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Abstract 
In recent years, the development of ground robots with human-like perception capabilities has led to the use of multiple 
sensors, including cameras, lidars, and radars, along with deep learning techniques for detecting and recognizing objects 
and estimating distances. This paper proposes a computer vision-based navigation system that integrates object detection, 
segmentation, and monocular depth estimation using deep neural networks to identify predefined target objects and navigate 
towards them with a single monocular camera as a sensor. Our experiments include different sensitivity analyses to evaluate 
the impact of monocular cues on distance estimation. We show that this system can provide a ground robot with the percep-
tion capabilities needed for autonomous navigation in unknown indoor environments without the need for prior mapping or 
external positioning systems. This technique provides an efficient and cost-effective means of navigation, overcoming the 
limitations of other navigation techniques such as GPS-based and SLAM-based navigation.

Graphical Abstract

Keywords  Monocular depth · Object detection · Image segmentation · Sensitivity analysis · Obstacle avoidance · Mapless 
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MSE	� Mean square error
ODIS	� Object detection and image segmentation
RMSE	� Root mean square error
ROI	� Region of interest

1  Introduction

Robotic navigation is a complex task that involves accurate 
perception of the robot’s surroundings, trajectory planning, 
and actuator control. Navigation systems can be categorized 
into three main groups: map-based, map-building, and map-
less systems [1, 2]. Map-based navigation systems rely on 
geometric models or topological maps of the environment 
to navigate [3], while map-building systems can build maps 
of the environment during runtime and localize the robot 
relative to the created map [4, 5]. However, visual SLAM 
technology is often unstable and prone to error, particu-
larly in complex and dynamic environments that frequently 
change over time [6, 7]. Although deep learning techniques 
can enhance image recognition accuracy in complex scenes 
when combined with vSLAM, their performance in runtime 
is often poor, which limits their practical applications [7].

In contrast, map-less systems, which operate without a 
map of the environment, generate motion commands for 
robot navigation based on sensor data. This approach elimi-
nates the cost of storing and maintaining a map, resulting 
in low computational complexity and fast response times. 
Additionally, map-less systems are useful in situations where 
it is impractical to build and maintain a map, such as when 
the robot operates for a short period or must navigate an 
unknown, dynamic, and complex environment [8]. Depth 
estimation, object detection [9], and a control system are 
typically used to enable the robot to detect obstacles and 
their distance during navigation.

Various proximity sensors, such as LiDAR [10], RADAR 
[11], or ultrasonic [12], have been used to measure depth 
data and enhance perception capabilities in robotic systems. 
Nonetheless, the employment of depth estimation techniques 
utilizing cameras, such as Mono or Stereo, has emerged as a 
cost-effective alternative for depth sensing [13].

Although stereo cameras can provide the required depth 
information [14], they are frequently orders of magnitude 
more expensive than a monocular camera [15].

With the fast advancement of deep neural networks, 
monocular depth estimation (MDE) based on deep learning 
has received increased attention in recent years. Surveys on 
the topic such as [16–18] describe a diversity of methods 
to train deep neural networks that are capable of estimating 
depth in a 2D image.

MDE problem is handled in a supervised way [19] with 
depth information obtained from labeled data or in an unsu-
pervised fashion [20] using unlabeled stereo images or video 

datasets. Examples of training and benchmarking datasets 
used in depth estimation are NYUv2 [21] for indoors, and 
KITTI [22] for outdoors scenes.

Unlike stereo vision methods, MDE algorithms can’t use 
epipolar geometry, but instead, they rely primarily on picto-
rial cues [23] that indicate depth within a single image, such 
as perspective, occlusion, object size, or texture gradients.

Eigen et al. [19] demonstrated one of the earliest exam-
ples of MDE by utilizing a CNN to predict depth maps 
directly from images, thereby inspiring numerous DNN-
based solutions in this field. Xu et al. [24] introduced an 
attention-based CRF to regulate feature fusion across scales, 
while DORN [25] discretized depth and used ordinal regres-
sion. DenseDepth [26] utilized a DenseNet-169 that was pre-
trained on ImageNet as an encoder in conjunction with a 
simple decoder that did not include batch normalization to 
enhance the quality and resolution of depth maps. Using 
DenseNet [27] and ResNext-101 [28] as encoders and Dense 
ASPP as a dense multi-scale feature learning module, Lee 
et al. [29] developed BTS. During the decoder stage, they 
used LPG layers instead of upsampling skip connections. 
BTS achieved a high level of accuracy (88.5% on NYUv2).

These state-of-the-art MDE methods prioritize accuracy, 
but their large number of parameters make them impractical 
for resource-constrained platforms. FastDepth [30] addresses 
this issue by introducing a low latency depth estimation 
network for embedded systems, but with reduced accuracy 
(77.1% on NYUv2).

MDE can be combined with object detection and image 
segmentation to allow robots to interact more with their 
environment. Tesla’s Autopilot network [31] is a notable 
example of such a combination, utilizing 48 neural net-
works to perform semantic segmentation, object detection, 
and monocular depth estimation that take 70,000 GPU hours 
to train. One-stage approaches like Yolo [32] and SSD [33] 
have high inference speed, while two-stage approaches like 
Fast-RCNN [34], Faster-RCNN [35], and MaskR-CNN [36] 
have high accuracy [37]. Mask-RCNN has been used suc-
cessfully in various applications, such as identifying damage 
in building structures with 95.13% accuracy [38] and outlin-
ing individual tree crowns in a tropical forest with up to 98% 
precision [39, 40].

