query process can significantly improve the freshness as
perceived by several monitoring application, adapting the scheduling to only transmit
when it is most useful and avoid useless updates.

This work is a first step in considering the requirements of time-sensitive monitoring
applications in resource-constrained communication scenarios: we see several avenues of
possible future work, such as including the value of updates in the scheduling problem
as well as their timing. Furthermore, the extension of the problem to more complex
systems with multiple sources and realistic channel access can be an interesting direc-
tion of research, as there are several scenarios with one or more monitoring applications
that need information from multiple sensors. In these more complex scenarios, policy
iteration would be too complex due to the curse of dimensionality, and we foresee the ap-
plication of reinforcement learning methods to find the optimal strategy for minimizing
QAoI.

A Appendix
In this Appendix, we prove that the threshold strategies defined in Sec. 4 are optimal.
In order to prove Theorem 1, we first introduce the expected long-term cost Γ(t, a, d):

Γ(t, a, d) = E[C(t)|at = a,∆(t− 1) = d]. (D.28)

We can similarly define Γ(t, π, d):

Γ(t, π, d) = E[C(t)|π,∆(t− 1) = d]. (D.29)

138 Paper D.

We then introduce the following lemma.
Lemma 1
The expected long-term cost is a monotonically increasing function of the age ∆:

Γ(t, a, d) ≤ Γ(t, a, d+ 1), ∀a, d, t. (D.30)

Proof. We prove this lemma by backward induction in t, working from t = T and going
backward. If we consider the base case with t = T , we can see from (D.10) that the
condition holds. We now assume that the condition is from t + 1 to t = T . First, we
consider the case with at = 0. We have:

ΓPQ(t, 0, d) = d+ ΓPQ(t+ 1, π∗, d+ 1). (D.31)

Since we know that ΓPQ(t+ 1, π∗, d+ 2) ≥ ΓPQ(t+ 1, π∗, d+ 1) due to the assumption
in the inductive step, and d+ 1 > d, the lemma is proven for at = 0. If we consider the
case in which at = 1, we get:

ΓPQ(t, 1, d) =1 + (1− ε)ΓPQ(t+ 1, π∗, 1)
+ ε(d+ ΓPQ(t+ 1, π∗, d+ 1)).

(D.32)

It is easy to see how this case also respects the condition, as d appears twice. All
elements of the cost are then the same or higher for ∆(t − 1) = d + 1 and the lemma
is proven by induction. The same procedure can be repeated for QAPA, using either
QAoI or EAoI as a metric.

As the expected cost is a monotonically increasing function of the current age, we can
immediately prove Theorem 1.

Proof of Theorem 1. As for Lemma 1, we can use backward induction starting from
t = T to prove the theorem. The base case is trivially true, as the decision is given
by (D.11). We can now attempt to perform the inductive step ad absurdum, by assuming
that the theorem is true from t + 1 to T . Suppose that the optimal policy is not a
threshold policy, i.e., ∃d : π∗(d, t) = 1 ∧ π∗(d + 1, t) = 0. In this case, we know that,
since π∗(d, t) = 1, we get:

ΓPQ(t, 1, d) < ΓPQ(t, 0, d). (D.33)
We can then take the components of the reward:

1 + d+ ΓPQ(t+ 1, π∗, d+ 1) > (1− ε)ΓPQ(t+ 1, π∗, 1)
+1 + γ + ε(d+ ΓPQ(t+ 1, π∗, d+ 1)),

(D.34)

which yields:

d+ ΓPQ(t+ 1, π∗, d+ 1)− ΓPQ(t+ 1, π∗, 1) > γ

1− ε . (D.35)

References 139

On the other hand, since we assumed that π∗(d + 1, t) = 0, we can follow the same
procedure to get:

d+ 1 + ΓPQ(t+ 1, π∗, d+ 2)− ΓPQ(t+ 1, π∗, 1) ≤ γ

1− ε . (D.36)

Since C(t) is non-negative, and we know from Lemma 1 that ΓPQ(t + 1, π∗, d + 1) ≤
ΓPQ(t+1, π∗, d+2), the results in (D.35) and (D.36) are in contradiction, and π∗(d, t) =
1 ⇒ π∗(d + n, t) = 1, ∀n ∈ N. As before, the same procedure can be repeated for
QAPA, which does not have the term d in the long-term cost, but still yields the same
inequality.

References
[1] A. Kosta, N. Pappas, V. Angelakis et al., “Age of information: A new concept,

metric, and tool,” Foundations and Trends® in Networking, vol. 12, no. 3, pp.
162–259, 2017.

[2] B. Yin, S. Zhang, Y. Cheng, L. X. Cai, Z. Jiang, S. Zhou, and Z. Niu, “Only
those requested count: Proactive scheduling policies for minimizing effective age-
of-information,” in Conf. on Computer Communications (INFOCOM). IEEE,
Apr. 2019, pp. 109–117.

[3] B. Soret, S. Ravikanti, and P. Popovski, “Latency and timeliness in multi-hop
satellite networks,” in Int. Conf. on Communications (ICC). IEEE, Jun. 2020.

[4] D. Li, S. Wu, Y. Wang, J. Jiao, and Q. Zhang, “Age-optimal HARQ design for
freshness-critical satellite-IoT systems,” IEEE Internet of Things Journ., vol. 7,
no. 3, pp. 2066–2076, Dec. 2019.

[5] J. Holm, A. E. Kalør, F. Chiariotti, B. Soret, S. K. Jensen, T. B. Pedersen, and
P. Popovski, “Freshness on demand: Optimizing Age of Information for the query
process,” in Int. Communications Conf. (ICC). IEEE, Jun. 2021.

[6] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one
update?” in Conf. on Computer Communications (INFOCOM). IEEE, Mar.
2012, pp. 2731–2735.

[7] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal information updates in
multihop networks,” in Int. Symp. on Information Theory (ISIT). IEEE, Jun.
2017, pp. 576–580.

[8] A. M. Bedewy, Y. Sun, and N. B. Shroff, “The age of information in multihop
networks,” IEEE/ACM Trans. on Networking, vol. 27, no. 3, pp. 1248–1257, Jun.
2019.

140 References

[9] B. Wang, S. Feng, and J. Yang, “To skip or to switch? minimizing age of infor-
mation under link capacity constraint,” in 19th Int. Worksh. on Signal Processing
Advances in Wireless Communications (SPAWC). IEEE, Jun. 2018.

[10] K. Chen and L. Huang, “Age-of-information in the presence of error,” in Int. Symp.
on Information Theory (ISIT). IEEE, Jul. 2016, pp. 2579–2583.

[11] R. Devassy, G. Durisi, G. C. Ferrante, O. Simeone, and E. Uysal, “Reliable trans-
mission of short packets through queues and noisy channels under latency and
peak-age violation guarantees,” IEEE Journ. on Selected Areas in Communica-
tions, vol. 37, no. 4, pp. 721–734, Feb. 2019.

[12] H. B. Beytur, S. Baghaee, and E. Uysal, “Measuring age of information on real-life
connections,” in 27th Signal Processing and Communications Applications Conf.
(SIU). IEEE, Apr. 2019.

[13] I. Kadota and E. Modiano, “Minimizing the age of information in wireless networks
with stochastic arrivals,” IEEE Trans. on Mobile Computing, Dec. 2019.

[14] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff, “Update or
wait: How to keep your data fresh,” IEEE Trans. on Information Theory, vol. 63,
no. 11, pp. 7492–7508, Nov. 2017.

[15] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting source,” in
Int. Symp. on Information Theory (ISIT). IEEE, Jun. 2015, pp. 3008–3012.

[16] R. D. Yates and S. K. Kaul, “Status updates over unreliable multiaccess channels,”
in Int. Symp. on Information Theory (ISIT). IEEE, Jun. 2017, pp. 331–335.

[17] R. D. Yates and S. K. Kaul, “Age of information in uncoordinated unslotted up-
dating,” in Int. Symp. on Information Theory (ISIT). IEEE, Jun. 2020, pp.
1759–1764.

[18] R. Talak, S. Karaman, and E. Modiano, “Distributed scheduling algorithms for
optimizing information freshness in wireless networks,” in 19th Int. Worksh. on
Signal Processing Advances in Wireless Communications (SPAWC). IEEE, Jun.
2018.

[19] X. Chen, K. Gatsis, H. Hassani, and S. S. Bidokhti, “Age of information in random
access channels,” in Int. Symp. on Information Theory (ISIT). IEEE, Jun. 2020,
pp. 1770–1775.

[20] R. Talak, S. Karaman, and E. Modiano, “Optimizing information freshness in wire-
less networks under general interference constraints,” IEEE/ACM Trans. on Net-
working, vol. 28, no. 1, pp. 15–28, Dec. 2019.

References 141

[21] B. T. Bacinoglu, Y. Sun, E. Uysal-Bivikoglu, and V. Mutlu, “Achieving the age-
energy tradeoff with a finite-battery energy harvesting source,” in Int. Symp. on
Information Theory (ISIT). IEEE, Jun. 2018, pp. 876–880.

[22] X. Wu, J. Yang, and J. Wu, “Optimal status update for age of information min-
imization with an energy harvesting source,” IEEE Trans. on Green Communica-
tions and Networking, vol. 2, no. 1, pp. 193–204, Nov. 2017.

[23] Y. Gu, H. Chen, Y. Zhou, Y. Li, and B. Vucetic, “Timely status update in Internet
of Things monitoring systems: An age-energy tradeoff,” IEEE Internet of Things
Journ., vol. 6, no. 3, pp. 5324–5335, Feb. 2019.

[24] S. Feng and J. Yang, “Optimal status updating for an energy harvesting sensor with
a noisy channel,” in Conf. on Computer Communications Worksh. (INFOCOM).
IEEE, Apr. 2018, pp. 348–353.

[25] E. T. Ceran, D. Gündüz, and A. György, “Reinforcement learning to minimize age
of information with an energy harvesting sensor with HARQ and sensing cost,” in
Conf. on Computer Communications Worksh. (INFOCOM). IEEE, Apr. 2019,
pp. 656–661.

[26] S. Zhang, H. Zhang, Z. Han, H. V. Poor, and L. Song, “Age of information in
a cellular internet of UAVs: Sensing and communication trade-off design,” IEEE
Trans. on Wireless Communications, vol. 19, no. 10, pp. 6578–6592, Jun. 2020.

[27] Y. Sang, B. Li, and B. Ji, “The power of waiting for more than one response in min-
imizing the age-of-information,” in Global Communications Conf. (GLOBECOM).
IEEE, Dec. 2017.

[28] F. Li, Y. Sang, Z. Liu, B. Li, H. Wu, and B. Ji, “Waiting but not aging: Opti-
mizing information freshness under the pull model,” IEEE/ACM Transactions on
Networking, vol. 29, no. 1, pp. 465–478, 2020.

[29] M. Hatami, M. Jahandideh, M. Leinonen, and M. Codreanu, “Age-aware status
update control for energy harvesting IoT sensors via reinforcement learning,” in 31st
Ann. Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC).
IEEE, Aug. 2020.

[30] M. Hatami, M. Leinonen, and M. Codreanu, “AoI minimization in status update
control with energy harvesting sensors,” IEEE Trans. on Communications, Sep.
2021.

[31] C. Xu, X. Wang, H. H. Yang, H. Sun, and T. Q. Quek, “AoI and energy consumption
oriented dynamic status updating in caching enabled IoT networks,” in Conf. on
Computer Communications Worksh. (INFOCOM). IEEE, Jul. 2020, pp. 710–715.

142 References

[32] V. Raghunathan, S. Ganeriwal, M. Srivastava, and C. Schurgers, “Energy efficient
wireless packet scheduling and fair queuing,” ACM Trans. on Embedded Computing
Systems (TECS), vol. 3, no. 1, pp. 3–23, Feb. 2004.

[33] R. Bellman, “A Markovian decision process,” Journ. of Mathematics and Mechan-
ics, vol. 6, no. 5, pp. 679–684, Jan. 1957.

[34] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[35] R. A. Howard, Dynamic programming and Markov processes. John Wiley, 1960.

[36] Y. Ye, “The simplex and policy-iteration methods are strongly polynomial for the
markov decision problem with a fixed discount rate,” Mathematics of Operations
Research, vol. 36, no. 4, pp. 593–603, Nov. 2011.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves et al., “Human-level control through deep reinforcement learning,” Na-
ture, vol. 518, no. 7540, pp. 529–533, 2015.

[38] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell System Technical Journ.,
vol. 39, no. 5, pp. 1253–1265, Sep. 1960.

[39] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,” Bell
System Technical Journ., vol. 42, no. 5, pp. 1977–1997, Sep. 1963.

Paper E

SENDAI: A Framework for Joint Reasoning About Sensor
Data Acquisition and Sensor Data Analytics

Søren Kejser Jensen, Josefine Holm, Federico Chiariotti, Christian
Thomsen, Anders Ellersgaard Kalør, Petar Popovski, Beatriz Soret and

Torben Bach Pedersen

The paper has been submitted to the
Information and Computation Journal 2022.

The layout has been revised.

1. Introduction 145

Abstract
Sensor networks are increasingly being deployed to monitor critical infrastructure. How-
ever, as the number of sensors being deployed increases, so does the amount of sensor
data that must be transmitted, stored, and analyzed. Thus, a significant number of
methods have been proposed to improve both sensor data acquisition and analytics. For
example, for sensor data acquisition efficient sampling and transmission strategies have
been proposed, and for sensor data analytics efficient compression and query processing
methods have been proposed. However, the proposed strategies and methods generally
focus exclusively on either sensor data acquisition or analytics and in this way limit
the types of optimizations that can be performed. This paper proposes the Framework
for joint Sensory Data Acquisition and Analysis (SENDAI), an integrated framework for
reasoning about sensor data acquisition and analytics together. In order to motivate and
design SENDAI, two very disparate industrial use cases are analyzed: (i) monitoring
wind turbines and (ii) measuring utility consumption using smart meters. In addition,
to demonstrate how SENDAI can be used to reason about sensor data acquisition and
analytics together, it is shown how sensor data acquisition can be optimized to respond
efficiently to a query workload.

1 Introduction
Sensor networks are increasingly deployed for tasks such as monitoring, automation, and
fault-detection [1]. They generally transmit the collected data points to edge nodes with
limited hardware, which then transmit the data points to significantly more powerful
cloud nodes, e.g, hosted by one or more cloud providers like Amazon Web Services,
Google Cloud, and Microsoft Azure. For example, a modern wind turbine contains
thousands of high quality sensors with wired power and connectivity that transmit
the collected data points to a central location in the wind turbine or the park before
they are transmitted to the cloud. The sensors collect information about both the wind
turbine itself and the weather, e.g., temperature, wind direction, and vibration. Another
example is smart meters that provide detailed information about utility consumption,
e.g., electricity and water. The smart meters wirelessly transmit the collected data
points to edge nodes, and the edge nodes transmit the data points wirelessly to the
cloud. For both of these use cases, the available hardware resources, e.g., bandwidth
and storage, significantly limit the number of data points that can be collected due to
the high upgrade cost. Specifically, for the wind turbine use case the main bottleneck
is the bandwidth between the edge nodes and the cloud nodes, and for the smart meter
use case the bandwidth between the sensors and the edge nodes is the main bottleneck.
Thus, while many use cases would benefit from collecting additional data points, e.g.,
for optimizing the production of renewable energy from wind turbines, it is currently

146 Paper E.

infeasible.
Multiple different communities have proposed many methods for improving both

sensor data acquisition and sensor data analytics. For example, the communication
community has proposed a large number of efficient sampling and transmission strate-
gies [2], while the database community has proposed a large number of efficient methods
for storing and analyzing large quantities of sensor data [3–5]. Unfortunately, most sen-
sor data acquisition strategies and methods do not take the requirements of complex
sensor data analytics into account, while most methods developed for sensor data an-
alytics do not consider sensor data acquisition. By taking a holistic approach that
optimizes sensor data acquisition based on the requirements of the analytics that will
be performed, the amount of sensor data to collect can be significantly reduced [6–8].
Thus, integrated methods for sensor data acquisition and analytics reduce the amount of
bandwidth, storage, and computation required and enable the deployment of sensors at
a previously unprecedented scale. Towards creating such integrated methods, this paper
analyses two disparate real-life use cases, combines concepts from the communication
and database community to propose the Framework for joint Sensory Data Acquisition
and Analysis (SENDAI) which provides a holistic view of sensor data acquisition and
analytics, and shows how SENDAI can be used to reason about sensor data acquisi-
tion based on the queries that will be executed. Thus, the paper makes the following
contributions:

• (i) An analysis of sensor data acquisition and analytics for two very disparate
real-life use cases: wind turbines and smart meters. This analysis is based on
information provided by multiple collaborators from industry.

• (ii) The Framework for joint Sensory Data Acquisition and Analysis (SENDAI),
a general framework derived from the analysis of the two use cases for reasoning
about sensor data acquisition and analytics together.

• (iii) A demonstration of how the information in SENDAI can be used to reason
about sensor data acquisition based on a query workload for the two very disparate
use cases.

The rest of the paper is organized as follows: Section 2 presents a running example
and describes concepts that are used throughout the paper. Section 3 contains the
analysis of the wind turbine and smart meter use cases. Section 4 presents SENDAI
while Section 5 describes how the information in SENDAI can be used to reason about
sensor data acquisition for different use cases and query workloads. Section 6 describes
related work, while Section 7 contains the conclusion and discusses future work.

2. Background 147

Sensors UsersCloud NodesEdge Nodes

Sensor Data Acquisition Sensor Data Analytics

States

Storage
Level1

Storage
Leveln

...

Fig. E.1: Generalized example of sensor data acquisition and analytics

2 Background

2.1 Running Example
A generalized example of sensor data acquisition and analytics which will be used
throughout the paper is shown in Figure E.1. While generalized, the example is primar-
ily based on the wind turbine and smart meter use cases mentioned in the introduction
and which will be described in detail in Section 3. As the requirements and hardware
used for sensor data acquisition and analytics differ significantly, the example is ex-
plicitly split into sensor data acquisition and analytics. In the example, sensor data
acquisition consists of changing States that are being sampled by Sensors to produce
data points:

Definition 1
Data Point: A data point DP = (t, v) is pair where t is the time instant when the
value v ∈ R was collected.

The data points are transmitted from the Sensors to Edge Nodes, and from the Edge
Nodes to Cloud Nodes. Sensor data acquisition can either be push-based where the
sender decides when to transmit data points to the receiver, pull-based where the receiver
decides when to request data points from the sender, or push-based with additional data
points pulled if needed. More details about sampling are provided in Section 2.2, while
more details about transmission of data points are provided Section 2.3.

In the example, sensor data analytics consists of data points that are stored on
Cloud Nodes with tiered storage. Thus, frequently accessed data points (hot data) may
be stored in memory or on fast solid state drives, while data points that are rarely
accessed (cold data) may be offloaded to hard disk drives or network attached storage.

148 Paper E.

Users may query the Cloud Nodes for specific data points from a set of Sensors within a
time interval or an aggregate of the values from a set of Sensors within a time interval.
The Cloud Nodes may request additional data points from the Sensors through the Edge
Nodes if this is necessary to be able to answer the query. Alternatively, the Sensors,
Edge Nodes, and Cloud Nodes may use prediction, i.e., using statistical or machine
learning methods to estimate the values of lost historical data points or future data
points. More details about prediction are provided Section 2.4.

2.2 Sampling
Sampling is the process of collecting data points from Sensors that monitor States as
shown in Figure E.1. As stated sampling can either be push-based, pull-based, or push-
based with additional data points pulled if needed. Sampling is an energy-consuming
process and Sensors may have significant battery restrictions. Thus, energy consumption
must be optimized for many use cases. Push-based sampling can be grouped into three
fundamental categories based on energy consumption:

• At-will Sampling is the most energy-intensive, but also more precise, type of
sampling: in this scheme, the Sensors are always awake, can sample the State
at any point in time, and have free transmission scheduling [9]. The Sensor can
then generate a sample at any time, and the sampling process can be optimized
to maximize the accuracy.

• Event-based Sampling methods are triggered by an event [10], i.e., a significant
change in a State with respect to the last value sampled from that State. This
type of sampling is much more energy-efficient than At-will Sampling, as a simple
comparison with a threshold can be performed by simple circuits without waking
up the Sensor’s main processing unit. However, it relies heavily on the threshold
to determine when a significant change has occurred and thus trigger an event.

