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Abstract

Speech Intelligibility (SI) is a measure of the number of words in a speech
signal that are understandable to a group of listeners. Measuring SI is time
consuming, because it requires a test involving a panel of human listeners.
Predicting SI algorithmically can instead provide estimates of the SI of speech
signals significantly faster, which is highly valuable during, e.g., the develop-
ment of speech communication or enhancement systems and devices. Tradi-
tionally, SI predictors use models of the human auditory system and signal
features empirically demonstrated to correlate with SI. More recently, data-
driven machine learning models have been trained using listening test data
to perform SI prediction.

In this thesis we study data-driven SI prediction, and develop several
data-driven SI predictors trained on listening test data. We identify that there
is currently a critical scarcity of listening test data for the purpose of train-
ing data-driven SI predictors. This data scarcity motivates us to investigate
and develop training strategies that make more efficient use of the available
listening test data.

Specifically, we design and evaluate several data-driven SI predictors,
trained using various quantities of listening test data. The evaluations of our
first SI predictors help identify that there is a scarcity of listening test data,
and that data-driven SI predictors consequentially do not generalize well be-
yond their training conditions. In conjunction with the development of our
later data-driven SI predictors, we investigate strategies to mitigate and cir-
cumvent the problems caused by the listening test data scarcity. First, we
use a hybrid data-driven and non-data-driven model, which is able to reach
good prediction performance with fewer trainable parameters. Secondly, we
append a layer of listening test dataset specific logistic mapping functions to
a data-driven SI predictor, which allows pooling of heterogeneous listening
test datasets. Finally, we train a neural network to estimate Speech Pres-
ence Probability (SPP) rather than SI, which requires no listening test data,
but only speech and noise data, which is more abundantly available. Sub-
sequently, we map the estimated SPP to SI via a relatively simple algorithm,
which achieves good performance even for unseen listening conditions.
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Resumé

Taleforstålighed (TF) er et mål for antallet af ord i et talesignal der er forstå-
lige for en gruppe lyttere. Det er tidskrævende at måle TF, fordi det kræver
en test der involverer et panel af menneskelige lyttere. I stedet kan algorit-
misk prædiktion af TF give estimater af talesignalers forstålighed væsentligt
hurtigere, hvilket er meget værdifuldt under, f.eks., udvikling af systemer
og enheder til talekommunikation eller -forbedring. Traditionelt set har TF
prædiktorer anvendt modeller af den menneskelige hørelse samt signaltræk,
som er demonstreret empirisk at korrelere med TF. I senere tid er data-
drevne maskinlærings modeller blevet trænet på lyttetestdata til at udføre
TF prædiktion.

I denne afhandling undersøger vi data-drevet TF prædiktion, og udvikler
adskillige data-drevne TF prædiktorer trænet på lyttetestdata. Vi identificerer
at der er en nuværende kritisk mangel på lyttetestdata til brug i træning af
data-drevne TF prædiktorer. Denne datamangel motiverer os til at undersøge
og udvikle træningsstrategier der gør mere effektiv brug af den tilgængelige
lyttetestdata.

Specifikt designer, træner og evaluerer vi adskillige data-drevne TF præ-
diktorer, trænet på variable mængder af lyttetestdata. Evalueringerne af
vores første TF prædiktorer hjælper os med at identificere at der er en man-
gel på lyttetestdata, og at data-drevne TF prædiktorer som konsekvens ikke
generaliserer godt udover deres træningsbetingelser. I forbindelse med ud-
viklingen af vores senrere TF prædiktorer undersøger vi strategier til at mod-
kæmpe og omgå problemerne, der følger af manglen på lyttetestdata. Først
bruger vi en data-drevet og ikke-data-drevet hybridmodel, der er i stand til
at opnå god prædiktionsevne med færre trænbare parametre. Dernæst til-
føjer vi et lag af lyttetest datasætafhængige logistiske afbildningsfunktioner
til en data-drevet TF prædiktor, hvilket tillader sammenlægning af hetero-
gene lyttetest datasæt. Endelig træner vi et neuralt netværk til at estimere
Taletilstedeværelsessandsynlighed (TTS) i stedet for TF, hvilket ikke kræver
lyttetestdata, men kun tale- og støjdata, som er mere rigeligt tilgængeligt.
Efterfølgende afbilder vi de estimerede TTS til TF via en relativt simpel algo-
ritme, der opnår god prædiktionsevne selv for usete lytteforhold.
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Introduction
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Chapter 1

Speech Communication and
Intelligibility

Language, particularly spoken language, is the primary human means of in-
terpersonal communication. Using language and speech, we are able to share
ideas and abstract thoughts and make ourselves understood by our peers.
Speech communication is indispensable in modern society, and speech plays
a role in almost every facet of our lives, as we use it in our jobs, cooperating
with colleagues and interacting with customers or clients. We also use speech
for comfort, chatting and connecting with friends or family. A great deal of
entertainment and news is delivered to us in the form of speech through tele-
vision and the Internet. We are also able to speak with other people over long
distances by means of telephones or voice over Internet protocol.

The speech communication process can be deteriorated at different stages.
In particular, deterioration may be due to the speech production of the talker,
e.g., dialect, accent or pronunciation. It may also be due to the medium
of speech transmission between talker and listener, such as wired/wireless
transmission, signal processing, loudspeaker or hearing aid reproduction of
the speech, background noise, reverberation, etc. Finally, speech communi-
cation may be deteriorated due to impairment, e.g., of the listeners hearing
or cognitive ability.

There are at least three relevant aspects relating to the deterioration of
speech communication: Speech intelligibility (SI), speech quality and listen-
ing effort. SI is the focus of this dissertation, and it describes how understand-
able speech is to human listeners on average. SI is measured by way of listen-
ing tests, where listeners are asked to reproduce or identify as many words
as possible, when listening to deteriorated speech. Speech quality [108] is
measured in listening tests in much the same way as SI, but instead of repro-
ducing the words, listeners are asked to rate the quality of the test signals on
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Chapter 1. Speech Communication and Intelligibility

a scale from one to five, typically according to how pleasant or annoying the
signal is to listen to due to noise and/or distortion. It is interesting to note
that SI and speech quality do not necessarily correlate, as low quality speech
signals can be highly intelligible [56, 77, 88]. Listening effort is a measure of
how much effort a listener must expend in order to pay attention to a given
speech signal [120]. Listening effort can be measured using, e.g., observation
of pupil dilation [139] or electroencephalograms [1] of the listener, asking the
listener to report their own perceived listening effort, etc.

1.1 Speech Production, Transmission and Percep-
tion

Speech communication can be modelled by three distinct phases, i.e., speech
production, transmission and perception [40, 131]. A basic understanding
of the physical systems involved in the communication of speech, and the
challenges that arise in each of these phases is helpful in further identifying
the factors that determine SI. We will begin by briefly describing each of these
phases individually in the following.

1.1.1 Speech Production

Speech production begins with the conception of a message in the brain of
the speaker. This message is encoded in the chosen language of the speaker,
and the physiological production of speech can begin. To produce a voiced
sound, the flow of air from the lungs is constricted by the closing of the vocal
folds, which periodically open as air pressure rises [131, Chapter 1] [24] [40,
Chapter 2]. The frequency at which the vocal folds open gives rise to the
fundamental frequency and harmonics of the voiced sound. The power of
these harmonics is shaped spectrally as the sound passes through the mouth
and nasal cavity. The spectral shaping can be described in large part by
formants, i.e., the peaks in the power spectral density [131, Chapter 3] [40,
Chapter 2]. These formants are the result of resonance and thus depend on
the shape of the mouth and nasal cavity, the relative position of the tongue
and teeth, etc. Unvoiced sounds, on the other hand, are produced in a variety
of ways including, for example, continuous noise-like sound resulting from
constricted air flow at various points in the mouth, like “F”, “H” and “S”, or
a sudden release of built-up air pressure at various positions in the mouth,
like “B”, “K”, “P” and “T” [131, Chapter 7] [40, Chapter 2].

4



1.1. Speech Production, Transmission and Perception

1.1.2 Speech Transmission

The basic form of speech transmission is the propagation of sound waves
through the air, as in a traditional face-to-face conversation. In this scenario,
the communication may be deteriorated by environmental factors, i.e., noise
or interfering signals. Background noise is a common problem caused by,
e.g., man-made noise pollution such as traffic or natural noise such as wind.
Depending on the Signal-to-Noise Ratio (SNR) the speech or parts thereof
may be masked by the noise [9, 38, 42, 91] [94, Chapter 3], and become im-
perceptible to the listener. Interfering signals may come in the form of unre-
lated speech from competing talkers [15, 27], or reverberation due to sound
reflection on surfaces in the environment [18, 28, 95, 111]. Similarly to noise,
these interfering signals may have a masking effect on the relevant speech,
but can deteriorate SI more than noise of equivalent power [51, 77].

Today, speech is very commonly transmitted electronically as well as
acoustically. Electronic transmission of speech typically involves at least a mi-
crophone and loudspeaker, and the quality of either can affect the speech sig-
nal. Additionally, depending on the situation, the speech signal may also be
processed in some manner, for instance by using a statistical model to remove
unrelated noise while preserving the speech content [10, 33, 49, 125, 132], or
a neural network trained to enhance noisy speech signals [48, 98, 136]. Al-
though processing is often meant to enhance or facilitate speech communi-
cation, it can also introduce new challenges in the form of distortions. Dis-
tortion of speech due to digital transmission or processing can take many
forms including enhancement errors, such as under-suppression of noise,
over-suppression of speech, and processing artefacts, i.e., sounds introduced
by processing that were not present originally [19, 24, 86]. In telephony or
voice over Internet protocol, transmitted speech is compressed in order to re-
duce the required bandwidth, which commonly introduces artefacts [56, 87].
The transmitted speech may also be subject to de-noising or de-reverberation
as well [33, 62, 74, 124].

For users of hearing assistive devices, such as hearing aids, speech is
transmitted by both a purely acoustic path and a partly electronic path in
parallel. In the electronic path, i.e., the sounds detected and reproduced by
the hearing aid, the dynamic range may be altered, shifting and amplifying
certain frequencies to compensate for impaired hearing at other, typically
higher, frequencies [107, Chapter 13]. Feedback cancellation is also com-
monly employed in hearing aids due to the close proximity of microphones
and loudspeakers. Finally, algorithms to reduce the impact of noise, includ-
ing beamformers, de-reverberation algorithms, noise reduction algorithms,
and speaker separation algorithms, designed to enhance the speech for the
listener [48, 98], are also common.
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Chapter 1. Speech Communication and Intelligibility

1.1.3 Speech Perception

Speech perception is perhaps the most complex stage of speech communica-
tion. Perception begins when the sound wave enters the ear canal, setting the
eardrum in motion in concordance with the sound pressure of the speech.
The eardrum is connected to a set of three bones, the ossicles, in the middle
ear, regulating the strength of the physical vibrations before they are trans-
mitted to the cochlea in the inner ear [106, Chapter 3] [107, Chapter 4]. The
cochlea consists of three oblong, coiled, fluid-filled chambers separated by
membranes. Rows of outer and inner hair cells, located along one of these
membranes, the basilar membrane, play a central role in the transduction
from physical vibrations into neural signals [106, Chapter 3] [107, Chapter
4]. The resonance frequency changes along the length of the cochlea due to
its tapering shape and stiffness gradient [107, Chapter 5]. This allows the
cochlea to perform a decomposition of the frequency content of the incom-
ing sound wave into spatially separated resonances along the basilar mem-
brane [106, Chapter 3] [94, Chapter 3]. The resonances along the cochlea
are converted to neural signals through the vibrations induced in the row of
inner hair cells on the basilar membrane, and transmitted via the auditory
nerve to the brain, where they can be interpreted as perceived sounds and
decoded [106, Chapter 4] [107, Chapter 4].

Hearing impairments can make it very difficult, for those affected, to un-
derstand speech, particularly if noise or distortion is present [9, 13, 39] [107,
Chapter 13]. Hearing impairments can roughly be categorized as either con-
ductive or sensorineural [106, Chapter 10]. Conductive impairments are those
that cause the speech signal to be degraded before it reaches the inner ear,
whereas sensorineural impairments are the result of reduced function in the
cochlea or the auditory nerves beyond. Sensorineural impairments are the
most common [107, Chapter 13], and are often caused by damage to the
outer hair cells in the cochlea, which can happen due to age, genetic factors
or exposure to loud sounds [106, Chapter 10].

1.2 Speech Intelligibility

The main focus of this dissertation is Speech Intelligibility (SI). SI is a mea-
sure defined as the proportion or rate of words in a speech signal that are
correctly perceived by listeners. Hence, quantitatively, SI is a scalar in the
range between zero and one. Functionally, the SI of a specific speech signal is
the number of words an average listener is able to understand or reproduce
divided by the total number of words in that same signal. It can be of, e.g.,
scientific or commercial interest, to measure the SI of speech in specific noise
and/or processing conditions. As an example, developers of hearing assis-
tive technology, such as head-sets, hearing aids etc. designed to assist people
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with perception of speech, would be interested in measuring how well their
technology performs in certain situations, say at a dinner party or in a car
cabin.

The SI in these situations can be measured by carrying out a listening
test, with specific samples of speech under the conditions of interest [91]. A
listening test consists of a number of test signals, i.e., speech signals under
a specific set of test conditions. During the test, listeners are exposed to the
test signals one-by-one and asked to either identify or reproduce the words
in each signal. This can be done in different ways. Sometimes the listeners
are given lists of candidate words to choose from, which is known as a closed
vocabulary test, such as those found in [3, 46, 59]. Otherwise they are asked
to write down or repeat verbally the words that they hear, in what is called an
open vocabulary test, such as those found in [77, 86]. The correctly identified
words are recorded for the purpose of computing SI. This test is repeated
for several listeners, who are either exposed to the same test signals, or to
different test signals under the same test conditions. The listeners should
ideally have identical listening capabilities, e.g., normal hearing or similar
level of hearing impairment. Once the test is concluded, the average of the
test scores within each test condition can be taken across all participating
listeners, yielding the SI measurements for each condition [41]. Note that lis-
tening tests may sometimes be scored based on other speech structures than
words, such as phonemes or entire sentences. For the purposes of this dis-
sertation, and in most of the listening tests described in the articles enclosed
in Part II, SI is defined based on words.

An SI score from a listening test can be interpreted in a number of ways.
Obviously, because of how the test is designed, it can be interpreted as the
proportion of words in a specific speech signal that listeners will be able to
understand on average. Given multiple listeners and signals under the same
conditions, this interpretation can be extrapolated to the expected proportion
of words a listener will be able to reproduce or understand on average in the
given acoustic condition. If speech under the given condition is considered
as a communication channel transmitting words from talker to listener, then
the SI can be considered the success rate of this channel.

1.3 Speech Intelligibility Prediction

Because of the fact that human participants are required to perform a listen-
ing test, they are very time consuming in terms of organization, preparation
and conducting. This means that it is not practical to carry out a listening
test in every situation where SI measurements are desired, e.g., in the itera-
tive development of algorithms or devices with a focus on improving SI. This
problem is the focus of the scientific field of Speech Intelligibility Prediction
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(SIP), which is concerned with the development of objective methods, algo-
rithms, that can predict the outcome of a listening test, or more specifically,
the SI of a speech signal. Ideally, the prediction produced by an SI predictor
is strongly correlated with the SI, as measured in an actual listening test. Two
categories of SI predictors are defined by the types of input signals they are
given. In particular, so-called intrusive SI predictors are given a potentially
noisy and/or processed speech signal, along with either a clean reference ver-
sion of the same speech signal, or the pure noise signal in the case of speech
in additive noise, in isolation. Intrusive SI predictors can be applied as a re-
placement for listening tests in the development process of speech processing
algorithms or devices [62, 124], where a clean speech or pure noise signal is
available. The other category is non-intrusive SI predictors, which are only
given the noisy and/or processed speech signal as input [35]. Non-intrusive
SI prediction must be expected to be a harder problem than the intrusive
counterpart, simply because of the reduction in available information, which
may also be the reason why significantly fewer non-intrusive SI predictors
have been proposed than intrusive ones, at least in the non-data-driven con-
text, cf. Section 3.2. The range of applications for non-intrusive SI predictors
extends to situations, where a clean reference is not available. Notably, it is
possible to incorporate non-intrusive SI predictors into speech enhancement
systems, enabling in principle, portable devices to optimize or adapt their
speech processing algorithms according to predicted SI.

In SIP, and other fields where human responses to a test are linked to a
physical quantity, psychometric functions arise [89]. A psychometric function
is the function that maps human responses in a given test to the quantity that
is being measured. In the case of listening tests and SI, the responses are
the word scores and the measured quantity is SI. It has been shown that the
psychometric functions related to the SI of speech in additive noise are mono-
tonically increasing and s-shaped, relative to the SNR [84]. When it comes to
SIP, there is also a psychometric function relating predictions of SI to mea-
surements of SI from a specific listening test [90]. The predictions produced
by an SI predictor are generally not identical to and often not even a good
estimate of the absolute measurements of SI obtained in a listening test. Since
absolute SI is indexed by the predicted SI via a function, i.e., the psychome-
tric function, the SI predictions are termed SI indices. The monotonicity of
the psychometric function means that an increase in an SI index corresponds
to an increase in absolute SI.

The psychometric function of a given listening test depends on a large
number of variable factors other than the physical speech signal, collectively
referred to as the listening test paradigm. The paradigm includes, e.g., lan-
guage, talkers, lexical redundancy, sentence structure, vocabulary, equipment
etc. SI predictors do not have access to the paradigm, which is why the psy-
chometric function must be applied to the SI predictions in order to map
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them to absolute SI. The only way to find the psychometric function, how-
ever, is through regression based on listening test data, which means that
this is only possible if a listening test is performed. Thus, a fundamental
limitation of SI indices is that, while they can always be compared within
the same paradigm, cross-paradigm comparisons are only meaningful, if the
psychometric functions of both paradigms are known, i.e., if listening tests
have been performed.
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Chapter 2

Neural Network
Architectures for SIP

In Chapter 3 and Part II we describe a number of data-driven SI predictors.
These data-driven SI predictors rely on large parametrized models, Neu-
ral Networks (NN), optimized using large datasets. In this chapter we de-
scribe variations of neural network architectures that are commonly used
for data-driven SI prediction, including Fully connected Neural Networks
(FNN), Convolutional Neural Networks (CNN) and Recurrent Neural Net-
works (RNN). We also describe the more specific U-Net and Residual Net-
work (ResNet) architectures, which have been used for data-driven SIP in the
research papers presented in Part II of this thesis.

2.1 Neural networks

2.1.1 Basic Neural Network Architectures

Fully Connected Neural Networks

The basic building block of neural networks is the artificial neuron [44, Chap-
ter 6], which consists of an affine and a piece-wise differentiable, non-linear
function

y = σ(w>x + b), (2.1)

where lower-case boldface letters represent column vectors, x ∈ Rn is the
input vector, w ∈ Rn and b ∈ R are the weights and bias, respectively, of
the affine function, σ(·) is a non-linear function called the activation function
and y ∈ R is the output. Artificial neurons are combined, in parallel, to form
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a layer of a neural network:

y = σ(Wx + b), (2.2)

where upper-case boldface letters represent matrices, W = [w1 · · ·wn] ∈
Rm×n is a matrix of weights, y ∈ Rm is the output vector, x ∈ Rn is the
input vector, b ∈ Rm is the vector of biases and the activation function σ is
applied element-wise. Applying layers like these in sequence makes up an
FNN architecture [52, 53, 117],

y{l} = σ(W{l}y{l−1} + b{l}), (2.3)

where the superscript {l} indicates that the superscripted variable belongs
to the l’th layer of the neural network, with l = 1, . . . , L and y{0} := x. The
dimensions, m{l} × n{l}, of W{l} generally change from layer to layer, subject
to the restriction that m{l} = n{l+1}.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) differ from FNNs by replacing the
affine part of (2.2) with linear convolutions [8]. For example, a two-dimensi-
onal linear convolution operation denoted by the ∗ operator can be defined
as

(F ∗G)[j, k] =
mG

∑
m=0

nG

∑
n=0

F[m + j, n + k]G[m, n], (2.4)

where F ∈ RmF×nF and G ∈ RmG×nG are matrices with mF ≥ mG and nF ≥
nG and j = 0, . . . , mF −mG, k = 0, . . . , nF − nG. Note that it is possible to
change the boundary conditions of the convolution by padding F with zeros.
Also note that the linear convolution operation can easily be generalized to
tensors with a different number of coordinates, by introducing an additional
sum over each new coordinate, or removing one sum in the case of one-
dimensional linear convolution. A simple CNN can be constructed as a series
of L convolutional layers

Y{l}c = σ(X{l} ∗W{l}c + bc), (2.5)

where l = 1, . . . , L denotes the layer, X ∈ RmX×nX is the input matrix, e.g., a
part of a spectrogram, and Wc ∈ RmW×nW is the c’th convolutional kernel, i.e.,
a small matrix of weights that are shared across the input signal as a result of
the convolution operation, σ is the non-linear, piece-wise differentiable acti-
vation function applied element-wise and bc is the bias corresponding to the
c’th kernel. Several kernels are used in parallel in a single convolutional layer,
as indexed by the subscript c. Conveniently, the individual convolutions with
each kernel in one convolutional layer can be performed at the same time by
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a single convolution operation with one additional coordinate indexing the
kernel number, c. CNN’s are more parameter efficient than FNN’s as the
convolutional kernels are smaller than the input signal. Although CNN’s
are only ’locally’ connected for any single layer, as described by (2.5), they
are still able to connect more distant entries of input signals indirectly over
multiple layers. Convolutional layers can be made even more efficient by ap-
plying stride. Stride can be defined as a down sampling of the convolution,
i.e., a stride of s corresponds to only using every s’th entry along each axis of
(X ∗W)

(X ∗W)s[u, v] = (X ∗W)[sj, sk], (2.6)

where u = 0, . . . , b(mX − mW)/sc, v = 0, . . . , b(nX − nW)/sc and u is a
positive integer.