The aim of our research is to develop a monocular vision-
based approach that can estimate the distance to a target 
object and enable navigation towards it through the joint use 
of monocular depth estimation, object detection, and image 
segmentation. Our method involved utilizing Mask-RCNN 
for object detection and image segmentation and BTS as 
an MDE network which has achieved high accuracy on the 
indoor NYUv2 dataset. We conducted several experiments 
in our university lab to evaluate the accuracy of distance 
estimation under various conditions, such as occlusion, gray-
scale, blur, and high brightness.
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Our study proposes a novel approach for robot navigation 
that utilizes monocular depth estimation (MDE) and takes 
into consideration the relative positions of objects in the 
scene, rather than relying solely on accurate depth estimates. 
The sensitivity analysis conducted on BTS indicates that the 
pre-trained model’s accuracy is unsatisfactory when applied 
to indoor datasets other than NYU. To make scene analysis 
more intuitive, we partition the depth map into regions. To 
navigate autonomously through obstacles in the scene, we 
integrate our navigation algorithm with a PID controller.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a summary of the related works and our main 
contributions. Distance estimation and sensitivity analysis, 
are described in Sect. 3. The proposed mapless based navi-
gation system is introduced in Sect. 4. Finally, we discuss 
the results and explore future directions in Sects. 5 and 6.

2 � Related Works

In the following sections, we delve into recent studies that 
investigate the use of depth information to enhance object 
detection and image segmentation, in addition to exploring 
the potential advantages of cross-task features that can aug-
ment all three tasks. Furthermore, we analyze cutting-edge 
examples of mapless navigation systems.

2.1 � Integration of Depth Estimation, Object 
Detection, and Image Segmentation: Recent 
Studies

Combining depth estimation with object detection and image 
segmentation in one sole application has been studied in the 
recent literature.

For instance, the authors in [41] propose a deep frame-
work which jointly detects vehicles and estimates the dis-
tance. The proposed multi-tasks framework consists of a 
depth estimation module, a multi-modal Siamese network 
for object detection, and a depth-guided distance estimator. 
The Siamese network leverages the geometric features pro-
vided by the depth information, in addition to RGB image, to 
improve the detection performance. The depth ROI (region 
of interest) features are combined with the bounding box 
coordinates and fed to a Distance Regression Neural Net-
work to estimate the distance.

Using Multiplixed images, the work in [42] can per-
form simultaneously positions and depth estimation of the 
detected objects. The proposed approach uses a disparity 
detector network which is based on SSD, and the shape of 
the anchor is defined by a k-mean algorithm proposed by 
YOLO [24]. The problem with this approach is that it is 
based on multiplixed images which requires a special image 
device and not just an ordinary camera.

Another example reported in [13], where a distance 
estimation system is based on Multi Hidden-Layer Neural 
Network, named DisNet, is used to learn and predict the dis-
tance between the object and the camera sensor. The DisNet 
was trained using a supervised learning technique where 
the input features were manually calculated parameters of 
the object bounding boxes resulted from the YOLOv3 [43] 
object classifier and outputs were the 3D laser scanner meas-
urements of the distances to objects in the recorded scene.

Further, a recent method predicts the Time-to-Collision 
from a monocular video camera embedded in a smartglasses 
device [44]. It consists of a static data extractor module 
using a convolutional neural network to predict the obstacle 
position and distance from the obstacle, and a dynamic data 
extractor module that stacks the obstacle data from multiple 
frames and predicts the Time-to-Collision with a fully con-
nected neural network. YOLOv3 and FastDepth [30] net-
works were used for object detection and depth estimation, 
respectively. By applying the bounding box on the depth 
map, the minimum depth value within this 2D area is consid-
ered as the obstacle distance. However, using the minimum 
depth value within the bounding box would not be correct 
in case the obstacle is partly occluded by another object. In 
this situation, the minimum depth value would correspond 
to the foreground object (nearest) and not the obstacle (in 
the background), as shown in Fig. 1. Our proposed method 
solves this problem by using image segmentation instead of 
object detection.

2.2 � Methods Leveraging Depth Information 
for Object Detection and Image Segmentation

Other methods [45–47] employed rich depth information to 
support the object detection and image segmentation tasks.

Cao et al. [45], used the estimated depth information as 
a cue to improve the performance of both object detection 
and segmentation. For depth estimation, the authors used 
a DCNF (Deep Convolution Neural Field) model [48]. The 
network was trained on RGB-D dataset and it consists of 
three parts: (i) a unary part that takes an input RGB image 
after being segmented into n patches called superpixels, 
and outputs a corresponding n-dimensional vector of 
regressed depth values. (ii) The pairwise part takes simi-
larity vectors for each pair of neighboring superpixels and 
feeds them to a fully-connected layer. (iii) The contentious 
CRF (Conditional Random Field) [49] loss layer takes 
both outputs from unary and pairwise parts and minimize 
the negative log-likelihood. Then, the estimated depth map 
is used to improve the object detection and segmentation. 
For object detection, two models R-CNN [50] and Fast 
R-CNN [34] were used to learn depth features for each 
object proposal. In R-CNN based object detection model, 
the RGB features and depth features are concatenated and 
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used to train a binary SVM for each class as object detec-
tor. Instead of extracting RGB and depth features for each 
object proposal (which is considered as resource consum-
ing), RGB-D Fast R-CNN object detector takes the entire 
RGB and depth images and generates convolutional spatial 
maps using fully CNN. Different datasets (NYUv2, VOC 
2007, ) were used to test the RGB-D detectors, and the 
results showed an improvement in mAP ( mean average 
precision) when both RGB and depth features were com-
bined. For RGB-D semantic segmentation, two models are 
build one with feature concatenation and the other one 
using multi-task joint training. In RGB-D segmentation 
with feature concatenation, the idea is similar to RGB-D 
object detection where the RGB and depth features are 
concatenated and only one loss function is used during the 
training. Instead, RGB-D segmentation by multi-task joint 
training uses two loss functions and two separate networks 
for RGB and depth features extraction. VOC2012 dataset 
was used to test the RGB-D segmentation methods, and 
all results (in terms of maximum mean IoU) with depth 
features outperform the RGB only results.