• Periodic Sampling is the simplest and most energy-efficient sampling method [11],
as the Sensors measure the States at a fixed sampling interval instead of contin-
uously or when an event occurs. Thus, the Sensors can remain in sleep mode
between collecting each data point. Periodic sampling also makes it simpler to op-
timize the transmission of data points from the Sensors to the Edge Node. Since
the data points are collected with a known sampling interval, the Edge Nodes can
assign different transmission windows to the Sensors to avoid interference.

In general, there is a clear trade-off between the predictability of sampling times,
which allows for a more efficient use of energy and communication resources, and the
ability of the sampling method to adapt to the States’ values. Periodic Sampling is
preferable if energy and communication efficiency is required. However, it is also the
least flexible method, as it does not consider the values of the States at all. On the

2. Background 149

other hand, At-will Sampling is energy- and computation-intensive, and requires the
that Sensors decides when and what to transmit which might cause network congestion
and packet collisions. However, At-will Sampling can also react instantaneously to even
minor changes in the values of the States, thus providing significantly higher flexibility.

As an alternative to the three categories of push-based sampling, pull-based sampling
can be used [12]. As stated, with pull-based sampling the Edge Nodes decide when and
which Sensors to request data points from. Generally, each Sensor then provides the
most recent data point. Pull-based sampling can also be considered a version of Event-
based Sampling where the Sensors are triggered by messages from the Edge Nodes
instead of changes in the States [13]. As sampling is triggered by the Edge Nodes,
pull-based sampling cannot adapt to the values of the States. However, it can still
be very flexible, as the Edge Nodes can dynamically decide which Sensors to request
data points from, e.g., by dynamically learning which Sensor to request data points
from based on the queries that are being executed on the Cloud Nodes. In addition,
as the transmissions are scheduled by the Edge Nodes, there is no interference between
Sensors. However, the need to transmit requests to each Sensor can significantly reduce
the amount of available bandwidth.

2.3 Transfer
The amount of data points that can be transmitted between a sender and a receiver is
generally limited by the available bandwidth and the available transmission time. In
addition, for battery-powered Sensors the amount of available energy and the energy
used per transmission must also be taken into account. Thus, in this section, only
the transmission of data points from Sensors to Edge Nodes is discussed. Generally,
transmission of data points from the Sensors to the Edge Nodes is strongly dependent
on the sampling and transmission methods used. For example, if the Sensors can only
communicate with the Edge Nodes over a shared wireless communication link, two or
more simultaneous transmissions from different Sensors will interfere with each other.
Methods for transmitting data points can be categorized as either Scheduled or Random
Access:

• In a push-based Scheduled transmission scheme, the Sensors are pre-configured
such that only one Sensor transmits at any given time [14]. Naturally, as each
Sensor has to wait for its turn before it can transmit the next data point, it can-
not immediately inform the Edge Nodes about a significant change in the value
of the State it is monitoring. Pull-based sampling can also be used with a Sched-
uled transmission scheme, as the requests from the Edge Nodes act as scheduling
information by granting access to the communication link to the specified Sensor
and thus prevents the other Sensors from interfering [15].

• In a Random Access transmission scheme, each individual Sensor decides when

150 Paper E.

to transmit. A Sensor can decide to transmit if the State it is monitoring has
changed more than a threshold compared to the last transmitted data point, or
the decision to transmit can be based on a decision algorithm. However, the
complexity of the computations and decisions that can be made on the Sensors
are generally limited by their very limited computational capabilities. Also, it
is significantly harder to coordinate the transmissions when each individual Sen-
sor decides when to transmit, so a Random Access transmission scheme cannot
support as much traffic as a Scheduled transmission scheme without risking a
significant number of packet collisions [16]. Thus, Random Access transmission
schemes can support adaptive transmissions and usually have lower overheads [17]
than a Scheduled transmission scheme, but they are always exposed to the risk of
interference and, consequently, have a higher packet loss.

2.4 Prediction
Prediction of values for data points is used for both sensor data acquisition [18, 19] and
analytics [20]. Prediction can be performed using statistical methods or machine learn-
ing models trained on the data points collected by the Sensors. Methods for prediction
can be categorized based on if historical or future values are being predicted:

• The values of missing historical data points can be predicated using Imputa-
tion methods, e.g., if a data point was lost due to a packet collision. Various
interpolation methods such as linear interpolation, polynomial interpolation, and
spline interpolation [20], are commonly used for predicting the values of missing
data points. Machine learning models have also been proposed, e.g., using matrix
factorization [21].

• The values of future data points can be predicated using Forecasting meth-
ods. Thus, decisions may be made earlier than if the data points were sampled.
A significant number of methods for predicting the values of future data points
have been proposed. These includes both statistical methods such as ARMA and
ARIMA [20], and machine learning models such as N-BEATS [22] and Trans-
former [23]. The error of forecasting is generally strongly dependent on the Age
of Information (AoI) [24], i.e., the time elapsed from the last sampled data point
to time when the value of a data point was predicted. If the State the Sensor
measures changes linearly, the error will also increase linearly with the AoI. In the
more general case of States that do not change linearly, it can be assumed that
the expected error will still be a monotonically increasing function of the AoI.

The choice of sampling method significantly impacts prediction [10] as the sampling
interval and the error of the values of the sampled data points affect the error of the
prediction models. For sensor data acquisition, prediction may be used to reduce the

3. Use Cases 151

number of data points that must be transmitted by deploying equivalent prediction
models on both the sender and the receiver [18, 19]. Thus, the sender need only trans-
mit updated parameters for the prediction model on the receiver and data points whose
values the prediction model on the sender cannot predict within an error bound. This
can significantly reduce the amount of bandwidth and energy required as a result. How-
ever, ensuring that the values are within an error bound can only be guaranteed in a
push-based scenario where the sender decides when and what to transmit. In a pull-
based scenario, the receiver does not have access to the actual values and must decide
when and what data points to request from the sender based only on its confidence
in the predicted data points’ values [18, 19]. For sensor data analytics, prediction can
be used to backfill missing historical values so analysis methods that assume the data
points are sampled using Periodic Sampling can be used, or to predict the values of
future data points to take advantage of a future change in the monitored States.

3 Use Cases

3.1 Wind Turbine
The following use case description is generalized based on information provided by
multiple wind turbine owners and manufacturers. A modern wind turbine is equipped
with thousands of high-quality Sensors, with park operators often monitoring thousands
of wind turbines and manufacturers monitoring tens of thousands of wind turbines.
These high-quality Sensors are installed with wired power and connectivity. Thus, it
is not necessary to minimize the amount of energy used by the Sensors. The Sensors
are sampled at an approximately regular interval or an irregular interval, e.g., based on
when the values change, and the data points are transmitted to a central location in
the wind turbine or the park over a wired communication link. Thus, the Sensors do
not store data locally. The wind turbine manufacturers have access to sensor data at a
higher frequency than the owners, e.g., if an error is detected high-frequency sensor data
may be sampled and stored on the turbine for diagnostics. The hardware used for sensor
data acquisition in each wind turbine is comparable to a standard desktop computer at
the time the wind turbine was built. The collected sensor data is transmitted to a data
center over a wired communication link either continuously or at a regular interval, e.g.,
every two hours. While the local infrastructure owned by the wind turbine owners and
manufacturers has been used in the past, the sensor data is now commonly stored and
processed at a cloud provider. While some wind turbine owners and manufacturers use
specialized Time Series Management Systems (TSMSs) [5], compressed binary files with
a column-based layout such as Apache Parquet are more commonly used. For sensor
data analytics a combination of proprietary, e.g., tools provided by the cloud provider,
and open-source tools such as Apache Spark and Python with Pandas are commonly
used. Due to the use of high-quality Sensors with wired connectivity, out-of-order,

152 Paper E.

missing, and invalid readings rarely occur. In addition, both out-of-order and invalid
readings can be corrected using established methods. Thus, missing readings are the
only inherent sources of error. The data points are augmented with metadata which
facilitates multi-dimensional queries, and the collected data points are analyzed through
a set of aggregate queries with the general structure shown in Listing E.1.

1 SELECT {aggregation of columns} FROM {table}
2 WHERE time >= {start time} AND time < {end time}
3 AND {optional checks on extra columns}
4 GROUP BY {time resolution}, {optional columns}

Listing E.1: Queries for the wind turbine use case

For this use case, the primary bottlenecks are the amounts of bandwidth and storage
required. Wind turbine owners and manufacturers would prefer to sample most Sensors
at 10–50Hz and to have vibration Sensors sampled at 44KHz. However, while the
Sensors can be sampled at this rate, due to the enormous volume (i.e., size) and velocity
(i.e., speed of the acquisition and processing) of sensor data this would produce, only
simple aggregates are transmitted from the wind turbine to the cloud. Also, while the
cloud provides access to practically infinite amounts of storage, the cost of storing high-
frequency sensor data is prohibitively high. As only simple aggregates are collected,
outliers and fluctuations that could indicate problems with the wind turbines are lost.
Lossless compression is used to reduce both the bandwidth and storage requirements.

3.2 Smart Meter
The following is based on information provided by a manufacturer of smart meters,
e.g., for measuring the consumption of electricity and water. Thus, these smart meters
operate as Sensors that continuously collect data points, e.g., water consumption in a
private household. The collected data points are transmitted wirelessly from the smart
meters to Edge Nodes at an interval as low as every five minutes. However, if an ex-
ceptional event such as a breach or a reverse flow is detected, information about the
event is transmitted to the Edge Node immediately (i.e., within milliseconds). How-
ever, the specific transmission time is randomized to ensure the communication link is
not flooded if multiple meters detect the event at the same time. Despite the use of
randomization, the risk of interference increases significantly as the number of smart
meters deployed in close proximity becomes sufficiently high. The Edge Nodes transmit
the data points to the cloud over a wireless communication link provided by a mobile
network operator. The total amount of data points and events stored in the cloud is
unknown but significant. Various forms of data analytics are performed on the collected
data, e.g, detection of leaks in water distribution networks.

4. Framework for joint Sensory Data Acquisition and Analysis (SENDAI) 153

The bottleneck for this use case is almost always transmission of data points from the
Sensors to the Edge Nodes, due to the large number of smart meters deployed in close
proximity. It is generally a requirement that the data points for a day can be accessed
by the User on the morning of the following day, and that a 99.6%–99.8% end-to-end
success rate is provided for the transmission of data points and events. However, while
the error rate for the transmission of data points from the Edge Nodes to the cloud is
unknown, it is known to be non-zero.

4 Framework for joint Sensory Data Acquisition and
Analysis (SENDAI)

4.1 Overview
SENDAI is designed to enable joint reasoning about sensor data acquisition and analyt-
ics and is primarily based on the two use cases described in Section 3. Thus, SENDAI
extends the generalized example for sensor data acquisition and analytics shown in Fig-
ure E.1. To simplify the description of SENDAI, summarized content from Section 2.1
is purposely reused in this section. SENDAI is split into two logical sets of Parts: sen-
sor data acquisition and analytics. For sensor data acquisition, the Parts are States,
Sensors, Edge Nodes, and Cloud Nodes; and for sensor data analytics, the Parts are
Cloud Nodes and Users. The order of the Parts is assumed to be static, however, some
use cases may only require a subset of the Parts. For example, if the Sensors transmit
data points directly to the Cloud Nodes. Sensor data acquisition is assumed to be either
push-based or pull-based. Additional data points can be pulled if needed for a query
and the available bandwidth allow it. The States are monitored by the Sensors and they
may change discretely or continuously. However, as the States are sampled, the Sensors
always produce discrete data points, and the ordered data points from each Sensor is a
time series:
Definition 2
Time Series: A time series TS is a sequence of data points ordered by time in in-
creasing order TS = ⟨(t1, v1), (t2, v2), . . .⟩. For each data point DPi = (ti, vi), 1 ≤ i,
the timestamp ti represents when the value vi ∈ R was recorded. A time series
TS = ⟨(t1, v1), . . . , (tn, vn)⟩ with a fixed number of n data points is a bounded time
series.

Definition 2 is a definition from [25]. Due to Definition 2, it is assumed that all time
series are univariate and ordered. The communication links used for transmitting the
data points have an associated bandwidth and there is a probability that data points
are lost. The transmission format is any representation from which the data points can
be reconstructed. Thus, compression may be applied. To further reduce the bandwidth

154 Paper E.

ls εs ln εn ld εd lq εq

bn bd bq
State Sensor

Edge
Node

Cloud
Node

User

Fig. E.2: Overview of the separate metrics and bandwidth between Parts

required or recover lost data points, a Part may perform prediction, i.e., using statistical
or machine learning methods to estimate the values of historical or future data points.
Tiered storage allows hot data to be stored on fast storage, while cold data can be
offloaded to slow storage. Stochastic, periodical, and one-time queries from the Users
can be executed by the Cloud Nodes with additional data points collected from the Edge
Nodes or Sensors if required. The queries are assumed to request data points from a set
of Sensors for a specific time interval. If no time interval is given, the time interval is
assumed to be from the beginning of time until the query is issued by the User.

The quality of a query result RS is defined by the time from the User has issued
the Query until the User has fully received RS and the error of RS compared to a
query result computed using values from the actual States. Thus, SENDAI reasons
about sensor data acquisition and analytics based on the following two metrics: the
latency l of RS and the error ε of RS. In most cases, the actual values of the States are
unknown as only the collected data points are available. While latency can be measured
without the actual values of the State, this is not possible for the error. Thus, SENDAI
uses statistical bounds and probabilistic guarantees, e.g., guaranteeing that the 99th
percentile of the error is below a threshold value. However, latency and error are not
part of Definition 1 data point, so a segment is defined as:
Definition 3
Segment: A segment S = (⟨(t1, v1), . . . , (tn, vn)⟩, dlv, εv) is a bounded time series where
n ≥ 1; dlv is the timestamp of the latest data point in S, if it was sampled, or the time
it was predicted; and εv is the error of the values in S compared to the values of the
actual State according to an error function.

A segment is purposely defined to support both error functions that compute the
error for each data point and error functions that compute error for a bounded sequence
of data points. Most error functions can be used for continuous values and any error
function for discrete values can be used, but the complexity of the statistical evaluation
naturally depends on the error function used. For the remainder of this paper, we limit
the discussion to linear functions of the State, which have some properties that make
the analysis simpler. However, SENDAI can be extended to more general classes of
error functions with some modeling effort. When optimizing the latency and error of
query results, the available resources, such as the amount of energy, bandwidth, and
the amount of storage available to each Part, can be taken into consideration. As it is

4. Framework for joint Sensory Data Acquisition and Analysis (SENDAI) 155

td

ts

te

ls

ln
tn

ld

Sensor

State

Edge
Node
Cloud
Node

tqlq
User

Time

Fig. E.3: The latency added by each Part for a query that requires the State to be sampled

a limitation for both use cases, the bandwidth of the communication links is taken into
consideration. Both latency and error are aggregates of separate metrics for each Part.
These separate metrics and the bandwidth for the communication link between each
Part are shown in Figure E.2. By assigning latency, error, and bandwidth to each Part
it is simple to add and remove Parts, if necessary. Intuitively, the latency of RS is the
time between the instant in which the User transmits a query to the Cloud Nodes to the
instant when RS is returned. Thus, l is highly dependent on which Part can provide
the data points required to compute RS when the query is transmitted. For example, if
the value of a State at te must be sampled by a Sensor to compute RS, l is the latency
added by all of the Parts as shown in Figure E.3. The latency added by each Part is
defined as:
Definition 4
Latency: The latency li for a Part is t2−t1 where t1 is the time when the State changed
or a segment was received at the previous Part, and t2 is the time when the current
Part received the same segment or a query result including that segment.

Thus, ls is the time from the instant a State changes to when a Sensor has sampled
that State, ln is the time from the instant the Sensor has sampled the State to an Edge
Node receives the segment, ld is the time from that Edge Node receives the segment to
the instant when a Cloud Node receives the segment, lq is the time from that Cloud
Node receives the segment to the User has fully received the query result that includes

156 Paper E.

that segment, and l = ls + ln + ld + lq. Sensors, Edge Nodes, and Cloud Nodes may
buffer data points before transmitting them over a communication link and thus increase
the latency. However, exactly how each Part adds latency is not explicitly modeled in
SENDAI as the latency from buffering in a Part is accounted for by the total latency for
that Part. The error of RS depends on the error of the segments used in its computation.
The error added by each Part is defined as:
Definition 5
Error: The error εi for a Part is the difference fε(S1) − fε(S2), where fε is a linear
function, while S1 and S2 are segments that contain data points for the same time series
and time interval, S1 is received from the previous Part and S2 is transmitted by the
current Part.

For example, if we define the simplest possible fε(S) = S, and a Sensor measured
S1 = 10, but an Edge Node uses lossy compression so S2 = 12, the error added by
the Edge Node would be εe = f(S1) − f(S2) = 2. The total error εv of a segment S
is the upper bound for the error added by the Part S is currently stored at, and all
previous Parts. The actual error may be lower than εv, e.g., if multiple Parts use lossy
compression and some overestimate S’s values while others underestimate them, i.e., if
the errors compensate each other. For multiple errors to be aggregated the following
properties must hold:
Property 1
Additivity: If a query request is a linear function of the system State, error is additive:
in a chain of segments from 1 to K, each with additional error εk with respect to its
predecessor k − 1, the total error is given by

∑K
k=1 εk.

This property is particularly useful if the error is normally distributed, as the statis-
tics can be easily computed. In this case, it is possible to deal with correlations in the
errors at different steps:
Property 2
Gaussian Error Compounding: If the errors ε1 and ε2 are normally distributed, with
zero mean and variances σ2

1 and σ2
2 , respectively, and have correlation ρ, the overall error

ε1+2 is given by:

ε1+2 ∼ N
(
0, σ2

1 + σ2
2 + 2ρσ1σ2

)
. (E.1)

In SENDAI, εs is the difference between the actual value and the segment sampled
by a Sensor, εn is the difference between the segment transmitted by that Sensor and
the segment transmitted by an Edge Node, εd is the difference between the segment
transmitted by that Edge Node and the segment stored by a Cloud Node, εq is the
difference between a query result computed from the segments stored on that Cloud
Node and the query result transmitted by the Cloud Node, and the total error ε =

4. Framework for joint Sensory Data Acquisition and Analysis (SENDAI) 157

ls εs ln εn ld εd lq εq

lsp, εsp lnp, εnp ldp, εdp

bn bd bq
State Sensor

Edge
Node

Cloud
Node

User

Fig. E.4: Overview of the separate metrics and bandwidths between Parts with prediction

tds

Time

tde

t1

tns tne

tss tse

tn

Fig. E.5: Example of Parts providing data points for overlapping time intervals using prediction. Full
lines are time intervals for which sampled and predicted segments can be provided, while dotted lines
are time intervals for which only predicted segments can be provided.

εs + εn + εd + εq due to the additive property. In general, εs is caused by inaccuracies
in the Sensors’ measurements, the use of lossy compression, or the use of prediction. εn

and εd are caused by the use of lossy compression or prediction. If the error is due to
prediction, it will be proportional to the AoI of the segments used for the prediction,
i.e., having more recent segments generally lead to better prediction. εq are caused by
the use of prediction or Approximate Query Processing (AQP) techniques, e.g., reading
only a sub-set of the available segments from disk when answering a query.