In addition to convolutional layers, pooling layers are often employed in
CNNs. A pooling layer is designed to compress information in a matrix or
tensor, by way of a simple function, typically a maximum or average, applied
locally. Max pooling layers are very commonly used in CNNs

maxpoolmp×np
(F)[j, k] = max

(
F[j : j + mp − 1, k : k + np − 1]

)
, (2.7)

where mp and np denote the dimensions of the pooling operation, the max-
imum function, max(M), returns the largest entry of the matrix M, and
F[j : j + mp − 1, k : k + np − 1] ∈ Rmp×np is the sub matrix of F ∈ RmF×nF

that contains the j’th through (j + mp − 1)’th rows and the k’th through
(k+np− 1)’th columns. Max pooling layers with stride are used to reduce the
number of samples in the input without introducing additional weights. Due
to the exploitation of local connections, CNN’s have proven effective for prob-
lems involving audio and visual data in particular [44, Chapter 9] [80, 109].

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are designed for sequentially structured
data, e.g., audio waveforms [44, Chapter 10]. RNNs are built around the
concept of dynamic systems, i.e., series of random variables x[t] ∈ Rn that
each depend on the outcomes of previous variables in the series, x[t− 1], x[t−
2], . . .. An RNN models such a sequence with a corresponding sequence of
hidden states

h[t] = σh(Whh[t− 1] + Wxx[t] + bh), (2.8)

where x[t] ∈ Rn is the t’th entry of the input sequence, h[t− 1] ∈ Rn is the
vector of hidden states of the (t− 1)’th entry in the sequence, σh(·) is the non-
linear, piece-wise differentiable activation function applied element-wise that
outputs the next state of the RNN, h[t] ∈ Rn , Wh ∈ Rn×n and Wx ∈ Rn×n

represent the weights of the RNN and bh ∈ Rn is the bias term [44, Chapter
10]. RNN’s can be designed to produce different types of outputs depending
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on the use case, e.g., an output for every entry in the input sequence, or only
one output at the end of the sequence. For the purpose of illustration, the
output of an RNN at entry t would be described as

y[t] = σy(Wyh[t] + by), (2.9)

where y[t] ∈ Rm is the output of the RNN at the t’th entry of the sequence,
Wy ∈ Rm×n represents the weights of the RNN, by ∈ Rm is the bias term and
σy(·) is the non-linear, piece-wise differentiable activation function applied
element-wise [44, Chapter 10]. The weights and biases of an RNN are shared
across all time-steps, which enables an RNN to work for variable-length input
sequences, such as audio signals. The purpose of the hidden states in an
RNN is similar to that of the hidden layers in an FNN, in that the hidden
states carry and process information between the input and output of the
RNN, but whereas a neuron in an FNN is connected to all neurons in the
preceding and following layer, a hidden state of an RNN is connected only
to the preceding and following hidden state in the sequence. Like CNNs,
by exploiting natural structures in the input data RNNs require much fewer
parameters than FNNs for the same size of input.

A popular RNN architecture, which is also used in state-of-the-art data-
driven SIP, is the Long Short-Term Memory (LSTM) architecture, which builds
on the RNN described by (2.8) and (2.9). The LSTM architecture intro-
duces additional hidden states specifically designed to work as gated mem-
ory cells [50], i.e., hidden states with more control over when to accept new
information, when to apply it, and when to discard it. The gated memory
cells are defined by [50] as

f[t] = σ(Whf h[t− 1] + Wxf x[t] + bf)

i[t] = σ(Whi h[t− 1] + Wxi x[t] + bi)

o[t] = σ(Who h[t− 1] + Wxo x[t] + bo)

c̃[t] = σc(Whc h[t− 1] + Wxc x[t] + bc)

c[t] = f[t] · c[t− 1] + i[t] · c̃[t]
h[t] = o[t] · σh(c[t]),

(2.10)

where the · operator denotes the element-wise product between vectors, c[t]
is a vector of memory cells, f[t] ∈ Rn is a vector of so-called forget-gates
designed to determine which cells of c[t − 1] ∈ Rn should be retained or
forgotten in c[t], i[t] ∈ Rn is a vector of so-called input-gates designed to
determine which cells of c[t] should be updated based on the previous state
h[t− 1], o[t] ∈ Rn is a vector of so-called output-gates designed to determine
which states of h[t] ∈ Rn should be updated based on the memory cells in
c[t], c̃[t] ∈ Rn is the input to the memory cells in c[t] controlled by i[t] and
finally h[t] is the vector of hidden states. The output y[t] ∈ Rm of an LSTM
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is described by (2.9). The matrices W ∈ Rn×n with various subscripts as well
as the vectors b ∈ Rn with various subscripts in (2.10) are weights and biases
of the gates and memory cells, which implies that the behaviour of the gates
and cells is learned based on data. The gated memory cells allow LSTM’s
to retain information across many time steps more effectively than the basic
RNN’s described in (2.8) [50].

2.1.2 Composite Neural Network Architectures

U-Net

Convolutional Layers

Max Pooling

Convolutional Layers

Max Pooling

Skip Connection

Skip Connection

Convolutional Layers

Convolutional Layers

Up-Sampling

Up-Sampling

Convolutional Layers

Encoder Decoder

Fig. 2.1: The U-net architecture. Inputs are first passed through convolutional and max pooling
layers in the encoder, reducing the dimensions of the input. The decoder then restores the inputs
to their original dimensions via up-sampling and convolutional layers. Skip connections between
corresponding stages of the encoder and decoder allow the decoder to access the input signal
from the encoder directly.

U-net is a CNN architecture, sketched in Figure 2.1 and originally pro-
posed in [116] as an end-to-end fully convolutional model for biomedical
image segmentation. The architecture features an encoder and decoder, de-
picted on the left and right in Figure 2.1, respectively, linked together by
skip connections. A skip connection is a connection in a neural network that
bypasses one or more layers, and transmits data unmodified. The encoder
consists of CNN layers and max pooling layers that gradually reduce the di-
mensions of the input, whereas the decoder consists of CNN layers and up-
sampling to restore the input to the original dimensions. U-net was designed
for and demonstrated to work well for scenarios with limited quantities of
training data [116]. The U-net architecture has become widely used for seg-
mentation tasks, i.e., partitioning grid-based data like images into segments
belonging to different classes. The task could, for example, be to divide a
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noisy/processed speech signal into intelligible and unintelligible segments,
see Part II Paper B.

ResNet
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Fig. 2.2: The ResNet architecture. ResNet is designed as a series of small blocks. Each block
is designed to compute a residual, i.e., an additive change to the input of the block. The skip
connections bypassing each block of convolutional layers help prevent the vanishing gradient
problem, and allow for deeper networks to be trained.

The Residual Network (ResNet) architecture, proposed in [47] and ske-
tched in Figure 2.2, is a CNN architecture focused on enabling greater depth,
i.e., a larger number of layers. ResNet is constructed as a series of indi-
vidual blocks, as seen in Figure 2.2, each consisting of two CNN layers in
parallel with a skip connection. In a ResNet block the output of the CNN
layers is added to their original input, which means that the CNN layers are
constrained to computing an additive change, known as a residual, to the
input. This constraint makes it possible to successfully optimize deeper net-
works [47]. Deeper networks can be more powerful than shallower networks
with the same number of parameters [47, 52, 53], but can also be harder
to train due to what is known as the vanishing/exploding gradient prob-
lem [11, 44]. The problem is that the partial derivatives of the weights of a
neural network tend to become either vanishingly small or exceedingly large
in magnitude, when the number of layers is increased, due to the increased
number of multiplicands given by the chain rule. In ResNet, however, due to
the series of skip connections the partial derivatives contain a term which is
a sum rather than a product, which prevents the vanishing gradient problem.

2.1.3 Neural Network Training

The values of the weights, W{l}, and biases, b{l}, l = 1, . . . , L of neural
networks are determined in a training phase. Often a supervised learning
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paradigm is used, where a neural network is trained to solve a problem rep-
resented by a dataset of training samples {x̃} and the corresponding desired
outputs known as labels {ỹ}. The training samples and labels are used in an
optimization procedure to minimize a selected cost function, d(·), e.g., mean
squared error, between the outputs of the neural network and the labels of
the training samples

{Wl , bl}l=1,...,L = argmin
{Wl ,bl}l=1,...,L

d(y{L}, ỹ), (2.11)

where y{L} is the output of the neural network and thus dependent on the
weights and biases {Wl , bl}l=1,...,L. The optimization of the cost function is
typically performed iteratively using a variation of gradient descent [118],
which requires evaluating the neural network in the points given by the
training samples (forward propagation), as well as computing the gradi-

ents, ∂d(y{L} ,ỹ)
∂W{l}

and ∂d(y{L} ,ỹ)
∂b{l}

(backward propagation). Since a neural network
is a composite function, backward propagation involves computing partial
derivatives by repeated application of the chain rule [119]. Forward and
backward propagation is typically performed on small batches of the training
data. Repeating this process, known as stochastic gradient descent, ideally
leads the neural network to the neighbourhood of a minimum of the cost
function [44, Chapter 6].

It is worth noting that the minimum of the cost function found through
gradient descent is specific to the training data, and may not correspond to
a low value of the cost function on new data. This can cause problems once
the network is employed after the training phase, since the performance gen-
erally drops, relative to the training phase. In fact, since training data can be
considered as a finite set of discrete points in a continuous space, a network
with a sufficient number of trainable parameters may eventually find ways to
lower the cost in these specific points very slightly, while greatly increasing
the cost in other regions that might be relevant, but not represented in the
training set. This phenomenon is known as overfitting [44, Chapter 7] and it
is of particular concern when training data is scarce.

2.2 Training Data Scarcity for Data-Driven SIP

As mentioned in Section 1.3, conducting listening tests is a time consuming
process, which makes it difficult to collect a sufficient quantity of data for
the training of a large-scale data-driven SI predictor. We found in papers A
and B, presented in Part II of this thesis, that even pooled collections of lis-
tening test datasets that were considered large from a non-data-driven point
of view, were insufficient in size and diversity from a machine learning point
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of view. Training data scarcity is not only a problem because of the lim-
ited quantity, but also because of the limited diversity in terms of listening
conditions, i.e., types of noise and processing deteriorating the speech. Our
research indicates that diversity is a very important aspect of the training
data for data-driven SIP, because applying data-driven SIP algorithms to lis-
tening conditions not seen during network training can lead to a substantial
performance drop, as we note in paper B in Part II. The conclusion is that
there is a severe scarcity of listening test data for the purpose of data-driven
SIP.

Overfitting is a common problem faced when training data-driven mod-
els on limited amounts of training data, which is certainly the case for data-
driven SI prediction. The size of the model versus the size and variety of
the training set is ultimately the deciding factor in the problem of overfitting.
Sufficiently small models, relative to the size of the training data set, may not
overfit, but also may not be able to model the nuances in the training data,
causing the end-performance to drop as a result. On the other hand, net-
works that are large compared to the amount and variety of training data can
use their excess parameters to gain very small improvements, specific to the
data samples in the training set, at the cost of potentially much poorer per-
formance on new data not represented in the training set. There are standard
approaches in the field of machine learning that may be utilized to mitigate
the effects of overfitting. Reducing the number of trainable parameters can
prevent overfitting, by limiting the complexity the model is able to achieve,
however this may also lead to lower performance at test time. Alternatively,
early stopping can be employed, where a separate validation dataset is used
to detect the point during training at which the model begins to overfit and
halt the optimization. Dropout [44, Chapter 7], is another method that aims
to constrain the model during training to limit its capacity to overfit, without
reducing the number of parameters. Data augmentation is a technique where
the existing training samples are perturbed in any number of ways, e.g., by
rotating, mirroring, shifting, scaling etc. This can help mitigate overfitting
through increased coverage of the desired space of input signals.

As mentioned, one can reduce the number of parameters to avoid overfit-
ting when training data is scarce, but this may limit the expressive power of
the model and negatively impact the achievable performance. In some cases,
this problem can be mitigated through what is known as transfer learning,
effectively standing on the shoulders of existing successful models. Trans-
fer learning involves taking, as a starting point, an existing neural network
that has been trained for a different task with similar input data, and re-
training the final layers to perform the desired task instead. In the case of
data-driven SIP one could make use of an architecture trained on a speech-
processing task, where labelled data is not as scarce. For example, Automatic
Speech Recognition (ASR) systems have been used in data driven SIP, which
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is described in detail in Section 3.3. Alternatively hybrid data-driven and
non-data-driven architectures can be used. So long as a non-data-driven se-
ries of computational steps consists of piece-wise differentiable functions, the
chain rule can be applied and back-propagation is possible. Such a hybrid
architecture is presented in Part II Paper A.

Another simple, yet quite popular approach to data-driven SIP, that at-
tempts to circumnavigate the data scarcity, is to create new data-driven non-
intrusive predictors by utilizing existing non-data-driven intrusive SI predic-
tors to label training data. A speech dataset is labelled with intrusive pre-
dictions of SI, and subsequently used to train a machine learning model to
non-intrusively predict the outcome of, or emulate, the non-data-driven in-
trusive predictor. We describe a number of these emulators in Section 3.3.
The main advantage of these emulators is that a training dataset can be con-
structed to any desired size and diversity, since the labels are produced by
an algorithm and the labelling process can be automated. There is, however,
a limitation inherent to these data-driven SI predictors that emulate existing
non-data-driven predictors, in that any flaws in the non-data-driven predictor
are inherited by the data-driven emulator.

19



Chapter 2. Neural Network Architectures for SIP

20



Chapter 3

Speech Intelligibility
Predictors

SIP is an active research field and the human perception of speech is not
yet fully understood, particularly the processes beyond the peripheral audi-
tory system [94, 106, 107]. There are many different methods developed for
SI prediction, some of which are inspired by models of speech production,
transmission and perception. They may work well in various circumstances,
but less well in others. Very broadly, SI predictors can be categorized as intru-
sive or non-intrusive as already mentioned in Section 1.3. Furthermore, they
can be categorized into non-data-driven or data-driven predictors. Non-data-
driven SI predictors, we define as being based on hand crafted features, as
opposed to machine learning models trained on labelled data. Data-driven
SI predictors, on the other hand, we define as being based, at least in part, on
machine learning models where the model parameters are optimized using
large labelled datasets [70].

It is worth noting that SI predictors can also be categorized as monaural or
binaural, referring to whether they operate on the same signal for both ears,
diotic listening, or a separate signal for each ear, dichotic listening. Dichotic
listening brings with it a unique impact on SI, as explained by factors such as
inter-aural phase-, time- and level differences between the signals reaching
each ear [14, 15, 25, 27]. Typically, binaural SI predictors handle the impact
of dichotic listening separately, e.g., by using the equalization-cancellation
model [29], which in signal processing terms is an interference cancelling
beamformer using the left and right ear signals as input, see for instance
[6, 12, 16, 137]. In early stages of the research underlying this dissertation, we
realized that binaural listening test data is even more scarce than monaural
data, and for this reason decided to focus on monaural SI prediction.
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3.1 Categorization of SI Predictors

3.1.1 Comparative Measures

SI predictors are designed to compute a comparative measure between a clean
reference and the corresponding noisy/processed test signal in a given sig-
nal domain. Broadly, we can list four types of comparative measures utilized
in the design of existing SI predictors, namely SNR, correlation, mutual infor-
mation and learned comparisons, as well as five signal representation domains,
namely the frequency domain, time-frequency domain, temporal modulation do-
main, the spectro-temporal modulation domain, and finally learned domains:

• SNR. The effects of additive, non-modulated noise on SI is among the
earliest studied, and is quite well understood today [42]. The impact of
additive non-modulated noise on SI can be modelled by the summation
of independent SNR-based contributions to the overall SI from a range
of frequency bands of varying importance. This is evidenced, for exam-
ple, by the Articulation Index (AI) [42], the Speech Intelligibility Index
(SII) [57] as well as the Extended SII (ESII) [113].

• Correlation and coherence. Non-linear processing can potentially have
a great impact on the SI of speech signals [18, 19, 75, 86, 88]. For non-
linearly processed speech, it is not straight-forward to compute SNR,
because the signal and noise components in the processed signal are
generally not easily separable, but non-linear processing can have. Pre-
dictors like the Short-Time Objective Intelligibility (STOI) [133], the Ex-
tended STOI (ESTOI) [59] or the Coherence SII (CSII) [71] make use of
other statistics than SNR, i.e., cross correlation and coherence in partic-
ular, which can be computed for non-linearly processed signals.

• Mutual information. While the coherence and correlation measures
employed by, e.g., CSII and (E)STOI allow for application in a much
more general context than the original AI and SII, they are chosen,
at least in part, for their mathematical simplicity. More precisely, co-
herence and correlation both measure the linear dependency between
random variables or processes [73, Chapter 7]. Mutual information
is a more general measure of the dependency between two random
variables or processes. The mutual information between a clean ref-
erence and noisy/processed test signal is therefore potentially better
suited as a comparative measure since it captures higher orders of sta-
tistical dependencies. Various estimators of mutual information have
been applied in SI predictors, such as the mutual information sub-
band measure [135], Speech Intelligibility based on Mutual Information
(SIMI) [61] and Speech Intelligibility In Bits (SIIB) [81].
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• Learned comparisons. Data-driven SI predictors are often not end-to-
end, but rely on data-driven and non-data-driven parts. Typically the
data-driven part of a data-driven SI predictor is used to learn and com-
pute a comparison between the clean reference and noisy/processed
test signals, or to estimate such a comparison in the absence of a clean
reference, based on features extracted by the non-data-driven part. For
example, the data-driven SI predictor proposed in [5] was designed to
learn its own comparative measure in the time-frequency domain.

Note that these categories of comparative measures are not completely mutu-
ally exclusive. For example, it turns out that the AI, though SNR based, is in
fact an estimator of mutual information for the specific case, where the addi-
tive noise comes from a memoryless Gaussian process [2, 82]. Other methods
like the speech-based envelope power spectrum model [63, 64] combine two
of the categories, namely SNR and spectro-temporal modulation factors for
the prediction of SI.

We find that even non-intrusive SI predictors, though they don’t have
access to the clean reference signal, can still be categorized by the same
taxonomy of comparative measures as intrusive SI predictors, because non-
intrusive predictors are designed with an intended comparison that they aim
to estimate. This will become clear as we describe non-intrusive SI predictors
in Section 3.2.

3.1.2 Signal Domain

SI predictors can be further categorized by the domain in which they analyse
the speech signal.

• Frequency domain. Early SI predictors, for instance the Articulation
Index [42], Speech Transmission Index [54] and Speech Intelligibility
Index [57], operate completely in the frequency domain. They do so
by computing long-term averages of relevant statistics across time, e.g.,
long-term speech and noise power spectral densities, cf. Figure 3.1 (c)
or signal-to-noise ratios within each frequency sub-band.

• Time-frequency domain. While frequency domain based SI predictors
can work well for non-modulated additive noise, they perform poorly
in modulated noise conditions [9, 13, 23, 26, 37–39, 45, 92, 96, 129]. To
perform better in modulated noise conditions, SI predictors like the
Extended SII (ESII) [59] and the glimpse proportion model [21], were
designed to work in the time frequency domain, i.e., on signals de-
composed into spectrograms, cf. Figure 3.1 (b), rather than frequency
bands.
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• Temporal modulation domain. Some SI predictors, like the speech-
based Envelope Power Spectrum Model (sEPSM) [63, 64] can make use
of temporal modulation frequencies, which are characteristic to speech
signals, by operating in the temporal modulation domain. The temporal
modulation domain representation of a signal can be reached, e.g., by
filtering the individual frequency sub-bands in a time-frequency log
magnitude spectrogram using a bank of modulation filters, such as is
done in [63], [64] and [110].

• Spectro-temporal modulation domain. Spectro-temporal modulations
are inherent in speech and important to SI [20]. The Spectro-Temporal
Modulation Index (STMI) [32] and the Spectro-Temporal Glimpsing In-
dex (STGI) [31] both predict SI through signal analysis in the spectro-
temporal modulation domain. More specifically, these methods further
decompose log magnitude spectrograms into spectro-temporal modu-
lation frequency channels. This is achieved by convolving the input
spectrogram with 2-dimensional filter kernels corresponding to a range
of combinations of temporal and spectral modulation frequencies. Fig-
ure 3.2 shows an example of a speech signal decomposed in this way.

• Learned domain. While many SI predictors operate in physically moti-
vated domains like frequency, time-frequency or modulation domains,
some SI predictors operate in a learned domain. This is particularly
the case for recent data-driven SI predictors. An example of this is the
CNN based SI predictor proposed in [122], which is trained to estimate
the speech transmission index and designed to learn its own domain
representation.