The authors in [46] fuse instance segmentation and 3D 
object detection using depth information. The proposed 
framework discretizes the objects’ depth into depth catego-
ries and feeds them simultaneously to a 3D branch and a 
mask branch to predict instance-level and pixel-level depth 
categories, respectively. The proposed method was 18 times 
faster than Mask-RCNN and 1.8 times faster than a two-
stage instance segmentation method LklNet [51].

Kang et al. [47] have presented a depth adaptive deep 
neural network that adjusts the receptive field for semantic 
segmentation. The proposed network is based on a depth-
adaptive multiscale convolutional layer including an adap-
tive perception neuron and the in-layer multiscale neuron 
where the distance of each point from the camera is used to 
determine the size of each filter of each neuron.

2.3 � Synergies Between Depth Estimation, Object 
Detection, and Segmentation Tasks

Other studies have shown that depth estimation, object 
detection, and segmentation tasks might also share cross-
task features that could benefit each other.

In their work, Lin et al. [52] developed a hybrid CNN 
(HybridNet) that integrates semantic segmentation and 
depth estimation. The proposed approach was evaluated 
for two different architectures; one unifies the two tasks 
by sharing the feature extraction network for both tasks. 
The commonly extracted features are used separately for 
each task. This method makes the training easy since most 
parameters are shared for both tasks. The other architec-
ture considers a feature-extraction network for both tasks 
and a global depth network used only for the depth esti-
mation. The extracted features are concatenated with the 
Global Depth Net to benefit from object features, and rich 
depth boundaries learned in the semantic segmentation 
and depth estimation tasks.

Wang et al. [53] propose two models built from RefineDet 
[54] and MonoDepth [55], to obtain both object detection 
and depth estimation separately and then integrate the 2D 
location of the detected object with the depth information to 
achieve real-time detection and depth estimation.

Further, Atapour-Abarghouei et  al. [56] developed a 
monocular depth estimation approach that uses pixel-level 
semantic information to estimate the depth of certain seg-
mented objects within a scene and integrates the generated 
depth outputs to have the overall scene’s depth. The pro-
posed method decomposes the input scene into four main 
object groups using four segmentation networks. Each 
segmented object group is passed as input to a depth gen-
erator, which outputs a depth map corresponding to the 
object group, and the four generated depth maps are fused 
to produce the final depth. The entire model was trained 

Fig. 1   Example of overlapping scenario where the target object is partially occluded
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end-to-end using a synthetic dataset [57] containing both 
ground truth pixel-wise segmentation labels and depth.

Finally, the authors in [15] use an ensemble network 
architecture for combining the learned features from N-many 
U-Nets into a single pixel-by-pixel output. The network’s 
primary task, depth estimation, is enhanced by integrating 
component U-Nets pre-trained on supplementary tasks, 
i.e., semantic segmentation. Two variants of NU-Nets were 
compared: simple and connected. Simple W-Net consists of 
two U-Nets in series, where the first U-Net is a pre-trained 
network for segmentation. The second U-Net is an untrained 
network for depth estimation, which takes the output from 
the first U-Net. During the training of the depth estimation 
U-Net, the learned features for image segmentation are pre-
served by freezing the weights of the first U-Net. The second 
variation of the Serial U-Nets, W-Net connected, connects 
the output of the first U-Net concatenated with the original 
RGB image as input to the second U-Net for depth estima-
tion. W-Net and W-Net Connected both trained and vali-
dated on the NYUv2 dataset. The two Serial U-Nets were 
benchmarked against the existing U-Net architecture using 
MSE (Mean Square Error) and RMSE (Root Mean Square 
Error) metrics. The results show that W-Net Connected pre-
sents the best performance in terms of MSE, while U-Net 
performs 75% better than W-Net and W-Net Connected on 
average runtime.

Although these works mentioned above succeeded in 
combining depth with other computer vision tasks, they still 
lack a demonstration in a real application. Our work demon-
strates the integration of monocular depth with object detec-
tion and semantic segmentation to identify a target object 
and its estimated distance from a ground mobile robot for 
navigation. Since there are very few works on what depth 
networks have learned and what depth cues they exploit 
[23, 58], we investigate the mechanisms of MDE by choos-
ing different scenarios, such as occlusion, to evaluate their 
impact on the estimated distance. For example, the authors 
in [23] investigate what visual cues the network exploits for 
depth estimation and expects that both the vertical image 
position and apparent size of objects are the candidate cues 
by modifying or disturbing the input images (i.e., adding 
conflicting visual cues) and then looking for a correlation 
in the generated depth maps. The experiments show that 
the MonoDepth network [55] is mainly based on the verti-
cal image position cue, with the assumption that objects rest 
on the ground. Moreover, changes in camera position (pitch 
and roll) disturb the estimated distance towards obstacles 
even if MonoDepth can detect these changes. Regarding 
obstacle recognition, the experiment results suggest that 
MonoDepth relies on a set of features applicable to cars, 
not to other objects inserted into the test images. Changes 
in color and texture of the obstacles where the value infor-
mation in the image remains unchanged have marked only a 

slight degradation in performance, which indicates that the 
exact color of obstacles does not strongly impact the depth 
estimate. Lastly, the experiments show that the MonoDepth 
network can estimate the depth based on the object’s bottom 
and side edges. The presence of shadows underneath objects 
can provide a high contrast bottom edge, which improves the 
detection of arbitrary objects MonoDepth could not detect 
before.