4.2 Prediction
As described above and in Section 2, prediction can be used to reduce the bandwidth
required, reduce latency, or recover lost segments at the cost of additional error. Thus,
both l and ε is affected by prediction. For example, if a segment is lost during trans-
mission, it may be re-transmitted, which causes l to increase but lets ε remain constant.
However, if prediction is used to avoid re-transmitting the segment by predicting the
values it contained, ε generally increases while l decreases. Thus, prediction presents a
different trade-off between the two metrics compared to sampling. Thus, the amount
each Part contributes to l and ε depends on whether sampled segments or prediction
was used. In SENDAI, both the latency and error of each Part when using prediction is
modelled by assigning an additional latency and error metric to the Sensors (lsp and εsp),

158 Paper E.

Edge Nodes (lnp and εnp), and Cloud Nodes (ldp and εdp) as shown in Figure E.4. These
latency metrics are the amount of time required to predict the values of a segment, and
the error metrics are error of the segment’s values as defined Definition 5. The error for
each prediction model can be modeled as a statistical variable, with the same properties
as above, and can be compounded with other errors if it is Gaussian and the function
of the State is linear. The time interval for which each Part can perform prediction
with the specified error is modeled by associating each Part with a time interval for
which that Part can provide segments with values within its sampling and prediction
error. These segments can contain either sampled or predicted values. If prediction is
used for forecasting, the time interval for which a Part can provide segments overlaps
with the previous Part. An example is shown in Figure E.5. For the time interval from
tds to tde, the Cloud Nodes can provide segments with values within εd and εdp, while
the Edge Nodes can provide segments with values within εn and εnp from tns to tne,
and the Sensors can provide segments with values within εs and εsp from tss to tse.
All three Parts use prediction in the form of forecasting to provide segments with more
recent values than they have received from previous Parts, or in the case of the Sensor
sampled from the State, as tn is the current time. The Cloud Nodes forecast values
within εdp from tns to tde, the Edge Nodes forecast values within εnp from tss to tne,
and the Sensors forecast values within εsp from tn to tse.

4.3 Query Processing
To reason about query processing in SENDAI, the relational data model [26, 27] and
relational algebra are used [28]. Thus, it is assumed that the time series are stored on
the Cloud Nodes as segments and that Users execute queries against the relational TSR

as shown in Table E.1. Like the transmission format, the physical storage format used
for the segments is any representation from which the segments can be reconstructed.
In TSR the data points from different time series are uniquely associated with a time
series using a time series identifier. So a data point with identifier is defined as:

Definition 6
Data Point with Identifier: A data point with identifier DPi = (i, t, v) is triple where
i is the identifier of the time series to which DPi belong, and t is the time instant when
the value v ∈ R was collected.

And a query is defined as:

Definition 7
Query: A query is a four-tuple Q = (E, εr, qlr, ξ) where E is a relational algebra
expression, εr is the maximum acceptable error with a default value of 0, qlr is the
maximum acceptable query latency with a default value of ∞, and ξ is a stochastic
arrival process that determines when Q is executed. E is either Π(TSR) or Π(σ(TSR))
where σ is selection and Π is generalized projection.

4. Framework for joint Sensory Data Acquisition and Analysis (SENDAI) 159

Table E.1: T SR with Time_series_ID and Sample_Time as the primary key

Time_series_ID (PK) Sample_Time (PK) Value
1 1990–05–01 12:00:00.000 13.45
1 1990–05–01 12:00:00.000 13.55
2 1990–05–01 12:00:00.000 15.73
. . .

The definition of Π in [29, 30] is used. The inclusion of εr and qlr in Definition 7
means that different segments may be retrieved for the same E due to different metric
requirements. For example, if a query’s metric constraints specify that no error is
allowed and more recent data points are required, it is necessary to retrieve additional
segments. However, prediction can be used to significantly reduce the latency if the
same query is issued with metric constraints that allow the query result to have some
error. The arrival process ξ is a general process that determines when the query is
executed. Two special cases exist in which queries are deterministic: one-time queries
that are only executed once have probability 1 at time t and 0 everywhere else, while
periodic queries follow a deterministic process with period τ , such that the probability
of the query being executed at time t is 1 if t = kτ, ∀k ∈ Z, and 0 otherwise. In the
most general case, the arrival process can represent the decisions of the User, which
can change over time or even aggregate multiple Users with the same query. For query
processing, each level of tiered storage is represented as individual Parts with different
latency. As most use cases include multiple different queries a query workload is defined
as:
Definition 8
Query Workload: A query workload is a set of queries W = {Q1, . . . , Qn} where
|W | ≥ 1.

The queries in a query workload is evaluated as shown Algorithm 1 with the required
segments retrieved from each Part as shown in Algorithm 2. However, the latency and
error of the query results depend entirely on which segments are available on each Part
while the query is being evaluated, and if the query’s metric constraints allow prediction
to be used. Thus, to optimize the evaluation of a query workload, data acquisition must
be optimized according to that query workload. The specific optimizations that can
be performed depend on the amount of knowledge that is available about the query
workload, e.g., by knowing when and what queries will be executed an optimized sensor
data acquisition scheme can be derived as described in Section 5.2.

160 Paper E.

Algorithm 1 Execution of a query Q over TSR. Q is repeated according to ξ and E
is evaluated using commonly known methods

Input: The query’s relational expression E
The query’s maximum error εr

The query’s maximum latency qlr
Output: A result set RS if εr and qlr can be satisfied, if not an error

1: Function execute_query_with_constraints(E , εr, qlr) is
2: return_error_after_time_interval(qlr) ▷ Asynchronous
3: fp ← previous_part()
4: fn ← current_part()
5: P ← extract_predicates(E)
6: n_qlr ← qlr− execution_time()
7: RS ← read_or_predict(fp, fn, P , εr, n_qlr) on fn

8: return evaluate(E, RS)

Algorithm 2 Retrieval of the segments required to evaluate Q
Input: The previous Part fp

The next Part fn

The query’s predicates P
The query’s maximum error εr

The query’s maximum latency qlr
Output: A result set RS if εr and qlr can be satisfied, if not an error

1: Function read_or_predict(fp, fn, P , εr, qlr) → RS is
2: return_error_after_time_interval(qlr) ▷ Asynchronous
3: if no_relevant_data_points(P) then
4: RSl ← {}
5: else if predictable(P , εr) then
6: RSl ← predict(P , εr)
7: else if stored(P , εr) then
8: RSl ← read(P , εr) ▷ Sensors may be inaccurate
9: else if unavailable(fp) then

10: return error() to fn

11: n_fp ← previous_part()
12: n_fn ← current_part()
13: n_qlr ← qlr− execution_time()
14: RSp ← read_or_predict(n_fp, n_fn, P , εr, n_qlr) on fp

15: return RSl ∪RSp to fn

5. Sensor Data Acquisition Scheme 161

Table E.2: The parameters required to instantiate SENDAI

Name Description
ls Time required by the Sensor to sample the State.
εs Error added by the Sensor when sampling the State.
tss–tse The time interval for which the Sensor can provide segment.
lsp Time required by the Sensor to a predict a segment.
εsp Error added by the Sensor when predicting a segment.
ln Time required by the edge to retrieve a segment.
εn Error added by the Edge Node when retrieving a segment.
bn The bandwidth for the link between the Sensor and the Edge Node.
tns–tne The time interval for which the Edge Node can provide segment.
lnp Time required by the edge to predict a segment.
εnp Error added by the Edge Node when predicting a segment.
ld Time required by the Cloud Node to retrieve a segment.
εd Error added by the Cloud Node when retrieving a segment.
bd The bandwidth for the link between the Edge Node and the Cloud Node.
tds–tde The time interval for which the Cloud Node can provide segment.
ldp Time required by the Cloud Node to predict a segment.
εdp Error added by the Cloud Node when predicting a segment.
lq Time required by the Cloud Node to receive and respond to query.
εq Error added by the Cloud Node when answering a query.
bq The bandwidth for the link between the Cloud Node and the User.

4.4 Summary
In summary, SENDAI describes sensor data acquisition and analytics as a sequence of
Parts with sampling latency and error, prediction latency and error, the time interval
each Part can provide segments for, and the bandwidth between each pair of subsequent
Parts. Queries with latency and error constraints can be evaluated using the information
in SENDAI and a recursive algorithm for retrieving the required segments. The set of
parameters required to instantiate SENDAI for a specific use case is shown in Table E.2.

5 Sensor Data Acquisition Scheme

5.1 Periodic Sensor Data Acquisition
As a baseline for sensor data acquisition, it is assumed that the segments are collected
as often as possible using periodic sampling and a predetermined schedule for trans-

162 Paper E.

missions, which does not take into account any semantic considerations, i.e., the query
information or the values of the segments when sampling. This baseline was chosen as
it matches the sensor data acquisition method used in the two use cases. Ideally, all
of the Sensors can be sampled at a very high frequency and all of the segments can be
transmitted to the Cloud Nodes using periodic sampling and a scheduled transmission
scheme. However, in practice, there is always a bottleneck that limits the number of
segments that can be collected. This bottleneck is often the communication link be-
tween two Parts. When a communication bottleneck prevents all of the segments from
being transmitted, it is equivalent to having a maximum communication budget. So in
the periodic sampling scheme, the full communication budget is used to sample all of
the Sensors at a constant interval. Since the sampling is periodic, it will be push-based
in most cases. However, pull-based sampling can make the scheduling of wireless Sen-
sors easier if the internal clocks in the Sensors are very inaccurate and requests for new
segments are very cheap. For this case, it is better to use periodic pull-based sampling
to avoid packet collisions.

5.2 Semantic Sensor Data Acquisition
The sampling scheme used can be optimized based on information about which collected
segments will be used for which query. Specifically, an efficient sampling scheme can be
derived if all of the queries that will be executed are known beforehand. The method
for deriving a sampling scheme from a query workload is based on our previous work.
In [12], it is shown that knowing when queries will request specific segments can be
used to reduce the latency of queries in multiple different scenarios. For example,
scenarios with unreliable communication links and scenarios where only a statistical
model is known for the query arrival time and not the specific times that the queries
will arrive at. In [15], a method is presented for choosing which additional segments to
pull to minimize the error for several different aggregate queries. These methods can be
combined with other methods, e.g., the ones described in [6]. In addition, if information
about the actual values is available, graph sampling methods as presented in [31, 32] can
be used. However, these require that a suitable graph is known or can be constructed
for a use case. There are three different scenarios to consider for semantic sampling
based on the knowledge that SENDAI has about the query processes.

Full Knowledge Semantic Acquisition If the ξ processes provides completely
deterministic information about future query arrival times, it is possible to
derive a push-based sampling scheme that minimizes the number of queries that cannot
be answered for an instance of SENDAI with a given communication budget and an
assignment of latencies and errors to each Part. The fixed schedule for the sampling
avoids interference and minimizes the bandwidth used and the error of the query results.
As for the periodic scheme, a pull-based scheme could perform even better, by starting

5. Sensor Data Acquisition Scheme 163

from the Sensor with the highest uncertainty and deciding which Sensor to request data
from at every transmission opportunity in an adaptive way that considers the actual
value of the State monitored by the Sensors that have already replied. This can be
further optimized using a tree search algorithm that optimizes the decision path with a
fixed horizon corresponding to the instant of the next query [2].

Blind Semantic Acquisition If the ξ processes provides absolutely no infor-
mation about future query arrival times, optimizing sampling for a particular
query becomes highly suboptimal. For example, if the sampling is optimized for a par-
ticular query and that query does not arrive when expected or a different query arrives
unexpectedly while all of the bandwidth of the communication links is being used. In
this scenario there might not be enough bandwidth left to pull the segments required to
answer the received query. Thus, it is best to allocate all of the communication budget
to pull-based sampling, so the required segments can be collected efficiently whenever a
query arrives at the Cloud Nodes. In this case, AoI optimization might work best, or a
scheme aimed at minimizing the error on the system state, as described in our previous
work [15]. This case is the opposite extreme to full knowledge acquisition, and while the
other represents an upper bound to the achievable performance of semantic sampling,
this is the lower bound, as the sampling is better than the baseline periodic scheme,
but can only exploit information about the underlying process measured by the Sensors,
and has no knowledge of the query process.

Partial Knowledge Semantic Acquisition In-between these two extremes are the
cases where some queries have deterministic arrival times, some queries have arrival
times with a high level of certainty, and some queries have arrival times with a high
level of uncertainty. In these cases, the optimal solution is to allocate some of the
communication budget to a push-based sampling scheme focused on replying to as many
of the queries with deterministic arrival times and arrival times with high certainty as
possible, and a part of the budget for pulling additional segments for the queries with
uncertain arrival times. This is the most realistic scenario, but also the most complex,
and will require some form of learning-based optimization to achieve the best possible
performance. Below are two examples that are based on the wind turbine use case from
Section 3.1 and the smart meter use cases from Section 3.2 and shows how semantic
sampling can improve sensor data acquisition using information about when and which
queries will be executed.

5.3 Optimizing the Wind Turbine Use Case
The first example is based on the wind turbine use case from Section 3.1. In this example,
two types of queries are executed: ad-hoc queries requesting the data point with the
maximum value among all of the Sensors, and periodic queries requesting the latest

164 Paper E.

Edge Nodes Cloud NodesTransmission Slots

Pull Requests

Fig. E.6: Transmission scheme that allows for preparation for predictable queries and pull requests
for unpredictable queries.

data point for each of the Sensors. In the wind turbine use case, the communication
bottleneck is the communication link between the Edge Nodes and the Cloud Nodes.
So the Edge Nodes can collect data points from all of the Sensors at a high frequency
but can only transmit a fraction of those data points to the Cloud Nodes. We consider
a communication scheme where the Edge Nodes listen for a pull request for a short
time followed by a longer transmission slot as shown in Figure E.6. In addition, it is
assumed that transmitting the data point with the maximum value among all of the
Sensors requires one transmission slot and that transmitting the latest data point for
each of the Sensors requires several transmission slots. To efficiently answer the queries
requesting the latest data point for each of the Sensors, it is necessary to prepare for
the queries by starting to transmit the required data points several transmission slots
before each query arrives. However, it is not possible to answer any pull requests in the
transmission slots allocated to this preparation, except by using prediction. Thus, there
is a trade-off between how early to start preparing for the queries requesting the latest
data points for each of the Sensors and how many opportunities there are for pulling data
for the queries for the data point with the maximum value. Starting the preparation
early decreases the accuracy of the first query type because the AoI is higher, while
not leaving enough pull opportunities increases the latency for the second query type,
because the reply has to wait. If the preparation for the predictable queries is started
early enough to leave opportunities to answer pull requests, the latency of the queries
requesting the data points with the maximum value is kept low at the expense of the
accuracy for the queries requesting the latest data point for each of the Sensors, and
there is also a risk that there will be an empty transmission slot right before a query.
If too few slots are reserved for answering the pull requests, the accuracy will be high
for the queries requesting the latest data points for each of the Sensors, but the latency
will be high for the queries requesting the data point with the maximum value as it is
necessary to wait until the scheduled transmissions are complete before it is possible to
reply. This use case corresponds to a partial knowledge scenario, so the actual semantic

5. Sensor Data Acquisition Scheme 165

Edge Node
Smart Meter

Smart Meter

Periodic Reports

Alarm Messages

Orthogonal Sampling Scheme

Empty Slot

Collision

Fig. E.7: Sampling scheme that accommodates periodic reporting and occasional alarm messages.

sampling scheme is complex, but the periodicity of predictable queries can be exploited
as in Figure E.6.

5.4 Optimizing the Smart Meter Use Case
The second example is based on the smart meter use case from Section 3.2. In this use
case, periodic reporting is combined with unpredictable alarms that need to be delivered
with relatively low latency. For this scenario, reserving some transmission slots for
alarms can be an efficient solution as it allows periodic reporting to be scheduled in
advance. Thus, packet collisions are rare and AoI is kept low, at the cost of keeping a
certain fraction of the transmission slots unused. If a smart meter raises an alarm, it can
try to transmit it in one of these unused transmission slots. As these transmission slots
are never used for periodic reporting, an alarm packet can only collide with other alarm
packets. Thus, there is a trade-off between the freshness of the data points produced by
the smart meter for periodic reporting and the latency and risk of packet collisions for
the alarm packet. If a high number of transmission slots are unused, both the latency
and the risk of collision for alarm packets are reduced. However, a high number of unused
transmission slots also increases the AoI for the data points collected during periodic
reporting, as they have fewer resources, thus decreasing the accuracy or increasing the
latency for queries. On the other hand, reserving too many transmission slots for alarm
messages causes inefficient use of bandwidth (represented by the empty transmission
slot) while reserving too few can cause collisions (represented by the red transmission
slot) which increases the latency of the alarm packets and reduces the probability that
they will be delivered. The described sampling scheme is shown in Figure E.7. An
analysis for this type of sampling scheme is presented in our previous work [33].

166 Paper E.

6 Related Work

6.1 Sensor Data Acquisition
The acquisition of data from sensors needs to be optimized for several metrics, which
include both the types and frequencies of the queries to the edges node and considera-
tions specific to the sensors themselves, such as the limited transmission bandwidth and
the energy consumption requirements.

Traub et al. [6] proposed using adaptive user-defined sampling functions to sample
sensors based on the demand of concurrently running queries. Thus, through adap-
tive sampling, local filtering, and sharing of sensor data between queries the amount of
collected sensor data is reduced. Hülsmann et al. [7] demonstrated the method, while
Hülsmann et al. [8] extended the method to automatically adjust the allowed sample
time for a sensor based on the values it produces. Gil et al. [34] proposed only transmit-
ting and storing significant data points by using multiple data point selection algorithms
and then selecting the best algorithm for each time interval.

The concept of AoI [35] from the communications literature is also often used in
context of data acquisition: by optimizing the AoI, the system can improve the freshness
of the data from each sensor [24], reducing the error on the queries. Our previous
works [12, 36] combine the AoI and the awareness of the query process to optimize a
metric called Query AoI (QAoI), which represents the freshness of the data at the instant
a query comes. Other sensor selection methods can use statistics about the sensors [34]
or an estimate of the state of the underlying process [15] to select which sensor to poll
in a pull-based system, and the general division we mentioned in Section 4 generally
holds throughout the communication literature.

6.2 Sensor Data Analytics
The development of Database Management Systems (DBMSs) optimized for time series
have received signification focus due to the increasing amount of sensor data being
produced. For a in-depth survey of these TSMSs see [5].

Most TSMSs are only optimized for deployment on the edge nodes or the cloud
nodes. However, a few TSMSs support sensor data acquisition, transmission, and man-
agement. Respawn [37] is designed to be deployed on both edge nodes and cloud nodes.
Data points are continuously transmitted from the edge nodes to the cloud nodes and
a Dispatcher routes query to the correct nodes. Storacle [38] is designed to be deployed
on edge nodes to monitor smart grids. Data points are transmitted to cloud nodes
for permanent storage and offline processing. Data points are not immediately deleted
when transmitted to support efficiently executing queries on the edge nodes. Apache
IoTDB [39] is designed to support three deployment models: as an embedded TSMS on
low-powered edge nodes, as a single node TSMS on high-powered edge nodes, and as

7. Conclusion and Future Work 167

a distributed TSMS on cloud nodes. A File Sync module transmits data between the
deployed instances. VergeDB [40] does not support transmitting Data points between
instances, it is designed to optimize the representation used for data points by the edge
nodes based on the requirements of the analytics performed in the cloud. Also, while not
a TSMS the GLEAN [41] framework compresses data points using Generalized Dedu-
plication [42, 43] and stores the resulting Bases on the edge nodes and the Deviations
in the cloud. GLEAN also supports clustering using the compressed data [41, 44].

The use of prediction and approximation generally reduces latency and the of amount
storage required. TimeTravel [45] is designed to provide a uniform interface for exact
queries on historical data points, prediction of historical data points, and forecasting.
The prediction and forecasting are performed using models build from the time series,
e.g., ARIMA, and organized in a novel Hierarchical Model Index. Like TimeTravel,
tspDB [21] supports both exact queries on historical data points, prediction of histor-
ical data points, and forecasting. However, instead of using models like ARIMA for
prediction and forecasting, it uses a novel incremental method based on matrix fac-
torization. RoundRobinson [46] is an implementation of a formalism for TSMSs that
enable multiresolution storage of time series. For example, recent data may be stored
at high-resolution with the resolution decreasing as the data age. Tristan [47] is de-
signed to efficiently store and analyze time series using dictionary compression. The
compressed representation is computed using Matching Pursuit [48]. The CORAD [49]
compression method extends Tristan’s compression method to exploit that time series
often are correlated. ModelarDB [25, 50, 51] stores time series using different types of
models, e.g., constant and linear functions. Multiple model types are used for each time
series as they change over time. Similar time series can also be grouped and compressed
together to further reduce the amount of storage required.