The SI predictors described in this chapter, as well as those presented in
Part II, are categorized by comparative measure and signal domain in Ta-
bles 3.1 and 3.2, which encompass intrusive and non-intrusive predictors,
respectively. We separate intrusive and non-intrusive SI predictors in differ-
ent tables, because non-intrusive SI predictors do not compute comparative
measures directly. Instead we found that they are designed to estimate an
intended comparative measure. Conveniently, this separation also serves as
an overview of intrusive and non-intrusive SI predictors.
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Fig. 3.1: The time domain, time-frequency domain and frequency domain representations of a
speech signal produced by a male speaker, saying the sentence "The boy was there when the
sun rose." The time domain curve shows the waveform of the speech signal. The time-frequency
domain spectrogram shows the log magnitude of time frequency tiles obtained via a short-time
Fourier transform. Finally, the frequency domain curve shows the average power over time in
the individual Fourier frequency bands.
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Fig. 3.2: Spectro-temporal modulation domain representation of the same speech signal as in
Figure 3.1. The spectral and temporal modulation frequencies of the filter kernels used in the
transform to this domain are identical to those used in [30].
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Table 3.1: Intrusive SI predictors arranged vertically by comparative measures; SNR, Correla-
tion (Corr.), Mutual Information (MI), and Learned Comparison (LC), as well as horizontally by
signal domains; Frequency Domain (F), Time-Frequency domain (TF), Temporal Modulation do-
main (TM), Spectro-Temporal Modulation domain (STM), and Learned Domain (LD). Predictors
proposed in the papers included in Part II of this thesis are marked in bold face.

Signal Domain
F TF TM STM LD

C
om

pa
ra

ti
ve

M
ea

su
re

SNR AI [42]
SII [57]

Glimpse prop. [21]
ESII [113]
NN [79]

STI [54]
sEPSM [63]

STMI [32]
wSTMI [30]

Corr. CSII
[71]

STOI [133]
ESTOI [59]
THMMB-STOI [65]

HASPI [72] STGI [31]

MI MI-subband [134]
SIIB [81]
SIMI [61]

LC ASR [121]
ASR [7]
CNN [102]
CNN [104]

ASR [128]
HLLR [69]

Table 3.2: Non-intrusive SI predictors arranged vertically by estimated comparative measures;
SNR, Correlation (Corr.), Mutual Information (MI), and Learned Comparison (LC), as well as
horizontally by signal domains; Frequency domain (F), Time-Frequency domain (TF), Temporal
Modulation domain (TM), Spectro-Temporal Modulation domain (STM), and Learned Domain
(LD). Predictors proposed in the papers included in Part II of this thesis are marked in bold face.

Signal Domain
F TF TM STM LD

C
om

pa
ra

ti
ve

M
ea

su
re

SNR SRMR [34]
ModA [17]

Corr. NISTOI [4]
STOINET [143]
LSTM [141]
LSTM [76]
CNN [103]

NISA [123]

MI
LC CNN [5]

NORI [66]
LSTM [36]

CNN [122]
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3.2 Non-Data-Driven SI Predictors

3.2.1 SNR Based SI Predictors

The Articulation Index

The earliest attempt to algorithmically predict SI was through the Articula-
tion Index (AI) [42] proposed in 1947, cf. Table 3.1. The AI operates in the
frequency domain and is built on the assumption that SI contributions from
separate frequency bands of a noisy speech signal are independent, and can
be added to estimate the overall SI of said noisy speech signal. This is sum-
marized by the following equation:

A = ∑
n

Wn An, (3.1)

wherein A is the AI, Wn is the so-called band importance, i.e., the largest
possible contribution to the AI from the n’th frequency band, and An is a
number between 0 and 1, computed based on the given noise and speech
signals, that determines the actual contribution of the n’th frequency band.
The AI uses 20 frequency bands in the range from 250 to 7000 Hz., with
specific bandwidths chosen such that Wn was the same value for all frequency
bands, i.e., the bands were of equal importance [42]. The computations of
the values An take into account the long term average SNR, as well as the
speech reception threshold and masking effects of noise in the corresponding
frequency bands.

The AI successfully predicts the effects of non-modulated noise mask-
ing on SI, but it has two important limitations. First, electronic computing
technology was barely in its infancy in 1947, and the AI was designed to be
computed graphically by hand. Secondly, the AI depends on the long-term
characteristics of additive noise, and does not predict the effects of short-term
noise fluctuations or distortions on SI [113].

The Speech Transmission Index

In order to more accurately predict the effects of non-linear distortions, aris-
ing as a result of the transmission of speech through communications chan-
nels, the Speech Transmission Index (STI) [54] was proposed. The STI is a
tool to evaluate transmission channels, rather than specific speech signals as
most of the other SI predictors mentioned in this dissertation.

The idea behind the STI is that transmission channels can cause difficul-
ties in distinguishing between between speech sounds, i.e., mistaking one
speech sound for another. The STI attempts to quantify this effect through a
bank of artificial, speech-like probe signals, designed to mimic the temporal
modulations of natural speech [130]. The probe signals are decomposed into
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N separate frequency bands and sent through the investigated transmission
channel in pairs. The ratios of sound pressure level differences between the
probe signals before and after transmission is computed as,

STIi,j =
∑N

n=1 |L′i,n − L′j,n|

∑N
n=1 |Li,n − Lj,n|

, (3.2)

where L′i,n and L′j,n denote the sound pressure levels in dB of the n’th band of
the i’th and j’th probe signals after transmission, and Li,n and Lj,n similarly
denote the sound pressure levels of the probe signals before transmission.
The idea is that if the differences between a particular pair of probe signals
are significantly reduced by the transmission, i.e., the ratio in (3.2) is low, then
the speech sounds represented by the probe signals are likely to be mistaken
for one another after transmission. Finally, the average across all probe signal
pairs yields the STI.

Extended versions of the STI, using other types of probe signals, including
actual speech, have since been studied [43, 100, 101].

The Speech Intelligibility Index

The Speech Intelligibility Index (SII) [57] builds on the same assumption as
the AI that SI can be predicted by independent, additive contributions from
separate frequency bands:

SII = ∑
n

In An, (3.3)

where 0 ≤ In ≤ 1, the band importance, indicates the importance of the n’th
frequency band, and An indicates the contribution to SI of the n’th band,
based on the SNR and perception threshold in the n’th frequency band [57].
The advantage of the SII, over the AI, is that An can be computed electroni-
cally. In the computation of 0 ≤ An ≤ 1 the perception threshold can also be
adjusted to account for the hearing profile of a specific listener.

The SII has since been shown to underestimate the SI of speech in tem-
porally modulated noise types [113]. A modified version of the SII, the Ex-
tended SII (ESII) [113, 114], was proposed as a way of extending the scope of
the SII to include temporally modulated noise. The idea behind the ESII is
quite simple: The ESII is computed by applying the SII individually to short
segments of the signal under test, ranging from 35 to 10 ms depending on
the frequency band, and computing the average of the results.

The Spectro-Temporal Modulation Index

As with the STI, the Spectro-Temporal Modulation Index (STMI) [32] is an SI
predictor that builds on the idea of measuring the rate of mistaken speech
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sounds by human listeners. The STMI makes use of a spectro-temporal mod-
ulation decomposition of speech, cf. Figure 3.2, to compare the clean refer-
ence and noisy test speech signals, as opposed to the STI which compares
their temporal envelopes.

In addition to predicting the SI of specific noisy test signals, the STMI can
also, like the STI, be used to evaluate the effect of a transmission channel
on SI. For this purpose, the specific speech signals are replaced by a pre-
constructed array of spectro-temporal modulation patterns passed through
the transmission channel, which the STMI is subsequently applied to.

The Glimpse Proportion Model

The Glimpse proportion model of SI proposed in [21] shares similarities with
ESII in that it is based on SNR in different time-frequency regions of the test
signal. Instead of summarizing weighted contributions from the frequency
bands, however, the Glimpse model simply counts the number of so-called
glimpses where the SNR is locally, in the spectro-temporal sense, high. The
Glimpse model is perceptually motivated, operating under the assumption
that SI is related to the rate of glimpses in the noisy speech, which is linked
to the hypothesis that humans can understand speech in noise, by listening
to glimpses, i.e., time-frequency regions with high SNR [21, 55, 85, 105].

The Speech-to-Reverberation Modulation Energy Ratio

The Speech-to-Reverberation Modulation energy Ratio (SRMR) [34] is a non-
intrusive SI predictor that utilizes temporal modulation energy similarly to
STI. Because of the constraints of non-intrusivity, the modulation energies
of the noisy/processed test signal can not be directly compared to those of
the clean reference signal, but SRMR utilizes the observation that speech
modulation energy tends to be concentrated at modulation frequencies below
20 Hz, whereas the modulation energy of reverberations is scattered across a
wider range of modulation frequencies [34]. Reverberations can reduce the SI
of a speech signal, particularly when the delay of reflections is greater than 50
milliseconds [28, 93, 95, 111, 112]. SRMR is defined as a ratio of modulation
energy below and above approximately 20 Hz.

SRMR =
∑4

k=1 ε̄k

∑K
k=5 ε̄k

, (3.4)

where ε̄k is the average energy in the k’th modulation band.

Speech-based Envelope Power Spectrum Model

The Speech-based Envelope Power Spectrum Model (sEPSM) [63] predicts SI
as a sum of SNR values similarly to the AI and SII. However, the sEPSM com-
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putes the SNR values in the temporal modulation domain. The sEPSM was
demonstrated to work well for speech contaminated with stationary additive
noise, reverberation and speech denoised by spectral subtraction. A multi-
resolution extension to the sEPSM was later proposed in [64] to improve the
prediction performance for non-stationary additive noise.

Modulation Area

Similarly to SRMR, the Modulation Area (ModA) [17] method utilizes tem-
poral modulation energy, but rather than a ratio, cf. (3.4), ModA computes
the area under the temporal modulation energy curve of the noisy/processed
test signal as a non-intrusive predictor of SI

ModA =
1
N

N

∑
n

An, (3.5)

where An is the modulation energy in the n’th modulation frequency band.
ModA was developed following the underlying observation that noise and
particularly reverberations reduce the area under the temporal modulation
curve.

Weighted Spectro-Temporal Modulation Index

Band-importance, or frequency weighting, plays a central role in the AI and
SII, and the weighted Spectro-Temporal Modulation Index (wSTMI) [30] takes
inspiration from this fact. Where the original STMI computes a uniform av-
erage of the predicted SI contributions by each spectro-temporal modulation
band, wSTMI employs a sparse set of weights to compute a linear combina-
tion instead. The weights used by wSTMI were fitted to intelligibility listen-
ing test data using L1 regularized optimization, and showed similarities to
modulation transfer functions important to the human auditory system. This
alignment with human perception is perhaps what allows the wSTMI to pre-
dict SI more accurately as compared to the original STMI and other existing
SI predictors, particularly for highly modulated noise and distortions [30].

3.2.2 Correlation Based SI predictors

Coherence Speech Intelligibility Index

The AI and SII algorithms compute the SNR of a noisy test signal, which
means that these algorithms rely on an implicit assumption of speech in ad-
ditive noise, which allows SNR to be computed. However, for speech signals
that have been subject to non-linear processing, SNR is not straightforward to
compute. For this situation, algorithms such as the Coherence SII (CSII) [71]
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have been proposed. The CSII is a modification of the SII, that uses a co-
herence based Signal-to-Distortion Ratio (SDR) in the computation of the
band-wise contributions to SI. CSII is computed using the clean reference
and noisy/distorted test signal,

CSII = ∑
j

∑k Wj(k)|γ(k)|2Syy(k)

∑k Wj(k)(1− |γ(k)|2)Syy(k)
, (3.6)

where

γ(k) =
Sxy(k)√

Sxx(k)Syy(k)
(3.7)

is the coherence function, Wj(k) is the frequency domain representation of
a band pass filter corresponding to the j’th sub-band used in the SII [71],
Syy(k) is the power spectral density of the noisy/processed test signal, Sxx(k)
is the power spectral density of the clean reference signal and Sxy(k) is the
cross power spectral density of the clean reference and noisy/processed test
signals. Notably, this computation does not require any prior knowledge of
the noise or distortion characteristics. Consequently, the applicability of CSII
extends beyond speech in additive noise.

Short-Time Objective Intelligibility

Short-Time Objective Intelligibility (STOI) [133] was proposed as an SI pre-
dictor designed for noisy speech processed by single-microphone noise re-
duction algorithms using time-frequency domain multiplicative masks [56,
60, 75, 77].

Rather than SNR, STOI computes sample correlation values between 384
ms segments of the temporal magnitude envelopes in one-third octave bands
of the clean reference and noisy/processed test signal,

dj,m =
(xj,m − µxj,m)

>(yj,m − µyj,m)

‖xj,m − µxj,m‖ ‖yj,m − µyj,m‖
, (3.8)

where xj,m is m’th segment in the j’th band of the clean reference signal,
similarly ȳj,m is the m’th segment in the j’th band of the noisy/processed
test signal subject to a clipping procedure, and µ denotes the sample mean
of the subscripted vector. The use of a correlation measure, as opposed to
SNR, means that STOI can be applied to non-linearly processed signals, re-
quiring only that the clean reference and noisy/processed test signals are
time-aligned [133].

Similarly to the ESII, the ESTOI [59] algorithm is an extension of STOI
that expands the scope of noise/processing conditions for which the SI can
be accurately predicted. The extension in ESTOI is that the correlations are
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computed between normalized spectro-temporal envelopes, rather than tem-
poral envelopes only, as the case is for the baseline STOI [59]. This extension
was shown to allow for greatly increased accuracy in SI predictions of speech
signals contaminated by temporally modulated noise [59].

The Non-Intrusive STOI (NISTOI) [4] algorithm is a non-intrusive exten-
sion of STOI that estimates the clean reference from the noisy/processed test
signal, and subsequently applies the original STOI algorithm to the noisy test
and estimated clean reference signals. To estimate the clean reference sig-
nal, NISTOI projects the noisy/processed test signal into a low-dimensional
subspace determined via principal component analysis of generic speech, in
the temporal modulation domain. Other variations of this strategy using
different estimators for the clean reference have been proposed, such as the
Pitch-Based STOI (PB-STOI) [126, 127]

The Hearing Aid Speech Perception Index

The Hearing Aid Speech Perception Index (HASPI) [72] predicts SI using a
model of the human auditory system that takes a combination of spectro-
temporal modulation and coherence into account. Using this model, HASPI
is also able to account for the specific hearing profile of an individual listener.
The index is computed as a linear combination of coherences and spectro-
temporal correlations between the clean reference and the noisy/processed
test signals, at the output of the auditory model.

Spectro-Temporal Glimpsing Index

Inspirations were drawn from STMI, the Glimpse proportion model, and ES-
TOI in the development of the Spectro-Temporal Glimpsing Index (STGI)
[31]. This index works in the spectro-temporal modulation domain, like
STMI, and makes short-term comparisons between the clean reference and
noisy/processed test signals using normalized correlation coefficients, like
ESTOI. STGI uses a threshold on these correlation coefficients to detect gli-
mpses, like the Glimpse model. The original Glimpse model uses SNR to
detect glimpses, which restricts it to speech in additive noise, but this restric-
tion does not apply to STGI since the glimpses are detected using correlation
coefficients instead.

3.2.3 Mutual Information Based SI Predictors

While the correlation based SI predictors described in the previous Section
3.2.2 rely on second order statistics, the class of mutual information based
SI predictors generalizes this idea further and make comparisons in terms of
higher order statistics. It is hard, if not impossible, to compute mutual infor-
mation directly for SI prediction, since the definition of mutual information
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includes the joint probability density function of the two signals, in this case
the clean reference and noisy/processed test signals. Instead, the mutual in-
formation between the clean reference and noisy/processed test signals may
be estimated.

Mutual Information Sub-band Measure

The mutual information sub-band measure proposed in [134] and further
explored in [135] employs a K-Nearest Neighbour (KNN) mutual information
estimator between the segmented one-third octave envelopes of the clean
reference and noisy/processed signals. Thus the signal domain of this SI
predictor is the same as that of STOI and ESTOI, but the comparative measure
is estimated mutual information, as opposed to sample correlation.

Speech Intelligibility In Bits

The Speech Intelligibility In Bits (SIIB) algorithm [81] uses a KNN mutual
information estimator, but applies a pre-whitening transform, the Karhunen-
Loève Transform (KLT), to segments of the clean reference and noisy/proce-
ssed test signals in the time-frequency domain. This transform eliminates cor-
relations across time and frequency in the speech signal and even though the
KNN mutual information estimator assumes statistical independence, and
not only uncorrelation, this results in improved estimates of the mutual in-
formation [81].

Speech Intelligibility Based on Mutual Information

The Speech Intelligibility based on Mutual Information (SIMI) algorithm [61]
uses a lower bound estimate of mutual information that relies on the linear
minimum mean squared error estimator of the clean speech signal given the
noisy/processed test signal. The lower bound estimator is computationally
simpler than the KNN estimator, and SIMI can be computed significantly
faster than the mutual information sub-band measure and SIIB as a result.

3.3 Data-Driven SI Predictors

Data-driven methods, such as neural networks and hidden Markov models,
have been adopted across many research fields, due to their power and ver-
satility. The field of SI prediction is no exception and there has been a rapid
development of data-driven SI predictors within the recent decade. In this
section we give an overview of the state-of-the-art data-driven SI predictors,
which includes various types of neural networks, SI predictors based on au-
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tomatic speech recognition and data-driven emulators of non-data-driven SI
predictors.

Automatic Speech Recognition (ASR) systems [70, 140] are used to pro-
duce text transcripts of speech signals, and data-driven ASR systems can do
so with great accuracy. Though humans and ASR systems do not necessarily
recognize speech using the exact same mechanisms, i.e., human SI may be
quite different from the SI of an ASR system [66], the use of ASR systems in
SI prediction is motivated by the fact that it enables simulating a subjective
listening test by replacing human listeners with a machine listener.

A common strategy, which has produced a large number of non-intrusive
SI predictors, is to use an intrusive non-data-driven SI predictor, like STI
or STOI to generate the labels for a training set of noisy/processed speech
signals, and then train a data-driven non-intrusive model to emulate the non-
data-driven SI predictor in question. This approach bears the advantage that
any desired amount of training data can be generated quickly and efficiently
because listening tests are not required. However, these emulators inherit
any flaws and limitations inherent in the emulated SI predictor.

3.3.1 SNR Based SI Predictors

Neural Network for Binaural SI Prediction

A data-driven binaural SI predictor, proposed in [79], uses a neural network
to map a number of SNR-based features in two different perceptually based
frequency decompositions, namely the critical frequency bands used in the
AI, and frequency bands on the Mel scale [99]. The so-called Better Ear
model, Band-Wise Better Ear model and Pooled Channel model were used to
combine the left and right signals in different ways. The better ear models se-
lect either the left or the right channel, band-wise or fully, based on which has
the highest SNR, whereas the pooled channel model presents both channels
to the neural network. The network was found to have good SI prediction
performance, but the training and testing datasets were relatively small, so
the generalizability of the network is unclear.

3.3.2 Correlation Based SI Predictors

Non-Intrusive Speech Assessment

The Non-Intrusive Speech Assessment (NISA) [123] method predicts STOI
scores without the use of a clean reference signal, i.e., it is a STOI emulator.
NISA extracts a range of both short and long-term features, notably the tem-
poral modulation envelopes, of a noisy speech signal and employs tree based
regression to estimate STOI scores based on these features. NISA was trained
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and tested on speech in additive noise and speech distorted by telecommu-
nication channels. It was shown that NISA is able to predict STOI with very
high accuracy for a broad range of SNRs [123].

Twin Hidden Markov Model-Based STOI

The Twin Hidden Markov Model-Based STOI (THMMB-STOI) [65] is a non-
intrusive STOI emulator that utilizes a so-called twin HMM consisting of two
series of observations, sharing the same hidden states. One half of this twin
HMM is trained as an ASR system and the other half as a speech synthesis
system. By using the text transcript of the clean speech reference signal,
the hidden states of the HMM can be estimated and subsequently used to
synthesize an estimation of the underlying clean speech signal. Finally, the
synthesized clean speech signal and the noisy/processed test signal are fed
to the STOI algorithm to produce an SI prediction. Although the THMMB-
STOI method does not require access to the clean reference signal, it does
require a transcript of the clean reference signal, and can therefore not be
seen as a fully non-intrusive SI predictor. A modification to THMMB-STOI
was proposed in [68], where an estimated transcript, produced by the ASR
part of the twin HMM, is used instead of the ground-truth transcript.

STOINET

STOINET [143] and the related Multi Objective Speech Assessment Net (MOS-
A-Net) [142], are trained to emulate STOI non-intrusively, and in the case
of MOSA-Net other measures, such as the Perceptual Evaluation of Speech
Quality (PESQ) [115] as well. STOINET combines a convolutional neural
network with a bidirectional Long-Short-Term Memory (LSTM), a type of
RNN architecture, and is trained to emulate STOI. STOINET contains twelve
CNN layers, followed by a bidirectional LSTM, and finally an FNN applied
frame-wise to obtain estimated STOI scores. The input to the network is a
noisy/processed speech signal in the Short-Time Fourier Transform (STFT)
time-frequency domain. The network was trained and tested using speech
contaminated by several types of additive noise, as well as speech processed
by a de-noising NN. Accurate STOI emulation performance was reported for
seen noise/processing conditions, whereas a drop in this performance was
observed for unseen noise/processing conditions [143].

Two other variants of LSTM architectures were trained as emulators of
STOI in [141] and [76].
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3.3.3 Learned Comparison Based SI Predictors

HMM-based Log Likelihood Ratio

In [69], a Hidden Markov Model (HMM) based ASR system, trained in the
temporal modulation domain, is employed for SI prediction. The ASR system
produces a predicted text transcript of the noisy processed speech signal,
which is used to compute the log-likelihood ratio between the predicted text
transcript and the ground-truth transcript. This ratio is the proposed SI-
predictor, the HMM-based Log Likelihood Ratio (HLLR). Since the HLLR
method requires a ground truth transcript, it is an intrusive SI predictor.