Unlike [23], Hu et  al. [58] proposed a visualization 
approach that investigates which parts of the input image 
have a more significant impact on the estimated depth. The 
authors assume that CNNs can accurately infer a depth map 
from a small number of image pixels and formulate this as a 
sparse optimization problem. Their approach uses two sepa-
rated CNNs to estimate an image mask that determines the 
smallest number of pixels. The target CNN can generate the 
maximally similar depth map to the estimated depth from 
the original input. The second CNN is the target CNN for 
the visualization. The results suggest that CNNs can accu-
rately estimate a depth map from only a sparse subset of 
the input image specified by the predicted saliency map. 
The experimentation of the predicted masks has been done 
for different input images for various depth estimation net-
works, ResNet-50-based model of [59] and three models of 
[60] whose backbones are ResNet-50, DenseNet-161, and 
SENet-154, respectively.

2.4 � Mapless Robotic Navigation

An example of a map-less navigation method was proposed 
in [61] that navigated to a target location by using landmark 
images. The system used the name and image of landmarks 
as input to a CNN which outputs the bounding box. The 
difference between the centers of the bounding box and the 
input image is used in a Visual Servoing (VS) system to 
determine the direction towards the target location. A second 
DNN takes the target location’s initial and desired images 
and outputs the moving amount to the target position. How-
ever, the proposed VS method presents several issues: 

1.	 The navigation system does not consider the dynamic 
environment (moving and static obstacles), whether clut-
tered or sparse.

2.	 The system learns the relationship between the initial 
and reference image, which means that a new network 
has to be trained for each reference pose, making it 
impractical for new environments.

3.	 The system is limited to the presence of landmarks.

In another recent example [62], the authors use a mapless 
LiDAR navigation control method for a wheeled mobile 
robot. The proposed method employs a deep CNN network 
that learns the mapping between the input LIDAR data and 
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the desired motion behavior through end-to-end imitation 
learning.

Similarly, the authors in [7] employ LiDAR data as visual 
features in a VS system for positioning tasks. The proposed 
VS system uses the pose relationship between the desired 
and the current point cloud to move the robot from an initial 
to the desired position.

Further, Nguyen et al. [63] propose a deep learning solu-
tion NMFNet for the autonomous navigation of a mobile 
wheeled robot. The authors use an RGB-D camera to capture 
the RGB images and points cloud, while the distance map is 
built from a Lidar device. NMFNet consists of three mod-
ules for learning the depth features from the distance map, 
extracting the features from RGB images, and handling 3D 
point cloud data. The output of these three modules is fused 
to predict the steering angle.

Another VS scheme that uses RGB-D data to navigate 
towards the target location is presented [64]. The proposed 
method drives the robot by minimizing the depth map error 
between the initial and target position.

Moreover, other several recent research papers survey 
the current works in vision-based robot navigation, such as 
[65–68].

Besides the issues and shortcomings that we mentioned 
above, none of these surveys and the other previous exam-
ples discuss or use a DNN-based depth map solution in their 
VS navigation system, specifically monocular depth estima-
tion MDE.

2.5 � Contributions

The main contribution of this work is two-fold. Firstly, we 
estimate distance to target objects by combining depth esti-
mation, object detection, and image segmentation generated 
by deep neural networks (DNNs), allowing us to provide 
more precise distance estimates, particularly for partially 
occluded objects, in comparison to using object detection 
alone. Secondly, we investigate the impact of different 
monocular cues on monocular depth estimation using the 

BTS model. This analysis is conducted through a series of 
sensitivity experiments that explore the effects of various 
factors on the estimated distance, and highlight the signifi-
cant influence of camera height on monocular depth estima-
tion (MDE) accuracy.

Furthermore, we present a map-less obstacle avoidance 
algorithm that leverages the monocular depth map obtained 
from the DNN. We integrate it with an object detection 
network to achieve object tracking and obstacle avoid-
ance, where the depth map provides crucial information for 
obstacle detection. Our approach is distinct from previous 
works because it solely relies on a pre-trained MDE model 
for obstacle avoidance, and segments the depth map into 
regions to enhance its usefulness for obstacle detection. We 
also utilize a PID controller for robot navigation, which takes 
the estimated signal as input from the MDE network acting 
as a sensor.

3 � Distance Estimation and Sensitivity 
Analysis

In this section, we demonstrate the integration of monocular 
depth with object detection and image segmentation to iden-
tify a target object and estimate its distance from a ground 
mobile robot. We also perform a sensitivity analysis using 
a statistical and graphical method based on the variance of 
the estimated distance error.

3.1 � Distance Estimation

Our proposed vision-based system (described in Fig. 2) 
takes a single image as input. It estimates the distance to 
a target object (a teddy bear) from the robot’s camera by 
combining the outputs from the pretrained MDE network 
(BTS) and the image segmentation network (Mask-RCNN). 
The obtained 2D mask from Mask-RCNN is overlayed onto 
the depth map to select only the region corresponding to 

ODIS (MaskRCNN)

MDE (BTS)

2

Depth map

[x1,y1,x2,y2, mask]

Integration

[d_min, d_avg, d_median]

Input image Augmented depth map

1

3 Distance estimation

4

Fig. 2   System overview. (1) Object Detection and Image Segmenta-
tion (ODIS) Mask-RCNN module generates bounding box and 2D 
mask. (2) BTS network outputs depth map. (3) Integration of outpus 

from (1) and (2) and the generation of Augmented depth map. (4) 
Distance estimation module provides the 3 distance measurements
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the target object and calculate the distance described in the 
following pipeline.