7 Conclusion and Future Work
Despite the ever-increasing number of deployed sensors and the huge amounts of data
points they produce, most methods for sensor data acquisition and analytics focus only
on either acquisition or analytics instead of taking a holistic approach, thus limiting the
optimizations that can be performed. Motivated by this problem, this paper proposed
the Framework for joint Sensory Data Acquisition and Analysis (SENDAI), an integrated
framework for reasoning about sensor data acquisition and analytics together. SENDAI
was designed based on an analysis of two very different use cases using the informa-
tion provided by multiple industrial partners, specifically monitoring wind turbines and
utility consumption. It was shown how SENDAI can be used to optimize sensor data
acquisition to efficiently respond to a query workload. This demonstrates that SENDAI
can be used to reason about sensor data acquisition and analytics together,

In future work, we plan to extend SENDAI in multiple directions: (i) increase the
detail of SENDAI by adding more Parts; (ii) take more resource limitations into account,

168 References

e.g., the amount of energy and storage available to each Part; (iii) allow SENDAI to be
instantiated with different error functions for each Part; (iv) allow the error and latency
for each Part to be defined as a distribution instead of a static value; (v) support
selecting an efficient sampling scheme for additional types of queries.

Acknowledgements
This work was supported by the Danish Council for Independent Research under grant
number 8022-00284B (SEMIOTIC), by the European Commission as part of the Hori-
zon 2020 program under grant number 957218 (IntellIoT) and grant number 957345
(MORE), and by the Velux Foundation under Villum Investigator grant WATER. We
also thank our industrial partners for the information provided about the two use cases.

References
[1] A. B. Sharma, F. Ivančić, A. Niculescu-Mizil, H. Chen, and G. Jiang, “Modeling and

Analytics for Cyber-Physical Systems in the Age of Big Data,” ACM SIGMETRICS
Performance Evaluation Review, vol. 41, no. 4, pp. 74–77, 2014.

[2] P. Popovski, F. Chiariotti, K. Huang, A. E. Kalør, M. Kountouris, N. Pap-
pas, and B. Soret, “A Perspective on Time towards Wireless 6G,” CoRR, vol.
abs/2106.04314, 2022.

[3] P. Esling and C. Agon, “Time-Series Data Mining,” ACM Computing Surveys,
vol. 45, no. 1, pp. 1–34, 2012.

[4] A. Fakhrazari and H. Vakilzadian, “A Survey on Time Series Data Mining,” in
2017 IEEE International Conference on Electro Information Technology, 2017, pp.
476–481.

[5] S. K. Jensen, T. B. Pedersen, and C. Thomsen, “Time Series Management Systems:
A Survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 11,
pp. 2581–2600, 2017.

[6] J. Traub, S. Breß, T. Rabl, A. Katsifodimos, and V. Markl, “Optimized On-Demand
Data Streaming from Sensor Nodes,” in Proceedings of the 2017 Symposium on
Cloud Computing. ACM, 2017, pp. 586–597.

[7] J. Hülsmann, J. Traub, and V. Markl, “Demand-based Sensor Data Gathering with
Multi-Query Optimization,” Proceedings of the VLDB Endowment, vol. 13, no. 12,
pp. 2801–2804, 2020.

References 169

[8] J. Hülsmann, C. Li, J. Traub, and V. Markl, “Automatic Tuning of Read-Time
Tolerances for Optimized On-Demand Data-Streaming from Sensor Nodes,” in Pro-
ceedings of the 24th International Conference on Extending Database Technology.
OpenProceedings.org, 2021, pp. 517–522.

[9] M. Costa, M. Codreanu, and A. Ephremides, “On the Age of Information in Status
Update Systems With Packet Management,” IEEE Transactions on Information
Theory, vol. 62, no. 4, pp. 1897–1910, 2016.

[10] B. Zhou and W. Saad, “Joint Status Sampling and Updating for Minimizing Age
of Information in the Internet of Things,” IEEE Transactions on Communications,
vol. 67, no. 11, pp. 7468–7482, 2019.

[11] C. Li, S. Li, Y. Chen, Y. T. Hou, and W. Lou, “Minimizing Age of Information
Under General Models for IoT Data Collection,” IEEE Transactions on Network
Science and Engineering, vol. 7, no. 4, pp. 2256–2270, 2019.

[12] F. Chiariotti, J. Holm, A. E. Kalør, B. Soret, S. K. Jensen, T. B. Pedersen, and
P. Popovski, “Query Age of Information: Freshness in Pull-Based Communication,”
IEEE Transactions on Communications, vol. 70, no. 3, pp. 1606–1622, 2022.

[13] F. Z. Djiroun and D. Djenouri, “MAC Protocols With Wake-Up Radio for Wireless
Sensor Networks: A Review,” IEEE Communications surveys & tutorials, vol. 19,
no. 1, pp. 587–618, 2016.

[14] P. R. Jhunjhunwala, B. Sombabu, and S. Moharir, “Optimal aoi-aware scheduling
and cycles in graphs,” IEEE Transactions on Communications, vol. 68, no. 3, pp.
1593–1603, 2019.

[15] F. Chiariotti, A. E. Kalør, J. Holm, B. Soret, and P. Popovski, “Scheduling of
sensor transmissions based on Value of Information for summary statistics,” IEEE
Netw. Letters, vol. 4, no. 2, pp. 92–96, May 2022.

[16] A. Munari, “Modern Random Access: An Age of Information Perspective on Irreg-
ular Repetition Slotted ALOHA,” IEEE Transactions on Communications, vol. 69,
no. 6, pp. 3572–3585, 2021.

[17] X. Chen, K. Gatsis, H. Hassani, and S. S. Bidokhti, “Age of Information in Random
Access Channels,” in International Symposium on Information Theory. IEEE,
2020, pp. 1770–1775.

[18] S. Sathe, T. G. Papaioannou, H. Jeung, and K. Aberer, “A Survey of Model-based
Sensor Data Acquisition and Management,” in Managing and Mining Sensor Data.
Springer, 2013, pp. 9–50.

170 References

[19] T. Palpanas, “Real-Time Data Analytics in Sensor Networks,” in Managing and
Mining Sensor Data. Springer, 2013, pp. 173–210.

[20] C. C. Aggarwal, “Mining Time Series Data,” in Data Mining: The Textbook.
Springer, 2015, pp. 457–491.

[21] A. Agarwal, A. Alomar, and D. Shah, “tspDB: Time Series Predict DB,” in NeurIPS
2020 Competition and Demonstration Track. PMLR, 2020, pp. 27–56.

[22] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-BEATS: NEURAL
BASIS EXPANSION ANALYSIS FOR INTERPRETABLE TIME SERIES FORE-
CASTING,” in 8th International Conference on Learning Representations. Open-
Review.net, 2020, pp. 1–21.

[23] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer:
Beyond Efficient Transformer for Long Sequence Time-Series Forecasting,” in Pro-
ceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence. AAAI
Press, 2021, pp. 11 106–11 115.

[24] R. Devassy, G. Durisi, G. C. Ferrante, O. Simeone, and E. Uysal, “Reliable trans-
mission of short packets through queues and noisy channels under latency and
peak-age violation guarantees,” IEEE Journ. on Selected Areas in Communica-
tions, vol. 37, no. 4, pp. 721–734, Feb. 2019.

[25] S. K. Jensen, T. B. Pedersen, and C. Thomsen, “Scalable Model-Based Manage-
ment of Correlated Dimensional Time Series in ModelarDB+,” in 37th IEEE In-
ternational Conference on Data Engineering. IEEE, 2021, pp. 1380–1391.

[26] E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Commu-
nications of the ACM, vol. 13, no. 6, p. 377–387, 1970.

[27] ——, “Further Normalization of the Data Base Relational Model,” Research Report
/ RJ / IBM, vol. RJ909, 1971.

[28] ——, “Relational Completeness of Data Base Sublanguages,” Research Report /
RJ / IBM, vol. RJ987, 1972.

[29] V. Harinarayan and A. Gupta, “Generalized Projections: a Powerful Query-
Optimization Technique,” Stanford University, Department of Computer Science,
Tech. Rep. STAN-CS-TN-94-14, 1994.

[30] A. Gupta, V. Harinarayan, and D. Quass, “Aggregate-Query Processing in Data
Warehousing Environments,” in Proceedings of 21th International Conference on
Very Large Data Bases. Morgan Kaufmann, 1995, pp. 358–369.

References 171

[31] J. Holm, F. Chiariotti, M. Nielsen, and P. Popovski, “Lifetime maximization of an
internet of things (iot) network based on graph signal processing,” IEEE Commu-
nications Letters, 2021.

[32] A. Chiumento, N. Marchetti, and I. Macaluso, “Energy efficient wsn: a cross-
layer graph signal processing solution to information redundancy,” in 2019 16th
International Symposium on Wireless Communication Systems (ISWCS). IEEE,
2019, pp. 645–650.

[33] F. Chiariotti, I. Leyva-Mayorga, Č. Stefanović, A. E. Kalør, and P. Popovski, “Spec-
trum Slicing for Multiple Access Channels with Heterogeneous Services,” Entropy,
vol. 23, no. 6, p. 686, 2021.

[34] A. Gil, M. Quartulli, I. G. Olaizola, and B. Sierra, “Towards Smart Data Selection
From Time Series Using Statistical Methods,” IEEE Access, vol. 9, pp. 44 390–
44 401, 2021.

[35] T. Rault, A. Bouabdallah, and Y. Challal, “Energy efficiency in wireless sensor
networks: A top-down survey,” Computer Networks, vol. 67, pp. 104–122, 2014.

[36] J. Holm, A. E. Kalør, F. Chiariotti, B. Soret, S. K. Jensen, T. B. Pedersen, and
P. Popovski, “Freshness on Demand: Optimizing Age of Information for the Query
Process,” in IEEE International Conference on Communications. IEEE, 2021, pp.
1–6.

[37] M. Buevich, A. Wright, R. Sargent, and A. Rowe, “Respawn: A Distributed Multi-
Resolution Time-Series Datastore,” in Proceedings of the IEEE 34th Real-Time
Systems Symposium. IEEE, 2013, pp. 288–297.

[38] S. Cejka, R. Mosshammer, and A. Einfalt, “Java embedded storage for time series
and meta data in Smart Grids,” in 2015 IEEE International Conference on Smart
Grid Communications. IEEE, 2015, pp. 434–439.

[39] C. Wang, X. Huang, J. Qiao, T. Jiang, L. Rui, J. Zhang, R. Kang, J. Feinauer, K. A.
McGrail, P. Wang, D. Luo, J. Yuan, J. Wang, and J. Sun, “Apache IoTDB: Time-
series Database for Internet of Things,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, pp. 2901–2904, 2020.

[40] J. Paparrizos, C. Liu, B. Barbarioli, J. Hwang, I. Edian, A. J. Elmore, M. J.
Franklin, and S. Krishnan, “VergeDB: A Database for IoT Analytics on Edge De-
vices,” in 11th Conference on Innovative Data Systems Research, 2021, pp. 1–8.

[41] A. Hurst, D. E. Lucani, I. Assent, and Q. Zhang, “GLEAN: Generalized Dedupli-
cation Enabled Approximate Edge Analytics,” IEEE Internet of Things Journal,
pp. 1–15, 2022.

172 References

[42] R. Vestergaard, Q. Zhang, and D. E. Lucani, “Generalized Deduplication: Bounds,
Convergence, and Asymptotic Properties,” in IEEE Global Communications Con-
ference. IEEE, 2019, pp. 1–6.

[43] ——, “Lossless Compression of Time Series Data with Generalized Deduplication,”
in IEEE Global Communications Conference. IEEE, 2019, pp. 1–6.

[44] A. Hurst, Q. Zhang, D. E. Lucani, and I. Assent, “Direct Analytics of Generalized
Deduplication Compressed IoT Data,” in IEEE Global Communications Confer-
ence. IEEE, 2021, pp. 1–6.

[45] M. E. Khalefa, U. Fischer, T. B. Pedersen, and W. Lehner, “Model-based Inte-
gration of Past & Future in TimeTravel,” Proceedings of the VLDB Endowment,
vol. 5, no. 12, pp. 1974–1977, 2012.

[46] A. L. Serra, S. Vila-Marta, and T. Escobet Canal, “Formalism for a multiresolution
time series database model,” Information Systems, vol. 56, pp. 19–35, 2016.

[47] A. Marascu, P. Pompey, E. Bouillet, M. Wurst, O. Verscheure, M. Grund, and
P. Cudre-Mauroux, “TRISTAN: Real-Time Analytics on Massive Time Series Us-
ing Sparse Dictionary Compression,” in Proc. 2014 IEEE Int. Conf. on Big Data.
IEEE, 2014, pp. 291–300.

[48] S. Mallat and Z. Zhang, “Matching Pursuits With Time-Frequency Dictionaries,”
IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[49] A. Khelifati, M. Khayati, and P. Cudré-Mauroux, “CORAD: Correlation-Aware
Compression of Massive Time Series using Sparse Dictionary Coding,” in 2019
IEEE International Conference on Big Data. IEEE, 2019, pp. 2289–2298.

[50] S. K. Jensen, T. B. Pedersen, and C. Thomsen, “ModelarDB: Modular Model-
Based Time Series Management with Spark and Cassandra,” Proceedings of the
VLDB Endowment, vol. 11, no. 11, pp. 1688–1701, 2018.

[51] ——, “Demonstration of ModelarDB: Model-Based Management of Dimensional
Time Series,” in Proceedings of the 2019 International Conference on Management
of Data. ACM, 2019, pp. 1933–1936.

Paper F

Scheduling of Sensor Transmissions Based on Value of
Information for Summary Statistics

Federico Chiariotti, Anders E. Kalør, Josefine Holm, Beatriz Soret and
Petar Popovski

The paper has been published in the
IEEE Networking Letters, vol. 4, no. 2, pp. 92–96, 2022.

© 2022 IEEE
The layout has been revised.

1. Introduction 175

Abstract
The optimization of VoI in sensor networks integrates awareness of the measured pro-
cess in the communication system. However, most existing scheduling algorithms do not
consider the specific needs of monitoring applications, but define VoI as a generic Mean
Square Error (MSE) of the whole system state regardless of the relevance of individual
components. In this work, we consider different summary statistics, i.e., different func-
tions of the state, which can represent the useful information for a monitoring process,
particularly in safety and industrial applications. We propose policies that minimize the
estimation error for different summary statistics, showing significant gains by simula-
tion.

1 Introduction
Over the past few years, the unprecedented development of the IoT has made the
remote estimation of stochastic processes a central problem in communications and
automation [1], where a set of sensors transmit observations to a central Base Station
(BS). The possibility to process sensor data either at the BS or in a distributed fashion
through in-network processing [2] has led the research community to focus extensively
on the scheduling of sensor updates in severely resource-constrained wireless network
environments.

For a wide range of remote estimation problems, the freshness of the observations at
the BS is a good proxy for the estimation quality. This promotes AoI [3] as a measure
of the time that has passed since the last update from a given sensor. However, if the
destination has a model of the observed processes, it is often better to directly minimize
the uncertainty of the process estimates instead of the AoI [4]. The problem of schedul-
ing IoT sensors with this goal has been considered for several different policies [5, 6],
whose objective is to minimize the MSE of a Kalman filter, considering communication
constraints. More recently, the problem of minimizing the MSE of the process estimates
has been referred to as VoI [4]. A recent work [7] tries to maximize the accuracy of
a more complex unscented filter, aiming at optimal sensor selection for maneuvering
tasks, and VoI can also be used for data muling applications in underwater or drone
networks [8]. Another interesting twist to this is the application of VoI concepts not
over time, but in space, placing sensors in the positions that will result in the highest
overall accuracy for the estimation of a spatial process [9].

However, there are cases where minimizing the MSE is not be the best thing to do: for
example, if the application needs to compute a non-linear function of the state, such as
the maximum value among all sensors. While minimizing the MSE implicitly gives equal
value to all sensors, some might have a larger weight in the non-linear function (e.g.,
sensors with a higher value for the maximum function). Examples in industrial settings

176 Paper F.

Edge node estimator Remote server

Sensors

Queries

Fig. F.1: Representation of the scenario.

include: (1) triggering a safety warning if the temperature of any of the components in a
machine reaches a safety limit, (2) monitoring if the difference in the strain on different
parts of a structure is outside the design parameters. Such a scenario is represented in
Fig. F.1: the remote server sends queries to the BS, which correspond to the non-linear
function, and the BS needs to schedule transmission so as to maximize the accuracy.
This setup was also used in our previous work [10]. The scheduling in this scenario
is driven by the BS, which selects the sensor that it believes to have the most useful
information at each time slot; the opposite scenario, in which sensors themselves decide
whether to transmit or not, is an interesting but different problem, as it requires sensors
to maintain an estimate of the system state and a decision algorithm, which consume
energy, as well as to coordinate among themselves to avoid collisions. Our scenario is
directly applicable to wake-up radio [11, 12] and similar schemes with low-power sensors.

We propose heuristic strategies to schedule sensor updates in a linear dynamic sys-
tem, which explicitly aim to minimize the error of various summary statistics. We derive
the one-step optimal strategies for some well-known function, and give a general Monte
Carlo-based algorithm that can deal with different query functions. The simulations
show that the proposed strategies can significantly reduce the error on a number of
summary statistics, with more significant gains in case of highly non-linear summary
statistics.

The rest of this letter is organized as follows. The system model is presented in Sec. 2,
and one-step policies for various summary statistics are derived in Sec. 3. Numerical
results are presented in Sec. 4, and finally Sec. 5 concludes the paper and presents some
possible avenues of future work.

2. System Model 177

2 System Model
We consider a system with N sensors, which are connected through time-slotted wireless
links to a BS equipped with computing and storage resources. Without loss of generality,
we assume that the time slots occur at t = 1, 2, . . . and the sensors are indexed by
n = 1, . . . , N . We assume that each sensor observes a value in an N -dimensional process,
whose state x(t) = [x1, . . . , xN]T evolves according to

x(t) = Ax(t− 1) + v(t), (F.1)

where A ∈ RN×N is the transition matrix, v(t) ∼ N (0,Σv) is the process noise with
covariance matrix Σv ∈ RN×N , and x(0) = 0. The sensors observe the processes with
additive white Gaussian measurement noise w(t) ∼ N (0,Σw), i.e., y(t) = x(t) + w(t).
In general, the covariance matrices Σv and Σw are not diagonal. Note that although we
assume that the number of sensors is equal to the dimension of the process (to simplify
the notation), the analysis can be easily extended to more general observable systems.

We consider a Time Division Multiple Access (TDMA) air interface, in which each
time slot, t, contains a downlink phase and an uplink phase. The downlink is used by
the BS to schedule the sensor, a(t), that transmits its observation ya(t)(t) in the uplink
phase. The channel is modeled as a packet erasure channel with error probability
εa(t), which captures errors both in the transmission of the scheduling decision and
the observation. We also assume that the process dynamics are known to the BS, a
standard assumption in Kalman filtering, which is practical if the monitored system
is well-understood, even if its instantaneous state is hard to measure directly. This
condition is common for many IoT applications [13, 14], in which well-known processes
are estimated by sensors over wide areas. We also denote the row vector of length N
whose only non-zero value is the n-th, which is 1, as 1n, and the N ×N identity matrix
as IN .

2.1 Kalman Filter Estimation
We assume that the BS maintains a distribution over its belief of the state p(x(t))
using a Kalman filter. The Kalman filter is the Minimum Mean Square Error (MMSE)
estimator for the model defined in (F.1) [15], in which case p(x(t)) ∼ N (x̂(t),ψ(t)). The
mean vector x̂(t) and the covariance matrix ψ(t) are updated at each timestep t based
on the outcome of the scheduling process. The Kalman filter operates in two steps:
a prior update, which only depends on the system statistics, and a posterior update,
which integrates new observations. The prior update operation is given by:

x̂(t) = Ax̂(t− 1) ≜ x̂F(t), (F.2)
ψ(t) = Aψ(t− 1)AT + Σv ≜ ψF(t). (F.3)

178 Paper F.

If the transmission of the update fails, an event we denote as F, the BS can only rely
on the prior update for its estimate. If the update is received, it can be used to improve
the estimate. We then compute the Kalman filter gain k(t):

k(t) =ψF(t)1T
a(t)

[
1a(t) (ψF(t) + Σw) 1T

a(t)

]−1
. (F.4)

We finally get the updated estimate in case of a success event:

x̂(t) = x̂F (t) + k(t)1a(t)(y(t)− x̂F (t)) ≜ x̂S,a(t)(t) (F.5)
ψ(t) = (IN − k(t)1a(t))ψF(t) ≜ ψS,a(t)(t), (F.6)

Note that the recursive structure of the Kalman filter and the independence of the
transmission errors imply that x̂(t) and ψ(t) are sufficient statistics for the state estimate
given the full history H(t) of past actions and observations.