No Reference Intelligibility

Building on the HLLR method, an ASR system is trained to mimic human
word recognition performance in [67]. Two features are then extracted from
the ASR system and used as SI predictors: The normalized likelihood dif-
ference and the time alignment difference. Note that that computing these
features requires access to the ground-truth transcript and that the method
in [67] is thus not fully non-intrusive. The NO Reference Intelligibility (NORI)
method [66], however, extends the method in [67] by computing three ad-
ditional features extracted from the ASR system, namely the entropy, the
log-likelihood ratio and the dispersion, all of which can be obtained non-
intrusively. Where NORI uses a word level ASR system, i.e., an ASR system
which is trained to recognize a specific set of words, a phoneme level ASR
system was used to predict SI in [7].

Matrix Sentence HMM-SI

Another HMM-ASR system based, intrusive SI predictor was proposed in
[121]. This predictor uses an ASR system trained on matrix sentences, with
limited lists of words and uses the number of correctly identified words by
the ASR system as a predictor of SI. The method is designed to be used in
conjunction with matrix test sentences that have a limited vocabulary, such
as the Dantale sentences [97].

Matrix Sentence DNN-SI

Similar to the matrix sentence HMM-SI described above, a deep neural net-
work based ASR system for intrusive SI prediction is proposed in [128].
This deep neural network is trained for ASR. The network takes as input
noisy/processed speech signals in the temporal modulation domain, along
with a ground-truth text transcript of the speech. The proportion of correctly
recognized words is computed and used as a prediction of SI. This method
was shown to predict SI well for a range of speech-like noise types, although
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a drop in performance was observed for mismatched noise types between
training and testing [128].

STI Emulator CNN

A non-intrusive STI emulator is proposed in [122], which uses a deep CNN
trained on speech convolved with artificially generated room impulse re-
sponses, and labels generated by STI. The STI emulator is given time do-
main speech signals as input and is trained end-to-end. Hence, the method
operates in a learned domain. It was demonstrated to predict STI scores of
reverberant speech signals with very high accuracy [122].

CNN-Based SI Predictor

A CNN for non-intrusive SI prediction was proposed in [5]. The CNN archi-
tecture was designed based on the hypothesis, at the time, that listening test
data was too scarce to allow for a large network with millions of parameters,
a hypothesis that is validated by the research presented in this dissertation.
It was also hypothesized that SIP is a relatively simple problem which can
be solved by a small neural network. This may be true when a specific, con-
strained set of listening conditions are considered, but in general the problem
appears more complex [104]. The CNN was trained using noisy/processed
test signals in the one-third octave band time-frequency domain with mea-
surements of SI from three listening tests as labels. The CNN consisted of
one convolutional layer, followed by a global temporal average pooling oper-
ation, and finally three FNN layers. The CNN-based SI predictor was shown
to predict SI well for unseen stationary additive noise, but less well for fluctu-
ating additive noise and speech processed by single microphone de-noising
algorithms [5].

LSTM-Based SI Predictor

A Long Short-Term Memory (LSTM) neural network SI predictor trained on
listening test data is proposed in [36]. This LSTM operates in the time-
frequency domain, and employs an attention mechanism in order to allow
different time frames of the input signal to contribute unequally to the over-
all SI. The LSTM based SI predictor was trained and tested on a dataset of
talkers suffering from dysarthria, demonstrating significantly improved per-
formance over a baseline support vector machine based SI predictor that was
trained and tested on the same data.
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Chapter 4

Scientific Contributions

Part II of this dissertation consists of four research papers. These papers
contain the scientific contributions of this dissertation to the field of data-
driven SI prediction. In particular, the central problem of listening test data
scarcity is identified, and initial steps towards solutions are proposed. The
focus is always on comparison to baseline state-of-the-art SI predictors, and
evaluation on listening conditions outside the scope of the training set.

4.1 Specific Contributions

Here, we will briefly summarize the contributions of each research paper
found in part II.

4.1.1 [A] A Neural Network for Monaural Intrusive Speech
Intelligibility Prediction

In this paper we propose to train a neural network for the specific task of
monaural, intrusive SIP. At the time, in 2020, existing neural network based
SI predictors were either non-intrusive or binaural. The neural network is
trained and tested on an aggregated dataset of listening test data from four
different tests. We investigate the possibility and effects of training the net-
work on individually labelled words, as opposed to averaged SI scores across
whole noise/processing conditions, and analyse the prediction performance
of the trained neural network as a function of input signal duration.

We find that the proposed network is able to achieve higher performance
than state-of-the-art baseline SI predictors STOI [133] and ESTOI [59], albeit
in noise/processing conditions, which are present in the network training
dataset. Additionally, we find that the proposed SI predictor is able to pro-
duce accurate predictions with shorter durations of input than the baseline
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SI predictors.

4.1.2 [B] End-to-End Speech Intelligibility Prediction using
Time-Domain Fully Convolutional Neural Networks

In this paper we identify that scarcity of listening test data is a primary lim-
iting factor in the development of data-driven SI predictors. Specifically, we
analyse the existing body of data-driven SI predictors and find that many
of them are either emulators of non-data-driven SI predictors or trained on
relatively little listening test data, i.e., one or two listening tests. In order
to investigate the severity of the data scarcity problem, we propose a fully
data-driven end-to-end SI prediction scheme, consisting of a time-domain
convolutional neural network using the U-Net architecture, cf. Section 2.1.2.
Motivated by the success of this architecture for image segmentation, we ap-
ply it to speech segmentation into segments of various levels of intelligibility,
and compute the average over time to obtain predictions of SI. We train the
proposed SI predictor on data from a relatively large set of listening tests
and investigate the generalizability to unseen talkers and noise/processing
conditions as compared to the baseline SI predictors, STOI [133], ESTOI [59],
HASPI [72] and SIIB [81].

We find that the proposed SI predictor is able to reach higher than base-
line performance for seen talkers and noise/processing conditions, but that
it does not generalize as well to unseen conditions. In other words, predic-
tions under unseen conditions are below the baseline. This cements that the
listening test data scarcity is a major limitation in the further development of
data-driven SI predictors.

4.1.3 [C] Training Data-Driven Speech Intelligibility Predic-
tors on Heterogeneous Listening Test Data

In this paper we propose a training strategy to solve a problem that arises
when data-driven SI predictors are trained on aggregated sets of different
listening tests. The problem is that data-driven SI predictors become overly
specialized to the listening tests contained in the training data, resulting in
poorer performance when trying to predict the results of listening tests that
have not been trained on. This specialization is caused by the listening test
paradigms, i.e., the talkers, languages, vocabularies, equipment etc., cf. Sec-
tion 1.3, that the SI predictor does not have access to when predicting SI. The
effects of the listening test paradigms of the training data are internalised by
the SI predictor during training, because this leads to better predictions on
the training data. This internalisation is detrimental to the general perfor-
mance, i.e., when predicting the SI of speech signals in new paradigms that
are not part of the training set.
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We find that our proposed training strategy, which involves append-
ing a temporary layer of sigmoidal mapping functions unique to each in-
dividual listening test in the training set to the end of the network, im-
proves the performance of a data-driven SI predictor significantly on unseen
noise/processing conditions. The purpose of the appended test-specific layer
is to model the influence of listening test paradigms on SI for each listening
test individually, which means this layer can be discarded after training to
remove the specialization to these listening tests from the network.

4.1.4 [D] Data-Driven Speech Presence Probability Estima-
tion for Non-Intrusive Speech Intelligibility Prediction

In this paper we propose a novel approach to data-driven SI prediction that
circumvents the listening test data scarcity problem. The approach is driven
by the hypothesis that SI is strongly linked to Speech Presence Probability
(SPP), defined in the time-frequency domain on a tile-by-tile basis as the
probability that the per-tile SNR is above a fixed threshold. Our proposed
SI predictor, which we call Deep Speech Presence, is composed of a neural
network SPP estimator, and a post-processing stage mapping estimated SPPs
to SI predictions. The SPP estimator is trained on a dataset of speech in
additive noise and automatically computed labels. This type of data and
labels are much easier to obtain than listening test data, which is a major
motivation for this method. The post processing stage for mapping estimated
SPP’s to SI uses what we call top-p percent average, which involves finding
the p percent of tiles with the highest estimated SPP’s and computing the
average of just those tiles. We explain the efficacy of this particular post-
processing step as the result of removing estimations with high uncertainty,
namely those close to an estimated SPP of 0.5. The proposed approach bears
similarities to the glimpse proportion SI predictor [21], but whereas glimpse
proportion is intrusive and deals with SNR, our approach is non-intrusive
and relies on probabilities, SPP’s, rather than SNR. We compare the proposed
SI predictor to the baseline non-intrusive predictors NISTOI [4], SRMR [34]
and a data-driven emulator of STOI [133] trained on the same dataset as
Deep Speech Presence. We find that a deep neural network trained in the
proposed manner, to estimate SPP’s, can be used as an accurate predictor of
SI in a great variety of conditions outside the scope of the training data, i.e.,
even though the SPP estimator is trained on speech in additive noise, the SI
predictor does well for non-linearly processed speech. We conclude that this
way of predicting SI, through data-driven estimation of SPP, is accurate and
generalizable to a wide variety of noise/processing conditions.
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4.2 Summary of Contributions

This section will briefly summarize and contextualize the contributions of
the collection of research papers presented in Part II. The research presented
in these papers includes identification of the problem of listening test data
scarcity for data-driven SI prediction and proposed solutions that constitute
a first effort to enable data-driven SI prediction in spite of this scarcity.

In papers A and B, the possibilities of intrusive SI prediction using deep
neural networks trained on listening test data are investigated. In paper A it
is found that such a network trained on four distinct listening tests performs
well when tested on a subset of the same listening tests withheld from the
training set. In paper B, larger and fully data-driven architectures are trained
on a bigger collection of listening tests and tested on other listening test
conditions which were not used for training. It is found that when tested
on unseen conditions, from different listening tests, the data-driven methods
fail to meet the baseline set by non-data-driven state-of-the-art SI predictors.

In paper C the problem of listening test data scarcity for the purpose
of training data-driven SI predictors is identified and addressed. Paper C
addresses the scarcity in two ways:

1) One way of reducing the impact of limited amounts of training data is
to limit the number of trainable parameters in the data-driven SI predictor,
cf. Section 2.2. The architecture of the SI predictor proposed in this paper is a
hybrid of a trainable CNN front-end and a fixed ESTOI back-end, which fa-
cilitates a significant reduction in the number of trainable parameters relative
to paper B.

2) paradigm-specific sigmoidal mapping functions are used in the train-
ing phase to prevent the SI predictor from specializing to the paradigms
underlying the training data. This SI predictor is demonstrated to exceed
state-of-the-art performance in condition it has been trained while matching
state-of-the-art performance for unseen conditions.

In paper D, a data-driven, non-intrusive SI predictor is proposed that
uses per-time-frequency-tile SPP’s, which we show can be estimated by a
neural network trained on automatically labelled speech in noise data, which
is available in abundance, and hence more easily obtainable than listening test
data. With a neural network trained to estimate SPP, we demonstrate that
a relatively simple post processing stage can accurately map the estimated
SPP’s to measured SI in a wide variety of noise and non-linear processing
conditions.
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4.3 Directions of Future Research

4.3.1 Crowdsourcing SI Data

If the scarcity of listening test data is to be truly resolved, more listening test
data needs to be collected. Perhaps a different paradigm of listening test data
collection is required. It may be feasible to crowd source SI labels by way
of small-scale listening tests involving potentially thousands of listeners or
more as demonstrated by [138] and [22]. Distributing a listening test to many
people each using their own equipment is likely to result in many different
paradigm differences, with potentially significantly lower quality and fewer
data samples per paradigm, as compared to performing the listening test in
controlled lab conditions. Further research would be required to understand
whether paradigm specific mapping functions, as introduced in paper C, can
be adapted to this more challenging scenario.

4.3.2 Applying SI Predictors to Speech Enhancement

SI prediction is a valuable tool for evaluating speech enhancement systems
[124]. Going beyond the use of SIP for evaluation, and using SI predictors
to guide, e.g., speech enhancement systems during their employment, would
bring great potential benefits [98]. However, as shown in [78] it may be more
complicated than simply optimizing a speech enhancement system for an SI
predictor like STOI [133]. It appears that data-driven speech enhancement
systems are able to exploit loopholes where, e.g. STOI does not reflect the
actual SI. It may be possible to solve this problem by jointly training an SI
predictor along with a speech enhancement system, as this would facilitate
the removal of such loopholes in the SI predictor. The current listening test
data scarcity will undoubtedly make this a challenging task, however.

4.3.3 Applying Data-Driven SIP in Portable Devices

SI-aware hearing assistive devices, such as hearing aids, that predict the SI
of their own processed speech, and use the estimated SI to adjust or improve
the processing are a desired application of the field of SIP. The requirements
for SI predictors to be used in SI-aware hearing assistive devices are:

1) non-intrusivity since clean reference signals are not available.
2) low computational complexity as the algorithm must be executed on

small, battery-driven, low complexity devices.
In contrast to the machines and servers used in research to develop data-

driven SI predictors, portable hearing assistive devices are limited in terms of
memory and computational power. As such, a substantial reduction in com-
plexity of the current state-of-the-art is required to reach the point of porta-
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bility and wearability. Besides the limitations, portable devices also introduce
the possibility of utilizing biological modalities like electroencephalograms,
which have proven useful in assisting with SI prediction [58, 83].
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1. Introduction

Abstract

Monaural intrusive speech intelligibility prediction (SIP) methods aim to predict the
speech intelligibility (SI) of a single-microphone noisy and/or processed speech signal
using the underlying clean speech signal. In the present work, we propose a neural
network for monaural intrusive SIP. The proposed network is trained on data from
multiple listening tests to predict SI. In the interest of using the available listening
test data as efficiently as possible and to facilitate SI prediction of short duration
speech signals, training is based on a local-time intelligibility curve derived from the
listening test data. The trained neural network is evaluated, in terms of rank order
correlation, against the classical monaural intrusive predictors STOI and ESTOI. The
network is found to perform the best overall with a Kendall’s tau of 0.825 measured
over long duration, i.e. speech signals up to several minutes in duration. For short-
term prediction using short speech signals of 1 - 10 seconds the network also shows
better performance and smaller prediction variance.

1 Introduction

In recent years, there has been an increasing interest in using Neural Net-
works (NN) and other data-driven methods to predict the speech intelligi-
bility (SI) of noisy, processed speech signals [1–4]. SI is usually defined as
the percentage of intelligible phonemes, words or sentences in a given noisy
or processed speech signal. This makes SI a highly relevant aspect of speech
signals intended for human listeners. SI is measured by way of listening tests,
which require test subjects and are time consuming.

Speech intelligibility prediction (SIP) is concerned with estimating the SI
of speech signals algorithmically, i.e. without performing an actual listening
test. Classically, SIP methods have been based on measures of similarity
between the noisy or processed test speech signal and the underlying clean
speech reference signal. This approach is seen as early as in the Articulation
Index (AI) [5] and Speech Intelligibility Index (SII) [6], and is still prevalent
in modern SI-predictors like the Short Time Objective Intelligibility (STOI)
and Extended STOI (ESTOI) [7, 8], the Hearing-Aid Speech Perception Index
(HASPI) [9], Speech Intelligibility In Bits (SIIB) [10] and the Spectro-Temporal
Modulation Index (STMI) [11]. These methods have all been demonstrated to
correlate with measured intelligibility under various conditions.

More recent methods, such as the Binaural SI Model (BiSIM) [12] and bin-
aural STOI, (D)BSTOI [13, 14] have focused on binaural SIP. Binaural meth-
ods attempt to explain the improvement in SI observed under conditions,
where noise sources are spatially separated from the target talker [15]. Other
recent studies including the Speech to Reverberation Modulation energy Ra-
tio (SRMR) [16], Non-Intrusive STOI [17] and convolutional neural networks
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for non-intrusive SIP [2] focus on non-intrusive SIP. Non-intrusive methods
attempt to predict SI exclusively from the noisy test signal. As such non-
intrusive methods can be applied even when no reference signal is available
and binaural methods can be applied to a wider variety of conditions than
the monaural.

Given the advancements enabled by machine learning methods in areas
such as speech enhancement and recognition, see e.g. [18–20], it seems rea-
sonable to expect the application of machine learning in SIP to lead to im-
provements. Some studies [1–4], have already taken steps in this direction.
These studies, however, are all binaural or non-intrusive, and to the best
of our knowledge no study exists of a data-driven, monaural, intrusive SI-
predictor. Even though binaural, non-intrusive SI-predictors are more versa-
tile, the classical monaural intrusive methods are still the most widely used
by far, likely due to their simplicity and tried and true performance. Notably,
they are used as evaluation metrics for developing speech enhancement sys-
tems, e.g. [21, Part III]. The existing monaural intrusive methods have been
studied extensively, so their performance is well known under many con-
ditions. The precision of intrusive SI-predictors can also be expected to be
higher than that of non-intrusive SI-predictors, since the latter rely on a sub-
set of the information available to the former. For these reasons performance
improvements in monaural intrusive SIP are still very valuable.

Data-driven SIP faces the challenge that little listening test data is avail-
able for training, part of the reason being that listening tests are very time
consuming. Combining data from different listening tests can also introduce
problems: tests may, for instance, differ in scoring, e.g. based on phonemes,
words or sentences. Furthermore they may or may not allow repeated listen-
ing to the same signal. Finally, the redundancy of the speech material used
in the test can also influence SI, e.g. if otherwise unintelligibile words can be
inferred from context, the SI will be higher. Such factors mean that SI cannot
readily be compared between different listening tests without methodology-
dependent calibration. Perhaps for these reasons some current studies use
data from only a single listening test, [3, 4], or label data with classical SI-
predictors, [1]. Ideally, however, to be of practical use, a data-driven SI-
predictor should be trained on a larger quantity and greater variety of data
than a single listening test offers. Furthermore a data-driven SI-predictor
trained on data labelled by another SI-predictor [1] can only be as good as
that predictor. The desirable approach is thus ostensibly to train a predictor
on a large variety of listening test data.

The present work proposes a monaural, intrusive, data-driven SI-predictor
in the form of a neural network. The architecture is inspired in part by the
work in [2], which presented a NN for non-intrusive SIP. The proposed SI-
predictor is novel in that it is data-driven, monaural and intrusive, and that
the ground truth used in training is computed locally in time, rather than
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globally from the listening test results. This is done in order to make more
efficient use of the limited quantity of listening test data by giving the NN
access to more information than a single average within each condition. Clas-
sical SI-predictors, e.g. ESTOI [8] and SIIB [10], are evaluated based on their
long-term performance, i.e. over many seconds or even several minutes of
speech. By training the proposed NN on locally computed SI, we aim to
also achieve good performance for shorter speech signals. This would for
instance be useful for reducing the computational load of speech processing
system evaluation schemes, such as parameter sweeping. Compared to ex-
isting data-driven SI-predictors, the proposed predictor is trained on more
listening test data than [4], and rather than using STOI predictions as labels
like [1] the labels come from listening tests. We demonstrate that the pro-
posed SI-predictor performs better than STOI and ESTOI for both long and
short duration speech signals.

2 Neural Network SI-Predictor

2.1 Preprocessing

A neural network for monaural intrusive SIP is proposed. The network uses a
preprocessing scheme very similar to the time frequency decomposition used
in STOI [7] and ESTOI [8]. This preprocessing is used in part because STOI
and ESTOI have been demonstrated to work well, and because it has been
successfully used in the data-driven non-intrusive predictor proposed by [2].
This preprocessing consists firstly of a Short-Time discrete Fourier Transform
(STFT) of the test, x[t], and reference, s[t], inputs. The STFT uses a 50%
overlapping, 25.6 ms Hamming window, w[t]. Each window is zero padded
to 51.2 ms before the Fourier transform is applied. The short-time discrete
Fourier transformed inputs are denoted X[t, f ] and S[t, f ] respectively. An
ideal voice activity detector using the clean reference signal, S[t, f ], is then
applied to X[t, f ] and S[t, f ], such that all time steps tsilent for which the
energy of S[tsilent, f ] is less than −40 dB w.r.t. the time step with the highest
energy, are removed from both X[t, f ] and S[t, f ]. Finally, a 1/3 octave band
transform, [7, eq. (1)], is applied to X[t, f ] and S[t, f ] leading to the time-
frequency representations X̃[t, k] ∈ RQ×T and S̃[t, k] ∈ RQ×T , respectively.
Here Q denotes the number of 1/3 octave bands and T, the number of time
instances in these time frequency representations. For more details we refer
to [7].

2.2 Architecture

The proposed NN architecture is shown in Fig. A.1. The preprocessed test
and reference signals, X̃ and S̃, with dimension (Q× T), are fed to the net-

61



Paper A.

(Q× T) (Q× T)

(Q× N × K)

X̃[t, f ] S̃[t, f ]

(1× Tc × K)

(1× Tc × 2K)

K

Concatenate
Time distributed

1 2 F-1 F

1 2 F-1 F. . .

. . .