The pipeline of the distance estimation system can be 
summarized in the following steps: 

1.	 Read the input image.
2.	 Run Mask CNN to detect object and return bounding 

box [x1, x2, y1, y2] and 2D mask.
3.	 Generate the depth map using BTS network.
4.	 Overlay the obtained 2D mask onto the generated depth 

map to select only the region corresponding to the target 
object, resulting into an augmented depth map.

5.	 Calculate the minimum, the median, and the average 
distances from the selected filtered region.

The pipeline results into 3 measurements of the distance:

•	 d_min: The minimum distance inside the filtered region 
of the depth map.

•	 d_avg: The average distance inside the filtered region of 
the depth map.

•	 d_median: The median distance inside the filtered region 
of the depth map.

The pipeline above is repeated for every image taken by the 
robot’s camera while navigating towards the target object. 
We compare these three distances d_min, d_avg, and d_
median with the true distance d_true. d_true is calculated 
based on the Optitrack system, which can measure the posi-
tion and orientation of the objects in a physical space [69]. 
We use the 2D coordinates of the robot and the target object 
from these measurements to calculate the Euclidean distance 
as d_true.

3.2 � Sensitivity Analysis of the Estimated Distance

The captured images with monocular cameras can be sub-
ject to different variations, such as an improper lens align-
ment resulting in blurred vision or external light conditions 
increasing the brightness of the image pixels. In this work, 
we imitate these variations in the image to study the behav-
ior of the MDE network BTS under these conditions. We 
conduct a sensitivity analysis in the form of a statistical and 
graphical method based on the variance of the estimated 
distance error.

We present 5 different scenarios (Figs. 3 and 4): 

1.	 Scenario1 (Normal): The robot navigates towards the 
target object without any obstacles. In this case, we use 
the RGB image taken by the robot’s camera without any 
image modification to estimate the distances.

2.	 Scenario2 (Grayscale): Similar to Scenario1, but 
instead of using the RGB image, we convert it to a gray-

scale image and use the grayscale image to estimate the 
distances.

3.	 Scenario3 (Blur): Similar to Scenario1 but we apply a 
Gaussian blur function on the RGB image and use the 
blurred image to estimate the distances.

4.	 Scenario4 (Brightness): Similar to Scenario1, we 
increase the RGB image’s brightness and use the illu-
minated image to estimate the distances.

5.	 Scenario5 (Occlusion): The target object is partially 
occluded while the robot navigates towards it. In this 
case, we use the RGB image taken by the robot’s cam-
era without any image modification to estimate the dis-
tances.

3.3 � Depth Evaluation

Based on the graphical results presented in Fig. 4, it is evi-
dent that the BTS model’s accuracy is consistently poor 
across all scenarios. We suspect that the height of the Tur-
tlebot3 with the camera mounted at around 20 cm may sig-
nificantly affect the accuracy of the depth model, which was 
initially trained using a specific camera height, as indicated 
in Table 5. In order to investigate this further, we conducted 
MDE accuracy measurements using different camera height 
configurations and encoders. Additionally, to evaluate the 
performance of the BTS model on a dataset with a low cam-
era height, we utilized the TUM dataset [70] recorded by the 
Pioneer robot. The results of our experiments are presented 
in Tables 1, 2, 3, 4, and 5. The results of our experiments 
will be discussed in the results section.

3.4 � Implementation

The algorithms developed in this work were tested in an 
indoor laboratory environment, with an area of 4.54m2 . The 
overall system described in Fig. 2 runs on a remote work-
station, and it was implemented using PyTorch library and 
Matlab.

For navigation, we use a Turtlebot3 robot equipped with a 
monocular camera Logitech 1080p. A Matlab program reads 
and saves images from the Turtlebot3 via ROS network. A 
python program executes the modules in Fig. 2 and gener-
ates the augmented depth map and the estimated distances.

In addition, for the classical depth evaluation, we used 
an Intel Realsense l515 camera to collect the ground truth 
depth.

In the navigation system, the code is executed remotely 
on a Linux workstation. The Turtlebot3 sends images to the 
workstation via ROS network. The python code runs on the 
remote workstation which is a Lenovo P53 equipped with a 
Quadro RTX 4000 GPU.
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Fig. 3   Input images and cor-
responding depth images with 
detected target object, respec-
tively, in different scenarios 
(Best viewed in color). From 
top to down: Normal, Gray-
scale, Blur, Brightness, Occlu-
sion. From left to right: Input 
image, augmented depth map
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Fig. 4   Distance estimation in 
different scenarios. From top to 
down: Normal, Grayscale, Blur, 
Brightness, Occlusion. With 
d_min (red), d_avg (green), 
d_median (yellow), and with 
the true distance d_true (blue)
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Table 1   The evaluation of BTS 
on the custom indoor dataset 
(Camera height ≈ 120 cm) using 
different encoders

Encoder d1 d2 d3 AbsRel SqRel RMSE RMSElog SILog log10

DenseNet161 0.728 0.943 0.991 0.166 0.086 0.412 0.213 16.347 0.076
DenseNet121 0.811 0.967 0.992 0.148 0.070 0.349 0.180 14.812 0.064
ResNet101 0.747 0.977 0.998 0.153 0.072 0.380 0.188 14.404 0.069
ResNet50 0.771 0.977 0.994 0.152 0.070 0.366 0.185 14.965 0.067
ResNeXt101 0.764 0.968 0.995 0.155 0.073 0.375 0.192 13.953 0.070
ResNeXt50 0.745 0.967 0.992 0.162 0.083 0.397 0.196 15.352 0.072
MobileNetV2 0.742 0.947 0.984 0.175 0.102 0.428 0.212 16.959 0.075