2.2 Summary Statistics
Unlike the majority of VoI applications, in which the BS aims to minimize the MSE of
x̂(t), we consider the case in which an external user requests summary statistics about
the state of the system: these correspond to a predefined, fixed function of the system
state, e.g., the average value or the number of states with values within a given interval.
Formally, we define a summary statistic as a function z : RN → R of the true state
x(t). However, because x(t) is unknown to the BS, it can only provide an approximate
answer to the query based on its state belief p(x(t)). We will consider estimators of the
summary statistics on the form

ẑ(t) = Ex∼N (x̂(t),ψ(t))[z(x)], (F.7)

which corresponds to the minimum MSE estimator of z(x(t)), given the current obser-
vation [16, 17]. This is different from minimizing the MSE of x̂(t), particularly when
function z(·) is non-linear or the sensors have different weights. We denote the squared
error as νz(t):

νz(t) = (z(x(t))− ẑ(t))2. (F.8)

3 Scheduling Strategies
In our scenario, we seek a scheduling strategy, that is, a function πz from the current
Kalman state (which is represented by vector x̂(t) and matrix ψ(t)) to an action a(t),
that minimizes the expected error for a given summary statistic z:

minimize
πz∈Π

E [νz(t) | πz] , (F.9)

3. Scheduling Strategies 179

While we only consider the error in the next time step, the optimal solutions are expected
to perform well with respect to the long-term error due to the linearity of the observed
process (despite a non-linear summary statistic). Computing E [νz(t)|a(t)] is not simple,
but it can be expressed in terms of the two possible transmission outcomes:

E [νz(t) | a(t)] =(1− εa(t))E
[
νz(t) | x̂S,a(t)(t),ψS,a(t)(t)

]
+ εa(t) E [νz(t) | x̂F(t),ψF(t)] ,

(F.10)

where the expectation is over the state evolution. Since ψS,a(t)(t) and ψF(t) can be
computed using (F.6) and (F.3), we can iterate over the possible actions and find the
optimal scheduler, as long as we can estimate the MSE for a given observation. In the
following, we derive the optimal schedulers for some well-known summary statistics,
along with giving a Monte Carlo-based approximate scheduler that can deal with more
complex statistics for which the MSE is hard to express in closed form. Using the result
from (F.10) we can obtain the optimal scheduling decision at time t as:

a∗z(t) = arg min
a(t)∈{1,...,N}

E [νz(t) | a(t)] . (F.11)

3.1 Baseline Scheduler
We start by defining our benchmark scheme, which aims to minimize the MSE between
the true state x and the estimated state x̂. The query is then computed as in (F.7)
based on the MMSE state estimate.

The squared state estimation error can be expressed as

E [νMSE(t)] = E
[
(x(t)− x̂(t))T (x(t)− x̂(t))

]
. (F.12)

Because (x(t) − x̂(t)) ∼ N (0,ψ(t)), the expression above is equivalent to the trace of
the covariance matrix ψ [18]:

E [νMSE(t) | ψ(t)] = tr(ψ(t)). (F.13)

We can then use (F.11) to compute the minimum MSE schedule.

3.2 Sample Mean Scheduling
We now consider the most basic statistic, the sample mean:

zavg(x(t)) = 1
N

N∑
n=1

xn(t). (F.14)

The estimation error νavg(t) is equal to the square of the average difference between the
true and the estimated entries of x. Since the sum of all elements in x(t) − x̂(t) is a

180 Paper F.

Gaussian random variable with zero mean and variance equal to the sum of all elements
in ψ(t), we have:

E [νavg(t) | ψ(t)] =
∑N

i=1
∑N

j=1 ψ
(i,j)(t)

N2 , (F.15)

where ψ(i,j)(t) is entry (i, j) of ψ(t). We can then use the result in (F.11) to derive the
one-step optimal schedule.

3.3 Sample Variance Scheduling
Another important summary statistic is the sample variance, quantifying how much the
state deviates from the mean:

zvar(x(t)) = 1
N − 1

N∑
n=1

(
xn(t)−

N∑
m=1

xm(t)
N

)2

. (F.16)

To derive the scheduling policy, it is convenient to express zvar(x(t)) in quadratic form
with matrix M = I− 1/N :

zvar(x(t)) = (Mx(t))T Mx(t)
N − 1 = x(t)T Mx(t)

N − 1 . (F.17)

Taking into account the belief p(x) ∼ N (x̂(t),ψ(t)), the expected value and variance
of the sample variance are known from the literature [18]:

ẑvar(t) = 1
N − 1

(
tr (Mψ(t)) + x̂(t)T Mx̂(t)

)
(F.18)

E [νvar(t)|ψ(t)] =
2 tr

(
Mψ(t)2)+ 4x̂(t)T Mψ(t)x̂(t)

(N − 1)2 . (F.19)

As for the MSE and sample mean, we can now simply derive the scheduler by using this
result in (F.11).

3.4 Statistic-aware Monte Carlo scheduling
We can now consider a generic summary statistic z: in the general case, computing
the expected MSE can be extremely complex, or even impossible in closed form. In
order to still provide an approximate scheduler, we consider Monte Carlo sampling to
estimate E [νz(t)|a(t)]. This method consists of drawing M samples from the conditioned
multivariate Gaussian distribution p(x|x̂), with complexity O(MN2), and is guaranteed
to converge to the correct estimate as M →∞ thanks to the law of large numbers [19].
This estimate can then be used in (F.11) to perform scheduling.

4. Numerical Evaluation 181

Algorithm 1 Monte Carlo scheduling policy
1: function Schedule(x̂(t− 1),ψ(t− 1), A, Σv, Σw, ε, z)
2: ν ← 0
3: for n ∈ {1, . . . , N} do
4: u← 0
5: for m ∈ {1, . . . , M} do
6: x̂(t− 1),ψ(t− 1), S←PriorUpdate(x̂,ψ, A, Σv)
7: if random(0, 1) ≥ εn then ▷ Update successful
8: y ←GaussianSample(1nx̂, 1nS1T

n)
9: x̂,ψ ←PosteriorUpdate(x̂,ψ, y, n, Σw)

10: xm ←GaussianSample(x̂,ψ)
11: u(n)←z(xm) ▷ Compute query value
12: ν(n)←var(u) ▷ Sample variance
13: return arg min ν

MSE (an.) Avg (an.) Var (an.) Max (MC) Cnt (MC) MAF

0

0.1

0.2

1 1 1 1 1 15 5 5 5 5 510 10 10 10 10 1015 15 15 15 15 1520 20 20 20 20 20

Scheduler selection (scenario 1)

Fr
eq

ue
nc

y

MSE (an.) Avg (an.) Var (an.) Max (MC) Cnt (MC) MAF

0

0.1

0.2

1 1 1 1 1 15 5 5 5 5 510 10 10 10 10 1015 15 15 15 15 1520 20 20 20 20 20

Scheduler selection (scenario 2)

Fr
eq

ue
nc

y

Fig. F.2: Sensor selection frequency for the considered policies.

The operation of the scheduler is specified in Alg. 1: in order to estimate the ex-
pected MSE when selecting each sensor n, it samples from the posterior distribution of
the query. First, the scheduler performs the prior update step from (F.2) and (F.3),
then it draws an outcome to simulate the transmission, with failure probability εn. If
the simulated transmission was successful, an observation is randomly drawn from a
Gaussian distribution with mean 1nx̂ and variance 1nS(t)1T

n , and the posterior update
is performed. We then have the parameters x̂ and ψ of the multivariate Gaussian belief
distribution of the state, from which we can draw a sample xm to compute um = z(xm).
The sample variance over vector u is then our estimate of E [νz(t)|a(t)], and we can sim-
ply select the sensor that gives the minimum expected MSE.

4 Numerical Evaluation
In the following, we show the effects of the sampling strategy on different statistics by
simulation, using a Monte Carlo approach: we generate a synthetic process, then try to
estimate it at the BS using the different schedulers. The systems below represent two

182 Paper F.

highly asymmetric examples, but the strategies we derived are optimal for all observable
linear systems. The scenarios are constructed to be stable, i.e., the eigenvalues of the
system matrices are all smaller than 1.

4.1 Scenario and Settings
We evolve the system for 100 episodes of 1000 samples each, and the Monte Carlo
scheduler computes a total of M = 1000 samples for each state. We consider two
systems with N = 20 sensors, in which the elements of the update matrix A are known.
In the first scenario, the matrix A1 is given by:

A
(i,j)
1 =

{
3
4 , if i = j;
− 1

8 , if i ̸= j,mod(i− 2j, 7) = 0,
(F.20)

where mod(m,n) is the integer modulo function, and the values are 0 everywhere else.
On the other hand, in the second scenario, we have:

A
(i,j)
2 =

{
4
5 , if i = j;
− 1

9 , if i ̸= j,mod(⌈i− 2.3j⌉ , 7) = 0.
(F.21)

The other parameters are the same in both scenarios. We also have Σw = I, while the
process noise covariance is given by:

Σ(i,j)
v =

{
11+mod(i,10)

5 , if i = j;
1, if i ̸= j,mod(i− j, 6) = 0.

(F.22)

Sensors with higher indices will have a slightly higher variance. The transmission error
probabilities are εn = 0.02

⌈
n−1
10
⌉
. The filter is initialized at step 0 with state x̂(0) =

x(0) = 0, and ψ(0) = I.
In addition to the baseline scheduler, we also consider the well-known Maximum Age

First (MAF) scheduler as a benchmark. If we denote the age of the last received packet
from sensor n as ∆n, the scheduler always picks the sensor with the highest age:

a∗MAF(t) = arg max
n∈{1,...,N}

∆n(t). (F.23)

Finally, we consider four different summary statistics, as well as the state MSE: aside
from the sample mean and variance, we consider the maximum and count statistics,
denoted as zmax = maxn xn(t) and zcnt, which is given by:

zcnt(x) =
N∑

n=1
1(xn(t)− a)1(b− xn(t)), (F.24)

where 1(x) is the step function, equal to 1 if x ≥ 0 and 0 otherwise, and the count
interval [a, b]. In other words, the count statistic is a simple count of the number of
state components that are within [a, b], which we set to [−5, 5].

4. Numerical Evaluation 183

MSE (an.) Avg (an.) Var (an.) Max (MC) Count (MC) MAF

0 200 400 600 800

0.6

0.8

1

νMSE

E
m

pi
ri

ca
l

C
D

F

(a) MSE, scenario 1.

0 500 1,000 1,500

0.6

0.8

1

νvar

E
m

pi
ri

ca
l

C
D

F

(b) Sample var, scenario 1.

0 20 40

0.6

0.8

1

νmax

E
m

pi
ri

ca
l

C
D

F

(c) Maximum, scenario 1.

0 10 20

0.6

0.8

1

νcnt

E
m

pi
ri

ca
l

C
D

F

(d) Count, scenario 1.

0 200 400 600 800

0.6

0.8

1

νMSE

E
m

pi
ri

ca
l

C
D

F

(e) MSE, scenario 2.

0 500 1,000 1,500

0.6

0.8

1

νvar

E
m

pi
ri

ca
l

C
D

F

(f) Sample var, scenario 2.

0 20 40

0.6

0.8

1

νmax
E

m
pi

ri
ca

l
C

D
F

(g) Maximum, scenario 2.

0 10 20

0.6

0.8

1

νcnt

E
m

pi
ri

ca
l

C
D

F

(h) Count, scenario 2.

Fig. F.3: Estimation error distributions with the different strategies.

4.2 Results
We can first look at the choices of the schemes aimed at each target metric in one of
the episodes for each scenario, shown in Fig. F.2. As expected, the MAF scheduler
selects sensors with a similar frequency in both scenarios: sensors with an index over
10 are selected slightly more frequently, as transmission errors occur more often, but
the difference is small. On the other hand, the average scheduler only selects two
sensors, 7 and 14, in the first scenario, and only the last, sensor 20, in the second:
this holds throughout all episodes, independently from the state of the system. In
the first scenario, alternating between these two sensors gives the best estimate of the
overall average, as the state of each of these two sensors only depends on the other’s.
In the second scenario, no sensor is isolated, but sensor 20 is the one that affects the
average the most. The average scheduler then gets the best estimate it can for the other
values, concentrating on these sensors and actually getting a better average performance.
Naturally, this results in a significantly worse performance when looking at any other
summary statistic. We also remark that all other policies excluding MAF never choose
sensors 7 and 14 in the first scenario: as errors compound for most of these summary
statistics, it does not make sense to choose isolated sensors, as sensors that are more
correlated to their neighbors have a better chance to reduce the overall error. We can
also note that, in the second scenario, the MSE, count, and sample variance schedulers
often make similar choices, while they do not in the first scenario: this similarity is
purely due to the specific features of the system, and cannot be relied upon for design.

The CDFs of the quadratic estimation errors νz(t) obtained for the various summary
statistics are shown in Fig. F.3. As expected, optimizing the scheduling for a given

184 Paper F.

summary statistic can reduce the error on it, for all the considered statistics. We did
not plot the average statistic, as all policies had a similar performance, although, as
expected, the average scheduler performed best for that statistic. However, π∗avg was
almost always the worst policy when looking at other summary statistics, often by a
wide margin, in both scenarios, for the reasons we explained above. The maximum
scheduler π∗max was also noticeably worse when looking at the state MSE or the interval
count, as it tended to pick sensors with a high value, often accepting a larger error
on other components of the state. As the maximum value was almost always far over
the interval boundaries, the count statistic was also negatively affected. Finally, the
similarity in the behavior of the count, sample variance, and the MSE scheduler in the
second scenario has a similar performance, as Fig. F.3e-h show.

In general, the average and count statistics tend to be relatively insensitive to the
scheduling policy used, with most policies showing similar results: in both cases, estima-
tion errors tend to compensate, and the error is relatively low. On the other hand, the
gain from using the appropriate scheduling strategy is clearly noticeable when looking
at the MSE and at the maximum statistic. In these cases, individual components of
the state can have a disproportionate effects, and errors tend to compound rather than
compensate each other. In general, while never being the optimum, the MAF scheduler
is also never the worst, as it is a purely AoI-oriented approach that does not consider
the specific definition of VoI.

5 Conclusion
In this letter, we have considered the optimization of a sensor polling strategy, using
different statistics to define the VoI. The difference between the policies can be impor-
tant, as errors tend to compensate each other in some cases and compound for other
statistics, leading to different choices of sensors. Naturally, one-step optimization is
a limited approach, and we plan to consider more complex schemes which can take
long-term effects into account, as well as different statistics over the same process. En-
ergy consumption is also another important metric, and we plan to compare VoI-based
strategies to energy-efficient ones and try to find a balance between them.

References 185

References
[1] A. A. Soderlund and M. Kumar, “Optimization of multitarget tracking within a

sensor network via information-guided clustering,” J. Guidance, Control, Dynam-
ics, vol. 42, no. 2, pp. 317–334, Feb. 2019.

[2] A. Awad, A. Mohamed, C.-F. Chiasserini, and T. Elfouly, “Distributed in-network
processing and resource optimization over mobile-health systems,” J. Netw. Com-
put. Appl., vol. 82, pp. 65–76, Mar. 2017.

[3] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one
update?” in Conf. on Computer Communications (INFOCOM). IEEE, Mar.
2012, pp. 2731–2735.

[4] O. Ayan, M. Vilgelm, M. Klügel, S. Hirche, and W. Kellerer, “Age-of-information
vs. value-of-information scheduling for cellular networked control systems,” in Pro-
ceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Sys-
tems, 2019, pp. 109–117.

[5] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic sensor
selection algorithm with applications in sensor scheduling and sensor coverage,”
Automatica, vol. 42, no. 2, pp. 251–260, Feb. 2006.

[6] A. Hashemi, M. Ghasemi, H. Vikalo, and U. Topcu, “Randomized greedy sensor
selection: Leveraging weak submodularity,” IEEE Trans. Autom. Control, vol. 66,
no. 1, pp. 199–212, Mar. 2020.

[7] Z. Li, L. Zhang, Y. Cai, and H. Ochiai, “Sensor selection for maneuvering target
tracking in wireless sensor networks with uncertainty,” IEEE Sensors J., Dec. 2021.

[8] R. Duan, J. Du, J. Ren, C. Jiang, Y. Ren, and A. Benslimane, “VoI based infor-
mation collection for AUV assisted underwater acoustic sensor networks,” in Proc.
Int. Conf. Commun. (ICC). IEEE, Jun. 2020.

[9] S. M. Hoseyni, F. Di Maio, and E. Zio, “VoI-based optimal sensors positioning and
the sub-modularity issue,” in Proc. Int. Conf. Syst. Rel. Safety (ICSRS). IEEE,
Nov. 2019, pp. 148–152.

[10] F. Chiariotti, J. Holm, A. E. Kalør, B. Soret, S. K. Jensen, T. B. Pedersen, and
P. Popovski, “Query age of information: Freshness in pull-based communication,”
IEEE Trans. Comm., 2022.

[11] A. Froytlog et al., “Ultra-low power wake-up radio for 5G IoT,” IEEE Comm. Mag.,
vol. 57, no. 3, pp. 111–117, Feb. 2019.

186 References

[12] J. Shiraishi and H. Yomo, “Wake–up control for wireless sensor networks collecting
top–k data with temporal correlation,” in Proc. 92nd Veh. Tech. Conf. (VTC2020-
Fall). IEEE, Nov.

[13] Y. Huang, W. Yu, E. Ding, and A. Garcia-Ortiz, “EPKF: Energy efficient com-
munication schemes based on Kalman filter for IoT,” IEEE Internet of Things J.,
vol. 6, no. 4, pp. 6201–6211, Feb. 2019.

[14] J. Wang, R. Zhu, and S. Liu, “A differentially private unscented kalman filter for
streaming data in iot,” IEEE Access, vol. 6, pp. 6487–6495, Jan. 2018.

[15] R. E. Kalman, “A new approach to linear filtering and prediction problems,” J.
Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

[16] J. Humpherys, P. Redd, and J. West, “A fresh look at the Kalman filter,” SIAM
review, vol. 54, no. 4, pp. 801–823, Nov. 2012.

[17] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
USA: Prentice-Hall, Inc., 1993.

[18] A. M. Mathai and S. B. Provost, Quadratic forms in random variables: theory and
applications. Dekker, 1992.

[19] D. Luengo, L. Martino, M. Bugallo, V. Elvira, and S. Särkkä, “A survey of Monte
Carlo methods for parameter estimation,” EURASIP J. Adv. Signal Process., vol.
2020, pp. 1–62, Dec. 2020.

Paper G

Goal-Oriented Scheduling in Sensor Networks with
Application Timing Awareness

Josefine Holm, Federico Chiariotti, Anders E. Kalør, Beatriz Soret,
Torben B. Pedersen, and Petar Popovski

The paper has been submitted to the
IEEE Transactions on Communications 2022.

The layout has been revised.

1. Introduction 189

Abstract
Taking inspiration from linguistics, the communications theoretical community has re-
cently shown a significant recent interest in semantics and pragmatics (effectiveness) of
communication. In this paper, we treat the problem of pragmatic (goal-oriented) com-
munication, i.e., how to transmit the most relevant information for the receiver in order
to attain a certain goal, taking into account timing constraints and the shared context.
We capture the goal-oriented aspect through the metric of VoI, which is aware of the
measured process as well as the timing constraints. However, the most common defini-
tion of VoI in the literature is extremely restrictive, using the MSE of the whole system
state as a value function, regardless of the relevance of individual components or the
needs of specific applications. In this work, we formulate and solve a pragmatic schedul-
ing problem that considers: (1) different summary statistics, i.e., value functions of the
state, and (2) a diversified query process on the client side, expressed through the fact
that different applications may request different functions of the process state at different
times. A query-aware Deep Reinforcement Learning (DRL) solution based on statically
defined VoI can outperform naive approaches by 15-20% in certain scenarios.

1 Introduction
Semantic and goal-oriented communications [1] aim to go beyond the traditional domain
of communication theory towards optimizing communication systems with respect to a
specific task or goal. In [2], Shannon and Weaver talk about the semantics and effec-
tiveness levels of the communication problem. Semantic communication corresponds to
the transmission of the most meaningful information for the given context. Following
the nomenclature in linguistics, we denote effectiveness by the term goal-oriented or
pragmatic communication. In this sense, goal-oriented communication is about trans-
mitting the most relevant information for the receiver in order to attain a certain goal,
taking into account both timing constraints and the shared context, which acts as an
implicit information channel between the transmitter and receiver.