I[t′] (1× Tc )

Fig. A.1: Architecture of the proposed network. Preprocessed time-frequency inputs X̃ and S̃ are
passed through the convolution layer resulting essentially in two vector time-series. The two sig-
nals are concatenated and finally passed through the FC layers, where “Time distributed” means
that one time sample at a time is passed through the FC layers. The output, I[t′], represents the
predicted time-varying SI of the input x[t].

work input. Both are first independently passed through the same convolu-
tional layer. This layer consists of a set, K, of K kernels of dimension (Q×N),
uses a stride of s and a tanh activation function. The outputs of the convolu-
tional layer are both of dimension (1× Tc × K) where Tc =

⌊
T−N+1

s

⌋
and b·c

denotes the floor function. These outputs can be thought of as vector time
series, where each time instance is a vector of kernel activations. X̃ and S̃ are
then concatenated along the third axis, the axis of kernel activations, result-
ing in a signal of dimension (1× Tc × 2K). The concatenated signal is passed
through 3 time-distributed Fully Connected (FC) layers. Time distributed
means that the FC layers are applied independently for each (1 × 1 × 2K)
dimensional time instance of the series. The 2 first FC layers have F units
and use ReLU activations. The last FC layer has a single unit and uses a sig-
moid activation, with the intent of limiting the output range to the interval
(0, 1). At the output of the time distributed FC layers the signal can now be
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thought of as a scalar time series, denoted by I[t′], with dimension (1× Tc).
I[t′] should be interpreted as the predicted time-varying SI throughout x[t].

3 Network Training

time
0.0

0.2

0.4

0.6

0.8

1.0

SI

c1
c2
c3

Fig. A.2: An example illustration of the temporal resolution and smoothing of the training target.
c1 is the underlying ground truth word by word binary indicator, c2 corresponds to the temporal
frames of the preprocessed data and c3 is the local intelligibility curve used as training target.

Given input 1/3 octave band spectrograms X̃[t, k] and S̃[t, k] of dimension
(Q× T), the network produces an output, I[t′] of dimension Tc. The target
during training is a temporal curve of local intelligibility derived from listen-
ing test data. This local intelligibility curve is derived from a binary indicator
at time sample, t, of whether the current word was correctly identified or
not. An example of this curve is illustrated in Fig. A.2, c1. To derive the
target intelligibility, i.e. the desired output of the network, this binary curve
is smoothed by a 50% overlapping rectangular window with the same length
as w[t] used in the preprocessing. This reduces the target curve to T time
steps matching those of the preprocessed data as illustrated in Fig. A.2, c2.
A second windowing step follows, once again with a rectangular window,
now with length and stride matching the kernels of the convolutional layer.
This results in a smoothed curve, e.g. c3 in Fig. A.2, that can take on val-
ues between 1 and 0 and has the same sampling frequency as the network
output. As a result of the normalized rectangular windows, a point on this
curve corresponds to the proportion of intelligible speech in the underlying
time segment. The motivation behind using this curve as the training target,
rather than the average intelligibility measured in each test condition, is that
more information is preserved. Classically SI is measured by this condition-
wide average, but there is no reason to believe that this should be the optimal
choice for training the network. Instead, with the proposed scheme, the net-
work is allowed to learn how to use this information on its own.
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4 Listening Test Data

The Network is trained using data sets denoted D1 through D4, from four
listening tests all using the Dantale II speech corpus [22], with different noise
types and processing schemes. The Dantale sentences each consist of five
contextually independent words. Listeners in each test were presented with
one sentence at a time and asked to identify the words, either choosing from
lists of candidates in a software interface, in the cases of D1, D2 and D4,
or verbally repeating to a test operator, in the case of D3. All data sets are
scored by words correct. The data sets have been chosen because, ESTOI and
STOI have been demonstrated to perform well on D2 and D3 respectively,
and to cover a wider variety of noise and processing conditions than a single
listening test typically covers. Since all the tests use Dantale and similar
scoring, it seems reasonable to assume that the measured intelligibility is
comparable across data sets.

D1: the first data set is described in [13], as Experiment 3. The listening test
is binaural with directional sound sources, but contains diotic conditions, 3.2,
3.5 and 3.8 [13, Table II]. The conditions in this data set encompass additive
bottling hall noise (BHN) and speech shaped noise (SSN) processed with
Ideal Time-Frequency Segregation (ITFS). The SNR before the applied ITFS
is in the range −30 to −5 dB. D1 consists of 756 sentences of audio in total.

D2: the second data set is described in [8, Section IV] as Additive Noise
Set I. This data set consists of various additive noise types modified using
sinusoidal intensity modulation (SIM) with modulation frequencies ranging
from 4 to 16 Hz. The noise includes SSN, babble (BBL), intensity modulated
BBL and machine-gun and destroyer operations room noise from the Noisex
database [23]. The SNR is in the range −30 to −5 dB. D2 consists of 2160
sentences of audio in total.

D3: the third data set is described in [24, Section II]. This data set consists
of ITFS processed noisy speech. The noise types include SSN, bottling hall
noise, café noise and car cabin noise. The SNR before the applied ITFS is in
the range −23 to −7 dB. In addition to this range, a −60 dB SNR condition is
included for each noise type. It was not possible to associate the test scores
with audio word by word in this data set. Instead the training target is
defined as the average measured intelligibility. D3 consists of 25200 sentences
of audio in total.

D4: the fourth data set is a subset of the listening test data described in
[25, Section VI]. Much like D1, this listening test is binaural, with some diotic
conditions. The diotic conditions are those that use binaural beamformers
and where both target and noise are exactly frontal. These are the conditions
included in D4. The noise type is BBL. The SNR ranges from −17 to −8 dB.
D4 consists of 880 sentences of audio in total.
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Table A.1: Data set summary.

Noise Proc. SNR [dB] Sentences Cf.
D1 SSN, BHN ITFS (−30,−5) 756 [13]
D2 NOISEX,

SSN, BBL
none (−30,−5) 2160 [8]

D3 SSN, BHN,
café, car

ITFS (−60,−7) 25200 [24]

D4 BBL beamform. (−17,−8) 880 [25]
D5 The union of the data sets, D1 through D4, listed above

D5: Finally denote by D5 the union of D1 through D4.

5 Results

5.1 Training Details and SIP Performance

The NN was trained on D5 using K = 200 kernels of width N = 30 with a
stride of s = 1, and F = 200 nodes in the FC layers. For the preprocessing,
Q = 17 bands were used in the 1/3 octave band transform. Approximately
15% of D5 is set aside as the test set, in such a way that it contains an equal
amount of data from each listening test condition. The remaining 85% of D5
is used as the training set. This means that both the test and training sets
contain all of the noise and processing conditions available in the listening
tests, but that the noise realizations are different. To compensate for differ-
ences in audio duration available per condition, the different listening tests
are individually weighted in the loss function during training. The weights
are computed such that each noise/processing condition is of equal impor-
tance. The NN is trained using the ADAM optimization algorithm, [26], to
minimize the binary cross entropy cost function between the network out-
put and target. For the purpose of efficient training, D5 was arranged into
matrices of dimension (17× 512). Each training batch was made up of 256
pairs of these matrices, i.e. X̃[t, k] and S̃[t, k]. The proposed NN is com-
pared against the STOI [7] and ESTOI [8] SI-predictors. This comparison is
made both within individual data sets, D1-D4, and across the combined data
set, D5. The performance is evaluated by Kendall’s rank correlation coef-
ficient, τ, [27]. This coefficient takes on values in the interval [−1, 1], and
indicates the degree of monotonicity in the relation between measurements
and predictions. As such, higher values correspond to better performance.
This coefficient is used, because SI-predictors should be able to rank speech
signals according to SI.
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5.2 Long-Term SIP Performance
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Fig. A.3: Intelligibility as measured over each listening test condition is plotted against predicted
intelligibility by the NN, STOI and ESTOI.

Table A.2 shows the τ scores for each SI-predictor on each data set. The
NN achieves the highest τ overall, and is only outperformed by ESTOI on D2.
Fig. A.3 provides scatter plots of the averaged predictions within each test
condition, for each SI-predictor. Each point corresponding to the average over
one noise/processing condition. Comparing the plots in Fig. A.3, the neural
network seems to be better at predicting absolute intelligibility. This is likely
due to the fact that training and testing is based on data from the same listen-
ing tests, which has enabled the network to learn the corresponding mapping
to absolute intelligibility. For different speech material this mapping will be
different; hence the predictions should not be interpreted as absolute intelli-
gibility, but rather treated as an index, i.e. expected to have a monotonous
relation to absolute intelligibility. The NN also makes a noticeable error on
a particular condition from D2, predicting an SI of .7, where measured SI is
.1. This condition contains machine gun noise from NOISEX, a rather unique
noise type in D5, which could explain why the NN has not acquired good
performance for it. STOI can be seen, by Table A.2 and by the distinct cluster
of red x’s in Fig. A.3 to perform poorly on D2, which contains speech in
modulated noise. It is well known that STOI may perform poorly for such
noise types [8, 28].

5.3 Short-Term SIP Performance

The short term performance of the NN SI-predictor is evaluated by sampling
short audio clips from each test condition and computing Kendall’s τ. Fig.
A.4 shows the performance in terms of τ as a function of audio length for the
proposed NN, STOI and ESTOI. Each curve shows the average of Kendall’s τ
along with the 2.5 and 97.5 percentiles based on 250 trials. Each trial consists
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Fig. A.4: To evaluate the short-term performance Kendall’s τ versus audio length for the data
sets D2, D3 and D5. D1 and D4 are omitted here since they are only subsets and thus too short
to produce meaningful plots of this kind on their own.

Table A.2: Kendall’s τ computed within each data set.

D1 D2 D3 D4 D5
NN .948 .745 .854 1.00 .825
STOI .856 .344 .838 .857 .635
ESTOI .817 .762 .812 .929 .731

of randomly selecting an audio segment from each condition in the data set,
for which Kendall’s τ is computed. The horizontal axis shows the duration of
the sampled audio segments. These curves show that in terms of monotonic-
ity, the predictors all reach a stable performance within 10 seconds of audio.
Notably, the NN shows better performance at short audio lengths than STOI
and ESTOI even when testing with D2, where ESTOI is seen to have slightly
better long-term performance. The local ground truth intelligibility varies
significantly in this data set, as a result of the low-frequency intensity mod-
ulations of the noise. For short inputs this leads to larger prediction errors
w.r.t. the measured long term intelligibility, as is evident by the compara-
tively large percentiles in this figure. Notice also that for D3 the proposed
SI predictor achieves smaller prediction spread as compared to STOI and ES-
TOI. Finally for the combined data set D5, the proposed predictor reaches the
long term performance of STOI and ESTOI for speech signals as short as one
second.

6 Conclusion

A neural network for monaural, intrusive speech intelligibility prediction was
proposed. The network was trained on existing listening test data, to output
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a curve of local intelligibility predictions. The performance of the network
was evaluated and compared to that of the STOI and ESTOI predictions. The
performance of the network, evaluated through Kendall’s τ, for long speech
signals was demonstrated to be better than that of STOI and ESTOI for most
of the data sets, and significantly better on average. The network was also
shown to perform better than STOI and ESTOI for short speech signals.
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1. Introduction

Abstract

Data-driven speech intelligibility prediction has been slow to take off. Datasets of
measured speech intelligibility are scarce, and so current models are relatively small
and rely on hand-picked features. Classical predictors based on psychoacoustic models
and heuristics are still the state-of-the-art. This work proposes a U-Net inspired fully
convolutional neural network architecture, NSIP, trained and tested on ten datasets
to predict intelligibility of time-domain speech. The architecture is compared to a
frequency domain data-driven predictor and to the classical state-of-the-art predictors
STOI, ESTOI, HASPI and SIIB. The performance of NSIP is found to be superior for
datasets seen in the training phase. On unseen datasets NSIP reaches performance
comparable to classical predictors.

1 Introduction

Data-driven speech enhancement has garnered huge interest in the last decade
with studies such as [1–6]. A more recent trend has been towards end-to-end
solutions like [7–10], working fully in the time-domain. Most of these speech
enhancement studies aim at enhancing speech intelligibility (SI), either in the
evaluation or even as part of the objective. SI is a very relevant aspect of pro-
cessed speech intended for human listeners, e.g. telecommunication systems
and hearing assistive devices. Unfortunately, SI is time consuming to mea-
sure and hence speech intelligibility prediction (SIP) is of great importance
to the field of speech enhancement in particular, and to the broader area of
speech processing in general. SIP as a field however, has not seen the same
rapid advancement in terms of data-driven methods as other fields in speech
processing.

Presently, data driven SIP has only been attempted with relatively small
datasets, and partially data-driven models using hand-engineered features
[11–16]. Why is this? One of the main reasons is certainly that data-driven
SIP is limited by data scarcity. In most other speech processing fields ground
truth data is simply clean speech signals, which are relatively easily ob-
tainable in bulk. Obtaining training data for SIP, however, requires time-
consuming measurements of speech intelligibility through listening tests of
individual noise/processing conditions. Thus the availability of speech data
accompanied by subjectively measured SI is rather low.

Most state of the art SI-predictors like STOI [17], ESTOI [18], SIIB [19]
and HASPI [20], are still not based on machine learning, but rather on psy-
choacoustic models and heuristics, and validated empirically using relatively
small datasets with measured intelligibility. In spite of their non-data-driven
design, these predictors have demonstrated excellent performance in a vari-
ety of noise and processing conditions, and remain among the most widely
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used. An overview of classical predictors is presented in [21]. It is, how-
ever, not fully understood exactly under which conditions these predictors
perform well.

Some data-driven SI-predictors have been proposed, but they are all lim-
ited in one way or another. In [11–13] existing non-data-driven intelligibility
predictors are used to either label the training data or as part of the archi-
tecture respectively. The systems in [14–16] are trained with measured intel-
ligibility, though [14] uses data from a single listening test. These systems
all rely on hand determined features, i.e. Mel frequency bands in [14], and
1/3-octave bands in [15, 16].

In this paper we propose and analyse the performance of an intrusive
end-to-end speech deep neural network (DNN) intelligibility predictor. The
network is a fully convolutional architecture inspired by U-Net [22] and re-
sembles that used in a large body of literature including works involving
speech enhancement (e.g. [7, 23, 24]). This network is trained and tested on
speech and SI measurements of a wide variety of conditions from a range of
listening tests. The network takes time-domain speech signals along with the
corresponding clean speech as input and outputs SI-predictions as a function
of time, and is thus an end-to-end data-driven SI-predictor. The architecture
is explained in greater detail in Section 2 and the data and simulations are
described in Section 3. The predictor is tested in a comparison with ESTOI,
SIIB and HASPI, using the Pearson and Spearman correlation within each
listening test. The results are presented in Section 4, and the conclusion in
Section 5.

2 Data-driven Intelligibility Prediction

In this study we use a data-driven approach for speech intelligibility predic-
tion. Specifically, we propose the neural speech intelligibility predictor (NSIP)
model given by Fig. B.1, which shows the architecture of an end-to-end intru-
sive speech intelligibility predictor based on fully convolutional neural net-
works.

2.1 Intrusive Speech Intelligibility Prediction

Intrusive SIP refers to the problem of estimating the SI of a noisy/processed
speech signal, x[t], using x[t] itself and the corresponding clean speech sig-
nal, s[t]. Intrusive SI-predictors are classically more successful than their
non-intrusive counterparts, which only rely on x[t]. Intrusive prediction can
use s[t] as a reference to measure how dissimilar x[t] is to clean speech, while
non-intrusive prediction requires a built-in model of generic clean speech in
order to make such a comparison. This makes the classical intrusive predic-
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Speech Intelligibility Prediction (d)

Clean Waveform (s)Degraded Waveform (x)

Convolution + PRelu Dropout Upsampling & Concatenate

Fig. B.1: Architecture of an intrusive neural speech intelligibility predictor based on fully con-
volutional neural networks. The predictor is trained end-to-end to estimate the sample-level
speech intelligibility of a degraded speech waveform.

tors simpler and more robust. In transitioning to DNN’s, the argument of
simplicity changes, because DNN’s rely on their great parametric complexity
in the first place. This makes non-intrusive architectures somewhat simpler,
because they only need to work with one input rather than two. Intrusive
architectures still have the potential to be more robust though, and because
of the data scarcity, the extra clean speech input might be valuable.

The network architecture used in this paper is intrusive, since it receives
the inputs, s[t] and x[t], which in this context are time-domain clean and no-
isy/distorted speech signals. The desired output is defined as a time domain
piece-wise constant curve, d[t], corresponding to measured SI of the input
x[t], as it is also done in [16]. The network output can then be integrated over
time to produce an SI prediction for a particular span of time.

2.2 Neural Speech Intelligibility Prediction

The NSIP model depicted in Fig. B.1 is based on a fully convolutional neu-
ral network architecture with 18 convolutional layers utilizing parameterized
ReLU (PReLU) activation functions between the layers [25]. The model is
inspired by U-Net [22] and follows an encoder-decoder methodology where
skip-connections are applied between corresponding layers to allow data at
various sample rates to flow between the encoder and decoder.

Differently from a standard U-net, the proposed model has two encoders,
as shown in Fig. B.1, one for the clean and one for the degraded speech wave-
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#filters in encoder layers 1− 9 #filters in decoder layers 10− 18

Model 1− 3 4− 6 7− 8 9 10− 11 12− 14 15− 17 18
#Params
(millions)

NSIP1 6 12 16 32 32 16 12 1 0.122M
NSIP2 8 16 24 64 64 24 16 1 0.349M
NSIP3 12 18 36 80 80 36 18 1 0.603M
NSIP4 12 24 48 96 96 48 24 1 0.946M
NSIP5 16 32 64 128 128 64 32 1 1.68M

Table B.1: Number of output filters in each layer of the NSIP-model given by Fig. B.1 for five
different configurations. All filters are 11 samples long.

forms, since intrusive speech intelligibility prediction can make use of both of
these. Specifically, the two encoders each contain eight convolutional layers
and the output of the two encoders, which contain compressed information
about the clean and degraded speech signals, are concatenated and propa-
gated to a joint decoder that performs the final SI prediction. The encoders
both use a stride of two in each layer, except for the first layer where a stride
of one is used. This drives the final dimension at the outputs of the encoders
to be compressed with a factor of 256. Similarly, all layers in the decoder,
except for the last layer, use upsampling with a factor of two, such that the
final output has the same dimension as the inputs, which allows sample-level
SI prediction.

To study how the number of parameters influence the SI performance of
the proposed architecture, five NSIP models are trained and evaluated with a
varying number of filters. The configurations of the individual NSIP systems
are shown in Table B.1. The number of parameters for the five models vary
from 0.122× 106 to 1.68× 106, which is comparable to the 0.224× 106 param-
eters of a recently published frequency-domain technique [16] that will serve
as an NSIP baseline in Sec. 4. Finally, all filters have a size of 11 samples.

The SIP-systems are trained to minimize the binary cross entropy between
estimated and measured intelligibility using the ADAM optimizer [26] with
β1 = 0.9 and β2 = 0.999 and an initial learning rate of 0.0005, which is
controlled by a learning rate schedule that reduces the learning rate with a
factor of two, if the validation loss has not decreased for two epochs. Finally,
during training, 20% dropout is applied for every third layer, and a batch size
of 16 is used. Training is stopped, if the validation loss has not decreased for
five epochs or a maximum of 200 epochs has elapsed.

The SIP-systems have been implemented using Keras1 with a TensorFlow2

1https://keras.io/
2https://tensorflow.org/
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backend and the python implementation of the trained NSIP-models, are
available online3, to allow interested readers, to use and evaluate the models
further.

3 Experimental Design

To establish the potential of the proposed architecture in terms of predicting
speech intelligibility of noisy/distorted speech, a series of experiments are
conducted. In the following, the datasets used for training, validation, and
test are presented.

3.1 Training, Validation and Test Data

Table B.2 summarizes the ten datasets used for training, validating and test-
ing the NSIP-models. The data consist of clean and noisy/distorted speech
signals and measured SI scores, which are used as labels. Due to the num-
ber of datasets, space limitations make it impractical to give a detailed de-
scription of each listening test here. Since they are all well described in
other works, we instead refer the interested reader to the respective sources.
The datasets contain multiple talkers, languages, noise types and processing
schemes. Classical predictors have shown varying performance on differ-
ent subsets of these datasets, which is also verified in Section 4. There are
significant differences in the size of these datasets, and Table B.2 contains a
breakdown of the size (#files) and number of different acoustic conditions
(#cond.) in each dataset. Because of the limited amount of data, we do not
attempt to balance the datasets by excluding data from the bigger datasets.

3.2 Cross Validation

Datasets 0 – 6 have been split randomly into training, validation and test
comprised of approximately 80, 10, and 10 % of the data, respectively. Each
listening test condition has been split in this way, such that every condition
is represented in the test set. Furthermore, due to the limited amount of test
data available, 10-fold cross validation has been performed and for each split
of the data into training, validation, and test, ten differently initialized sets
of NN-weights have been trained. In other words, 100 models of each archi-
tecture have been trained. Finally, to demonstrate the performance in unseen
conditions datasets 7 – 9 have been left out of the training and validation
sets, and are used exclusively for testing. As such we distinguish between
seen conditions, i.e. belonging to 0 – 6 and unseen conditions belonging to 7 –
9.

3https://git.its.aau.dk/mok/neural_sip.git
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Dataset Training Validation Test

No. Ref. #files #cond. #files #cond. #files #cond.

0 [18] 564 60 60 58 60 58
1 [27] 6295 168 673 168 840 168
2 [17] 320 34 35 32 35 32
3 [15] 1744 327 77 76 318 299
4 [28] 784 24 96 24 96 24
5 [29] 439 18 54 18 54 18
6 [18] 3460 20 436 20 437 20
7 [30] 0 0 0 0 278 9
8 [31] 0 0 0 0 241 20
9 [32, 33] 0 0 0 0 64 52

Table B.2: Datasets used for training, validation and test. Each file corresponds to approx. 6.6s
of speech. See references for further details regarding the general design of the datasets.