Table 2   The evaluation of BTS 
on the custom indoor dataset 
(Camera height ≈ 60 cm) using 
different encoders

Encoder d1 d2 d3 AbsRel SqRel RMSE RMSElog SILog log10

Densenet161 0.414 0.757 0.911 0.281 0.246 0.681 0.365 19.929 0.137
Densenet121 0.491 0.897 0.981 0.228 0.162 0.567 0.276 16.334 0.107
Resnet101 0.450 0.830 0.976 0.244 0.178 0.606 0.306 18.854 0.118
Resnet50 0.556 0.908 0.982 0.218 0.149 0.528 0.262 16.341 0.100
Resnext101 0.487 0.785 0.910 0.264 0.240 0.663 0.344 21.319 0.129
Resnext50 0.464 0.792 0.941 0.264 0.230 0.660 0.333 20.260 0.126
Mobilenetv2 0.507 0.857 0.965 0.248 0.199 0.600 0.298 19.640 0.111

Table 3   The evaluation of BTS 
on the custom indoor dataset 
(Camera height ≈ 20 cm) using 
different encoders

Encoder d1 d2 d3 AbsRel SqRel RMSE RMSElog SILog log10

Densenet161 0.337 0.483 0.594 0.850 1.120 1.043 0.671 42.783 0.231
Densenet121 0.322 0.491 0.615 0.788 0.958 0.974 0.637 39.185 0.220
Resnet101 0.288 0.434 0.598 0.869 1.132 1.104 0.669 37.629 0.241
Resnet50 0.308 0.436 0.595 0.854 1.098 1.069 0.666 38.482 0.236
Resnext101 0.319 0.489 0.649 0.790 0.954 0.982 0.633 38.687 0.221
Resnext50 0.324 0.494 0.626 0.809 1.015 0.995 0.649 41.563 0.223
Mobilenetv2 0.312 0.467 0.599 0.832 1.059 1.038 0.657 39.424 0.230

Table 4   The evaluation of BTS 
on the TUM dataset (Camera 
height ≈ 45 cm) using different 
encoders

Encoder d1 d2 d3 AbsRel SqRel RMSE RMSElog SILog log10

Densenet161 0.433 0.810 0.963 0.326 0.383 1.066 0.343 31.740 0.128
Densenet121 0.406 0.789 0.979 0.320 0.365 1.083 0.337 30.588 0.126
Resnet101 0.344 0.759 0.961 0.337 0.418 1.221 0.362 33.059 0.138
Resnet50 0.379 0.825 0.974 0.319 0.350 1.102 0.334 31.504 0.127
Resnext101 0.474 0.860 0.972 0.289 0.317 1.027 0.310 28.202 0.115
Resnext50 0.428 0.825 0.962 0.306 0.367 1.153 0.336 30.997 0.126
Mobilenetv2 0.404 0.807 0.966 0.320 0.384 1.144 0.341 31.363 0.129

Table 5   The evaluation of BTS 
on the NYU dataset (Camera 
height ≈ 130 cm) using different 
encoders

Encoder d1 d2 d3 AbsRel SqRel RMSE RMSElog SILog log10 Params

DenseNet161 0.885 0.978 0.994 0.110 0.066 0.392 0.142 11.533 0.047 47.0 M
DenseNet121 0.871 0.977 0.993 0.118 0.072 0.410 0.149 12.028 0.050 21.2 M
ResNet101 0.871 0.977 0.995 0.113 0.068 0.407 0.148 11.886 0.049 68.5 M
ResNet50 0.865 0.975 0.993 0.119 0.075 0.419 0.152 12.368 0.051 49.5 M
ResNext101 0.880 0.977 0.994 0.111 0.069 0.399 0.145 11.680 0.048 112.8 M
ResNext50 0.867 0.977 0.995 0.116 0.070 0.414 0.150 12.186 0.050 49.0 M
MobileNetV2 0.843 0.968 0.990 0.133 0.088 0.485 0.170 13.778 0.057 16.3 M
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3.5 � Results

Each of the 5 scenarios (Figs. 3 and 4) is repeated 10 times, 
with more than 100 images each. Figure 3 shows an exam-
ple of each scenario where d_min (red), d_avg (green), 
d_median (yellow) are estimated and ploted with the true 
distance d_true (blue).

From Fig. 3, the d_median (yellow) distance is much 
less accurate compared to d_min (red) and d_avg (green) 
in all scenarios, so we considered discarding it from the 
subsequent analysis.

For each scenario, we calculate the root mean square error 
(RMSE) of each of d_min and d_avg, and we plot the box-
plot to catch the variation of these measurements (Fig. 5). 
In all scenarios, the minimum distance d_min is more accu-
rate than the average distance d_avg, therefore we will use 
d_min. Among all 5 scenarios, d_min has registered the 

highest accuracy in the case of Scenario5 (Occlusion), and 
the lowest accuracy in Scenario4 (Brightness).

From Fig. 3, we noticed that d_min becomes less accu-
rate when the robot gets closer to the target object, around 
1.5 ms or less. To visualize clearly this behavior, we calcu-
late the RMSE of d_min when the distance of the robot from 
the target object is less than 1.5 m and when it is between 
1.5 m and 2.5 m. The results are shown in Fig. 6.