This new perspective is crucial in the context of the Industry 4.0 and Industrial Inter-
net of Things (IIoT) paradigms, which aim at automating manufacturing and industrial
processes in a flexible and easily reconfigurable fashion. A representative scenario is the
remote estimation of the state of a system by a distributed network of low-power sensors,
a classical IoT problem [3]. The recently proposed VoI metric [4] represents a theoret-
ical tool to model the pragmatics of the monitoring application, as it can seamlessly
integrate the timing performance of the communication network with the underlying
estimation [5].

However, VoI is often defined in a static manner: the value function is the MSE of
the system state, and there is an application constantly monitoring the process with a

190 Paper G.

Sensor 1

Sensor 2

Sensor 3

Sensor 4
Edge node

Client 1

Client 2

Client 3

Poll

Value
Estimate

Query

Fig. G.1: Illustration of the considered monitoring scenario, where an edge node collects information
from sensors to reply to queries from clients. Queries are indicated by dashed lines, while their responses
are solid lines.

faster pace than the updates. In many IoT scenarios, this is not true, as there may be
multiple clients monitoring the same process through an edge node or gateway. Each
client may be potentially interested in a different function of the system state at different
times [6], as shown in Fig. G.1. The publish/subscribe model is already the standard
for IoT applications [7], with the edge node acting as a message broker. In the system
model in the figure, a Mobile Edge Computing (MEC)-enabled base station polls a set
of sensors, which respond with their latest measurements. The edge node uses the data
to estimate the overall state of the process measured by the sensors, and receives queries
from client applications, which might be different functions of the state, e.g., the highest
value among all sensors, or the number of sensors measuring values in a certain range [8].

This setup has a clear timing context for defining goal-oriented communication: the
edge node should optimize its scheduling strategy to answer queries accurately, taking
into account both the nature of the estimation process and the query process. The
optimal VoI scheduling will then consider not only the accuracy of the estimate, i.e., the
semantic value of the updates, but also when the estimation of a particular function of
the state will be needed, i.e., the pragmatic relevance of the information to the receiver.
Fig. G.2 shows such an example: a simple strategy that aims at maximizing VoI can
maintain an approximately constant error when tracking both the maximum recorded
value and the sample variance among the sensors, balancing between the two types of
queries. However, an awareness of the query instants, indicated by the vertical dotted

1. Introduction 191

20 40 60 80 100
0

20

40

60

80

100

Time step

V
al

ue

Max Variance

(a) VoI-based sensor scheduling.

20 40 60 80 100
0

20

40

60

80

100

Time step

V
al

ue

Max Variance

(b) Query-aware sensor scheduling.

Fig. G.2: Example of the effects of query-aware VoI scheduling. The lines and colored areas represent
the query response value and its confidence interval, respectively, and the vertical dotted lines represent
the query times (purple for Variance and orange for Max).

lines in the figure, enables the system to perform better: the error on the value of the
maximum, represented by the yellow shaded area, can increase right after a query, but
needs to be low when the information is necessary. As queries arrive periodically every
10 time steps, and alternate between the two types, the system should try to minimize
the error on the maximum before that type of query, and a sensor with a very low value
should not be polled, even if its value would greatly improve the overall estimation of
the state. The scheduler should then switch to minimizing the error on the sample
variance after replying. As the figure shows, each shaded area is at its narrowest at the
moment a query of that type arrives, minimizing the overall error of each response.

In this work, we formulate a pragmatic1 scheduling problem, considering both the
process and the queries from multiple client applications. We define the problem as a
MDP, assuming that the edge node has the full statistical knowledge of the process,
and solve it with DRL, as the continuous state space prevents us from using simpler
methods such as tabular Q-learning. The contributions of the paper are the following:

• We rigorously model the pragmatic sensor scheduling problem with multiple clients
and different query functions and query generation processes and find a closed-form
solution in a simple example, showing that the optimal policies for different queries
can be extremely different and that using the wrong one can lead to significant
performance loss;

• We propose a DRL scheduling solution and estimate its computational complexity,
concluding that it is executable in real time even on an embedded edge processor;

• We provide simulation results and comparisons with static VoI policies and the
traditional MAF policy, which minimizes the average AoI of the system, for a sce-
nario in which two query types are present, i.e., a max query asking the maximum

1In the remainder of this paper, we use the terms pragmatic and goal-oriented interchangeably.

192 Paper G.

value among the state components and a count range query asking how many
state components have a value within a given interval. The performance of the
system is strongly dependent on the queries that arrive to it, as the error on the
queries depends on the exact function of the state that they request.

The rest of the paper is organized as follows: first, we discuss the state of the art
on the topic in Sec. 2. We then define the scheduling problem in Sec. 3, and model it
as an MDP in Sec. 4, which also describes the proposed DRL solution. Then, Sec. 5
describes the simulations comparing the proposed scheme to state-of-the-art policies and
their results. Finally, Sec. 6 concludes the paper and presents some possible avenues for
future work.

2 Related Work
During the last decade, AoI [9] and the associated metrics have received a significant
attention in the communication engineering community. Most works in the literature
study the average AoI in queues and networks of queues, using basic queuing theory to
compute analytical performance curves [4]. However, the original definition of the AoI
can result in suboptimal outcomes if some conditions are not met, and similar metrics
that can extend the definition to more general scenarios and applications have been
defined.

Firstly, AoI does not need to be linear: some recent works generalized the definition
to measure any non-decreasing function of the age [10, 11], leading to different consid-
erations in AoI optimization, as higher ages are penalized more or less depending on
whether the aging function is super- or sub-linear. This can be further generalized by
taking into account the actual value of the process tracked by the updates: since AoI is
a proxy metric for the evolution of the tracking error over time, considering that error
directly leads to better performance. The Age of Incorrect Information (AoII) [12] mixes
a linear timing penalty with a multiplier based on the error in a discrete system, while
VoI [13] directly measures the error (either real or expected) on the estimation process.

The adaptive scheduling of sensors in IoT scenarios with the goal of minimizing
the AoI or related metrics is a well-studied problem in the literature. The scheduling
problem can be formulated both for multiple sources, in which case it involves balancing
the ages of the different sources while avoiding interference [14], or for a single source
with resource constraints: usually, these constraints are in the form of limited energy
availability or enforced duty cycles. The most interesting works in this sense consider
the VoI, measured as the expected tracking error of a Kalman filter [15, 16]. In general,
the constraint on the accuracy is due to a communication bottleneck, which occurs due
to limited bandwidth and energy, such that sensors need to reduce their transmissions
as much as possible. Other scenarios in which VoI is used are data muling applications,
in which drones, robots, or underwater vehicles need to physically move close to sensors

2. Related Work 193

to collect the information [17], and sensor placement problems, in which the issue is
not to schedule transmissions, but rather to design the network to maximize accuracy
and minimize cost [18]. Our own previous work [8] extends the definition of VoI from
the MSE of the state to arbitrary functions, presenting a one-step optimal scheduling
procedure. Another interesting development involves the modeling of the state of each
sensor as a Markov chain, posing the polling problem as a Partially Observable Markov
Decision Process (POMDP) [19] to identify sensors reporting abnormal values with the
minimum energy expenditure [20].

Another assumption that has been central to the AoI literature is that information
is always relevant, and that the application that tracks the process is always active.
We can relax this assumption by considering a query process, as we did in our previ-
ous work [6], in which we defined the QAoI: this metric is a sub-sampling of the AoI,
only considering the instants when a query arrives from the application to be relevant
for the optimization. A similar approach was adopted in defining the EAoI [21], with a
slightly different set of assumptions, and our theoretical results were extended in [22, 23],
which showed the different outcome of the AoI and QAoI minimization problems under
an update-or-wait model. Another work also models requests in the optimization func-
tion [24], but it only deals with memoryless request processes, which (as we will describe
in the introduction) lead to a solution that is equivalent to standard AoI minimization.
The extended version of that paper [25] considers more complex scenarios with partial
battery knowledge, but still uses the same memoryless request model. Finally, a recent
work by Xu et al. [26] also considers a memoryless request process, but considers a mix
between traditional AoI and query-aware metrics. By only tracking the AoI when a
query arrives from the application, the communication system considers not only the
freshness of the received information, but also when it is needed: if, for example, the
application works over discrete time intervals, transmitting more data close to the next
query can reduce the bandwidth and energy usage, while maintaining the same or better
accuracy from the application’s point of view.

The problem of value-oriented scheduling has also been approached in the distributed
control: if the agents have communication capabilities, the most valuable piece of infor-
mation is the one that will allow them to improve their performance in the task. The
Urgency of Information (UoI) metric [27] directly considers how much an update would
affect a known linear controller. If we consider more complex Multi-Agent Reinforce-
ment Learning (MARL) agents, the problem is more complex [28], as the communication
policy is implicitly learned by the agents while they converge to the optimal control pol-
icy, and this approach has only been successful in simple problems [29] or with only one
supporting agent communicating to a primary one [30]. For a more thorough review of
the cooperative MARL literature, we refer the reader to [31].

This work combines and extends some of the ideas on VoI sensor scheduling and
query awareness, as well as concepts from the semantic communications literature, by
considering a system with multiple queries arriving at different times, each of which

194 Paper G.

requires different information on the state of the tracked process, represented by a
different VoI function. To the best of our knowledge, this is the first work to consider
this complete system model, and a significant step forward towards full-fledged goal-
oriented communications.

3 System Model
We consider a system in which an edge node receives information from a set of N
sensors, indexed by n ∈ {1, 2, . . . , N}, and has to respond to queries from users in the
cloud. Time is divided into slots, denoted as t = 0, 1, 2, . . ., and in each slot, the edge
node can send a request to one sensor, and respond to queries from any number of
clients. In turn, the sensors observe a linear dynamic system, whose state is denoted
as x(t) ∈ RM . The dimensionality of the process state is M , which can be different
from the number of sensors N in the general case. The system evolves according to
a (potentially time-varying) transition matrix A, with an overlaid error perturbation
modeled as a multivariate Gaussian noise:

x(t) = Ax(t− 1) + v(t), (G.1)

where v(t) ∼ N (0M ,Σv). The noise v(t) is zero-mean, and its covariance matrix is
Σv ∈ RM×M . The sensors then measure a vector y(t) ∈ RN , which represents a linear
observation of the state of the system with an added Gaussian measurement noise. We
define an observation matrix H ∈ RN×M , which defines the linear function of the state
that each function observes:

y(t) = Hx(t) + w(t), (G.2)

where w(t) ∼ N (0N ,Σw). The observation noise w(t) is also zero-mean, with a covari-
ance matrix Σw ∈ RN×N .

3.1 Remote Kalman Tracking
As the edge node does not know the real state x(t) of the monitored process, it needs
to estimate it. In this work, we use the well-known Kalman filter [32], which is the
optimal solution for linear dynamic systems. We assume that the edge node knows the
matrices A, H, Σv, and Σw, and define vector x̂(t) ∈ RM as the best estimate of the
state available to the edge node. The Kalman filter also outputs a covariance matrix
ψ(t), which corresponds to the expected value E[(x(t) − x̂(t))T (x(t) − x̂(t))]. We can
then provide a recursive formula for updating the a priori estimate:

x̂t−1(t) =Ax̂t−1(t− 1) (G.3)
ψt−1(t) =Aψt−1(t− 1)AT + Σv, (G.4)

3. System Model 195

where the subscript in the estimates indicates the last available observation.
As we stated above, the sensor can request the current value yn(t) from one sensor

per timeslot, whose index is denoted by a(t). We also consider communication errors,
modeling the channel between sensor n and the edge node as a PEC with error proba-
bility εn. Considering the row vector h(t) ∈ RM :

h(t) = 1a(t)H, (G.5)

where 1a(t) is the row vector of length N whose elements are all 0, except for the one
with index a(t), which is equal to 1. We can then update the observation function
in (G.2), getting the value ya(t)(t), which is the observation transmitted by the polled
sensor a(t):

ya(t)(t) = h(t)x(t) + 1a(t)w(t) = 1a(t)y(t). (G.6)

We indicate the outcome of the transmission at time t by the Bernoulli random variable
λ(t), which is equal to 1 if the transmission is successful and 0 otherwise. In the
former case, the edge node receives observation ya(t)(t), while in the latter, it receives no
observation for this time step. We can then give the Kalman gain row vector K(t) ∈ RM

as:
K(t) = ψt−1(t)h(t)T

(
h(t)ψt−1(t)h(t)T + σ2

w(t)
)−1

, (G.7)

where σ2
w(t) = 1a(t)Σw1

T
a(t). The update from the a priori estimate of the state to the

a posteriori one is then given by:

x̂t(t) =x̂t−1(t) + λ(t)k(t)
(
ya(t)(t)− h(t)x̂t−1(t)

)
(G.8)

ψt(t) = (IM − λ(t)k(t)h(t))ψt−1(t), (G.9)

where IM is the M ×M identity matrix. We highlight that the a priori and a posteriori
estimates are the same if λ(t) = 0, as no observation is received by the edge node [33],
as the a priori estimate is the best estimate that the edge node can obtain with the
information it has received.

3.2 The Query Process
We consider a query to be a request for either the state x(t) itself, or the value of a
function z(x(t)) of it. The edge node receives queries and responds with an estimate
ẑ(x̂(t),ψ(t)) based on the current state of the Kalman filter.

We can consider different types of queries, which can correspond to different functions
of the state. A classic query is the sample average among the measured values, but
non-linear functions and even order statistics can often be useful in industrial settings.
For example, the number of state components that are within their normal operation
parameters, or the maximum among the state components, can be helpful to trigger
safety conditions and shut down machines or raise a warning to the operators. As

196 Paper G.

another example, the sample variance can be useful when monitoring the strain on
different components of a building or a structure, such as a bridge.

The temporal element of the query process can be modeled as a Markov chain. We
assume that each client c follows an independent Markov chain with a state at time
t qc(t) ∈ Qc, with a known transition matrix Tc. Each client c always requests the
same function zc anytime its Markov chain is in a subset of states, which we denote as
Q̃c. Naturally, the state of each client is unknown to the edge node, which can only
know which clients are currently subscribed and when did they send their last query.
In some cases (e.g., periodic queries), this information is sufficient to predict the next
query perfectly, as we will discuss below, but in the general case, the information about
the query process available to the edge node entails some randomness and uncertainty.

3.3 Responding To Queries
The objective of the edge node is to respond to queries as accurately as possible, i.e., to
minimize the error of its responses. The MSE for client c is defined as:

MSEzc
= E

[
(ẑ(x̂(t),ψ(t))− z(x(t)))2

]
. (G.10)

The edge node can act in two ways to minimize the MSE: the first is to optimally use
its knowledge of the state by using an MMSE estimator to obtain ẑ(x̂(t),ψ(t)), and the
second is to poll sensors according to the expected VoI of their readings, i.e., schedule
the sensor that can help the most in reducing the MSE of the next queries. The former
problem is relatively simple, while the latter will be tackled in Sec. 4.

We can give the definitions and MMSE estimators for some of the most intuitive
queries as follows:

1. State: in this case, the request is for the direct value of x(t). As the Kalman filter
is the MMSE estimator as long as the system is correctly identified, the response
of the node will be x̂t(t), and the MSE will be tr(ψt(t)), where tr(·) is the matrix
trace operator;

2. Sample mean: in this case, the function that the client requests to the edge node
is the sample average, represented by:

zavg(x(t)) = 1
M

M∑
m=1

x(m)(t), (G.11)

where x(m)(t) is the m-th element of x(t). The optimal response is simple: as
x(t) − x̂(t) is a multivariate Gaussian variable with zero mean and covariance
matrix ψt(t), the MMSE estimator is simply given by zavg(x̂t(t)), and its MSE is

3. System Model 197

given by:

MSEavg(t) = 1
M2

M∑
i=1

M∑
j=1

ψ
(i,j)
t (t), (G.12)

where ψ(i,j)
t (t) is element (i, j) of the covariance matrix ψt(t);

3. Sample variance: in this case, the sample variance is computed as:

zvar(x(t)) = 1
M − 1

M∑
m=1

(
x(m)(t)− zavg(x(t))

)2
. (G.13)

In order to derive the MMSE estimator, we express the sample variance as the
following quadratic form:

zvar(x(t)) = 1
M − 1x(t)T Qx(t), (G.14)

where Q = I − 1/M . Since the difference between the real and estimated states
is multivariate Gaussian, we can compute the MMSE estimator using the method
from [34]:

ẑvar(t) = 1
M − 1

(
tr (Qψt(t)) + x̂t(t)T Qx̂t(t)

)
. (G.15)

In this case, the MSE of the estimator is given by:

MSEvar(t) =
2tr
(
Qψt(t)2)+ 4x̂t(t)T Qψ(t)x̂t(t)

(M − 1)2 . (G.16)

The optimal scheduler, and even the MMSE estimator, for more complex queries, with
highly non-linear functions, is hard to compute analytically. In the case of order statis-
tics, a closed-form MMSE estimator might not even be achievable [35], as the extreme
values of high-dimensional multivariate Gaussian variables are computed only as limit-
ing distributions in the relevant literature. Another common function, which we indeed
use in our performance analysis, is the count range function, which counts how many
components of the state are inside a given interval [a, b]. The count range query is
defined as:

zcnt(x(t)) =
M∑

m=1
1

(
x(m)(t) ∈ [a, b]

)
, (G.17)

where 1(·) is the indicator function, equal to 1 if the condition inside the parentheses is
verified and 0 otherwise. Note that the definition of the function zcnt(·) should include
the interval [a, b], but here we omit it for the sake of readability. Furthermore, a and

198 Paper G.

b are assumed to be fixed for the same query process. We can then define the region
Z(m), which is defined as follows:

Z(m) =
{

x ∈ RM : zcnt(x) = m
}
. (G.18)

We can then define the probability that zcnt(x(t)) is equal to m, corresponding to the
integral of the multivariate Gaussian random variable x(t) ∼ N (x̂t(t),ψ(t)) in Z(m):

P(zcnt(x(t)) = m) =
∫
Z(m)

1√
2πM |ψ(t)

e−
1
2 (x−x̂t(t))Tψ−1(t)(x−x̂t(t))dx. (G.19)

The MMSE estimator for the count range query is then the average over all possible
values of m:

ẑcnt(t) =
M∑

m=0
mP(zcnt(x(t)) = m). (G.20)

The corresponding MSE is defined as follows:

MSEcnt(t) =
M∑

m=0
(m− ẑcnt(t))2P(zcnt(x(t)) = m). (G.21)

The integral in (G.19) can only be computed numerically, and is extremely hard to
tabulate. Computing the effect of scheduling each sensor is computationally heavy, and
is required to compute the VoI.

However, the MMSE scheduler for any query function can be easily approximated
using Monte Carlo methods [36] by drawing samples from the a priori distribution. The
detailed algorithm for Monte Carlo-based scheduling is given in our previous work [8].
While Monte Carlo estimates are not MMSE, they approach the optimal estimator as
the number of samples grows to infinity, at the cost of computational complexity. If we
consider S samples, the complexity of one Monte Carlo estimate is O(SM2).

4 The Scheduling Problem
In the previous section, we defined the system model and determined the optimal es-
timator for common query functions, along with a Monte Carlo strategy for general
functions. However, the most complex problem is not to reply directly to a query, but
to consider future queries in a foresighted manner, scheduling sensor transmissions so
as to minimize the MSE on future responses. This requires to consider not only the
monitored system, but also the query process and the interplay between different query
functions. For example, two clients which request the maximum and minimum will need
very different parts of the state to be estimated accurately, and balancing between their

4. The Scheduling Problem 199

needs will be complex. The polling decisions made by the edge node also affect the
future state of the Kalman filter, requiring a dynamic strategy.

We can model the scheduling problem for the edge node as a POMDP, in which the
edge node must decide which sensor to poll at each time slot. The action space is then
simply A = {1, . . . , N}, while the state space is more complex. The state of the Kalman
filter just before the update, described by x̂t−1(t) and ψt−1(t), is included in the state,
and so should all the states of the clients: the state space for a system with C clients
is then S = RM3 ×∏C

c=1 |Qc|. However, the edge node does not know the state qc(t)
of each client, but only the time that has passed since the last query, which we define
as τc(t) ∈ N. We then have an observation space O = R3 × NC . The matrices A, H,
Σv, and Σw, as well as the error probability vector ε = [εn] and the query functions zc,
should also be known a priori to the edge node, but are not part of the state.