4 Experimental Results

4.1 End-to-end Data-driven Intelligibility Prediction

The NSIP-models defined in Table B.1 have been evaluated using Spearman
and Pearson correlation. The models were given the clean references and
corresponding noisy/processed test data signals, and the predictions were
integrated over each acoustic condition. Examples of these integrated predic-
tions can be seen, compared to measured SI, in Figure B.2. The Spearman and
Pearson scores were then computed and are presented in Tables B.3 and B.4
with standard deviations from the cross-validation reported in parentheses.
Spearman is a rank correlation and measures monotonicity between predic-
tions and measurements, whereas Pearson correlation measures the linearity
of their relationship. For each dataset the Spearman and Pearson correlation
of the NSIP predictions are measured.

From Tables B.3 and B.4 it is seen that NSIP5 with 1.68× 106 parameters
reaches an average Spearman of .91 across seen conditions and .85 across
unseen conditions, with corresponding average Pearson correlations of .91
across seen conditions and .85 across unseen conditions. The performance of
NSIP5 is visualized for a few datasets in Figure B.2.
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Fig. B.2: Scatter plots showing relation between measured SI and estimated SI, estimated by
the NSIP5 system, for seen datasets DS0, DS1 and DS3, as well as the unseen dataset DS9. The
Pearson and Spearman correlations are scaled a factor of 100.

4.2 Data-driven vs. Non-data-driven SIP

We compare the results from the NSIP-models on the test data with the
classical predictors STOI, ESTOI, HASPI and SIIB, and a retrained network
with the architecture of [16]. Similar to STOI and ESTOI, this architecture
takes 1/3-octave band representations of s and x as inputs and outputs SI-
predictions, and as such can be used as a frequency-domain benchmark. Ta-
bles B.3 and B.4 show the dataset-wise results in terms of Spearman and
Pearson correlation respectively, for the NSIP-models and the classical pre-
dictors. We distinguish between the conditions which have and have not
been seen by the NSIP-models during training, and report the average of the
performance measures across these subsets as well. We stress that ”seen“
conditions are not training data, but distinct test data signals belonging to
listening test conditions that also appear in the training set. In the case of
Pearson correlation, a dataset dependent logistic curve is often fitted to the
predictions before computing the correlation. This function has been used to
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Spearman ×100

Mean Mean Seen Data Unseen Data

Predictor (seen) (unseen) DS0 DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9
#Params
(millions)

NSIP1 (time) : 82 (2.9) 85 (7.1) 76 (5.2) 96 (0.4) 78 (2.3) 93 (1.1) 57 (3.4) 74 (7.1) 98 (0.6) 97 (1.6) 77 (10.7) 80 (9.0) 0.122M
NSIP2 (time) : 85 (2.3) 82 (5.1) 84 (2.8) 97 (0.2) 81 (2.1) 95 (0.6) 64 (4.9) 76 (5.2) 98 (0.4) 98 (1.1) 64 (9.9) 85 (4.3) 0.349M
NSIP3 (time) : 88 (2.2) 83 (4.6) 87 (1.8) 98 (0.1) 82 (1.7) 96 (0.4) 73 (6.1) 80 (4.9) 99 (0.3) 97 (1.1) 64 (10.0) 87 (2.6) 0.603M
NSIP4 (time) : 89 (2.2) 85 (3.8) 87 (1.7) 98 (0.1) 83 (1.8) 96 (0.4) 81 (6.2) 81 (5.0) 99 (0.2) 98 (1.1) 69 (7.6) 87 (2.7) 0.946M
NSIP5 (time) : 91 (2.1) 85 (3.5) 88 (1.7) 98 (0.1) 84 (1.8) 96 (0.4) 87 (5.9) 83 (4.7) 99 (0.3) 97 (1.0) 70 (7.3) 89 (2.2) 1.68M

NSIP6 (freq): 88 (1.9) 74 (4.7) 79 (3.7) 97 (0.1) 81 (1.4) 96 (0.6) 82 (4.1) 83 (3.0) 97 (0.4) 96 (1.9) 70 (5.1) 56 (7.2) 0.224M

STOI: 74 93 47 96 60 81 57 83 98 95 96 87 –
ESTOI: 78 92 82 96 49 84 56 86 96 98 95 85 –
HASPI: 71 88 62 78 50 93 64 65 84 98 96 70 –
SIIB: 80 96 73 91 39 93 75 94 98 98 97 94 –

Table B.3: Spearman correlation for NSIP models and classical non-data-driven SIP techniques.
NSIP1-5 are time-domain models configured according to Fig. B.1 and Table B.1 and NSIP6 are
an frequency-domain baseline model from [16]. All models are trained with data according to
Table B.2. The score are mean scores computed based on 10-fold cross validation and the scores
in parenthesis are standard deviations.

Pearson Correlation ×100

Mean Mean Seen Data Unseen Data

Predictor (seen) (unseen) DS0 DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9
#Params
(millions)

NSIP1 (time) : 84 (2.7) 83 (7.0) 75 (4.5) 96 (0.4) 77 (2.5) 93 (1.1) 77 (3.7) 76 (5.9) 97 (0.6) 95 (2.1) 76 (10.3) 77 (8.7) 0.122M
NSIP2 (time) : 88 (1.7) 80 (6.1) 83 (2.8) 97 (0.3) 80 (1.7) 95 (0.6) 87 (1.6) 79 (4.7) 98 (0.4) 97 (1.1) 62 (13.0) 83 (4.2) 0.349M
NSIP3 (time) : 90 (1.4) 81 (5.7) 86 (2.1) 98 (0.2) 81 (1.4) 96 (0.4) 89 (1.0) 82 (4.2) 98 (0.2) 96 (1.4) 62 (12.8) 85 (2.8) 0.603M
NSIP4 (time) : 91 (1.2) 84 (4.1) 87 (1.9) 98 (0.2) 82 (1.4) 96 (0.4) 90 (0.8) 83 (3.7) 99 (0.2) 97 (1.3) 69 (8.5) 86 (2.7) 0.946M
NSIP5 (time) : 91 (1.1) 85 (3.7) 89 (1.6) 98 (0.1) 83 (1.2) 96 (0.4) 91 (0.8) 85 (3.5) 99 (0.2) 96 (1.3) 71 (8.0) 87 (1.7) 1.68M

NSIP6 (freq): 89 (1.2) 73 (5.2) 77 (3.8) 97 (0.1) 79 (1.1) 96 (0.6) 91 (0.7) 86 (2.1) 98 (0.2) 93 (2.0) 70 (7.1) 57 (6.5) 0.224M

STOI: 77 92 51 91 56 78 80 85 98 98 89 90 –
ESTOI: 79 92 77 93 44 80 81 86 95 97 93 86 –
HASPI: 62 80 42 77 45 85 37 69 81 91 74 76 –
SIIB: 77 88 62 85 32 80 89 95 94 96 77 90 –

STOI (fitted): 78 96 51 96 58 80 76 85 99 99 96 91 –
ESTOI (fitted): 81 94 83 95 45 82 78 87 97 100 95 88 –
HASPI (fitted): 65 89 61 77 45 88 36 70 80 97 93 78 –
SIIB (fitted): 82 97 74 90 33 92 92 95 98 99 95 96 –

Table B.4: As Table B.3 but for Pearson correlation.

map SI-predictions to measurements by [17, 19]. We do this for the classical
predictors, and the Pearson correlations denoted by (fitted) in Table B.4 thus
measure the correlation in a logistic rather than linear sense. This increases
their average Pearson correlation, but in the seen conditions, even with the
added dataset-specific knowledge, they are still outperformed by the NSIP
architectures, which has been given no such dataset-specific mapping.

The NSIP-models achieve better average performance, in terms of Spear-
man and Pearson correlation in seen conditions as compared to the classical
predictors. Comparing the measures for the unseen datasets, NSIP is on par
with the classical methods for datasets 7 and 9, but not dataset 8. Conse-
quently, the average NSIP performance on the unseen datasets is lower than
average performance of the classical predictors on the same datasets.
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4.3 Frequency-domain Data-driven SIP

In order to judge the potential advantage of an end-to-end architecture, we
compare NSIP to the architecture of [16], which takes 1/3-octave band trans-
formed speech signals as inputs, similar to STOI and ESTOI. This architecture
has been retrained on the same data as the proposed time-domain NSIP ar-
chitecture. This is done to gauge the advantage of NSIP’s access to the full
information in the time-domain. As was the case for the time-domain ar-
chitecture, the frequency-domain architecture is trained and tested on the
ten cross validation data-splits. The test results are shown in the rows la-
belled NSIP6 (freq) in Tables B.3 and B.4. It appears that the time-domain
architectures of similar parameter size perform slightly better on average in
terms of Spearman and Pearson on the unseen Datasets 7 and 8, and signif-
icantly better on Dataset 9. This could be due to the loss of information in
the 1/3-octave band transform employed in NSIP6. On the seen datasets the
frequency-domain architecture performs as well as NSIP3 and 4.

5 Conclusion

We proposed a time-domain neural speech intelligibility predictor (NSIP)
based on a fully convolutional neural network architecture, for intrusive
speech intelligibility prediction. This network was trained on seven listen-
ing test datasets and tested on ten. Performance was evaluated in terms of
Spearman and Pearson correlation, and compared to the classical predictors
STOI, ESTOI, HASPI and SIIB, and a retrained frequency-domain architec-
ture, [16]. The NSIP architectures showed the best performance on the seven
seen datasets, but were outperformed by the classical predictors on one of
the unseen datasets. The frequency-domain architecture was found to reach
performance similar to that of larger, in terms of parameters, time-domain
architectures, with much fewer parameters.
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1. Introduction

Abstract

Prediction of Speech Intelligibility (SI) is a topic of interest for most speech pro-
cessing applications, where intelligibility is of any importance, e.g., speech coding,
transmission and enhancement. Traditionally, SI predictors have been based on sig-
nal processing methods and heuristics, but more recently, an increasing number of
data-driven SI-predictors have been proposed. Data-driven prediction of SI requires
large quantities of labelled data, ideally from many listening tests. Listening tests
differ in factors such as vocabulary, talker, listener’s task, etc. collectively referred
to as the paradigm. A naïve strategy of training SI-predictors directly on stimuli,
pooled from different listening tests, is futile because the exact map from the stimulus
to SI is determined, not only by the stimulus, but also by the paradigm. Data-driven
SI-predictors trained in this way become specialized to the paradigms of the training
data by erroneously attributing all paradigm influences on SI to the stimulus. The
problem is fundamental and persists even in the idealized situation where training
data is abundant. We propose a strategy for training data-driven SI-predictors that is
independent of the paradigms, underlying the training data. The proposed strategy is
to concatenate an SI-predictor and a layer of trainable dataset-specific mapping func-
tions, each corresponding to a single paradigm in the training data. These mapping
functions are trained jointly with the SI-predictor and serve to efficiently approximate
the psychometric functions implied by each paradigm. The mapping functions pre-
vent the predictor from specializing to these paradigms during training. We present
an SI-predictor with a novel architecture that incorporates a convolutional network
and an ESTOI back-end, train it with this strategy, compare it to naïve training and
a range of existing non-data-driven predictors. The proposed training strategy and
architecture results in higher performance overall and increased robustness to unseen
paradigms.

1 Introduction

Speech Intelligibility (SI) is an important concept for speech communication
devices, such as hearing aid systems or devices for communicating under ex-
treme acoustic conditions, such as aeroplane cockpits or emergency response
situations. Because of this, SI is repeatedly measured during the development
of these devices. The most reliable measurements of SI come from listening
tests, where human listeners respond to examples of the noisy or processed
speech in question. Since many human listeners need to be involved, these
listening tests are significant time-sinks, slowing down iterative development
of speech processing methods, concerned with SI.

To speed up this development, SI-prediction has become a popular and
valuable tool. SI-prediction refers to algorithms or models, designed to pre-
dict the SI of noisy or processed speech signals, as it would be rated by a
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panel of human listeners. SI-prediction offers fast and reproducible results
and can significantly increase the speed of development for speech process-
ing systems, when used in place of listening tests. A potential disadvantage
is that SI-predictors, like any predictor or estimator, may exhibit variable ac-
curacy, depending on variations in the signals under study. These variations
include, for instance, the type and intensity of noise or distortions deterio-
rating the signals and the type of processing applied, if any. We refer to a
particular combination of these variations as a listening condition. Applying
an SI-predictor to listening conditions, on which it has not been validated by
a listening test, can give misleading results. Robustness to a wide variety of
listening conditions is thus an important quality in SI-prediction.

Data driven SI-predictors are designed using machine learning methods,
such as neural networks. These predictors usually have a large number of
parameters, which are optimized through training on labelled speech in dif-
ferent listening conditions. When data-driven SI-predictors are trained on
speech data from a set of listening test conditions, it makes sense to refer
to these listening conditions as seen conditions for that predictor. This is in
contrast to unseen conditions, which refers to conditions not represented in
the training set. Data-driven SI-predictors have demonstrated performance
improvements over state-of-the-art classical predictors in seen conditions, but
not in unseen conditions.

Listening test paradigms are important to consider, when dealing with SI
prediction. The paradigm of a listening test refers to factors other than the
physical stimuli, such as different talkers, languages, vocabulary, sentence
structure, lexical redundancy, test scoring methods, listening equipment and
more that have an impact on the measured SI. The effects of a given paradigm
can be approximated well by an s-shaped curve, which maps predictions of SI
to absolute measured SI. This curve is called a psychometric function, a type
of function that relates human responses on a test to some physical quantity,
e.g., the SI experienced by the listener vs. signal to noise ratio of the stimulus.
Psychometric functions for SI are typically modelled by a sigmoid function,
where the parameters depend on the paradigm and the SI-predictor [1]. Note
that a difference of slope between the psychometric functions of two listening
tests implies that a similar change in a physical quantity, such as SNR, results
in different changes to SI.

We use the term “pooling” to refer to constructing a dataset that contains
speech stimuli and SI labels from multiple listening tests. However, naïve
pooling of listening test data may be a questionable approach, because dif-
ferent listening tests have different underlying paradigms and psychometric
functions associated with them. The speech stimuli alone do not completely
account for the specific SI measurements of a listening test. For instance,
the loudspeakers or headphones, used in two different listening tests, could
make a difference in the subjective scores of the test subjects. Furthermore,
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some languages might be easier or harder to understand, under certain noise
types. Similarly, coherent sentences allow some words to be inferred by con-
text, which leads to higher SI scores than randomly constructed sentences,
devoid of context, in the same listening conditions. These influences on the
SI scores of different listening tests result in different parameters of the psy-
chometric function.

Many studies of classical SI-predictors apply listening test specific map-
ping functions to convert the predictor output to absolute SI in performance
tests, e.g., STOI [2], SIIB [3] and SII [4]. This is done in order to take the
psychometric functions specific to each listening test into account, when eval-
uating predictor performance, and thus facilitate comparisons of predictions
and performance across different listening tests. The predictions prior to
these mappings are typically called SI indices, since they are, ideally, related
monotonically to the subjectively measured SI, or absolute SI. SI indices can
be meaningfully compared within the same paradigm, with a higher index
corresponding to a higher absolute SI, but indices from different paradigms
can not, since the psychometric function, and thus the map from SI index to
absolute SI, changes with the paradigm.

When a data-driven SI-predictor is trained on a dataset of pooled listen-
ing tests, a fundamental problem arises. The input signals, used to train the
SI-predictor, i.e., the speech stimuli, do not contain the complete information
that determines the shape of the psychometric functions. With the informa-
tion available in the training inputs and labels, the predictor can learn the
specific psychometric functions underlying the training data, but it can not
learn how to adapt to new unseen psychometric functions. This means that
the predictor specializes in the paradigms underlying the training data.

We propose and investigate a method for training data-driven predictors,
which allows the use of pooled listening test data from different paradigms,
by taking the differences in psychometric functions in the training data into
account. In particular, the method introduces trainable mapping functions
with dataset dependent parameters. These mapping functions, which we call
Dataset-Specific Mapping Functions (DSMF’s), serve to model the psychometric
functions specific to each individual listening test in the training data. We
apply the training strategy to an SI-predictor1 consisting of a Convolutional
Neural Network (CNN) with a back-end inspired by ESTOI. This CNN is
trained with pooled data consisting of speech datasets with SI-labels from
different listening tests. The parameters of the trainable mapping functions
are learned independently for each dataset. Their purpose is to approximate
the psychometric function of each dataset, separately from the SI-predictor.
After the training is complete, the trained DSMF’s are discarded, because

1The implementation of this SI-predictor can be found at
https://github.com/Mapede/DSMF_SI_Predictor
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the information they contain, namely an approximation of the psychometric
functions of the training sets, is generally not useful, when predicting the SI
of unseen datasets and paradigms. The trained SI index predictor is simply
the remaining CNN-ESTOI network depicted in Figure C.1.

We show that training a data-driven SI-predictor with this strategy pre-
vents it from learning an internal representation of the psychometric func-
tions, inherent in the training data. It is demonstrated that this enables the
proposed data-driven predictor to reach higher performance for seen condi-
tions, and also to be more robust to new unseen test-paradigms. First, two
SI-predictors are trained using the same architecture and pooled data, one us-
ing the proposed strategy, the other trained naïvely. This experiment shows
that the proposed strategy leads to higher performance on average. Secondly,
a series of hold-one-out cross validation experiments are conducted, where SI
predictors are trained according to the proposed strategy, using all the avail-
able datasets except for one. The dataset, held out of training, is instead used
for testing. In these experiments, the average performance of the trained pre-
dictors, on their respective unseen datasets, is higher than that of the classical
predictors used for comparison.

The paper is organized as follows. Section 2 goes into detail on existing
SI-predictors, both classical and data-driven. Section 3 describes the archi-
tecture of the proposed SI predictor and details of the proposed training
procedure. Section 4 describes the datasets used to train and test the pro-
posed SI predictor, as well as the training procedure and hyper parameters.
Section 5 describes the experiments, and presents a performance evaluation
of the proposed SI predictor. Finally, Section 6 contains the conclusions of
the work.

2 Related work

SI-predictors may be roughly divided into classical, or data-driven meth-
ods. Classical SI-predictors, e.g., the Articulation Index (AI) [5], the Ex-
tended Speech Intelligibility Index (ESII) [6], the Speech-to-Reverberation
Modulation energy Ratio (SRMR) [7], the Short-Time Objective Intelligibility
(STOI) [2], the Spectro-Temporal Modulation Index (STMI) [8], the Extended
Short-Time Objective Intelligibility (ESTOI) [9], the Speech Intelligibility In
Bits (SIIB) [3] and the Hearing Aid Speech Perception Index (HASPI) [10], are
hand-crafted models, often inspired by models of auditory perception, with
only few parameters optimized for listening data. Data-driven SI-predictors,
e.g., Non-Intrusive Speech Assessment (NISA) [11], a twin hidden Markov
model [12], the data-driven STI estimator proposed by [13], the neural net-
work proposed by [14], the convolutional neural network proposed by [15],
and the convolutional neural network proposed by [16], learn a prediction
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model primarily, or in full, by a process of optimization on a dataset of speech
with labels of measured, or in some cases predicted, SI.

Another mode of classification for SI-predictors is, whether they are in-
trusive or non-intrusive. Intrusive predictors use both the clean reference
signal and the noisy/processed test signal, whereas non-intrusive predictors
only require the noisy/processed test signal. The advantages of intrusive SI
predictors is that they are given more information than their non-intrusive
counterparts, and can, in principle, reach a higher accuracy. The advantage
of non-intrusive predictors is that they can be used when the clean reference
is unavailable.

The AI [5] is perhaps the first classical method, and has served as inspi-
ration for many following predictors. The AI performs a frequency weighted
comparison of the long-term intensities of the underlying clean speech and
the noise to estimate SI. The primary focus of the AI was speech in addi-
tive noise, and it was also designed for calculation by hand. The Speech
Transmission Index (STI) [17] analyzes a set of probe signals passed through
the transmission channel or processing algorithm of interest. In particular,
the preservation of the probe signal modulations are measured, and used
to quantify SI. Assuming that the channel is known, the STI supports non-
additive distortions, such as clipping, filtering and reverberation.

The Speech Intelligibility Index (SII) [4] and Extended SII (ESII) [6] com-
pute a weighted average of Signal to Noise Ratios (SNR) of specific frequency
bands. The SII was proposed as an updated version of the AI, suitable for
calculation by computer. In ESII, the SNR is computed in short time frame
averages, rather than the long-term average used in SII. This improves its
performance for speech signals in fluctuating noise [6]. The STMI [8] decom-
poses the signal under study into spectro-temporal components, and makes
a comparison to the clean reference via cross correlation.

STOI [2] and Extended STOI (ESTOI) [9] use averages of sample correla-
tions between the test signal and clean reference in short time segments in
the 1/3 octave band magnitude domain. These sample correlations predict SI
well when the time-frequency tiles are independent of each other. Since this is
not generally the case, STOI and ESTOI normalize the signal segments before
the sample correlations are computed. In STOI each segment is normalized
across time, whereas in ESTOI they are also normalized across the 1/3 oc-
tave bands. This allows ESTOI to better handle temporally fluctuating noise,
compared to STOI, [9]. SIIB [3] provides an estimate of SI via an estimate
of the mutual information between the clean speech and noisy/processed
speech. The idea of using mutual information to predict SI has been used ear-
lier, see e.g., Speech Intelligibility using Mutual Information (SIMI) [18], the
AI [19, 20] and Mutual Information Variational Bayes (MI-VB), MI K Nearest
Neighbours (MI-KNN) and MI Expectation Maximization (MI-EM) [21].