Regardless the scenario and distance estimation metric 
employed (such as d_min), the accuracy of depth estima-
tion is significantly low. The choice of camera height has a 
significant impact on depth estimation, as demonstrated by 
the classical depth evaluation metrics of the BTS model in 
different camera height configurations. For instance, Table 5 
shows the performance of the BTS model on the NYU 
dataset, where the images and corresponding ground truth 
depth were captured at a standing hand height. Conversely, 

Fig. 5   RMSE of the estimated 
distances d_min and d_avg for 
all scenarios
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Fig. 6   RMSE of the esti-
mated distance d_min for 
all scenarios where the 
distance d_true < 1.5 m and 
1.5m ≤ d_true ≤ 2.5 m
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Tables 1, 2, and 3 present the performance of BTS on our 
indoor dataset with camera heights set to 120 cm, 60 cm, 
and 20 cm, respectively, with the latter being the height of 
the robot. The results show that the MDE accuracy is high-
est when the camera height is similar or closer to that of the 
NYU dataset, and the opposite holds for the lowest height. 
Additionally, Table 4 reports the performance of BTS on 
the TUM dataset captured by a Pioneer robot with a camera 
height of approximately 45 cm. The results indicate that the 
BTS accuracy is between the values obtained for camera 
heights of approximately 60 cm and 20 cm.

4 � Mapless Monocular Depth Navigation

This section demonstrates a new algorithm that leverages the 
relative positions of objects in the scene to facilitate obstacle 
avoidance and navigation, rather than depending entirely on 
precise depth measurements. The algorithm’s main objective 
is to identify gaps or free spaces in the environment that a 
ground robot can traverse safely.

4.1 � Problem Formulation

We consider a point-mass robot in a closed bounded work-
space W ⊂ ℝ

3 which consists of n ∈ ℕ obstacles Oi ⊂ W  , 

i ∈ 1, ..., n . We denote F  as the free space in W  as 
F = W ⧵

n
⋃

i=1

O
i
.

We are using a two-wheel nonholonomic differential 
drive robot equipped with a monocular camera, to reach a 
target object in the environment without access to (or main-
tenance of) a map.

The robot must detect the free spaces or gaps within its 
camera’s Field Of View (FOV), and it has to choose the 
appropriate gap through which can navigate without colli-
sion. We define Lg as the gap length between two obstacles, 
and Lr as the robot length (see Fig. 7). The navigation in the 
workspace W  is plausible if:

with � is the rotation angle of the robot around the z-axis.

4.2 � Proposed Method

To navigate successfully towards a target object using our 
proposed method, the robot must be able to: 

(1)

⎧

⎪

⎨

⎪

⎩

∃𝜑 ∈ [0, 2𝜋],∃Oi,Oj ⊂ W, i, j ∈ 1, ..., n ∣ n ∈ ℕ
∗, i ≠ j

∀p, q ∈ Oi × Oj, Lg > Lr, Lg = min‖p − q‖

Fig. 7   Obstacle avoidance prob-
lem definition
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1.	 Detect the obstacles inside a given range.
2.	 Detect the gaps between these obstacles.
3.	 Choose the appropriate gap and navigate through it.
4.	 Detect and navigate toward the target object.

We address the aforementioned problems using mainly a 
monocular camera as the robot sensor.

4.2.1 � Obstacle Detection

Obstacle detection can not be fully done using only object 
detection models since this requires learning about all pos-
sible objects that could exist in an unknown scene. Instead, 
we are using a Monocular Depth Estimation (MDE) model 
[71], which helps in detecting obstacles even without using 
an object detection model.

However, as the depth map image used is estimated by 
a DNN rather than obtained from an active sensor, e.g., 
Lidar or Kinect, the resulting distance is inaccurate in 
practice, as seen previously in Table 3 and Fig. 4.

We propose to use the relative positions of objects in 
the scene to overcome the requirement of having a precise 
depth map.

First, we define a safety distance ds (see Fig. 8) within 
which we need to keep out all obstacles while navigat-
ing. This safe space can also be considered as the ground 
space, which can be tagged in the depth map as a close 
space to the robot. The idea is to ignore everything in this 
space and consider only the obstacles outside it.

To detect the obstacles within the robot camera’s FOV, 
we generate the monocular depth map and apply a thresh-
old on it based on the distance color related to the accepted 
range. This will keep only the objects that are within a cer-
tain range and eliminate all other objects from the depth 
map image.

4.2.2 � Free Space Detection

In this stage, we generate a binary map from the thresholded 
depth map (see Fig. 9) to detect the obstacles and the pos-
sible gaps between them. We assign 0 to free spaces and 1 
to obstacles. In order to localize the gaps between the obsta-
cles, we take the horizontal line defining the top edge of the 
safe space and we extract the corresponding array of pixel 
values (see Fig. 10).

Each group of 1 s denotes an obstacle Oi , and each group 
of 0 s is a gap Gj with a length LGj

.

4.2.3 � Best Gap Selection

For plausible navigation, we need to find a free space Gj with 
LGj

> Lr (see Eqn. (1)). However, LGj
 is expressed in pixels 

and should be converted to real-world coordinates. The two 
extremities of the gap Gj are defined as (x1, y1) and (x2, y2) , 
with y1 = y2 = ds (see Fig. 11).

By knowing the camera’s intrinsic parameters and the real 
depth value, we can have this conversion as follows:

with Z1 and Z2 are the real distances towards the point (x1, y1) 
and the point (x2, y2) , respectively, and f is the camera’s focal 
length.