Note that the problem reduces to a fully observable MDP if the time since the last
transmission is sufficient to determine the next query, i.e., if the following condition is
true:

P(qc(t+ 1) ∈ Q̃c|qc(t) = q) = P(qc(t+ 1) ∈ Q̃c|τc(t)), ∀q ∈ Qc, τc(t) ∈ N. (G.22)

Two special cases of this are the memoryless process, in which the Markov chain only
has two states (query and no query), and the deterministic chain with |Q̃c| = 1, which
leads to a periodic query process. In the general case, the state of the query process
depends on external factors (e.g., a human operator), and is not directly knowable by
the edge node: if a stochastic transition can lead to a state in which (G.22) is not
verified, the problem is partially observable.

The transition probability P (s, s′|a) from one state to the next for a given action
is then determined by the Markov chains of each client, along with the Kalman filter
equations in (G.8) and (G.9). The final parameter to define the POMDP is then the
reward function r(t), which is simply given by the following:

r(t) = −
∑
c∈C

αcMSEzc(t)1(qc(t) ∈ Q̃c), (G.23)

where αc > 0 is a weight parameter representing the relative importance of each client,
whose value is given by the system designers, and is thus known a priori by the edge
node. The reward is always negative, as the objective is to minimize the error on all
queries.

We then define a policy π : O → Φ(A), where Φ(A) is a probability distribution over
the action space A. In other words, the policy maps observed states to the probability
of selecting each sensor. We can then define the long-term reward function R(t|π):

R(π) = E

[∞∑
t=0

γtr(t)
∣∣∣s0, π

]
, (G.24)

200 Paper G.

where γ ∈ [0, 1) is an exponential discount factor. The objective of the scheduling
problem is then to find the optimal policy π∗, which maximizes the long-term reward:

π∗ = arg max
π:O→Φ(A)

R(π). (G.25)

The case for γ = 0 is a special case, in which future steps are never counted, and only
performance in the next step matters: this case was solved analytically in our previous
work [8].

4.1 A Simple Example: The Effect of Queries on the Optimal
Policy

We can first consider a simple example, in which a system with N = 2 sensors observes
a process with M = 2 and needs to reply to a single client (i.e., C = 1). The communi-
cation is assumed to be error-free, and each sensor m observes an independent binary
Markov chain, which changes its state with probability pm, so that x(t) ∈ {0, 1}M ∀t
and H = I2. The transition matrix Tm is then given by:

Tm =
(

1− pm pm

pm 1− pm

)
. (G.26)

We know that the observation of the state is error-free, so after ∆m steps from the last
observation om, the a posteriori state probability distribution of Markov chain m is
given by:

Pm(∆m, om) = T∆m
m

(
1− om

om

)
. (G.27)

We assume that a query arrives at every step from the client, but define two types of
clients with different query functions:

• The maximum query returns the maximum between the two values:

zmax(x(t)) = max
m∈{1,2}

x(m)(t). (G.28)

• In this case, the count range query counts the number of sensors which have a
value equal to 1:

zcnt(x(t)) =
2∑

m=1
1

(
x(m)(t) = 1

)
. (G.29)

If at least one of the sensors has a value of 1, the value of the other sensor is meaningless
for the maximum query; on the other hand, it is still relevant for the count query. We

4. The Scheduling Problem 201

can compute the maximum likelihood response to each query:

ẑmax(∆,o) =1− P1,0(∆1, o1)P2,0(∆2, o2); (G.30)
ẑcnt(∆,o) =P1,1(∆1, o1) + P2,1(∆2, o2), (G.31)

where Pm,i(∆m, om) is the a posteriori probability that chain m will be in state i, given
the latest observation and its age, and ∆ and o are the vectors of ages and observed
values, respectively. We can also compute the MSE for both queries:

MSEmax(∆,o) =P1,0(∆1, o1)P2,0(∆2, o2)(1− P1,0(∆1, o1)P2,0(∆2, o2)); (G.32)
MSEcnt(∆,o) =P1,0(∆1, o1) + P2,0(∆2, o2)− (P1,0(∆1, o1))2 − (P2,0(∆2, o2))2

.
(G.33)

We can note that, if we observe one of the two states and o = 1, the response to the
maximum query is always correct, as the probability of that component being equal to 0
is 0. In order to maximize the long-term reward from (G.24), we can adopt the classical
policy iteration method, as described in [37, Ch. 4] after truncating the POMDP by
setting a maximum age ∆max. The state is then defined as s = (∆,o) ∈ S. The
transitions from one state to the other are extremely simple, and we can easily derive
the transition probability P(s(t+ 1)|s(t), π(s(t))) for each possible combination.

Policy iteration has two steps, called evaluation and improvement. The algorithm
is initialized with an approximate value V0(s) for each state and a policy π0, which can
be set as all zeros. It then repeats the two steps iteratively until the policy converges.
In the first step at iteration t, the value function Vt(s) is updated as follows:

Vt+1(s) = −MSE(s, πt(s)) + γ
∑
s′∈S
P(s′|s, πt(s))Vt(s′). (G.34)

Naturally, the definition of the MSE depends on the type of query. After the value has
been updated for all states, the policy is updated:

πt+1(s) = arg min
a∈{1,2}

−MSE(s, a) +
∑
s′∈S
P(s′|s, a)Vt+1(s′). (G.35)

Policy iteration is guaranteed to converge to the optimal policy in finite-state MDPs
with finite reward [38].

The results for p1 = 0.1 and p2 = 0.2 are given in Fig. G.3. As Fig. G.3a-d show,
the policy is the same for any observation, and only depends on the age of the two
measurements, since the MSE of the count query is the same for any observation. The
level of uncertainty determines the action: the second component of the state, which
can vary more often due to the higher state change probability, is the one that is
polled, unless the age of the latest observation of the other component is approximately
double. The maximum query has a more complex policy: if the last observations of each

202 Paper G.

a = 1 a = 2

0 5 10
0

5

10

∆1

∆
2

(a)

0 5 10
0

5

10

∆1

∆
2

(b)

0 5 10
0

5

10

∆1

∆
2

(c)

0 5 10
0

5

10

∆1

∆
2

(d)

0 5 10
0

5

10

∆1

∆
2

(e)

0 5 10
0

5

10

∆1

∆
2

(f)

0 5 10
0

5

10

∆1

∆
2

(g)

0 5 10
0

5

10

∆1

∆
2

(h)

Fig. G.3: Optimal policies with p1 = 0.1 and p2 = 0.2. a–d: Count range query with o = (0, 0),
o = (0, 1), o = (1, 0), o = (1, 1). e–h: Max query with o = (0, 0), o = (0, 1), o = (1, 0), o = (1, 1).

component are the same, i.e., o = (0, 0) or o = (1, 1), the policy is the same as for the
count range query. On the other hand, if one of the last observations is 1, while the other
is 0, the component with value 1 is always polled. This is reasonable, as one observation
from a sensor that contains a 1 gives perfect certainty on the overall maximum. Giving
a higher priority to the component with the highest probability of being equal to 1 is
then beneficial, even if the uncertainty on the other component becomes extremely high.

Naturally, this is only a simple example, and introducing a query process will com-
plicate the system, but it highlights the strong dependence between the function that
determines each query and the respective polling policy. While the optimal strategy
to minimize the AoI would always poll the sensor with the highest age, and a strategy
that minimizes the uncertainty of the count range query (which, in this simple system,
is almost equivalent to minimizing the MSE) weighs each sensor’s age by the speed of
the corresponding process, the strategy for the maximum query actually depends on the
current value of each sensor, and is starkly different from the others. Mixing different
types of query in the same system will then lead to non-trivial trade-offs, particularly
when the functions are highly non-linear.

4. The Scheduling Problem 203

4.2 Reinforcement Learning Solution and Learning Architec-
ture

While policy iteration has strong convergence guarantees, it is infeasible to use when the
state space is large, which is the case for the considered scheduling problem. Instead, we
resort to approximate solutions, and consider a Reinforcement Learning (RL) approach
to the scheduling problem. RL is a machine learning approach in which an agent learns
from experience, updating its estimate of the value function by trial and error. The
agent makes decisions and receives immediate rewards from the environment, without
any prior knowledge of the reward function or the consequences of actions. For a more
thorough introduction to reinforcement learning, we refer the reader to [37].

We implement the Deep Q Network (DQN) architecture [39], which uses a deep
neural network to approximate the value function. In order to avoid instability, we need
to use a replay memory to store the agent experience and select batches of uncorrelated
samples. Each batch contains B uncorrelated samples, and each experience sample is
a tuple e = (s(t), a(t), r(t), s(t + 1)). We maintain two neural networks for increased
stability: a target network and an update network. In order to estimate the long-term
reward R(π) from an experience sample, we use the target network’s prediction Qt(s, a):

Q(e) = r(t) + γmax
a∈A

Qt(s(t+ 1), a). (G.36)

The use of the long-term reward estimates to update future estimates follows the well-
established bootstrap method, and the use of a greedy update policy follows the Q-
learning model implemented by the DQN. The estimates Q(e) are then used as labels
for the backpropagation operation on the update network, whose output predictions are
used in the action policy to select the next action. The action policy we use implements
the well-known softmax function:

π(s, a) = e
Qu(s,a)

τ∑
a′∈A e

Qu(s,a′)
τ

, (G.37)

where the temperature parameter τ is to balance between exploration and exploitation.
Lower values of τ make the outcome closer to the greedy policy, as the probability of
selecting suboptimal actions decreases, while higher values of τ increase exploration. In
any case, exploration with the softmax function is directed: actions that are assumed to
be highly suboptimal will be picked less frequently, while the agent will prefer actions
that have an estimated long-term reward just below the maximum.

The update network is updated at every step with a new batch of samples, while the
target network is only updated every U steps by copying the update network’s weights.
As we stated above, the use of separate target and update networks allows the system to
converge, avoiding numerical and stability issues. In the rest of this work, we implement
a DQN with 3 layers, whose parameters are given in Table G.1. The first two layers

204 Paper G.

Table G.1: DQN architecture.

Parameter Layer 1 Layer 2 Layer 3

Input size M2 + M + C 2.5M M
Output size 2.5M M N

Activation function ReLU ReLU ReLU
Dropout 0.1 0.1 0

have a dropout probability pd = 0.1 during the training, and the network is relatively
simple, as the input is highly redundant. The hyperparameters above were found after
a grid search optimization process.

4.3 Computational Complexity
We can now discuss the computational complexity of the learning solution. The following
refers to the complexity of a trained model, i.e., of a single decision on the next action:
while training can be performed offline in a simulation environment or even passively on
existing data, actions need to be real-time for the system to work, and the time required
to make decisions is critical.

If we consider a single layer with ℓi inputs and ℓo outputs, there are three operations
that the network needs to perform to compute each output:

1. Multiply each input ℓi by the appropriate weight (equivalent to ℓi multiplication
operations);

2. Sum all the results (equivalent to ℓi sums);

3. Apply the non-linear activation function.

If we consider the activation function as the result of k basic operations, the total number
of basic operations for a single layer is then ℓo(2ℓi + k). If we consider our architecture
as a vector ℓ of layer sizes, where the first element is the cardinality of the input (i.e.,
the observed state) and the last element is N (corresponding to the N possible actions),
we have a total complexity of:

Cf (ℓ) =
|ℓ|−1∑
i=1

ℓi+1(2ℓi + k). (G.38)

We remark that Cf (ℓ) is the total number of basic operations per layer, and as such,
If we consider our architecture for C = 2 and N = 20, which is given above, we have
k = 1, as the Rectified Linear Unit (ReLU) activation function is extremely simple, and
the total number of operations for each step is then Cf = 96 570. The backpropagation
algorithm required to train the neural network has the same complexity as the forward

5. Simulation Settings and Results 205

Table G.2: DQN parameters.

Parameter Description Value

γ Exponential discount factor 0.9
Te Time steps in each episode 100

Etrain Training episodes 100
Etest Test episodes 10

pd Dropout probability 0.1
Rm Replay memory size 10000
B Batch size 128

tup Target net update period 10
Lo Learning rate optimizer Adam
L0 Initial learning rate 10−4

pass, but it must be run for each sample in a training batch [40]. For a training batch
size of B, the total complexity for a single training step is then given by:

Cb(ℓ) = BCf (ℓ). (G.39)

In our architecture, we have B = 128, and consequently, Cb = 12 360 960. This number
of operations should be entirely within the capabilities of an edge node, as even sim-
ple embedded processors can deal with much more complex architectures that require
billions of operations in less than 100 ms [41]. As most of the required calculations in
training and evaluation are vector operations, each layer might only require a single
clock tick on modern processors, particularly when the processor is a GPU or designed
for hardware-assisted learning.

5 Simulation Settings and Results
The performance of the RL-based query-aware scheme is verified by Monte Carlo sim-
ulation, considering a specific scenario. Its performance is measured in terms of the
MSE on its query responses. The evaluation is performed over Etest = 10 independent
episodes, each of which consists of Tmax = 100 time steps. The parameters of the DQN
agent are the same for all considered scenarios, and are given in Table G.2.

5.1 Scenario and Benchmark Policies
We consider a system with M = 20 sensors, each observing a different component of
the state x(t), so that M = N and H = I. The dynamic system that the edge node
observes is defined as follows:

A(i,j) =
{

3
4 , if i = j;
− 1

8 , if i ̸= j ∧mod(i− 2j, 7) = 6.
(G.40)

206 Paper G.

The edge node knows A, as well as the process and measurement noise covariance
matrices, which are given by:

Σ(i,j)
v =

{
11+mod(i−1,10)

5 , if i = j;
1, if i ̸= j,mod(i− j, 6) = 0,

(G.41)

Σw = I. (G.42)

The error probability εn for each sensor is given by:

εn = 0.02
⌈ n

10

⌉
. (G.43)

We consider a case with C = 2 clients with the same importance, i.e., α1 = α2 = 1.Client
1 requests a count range query, i.e., the number of sensors whose value is in the interval
[−5, 0]:

z1(x(t)) =
M∑

m=1
1

(
−5 < x(m)(t) < 0

)
. (G.44)

Client 2, on the other hand, makes a maximum query, i.e., requests the highest value in
the vector x(t):

zmax(x(t)) = max
m∈{1,...,M}

x(m)(t). (G.45)

It is possible to add more clients with other queries and varying importance. This adds
one parameter (i.e., the time since the last query from that client) to the DQN, but the
problem is not guaranteed to scale: the added complexity necessarily makes the training
longer, requiring an adjustment to the exploration and learning profiles as well.

We consider 5 different benchmarks for the query-aware policy:

• MAF : The MAF policy, which minimizes the average AoI of the system regardless
of the value of sensors’ readings. This legacy approach represents a value-neutral
lower bound;

• Cnt: The one-step optimal policy for client 1, which follows the procedure from [8]
to minimize the MSE of the count range query in the current step;

• Max: The one-step optimal policy for client 2, which does the same for the maxi-
mum query;

• RL (Cnt): The foresighted policy learned by a RL agent with α2 = 0, which only
minimizes the MSE of the response to the count range query;

• RL (Max): The foresighted policy with α1 = 0, which does the same for the
maximum query.

5. Simulation Settings and Results 207

Overall cost Max Count

0

10

20

30

40

50
MAF RL
RL (Max) RL (Cnt)
Max Cnt

Fig. G.4: MSE cost of the different policies for both types of query in the periodic query scenario.

We also consider two different query processes, both of which are observable by the edge
node, slightly simplifying the problem:

• Periodic queries: queries are generated every Tq = 6 steps. In this case, the
Markov chain is deterministic, going from state 0 (in which a query is generated)
to state 1 with probability 1, then increasing until 5, after which the chain goes
back to 0 with probability 1;

• Memoryless queries: in this case, the Markov chain only has 2 states, and the rows
of the transition matrix are identical. The time between two subsequent queries
is geometrically distributed, with an expected value E[Tq] = 6 steps.

We consider three combinations of these query processes: the case in which both clients
have periodic queries, the case in which they both have memoryless queries, and the
mixed case in which client 1 has periodic queries, while client 2 follows a memoryless
process.

208 Paper G.

-15 -7 0 7 15
0
2
4

Value

t q

0.00

0.15

0.30

1 5 10 15 20
0
2
4

Node index

t q

0.00

0.15

0.30

(a) MAF policy.

-15 -7 0 7 15
0
2
4

Value

t q

0.00

0.15

0.30

1 5 10 15 20
0
2
4

Node index

t q

0.00

0.15

0.30

(b) RL policy.

-15 -7 0 7 15
0
2
4

Value

t q

0.00

0.15

0.30

1 5 10 15 20
0
2
4

Node index

t q

0.00

0.15

0.30

(c) Foresighted RL (Cnt) policy.

-15 -7 0 7 15
0
2
4

Value

t q

0.00

0.15

0.30

1 5 10 15 20
0
2
4

Node index

t q
0.00

0.15

0.30

(d) Foresighted RL (Max) policy.

-15 -7 0 7 15
0
2
4

Value

t q

0.00

0.15

0.30

1 5 10 15 20
0
2
4

Node index

t q

0.00

0.15

0.30

(e) One-step optimal Cnt policy.

-15 -7 0 7 15
0
2
4

Value

t q

0.00

0.15

0.30

1 5 10 15 20
0
2
4

Node index

t q

0.00

0.15

0.30

(f) One-step optimal Max policy.

Fig. G.5: Colormap representing the histogram of choices, in terms of sensor value and index, for each
of the policies. The vertical axis represents the time tq (count range queries arrive at time 0).

5.2 Periodic Query Scenario
In this subsection we show results for the case where both queries arrive periodically,
each with a period of 6 steps. The two queries are out of sync, with the max query
starting at 0 and the count range query starting at time 2.

This is the easiest case for the edge node, as queries are generated deterministically
and the optimal policy can act on deterministic knowledge of the query pattern. Fig. G.4
shows a boxplot of the MSE for both types of queries, as well as the overall cost: we can
note that the RL policy considering both types of queries obtains a lower cost than all
others (as shown in the group on the left of the figure), with a much lower average and
only slightly worse performance at the 95th percentile than an AoI-oriented approach.

5. Simulation Settings and Results 209

In particular, the choice made by the RL policy is to privilege the max query, with
results that end up being similar to only optimizing for it. All other approaches tend to
reduce the MSE of the count range query more, although they end up having a higher
error on the max query. The count range query is penalized by the fact that it arrives
only 2 slots after the max query: reducing its MSE would require losing accuracy in
the response to the max query, increasing the overall cost. On the other hand, the 4
slots between a count range query and the subsequent max query allow the RL policy to
improve the accuracy significantly. The effect of the discount factor γ is also important:
since a count range query arrives 2 slots after the max query before it, and γ = 0.9,
its MSE only accounts for 81% of the reward for the steps before the max query. A
higher value of γ, or a different weighting of the two query types by adapting α1, would
produce a more balanced outcome.

We can also note that, in this case, the other RL-based policies outperform their
greedy versions on the metric that they optimize for, but no such pattern exists for the
other type of query, which these policies completely disregard. As noted in previous
works on VoI, the AoI-based approach taken by the MAF policy provides a middle
ground for performance, never failing too badly by polling all sensors equally.

The choices made by the various policies can be analyzed more in depth by con-
sidering the distribution of the sensors that are polled. Fig. G.5 shows two colormaps
for each policy, in which the y-axis represents the step in each query period, i.e., the
index of the slot modulus 6. As a reminder, the maximum query is generated at tq = 0
and the count range query is generated at tq = 2. The two colormaps differ by the
value represented on the x-axis: in the first one, the x-axis represents the value x(m)(t)
measured by the chosen sensor, while in the second, the value is simply the index of the
sensor. The color of each cell represents the empirical probability of each combination
in our test episodes.