HASPI [10] computes an intelligibility score based on an auditory model,
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including both spectral envelope features and coherence. HASPI is also able
to account for hearing impairment.

Data driven SI-predictors can be categorized by the type of labels used
for training. The predictors proposed in [14], [15], [16] and [22], which are
all different types of neural networks, are trained to estimate actual listening
test results. Other data-driven SI-predictors are trained to emulate existing
classical predictors in circumstances, where the classical predictor in question
can not be used. In these cases, the labels are SI predictions produced by
the classical predictor. For instance, the Non-Intrusive Speech Assessment
(NISA) method [11] is trained to predict the outcome of STOI, without the
clean reference that STOI normally requires. The important distinction is
that NISA is trained using labels generated by STOI rather than a listening
test. This circumvents the limitations imposed by the scarcity of listening
test data, but also imposes the performance of STOI as an upper bound on
the performance of NISA. Other examples include the predictors described
in [13], a convolutional neural network emulating the STI, and [12] a hidden
Markov model emulating STOI.

The data-driven methods proposed by [12], [14], and [16] are not evalu-
ated on unseen conditions. The methods proposed by [11] and [13] are tested
on unseen conditions, though these conditions are in the same category as the
seen data, additive noise for [11], and reverberation from convolution with
room impulse responses for [13]. Furthermore, these methods were trained
using labels generated by classical predictors, STOI and STI for [11] and [13]
respectively, rather than measured SI. Finally, the methods proposed in [15]
and [22] were tested on unseen datasets, revealing highly dataset dependent
performance.

3 Architecture and mapping functions

The data-driven SI-predictor proposed in this paper is a Convolutional Neu-
ral Network (CNN) with inspirations from ESTOI [9]. The architecture is
shown in Figure C.1. The model takes two inputs: a potentially noisy and/or
processed speech signal, X[t, f ], and the corresponding time-aligned clean
speech signal, S[t, f ]. In the training phase the model is also given a third
input, the paradigm selector vector, d, which is a vector with a 1 in the entry
corresponding to the listening test from which the training sample, i.e., X[t, f ]
and S[t, f ], was drawn, out of a total set of D listening tests used for training.
This vector is used to select the appropriate mapping function. Spectrograms
X[t, f ] and S[t, f ] are 1/3 octave band representations of the time-domain
speech signals x[τ] and s[τ], respectively. To obtain X[t, f ] and S[t, f ], both
x[τ] and s[τ] are resampled to 20 kHz. Then a Short-Time Fourier Transform
(STFT) is performed, followed by a 1/3 octave band transform, similar to
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that of ESTOI, yielding X[t, f ] and S[t, f ]. For the STFT a 50% overlapping
Hann window, W samples in length, and zero padding to 2W samples is
used. The input signals are processed in a number of CNN layers, followed
by an ESTOI back-end, which performs the comparison between the signal
under study and the clean reference. During network training, the output
of the ESTOI back-end is mapped to absolute SI by the mapping function
corresponding to the listening test from which the inputs and SI label were
obtained.

Loss
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Fig. C.1: Proposed SI prediction architecture. From left to right are the 1/3 octave band inputs
S[t, f ] of clean speech and X[t, f ] of noisy/processed speech, the dataset selection vector, d, used
to choose the mapping function matching the listening test, the CNN layers which are applied
to both S[t, f ] and X[t, f ] using the same kernels, yielding S̃[t, f ] and X̃[t, f ], the ESTOI back-
end consisting of normalization and correlation performed on a sliding window, and an average
across frames resulting in the SI index prediction, ρ. In the training phase, the SI index, ρ, i.e.,
the output of the ESTOI back-end, is mapped to a prediction of absolute SI using the logistic
function indicated by d.

3.1 Network design

The goal in designing the network is to increase robustness to unseen datasets.
The architecture is designed to be relatively small, in order to mitigate over-
fitting to the seen datasets. The proposed architecture has fewer than 104

trainable parameters, whereas network sizes used in [22] range from 105 to
106 parameters. These large models showed signs of over-fitting, as the per-
formance was drastically lower for certain unseen datasets. This is also the
reason why we have chosen to incorporate part of ESTOI into the network,
i.e., to reduce the required number of trainable parameters.

We choose ESTOI, specifically, because of its simplicity and performance.
The ESTOI back-end provides an anchor point of performance, in that the
network should be able to perform at least as well as ESTOI on the training
set. Hence, with this network design we expect performance on par with or
better than ESTOI for seen conditions. The trainable part of the network, i.e.,
the CNN layers, is placed before the ESTOI normalization for a number of
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reasons. First, it guarantees that when the studied signal is in fact clean, i.e.,
x[τ] = s[τ], the predicted SI is maximized. This is due to the fact that x[τ]
and s[τ] are subject to the exact same mathematical operations, because they
share the same CNN layers.

A CNN architecture was chosen, because it allows processing of variable
lengths of input signals [15], and because CNN’s have proven efficient for
speech processing tasks in general, see e.g., [15], [22], [23], [24] or [25]. In a
preliminary experiment we tested other architectures, particularly including
a trainable weighted averaging across frequency bands in the back-end. This
weighted average was found to have no significant impact on performance.
The proposed training procedure is not limited to the architecture described
here. It can be applied to the training of any data driven SI-predictor.

3.2 1/3 Octave band transform

The 1/3 octave band transform is applied as presented in [2]. First, the STFT,
given by:

X̂[t, k] =
1√
2π

W−1

∑
s=0

x
[

tW
2

+ s
]

w [s] e−jks, (C.1)

is applied, where X̂[t, k] is the STFT of x at time t, and frequency k, w [·] is a
Hann analysis window of length W, and j denotes the imaginary unit. Then,
the magnitudes of each 1/3 octave band are computed as follows:

X[t, f ] =

√√√√ kh [ f ]

∑
s=kl [ f ]

|X̂[t, s]|2, (C.2)

where X[t, f ] is the 1/3 octave band representation of x at time t, and 1/3
octave band f , and where kl [ f ] and kh[ f ] are the indices of the lowest and
highest frequency bands of X̂ within the f ’th 1/3 octave band. Similar oper-
ations are applied to s[τ] to obtain S[t, f ]. For more details we refer to [2].

3.3 CNN layers

The 1/3 octave band transformed signals, X[t, f ] and S[t, f ], are now run
independently through the same CNN layers, cf. Figure C.1. We use L CNN
layers of K kernels with Rectified Linear Unit (ReLU) activation functions.
The signals are zero padded to preserve their size after each convolution.

3.4 ESTOI back-end

The CNN layers produce K outputs, X̃[t, f , 0], . . . , X̃[t, f , K − 1], each corre-
sponding to one kernel in the final layer. These K outputs are concatenated
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along the frequency-axis:

X̃[t, f ′] =
[
X̃[t, f , 0] . . . X̃[t, f , K− 1]

]
, (C.3)

where f ′ is used to index the new concatenated frequency axis. This concate-
nation results in a computationally convenient representation of X̃ for the
next step. Following the CNN layers are a series of operations from ESTOI,
as illustrated in the details of the "ESTOI Back-end" in Figure C.1 [9]. A slid-
ing rectangular window, N samples wide, is applied along the temporal axis,
splitting the input spectrograms into short overlapping matrices. The n’th of
these matrices is given by:

X̃n[t, f ′] =
[

X̃[n, f ′]> . . . X̃[n + N − 1, f ′]>
]>

. (C.4)

For each n, X̃n[t, f ′] is normalized across time and frequency as follows. First,
the mean is subtracted across time:

X̃n,2[t, f ′] = X̃n[t, f ′]− 1
N

N−1

∑
s=0

X̃n[s, f ′]. (C.5)

Then, the variance is normalized across time:

X̃n,3[t, f ′] = X̃n,2[t, f ′]
/√√√√N−1

∑
s=0

X̃2
n,2[s, f ′]. (C.6)

Now, the mean across frequency is subtracted:

X̃n,4[t, f ′] = X̃n,3[t, f ′]− 1
N

F−1

∑
s=0

X̃n,3[t, s]. (C.7)

Finally, the variance is normalized across frequency:

X̃n,5[t, f ′] = X̃n,4[t, f ′]
/√√√√F−1

∑
s=0

X̃2
n,4[t, s]. (C.8)

S̃n,5[t, f ′] is computed similarly. The correlation coefficient between each cor-
responding matrix of the noisy/processed and clean speech signals is now
given by:

ρn =
1
N

N−1

∑
t=0

F−1

∑
f=0

X̃n,5[t, f ′]S̃n,5[t, f ′]. (C.9)

The average across frames, ρ, of these correlation coefficients is the output of
the network.
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3.5 Dataset-specific mapping functions

Ideally, the trained SI index predictor should be independent of the paradigms
specific to the listening tests included in the training data. To achieve this,
we append a number of DSMF’s to the architecture used exclusively for the
network training and validation phases. This is marked as "Training phase
only" in Figure C.1. During network training, an additional input is given.
This input, d, is a vector with a 1 in the entry corresponding to the index of
the dataset from which the inputs s[t] and x[t] originate, and 0’s in all other
entries. The DSMF’s used in this study are logistic functions, defined as:

σ(x) =
1

1 + e−(ax+b)
, (C.10)

where x is the input, and a and b are the trainable parameters. Conveniently,
computing these functions corresponds to a single fully connected layer, with
a number of nodes equal to the number of listening tests, followed by a sig-
moid activation function. The parameters a and b then, respectively, corre-
spond to the weights and biases of the fully connected layer. This layer is
designed to apply all the DSMF’s to the network output in parallel during
training, which is represented by the block filled with s-shaped curves in
Figure C.1. The inner product is now taken between the outputs of the fully
connected layer and the selector vector d, in order to select the relevant DSMF.
Thus, only the DSMF corresponding to the dataset indicated by d is passed
through this operation. This particular implementation was chosen because
it is differentiable, which allows for back propagation. In this way, the net-
work can be simultaneously trained on multiple pooled datasets, while the
mapping functions absorb the different psychometric functions, which the
network could otherwise only account for by over-fitting. The choice to use
logistic functions as DSMF’s is inspired by the fact that logistic functions are
often used to model psychometric functions for classical SI-predictors, see
e.g., STOI [2], ESTOI [9], SIIB [3], CNN [15], SII [4] or the survey of psycho-
metric functions for SI in [1]. Importantly, because of the choice to train with
logistic DSMF’s it can be expected that the network outputs SI-indices that
are logistically related to absolute SI.

The DSMF training procedure is designed to give the network a parame-
ter efficient way to represent the psychometric functions that arise from the
training data. The psychometric functions are thus learned separately from
the CNN, which means that the internal parameters of the network can be
utilized more efficiently, leading to better SI-prediction performance even
though the DSMF’s themselves are discarded in the end.

The result of the proposed DSMF training procedure is a network that
outputs an unmapped SI-index, ρ, which correlates highly with absolute SI.
In practice, for unseen data, ρ would be used as the SI-prediction. In gen-
eral, SI-indices produced by this network are not predictions of absolute SI,
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Table C.1: Overview of the datasets used for training and testing of the proposed SI predictor.
The datasets have been split into files of equal duration of approximately 6.6s of speech. The
column labelled #subj. list the number of participating listeners, and the column labelled #cond.
lists the number of different listening conditions resulting from the various noise types and
SNR’s as well as processing types and settings.

Dataset Size Content

No. Ref. #subj. #files #cond. Speech material Noise & processing types

DS0 [26, Sec. VI] 11 278 9 Dantale II (closed) BBL, Beamforming
DS1 [27, Sec. III-C] 14 241 20 Dantale II (closed) BFN, ITFS
DS2 [9, Sec. IV-1] 12 684 60 Dantale II (closed) Noisex, SSN, BBL, Temporal modulation
DS3 [28, Sec. II] 15 7808 168 Dantale II (open) SSN, BBL, café, car, ITFS
DS4 [29, Sec. IV] 9 64 52 Dutch Hagerman test (closed) SSN, pre-noise enhancement
DS5 [2, Sec. III-C] 7 390 35 IEEE database (open) SSN, BBL, ITFS w. artificial errors
DS6 [15, Sec. III-D4] 8 2139 327 ADD (open) SSN, Low- and high-pass filtering
DS7 [30, Sec. III] 15 976 24 CLUE database (open) ICRA, Speech segregation
DS8 [31, Sec. III-B] 16 547 18 Dutch Hagerman test (closed) SSN, BBL, pre-noise filtering
DS9 [9, Sec. IV-5] 13 4333 20 Dutch Hagerman test (closed) SSN, Single channel noise reduction

because the network does not account for psychometric functions. In special
cases, however, where the listening test paradigm is known, i.e., when the
data comes from a known listening test, the corresponding DSMF could be
appended to produce predictions of absolute SI. In the interest of facilitating
a fair comparison with competing predictors, however, we will not be using
the trained DSMF’s in the test phase.

4 Dataset description and training procedure

4.1 Datasets

The experiments described in this paper are based on a pooled dataset con-
sisting of the results from ten listening tests. Table C.1 describes the datasets
with a few keywords pertaining to the speech material, noise types and pro-
cessing in each listening test. The noisy/processed speech stimuli, x[t], and
the clean reference signals, s[t], from each noise/processing condition in each
listening test were extracted. The label for each pair of signals was taken to
be the average fraction of correct words across all listeners within the given
condition. It would have been desirable to use more granular SI-labels, e.g.,
binary labels indicating whether each individual word was correctly identi-
fied in the corresponding listening test. However, for the vast majority of
the datasets we use, particularly DS3 through DS9, only the average SI is
available. For the sake of consistency, we use the average SI labels for all
datasets.

All ten listening tests were conducted with normal hearing native speak-
ers. The listening tests were either conducted with a closed set, which al-
lowed participants to select each word from a list, or an open set, which
required the participants to either write down or repeat each word without a

97



Paper C.

list of candidate words. For more detailed descriptions of the datasets and lis-
tening tests, we refer to the respective sources listed in Table C.1. In Table C.1,
Dantale II refers to the Danish matrix test speech corpus described in [32].
ADD refers to Akustiske Databaser for Dansk2, which contains meaningful
Danish sentences. CLUE refers to the Danish speech corpus described in [33].
The Dutch Hagerman matrix test speech corpus is described in [34], and the
IEEE database contains English speech. These speech datasets each contain
speech signals from a single talker, apart from ADD, which contains speech
signals from multiple talkers. The Noisex database is described in [35], and
contains various recorded noise types. Speech shaped noise (SSN) refers to
white Gaussian noise, filtered to match the long term spectral envelope of
speech. Babble (BBL) noise refers to the mixture of a number of competing
talkers. The number of competing talkers varies from 2 to 20 depending on
the dataset. Bottle factory noise (BFN) refers to recorded noise of bottles
clinking against each other on a conveyor belt. ICRA is a database of noise
signals, constructed to mimic the short term modulations of speech [36]. Ideal
time-frequency segregation (ITFS) is a method for enhancing a signal in the
time-frequency domain by utilizing the true signal to noise ratio (SNR) for
each time-frequency tile, in order to, for example, compute ideal gains or
cut-off thresholds [37]. The signals in DS6 have been recreated using a differ-
ent speech database than the one used in the original listening test, the full
details and verification experiments can be found in [15, Sec. III].

4.2 Training

Each dataset was split randomly into 80% training, 10% validation and 10%
test data. This was done to ensure that all datasets would be represented in
the test set. The data was partitioned into training samples of equal dura-
tion, to enable the construction of mini batches. The duration of 512 frames,
corresponding to approximately 6.6 seconds, which is long enough to ac-
commodate one to two sentences, was chosen. This fixed duration resulted
in some training samples spanning two listening test conditions. The labels
for these samples were computed as the weighted average of the measured
SI for those two conditions, with weights equal to the number of frames
from each condition in that training sample. A batch size of 32 was found
to give the best compromise between GPU-memory, training speed and end-
performance. The network was trained on batches from the training dataset
using the Adam optimizer [38], and the Mean Squared Error (MSE) loss func-
tion. An early stopping scheme was used, where the learning rate was halved
for every 25 epochs without a new global minimum in validation cost, and
the training was stopped early if this continued for 35 epochs. Training was
allowed to proceed for a maximum of 300 epochs. Training of the models

2http://www.nb.no/sbfil/dok/nst_taledat_dk.pdf
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5. Performance evaluation

with DSMF involves forward passing training samples, i.e., triplets of X[t, f ],
S[t, f ] and d, through the CNN layers, the ESTOI back-end and finally the
DSMF’s, after which the loss function is evaluated. For the test phase, the
trained DSMF’s are discarded. To take the psychometric functions into ac-
count for the evaluation, logistic functions are fitted for each listening test in
the test data by least squares for all the evaluated predictors. This is done
in order to facilitate a fair comparison between the DSMF trained networks
and the classical predictors. This also allows the DSMF trained networks
to be tested on unseen datasets. The architecture was implemented using
Tensorflow 2.1 [39].

4.3 Network parameters

We trained the networks with the following parameters. The window length
of the 1/3 octave band transform is W = 512. A preliminary experiment
showed that L = 3 CNN layers with K = 20, 3× 3 kernels resulted in the best
performance. Networks with 1, 2, 3 and 4 CNN layers and 5, 10, 15 and 20
kernels per layer were tested. Due to memory constraints, we were unable to
test higher numbers of kernels. The window length of the ESTOI back-end
is N = 30, cf. [9]. The lowest 1/3 octave band is centred around 150 Hz, and
the highest around 6050 Hz, for a total of F = 17 bands. This is an increase
from the conventional ESTOI, which uses 15 bands. According to the band
importance function of the SII, [4], this frequency range accounts for most
of the intelligibility of speech. In total the architecture has 7, 460 trainable
parameters.

5 Performance evaluation

Two experiments, A and B, are performed to investigate the properties of the
proposed DSMF training strategy and the resulting SI predictor. In Experi-
ment A the goal is to validate that the DSMF’s absorb the information related
to the different psychometric functions, and result in improved prediction
performance over plain pooling with no DSMF’s. In Experiment B the goal is
to investigate the robustness of the network and training method to new or
unseen listening conditions and test paradigms. The Spearman and Pearson
correlation coefficients, along with the Mean Squared Error (MSE) values, are
used as evaluation metrics.

In order to evaluate the efficacy of the DSMF training procedure, models
were trained both with and without DSMF. Both models have the same num-
ber of parameters in the CNN layers, but since the DSMF’s should be able
to represent the psychometric functions of each dataset, we expect the DSMF
trained model to utilize these parameters more efficiently. As a result, the
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DSMF trained model is expected to reach higher performance than the one
without DSMF. These models are both tested against each other, and against
a variety of classical predictors, i.e., ESTOI, SIIB, HASPI, STOI and SI-SDR.
We remind the reader that the trained DSMF’s are not used in the test phase.
Instead, as part of the evaluation of the performance of each predictor on
the test data, logistic psychometric functions are fitted to the test data using
least squares, and used to transform the outputs of the predictors to absolute
SI, before computing the Spearman and Pearson correlations as well as the
MSE values. These logistic functions should not be confused with the trained
DSMF’s, and we stress that they are solely used as part of the evaluation of
the SI-predictors, facilitating the comparison between predictions and mea-
sured absolute SI. This has no impact on the Spearman coefficient, because it
is invariant under monotonically increasing transforms, i.e., the fitted logistic
functions. It does affect the Pearson correlation and MSE, however, since the
logistic fitting attempts to map predictions onto a straight line, which should
increase the Pearson correlation, and reduce the MSE. This facilitates a fair
comparison between the trained and classical predictors, and better reflects
the performance that can be expected in practice. Specifically, if - hypotheti-
cally - the trained DSMF’s were used in the test phase, the proposed network
might have an advantage specific to the datasets used in this work, but this
advantage would not generalize, since trained DSMF’s only exist for seen
datasets.

Table C.2 shows the Spearman correlations, as computed dataset-wise,
for each predictor. The predictors trained in this experiment are marked
with (seen) in Table C.2. The prediction for each listening test condition
was made by concatenating all the speech signals available in the test set for
that particular condition, resulting in one pair of inputs for each condition.
These pairs were given to the predictors as inputs yielding one scalar SI-
prediction per condition as output. The correlations between the predictions
of all conditions within each dataset and the corresponding measured SI from
the listening tests were then computed. The performance in terms of Pearson
correlations is computed in a similar way and seen in Table C.3. Additionally,
the mean squared error of each predictor is reported in Table C.4. We noticed
no loss in performance as a consequence of the relatively longer test signals.
This is likely because the architecture has a very small receptive field because
of the small kernels in the CNN layers.