The converted value of LGj becomes:

We define the set of candidate gaps as:

(2)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X1 = Z1
x1

f

Y1 = Z1
y1

f

X2 = Z2
x2

f

Y2 = Z2
y2

f

(3)LGj =

√

(X2 − X1)
2
+ (Y2 − Y1)

2

Fig. 8   Safety distance d
s
 for robotic navigation



	 International Journal of Computational Intelligence Systems           (2023) 16:79 

1 3

   79   Page 14 of 18

and among this set SG , we choose the most appropriate gap 
Ga ∈ SG , with Ca as the center of Ga and �a = ∠(��

�
,OT) 

the bearing angle between OCa and OT the center of the 
target object, such as:

4.2.4 � Navigate Towards the Target Object

After selecting the best free space to navigate through, we 
calculate the bearing angle between the current direction and 
the direction of the center of the gap, as (Fig. 12):

(4)SG = {Gj, j ∈ 1, ..., n ∈ ℕ
∗
∣ LGj

> Lr}

(5)

⎧

⎪

⎨

⎪

⎩

∀�i = ∠(��
�
,OT), ‖�a‖ = minGi∈SG

‖�i‖,

if target object within FOV.

LGa
= maxGi∈SG

LGi
, otherwise.

(6)� = arccos
OC × OP

‖OC‖ × ‖OP‖

If the target object is within the FOV, we estimate the dis-
tance toward it using the integrated DNN models for MDE, 
object detection.

To control the translation and rotation velocities of the 
robot and its direction (front, right, or left), we use a PID 
controller that takes the bearing angle � , and the difference 
between the target object center T and the image center P 
along the x axis (Fig. 12).

5 � Discussion

We present the integration of MDE with object detection 
and image segmentation to identify a target object and its 
estimated distance from a ground mobile robot. Among 
different measurements of the distance, only the minimum 
distance d_min had the closest value to the true distance 
d_true. The accuracy of the estimated distance is propor-
tional to the presence of monocular cues in the image. In 
MDE, the presence of occlusion in the scene improves 
the accuracy of the estimated depth [72], therefore the 
estimated object distance. However, occlusion can be con-
sidered an issue in some applications, such as estimating 

Fig. 9   The algorithm’s main steps. (From top to bottom, from left to right): Original image, estimated depth map, thresholded depth map, binary 
thresholded depth map
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distance from a partially occluded person. The authors 
in [73] proposed a solution based on the pose estimation 
technique OpenPose [74], which can recognize the coor-
dinates of an almost fully occluded person where only the 
head of the person is visible and use these coordinates in 
the distance estimation.

The estimated distance measured from grayscale images 
is close to the one calculated from RGB images, indicating 
that the color cue does not affect the MDE too much.

The results (Fig. 5) show that blurred and high bright-
ness images give the lowest accuracy in distance estimation, 
wherein in these two scenarios, the edges and corners are 

Fig. 10   Gaps and obstacles 
detection

Fig. 11   Image coordinates of a gap
Fig. 12   Robot navigation towards target object
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partially deleted and distorted. This may indicate that edges 
and corners are also of great importance for MDE.

Combining RGB and grayscale images can also improve 
the performance of MDE in the case of poor light conditions, 
as reported by Jang et al. [75].

It is anticipated that the accuracy of MDE is directly 
influenced by the selection of camera height, irrespective of 
the scenario or encoder employed. For better accuracy, it is 
recommended to use a camera height during testing that is 
comparable to the height used during training. Alternatively, 
one could train the network on the desired camera height for 
the specific application, such as the height of the Turtlebot3 
in our case. This could potentially result in improved accu-
racy during testing with the same camera height.

The results in Fig. 6 show that the estimated distance gets 
less accurate when the distance towards the target object is less 
than 1.5 m. One of the possible explanations for this could be 
the lack of linear perspective cue from the background scene 
due to the small and narrowed space in which the experiments 
took place. The linear perspective is a monocular cue that 
causes parallel lines to appear to intersect at a vanishing point 
in the distance, where closer objects to the vanishing point on 
the image plane are farther from the camera [76]. The training 
of the network for small ranges could solve this problem.

The proposed approach to monocular mapless navigation 
using deep learning techniques has shown promising results 
for unknown indoor environments. By utilizing the monocu-
lar depth estimation network and object detection network, 
a new algorithm was developed for obstacle avoidance and 
object tracking without relying on a pre-built map or simul-
taneous localization and mapping (SLAM) technologies.

One of the main advantages of this approach is its abil-
ity to work in real-time with a low-cost monocular camera, 
which is easily accessible and widely used in robotics. Addi-
tionally, the region-based segmentation of the depth map 
allows for a more precise and robust representation of the 
environment, reducing the problem’s complexity by focusing 
on specific regions of interest.

In summary, this proposed approach demonstrates the 
potential of using deep learning techniques for monocular 
mapless navigation in unknown indoor environments.

6 � Conclusions

We presented a monocular-based navigation system for an 
autonomous ground robot that can identify a target object 
and its distance from the camera in an unknown environ-
ment, using two pre-trained networks for "object detection 
- image segmentation" and monocular depth estimation. 
Our approach addresses the challenge of having partially 
occluded objects during distance estimation. On one hand, 
occlusion helps the depth estimator detect objects in front 

and behind. On the other hand, the area within the bounding 
box is reduced. We solved this problem by detecting and seg-
menting the target object and using only the segmented area 
instead of the entire bounding box to estimate the distance.

Our experiments showed that the estimated distance in 
the presence of occlusion cues has the highest accuracy 
among the other scenarios.

The experiments also showed, that color information does 
not strongly affect the accuracy of the estimated distance. 
Therefore, we suggest using gray scale images during train-
ing of the MDE network in our future work.

Importantly, the obstacle avoidance and object tracking 
capabilities of our navigation algorithm, which relies solely 
on a low-cost monocular camera, does not require a pre-built 
map or SLAM technologies, or a very precise depth map.
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