We can first look at the MAF policy, in Fig. G.5a: the distribution of values is
almost symmetrical, and values between -5 and 5 are polled with approximately the
same frequency. On the other hand, the index colormap shows a checkerboard pattern,
caused by the round robin-like pattern of updates (which is shifted by 2 steps at every
cycle, as N is not a multiple of the query period). The RL policy has a different pattern:
we can note that in even time slots, corresponding to the query instant, the distribution
of values is bimodal: sensors whose value is close to 0 are polled very often, as are
sensors whose value is very high, between 7 and 12. These two peaks correspond to
the two queries: values close to 0 are at the edge of the interval that is relevant for the
count range query, while very high values are obviously interesting for the max query.
The indexes of the sensors that are polled are also much more concentrated: sensors 1,
6, 8, and 17 are polled extremely often, while other sensors are rarely polled: this is due
to the nature of the problem, as some sensors are more valuable to answer the queries
due to the evolution of the state.

The two single-query RL policies, whose choices are represented in Fig. G.5c-d, can

210 Paper G.

further shed light on the behavior of the joint policy: we can easily see that some of
the nodes that are often polled by RL are also polled by its Max and Cnt versions, and
that the two peaks in the distribution are close to a superposition of the two peaks of
RL (Max) and RL (Cnt).

Finally, we can note that the one-step greedy policies, shown in Fig. G.5e-f, do not
have any dependence on the time step, as they are unaware of the query process: the
basic features, such as the Cnt policy choosing values clustered around 0 and the Max
policy choosing values on the highest end of the range, are maintained, but the policies
are inherently noisier than their RL-based versions, which can exploit their knowledge
of the query process to improve performance at the right moment.

5.3 Geometric Query Arrival
We can consider a second scenario, in which at each step a query of either type is
generated with probability 1/6. The average frequency of queries is the same as for
the previous scenario, but instead of a deterministic, periodic sequence, queries follow
a memoryless random process with geometrically distributed inter-query times. We
remark that queries of both types may arrive to the edge node at the same time, and
that in this case, no knowledge is available at the edge node: as the query process
is memoryless, knowing the arrival times of past queries provides no information on
future query arrivals. In this case, the advantage of a query-aware system is naturally
diminished. The time since the last query of each type is still maintained as part of the
input to the RL algorithm, so as to maintain the same architecture for all cases, but in
this case, the RL algorithm needs to learn that this information is useless. This case
also required more training than the other scenarios we considered.

Fig. G.6 shows the performance boxplots for this scenario: in this case, performance
is almost uniform, and all policies have a similar overall cost. The RL policy still has
a small gain in terms of the overall cost, but it performs worse than the greedy Max
policy on the max query. Performance on the count range query is almost uniformly
good, and all differences between the policies are on the worst-case performance of the
max query.

5.4 Mixed Query Arrival
Finally, we consider a third scenario: in this case, the max query follows a memoryless
process with a probability 1/6 of generating a query at each time step, while count range
queries are periodically generated every 6 slots. In this case, the policy needs to adapt
to the possibility of a max query arriving, while also preparing for the foreseen count
range queries.

The performance of the considered policies is shown in the form of boxplots in
Fig G.7, as for the previous cases. The figure clearly shows that this case is much more

5. Simulation Settings and Results 211

Overall cost Max Count

0

20

40

60
MAF RL
RL (Max) RL (Cnt)
Max Cnt

Fig. G.6: MSE cost of the different policies for both types of query in the geometric query scenario.

complex, and the RL policy does not manage to outperform the strategies that are ori-
ented exclusively toward the max query. Since the max query is entirely unpredictable,
the full RL policy would need more training to deal with this scenario: the simpler
strategy learned by the RL (Max) scheme turns out to be better on average, while RL
(Cnt) performs about as well as RL. In most cases, the error on the count range queries
tends to be higher for all policies. We note, however, that the RL strategy still outper-
forms all others in terms of worst-case performance, as the 95th percentile whisker is
particularly low for the count query, resulting in better overall worst-case performance.
A better strategy could be learned with more training, and we note that the complexity
of the scenario has a significant impact on the amount of training required, with mixed
scenarios with deterministic and stochastic query processes being the most difficult.

By knowing the instants in which count range queries will arrive, the RL strategies
can limit the worst-case error, although this comes at the cost of a slightly higher worst-
case error on the max query (which is hard to optimize for, as its arrival process is
completely unpredictable). In this case, as in the geometric query arrival scenario, the
one-step greedy policy for the max query is actually performing almost as well as the
RL version, as there is no long-term information to be learned on the query process. In

212 Paper G.

Overall cost Max Count

0

10

20

30

40

50
MAF RL RL (Max)
RL (Cnt) Max Cnt

Fig. G.7: MSE cost of the different policies for both types of query in the mixed query scenario.

general, as was the case for QAoI, awareness of the query process is more useful if it is
deterministic, or at least partially predictable.

6 Conclusions and Future Work
In this work, we have presented a framework for query-aware sensor scheduling, in which
an edge node needs to choose the most relevant information to respond to external user
queries, which may be different functions of the system state. This type of scenario is
closely linked to semantic and task-oriented communications in the IoT, approaching
the problem from a different angle: in our system, communications are pull-based, and
the bottleneck of the system is medium access rather than rate, so that the solution is
semantic, VoI-based scheduling rather than encoding.

Our work shows that query-aware scheduling can lead to profoundly different choices,
depending on the specific functions that queries ask for and on the query arrival process
for each client, and that RL-based strategies can provide a significant advantage in
more predictable scenarios, while unpredictable query processes do not provide any

References 213

useful information to improve scheduling past one-step greedy strategies.
There are several open avenues of research to extend this work, both on the schedul-

ing itself and on the process estimation. Firstly, scheduling is currently limited to a
single sensors, and communication is entirely pull-based: a scenario in which multiple
sensors can be polled at once, or sensors can transmit urgent information without being
polled first, can make scheduling strategies more interesting. Furthermore, extending
the problem from simple numeric values to richer types of information such as images
or point clouds could prove useful to several applications, such as cooperative driving or
robot swarm management, which require the integration of data-heavy information from
multiple sources. This also leads to the second line of future work that we are exploring,
i.e., the substitution of the Kalman filter with more complex estimators, such as deep
networks, which can deal with much more complex functions and system models, and
do not require prior knowledge of the system dynamics. Finally, the combination of a
control system with the remote estimation would represent another step forward toward
a fully task-oriented communication system.

References
[1] P. Popovski, O. Simeone, F. Boccardi, D. Gündüz, and O. Sahin, “Semantic-

effectiveness filtering and control for post-5g wireless connectivity,” Journal of the
Indian Institute of Science, vol. 100, pp. 435–443, 2020.

[2] C. E. Shannon and W. Weaver, The mathematical theory of communication. Uni-
versity of Illinois Press, Sep. 1949.

[3] A. A. Soderlund and M. Kumar, “Optimization of multitarget tracking within a
sensor network via information-guided clustering,” J. Guidance, Control, Dynam-
ics, vol. 42, no. 2, pp. 317–334, Feb. 2019.

[4] R. D. Yates, Y. Sun, D. Richard Brown, S. K. Kaul, E. Modiano, and S. Ulukus,
“Age of Information: An introduction and survey,” IEEE Journal on Selected Areas
in Communications, vol. 39, no. 5, pp. 1183–1210, Mar. 2021.

[5] P. Popovski, F. Chiariotti, K. Huang, A. E. Kalør, M. Kountouris, N. Pappas, and
B. Soret, “A perspective on time toward wireless 6g,” Proceedings of the IEEE, vol.
110, no. 8, pp. 1116–1146, 2022.

[6] F. Chiariotti, J. Holm, A. E. Kalør, B. Soret, S. K. Jensen, T. B. Pedersen, and
P. Popovski, “Query age of information: Freshness in pull-based communication,”
IEEE Trans. Comm., 2022.

214 References

[7] A. Hakiri, P. Berthou, A. Gokhale, and S. Abdellatif, “Publish/subscribe-enabled
Software Defined Networking for efficient and scalable IoT communications,” IEEE
Commun. Mag., vol. 53, no. 9, pp. 48–54, Sep. 2015.

[8] F. Chiariotti, A. E. Kalør, J. Holm, B. Soret, and P. Popovski, “Scheduling of
sensor transmissions based on Value of Information for summary statistics,” IEEE
Netw. Letters, vol. 4, no. 2, pp. 92–96, May 2022.

[9] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one
update?” in Conf. on Computer Communications (INFOCOM). IEEE, Mar.
2012, pp. 2731–2735.

[10] Y. Sun and B. Cyr, “Sampling for data freshness optimization: Non-linear age
functions,” Journal of Communications and Networks, vol. 21, no. 3, pp. 204–219,
2019.

[11] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “The cost of delay in status
updates and their value: Non-linear ageing,” IEEE Trans. Commun., vol. 68, no. 8,
pp. 4905–4918, Apr. 2020.

[12] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of incorrect
information: A new performance metric for status updates,” IEEE/ACM Trans.
Netw., vol. 28, no. 5, pp. 2215–2228, Jul. 2020.

[13] O. Ayan, M. Vilgelm, M. Klügel, S. Hirche, and W. Kellerer, “Age-of-information
vs. value-of-information scheduling for cellular networked control systems,” in Pro-
ceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Sys-
tems, 2019, pp. 109–117.

[14] R. Talak, S. Karaman, and E. Modiano, “Optimizing information freshness in wire-
less networks under general interference constraints,” IEEE/ACM Trans. on Net-
working, vol. 28, no. 1, pp. 15–28, Dec. 2019.

[15] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic sensor
selection algorithm with applications in sensor scheduling and sensor coverage,”
Automatica, vol. 42, no. 2, pp. 251–260, Feb. 2006.

[16] A. Hashemi, M. Ghasemi, H. Vikalo, and U. Topcu, “Randomized greedy sensor
selection: Leveraging weak submodularity,” IEEE Trans. Autom. Control, vol. 66,
no. 1, pp. 199–212, Mar. 2020.

[17] R. Duan, J. Du, J. Ren, C. Jiang, Y. Ren, and A. Benslimane, “VoI based infor-
mation collection for AUV assisted underwater acoustic sensor networks,” in Proc.
Int. Conf. Commun. (ICC). IEEE, Jun. 2020.

References 215

[18] S. M. Hoseyni, F. Di Maio, and E. Zio, “VoI-based optimal sensors positioning and
the sub-modularity issue,” in Proc. Int. Conf. Syst. Rel. Safety (ICSRS). IEEE,
Nov. 2019, pp. 148–152.

[19] G. Stamatakis, N. Pappas, A. Fragkiadakis, and A. Traganitis, “Autonomous main-
tenance in IoT networks via AoI-driven deep reinforcement learning,” in Proc. IEEE
Int. Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), may 2021.

[20] G. J. Stamatakis, N. Pappas, A. Fragkiadakis, and A. Traganitis, “Semantics-aware
active fault detection in IoT,” in Proc. IEEE 20th Int. Symp. Model. Optim. Mobile,
Ad hoc, Wireless Netw. (WiOpt), Sep. 2022.

[21] B. Yin, S. Zhang, Y. Cheng, L. X. Cai, Z. Jiang, S. Zhou, and Z. Niu, “Only
those requested count: Proactive scheduling policies for minimizing effective age-
of-information,” in Conf. on Computer Communications (INFOCOM). IEEE,
Apr. 2019, pp. 109–117.

[22] M. E. Ildiz, S. Avşar, and E. Uysal, “An inequality for Query Age of Information and
Age of Information,” in 30th Signal Processing and Communications Applications
Conference (SIU). IEEE, May 2022.

[23] M. E. Ildiz, O. T. Yavascan, E. Uysal, and O. T. Kartal, “Query Age of Information:
Optimizing AoI at the right time,” in International Symposium on Information
Theory (ISIT). IEEE, Jun. 2022, pp. 144–149.

[24] M. Hatami, M. Jahandideh, M. Leinonen, and M. Codreanu, “Age-aware status
update control for energy harvesting IoT sensors via reinforcement learning,” in 31st
Ann. Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC).
IEEE, Aug. 2020.

[25] M. Hatami, M. Leinonen, and M. Codreanu, “AoI minimization in status update
control with energy harvesting sensors,” IEEE Trans. on Communications, Sep.
2021.

[26] C. Xu, X. Wang, H. H. Yang, H. Sun, and T. Q. Quek, “AoI and energy consumption
oriented dynamic status updating in caching enabled IoT networks,” in Conf. on
Computer Communications Worksh. (INFOCOM). IEEE, Jul. 2020, pp. 710–715.

[27] X. Zheng, S. Zhou, and Z. Niu, “Urgency of information for context-aware timely
status updates in remote control systems,” IEEE Transactions on Wireless Com-
munications, vol. 19, no. 11, pp. 7237–7250, 2020.

[28] C. Zhang and V. Lesser, “Coordinating multi-agent reinforcement learning with
limited communication,” in Proc. ACM Int. Conf. Auton. Agents Multi-Agent Syst.
(AAMAS), May 2013, pp. 1101–1108.

216 References

[29] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to com-
municate with deep multi-agent reinforcement learning,” in Proc. 30th Int. Conf.
Neural Inf. Process. Syst. (NeurIPS, Dec. 2016, pp. 2145–2153.

[30] T.-Y. Tung, S. Kobus, J. P. Roig, and D. Gündüz, “Effective communications: A
joint learning and communication framework for multi-agent reinforcement learning
over noisy channels,” IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2590–2603,
Jun. 2021.

[31] A. OroojlooyJadid and D. Hajinezhad, “A review of cooperative multi-agent deep
reinforcement learning,” arXiv preprint arXiv:1908.03963, Aug. 2019.

[32] R. E. Kalman, “A new approach to linear filtering and prediction problems,” J.
Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

[33] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S.
Sastry, “Kalman filtering with intermittent observations,” IEEE Trans. Automat.
Contr., vol. 49, no. 9, pp. 1453–1464, 2004.

[34] A. M. Mathai and S. B. Provost, Quadratic forms in random variables: theory and
applications. Dekker, 1992.

[35] F. Amram, “Multivariate extreme value distributions for stationary Gaussian se-
quences,” Journal of multivariate analysis, vol. 16, no. 2, pp. 237–240, Apr. 1985.

[36] D. Luengo, L. Martino, M. Bugallo, V. Elvira, and S. Särkkä, “A survey of Monte
Carlo methods for parameter estimation,” EURASIP J. Adv. Signal Process., vol.
2020, pp. 1–62, Dec. 2020.

[37] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[38] R. A. Howard, Dynamic programming and Markov processes. John Wiley, 1960.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves et al., “Human-level control through deep reinforcement learning,” Na-
ture, vol. 518, no. 7540, pp. 529–533, 2015.

[40] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: perceptron,
madaline, and backpropagation,” Proc. IEEE, vol. 78, no. 9, pp. 1415–1442, 1990.

[41] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis of rep-
resentative deep neural network architectures,” IEEE Access, vol. 6, pp. 64 270–
64 277, 2018.

Jo
sefin

e H
o

lm
Tim

e-, G
r

a
ph

- a
n

d
 Va

lu
e-b

a
sed

 Sa
m

plin
g

 o
f In

ter
n

et o
f Th

in
g

s Sen
so

r
 N

etw
o

r
k

s

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-735-2

	Omslag_JH.pdf
	PHD_JH_TRYK.pdf
	Kolofon_JH.pdf
	Josefine_Holm_PhD.pdf
	Front page
	Abstract
	Resumé
	Contents
	Thesis Details
	Acknowledgements
	I Introduction
	Introduction
	1 Introduction
	1.1 Motivation
	1.2 Thesis Objectives
	1.3 Thesis Outline

	2 Utilizing Graph Structure
	2.1 Summary of Contributions

	3 Age of Information and Beyond
	3.1 Summary of Contributions

	4 Conclusion
	4.1 Final Remarks and Future Directions

	References

	II Papers
	A Lifetime Maximization of an Internet of Things (IoT) Network based on Graph Signal Processing
	1 Introduction
	2 System Model
	3 Algorithm
	4 Numerical Results
	5 Conclusion
	References

	B Finding Representative Sampling Subsets in Sensor Graphs using Time Series Similarities
	1 Introduction
	2 Related Work
	2.1 Phase-I: Creation of Similarity Graphs
	2.2 Phase-II: Sampling Algorithms

	3 Problem Statement and Framework
	3.1 Problem Statement
	3.2 Preliminaries

	4 Phase I : Similarity Graph Creation
	4.1 Statistical Approaches
	4.2 Approaches based on Time-Series
	4.3 Approaches based on Graph Signal Processing, Pgsp
	4.4 Summary of Insights

	5 Phase II: Identifying Optimum Sampling Partition (OSP)
	5.1 Network Stratification based Approach, Strat
	5.2 Minimum singular value based approach, MSV
	5.3 Greedy MSE Based Approach, JIP and SIP
	5.4 Minimum Frobenius Norm, Frob, and Maximum Parallelepiped Volume, Par
	5.5 AutoSubGraphSample

	6 Experimental Setup
	6.1 Dataset Details and Preprocessing
	6.2 Evaluation Metrics

	7 Results and Discussions
	7.1 Phase-I Results: Comparison of the Similarity Graph Creation Approaches
	7.2 Phase-II Results: Comparison of the Sampling Techniques
	7.3 Evaluation of AutoSubGraphSample
	7.4 Comparing SubGraphSample with Exhaustive Search
	7.5 Comparison of SubGraphSample with optimum Sampling Sets
	7.6 Studying the impact of Ed on Reconstruction Error
	7.7 Frequency analysis
	7.8 Evaluation of AutoSubGraphSample on partial Time Series
	7.9 Identifying the Maximum Number of Sampling Sub-sets, K

	8 Conclusions and Future Works
	References

	C Freshness on Demand: Optimizing Age of Information for the Query Process
	1 Introduction
	2 System model
	2.1 Age of Information at Query
	2.2 Models for Communication and Query Arrivals

	3 MDP formulation and problem solution
	4 Numerical results
	5 Conclusions and future work
	References

	D Query Age of Information: Freshness in Pull-Based Communication
	1 Introduction
	2 Related work
	3 System model
	3.1 The QAoI metric
	3.2 Communication system model

	4 Analytical example
	5 MDP formulation and problem solution
	5.1 Problem solution

	6 Simulation settings and results
	6.1 Periodic queries with constant error probability
	6.2 Periodic queries and error probability
	6.3 Stochastic queries with periodic error probability
	6.4 Stochastic queries with a Gilbert-Elliott channel

	7 Conclusions and future work
	A Appendix
	References

	E SENDAI: A Framework for Joint Reasoning About Sensor Data Acquisition and Sensor Data Analytics
	1 Introduction
	2 Background
	2.1 Running Example
	2.2 Sampling
	2.3 Transfer
	2.4 Prediction

	3 Use Cases
	3.1 Wind Turbine
	3.2 Smart Meter

	4 Framework for joint Sensory Data Acquisition and Analysis (SENDAI)
	4.1 Overview
	4.2 Prediction
	4.3 Query Processing
	4.4 Summary

	5 Sensor Data Acquisition Scheme
	5.1 Periodic Sensor Data Acquisition
	5.2 Semantic Sensor Data Acquisition
	5.3 Optimizing the Wind Turbine Use Case
	5.4 Optimizing the Smart Meter Use Case

	6 Related Work
	6.1 Sensor Data Acquisition
	6.2 Sensor Data Analytics

	7 Conclusion and Future Work
	References

	F Scheduling of Sensor Transmissions Based on Value of Information for Summary Statistics
	1 Introduction
	2 System Model
	2.1 Kalman Filter Estimation
	2.2 Summary Statistics

	3 Scheduling Strategies
	3.1 Baseline Scheduler
	3.2 Sample Mean Scheduling
	3.3 Sample Variance Scheduling
	3.4 Statistic-aware Monte Carlo scheduling

	4 Numerical Evaluation
	4.1 Scenario and Settings
	4.2 Results

	5 Conclusion
	References

	G Goal-Oriented Scheduling in Sensor Networks with Application Timing Awareness
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Remote Kalman Tracking
	3.2 The Query Process
	3.3 Responding To Queries

	4 The Scheduling Problem
	4.1 A Simple Example: The Effect of Queries on the Optimal Policy
	4.2 Reinforcement Learning Solution and Learning Architecture
	4.3 Computational Complexity

	5 Simulation Settings and Results
	5.1 Scenario and Benchmark Policies
	5.2 Periodic Query Scenario
	5.3 Geometric Query Arrival
	5.4 Mixed Query Arrival

	6 Conclusions and Future Work
	References

	Omslag_JH
	Blank Page
	Blank Page
	Blank Page
	Blank Page