As expected, the DSMF trained network reaches a higher performance
than the non-DSMF trained network in terms of both Spearman and Pear-
son correlation. Since the only difference between these two networks is the
presence of DSMF’s during training, it is clear that training with DSMF’s has
a positive effect on the final performance of the SI-predictor, indicating that
the DSMF’s are working as intended. In particular, the performance average
across datasets is higher with DSMF. The exceptions, where the non-DSMF
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model performs better are DS2 and DS7. A possible explanation for this
could be that networks sacrifice performance for some datasets in order to
perform better on average. DS2 is a difficult dataset for many SI-predictors,
because it contains temporally modulated noise [9]. Note also that STOI per-
forms poorly, whereas ESTOI does particularly well on this dataset. This
is an expected result, as ESTOI was proposed in order to improve STOI’s
performance on speech in temporally modulated noise, and evaluated using
DS2 [9]. Figures C.2 and C.3 show scatter plots of measured SI and predic-
tions, each point representing one listening test condition. Figure C.2 shows
the raw predictions, or SI indices, i.e., before logistic functions are fitted, vs.
measured absolute SI for the various SI predictors. From Figure C.2, the pro-
posed SI predictor, ESTOI and SIIB manage to produce fairly concentrated
clusters of predictions, whereas STOI and HASPI struggle to do so. This is
also reflected in Tables C.2 and C.3. For DS2 specifically, the predictions show
a much wider spread at the high end of the SI-spectrum. This is consistent
with the observations in [9] that many SI-predictors tend to underestimate
the SI in this dataset. In DS7 there are very few conditions at the extreme
ends of the measured SI spectrum, i.e., 0 and 1, where prediction errors are
generally smaller. This could explain why many of the SI predictors score
relatively low on this dataset. In Figure C.2 it can be seen that the network
trained without DSMF produces indices with an approximately linear rela-
tion to absolute SI, whereas the network trained with DSMF produces indices
with separate, approximately logistic relations to absolute SI. This clearly il-
lustrates the difference between training with and without DSMF; the non-
DSMF trained network must necessarily be dedicating internal parameters to
recognizing and mapping each of the datasets to absolute SI, i.e., the network
has specialized to the training data. Recall that the psychometric functions
cannot generally be determined from the network inputs alone. The network
trained with DSMF, however, does not appear to have any internal represen-
tation of the psychometric functions of the datasets, since each dataset forms
a separate s-shaped cluster, indicating that the DSMF’s were able to absorb
the different psychometric functions of the training data.

5.1 Experiment A

Among the classical predictors, ESTOI and SIIB have the best performance,
which is in accordance with existing studies, see e.g., SIIB [3] or ESTOI [9].
While the classical predictors are not primarily data-driven, some of the
datasets we test on, were used in the development of the classical predic-
tors. Specifically DS3, DS5 and DS9 were used in the development of STOI,
DS2, DS3 and DS9 in the development of ESTOI [9], and DS3, DS4 and DS9
in the development of SIIB [3]. This is reflected in the performance of these
predictors on those respective datasets, as seen in Tables C.2, C.3 and C.4,

101



Paper C.

0.25 0.00 0.25 0.50 0.75
ESTOI

0.0

0.2

0.4

0.6

0.8

1.0

m
e
a
su

re
d
 S

I

DS 0
DS 1
DS 2
DS 3
DS 4
DS 5
DS 6
DS 7
DS 8
DS 9

0.0 0.2 0.4 0.6 0.8 1.0
STOI

0.0

0.2

0.4

0.6

0.8

1.0

m
e
a
su

re
d
 S

I

DS 0
DS 1
DS 2
DS 3
DS 4
DS 5
DS 6
DS 7
DS 8
DS 9

0.0 0.2 0.4 0.6
Network w. DSSP.

0.0

0.2

0.4

0.6

0.8

1.0

m
e
a
su

re
d
 S

I

DS 0
DS 1
DS 2
DS 3
DS 4
DS 5
DS 6
DS 7
DS 8
DS 9

0 100 200 300
SIIB

0.0

0.2

0.4

0.6

0.8

1.0

m
e
a
su

re
d
 S

I

DS 0
DS 1
DS 2
DS 3
DS 4
DS 5
DS 6
DS 7
DS 8
DS 9

0.0 0.2 0.4 0.6 0.8 1.0
Network w.o. DSSP.

0.0

0.2

0.4

0.6

0.8

1.0

m
e
a
su

re
d
 S

I

DS 0
DS 1
DS 2
DS 3
DS 4
DS 5
DS 6
DS 7
DS 8
DS 9

0.0 0.2 0.4 0.6 0.8 1.0
HASPI

0.0

0.2

0.4

0.6

0.8

1.0

m
e
a
su

re
d
 S

I

DS 0
DS 1
DS 2
DS 3
DS 4
DS 5
DS 6
DS 7
DS 8
DS 9

80 60 40 20 0 20
SI-SDR

0.0

0.2

0.4

0.6

0.8

1.0

m
e
a
su

re
d
 S

I

DS 0
DS 1
DS 2
DS 3
DS 4
DS 5
DS 6
DS 7
DS 8
DS 9

DSMF

DSMF

Fig. C.2: Experiment A: Absolute measured SI vs. raw SI indices output by the networks and
classical predictors, i.e., with no fitted logistic functions.

where e.g., STOI reaches a Spearman correlation of 0.54 on DS5. These ob-
servations are well in line with conclusions drawn in [40] that SI-predictors
tend perform better on datasets used during their development. HASPI and
SI-SDR show the lowest performance on average. SI-SDR shows drastic vari-
ation in performance from one dataset to the next, with high performance on
DS1, DS5, DS7 and DS9, and low performance on DS0, DS2, DS3, DS4 and
DS8. Note in particular the negative Spearman coefficients on DS0. This neg-
ative correlation could be due to the relatively few conditions in DS0, which
means that fewer discordant pairs are necessary to significantly reduce the
score. Note that high correlations with different signs may be detrimental to
any SI-predictor: In order to be reliable in practice, it must be clear whether
an increase in predictor output is indicative of an improvement or a decline
in SI.

In the case of HASPI this can be attributed to slightly lower scores on most
of the datasets and very low scores on DS0 and DS8 in particular. HASPI’s
very low score on DS8, might also be explained by the fact that DS8 has few
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Fig. C.3: Experiment A: Absolute measured SI vs. SI-predictor output transformed by logis-
tic functions fitted to each of the test datasets and predictors for both networks and classical
predictors.

conditions.
Figure C.2 demonstrates the difference between training with and with-

out DSMF’s. In particular, the network trained without DSMF’s attempts to
force predictions from all the datasets onto the same line between (0, 0) and
(1, 1). This is a clear indication that the network has learned an internal rep-
resentation of the psychometric functions specific to the training datasets. As
a consequence, the predictions show a substantial variance. When trained
with DSMF’s, however, the outputs related to different datasets form sepa-
rate s-shaped clusters. The differences between these clusters are a result of
the paradigm differences, meaning that the network has not learned an in-
ternal representation of the psychometric functions of the training data. It is
evident that this has resulted in substantially reduced variance in the predic-
tions. Note that the clusters corresponding to each dataset, appear similar
for this DSMF trained network and for ESTOI, which could be a result of the
similarities between the proposed architecture and ESTOI. These similarities
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are further evidence that the different clusters represent different psychome-
tric functions, since ESTOI does produce SI indices that map to absolute SI
via a logistic psychometric function [9]. Given the similarities between the
proposed architecture and ESTOI, it is not surprising to see similarities in
their psychometric functions as well.

Figure C.3 shows the same results, but each dataset has now been mapped
to absolute SI using logistic psychometric functions fitted by least squares.
Note that these logistic functions are not the trained DSMF’s. These logistic
functions are fitted to the test data, as opposed to the DSMF’s that are fitted
to the training data. The DSMF’s are also trained jointly with the network,
whereas these logistic functions are only fitted after the network has been
trained. Thus, the predictions now ideally cluster around the diagonal line
from (0, 0) to (1, 1). From this figure it is easier to compare the performance
across the different predictors because the predictions can now be considered
absolute SI predictions, rather than SI indices. For instance, the DSMF net-
work appears to be better at predicting low intelligibility than the non-DSMF
network, as the clustering is tighter near (0, 0). This could be because DSMF
allows training to focus on tightening each dataset cluster, tighter clusters
being equivalent to higher precision in predictions, rather than spending de-
grees of freedom on bringing all the clusters together. In other words, the
DSMF network learns to predict SI indices for each dataset, rather than ab-
solute SI, and reaches better performance, because this task is simpler. As
a result, the network trained with DSMF reaches the highest performance
among the tested predictors.

The listening conditions associated with three sets of predictions with no-
table errors are listed in Table C.5. The conditions are labelled 1 - 12 in Figure
C.3. These predictions come from datasets DS2, DS5 and DS6. In the case of
DS2 there are three listening conditions, all with the noise type Sinusoidal
Noise Amplitude Modulation (SNAM) at various modulation frequencies
and low SNR. A possible explanation for why the network struggles with this
noise type could be that it is similar to the stationary noise type SSN, which
appears very frequently in the training set. However, speech in SNAM may
be significantly more intelligible than speech in SSN [9], because the modu-
lated noise allows the listener to “listen in the dips”, see e.g., [41] for more
details. Looking at the points from DS5, they all come from the same pro-
cessing scheme involving Ideal Binary Masked (IBM) speech. In particular,
this listening test investigated the effect of artificial errors in an IBM speech
enhancement system. In this context the Type I error listening condition, cf.
Table C.5, refers to IBM’s where spectro-temporal gains of zero were con-
verted to one, i.e., the enhancement system preserves too much of the noise.
It is possible that the network overestimates the impact on SI of this extra
noise, especially considering that this noise only appears in spectro-temporal
regions which were noise dominated in the first place. For DS6 there does not

104



5. Performance evaluation

appear to be any pattern in the listening conditions. The errors here could be
due to the fact that the stimuli in this dataset were recreated using a different
speech corpus from the original listening test [15].

5.2 Experiment B

In general, SI predictor networks should ideally be applicable to other types
of listening conditions than the ones used during the training phase. The
generalizability of the network proposed in this study is tested in a cross-
validation experiment. In this experiment we train the network with ten dif-
ferent initializations on ten different partitions of training, validation and test
data, i.e., one hundred networks trained in total. More precisely, we move the
training and validation data from one listening test at a time entirely to the
test set. This means that each listening test is excluded from the training and
validation phases of ten models, and that the dataset is unseen when testing
those models. For each partition, the model with the lowest validation loss
was selected for the test phase. As such, this experiment gives an indication
as to how the networks will perform in unseen conditions, and how they
react to unseen listening conditions and test paradigms. As in Experiment
A, we expect that the DSMF trained models will reach higher performance
than the non-DSMF trained models. This is because the non-DSMF trained
models learn an internal representation of the psychometric functions related
to the training datasets. Since the psychometric functions related to unseen
test data may be completely different from those related to the seen training
data, such internal representations are undesirable.

Tables C.2, C.3 and C.4 contain Spearman correlations, Pearson correla-
tions and mean squared errors for the models. For any given dataset, the cor-
relations and MSE values in the rows marked as Net (unseen) are computed
for predictions made by a model with that dataset excluded from the train-
ing and validation sets. This means that each column describes a separate
instance of the model, trained without access to the dataset corresponding to
that column.

As expected, the performance for most of the datasets is lower when the
dataset is unseen. The models experience the largest drops in performance
on DS3, DS5 and DS6 as compared to when the datasets are seen. The rea-
son for this could be that DS3 and DS6 are the largest and most diverse in
terms of listening conditions. The exclusion of any of these datasets is a large
reduction in the total amount of training data, which could result in the rel-
atively larger loss of performance. Furthermore, large test sets also make it
harder to produce a good ranking of a larger number of diverse conditions,
as there are more opportunities for mistakes. As for DS5, judging by the
relatively low scores, which the classical predictors achieve, it appears to be
one of the hardest of these datasets for SI predictors in general. Despite the
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Table C.2: Spearman correlations between the mapped predictions and the measured SI of the
10 datasets. In the (unseen) rows, each column represents a different permutation of training,
validation and test data, where the corresponding dataset has been excluded from training and
validation. The rightmost column shows the average of the Spearman coefficients across the
datasets.

Spearman ×100

Predictor DS0 DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 Average

Net w. DSMF (seen) 97.62 97.94 86.37 97.51 89.66 66.78 93.46 68.43 88.85 98.61 88.52
Net w.o. DSMF (seen) 95.24 89.47 89.26 97.06 85.65 61.50 92.18 71.13 85.35 97.56 86.43
Net w. DSMF (unseen) 97.62 92.78 80.19 89.39 88.82 64.00 90.02 60.52 97.52 95.64 85.65
Net w.o. DSMF (unseen) 97.62 92.36 70.77 82.56 85.67 51.11 93.88 58.52 90.51 97.74 82.07

STOI 97.62 94.22 36.29 94.70 88.70 54.16 81.47 61.57 91.95 98.31 79.90
ESTOI 97.62 97.73 85.50 95.07 89.39 41.21 87.66 62.09 87.20 96.73 84.02
SIIB 100.00 96.70 79.28 91.05 93.78 35.52 92.33 76.43 92.78 97.93 85.58
HASPI -2.38 63.88 68.13 68.79 62.02 38.03 85.65 65.91 2.37 82.21 53.46
SI-SDR -83.83 91.74 54.83 43.73 29.28 84.75 66.43 66.43 33.54 95.75 48.27

Table C.3: Pearson correlations between the mapped predictions and the measured SI of the
10 datasets. In the (unseen) rows, each column represents a different permutation of train-
ing, validation and test data, where the corresponding dataset has been excluded from training
and validation. The rightmost column shows the average of the Pearson coefficients across the
datasets. The values marked with * are not significantly different compared to the best predictor
on the given dataset.

Pearson ×100

Predictor DS0 DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 Average

Net w. DSMF (Seen) 99.68* 97.95* 87.10* 98.07* 93.67* 64.04 93.20* 84.06* 91.85 99.00* 90.86
Net w.o. DSMF (Seen) 99.21* 89.76 88.95* 96.65 91.15 60.56 91.93 82.84* 83.55 98.53* 88.31
Net w. DSMF (Unseen) 99.63* 93.49 78.32* 89.18 92.09 62.07 88.63 75.93 96.95* 96.57* 87.28
Net w.o. DSMF (unseen) 98.93* 93.30 69.01 82.82 90.48 47.36 90.83 55.58 92.07* 98.21* 81.86

STOI 99.20* 92.11 34.16 93.99 92.62 49.64 80.47 76.69 92.34* 99.01* 81.02
ESTOI 99.54* 97.79* 84.78* 94.61 90.77 36.05 86.47 76.34 83.73 97.52* 84.76
SIIB 99.18* 94.46 79.23* 89.94 95.86* 29.37 91.44 91.79* 94.91* 96.95* 86.31
HASPI 1.39 60.17 61.67 67.19 69.75 22.45 84.57 32.40 1.67 78.87 48.01
SI-SDR -32.07 92.59 46.65 41.67 25.79 83.34* 60.37 73.14 34.48 97.15* 52.31

Table C.4: Mean squared error between the mapped predictions and the measured SI of the
10 datasets. In the (unseen) rows, each column represents a different permutation of training,
validation and test data, where the corresponding dataset has been excluded from training and
validation. The rightmost column shows the average mean squared error across the datasets.
Note that all mean squared errors in this table have been scaled by a factor of 100 for better
formatting.

Mean squared error ×100

Predictor DS0 DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 Average

Net w. DSMF (Seen) 0.052 0.335 2.355 0.420 0.976 3.868 1.549 1.135 0.496 0.075 1.126
Net w.o. DSMF (Seen) 0.127 1.587 2.023 0.729 1.334 4.146 1.811 1.209 0.959 0.109 1.404
Net w. DSMF (Unseen) 0.060 1.028 3.218 2.247 1.204 4.026 2.509 1.634 0.191 0.253 1.637
Net w.o. DSMF (unseen) 0.171 1.060 4.365 3.438 1.439 5.081 2.059 2.631 0.483 0.133 2.086

STOI 0.127 1.238 6.430 0.827 1.143 4.361 1.673 1.539 0.182 0.088 1.761
ESTOI 0.071 0.361 0.987 1.071 1.401 5.370 1.959 1.663 0.566 0.162 1.361
SIIB 0.135 0.899 2.007 2.145 0.619 5.707 0.797 0.488 0.235 0.252 1.328
HASPI 7.755 5.212 6.046 5.995 4.072 6.217 3.334 3.399 3.168 1.416 4.661
SI-SDR 0.460 1.173 5.867 9.000 7.332 2.009 7.190 1.793 2.807 0.208 3.784
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Table C.5: Marked points from the scatterplot "Network w. DSMF" in Figure C.3.

Point Dataset Condition

1 DS6 High-pass 1122 Hz, -8 dB SSN
2 DS6 Low-pass 3458 Hz, 2 dB SSN
3 DS6 High-pass 1122 Hz, -2 dB SSN
4 DS6 Low-pass 2239 Hz, -2 dB SSN
5 DS6 High-pass 178 Hz, 0 dB SSN

6 DS5 Type-I 20 talker, error rate 0.8
7 DS5 Type-I 20 talker, error rate 0.6
8 DS5 Type-I 20 talker, error rate 0.7
9 DS5 Type-I 20 talker, error rate 0.4

10 DS2 -27 dB SNAM 2 Hz
11 DS2 -19 dB SNAM 8 Hz
12 DS2 -21 dB SNAM 4 Hz

performance drop when this dataset is left out of training, the given model
achieves higher performance than the classical predictors. Exceptionally, DS0,
DS1 and DS8 have higher scores on the unseen models compared to the seen.
These datasets all consist of few listening conditions, 20 or fewer. The expla-
nation could be similar to the one for the large datasets, i.e., that the models
simply perform better in general, when the training set is larger. Removing a
small dataset from the training set, would then have only a small impact on
performance.

Williams’ t-test [42] was used to test for significant differences between the
SI-predictors. This is a pairwise hypothesis test designed to detect significant
differences in Pearson correlations. The null-hypothesis is that two different
predictors have the same Pearson correlation with measured SI. Following
the same procedure used in [9], we tested the highest performing predic-
tor on each dataset against the others, and marked those not significantly
different with * in Table C.3. A significance level of α = 0.05 with Bonfer-
roni correction, to account for multiple tests, was used. Note that DS0, DS1,
DS8 and DS9 contain 20 or fewer datapoints, i.e., listening conditions, which
means that the t-tests could be unreliable on these datasets, according to [42].

On average, the unseen models score slightly higher than the classical pre-
dictors, which suggests that the proposed architecture and training scheme
generalizes well and produces predictors which perform on par with, or bet-
ter than the existing classical predictors for listening conditions, on which it
has not been trained. We attribute this robust performance to two main fac-
tors. First, the proposed network contains as few as 7, 460 trainable parame-
ters, which mitigates overfitting. Secondly, the use of DSMF during training
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facilitates pooling of training data obtained from different listening tests, ef-
fectively increasing the amount of listening test data available for training.

Performance of the proposed SI predictors, when tested with signals from
listening conditions similar to those used for training the SI-predictor, is sub-
stantially better than existing methods. This improved prediction perfor-
mance may be advantageous for replacing some listening tests in iterative
development of speech processing systems. Assuming that the processing
scheme, or the stimuli, are not changed too drastically, then the SI-predictor
network can be validated or even retrained in order to benefit from the high
performance on seen conditions.

Looking at DS5 in Table C.2, there is a larger gap in performance between
the (seen) and (unseen) models without DSMF’s compared to the models
with DSMF’s. In particular, the difference in Spearman correlation is 0.0278,
for the DSMF trained model and 0.1039, for the non-DSMF trained model.
Noting that DS5 is the only dataset which contains English speech, this might
be interpreted as the DSMF training successfully increasing the model’s ro-
bustness to an unseen language. It should be noted, however, that language
is not the only paradigm difference in DS5, so the drop in performance of the
model without DSMF’s might not only be due to the unseen language.
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Fig. C.4: Boxplots of the trained DSMF parameters a and b described in eq. (C.10). The left
figure shows a and right shows b, from the DSMF’s of 90 differently initialized models. The
green triangles denote the mean and the orange lines denote the median. The bottom and top
of the boxes mark the 25% and 75% percentiles respectively. The black dots are outliers.

Figure C.4 contains box-plots of the trainable parameters, a and b de-
scribed in eq. (C.10), of the DSMF’s belonging to the seen datasets, i.e., 90
maps per dataset. While there are significant outliers, depending on the
initialization, the majority of the DSMF’s for each dataset are very similar.
This is evident from the boxes which contain the parameters from 50% of
the initializations. This is more evidence that the DSMF’s are in fact consis-
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tently used by the network to model specific information about each dataset.
Since the DSMF’s are trained jointly with their respective CNN’s, variations
in DSMF’s can be compensated for by the CNN and vice versa, which means
that a large spread of parameters, a and b, across initializations is not neces-
sarily indicative of a similar spread in output predictions.

6 Conclusion

We proposed and investigated a training strategy for data-driven speech in-
telligibility predictors, using dataset-specific mapping functions. The pro-
posed strategy allows the use of pooled listening test datasets during net-
work training, without specializing to the paradigms of those listening tests.
Solving this problem is important, because training of data-driven SI predic-
tors almost inevitably involves the use of listening test data obtained from
multiple listening tests employing different paradigms. Without these pro-
posed dataset-specific mapping functions, data-driven SI-predictors trained
on pooled listening test datasets undesirably learn an internal representation
of the psychometric functions particular to the listening test paradigms in-
cluded in the training data. This can cause the trained SI-predictor to perform
poorly, or even fail, when employed on new unseen data. To demonstrate
this, ten listening test datasets were used to train, validate and test instances
of a data-driven SI predictor using this training strategy. The dataset-specific
mapping functions consisted of trainable logistic functions at the output of
the architecture, which were designed to absorb the different psychometric
functions of the datasets, thus preventing an inefficient internal representa-
tion of these functions from being learned. Experiments were designed to test
the efficacy of training with these dataset-specific mapping functions, along
with the generalizability of the predictor. Using the dataset-specific mapping
functions for training and validation improved the test performance of the
network. A cross validation experiment, where each dataset was excluded
from the training set one by one, demonstrated that the network generalized
well to new listening conditions and test paradigms, with performance on par
with state of the art classical speech intelligibility predictors, for datasets that
were not seen during training, and improved performance for seen datasets.
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